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FRACTIONAL BROWNIAN MOTION WITH HURST INDEX

H = 0 AND THE GAUSSIAN UNITARY ENSEMBLE

By Y. V. Fyodorov1, B. A. Khoruzhenko and N. J. Simm1

Queen Mary University of London

The goal of this paper is to establish a relation between character-
istic polynomials of N ×N GUE random matrices H as N →∞, and
Gaussian processes with logarithmic correlations. We introduce a reg-
ularized version of fractional Brownian motion with zero Hurst index,
which is a Gaussian process with stationary increments and logarith-
mic increment structure. Then we prove that this process appears as a
limit of DN (z) =− log |det(H−zI)| on mesoscopic scales as N →∞.
By employing a Fourier integral representation, we use this to prove
a continuous analogue of a result by Diaconis and Shahshahani [J.
Appl. Probab. 31A (1994) 49–62]. On the macroscopic scale, DN (x)
gives rise to yet another type of Gaussian process with logarithmic
correlations. We give an explicit construction of the latter in terms
of a Chebyshev–Fourier random series.

1. Introduction. Suppose that H is a random Hermitian matrix of size
N ×N taken from the Gaussian Unitary Ensemble (GUE), with ensemble
distribution given by the measure

Const. exp[−2N Tr(H2)]

N
∏

j=1

dHjj

∏

1≤j<k≤N

dReHjkd ImHjk.(1.1)

It is well known that in the limit of infinite matrix dimensions N → ∞,
the distribution of the eigenvalues of H is supported on the interval [−1,1]
and has density 2

π

√
1− x2 there. This is known as Wigner’s semicircle law;

see, for example, [43] and [1] for precise statements. In this paper, we are
concerned with the random process in x defined by the logarithm

DN (x) =− log|det(H− xI)|(1.2)
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2 Y. V. FYODOROV, B. A. KHORUZHENKO AND N. J. SIMM

of the characteristic polynomial of H in the limit N →∞, with x varying in
(−1,1). The quantity DN (x) is a particular case of linear eigenvalue statistics

XN (f) =
∑N

k=1 f(xk), where x1, . . . , xN are the eigenvalues of H. It is well
known that for suitably regular test functions f , XN (f) is asymptotically

normal as N →∞ with variance σ2(f) = 1
4

∑∞
k=1 kck(f)

2, where ck(f) are
the Chebyshev–Fourier coefficients:

ck(f) =
2

π

∫ 1

−1

f(u)Tk(u)√
1− u2

du, Tk(u) = cos(k arccos(u)).(1.3)

In fact, the asymptotic normality ofXN (f) for regular f has been established
for a variety of random matrix ensembles; see, for example, [31, 38, 43] and
references therein.

Since x lies in the bulk of the eigenvalue distribution, our test function,
f(u) = log |u− x| is unbounded. Its Chebyshev–Fourier coefficients are pro-
portional to 1/k, so that σ2(f) = ∞ and it is then natural to consider
normalizing DN (x) before taking the limit N → ∞. Indeed, for any fixed
x ∈ (−1,1) the variance of DN (x) grows with N like 1

2 logN , and for any
finite number of distinct points x1, . . . , xm in (−1,1) the random vector
(DN (x1), . . . ,DN (xm))/(12 logN)1/2 converges in distribution, after center-
ing, to a collection of m independent standard Gaussians as N →∞. This
can be inferred from the asymptotic identity due to Krasovsky [35]:

E{e−
∑m

k=1αkDN (xk)}=
m
∏

k=1

[

C

(

αk

2

)

(1− x2k)
α2
k/8Nα2

k/4eαkN(2x2
k−1−2 log(2))/2

]

(1.4)

×
∏

1≤ν<µ≤m

(2|xν − xµ|)−αναµ/2

(

1 +O

(

logN

N

))

,

where C(α) = 22α
2
G(α+1)2/G(2α+ 1) and G(z) is the Barnes G-function.

The most salient feature of the asymptotics in (1.4) is the product of differ-
ences on the second line, which when rewritten in the form

exp

[

−
∑

1≤ν<µ≤m

αναµ

2
log|2(xν − xµ)|

]

,(1.5)

is suggestive of the existence of a logarithmic covariance structure in the
Gaussian process DN (x). However, this term is of sub-leading order to the
variance term. Clearly then, the normalization of the process (1.2) comes at
a price, because the nontrivial covariance structure implied by (1.5) is too
small to survive the limit N →∞.

This motivates the following question. How can we “regularize” the pro-
cess (1.2) so that it has a well-defined limit that “feels” the covariance struc-
ture implied by (1.5)? Hughes, Keating and O’Connell [30] answered this
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question in the context of the Circular Unitary Ensemble (Haar unitary
matrices). Employing convergence in functional spaces instead of point-wise
convergence, they proved that the logarithm VN (θ) = −2 log |pN (θ)| of the
characteristic polynomial pN (θ) = det (I −Ue−iθ) of Haar unitary matrices
U converges as N →∞ to the stochastic process represented by the Fourier
series

V (θ) =

∞
∑

n=1

1√
n
(vne

inθ + vne
−inθ).(1.6)

Here, the coefficients vn, vn are independent standard complex Gaussians,
E{vnvn} = 1, and the convergence of the series is understood in the sense
of distributions in a suitable Sobolev space. This process has a logarithmic

singularity in the covariance structure: E{V (θ1)V (θ2)}=−2 log |eiθ1 − eiθ2 |.
At this point, it is appropriate to mention that random processes and

fields with logarithmic covariance structure appear with astonishing regu-
larity in physics and also engineering applications; see, for example, [12] and
more recently [26]. Those objects are intimately related to multi-fractal cas-
cades emerging in turbulence, and from that angle attracted considerable
mathematical interest within the last decade; see, for example, [3] and [4].
In fact, closely related mathematical objects appear in the so-called “mul-
tiplicative chaos” construction going back to Kahane’s work [32]; also see
[44] and references therein for recent research in that direction which was
motivated, in particular, by Quantum Gravity applications. In two spatial
dimensions, the most famous example of the random field of that type is
the two-dimensional Gaussian Free Field [48]. A regularized version of this
field appeared in a nontrivial way in the work of Rider and Virág [45], who
showed that it describes the limiting law of the log-modulus of characteristic
polynomials in the Ginibre ensemble. The Gaussian Free Field also appeared
more recently as the limiting distribution of the eigenvalue counting func-
tion in general β-Jacobi ensembles and their principal sub-minors [7]. As for
the one-dimensional processes with logarithmic correlations, they are known
in natural sciences under the general name of 1/f noises (see Section 2 in
[26] for some general references) since, in the spectral representation, the
Fourier transform of the covariance or structure function, interpreted as
a “power” of the signal, is inversely proportional to the Fourier variable
(i.e., the “frequency” f ). The random process V (θ) is, arguably, the sim-
plest time-periodic stationary version of 1/f noise. It was found to play an
important role in the construction of conformally invariant planar random
curves [2] and statistical mechanics of disordered systems [23]. We note in
passing that from a different angle, discrete sequences with 1/f properties
were considered heuristically in the physics literature; see, for example, [21]
and [39].
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The motivation for the work in [30] came from number theory, as for
large N , pN (θ) provides a good model for describing statistics of the values
of the Riemann-zeta function high up the critical line [33]. The established
relation of pN (θ) to V (θ) turned out to be fruitful. It allowed one to put
forward nontrivial conjectures about statistics of extreme and high values
of characteristic polynomials of Haar unitary matrices emerging as N →∞,
and eventually for the Riemann-zeta function [24, 25].

The main goal of this paper is to investigate further the relation between
1/f -noises and the characteristic polynomials of random matrices in the
limit N →∞. Significantly extending the picture found in [30], we will show
that the limiting process depends on the spectral scale at which one allows
the argument x of the characteristic polynomial det(H − xI) to vary. To
this end, let us remind the reader that, as is well known in random matrix
theory (see, e.g., [43]), there exist three natural scales in the spectra of large
random matrices. One, known as the global, or macroscopic scale is set for
the GUE by the width of the support of the semicircle law and, in the
normalization chosen in the present paper [see (1.1)] remains of the order
of unity as N →∞. Second, known as the local, or microscopic scale is set
by the typical separation between neighbouring eigenvalues and is, in the
chosen normalization, of order 1/N for large N . Finally, the third scale which
is called mesoscopic can be defined as intermediate between those two.

Deferring precise statements to the next section, now we will outline the
two instances of 1/f noise that emerge in the limit N →∞ for the GUE
matrices. On the macroscopic scale, by adapting the arguments of [30] to
our setting, we prove that, as N → ∞, the process {DN (x) : x ∈ (−1,1)}
converges, after centering, to the (aperiodic) 1/f noise given by the random
Chebyshev–Fourier series

F (x) =
∞
∑

n=1

1√
n
anTn(x), x ∈ (−1,1),(1.7)

where an, n= 1,2 . . . is a sequence of independent standard real Gaussians.
As with the Fourier series in (1.6), the convergence in (1.7) has to be under-
stood in the sense of distributions in a suitable Sobolev space. The covariance
structure associated with the generalized process (1.7) is given by an integral
operator with kernel E{F (x)F (y)}=−1

2 log(2|x− y|).
The problem of finding a suitable model to describe the statistical proper-

ties of the characteristic polynomials of random matrices on the mesoscopic
rather than macroscopic scale turned out to be much more challenging and
is the main focus of the present paper. Our main finding is the emergence of
fractional Brownian motion with Hurst index H = 0 in this context. To de-
scribe the latter, we recall that the conventional fractional Brownian motion
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(fBm) is a zero-mean Gaussian process BH(t), BH(0) = 0, with stationary
increments and the covariance structure given by

E{[BH(t1)−BH(t2)]
2}= σ2|t1 − t2|2H ,(1.8)

where H ∈ (0,1) and σ2 > 0 are two parameters. Although first introduced
by Kolmogorov in 1940, fBm became very popular after the seminal work
of Mandelbrot and van Ness [40] and proved to be a very rich mathemat-
ical object of high utility; see, for example, articles by M. Taqqu and by
G. Molchan in the book [16] for an introduction and further references and
applications. The utility of fBm is related to its properties of being self-

similar, that is, {BH(at) : t ∈ R} d
= aH{BH(t) : t ∈ R} for any a > 0, and

having stationary increments. These two properties characterize the corre-
sponding Gaussian process uniquely; see, for example, [16]. In the context
of self-similarity, parameter H is also known as the Hurst index H or the
scaling exponent.

For H = 1/2, the fBm B1/2(t) is proportional to the usual Brownian mo-
tion (Wiener process). We will denote the latter simply as B(t), with B(dt)
being the corresponding white noise measure, E{B(dt)}= 0 and E{B(dt)×
B(dt′)}= δ(t−t′)dt dt′, where we have chosen the normalization correspond-
ing to the choice of σ = 1 in (1.8).

It is apparent from (1.8) that the naive limit H = 0 of BH(t) is not well
defined. To overcome this problem, the first author proposed some time ago
to regularize the fBm in the limit H → 0 as follows. Consider the stochastic
Fourier integral

B
(η)
H (t) =

1

2
√
2

∫ ∞

0

e−ηs

s1/2+H
[(e−its − 1)Bc(ds) + (eits − 1)Bc(ds)],

(1.9)
η ≥ 0,

where Bc(t) = BR(t) + iBI(t) and BR(t) and BI(t) are two independent
copies of the Brownian motion. For H ∈ (0,1) the integral in (1.9) is well
defined for all η ≥ 0 and represents a zero-mean Gaussian process with sta-

tionary increments and covariance E{[B(η)
H (t1)−B(η)

H (t2)]
2}= 2φ

(η)
H (t1− t2),

where

φ
(η)
H (t) =

1

2

∫ ∞

0

e−2ηs

s1+2H
(1− cos (ts))ds

(1.10)

=
1

4H
Γ(1− 2H)

[

(4η2 + t2)H cos

(

2H arctan
t

2η

)

− (2η)2H
]

.

For fixed H ∈ (0,1), limη→0 φ
(η)
H (t) = 1

4HΓ(1 − 2H) cos(πH)t2H , where

Γ(z) is the Euler gamma-function. Hence, B
(0)
H (t) is fBm. This also fol-

lows from the so-called harmonizable representation of the fBm, which is
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precisely the integral on the RHS in (1.9) when η = 0; see Proposition 9.2 in
[16], or equation (7.16) in [46]. On the other hand, for any fixed η > 0, the
limit of H = 0 in (1.9) is well defined, and

lim
H↓0

φ
(η)
H (t) =

1

4
log

(

t2

4η2
+ 1

)

.(1.11)

We consider the resulting limiting process

B
(η)
0 (τ) =

1

2
√
2

∫ ∞

0

e−ηs

√
s
{[e−iτs − 1]Bc(ds) + [eiτs − 1]Bc(ds)}(1.12)

as the most natural extension of the standard fBm to the case of zero Hurst
index H = 0. This process can also be defined axiomatically.

Definition. The regularized fBm with Hurst index H = 0 is a real-

valued stochastic process {B(η)
0 (τ), τ ∈R} with the following properties:

(i) B
(η)
0 (t) is a Gaussian process with mean 0 and B

(η)
0 (0) = 0,

(ii) Var{B(η)
0 (t)}= 1

2 log(
t2

4η2 +1) for some η > 0,

(iii) B
(η)
0 (t) has stationary increments.

The increment structure of B
(η)
0 (t) depends logarithmically on the time

separation:

E{[B(η)
0 (t1)−B

(η)
0 (t2)]

2}= 1

2
log

[

(t1 − t2)
2

4η2
+1

]

,(1.13)

and hence the regularized fBm with H = 0 defines a bona fide version of
the 1/f noise with stationary increments.2 Therefore, the stochastic process

B
(η)
0 (τ) is of interest in its own right and deserves further study. We do

not pursue this direction in the present paper except for noting for future
reference that the regularized fBm has continuous sample paths.

Note. After posting the initial version of this paper to the arXiv, we
learned of the work [52], where a regularization of fBm essentially equivalent

to our B
(η)
H (t) was introduced for H > 0. Note that neither the limit H → 0

nor the connection with random matrices were identified or investigated
there.

2. Main results.

2Compare (1.12) with a stationary version of fBm with H = 0 proposed in equation
(16) of [47].
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2.1. Macroscopic regime. We start with the simpler case of the macro-
scopic scale where we extend the analogous construction of [30] from unitary
to Hermitian matrices. The relation between characteristic polynomials of
Haar unitary matrices and the random Fourier series in (1.6) can be under-
stood by expanding log |pN (θ)| into the Fourier series

VN (θ) =−2 log|det(I −Ue−iθ)|=
∞
∑

n=1

1√
n
(vn,Ne

inθ + vn,Ne
−inθ),(2.1)

where vn,N = 1√
n
Tr(U−n). Now, the coefficients vn,N converge in distribu-

tion as N →∞ to independent standard complex Gaussians. This is a result
due to Diaconis and Shahshahani [15] from which it can be inferred [30] that
(1.6) represents the limit of VN (θ) in a suitable functional space.

An analogue of the Diaconis–Shahshahani result for the N ×N GUE ma-
trices H was obtained by Johansson [31]. He proved that for any fixed m
the vector ( 2√

n
TrTn(H))mn=1, with Tn(x) = cos(narccos(x)) being Cheby-

shev polynomials, converges, after centering, to a collection of independent
standard Gaussians in the limit N →∞. In view of the handy identity,

− log(2|x− y|) =
∞
∑

n=1

2

n
Tn(x)Tn(y), x, y ∈ [−1,1], x 6= y,(2.2)

the desired analogue of Fourier expansion is an expansion in terms of Cheby-
shev polynomials,

DN (x) =− log|det(H− xI)|=
∞
∑

n=1

an,N√
n
Tn(x) +N log 2 +RN (x),

(2.3)

an,N =
2√
n
TrTn(H),

where the error term RN (x) is due to the eigenvalues of H outside the
support [−1,1] of the semicircle law. Since the probability of finding such
an eigenvalue vanishes fast as N →∞, it can be shown that the error term
does not contribute in the limit (see the proof of Proposition 5.2 for a more
precise statement). One then concludes that the natural limit of DN (x),
after centering, is given by the random Chebyshev–Fourier series (1.7).

We will make this picture mathematically rigorous by working in a suit-
able functional space. First, let us assign a formal meaning to the series
in (1.7) and the corresponding stochastic process. Consider the space L2 =
L2((−1,1), µ(dx)) with µ(dx) = dx/

√
1− x2. The Chebyshev polynomials

form an orthogonal basis in this space, with cn(f) (1.3) being the coeffi-
cients of the corresponding Chebyshev–Fourier series. For a > 0, consider
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the space V (a) of functions f in L2 such that
∑∞

n=0 |cn(f)|2(1 + n2)a <∞.
This is a Hilbert space with the inner product

〈f, g〉a =
∞
∑

n=0

cn(f)cn(g)(1 + n2)a.

Its dual, V (−a), is the Hilbert space of generalised functions F (x) =
∑∞

n=0 cnTn(x) with ‖F‖2−a =
∑∞

n=0 |cn|2(1 +n2)−a <∞. Setting here c0 = 0
and cn = an/

√
n with an, n≥ 1, being independent standard Gaussians, one

obtains F (x) of (1.7). In such case, ‖F‖2−a is finite with probability one. This
defines F (x) in (1.7) as a generalised random function (stochastic process)
which acts on a test function f ∈ V (a) in the usual way,

F [f ] =

∞
∑

n=1

an√
n
cn(f) = 〈f,F 〉0.

This process is Gaussian with zero mean. Its covariance, E{F [f ]F [g]}, is
given by

E{F [f ]F [g]}=
∞
∑

n=1

1

n

∫ 1

−1

∫ 1

−1
f(x)g(y)Tn(x)Tn(y)µ(dx)µ(dy).(2.4)

It can be shown (see, e.g., Lemma 3.1 in [27]) that the order of summation
and integration in (2.4) can be interchanged, and in view of (2.2), one obtains
the covariance operator in closed form:

E{F [f ]F [g]}=−
∫ 1

−1

∫ 1

−1

1

2
log(2|x− y|)f(x)g(y)µ(dx)µ(dy), f, g ∈ V (a).

We are now in a position to formulate our result. Consider the centered
process:

D̃N (x) =− log|det(H− xI)|+ E{log|det(H− xI)|}, x∈ (−1,1).(2.5)

Since log |x| is locally integrable, D̃N ∈ V (−a) for every N .

Theorem 2.1. For every a > 1/2, D̃N (x)⇒ F (x) in V (−a) as N →∞,
where F (x) given by (1.7).

Our proof of this theorem in Section 5 involves solving at least two tech-
nical problems that did not arise in [30]. First, when proving convergence

of the finite-dimensional distributions of D̃N (x), we are faced with a test
function possessing square-root singularities at the edges of the spectrum,
arising from the Chebyshev–Fourier coefficients of the logarithm outside
[−1,1]; see Lemma 5.1. Most bounds and concentration inequalities for lin-
ear statistics rely on the test function having at least C1(R) regularity (see,
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e.g., [1, 38, 43]), while ours is only C1/2(R) (even the recent extension [50]
of such bounds to test functions from the C1/2+ε(R) class does not suffice
here). Making use of fine asymptotics of orthogonal polynomials and Airy
functions, we prove that this linear statistic converges to zero, a problem
that did not appear in [30].

Second, when proving tightness of (D̃N (x))∞N=1 we need additional con-
trol over the variance of Tr(Tn(H)) for both large N and large n. In [30],
the analogous quantity, namely Var{Tr(U−n)}, was known explicitly due to
exact results for the unitary group obtained by Diaconis and Shashahani
[15]. In contrast, for the GUE case, Var{Tr(Tn(H))} and related quantities
need to be estimated asymptotically as N →∞, uniformly in the degree n
of the Chebyshev polynomial.

2.2. Mesoscopic regime. Now we proceed to our next task of extending
the relation between characteristic polynomials of random matrices and 1/f -
noises to the mesoscopic scale. In this case, instead of working directly with
a generalised stochastic process, we find it more convenient to work with
their regularized versions.

To formulate our results more precisely, fix a parameter η > 0 and con-

sider the following sequence of stochastic processes {W (η)
N (τ) : τ ∈ R}, N =

1,2, . . . :

W
(η)
N (τ) =− log

∣

∣

∣

∣

det

[

H−
(

x0 −
τ

dN

)

I − iη

dN
I

]∣

∣

∣

∣

(2.6)

+ log

∣

∣

∣

∣

det

[

H− x0I −
iη

dN
I

]∣

∣

∣

∣

.

Note that W
(η)
N (τ) also depends implicitly on three additional parameters:

η > 0, x0 ∈ (−1,1) and dN > 0; their importance is explained below, though
for ease of notation we will not emphasize the dependence on x0 when refer-

ring to W
(η)
N (τ). We use the parameter dN > 0 to zoom into the appropriate

spectral scale of H centered around a point x0 inside the bulk of the limiting
spectrum of the GUE matrices H. On the macroscopic scale dN = 1, on the
microscopic scale dN =N whilst on the mesoscopic scale dN is in between
these two extremes, 1≪ dN ≪N . The parameter η is an arbitrary but fixed
positive real number, introduced to regularize the logarithmic singularity at
zero.

Our main result shows that in the mesoscopic limiting regime where

dN →∞ and dN = o(N/ logN) as N →∞(2.7)

the stochastic process W
(η)
N (τ) converges, after centering, to B

(η)
0 (τ); the

regularized fractional Brownian motion with Hurst index H = 0. For finite-
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dimensional distributions this is the content of the following theorem. Let

W̃
(η)
N (τ) =W

(η)
N (τ)− E{W (η)

N (τ)}.

Theorem 2.2. Consider GUE random matrices H in (1.1). Assume
that the reference point x0 is in the bulk of the limiting spectrum of H, x0 ∈
(−1,1), and the scaling factor dN satisfies (2.7). Then for any fixed η > 0
and any finite number of times (τ1, . . . , τm) ∈ R

m we have the convergence
in distribution

(W̃
(η)
N (τ1), . . . , W̃

(η)
N (τm))

d
=⇒ (B

(η)
0 (τ1), . . . ,B

(η)
0 (τm)) as N →∞.

(2.8)

We prove this theorem in Section 3 by adopting Krasovsky’s derivation of
identity (1.4) to the mesoscopic scale. The characteristic function of the ran-
dom vector on the LHS in (2.8) is given by a Hankel determinant whose sym-
bol possesses Fisher–Hartwig singularities. The Riemann–Hilbert problem
provides a powerful tool to obtain asymptotics of such Hankel determinants
[14, 35–37]. On the mesoscopic scale the Fisher–Hartwig singularities [these
are located at points x0 + (τk + iη)/dN ] are all at distance of order 1/dN
from the point x0 ∈ (−1,1). Because of this, the system of contours defining
the Riemann–Hilbert problem (inside of which the symbol is analytic) close
onto the real line as N → ∞. In this regime, the estimates become more
delicate. In contrast, in the macroscopic regime the Fisher–Hartwig singu-
larities are real and spaced out and one does not need to consider the case
of shrinking contours.

Here, it is appropriate to mention that linear eigenvalue statistics on the
mesoscopic scale are more challenging to study compared to the macro-
scopic scale. Known results are sparse and mostly limited to regular test
functions with compact support; see [9, 10, 49] and also more recent works
[8, 11, 17, 19, 20]. One reason is that the majority of concentration inequal-
ities involving derivatives, such as, for example, Lipschitz norm [1] or the
Poincaré inequality [1, 43] that proved to be so useful on the macroscopic
scale, get a factor of dN in the mesoscopic case, and hence, no longer ap-
ply without appropriate modification. In this context, the Riemann–Hilbert
problem proves to be a powerful tool for estimating the error terms down
to very small scales (2.7).

One can extend Theorem 2.2 to an infinite-dimensional setting with a
little bit more work. Let L2[a, b] denote the Hilbert space of square integrable
functions on [a, b] with the inner product

〈f, g〉2 =
∫ b

a
f(τ)g(τ)dτ.(2.9)
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Since the sample paths of W̃
(η)
N are continuous, ‖W̃ (η)

N ‖2 <∞. Therefore,

both W
(η)
N and its N →∞ limit B

(η)
0 can be viewed as random elements in

the space L2[a, b]. We have the following.

Theorem 2.3. Let −∞< a< b <∞. Then on mesoscopic scales (2.7),

the process W̃
(η)
N converges weakly (in the sense of probability law) to B

(η)
0

in L2[a, b] as N →∞. Furthermore, for every h ∈ L2[a, b], we have the con-
vergence in distribution

∫ b

a
h(τ)W̃

(η)
N (τ)dτ

d
=⇒

∫ b

a
h(τ)B

(η)
0 (τ)dτ, N →∞.(2.10)

This result follows from Theorem 3 in [28], which allows one to deduce
weak convergence for general processes in L2[a, b] under the hypothesis that:

(i) The finite-dimensional distributions of W̃
(η)
N converge to those of B

(η)
0

as N →∞.
(ii) For some C > 0, the bound E{|W̃ (η)

N (τ)|2} ≤ C holds for all N and
τ ∈ [a, b] and

lim
N→∞

E{|W̃ (η)
N (τ)|2}= E{|B(η)

0 (τ)|2}.(2.11)

Note that item (i) is a restatement of Theorem 2.2, while item (ii) will be
shown to follow from our proof of Theorem 2.2.

Having established the relation between characteristic polynomials of
GUE matrices and 1/f noise on the mesoscopic scale, let us revisit the
series expansions of the macroscopic scale discussed at length in Section 2.1.

Instead of expanding the process W
(η)
N (τ) in a Chebyshev–Fourier series

and applying the Diaconis–Shahshahani result, in the mesoscopic regime it

comes in handy to expand W
(η)
N (τ) as a Fourier integral.

To this end, we now provide a suitable Fourier-integral representation for

W
(η)
N (τ). Such a representation can be derived by making use of the identity

(see, e.g., equation (7.89) in [14])

1

2
log

(

t2

ε2
+1

)

=

∫ ∞

0

e−εs

s
[1− cos(ts)]ds, ε > 0.(2.12)

It follows from (2.12) that

W
(η)
N (τ) =

1

2

∫ ∞

0

e−ηs

√
s
{[e−iτs − 1]bN (s) + [eiτs − 1]bN (s)}ds,(2.13)

where

bN (s) =
1√
s
Tr e−isdN (H−x0I).(2.14)
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The identity (2.13) can be thought of as the Fourier integral version of the
Fourier series (2.1). Furthermore, comparison of the harmonizable represen-

tation (1.12) for B
(η)
0 (t) [which can be thought as a natural integral analogue

of the series expansions in (1.6) and (2.13)], suggests that the Fourier coeffi-
cients bN (s) converge in the mesoscopic regime to Gaussian white noise. Such
a statement may be interpreted as a continuous analogue of the Diaconis–
Shahshahani result [15] and is the content of our next theorem.

Let C∞
0 (R+) be the space of infinitely many times differentiable functions

with compact support on R+ = {x ∈R : x > 0}. Denote

cN (ξ) =

∫ ∞

0
ξ(s)bN (s)ds.(2.15)

Theorem 2.4. Consider the mesoscopic regime where dN = Nα with
any α ∈ (0,1). Then for every ξ ∈C∞

0 (R+)

lim
N→∞

E{e−iRe cN (ξ)}= exp

(

−1

4

∫ ∞

0
|ξ(s)|2 ds

)

.(2.16)

Furthermore, for any finite number of ξj ∈C∞
0 (R+), the vector (cN (ξ1), . . . ,

cN (ξm)) converges in distribution, as N →∞, to the centered complex Gaus-
sian vector Z ∈R

m having relation matrix E(ZZT) = 0 and covariance ma-
trix Γ = E(ZZ†) given by

Γj,k =

∫ ∞

0
ξj(s)ξk(s)ds, j, k = 1, . . . ,m.(2.17)

Proof. See Section 4.

Remark 2.5. As is often the case in random matrix theory, linear eigen-
value statistics such as (2.15) have variance of the order of unity due to
strong correlations between the eigenvalues and converge to a Gaussian ran-
dom variable after centering. One would typically expect that E{cN (ξ)} =
O(N/dN ) as N →∞. Instead, we find (see Section 4) that the smoothness of
ξ and the rapid oscillations in (2.14) imply E{cN (ξ)}=O(d−1

N ) as N →∞,
and thus, centering is not really needed.

The rest of the paper is organized as follows. Section 3 is devoted to
the proof of Theorem 2.2. To do this, we begin by adapting the differential
identity used in [35] and then outline the relevant asymptotic analysis of
the Riemann–Hilbert problem, leaving estimation of all error terms to Ap-
pendix A. Section 4 is devoted to proving the convergence of the Fourier
coefficients bN (s) to the white noise. In the final section, we focus on the
macroscopic scale and prove Theorem 2.1.
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3. Mesoscopic regime. In this section, we prove Theorem 2.2. Let us
fix m− 1 distinct times τ1, . . . , τm−1, m≥ 2, and consider the characteristic
function

ϕN (α1, . . . , αm−1) = E

{

exp

(

m−1
∑

k=1

αkW
(η)
N (τk)

)}

of the random vector (W
(η)
N (τ1), . . . ,W

(η)
N (τm−1)). Our strategy will be to

prove that ϕN converges to the characteristic function of the multivariate
Gaussian distribution in the limit N →∞. Theorem 2.2 will then follow by
inspection of the quadratic form in the exponential.

To begin with, we will write the characteristic function ϕN as the par-
tition function of a matrix model with Gaussian weight, modified by the
singularities

µk =
√
2N

(

x0 +
τk + iη

dN

)

, η > 0,(3.1)

where k = 1, . . . ,m and τm ≡ 0. A standard calculation (changing variables of
integration from H to the eigenvalues and eigenvectors of H and integrating
out the eigenvectors; see, e.g., [43]) yields

ϕN (α1, . . . , αm−1) =
1

C

∫

RN

N
∏

j=1

w(xj)
∏

1≤i<j≤N

(xi − xj)
2 dx1 · · ·dxN ,(3.2)

where the weight function is given by

w(x) = e−x2
m
∏

k=1

|x− µk|αk , Im(µk) 6= 0, k = 1, . . . ,m(3.3)

and αm =−α1 − · · · − αm−1. Note the discrepancy with the measure (1.1);
for convenience we have changed variables xj → xj/

√
2N , the resulting mul-

tiplicative constants cancelling each other out.
Our calculation will be guided by that of Krasovsky [35] who treated a

similar partition function, but only for the macroscopic regime dN = 1 and
η = 0. In that case, the weight function acquires Fisher–Hartwig singularities
inside the spectral interval (−1,1). In contrast, our weight (3.3) possesses
singularities in the complex plane that merge toward the point x0 on the
spectral axis at rate dN as N →∞. Since this merging process occurs suf-
ficiently slowly [i.e., dN = o(N)], these singularities will not play a crucial
role in the calculation.

A special feature of the weight function (3.3) is the cyclic condition

m
∑

k=1

αk = 0.(3.4)
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This holds because the second term in (2.6) is independent of τ . Our first
step is to express the partition function (3.2) in a form suitable for the
computation of asymptotics.

3.1. Orthogonal polynomials and differential identity. The multiple inte-
gral in (3.2) is intimately connected to the theory of orthogonal polynomials.
Let

pn(x) = χn(x
n + βnx

n−1 + γnx
n−2 + · · ·), n= 0,1,2, . . . ,

be orthogonal polynomials with respect to weight function w(x):
∫∞
−∞ pm(x)pn(x)w(x)dx= δm,n. When the αj ’s are real and each αj >−1/2
we have w(x)≥ 0 and the existence of the polynomials pn(x) is well known
[14]. Then, as in [35], the coefficients χn, βn and γn and the polynomials
pn(x) are defined for any {αj}mj=1 ∈C

m via analytic continuation, provided

each Re(αj)>−1/2.
Now, the partition function (3.2) can be written in terms of the coefficients

{χj}Nj=1 (see, e.g., [41])

ϕN (α1, . . . , αm−1) =
N !

C

N−1
∏

j=0

χ−2
j .(3.5)

Thus, in principle, our problem is reduced to computing the asymptotics of
the orthogonal polynomials and related quantities with respect to the weight
w(x). The crucial point observed in [35] is that by taking the logarithmic
derivative on both sides of (3.5) with respect to any of the αj ’s, the RHS can
be written as a sum involving only O(m) terms, rather than N . To state
the resulting differential identity we also need the following 2 × 2 matrix
involving the orthogonal polynomials and their Cauchy transforms:

Y (z) =











χ−1
N pN (z) χ−1

N

∫ ∞

−∞

pN (x)

x− z

w(x)dx

2πi

−2πiχN−1pN−1(z) −χN−1

∫ ∞

−∞

pN−1(x)

x− z
w(x)dx











.(3.6)

Lemma 3.1. For each k = 1, . . . ,m, let µk in (3.3) be any complex pa-
rameters satisfying Im(µk) 6= 0 and define αm+k = αk, µm+k = µk. Denoting
by ′ differentiation with respect to αj , the following formula holds for any
j = 1, . . . ,m:

(logϕN )′ =−N(logχNχN−1)
′ − 2

(

χN−1

χN

)2(

log
χN−1

χN

)′
+ 2(γ′N − βNβ

′
N )

+
1

2

2m
∑

k=1

αk(Y11(µk)
′Y22(µk)− Y21(µk)

′Y12(µk)(3.7)
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+ (logχNχN−1)
′Y11(µk)Y22(µk)).

Proof. The proof follows from simple modifications of the arguments
given in Section 3 of [35]. In fact, further simplifications occur due to the
cyclic condition

∑m
k=1αk = 0 and the fact that the singularities µk have

nonzero imaginary part (k = 1, . . . ,m). �

Note that χN and the coefficients βN and γN can be computed from the
relations:

Y11(z) = zN + βNz
N−1 + γNz

N−2 + · · · ,
(3.8)

χ2
N−1 = lim

z→∞
iY21(z)

2πzN−1
.

Therefore, our plan will be to compute the asymptotics of Y (z) and then,
by making use of identities (3.8), evaluate the RHS of (3.7) to the desired
accuracy in the limit as N →∞. We will find that the error terms in the
asymptotics are uniform in the variables {αk}m−1

k=1 belonging to a compact
subset of

Ω = {(α1, . . . , αm−1)|Re(αk)>−1/2, k = 1, . . . ,m− 1}.(3.9)

This uniformity property then allows us to integrate the identity (3.7) recur-
sively with respect to {αk}m−1

k=1 and obtain asymptotics for the characteristic
function (3.2). The asymptotics of Y (z) in the limit N →∞ can be obtained
by using an appropriate Riemann–Hilbert problem. Although this technique
is nowadays standard, for the reader’s convenience we will briefly summarise
the necessary ingredients of the corresponding calculation.

3.2. The Riemann–Hilbert problem for Y (z). The relationship between
orthogonal polynomials and Riemann–Hilbert problems was established for
general weights in [22] where it was shown that Y (z) solves the following
problem:

1. Y (z) is analytic in C \R.
2. On the real line there is a jump discontinuity

Y+(x) = Y−(x)

(

1 w(x)

0 1

)

, x ∈R,(3.10)

where Y+(x) and Y−(x) denote the limiting values of Y (z) as z approaches
the point x ∈R from above (+) or below (−).

3. Near z =∞, we have the following asymptotic behaviour:

Y (z) =

(

I +O

(

1

z

))

zNσ3 .(3.11)
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Here, σ3 is the third Pauli matrix and serves as a convenient notational
tool. By definition of the matrix exponential, the notation in (3.11) has the
meaning

zNσ3 =

(

zN 0

0 z−N

)

.(3.12)

One can verify directly that Y (z) of (3.6) does indeed solve this Riemann–
Hilbert problem, while the uniqueness of this solution can be deduced from
the observation that detY (z)≡ 1, in conjunction with the Liouville theorem.
Further details regarding existence and uniqueness of the problem can be
found in [14].

In order to obtain asymptotics as N → ∞, we will perform a sequence
of transformations to our initial Riemann–Hilbert problem known as the
Deift–Zhou steepest descent (see, e.g., [14] and [13]). The purpose of these
transformations is to identify a “limiting” problem that can be solved with
elementary functions, giving the leading order asymptotics to Y (z). For the
reader’s convenience, we briefly describe the key points underlying these
transformations:

1. The first transformation Y → T normalizes the unsatisfactory asymp-
totic behaviour in the third condition, equation (3.11). This comes with the
cost that the entries of the jump matrix for T (z) on the interval (−1,1) are
now oscillating in N and do not have a limit as N →∞.

2. The second transformation T → S aims to remove these oscillations
by splitting the contour (−1,1) into lens shaped contours where now the
jump matrices are exponentially close to the identity. For our particular
mesoscopic problem, we need the lenses to pass below the singularities for
each k = 1, . . . ,m, so that their distance from (−1,1) is of order O(d−1

N ) (see
Figure 1).

3. Now it turns out that the jump matrices for S tend to the identity as
N →∞, except on the contour (−1,1). But the jump across (−1,1) is of
a special form that can be solved exactly in terms of elementary functions.
This solution, denoted P∞(z), gives the leading order contribution to the
asymptotics in the required regions of the complex plane.

In Section 3.5, we will show that the asymptotics obtained in this way
lead directly to Theorem 2.2. However, to complete the proof, one has to
show that the conclusion of (3), namely that S(z) ∼ P∞(z) as N → ∞,
is really correct. This may be regarded as the most technical part of the
Deift–Zhou method. The main problem is that although the jump matrix
for S(z) converges to that of P∞(z), this convergence is not uniform near the
edges z = ±1. To remedy this, local solutions known as parametrices have
to be constructed near these points, and then matched to leading order with
the so-called outer parametrix P∞(z). These final technical issues will be
addressed in Appendix A.
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Fig. 1. The contour Σ for the S Riemann–Hilbert problem with m = 3. The crosses
depict the 3 singularities and their complex conjugates, of distance O(d−1

N ) from the point
x0 ∈ (−1,1). The lenses Σ± pass between the real line and the singularities into the points
±1.

3.3. T and S transformations of the Riemann–Hilbert problem. The T
transformation is performed in the usual way. First, we define the g-function:

g(z) =

∫ 1

−1
log(z − s)ρ(s)ds, z ∈C \ (−∞,1],(3.13)

where throughout we take the principal branch of the logarithm. Here and
below, ρ(s) = (2/π)

√
1− s2 denotes the limiting density of eigenvalues. The

Y → T transformation is then given by the formula

Y (z
√
2N) = (2N)Nσ3eNlσ3/2T (z)eN(g(z)−l/2)σ3 ,(3.14)

where l=−1− 2 log(2). Notice that we have rescaled the Riemann–Hilbert
problem so that the singularities of the corresponding weight function are
of order O(1) as N →∞, so that from now on we deal with singularities of
the form

zk =
µk√
2N

= x0 +
τk + iη

dN
.(3.15)

The resulting jump matrix for T (z) can now be computed from the stan-
dard properties of the g-function:

g+(x) + g−(x)− 2x2 − l = 0, x ∈ (−1,1),

g+(x) + g−(x)− 2x2 − l < 0, x ∈R \ [−1,1],(3.16)

g+(x)− g−(x) =















2πi, x≤−1,

2πi

∫ 1

x
ρ(s)ds, x ∈ [−1,1],

0, x≥ 1.

In addition, since g(z) ∼ log(z) as z→∞, we have eNg(z)σ3 ∼ zNσ3 . Thus,
one easily verifies that T (z) is normalized at z =∞. We now have the fol-
lowing Riemann–Hilbert problem for T (z):

1. T (z) is analytic in C \R.
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2. We have the jump condition

T+(x) = T−(x)







e−N(g+(x)−g−(x))
m
∏

k=1

|x− zk|αk

0 eN(g+(x)−g−(x))






,

(3.17)
x ∈ (−1,1),

T+(x) = T−(x)







1
m
∏

k=1

|x− zk|αkeN(g+(x)+g−(x)−2x2−l)

0 1






,

(3.18)
x ∈R \ [−1,1].

3. T (z) = I +O(z−1) as z→∞.

We see that although the problem for T (z) is normalized at ∞; the jump
matrix (3.17) on (−1,1) has oscillatory diagonal entries that not have a
limit as N →∞. The Deift–Zhou steepest descent procedure remedies this
situation by splitting the contour (−1,1) into “lenses” in the complex plane
(see Figure 1), transforming the unwanted oscillations into exponentially
decaying matrix elements.

This procedure is facilitated by the factorization of the jump matrix on
(−1,1):
(

e−Nh(x) ω(x)

0 eNh(x)

)

=

(

1 0

ω(x)−1eNh(x) 1

)(

0 ω(x)−1

−ω(x)−1 0

)(

1 0

ω(x)−1e−Nh(x) 1

)

,

where

ω(x) =
m
∏

k=1

|x− zk|αk ,(3.19)

h(x) = g+(x)− g−(x) =−2πi

∫ x

1
ρ(y)dy.(3.20)

The latter objects (3.19) and (3.20) possess analytic continuations into
the lens shaped regions depicted in Figure 1. For the weight ω(x), we have

ω(z) =

m−1
∏

k=1

[

(z − x0 − τk/dN )2 + (η/dN )2

(z − x0)2 + (η/dN )2

]αk/2

,(3.21)

where throughout we take the principal branch of the roots. This function
is analytic for all z such that the inequality

(Re(z)−Re(zk))
2 > (Im(zk))

2 − (Im(z))2(3.22)
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is satisfied for every k = 1, . . . ,m. One easily verifies that for x0 ∈ (−1 +
δ,1− δ), the inequality (3.22) holds for any z chosen from the interior region
bounded by the lips Σ±1 and the discs z ∈ ∂B±1(δ) of sufficiently small
radius (see Figure 1). Finally, let h(z) denote the analytic continuation of
(3.20) to C \ ((−∞,−1] ∪ [1,∞)). We are now ready to define the T → S
transformation. Let

S(z) =











































T (z), for z outside the lenses,

T (z)

(

1 0

−ω(z)−1e−Nh(z) 1

)

,

for z in the upper part of the lenses,

T (z)

(

1 0

ω(z)−1eNh(z) 1

)

,

for z in the lower part of the lenses.

(3.23)

Now we get the following Riemann–Hilbert problem for S(z):

1. S(z) is analytic in C \Σ where Σ = Σ+ ∪R∪Σ−.
2. S(z) has the following jumps on Σ:

S+(x) = S−(x)

(

1 0

ω(x)−1e∓Nh(x) 1

)

, x ∈Σ±,

S+(x) = S−(x)

(

0 ω(x)

−ω(x)−1 0

)

, x ∈ (−1,1),

S+(x) = S−(x)

(

1 ω(x)eN(g+(x)+g−(x)−2x2−l)

0 1

)

, x ∈R \ [−1,1].

3. S(z) = I +O(z−1) as z→∞.

At this point in the asymptotic analysis, it becomes clear that the meso-
scopic regime under consideration becomes important. In order to obtain
asymptotics, it is essential that the jump matrix for S(z) approaches the
identity as N → ∞ for z ∈ Σ±. In the Appendix (see Proposition A.4),

we will see that |e∓Nh(z)| = O(e−c1(N/dN )) as N → ∞ uniformly on Σ± \
(B1(δ) ∪B−1(δ)). Notice that such a bound fails when one approaches the
critical situation dN =N corresponding to the local or microscopic regime.
It is precisely at this scale that one would not expect the appearance of a
Gaussian process in the limit N →∞.

Therefore, in the mesoscopic regime it is reasonable to expect that in
the limit N →∞ we may neglect the jumps on Σ± ∪ (R \ [−1,1]) and ap-
proximate S(z) by a Riemann–Hilbert problem with jumps only on the
interval (−1,1). This approximation will be valid only in the region U∞ =
C \ (B1(δ) ∪B−1(δ)) and will give rise to an error that is quantified in Ap-
pendix A.
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3.4. Limiting Riemann–Hilbert problem: Parametrix in U∞. Before we
perform the final transformation S → R of the Riemann–Hilbert problem,
we must construct parametrices in the appropriate regions of the complex
plane. We saw in the last section how the jump matrices for S(z) converge
to the identity as N →∞, except on [−1,1]. Therefore, outside the lenses
and the discs, we expect the solution to the following problem to give a good
approximation to S(z) for large N :

1. P∞(z) is analytic in C \ [−1,1].
2. We have the jump condition

P∞,+(x) = P∞,−(x)

(

0 ω(x)
−ω(x)−1 0

)

, x ∈ (−1,1).(3.24)

3. P∞(z) = I +O(z−1) as z→∞.

This problem has the advantage that it has a completely explicit solution.
The solution, as obtained in [36], is given by

P∞(z) =
1

2
(D∞)σ3

(

a+ a−1 −i(a− a−1)

i(a− a−1) a+ a−1

)

D(z)−σ3 ,

(3.25)

a(z) =
(z − 1)1/4

(z +1)1/4
,

where D(z) is the Szegö function

D(z) = exp

(√
z +1

√
z − 1

2π

∫ 1

−1

logω(x)√
1− x2

dx

z − x

)

(3.26)

and

D∞ = lim
z→∞

D(z) = exp

(

1

2π

∫ 1

−1

logω(x)√
1− x2

dx

)

.(3.27)

Recalling the definition of the weight ω(x) in (3.19), the integrals in (3.26)
can be calculated explicitly by extending the procedure outlined in [35] to
the case of complex singularities.

As we shall see in the next subsection, the Szegö function D(z) will turn
out to be the key ingredient in deriving the logarithmic covariance structure
in (1.13).

3.5. Asymptotics of the polynomials and proof of Theorem 2.2. We are
now ready to present the leading order asymptotics N →∞ of the Y -matrix
in (3.6), leaving the technical matters of estimation of errors and the final
transformation of the Riemann–Hilbert problem to Appendix A. Our aim
in this subsection is to prove Theorem 2.2 using these asymptotics.
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Tracing back the transformations S→ T → Y , we find that

Y (z
√
2N ) = (2N)Nσ3/2eNlσ3/2S(z)eN(g(z)−l/2)σ3 .(3.28)

According to (3.7), we need the asymptotics for Y (z) in two different regions
of the complex plane, near z =∞ in the first line of (3.7) and at z = zk in the
second line. In the following proposition, let A denote the bounded subset
of C enclosed by the lenses Σ± and the discs ∂B±1(δ).

Proposition 3.2. Consider the Riemann–Hilbert problems S(z) and
P∞(z) from Sections 3.3 and 3.4, respectively. Then the following asymp-
totics hold as N →∞:

S(z) =

(

I +
R̃1(z)

N
+O

(

1

NdN

)

+O(log(dN )e−c1(N/dN ))

)

P∞(z),(3.29)

uniformly for all z ∈C\A. The function R̃1(z) has an asymptotic expansion
of the form R̃1(z) = (A/z+B/z2+O(z−3)) as z→∞ where c1 is a positive
constant depending only on δ and η and

A=

(

0 i/24

i/24 0

)

, B =

(−1/48 0

0 1/48

)

.(3.30)

Proof. See Appendix A. �

Remark 3.3. The error terms in (3.29) are uniform in the parameters

{αk}m−1
k=1 belonging to Ω [cf. (3.9)], {τk}m−1

k=1 belonging to a compact subset

of R and x0 belonging to a compact subset of (−1 + δ,1− δ). Furthermore,

every such error term is an analytic function in the variables {αk}m−1
k=1 whose

derivatives with respect to αj have the same order in N and have the same
uniformity property described above. Hence, in the remainder of this section
it will be implicit that the error terms involved are of this form.

Now inserting the above asymptotics (3.29) into the differential identity
(3.7), we obtain:

Proposition 3.4. Let ϕN denote the characteristic function of the

stochastic process W
(η)
N (τ) defined in (3.2). Then in the limit N →∞, we

have

ϕN (α1, . . . , αm−1) = exp

(

N
m−1
∑

k=1

αk(Re(g(zk))−Re(g(zm)))

+
m−1
∑

k,j=1

αkαj

2
(φ

(η)
0 (τk) + φ

(η)
0 (τj)− φ

(η)
0 (τk − τj))(3.31)
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+O(d−1
N ) +O

(

N log(dN ) exp

(

−c1
N

dN

))

)

,

where g(z) is defined in (3.13) and φ
(η)
0 (τ) in (1.11). The asympotics in

(3.31) hold uniformly in the same sense described in Remark 3.3.

Remark 3.5. Notice that the asymptotics in (3.31) consist of both global
error terms, which become large when dN ∼ 1 and local error terms, which
become large when dN ∼N . Throughout the following proof, we will write
eN for the local error term of order

eN = log(dN ) exp

(

−c1
N

dN

)

.(3.32)

Proof of Proposition 3.4. We remind the reader that the prime ′

always denotes differentiation with respect to αj . We begin by considering
the second line of (3.7). Taking into account αm =−(α1 + · · ·+ αm−1), we
insert (3.29) into (3.28) and make use of the explicit formula (3.25) for
P∞(z). Straightforward calculation then gives

Y11(
√
2Nzk)

′Y22(
√
2Nzk)− Y21(

√
2Nzk)

′Y12(
√
2Nzk)

= (P∞(zk))
′
11(P∞(zk))22 − (P∞(zk))

′
21(P∞(zk))12

(3.33)
+O(N−1) +O(eN )

=C(zm, zk)−C(zj , zk) +O(d−1
N ) +O(eN ),(3.34)

where we introduced

C(µ, z) =

√
z +1

√
z − 1

2π

∫ 1

−1

log |x− µ|√
1− x2

dx

z − x
,(3.35)

and (3.34) was obtained from (3.33) using the estimate D∞ = 1 +O(d−1
N ).

Since C(zj, zk) =C(zj , zk), we find from (3.34) that

1

2

2m
∑

k=1

αk(Y11(
√
2Nzk)

′Y22(
√
2Nzk)− Y21(

√
2Nzk)

′Y12(
√
2Nzk))(3.36)

=

m
∑

k=1

αk(Re(C(zm, zk))−Re(C(zj , zk))) +O(d−1
N ) +O(eN )(3.37)

=

m−1
∑

k=1

αk(φ
(η)
0 (τk) + φ

(η)
0 (τj)− φ

(η)
0 (τk − τj)) +O(d−1

N ) +O(eN ).(3.38)

To obtain (3.38) from (3.37), we used the formula (B.6) to compute the
asymptotics of Re(C(zj , zk)) and used that αm =−(α1 + · · ·+αm−1).
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Now let us compute the asymptotics of the coefficients βN , γN and χN−1

defined in (3.8) and appearing in the first line of (3.7). As usual, these
quantities are all obtained by expanding all z-dependent quantities appear-
ing in (3.28) in powers of 1/z. First, the Szegö function (3.26) satisfies
D(z) =D∞(1 +D1/z + (D2

1/2 +D2)/z
2 +O(z−3)) as z→∞, where

D1 =−1

2

m
∑

k=1

αkRe

(

1

zk +
√
zk + 1

√
zk − 1

)

,

(3.39)

D2 =−1

8

m
∑

k=1

αkRe

(

1

(zk +
√
zk +1

√
zk − 1)2

)

,

and second, use of the definitions (3.25) and (3.13) shows that for z→∞

g(z) = log(z)− 1

8z2
+O(z−4), a(z) = 1− 1

2z
+

1

8z2
+O(z−3).(3.40)

Then expanding (3.29) at z =∞, we can compare with (3.8) and obtain

βN =
√
2N

(

−D1 +
A11

N
+O

(

1

NdN

)

+O(eN )

)

,

γN = 2N

(

1/8−N/8 +D2
1/2−D2 +

B11 −A11D1 − iA12/2

N

+O

(

1

NdN

)

+O(eN )

)

,

χ2
N−1 =

2N−1

√
π(N − 1)!

(

1

D2∞
+

1

N

(

1

12D2∞
+2iA21

)

+O

(

1

NdN

)

+O(eN )

)

.

A similar computation shows that the asymptotics of χ2
N are given by

χ2
N =

2N√
πN !

(

1

D̃2∞
+

1

N

(

1

12D̃2∞
+ 2iA12

)

+O

(

1

NdN

)

+O(eN )

)

,(3.41)

where D̃∞ denotes the quantity (3.27) with rescaled singularities z̃k =
√

2N/(2N +2)zk. This rescaling is necessary when estimating χ2
N , because

without it one obtains asymptotics with respect to the weight w(x) =
∏

j |x−√
2N + 2zk|αk . Cumbersome though routine manipulations with the above

asymptotics yield

−N(logχNχN−1)
′ = 2N(C(zj ,∞)−C(zm,∞)) +O(d−1

N ) +O(NeN ),
(3.42)

2(γ′N − βNβ
′
N ) =−4ND′

2 +O(d−1
N ) +O(NeN ),
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and

(logχNχN−1)
′Y11(

√
2Nzk)Y22(

√
2Nzk) =O(d−1

N ) +O(eN ),
(3.43)

2

(

χN−1

χN

)2(

log
χN−1

χN

)′
=O(d−1

N ) +O(eN ),

where we introduced

C(µ,∞) = lim
z→∞

C(µ, z) =
1

2π

∫ 1

−1

log |x− µ|√
1− x2

dx(3.44)

=
1

2
log |z +

√
z +1

√
z − 1| − 1

2
log(2).(3.45)

Using the explicit formulae (3.45) and (3.39), we get

2(C(zj,∞)−C(zm,∞))− 4D′
2 =Re(g(zj))−Re(g(zm)),(3.46)

where we exploited the convenient identity (see, e.g., the derivation of equa-
tion (7.89) in [14])

log |z +
√
z + 1

√
z − 1|+ 1

2
Re

(

1

(z +
√
z+ 1

√
z − 1)2

)

=Re(g(z)).(3.47)

Now inserting (3.42), (3.38) and (3.43) into (3.7), we obtain

∂

∂αj
logϕN (α1, . . . , αm−1)

=N(Re(g(zj))−Re(g(zm)))(3.48)

+

m−1
∑

k=1

αk(φ
(η)
0 (τk) + φ

(η)
0 (τj)− φ

(η)
0 (τk − τj)) +O(d−1

N ) +O(NeN ).

Note that the error terms in (3.48) hold uniformly in the parameters (αk)
m−1
k=1

(see Remark 3.3), so that we may integrate both sides of (3.48) according
to the procedure discussed in Section 5 of [35], arriving at the asymptotics
(3.31). �

Proof of Theorems 2.2 and 2.3. Bearing in mind Remark 3.3, we

differentiate (3.31) with respect to the parameters (αk)
m−1
k=1 and evaluate

near the origin, leading to

E{W (η)
N (τ)}=N(Re(g(zk))−Re(g(zm))) +O(d−1

N ) +O(NeN ),(3.49)

Cov{W (η)
N (τ),W

(η)
N (υ)}

(3.50)
= φ

(η)
0 (τ) + φ

(η)
0 (υ)− φ

(η)
0 (τ − υ) +O(d−1

N ) +O(NeN ),



FBM WITH H = 0 AND THE GUE 25

where the error terms are uniform in τ and υ varying in a compact subset

of R. Then defining the centered process W̃
(η)
N (τ) =W

(η)
N (τ)− E{W (η)

N (τ)}
we immediately find from (3.49) and (3.31) that in the mesoscopic regime
(2.7), we have

lim
N→∞

E{ei
∑m

k=1 skW̃
(η)
N (τk)}

(3.51)

= exp

(

−1

2

m
∑

k=1

m
∑

j=1

sksj(φ0(τk) + φ0(τj)− φ0(τk − τj))

)

,

where (sk)
m
k=1 ∈ R

m. Theorem 2.2 follows immediately. To complete the
proof of Theorem 2.3, it suffices to note that the error terms in (3.50) are
uniform, so that the sequence (E{(W̃N (τ))2})∞N=1 is uniformly bounded. �

4. Convergence to white noise in the spectral representation. The main
achievement of the previous section was to prove that for any mesoscopic

scales of the form (2.7), the process W̃
(η)
N (τ) converges in the sense of finite-

dimensional distributions to the regularized fractional Brownian motion

B
(η)
0 (τ). We also proved Theorem 2.3 which extends this convergence to

an appropriate function space.

In this section, we will study W̃
(η)
N (τ) from a different point of view,

namely by means of the Fourier coefficients bN (s) appearing in the spectral
decomposition (2.13). We remind the reader of the definition

bN (s) =
1√
s
Tr(e−isdN (H−x0I)), s > 0.(4.1)

A useful and interesting feature of the integral representations (2.13) and
its N →∞ limit (1.9) is that they are suggestive of a corresponding limiting
law satisfied by the coefficients bN (s). Namely, we expect that bN (s) should

“converge” to the white noise measure Bc(ds)/
√
2. The precise mode of the

convergence we consider is described in Theorem 2.4 and it is our goal in
this section to prove this result.

By its very definition, the white noise measure Bc(ds) cannot be under-
stood in a pointwise sense and must be regularized by integrating against
a test function. We will consider test functions ξ ∈ C∞

0 (R+), that is, ξ is a
smooth function with compact support on R+. Then we have the correspon-
dence:

cN (ξ) =

∫ ∞

0
ξ(s)bN (s)ds=

N
∑

j=1

f(dN (xj − x0)) =:XN (f),(4.2)
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where

f(x) =

∫ ∞

0

ξ(s)√
s
e−isx ds.(4.3)

By our assumptions on ξ, it follows that f belongs to the Schwartz space of
rapidly decaying smooth functions, that is, f ∈ S(R) where

S(R) =

{

f ∈C∞(R) : sup
x∈R

∣

∣

∣

∣

xγ
dβf(x)

dxβ

∣

∣

∣

∣

<∞, γ, β = 0,1,2, . . .

}

.(4.4)

In the following three subsections, we will obtain results for the mean, vari-
ance and distribution of the random variable (4.2) as N →∞.

4.1. Mean. We begin by proving that centering is not required in Theo-
rem 2.4.

Proposition 4.1. On any mesoscopic scales of the form dN =Nα with
any α ∈ (0,1), we have

E{cN (ξ)}=O(d−1
N ), N →∞.(4.5)

Proof. We write the expectation above as an integral over the normal-
ized density of states ρN (x),

E{cN (ξ)}=N

∫ ∞

−∞
f(dN (x− x0))ρN (x)dx,(4.6)

where

ρN (x) =
1

N
E

{

N
∑

j=1

δ(x− xj)

}

.(4.7)

Firstly, note that the tails of the integral (4.6) can be removed using the
rapid decay of f . For any ε > 0, we have

E{cN (ξ)}=N

∫ x0+ε

x0−ε
f(dN (x− x0))ρN (x)dx+O(Nd−∞

N ),(4.8)

where here and elsewhere, the notation O(Nd−∞
N ) refers to a quantity that

is O(Nd−γ
N ) for any γ > 0. Such a contribution tends to zero for the power

law scales dN =Nα with any α ∈ (0,1). Then for small enough ε, we have
the uniform estimate (see [43], Chapter 5.2)

ρN (x) =
2

π

√

1− x2 +O(N−1), x ∈ (x0 − ε,x0 + ε).(4.9)



FBM WITH H = 0 AND THE GUE 27

After inserting (4.9) into (4.8), we find that

E{cN (ξ)}= 2N

π

∫ x0+ε

x0−ε
f(dN (x− x0))

√

1− x2 dx+EN +O(Nd−∞
N ),(4.10)

where the error term EN =O(d−1
N ), since

|EN | ≤ C

∣

∣

∣

∣

∣

∫ x0+ε

x0−ε
f(dN (x− x0))dx

∣

∣

∣

∣

∣

≤ C

dN

∫ ∞

−∞
|f(x)|dx.(4.11)

Similarly, we can replace the integration limits in (4.10) with ±1 using
the Schwartz property of f . We have

E{cN (ξ)}= 2N

π

∫ 1

−1
f(dN (x− x0))

√

1− x2 dx+O(d−1
N ).(4.12)

Next, we substitute f with the definition (4.3) and interchange the order
of integration [justified by the rapid decay of ξ(s)] so that

E{cN (ξ)}= 2N

π

∫ ∞

0
ξ(s)s−1/2eisdNx0

∫ 1

−1
e−isdNx

√

1− x2 dxds+O(d−1
N )

(4.13)

= 2N

∫ ∞

0
ξ(s)s−3/2J1(dNs)e

isdNx0 ds+O(d−1
N ),

where J1(z) is the Bessel function of index 1. To complete the proof, note
that J1(dNs) has an asymptotic expansion (for any fixed γ ∈ N and s > 0)
as N →∞,

√

π

2
J1(dNs) = cos(dNs− 3π/4)

γ−1
∑

k=0

Ck

d
2k+1/2
N s2k+1/2

(4.14)

+ sin(dNs− 3π/4)

γ−1
∑

k=0

Dk

d
2k+3/2
N s2k+3/2

+EN (s),

where the error term satisfies the bound |EN (s)| ≤ |Cγd
−2γ−1/2
N s−2γ−1/2| and

Ck,Dk are constants depending only on k. Such asymptotics can be found
in, for example, [42] or [34].

Inserting (4.14) into (4.13), we see that the contribution from each term
in the sum in (4.14) is an oscillatory integral of order O(Nd−∞

N ), as follows
from repeated integration by parts. The final error term EN (s) is integrable

with respect to ξ(s) and gives rise to an error of order O(Nd−2γ
N ). Since

γ > 0 was arbitrary, we conclude that the term proportional to N in (4.12)
is in fact asymptotically smaller than the error term. This completes the
proof of the proposition. �
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4.2. Covariance. Having studied the expectation of bN (s) in the previous
subsection, we now consider the fluctuations. In the Introduction, it was
remarked, in accordance with the expected white noise limit for bN (s) that

we should have limN→∞E{bN (s1)bN (s2)} = δ(s1 − s2). In this subsection,
we will make this assertion precise by proving that

lim
N→∞

E{cN (ξ1)cN (ξ2)}=
∫ ∞

0
ξ1(s)ξ2(s)ds(4.15)

for all smooth functions ξ1, ξ2 with compact support on R+.
It turns out that there is an exact finite-N formula for the covariance (see

equation (4.2.38) in [43]):

E{X̃N (f1)X̃N (f2)}=
1

8

∫

R2

∆f1(dNx)∆f2(dNx)K
2
N (x1, x2)dx1 dx2,(4.16)

where f1 and f2 are defined in terms of ξ1 and ξ2 as in formula (4.3) and
we introduced the notation ∆f(x) = f(x1)− f(x2) for any f . The function
KN (x1, x2) is the kernel of the GUE ensemble (see, e.g., [41, 43]) having the
explicit formula

KN (x, y) =
ψ
(N)
N (x1)ψ

(N)
N−1(x2)− ψ

(N)
N (x2)ψ

(N)
N−1(x1)

x1 − x2
,(4.17)

where

ψ
(N)
l (x) = e−Nx2

P
(N)
l (x),(4.18)

and P
(N)
l (x) are (rescaled) Hermite polynomials, normalized by the condi-

tion that {ψ(N)
l }∞l=1 forms an orthonormal family on R. By making use of the

known Plancherel–Rotach asymptotics for the functions ψ
(N)
l (x), we deduce

the following covariance formula. After noting the correspondence (4.3), we
immediately derive from it the δ-correlations (4.15).

Proposition 4.2. Let the test functions f1 and f2 belong to the Schwartz
space S(R) defined in (4.4) and consider the mesoscopic regime dN = Nα

with any α ∈ (0,1). We have

lim
N→∞

E{X̃N (f1)X̃N (f2)}=
1

2π

∫ ∞

−∞
|s|f̂1(s)f̂2(−s)ds,(4.19)

where f̂(s) = (2π)−1/2
∫∞
−∞ f(x)e−isx dx.

Remark 4.3. Formula (4.19) is already known for C1 functions with
compact support, as in Theorem 5.2.7(iii) of [43]. It was also proved recently
in [19] for a class of Wigner matrices with f a Schwartz test function, but
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only up to scales dN =Nα with any 0< α< 1/3. Our main contribution in
this subsection is to adapt the argument given in [43] to our test functions
f in (4.3), which cannot be compactly supported due to our assumptions
on ξ. We note that our proof holds on the full range 0<α< 1 and that the
smoothness hypothesis can be relaxed to C1 functions with rapid decay at
±∞.

Proof of Proposition 4.2. Here, we only consider the contribution
to integral (4.16) coming from the square I2δ = [−(1− δ), (1− δ)]2 for some
small δ > 0. In Appendix C, we will show that the complement of this region
can be neglected for small enough δ. We will need the following asymptotic

formula for the functions ψ
(N)
N+k defined in (4.18). Uniformly for |x|< (1− δ)

and k =O(1), we have

ψ
(N)
N+k(x) =

(

2

π
√
1− x2

)1/2

cos(Nα(x) + (k+1/2) cos−1(x)− π/4)

(4.20)
+O(N−1),

where α(x) = 2
∫ x
−1 dt

√
1− t2. Formula (4.20) follows immediately from the

classical asymptotic results of Plancherel and Rotach (see Sections 5 in [43]
and 8 in [51]).

Now, using the symmetry about the line x1 = x2, we see that the integral
(4.16) restricted to I2δ can be written in the convenient form,

1

4

∫

I2δ

∆f1(dNx)

∆x

∆f2(dNx)

∆x
FN (x1, x2)dx1 dx2,(4.21)

where

FN (x1, x2) = ψ
(N)
N (x1)

2ψ
(N)
N−1(x2)

2

(4.22)
−ψ

(N)
N (x1)ψ

(N)
N−1(x1)ψ

(N)
N (x2)ψ

(N)
N−1(x2).

We insert the Plancherel–Rotach formula (4.20) into (4.21) and denote
θ(x) = cos−1(x). Using the double angle formula for the cosine, we find that
the contribution of (4.20) to the product of squares in (4.22) is

1 + cos(2Nα(x1) + θ(x1)/2− π/4) + cos(2Nα(x2)− θ(x2)/2− π/4)

π2
√

1− x22
√

1− x21
(4.23)

+
cos(2Nα(x1) + θ(x1)/2− π/4) cos(2Nα(x2)− θ(x2)/2− π/4)

π2
√

1− x22
√

1− x21
(4.24)

+O(N−1).
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Inserting the oscillatory terms in lines (4.23) and (4.24) into (4.21) gives
rise to error terms that are O((N/dN )−∞) as N →∞ for every δ > 0. This
can be shown by repeated integration by parts, using the fact that α(x) is
smooth and increasing on the interval Iδ . Combined with a similar calcula-
tion applied to the second term in (4.22), we see that the integral (4.21) is
equal to

1

4π2

∫

I2δ

∆f1(dNx)

∆x

∆f2(dNx)

∆x

1− x1x2
√

1− x21
√

1− x22
dx1 dx2 +O((N/dN )−∞)

=
1

4π2

∫

R2

∆f1(x)

∆x

∆f2(x)

∆x

1− x1x2/d
2
N

√

1− x21/d
2
N

√

1− x22/d
2
N

(4.25)

× χIN (x1)χIN (x2)dx1 dx2 +O((N/dN )−∞),

where χIN (x1) is the indicator function on the set IN = (−(1− δ)dN , (1−
δ)dN ).

Now Lebesgue’s dominated convergence theorem can be applied to take
the limit under the integral in (4.25). Indeed, it is easy to see that the
integrand in (4.25) is bounded by the integrable function

(

2

δ2
− 1

)∣

∣

∣

∣

∆f1(x)

∆x

∣

∣

∣

∣

∣

∣

∣

∣

∆f2(x)

∆x

∣

∣

∣

∣

(4.26)

for any N ∈ N, (x1, x2) ∈ R
2 and 0< δ < 1. We finally see that for all 0 <

δ < 1, we have

lim
N→∞

1

4

∫

I2δ

∆f1(dNx)

∆x

∆f2(dNx)

∆x
FN (x1, x2)dx1 dx2

(4.27)

=
1

4π2

∫

R2

∆f1(x)

∆x

∆f2(x)

∆x
dx1 dx2.

Rewriting f1 and f2 in terms of their Fourier transforms and applying the
Plancherel theorem gives the identity

1

4π2

∫

R2

f1(x1)− f1(x2)

x1 − x2

f2(x1)− f2(x2)

x1 − x2
dx1 dx2

(4.28)

=
1

2π

∫

R

|s|f̂1(s)f̂2(−s)ds,

which is precisely the RHS of (4.19). To complete the proof, we just need
to show that the integral (4.16) restricted to the complement of the square
I2δ can be neglected in the limit N →∞. Namely, we prove in the Appendix
that

lim
N→∞

∫

(I2δ )
c

∆f1(dNx)∆f2(dNx)K
2
N (x1, x2)dx1 dx2 =O(δ), δ→ 0,(4.29)
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and so complete the proof of the proposition by choosing δ > 0 sufficiently
small. �

4.3. Convergence in distribution. The aim of this subsection is to study
the full distribution of the coefficients bN (s) and ultimately to prove Theo-
rem 2.4. First, we need a preliminary result regarding the stochastic process

W̃
(η)
N (τ). It will be convenient to consider the increments

∆p[W̃
(η)
N ](τ)

:= W̃
(η)
N (τ)− W̃

(η)
N (τ + p)(4.30)

=
1

2

∫ ∞

0

e−ηs

√
s
{[1− e−ips]e−iτsb̃N (s) + [1− eips]eiτsb̃N (s)}ds,

where b̃N (s) = bN (s)− E{bN (s)}.
Similarly, the corresponding limiting object is given by the following sta-

tionary Gaussian process:

∆p[B
(η)
0 ](τ)

:=B
(η)
0 (τ)−B

(η)
0 (τ + p)(4.31)

=
1

2
√
2

∫ ∞

0

e−ηs

√
s
{[1− e−ips]e−iτsBc(ds) + [1− eips]eiτsBc(ds)}.

Proposition 4.4. Let p ∈ R. For any h ∈ S(R) and on any power law
scales dN =Nα with α ∈ (0,1), we have the convergence in distribution:

∫ ∞

−∞
h(τ)∆p[W̃

(η)
N ](τ)dτ

d
=⇒

∫ ∞

−∞
h(τ)∆p[B

(η)
0 ](τ)dτ, N →∞.(4.32)

Proof. The proof will be analogous to our proof of Theorem 2.3, the
main difference being we must have good enough control of the tails in
the above integrals. This will be taken care of by the rapid decay of h. To
proceed, we fix some (arbitrary) M ∈R and δ0 > 0 and decompose the LHS
of (4.32) as

∫ M

−M
h(τ)∆p[W̃

(η)
N ](τ)dτ +

∫

|τ |∈[M,δ0dN ]
h(τ)∆p[W̃

(η)
N ](τ)dτ

(4.33)

+

∫

|τ |∈[δ0dN ,∞)
h(τ)∆p[W̃

(η)
N ](τ)dτ

and label each of the integrals in (4.33) with I1,I2 and I3. Let us begin
with the first integral, I1. By Theorem 2.2 and the Cramér–Wold device, the
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finite-dimensional distributions of ∆p[W̃
(η)
N ](τ) converge in law to those of

∆p[B
(η)
0 ](τ). Furthermore, by the uniform estimate (3.50) we have that there

is a constant C > 0 such that E{(∆p[B
(η)
0 (τ)])2} ≤C for all τ ∈ [−M,M ] and

for all N . Therefore, the hypotheses of Theorem 3 in [28] are satisfied and we
conclude that the first integral in (4.33) converges in distribution to the RHS
of (4.32) in the limit N →∞ followed by M →∞. To complete the proof,
it suffices to show that the second and third integrals in (4.33) converge in
probability to 0 in the same limit.

For notational convenience, we just consider the contributions to I2 and
I3 where τ > 0 as the situation τ < 0 is almost identical. By Chebyshev’s
inequality and Cauchy–Schwarz, we have

P{|I2|> ε} ≤ ε−2

∫ δ0dN

M
|h(τ)|dτ

∫ δ0dN

M
|h(τ)|E{∆p[W̃

(η)
N ](τ)2}dτ.(4.34)

We will now argue that the variance term in (4.34) is uniformly bounded.
Since |τ | ≤ δ0dN , by choosing δ0 small enough we see that |x0+τ/dN |< 1−δ
for some δ > 0 independent of N . Hence, the singularities of the logarithm
in (2.6) remain inside the bulk region (−1 + δ,1− δ) for all N and we may
apply the methods of Section 3 with m= 2 and weight [cf. (3.19)]

ω(z) =

[

(z − x0(τ,N)− p/dN )2 + (η/dN )2

(z − x0(τ,N))2 + (η/dN )2

]α/2

,

(4.35)
x0(τ,N) = x0 + τ/dN .

The only difference in the analysis of the Riemann–Hilbert problem with
this weight is that the new reference point x0(τ,N) can vary with N in the
small fixed neighbourhood [x0 − δ0, x0 + δ0]. However, all the estimates we
obtain are uniform for x0 varying in compact subsets of (−1 + δ,1− δ) so
that the variance bound (3.50) (with υ = τ ) remains valid. This implies that
for some N -independent C > 0,

P{|I2|> ε} ≤ ε−2C

(∫ δ0dN

M
|h(τ)|dτ

)2

→ 0,(4.36)

in the limit N →∞ followed by M →∞.
To bound the integral I3, we again apply Chebyshev’s inequality and

exploit the rapid decay of h. We have

P{|I3|> ε}
(4.37)

≤ ε−2

∫ ∞

δ0dN

∫ ∞

δ0dN

E{h(τ1)∆p[W̃
(η)
N ](τ1)h(τ2)∆p[W̃

(η)
N ](τ2)}dτ1 dτ2
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= ε−2

∫ ∞

δ0dN

∫ ∞

δ0dN

∫ ∞

−∞

∫ ∞

−∞
h(τ1)h(τ2)

2
∏

j=1

(q(x1, τj)− q(x2, τj))

(4.38)
×K2

N (x1, x2)dx1 dx2 dτ1 dτ2,

where we computed the expectation using the identity (4.16) and

q(x, τ) =− log

∣

∣

∣

∣

x− x0 −
τ + iη

dN

∣

∣

∣

∣

+ log

∣

∣

∣

∣

x− x0 −
τ + p+ iη

dN

∣

∣

∣

∣

.(4.39)

Now, since h is a Schwartz test function, we know that for any γ > 0 and
u > 0, we have |h(udN )| ≤ (dNu)

−γ for N large enough. Then using the
inequalities |q(x, τ)| ≤Cp,η for some finite constant depending only on p and
η, K2

N (x1, x2)≤N2ρN (x1)ρN (x2) and substituting τj = udN we obtain

P(|I3|> ε)≤ 4ε−2C2
p,ηN

2 d−2γ+2
N

(∫ ∞

δ0

u−γ du

)2

.(4.40)

Then provided dN takes the form dN = Nα with α ∈ (0,1) we can always
choose γ > 0 large enough such that the RHS of (4.40) tends to 0 as N →∞.
�

We can now translate the result (4.32) into a statement about the Fourier
coefficients bN (s), allowing us to prove Theorem 2.4. For the convenience of
the reader, we repeat the statement of the latter result here.

Theorem 4.5. Let ξ1, . . . , ξm be smooth functions compactly supported
on R+. Then the vector (cN (ξ1), . . . , cN (ξm)) converges in distribution to a
centered complex Gaussian vector Z with relation matrix C = E{ZZT}= 0
and covariance matrix Γ = E{ZZ†} given by

Γj,k =

∫ ∞

0
ξj(s)ξk(s)ds, j, k = 1, . . . ,m.(4.41)

Proof. Define functions hk in terms of their Fourier transform as
∫ ∞

−∞
hk(τ)e

−iτs dτ =

√
s

1− e−ips
eηsξk(s), k = 1, . . . ,m.(4.42)

Then for sufficiently small p, the RHS of (4.42) is smooth and compactly
supported. Therefore, its Fourier transform hk is a Schwartz function, that
is, hk ∈ S(R). Next, note that with cN (ξ) as in (4.2), we have the identity

cN (ξk)− E(cN (ξk)) = 2

∫ ∞

−∞
hk(τ)∆p[W̃

(η)
N ](τ)dτ(4.43)

which holds almost surely and follows after inserting the representation
(4.30) and interchanging the order of integration, justified by the rapid decay
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of ξk and hk. Now we apply Proposition 4.4 with h(τ) =
∑m

k=1αkhk(τ) where
αk ∈C. Since E(cN (ξk)) =O(d−1

N ), we get the convergence in distribution

m
∑

k=1

αkcN (ξk)
d

=⇒ 2
m
∑

k=1

αk

∫ ∞

−∞
hk(τ)∆p[B

(η)
0 ](τ)dτ, N →∞.(4.44)

By the Cramér–Wold device, this implies the convergence in distribution

(cN (ξ1), . . . , cN (ξk))
d

=⇒ (Z(h1), . . . ,Z(hm)),(4.45)

where

Z(hk) = 2

∫ ∞

−∞
hk(τ)∆p[B

(η)
0 ](τ)dτ.(4.46)

Since ∆p[B
(η)
0 ](τ) is a Gaussian process, one easily sees that (Z(h1), . . . ,Z(hm))

is a mean zero complex Gaussian vector. Then by a simple computation us-
ing the integral representation (4.31) and basic properties of the white noise
measure Bc(ds), we find the covariance structure

Γj,k = E{Z(hj)Z(hk)}=
∫ ∞

0
ξj(s)ξk(s)ds,(4.47)

and Cj,k = E{Z(hj)Z(hk)}= 0 for all j, k = 1, . . . ,m. �

5. Macroscopic regime. The main goal of this section is to prove The-
orem 2.1. Namely, we will show that the process D̃N (x) (2.5) converges in
probability law as N →∞ to the generalized Gaussian process F (x) given
by (1.7). The convergence is interpreted in the Sobolev space V (−a), that is,
the assertion of Theorem 2.1 is that for any bounded continuous functional
q on V (−a), we have

lim
N→∞

E{q(D̃N )}= E{q(F )}.(5.1)

Our proof is an adaptation for the GUE matrices H of the proof of a sim-
ilar result for the CUE matrices given in [30]. First, we will prove that
the finite-dimensional distributions of D̃N (x) converge to those of F (x) and
then establish that the sequence D̃N (x) is tight in V (−a). This will imply
the convergence in probability law in V (−a) as in (5.1). As explained in Sec-
tion 2.1, for the GUE matrices there are additional analytical complications
compared with the case of CUE matrices.

We start with a deterministic result, writing down the Chebyshev–Fourier
series for D̃N (x).
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Lemma 5.1. Let H be a Hermitian matrix of size N×N with eigenvalues
x1, . . . , xN . Then

− log|det(H− xI)|=N log 2 +

∞
∑

k=0

ck(DN )Tk(x),

where the convergence is pointwise for any x ∈ [−1,1] \ {x1, . . . , xN} and
the Chebyshev–Fourier coefficients ck(DN ) are given for any k > 0 by the
formula

ck(DN ) =

N
∑

j=1

2

k
Tk(xj) +

N
∑

j=1

r+k (xj) +

N
∑

j=1

r−k (xj)(5.2)

and

c0(DN ) =−
N
∑

j=1

r+0 (xj)−
N
∑

j=1

r−0 (xj),(5.3)

where for k > 0

r±k (x) = [(2/k)(−Tk(x) + (x∓
√

x2 − 1)k]χ(±1,±∞)(x)(5.4)

and

r±0 (x) = log|x∓
√

x2 − 1|χ(±1,±∞)(x).(5.5)

In the above formulae, χJ(x) is the indicator function on the set J .

Proof. This follows immediately from Lemma 3.1 in [27]. �

It follows from this lemma that for our random matrices H, with proba-
bility one,

D̃N (x) =
∞
∑

k=0

ck(D̃N )Tk(x) where ck(D̃N ) = ck(DN )−E{ck(DN )}.

5.1. Convergence of finite-dimensional distributions. The main goal of
this subsection is to establish the following.

Proposition 5.2. Fix M ∈N and let X1, . . . ,XM be independent Gaus-
sian random variables with mean zero and variance one. Then for any
(tk)

M
k=1 ∈R

M we have the convergence in distribution

M
∑

k=0

ck(D̃N )tk
d

=⇒
M
∑

k=1

Xk√
k
tk, N →∞.(5.6)
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Proof. We begin by inserting equation (5.2) into the LHS of (5.6).
Then from [31] or [43], we know that the sum

M
∑

k=1

tk

(

N
∑

j=1

2

k
Tk(xj)−E

{

N
∑

j=1

2

k
Tk(xj)

})

(5.7)

converges in distribution to the RHS of (5.6) as N →∞. The main technical
part of our proof of (5.6) consists in showing that the other terms appearing
in (5.2) and (5.3) do not contribute in the limit N →∞. All such terms that
appear are of the form

A±
k,N =

N
∑

j=1

r±k (xj)(5.8)

and by definition of the test function r±k (x), they are nonzero only when
an eigenvalue xj lies outside the bulk of the limiting spectrum [−1,1]. Intu-
itively, this is a rare event and we show below that in fact E|A±

k,N | → 0 as

N →∞. We note in passing that the regularity of the test functions r±k (x)
lies outside the best known C1/2+ε threshold in [50], due to the singularities
at the spectral edges.

Let us focus our attention on the case E{|A+
k,N |}, since the estimation

of E{|A−
k,N |} follows exactly the same pattern. First, one sees from the ex-

plicit formula (5.4) and the elementary inequality (x−
√
x2 − 1)k ≤ Tk(x)≤

(x+
√
x2 − 1)k, x≥ 1 that −r+k (x) is nonnegative for all x ∈ R. Therefore,

E{|A+
k,N |}=−E{A+

k,N}.
In terms of the normalized eigenvalue density, we have

E{A+
k,N}=N

∫ ∞

1
r+k (x)ρN (x)dx.(5.9)

To proceed, we split the integral as

E{A+
k,N}=N

∫ 1+δN

1
r+k (x)ρN (x)dx+N

∫ ∞

1+δN

r+k (x)ρN (x)dx,(5.10)

where we choose δN =N−7/12. The first integral in (5.10) is over a shrinking
neighbourhood of the spectral edge x= 1. An estimate that holds uniformly
in this region can be given in terms of the Airy function Ai(x) and its deriva-
tives. In particular, equation (4.4) of [18] (see also the Proof of Lemma 2.2
in [29]) shows that as N →∞

NρN (x) =

(

Φ′(x)
4Φ(x)

− γ′(x)
γ(x)

)

[2Ai(N2/3Φ(x))Ai′(N2/3Φ(x))]

+N2/3Φ′(x)[(Ai′(N2/3Φ(x)))2 −N2/3Φ(x)(Ai(N2/3Φ(x)))2](5.11)
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+O

(

1

N(
√
x− 1)

)

,

where

γ(x) =

(

x− 1

x+ 1

)1/4

(5.12)

and

Φ(x) =



















−
(

3

∫ 1

x

√

1− y2 dy

)2/3

, |x| ≤ 1,

(

3

∫ x

1

√

y2 − 1dy

)2/3

, |x|> 1.

(5.13)

Since Φ(x) ≥ 0 for x ≥ 1, the functions Ai(N2/3Φ(x)) and Ai′(N2/3Φ(x))

are uniformly bounded on [1,∞). Furthermore, ( Φ
′(x)

4Φ(x) −
γ′(x)
γ(x) ) and Φ′(x)

are bounded near x= 1. Inserting (5.11) into the first integral in (5.10), we
obtain the bound

N

∫ 1+δN

1
r+k (x)ρN (x)dx= c1N

2/3

∫ 1+δN

1
r+k (x)dx+O

(

1

N

)

,(5.14)

where c1 is an N -independent constant. In (5.14), we used that r+k (x)(x−
1)−1/2 is bounded near x= 1 to estimate the contribution of the error term

in (5.11). A simple computation shows that
∫ 1+δN
1 r+k (x)dx = O(δ

3/2
N ) as

N →∞ for k ≥ 0. Inserting the latter into (5.14) yields the bound

N

∫ 1+δN

1
r+k (x)ρN (x)dx=O(N2/3δ

3/2
N ) =O(N−5/24).(5.15)

Now consider the second integral in (5.10). We will prove below that it is
exponentially small as N →∞. Using the fact that (for k ≥ 1) −r+k (x) ≤
Tk(x) and applying Lemma C.1, we obtain

−N
∫ ∞

1+δN

r+k (x)ρN (x)dx(5.16)

≤NδN

∫ ∞

1
Tk(1 + uδN )ρN (1 + uδN )du(5.17)

≤B−1

∫ ∞

1
u−1Tk(1 + uδN )e−buN1/8

du,(5.18)

where B,b > 0 are absolute constants. Then, for example, expanding Tk(1+
uδN ) in powers of (uδN ) and integrating (5.18) term by term, we can apply

the standard Laplace method and find that (5.18) is O(e−cN1/8
) for some
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c > 0. If k = 0 in the integral (5.16), one can use the inequality |r+0 (1+x)| ≤√
2x, x > 0 and then apply the Laplace method as before yielding a similar

error bound. This completes the proof of the proposition. �

5.2. Tightness. The final ingredient required for proving the weak con-

vergence in (5.1) is to show that the sequence D̃N is tight in V (−a). In direct
analogy to the proof given in Theorem 2.5 of [30] for the Circular Unitary
Ensemble, we will exploit the convenient fact that for −∞< a< b <∞, the
closed unit ball in V (b) is compact in V (a). Then by Chebyshev’s inequality,
tightness follows if we can bound the variance

E‖D̃N‖2(−b) =
∞
∑

k=0

E{ck(D̃N )2}(1 + k2)−b(5.19)

uniformly in N . Such a uniform bound will follow for any b > 1/2 provided
we show that E{ck(D̃N )2} ≤ C for some constant C independent of k and
N . We begin by writing the Chebyshev–Fourier coefficient as

ck(D̃N ) =
N
∑

j=1

hk(xj)−E

{

N
∑

j=1

hk(xj)

}

,(5.20)

where

hk(x) = (2/k)Tk(x)χ[−1,1](x)− (2/k)(x−
√

x2 − 1)kχ(1,∞)(x)
(5.21)

− (2/k)(x+
√

x2 − 1)kχ(−1,−∞)(x).

Then by formula (4.16), we have

E{ck(D̃N )2}= 1

8

∫

R2

(hk(x1)− hk(x2))
2KN (x1, x2)

2 dx1 dx2,(5.22)

where KN (x, y) is the GUE kernel defined in equation (4.17).
First, we consider the contribution to the integral (5.22) coming from the

region [−1,1]2, namely the integral

1

2k2

∫

[−1,1]2

(

∆Tk(x)

∆x

)2

FN (x1, x2)dx1 dx2,(5.23)

where FN (x1, x2) is defined by (4.22) and, as in Section 4, for a function f ,
we denote by ∆f the difference ∆f(x) = f(x1)− f(x2). By the Plancherel–
Rotach asymptotics of Hermite polynomials, we have the bound (as follows
from, e.g., parts (iii) and (v) of Theorem 2.2 in [13])

|FN (x1, x2)| ≤
K1

√

1− x21
√

1− x22
(5.24)
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uniformly for (x1, x2) ∈ [−1,1]2. This implies that the modulus of (5.23) is
bounded by

K1

2k2

∫

[−1,1]2

(

∆Tk(x)

∆x

)2 1
√

1− x21
√

1− x22
dx1 dx2 =K1π

2/8.(5.25)

The equality in (5.25) is a simple exercise involving standard properties of
Chebyshev polynomials and we omit the derivation.

Finally, consider the contribution to the integral (5.22) from outside the
square [−1,1]2. For simplicity, consider just the region 1<x1 <∞ and −1<
x2 < 1, all others being analogous. Since hk(x) is uniformly bounded in k
and x on the whole real line, we have

∫ 1

−1

∫ ∞

1
(hk(x1)− hk(x2))

2KN (x1, x2)
2 dx1 dx2(5.26)

≤
∫ ∞

−∞

∫ ∞

1
KN (x1, x2)

2 dx1 dx2(5.27)

=

∫ ∞

1
NρN (x1)dx1 =

∫ 1+δ

1
NρN (x1)dx1 +O(Ne−cδN ),(5.28)

where δ > 0 is a constant and cδ > 0. The last equality in (5.28) follows from
Theorem 5.2.3(iii) in [43]. Now we can insert the formula (5.11) which holds
uniformly on [1,1 + δ]. The first term in (5.11) is bounded in N and x1
and so its integral over [1,1 + δ] is bounded in N . The third term gives an
error of order 1/N . The contribution from the middle term can be explicitly
integrated using the substitution u=N2/3Φ(x2):

∫ 1+δ

1
N2/3Φ′(x2)(Ai

′2(N2/3Φ(x2))−N2/3Φ(x2)Ai
2(N2/3Φ(x2)))dx2(5.29)

=

∫ N2/3Φ(1+δ)

0
[Ai′2(u)− uAi2(u)]du(5.30)

=−
[

2

3
(u2Ai2(u)− uAi′2(u))− 1

3
Ai(u)Ai′(u)

]N2/3Φ(1+δ)

0

(5.31)

= Ai(0)Ai′(0)/3 +O(e−dδN ),(5.32)

where dδ > 0. A completely analogous argument proves that the integral over

the region {1< x1 <∞,1< x2 <∞} is also uniformly bounded in k and N ,
in addition to the remaining 6 regions that make up Bc. This completes the
proof that D̃N is tight in V (−a) for any a > 1/2, and hence completes the
proof of Theorem 2.1.
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APPENDIX A: PROOF OF PROPOSITION 3.2

The purpose of this Appendix is to give the technical details required to
show that the matrix P∞(z) in Section 3.4 gives a good approximation to
the matrix S(z) in Section 3.3 for large N , as described by Proposition 3.2.
Although we can mostly follow the now standard techniques described in
[13], we must take special care with the estimates because the system of
contours in Figure 1 can come arbitrarily close to the real axis as N →∞.

Remark A.1. In this Appendix, there are many estimates holding uni-
formly in the parameters {τk}m−1

k=1 , {αk}m−1
k=1 and x0 that appear in the par-

tition function (3.2). We will use the big-oh notation O (distinguished from
the usual O) for an error term that defines an analytic function of the
parameters {αk}m−1

k=1 on Ω [cf. (3.9)] satisfying uniformity in the following
parameters:

• τk varying in a compact subset of R for k = 1, . . . ,m− 1,
• αk varying in a compact subset of Ω for k = 1, . . . ,m− 1,
• x0 varying in a compact subset of (−1 + δ,1− δ).

Construction of the parametrices at z = ±1. The parametrices at z =
±1 consist of a matrix valued function P±1(z) defined in the discs B±1(δ)
(cf. Figure 1) satisfying the following properties:

1. P±1(z) is analytic in B±1(δ) \Σ.
2. P±1(z) satisfies the same jump conditions as S(z) on Σ ∩B±δ.
3. The following matching condition is satisfied on the boundary ∂B±1(δ):

P±1(z)P∞(z)−1 = I +O(N−1), z ∈ ∂B±1(δ),(A.1)

as N →∞.

The functions P1(z) and P−1(z) can be obtained in precisely the same way
as in [35], which was itself based on the construction in [13] corresponding
to weights ω(z)≡ 1. In our situation, the only difference is that our weight
ω(z) and the Szegö function D(z) are N -dependent, so that one has to be
careful with the matching condition (A.1). From equation (76) in [35], we
have

P±1(z)P∞(z)−1

(A.2)
= P∞(z)ω(z)σ3/2P̃∞(z)−1P̃±1(z)P̃∞(z)−1P̃∞(z)ω(z)−σ3/2P∞(z)−1,

where P̃±1(z) and P̃∞(z) are the quantities P±1(z) and P∞(z) with ω(z)≡ 1.

For our purposes, we will not need the explicit expression for P̃±1(z), which
can be found in, for example, [13] or [35]. Our main goal here is to check
that the matching condition (A.1) is still satisfied.
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Lemma A.2. Let P±1(z) denote the parametrix defined in (A.2). Then
we have as N →∞

P±1(z)P∞(z)−1 = I +
∆̃

(±1)
1 (z)

N
+O

(

1

NdN

)

, z ∈ ∂B±1(δ),(A.3)

where the estimate is uniform for z ∈ ∂B±1(δ). The first correction term

∆̃
(±1)
1 (z) depends only on z and is analytic except for a second-order pole at

z =±1.

Proof. Proposition 7.7 of [13] implies that there is a uniform asymp-
totic expansion

P̃±1(z)P̃∞(z)−1 ∼ I +
∞
∑

k=1

∆̃
(±1)
k (z)

Nk
, z ∈ ∂B±1(z),(A.4)

where ∆̃
(±1)
k (z) are independent of N [and independent of ω(z)], and have

meromorphic continuations inside the disc ∂B±1(δ) with a pole of order
(3k +1)/2 at z =±1. Inserting (A.4) back into (A.2), we find that

P±1(z)P∞(z)−1 − I ∼
∞
∑

k=1

Q(z)∆̃
(±1)
k (z)Q(z)−1

Nk
, z ∈ ∂B±1(δ),(A.5)

where Q(z) = P∞(z)ω(z)σ3/2P̃∞(z)−1. To prove the lemma, it is sufficient
to show that

Q(z) = I +O(d−1
N ), z ∈B±1(δ).(A.6)

First, note that

ω(z) = 1+O(d−1
N ), z ∈ ∂B±1(δ) ∪ [−1,1](A.7)

as follows immediately from the representation (3.21). Then the proof is
complete if we can check that

√
z − 1

√
z +1

2π

∫ 1

−1

logω(x)√
1− x2(z − x)

dx=O(d−1
N ), z ∈ ∂B±1(δ)(A.8)

because this would imply the corresponding estimate for the Szegö function

D(z) = 1 + O(d−1
N ) [cf. (3.26)] so that P∞(z) = P̃∞(z) + O(d−1

N ). We will
prove (A.8) below only for z ∈ ∂B1(δ), the case z ∈ ∂B−1(δ) being iden-
tical. If (z − x)−1 is bounded, the result follows immediately from (A.7),
therefore, we consider only the contribution to the integral (A.8) from a
small neighbourhood [1− δ − ε0,1− δ + ε0] and the points z ∈ ∂B1(δ) such
that 0< |z − (1− δ)|< ε0/2. First, consider Im(z)> 0 and let C denote the
clockwise oriented semi-circle in the upper-half plane connecting the points
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Fig. 2. The contour ΣR for the R(z) Riemann–Hilbert problem. The parts of the lenses
Γ = Σ \ ∂B±1(δ) near x0 are of distance O(d−1

N ) from the real line. The circles ∂B±1(δ)
are of radius δ.

1− δ − ε0 and 1− δ + ε0. Then by the residue theorem and analyticity of
ω(x), (A.8) is equal to

i
√
z +1

√
z − 1

logω(z)√
1− z2

+

√
z − 1

√
z+ 1

2π

∫

C

logω(x)√
1− x2(x− z)

dx,(A.9)

where we take the principal branch of the square root. Now both terms in
(A.9) are clearly O(d−1

N ), as follows from (A.7) and the fact that (x− z)−1 is

uniformly bounded in (A.9). A similar calculation applies when Im(z) < 0.
This completes the proof of the lemma. �

Final transformation. We will now define the final transformation of the
Riemann–Hilbert problem, S→R. As usual, we set

R(z) =

{

S(z)P∞(z)−1, z ∈ U∞ \Σ,
S(z)P±1(z)

−1, z ∈B±1(δ) \Σ.
(A.10)

From the Riemann–Hilbert problem for S(z), it is easily shown that R(z)
has jumps only on ∂B±1(δ), R \ [−1− δ,1 + δ] and the parts of Σ± outside
of B1(δ) ∪ B−1(δ) (denoted here by Γ±). In what follows, we will denote
the disjoint union of these contours as ΣR, which we plot in Figure 2. The
function R(z) satisfies the following:

1. R(z) is analytic in C \ΣR.
2. R(z) satisfies the jump condition R+(s) =R−(s)J(s) where

J(s) = P∞(s)

(

1 ω(s)eN(g+(s)+g−(s)−2s2−l)

0 1

)

P∞(s)−1,

(A.11)
s ∈R \ [−1− δ,1 + δ],

J(s) = P∞(s)

(

1 0

ω(s)−1e∓Nh(s) 1

)

P∞(s)−1, s ∈ Γ±,(A.12)

J(s) = P±1(s)P∞(s)−1, s ∈ ∂B±1.(A.13)

3. R(z) = I +O(z−1) as z→∞.
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Estimating the jump matrix ∆(s). Before we estimate the jump matrix,
we need to understand the behaviour of P∞(z) [cf. (3.25)] on the contours
Γ±.

Lemma A.3. The Szegö function D(s) in (3.26) and its inverse D(s)−1

are uniformly bounded on the contours Γ±. In fact, we have

logD(s) =O(1), N →∞,(A.14)

uniformly for s ∈ Γ±.

Proof. It suffices to prove that
∫ 1

−1

logω(x)

(s− x)
√
1− x2

dx=O(1).(A.15)

We remind the reader that the weight ω(x) can be written

ω(x) =
m−1
∏

k=1

[

(x− x0 − τk/dN )2 + (η/dN )2

(x− x0)2 + (η/dN )2

]αk/2

,(A.16)

as follows from the constraints on αk’s in (3.4). We have the elementary
inequality

|log(ω(x))| ≤ 1

2

m−1
∑

k=1

|αk||log(1 + gτ,η,N (x,x0))|,(A.17)

where

gτ,η,N (x,x0) =
(τ/dN )2 − 2(x− x0)τ/dN

(x− x0)2 + (η/dN )2
.(A.18)

Now, clearly if x ≤ x∗ = x0 + τ/(2dN ), we have gτ,η,N (x,x0) ≥ 0, so that
log(1 + gτ,η,N (x,x0)) ≤ gτ,η,N (x,x0). If x > x∗, we symmetrise about the
point x∗ exploiting the symmetry | log(1 + gτ,η,N (x∗ − x,x0))| = | log(1 +
gτ,η,N (x∗ + x,x0))| to obtain

|log(1 + gτ,η,N (x,x0))| ≤ |gτ,η,N (x,x0)|+ |gτ,η,N (2x∗ − x,x0)|.(A.19)

We will focus only on the region x ∈ [x0−ε,x0+ε] as this gives the dominant
contribution to the integral (A.15). For s ∈ Γ± and x ∈ [x0 − ε,x0 + ε], we
have |s− x|−1 ≤ ((x− x0)

2 + (η/2dN )2)−1/2 and (1− x2)−1/2 =O(1). Then
the contribution to (A.15) from the first term on the RHS of (A.19) is
bounded by

∫ x0+ε

x0−ε

|gτ,η,N (x,x0)|
√

(x− x0)2 + (η/2dN )2
dx

(A.20)
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≤
∫ 1

−1

|(τ/dN )2 − 2xτ/dN |
(x2 + (η/2dN )2)3/2

dx

=
8|τ |
η

(

√

τ2/η2 +1
√

(2dN/η)2 +1− 1
√

(2dN/η)2 + 1

)

=O(1),(A.21)

where we changed variables x→ x−x0 and extended the limits of integration
back to [−1,1]. The resulting integral on the RHS of (A.20) can be evaluated
exactly in, for example, Maple.

For the second term in (A.19), we use the estimate ((x−x0)2+(η/dN )2)−1/2 ≤
c((x0−x+ τ/dN )2+(η/dN )2)−1/2 (where c depends on η and τ only) to get

∫ x0+ε

x0−ε

|gτ,η,N (2x∗ − x,x0)|
√

(x− x0)2 + (η/(2dN ))2
dx

(A.22)

≤ c

∫ x0+ε

x0−ε

|(τ/dN )2 − 2(x0 − x+ τ/dN )τ/dN |
((x0 − x+ τ/dN )2 + (η/(2dN ))2)3/2

dx

= c

∫ ε+τ/dN

−ε+τ/dN

|(τ/dN )2 − 2uτ/dN |
(u2 + (η/(2dN ))2)3/2

du=O(1),(A.23)

where we used that the last integral is bounded by the RHS of (A.20). �

Proposition A.4. Let ∆(s) = J(s)− I where J(s) is the jump matrix
for R(z) defined on the contour ΣR. We have the following bounds:

• On the discs

|∆(s)|=O(N−1), s ∈ ∂B±1(δ).(A.24)

• On the upper and lower lips

|∆(s)|=O
(

exp

(

−c1
N

dN

))

, s ∈ Γ±.(A.25)

• On the real line

|∆(s)|=O(exp(−c2N)), s ∈R \ [−1− δ,1 + δ].(A.26)

Here, c1 > 0 and c2 > 0 are constants depending only on δ and η.

Proof. The bound (A.24) follows immediately from Lemma A.2, while
(A.26) follows from the fact that P∞(s) is uniformly bounded in R \ [−1−
δ,1 + δ] combined with the inequalities (3.16). It remains to settle (A.25).
On the contours Γ±, we have the explicit expression

∆(s) = e∓Nh(s)

(

P∞(s)12P∞(s)22 −(P∞(s)12)
2

(P∞(s)22)
2 −P∞(s)12P∞(s)22

)

,

(A.27)
s ∈ Γ±,
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where h(s) was defined in (3.20). By Lemma A.3, we see that P∞(s) is uni-
formly bounded on Γ±. Therefore, the only danger is that Reh(s) vanishes
too quickly as N →∞. However, a careful examination of the function (3.20)
shows that Reh(z) vanishes at the same rate that the contours Γ± collapse
onto the real axis. Indeed, an elementary calculation using Taylor’s theorem
shows that we have the inequalities

Re(h(s))> c1/dN , s ∈ Γ+,
(A.28)

Re(h(s))<−c1/dN , s ∈ Γ−,

where c1 = 4η
√

1− (1− δ)2. This completes the proof of (A.25). �

Estimating the R-matrix and the proof of Proposition 3.2. Finally, we
are in a position to prove Proposition 3.2. The proof follows from the stan-
dard method described in [13]. However, in our case extra care must be
taken with the estimates because our contour ΣR depends explicitly on N ;
see, for example, [6] for another example of N -dependent contours.

Proposition A.5. The matrix R(z) satisfies the following estimate:

R(z) = I +O
(

1

N

)

+O
(

log(dN ) exp

(

−c1
N

dN

))

, N →∞(A.29)

uniformly for z ∈C \ΣR.

Proof. Since for every N , ΣR is a finite union of smooth contours,
standard theory (see, e.g., [14, 35, 36]) gives

R(z) = I +
1

2πi

∫

ΣR

∆(s)ν(s)

s− z
ds,(A.30)

where ∆(s) is as in Proposition A.4 and ν(s) is the unique solution to the
singular integral equation ν(s) = I + C−[ν∆](s). Here, C− is the Cauchy
operator on L2(ΣR), defined by

C−[f ](s) =
1

2πi

∫

ΣR

f(x)

x− s−
dx, f ∈ L2(ΣR),(A.31)

where s− denotes the limiting value of the integral as the point s ∈ ΣR is
approached from the minus side of the contour.

We begin by solving the equation for ν(s) in a perturbation series (see,
e.g., [5])

ν(s) = I +

∞
∑

k=1

νk(s), νk(s) =C−[νk−1∆](s),(A.32)
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Fig. 3. The deformed contour Γ̃+. The semi-circle of radius η/(4dN ) is sufficiently small
that it does not touch the singularities (crosses), whose imaginary parts are η/dN .

and ν0 = I . We need to show that this series is absolutely and uniformly
convergent for any s ∈ ΣR. Let s ∈ Γ+ and deform Γ+ to a new contour
Γ̃+ differing only by a small semi-circle of radius η/(4dN ) centered at s, as
depicted in Figure 3. Denote by Σ̃R the contour ΣR with Γ+ replaced with
Γ̃+. By the Cauchy theorem, we have

ν1(s) =
1

2πi

∫

ΣR

∆(x)

x− s−
dx=

1

2πi

∫

Σ̃R

∆(0)(x)

x− s
dx,(A.33)

where ∆(0) is the analytic continuation of ∆ to Σ̃R and satisfies the same
bounds as in Proposition A.4. Now we estimate, splitting the integral into
a contribution from the discs ∂B±1(δ), the real line R \ [−1− δ,1 + δ] [both
of which are at most O(N−1)] and the contribution from Γ̃±:

|ν1(s)| ≤ c3/N +
1

2π

∫

Γ̃±

|∆(0)(x)|
|x− s| dx

≤ c3/N +
1

2π
e−c1N/dN

∫

Γ̃±

1

|x− s| dx(A.34)

≤ c3/N + c2 log(dN )e−c1N/dN , s ∈ Γ+,

where c3 and c2 are constants depending only on δ and η, with a similar
bound if s ∈ Γ−. If s ∈ ΣR \ (Γ+ ∪ Γ−), then the same bound holds with
c2 = 0. Applying this procedure inductively, we obtain

|νj(s)| ≤K1N
−j +K2(log(dN )e−c1N/dN )j, s ∈ΣR,(A.35)

where we can choose K2 = 0 if s ∈ΣR \ (Γ+∪Γ−). The bound (A.35) implies
that the series (A.32) is absolutely convergent. Inserting (A.32) back into
(A.30), we arrive at

R(z) = I +
∞
∑

j=1

Rj(z),
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(A.36)

Rj(z) =
1

2πi

∫

ΣR

νj−1(s)∆(s)

s− z
ds, j = 1,2,3, . . . .

Now we bound the terms in the sum (A.36). First, consider the case that
dist(z,ΣR)≥ η/(4dN ). Then estimates entirely analogous to (A.34) yield

|Rj(z)| ≤K1N
−j +K2(log(dN )e−c2N/dN )j, j = 1,2,3, . . . .(A.37)

On the other hand, if 0< dist(z,ΣR)< η/(4dN ), one can again deform the
contour with a semi-circle of radius η/(4dN ) and obtain the same bound
(A.37) after essentially repeating the steps (A.33) and (A.34). �

Remark A.6. To complete the proof of Proposition 3.2, we will derive
the explicit form of the O(1/N) term in (A.29). Thus, we need to compute
the function R1(z) defined in (A.36). By Proposition A.4 and Lemma A.2,
we have

R1(z) =
R̃1(z)

N
+O

(

1

NdN

)

+O
(

dN exp

(

−c1
N

dN

))

,(A.38)

where

R̃1(z) =
1

2πi

∫

∂B1(δ)

∆
(+1)
1 (s)

s− z
ds+

1

2πi

∫

∂B−1(δ)

∆
(−1)
1 (s)

s− z
ds.(A.39)

The functions ∆
(±1)
1 (s) are explicitly known, for example, by setting ω(z)≡ 1

in equations (79), (83), of [35] or by using the results in [13]. Then expanding

(A.38) near z =∞ and computing the residues of the function ∆
(±1
1 (s) near

the poles s=±1, we find that

R̃1(z) =A/z +B/z2 +O(z−3), z→∞,(A.40)

where

A=

(

0 i/24

i/24 0

)

, B =

(−1/48 0

0 1/48

)

.(A.41)

Then inserting (A.29) and the first-order correction above into the definition
(A.10), we arrive at (3.29).

APPENDIX B: THE SZEGÖ FUNCTION

For a weight ω(x), the Szegö function is defined by the formula

D(z) = exp

(
√
z + 1

√
z − 1

2π

∫ 1

−1

log(ω(x))√
1− x2

dx

z − x

)

.(B.1)

It satisfies the properties:
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1. D(z) is nonzero and analytic in C \ [−1,1],
2. D+(x)D−(x) = ω(x) for x ∈ (−1,1),
3. limz→∞D(z) =D∞ 6= 0.

For our problem, we are interested in the weight ω(x) =
∏m

k=1 |x − zk|αk

where Im(zk) 6= 0 for k = 1, . . . ,m. It can easily be seen that the above
three properties uniquely specify the Szegö function for this weight. Let
c(z) = z+

√
z − 1

√
z + 1 be the conformal map from C\[−1,1] to the exterior

of the unit disk. Then the Szegö function for the weight |x− µ|2 is

|c(µ)|
2

(

1− 1

c(µ)c(z)

)(

1− 1

c(µ)c(z)

)

, Im(µ) 6= 0.(B.2)

This can be checked by verifying the above three conditions using the prop-
erties c(z) + 1

c(z) = 2z and c+(x)c−(x) = 1 for x ∈ [−1,1]. Thus, the Szegö

function for ω(x) is

D(z) =

m
∏

k=1

( |c(zk)|
2

(

1− 1

c(zk)c(z)

)(

1− 1

c(zk)c(z)

))αk/2

.(B.3)

Similar considerations show straightforwardly that the function C(z,µ) de-
fined in (3.35) is given by

C(z,µ) =
1

2
log

( |c(µ)|
2

(

1− 1

c(µ)c(z)

)(

1− 1

c(µ)c(z)

))

.(B.4)

Defining zk = x0 +
τk+iη
dN

, one easily gets the asymptotic

dN
|c(zj)|

2

(

1− 1

c(zj)c(zk)

)(

1− 1

c(zj)c(zk)

)

(B.5)
= 2η + i(τj − τk) +O(d−1

N )

which immediately implies that

Re(C(zj , zk)) =−1
2 log(dN ) + 1

4 log((τj − τk)
2 + 4η2) +O(d−1

N ).(B.6)

The uniformity of the error term in the relevant compact sets follows from
the uniform expansions of the logarithm and square roots in these regions.
From (B.3), we obviously have the expansion

D(z) =D∞

(

1 +
D1

z
+

D2
1/2 +D2

z2

)

+O(z−3),(B.7)

where

D∞ =

m−1
∏

k=1

∣

∣

∣

∣

c(zk)

c(zm)

∣

∣

∣

∣

αk/2

(B.8)
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and

D1 =−1

2

m
∑

k=1

αkRe

(

1

c(zk)

)

, D2 =−1

8

m
∑

k=1

αkRe

(

1

c(zk)2

)

.(B.9)

APPENDIX C: PROOF OF EQUATION (4.29)

Our first task is to prove that we have the limit

lim
N→∞

∫

[IcN ]2

∆f1(dNx)

∆x

∆f2(dNx)

∆x
FN (x1, x2)dx1 dx2 = 0,(C.1)

where IcN is the complement of the region IN = [−(1− δN ), (1− δN )], δN =

N−7/12 and we defined FN (x, y) = (x − y)2K2
N (x, y) in terms of the GUE

kernel (4.17). After proving (C.1), we show that δN can be replaced with an
N -independent δ > 0 costing an error term that can be neglected.

Let 0< ε< 1 and consider the following three subsets of R2:

R1 = {(x1, x2) ∈R
2|(|x1|< ε)∧ (x2 > (1 + δN ))},

R2 = {(x1, x2) ∈R
2|(|x1|< ε)∧ (1− δN <x2 < 1 + δN )},

R3 = {(x1, x2) ∈R
2|(x1 > ε) ∧ (x2 > ε)}.

It is sufficient to consider only these regions, because together with their

reflections in the x1 and x2 axes, they cover the entire region [IcN ]2. In the
following, we will prove that the contribution from each of these regions to
the integral (C.1) tends to zero as N →∞. Finally, we complete the proof
of equation (4.19) by showing that the difference between the integral (C.1)
over [IcN ]2 and [Icδ ]

2 converges as N →∞ to a function that is O(δ) as δ→ 0.
We start with the contribution of the region R3 to the integral (C.1). Using

the Schwartz property of f1, f2 and the inequality K2
N (x1, x2)

≤N2ρN (x1)ρN (x2), we have for any γ > 0
∣

∣

∣

∣

∣

∫ ∞

ε

∫ ∞

ε
∆f1(dNx)∆f2(dNx)K

2
N (x1, x2)dx1 dx2

∣

∣

∣

∣

∣

(C.2)

≤N2(2εdN )−2γ

(
∫ ∞

ε
ρN (x1)dx1

)(
∫ ∞

ε
ρN (x2)dx2

)

(C.3)
=O(N2d−∞

N ),

where we used the inequality |∆gj(dNx)| ≤ |gj(dNx1) + gj(dNx2)| ≤
d−γ
N (|x1|−γ + |x2|−γ)≤ 2d−γ

N (ε−γ). We conclude that the integral (4.16) re-

stricted to the region R3 is of order O(N−∞) as N →∞.
Now let us consider the edge region R2. We will make use of the following

lemma from [43], which states
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Lemma C.1 (Theorem 5.2.3(ii) [43]). Let ρN (x) denote the normalized
density of states, as in (4.7). The bound

ρN (1 + sN−2/3)≤ (BN1/3s)−1e−bs3/2(C.4)

holds for N large enough. Here, B and b are absolute constants and s→∞
as N →∞.

Using this result and again the bound KN (x1, x2)
2 ≤ N2ρN (x1)ρN (x2),

we see that the contribution to the integral (C.1) from the region R2 is
bounded by

N2

∫ ∞

−∞

∫ ∞

(1+δN )
|∆f1(dNx)||∆f2(dNx)|ρN (x1)ρN (x2)dx1 dx2

=CδNN
2

∫ ∞

−∞

∫ ∞

1
ρN (1 + x1δN )ρN (x2)dx1 dx2

(C.5)

≤CBN

∫ ∞

−∞

∫ ∞

1
x−1
1 e−bx

3/2
1 N1/8

ρN (x2)dx1 dx2 =O(N−∞),

N →∞,

where we used that f1, f2 are uniformly bounded on R
2.

For the region R1, we need a bound for the absolute value of the functions

ψ
(N)
l (x).

Lemma C.2 (Szegö, Section 10.8 [51]). Let ψ
(N)
l (x) denote the orthonor-

mal functions defined in (4.18). Then the following bound holds uniformly
in l as N →∞:

sup
u∈R

|ψ(N)
l (u)|=O(N1/4).(C.6)

First, consider the contribution from the product of squares, that is, that

of ψ
(N)
N (x1)

2ψ
(N)
N−1(x2)

2 in FN (x1, x2). Since in the region R1 we have x1 6=
x2, the bound |∆fj(dNx)/∆x| ≤ C, j = 1,2 holds for some N -independent

C > 0. Then the contribution coming from ψ
(N)
N (x1)

2ψ
(N)
N−1(x2)

2 is bounded
by

C

∫ (1+δN )

(1−δN )

∫ ε

−ε
ψ
(N)
N (x1)

2ψ
(N)
N−1(x2)

2 dx1 dx2(C.7)

≤C

∫ (1+δN )

(1−δN )

∫ ∞

−∞
ψ
(N)
N (x1)

2 sup
u∈R

|ψ(N)
N−1(u)|

2 dx1 dx2 ≤C ′N−1/12,(C.8)
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where C ′ > 0 is another constant independent of N . A similar calcula-

tion shows that the contribution from the mixed term ψ
(N)
N (x1)ψ

(N)
N−1(x1)×

ψ
(N)
N (x2)ψ

(N)
N−1(x2) is also O(N−1/12) as N →∞. We conclude that the con-

tribution of the region R1 is O(N−1/12) as N →∞. Finally, a completely
analogous calculation shows that the contribution to (4.16) coming from all
reflections of the regions R1, R2 and R3 in the x1 and x2 axes satisfy the
same corresponding asymptotic estimates as N →∞ and, therefore, may be
neglected. Equation (C.1) is proven.

To complete the argument, we need to show that the difference between
the integral (4.16) over I2N and the same integral over Iδ = [−(1−δ), (1−δ)]2
for some N -independent δ > 0, can be neglected in the limit N →∞. It will
be sufficient to consider only the thin strip |x1| < ε and (1 − δ) < x2 <
(1− δN ), because the remaining parts of IcN \ Iδ are either reflections of this
region or are subsets of the region R1 treated earlier. Thus, we just have to
estimate the integral

∫ (1−δN )

(1−δ)

∫ ε

−ε

∆f1(dNx)

∆x

∆f2(dNx)

∆x
FN (x1, x2)dx1 dx2.(C.9)

According to the first Plancherel–Rotach formula of Corollary 5.1.5 in [43],
we have the bound FN (x1, x2) = (1− x21)

−1/2(4− x22)
−1/2O(1) uniformly as

N →∞. Therefore, since x1 6= x2 in (C.9) and f1, f2 are uniformly bounded,
we see that (C.9) is bounded in absolute value by

C

∣

∣

∣

∣

∫ (1−δN )

(1−δ)

∫ ε

−ε
(1− x21)

−1/2(1− x22)
−1/2 dx1 dx2

∣

∣

∣

∣

(C.10)

≤C|(cos−1(1− δN )− cos−1(1− δ))| →C|cos−1(1− δ)|,
(C.11)

N →∞,

where C > 0 is some N -independent constant. Hence, by choosing δ > 0
sufficiently small, we can ensure that the integral over this strip is as small
as we desire. This proves equation (4.29).

Acknowledgements. We would like to thank Paul Bourgade, Arno Kui-
jlaars and Leonid Pastur for insightful discussions and correspondence relat-
ing to our results, Philippe Sosoe and Percy Wong for sharing their preprint
[50] with us and Jérémie Unterberger for bringing the paper [52] to our
attention. We are particularly grateful to Igor Krasovsky for informative
discussions about the Riemann–Hilbert problem, and also to anonymous
referees for their helpful suggestions and constructive critique of the first
version of the paper. The second author thanks the Isaac Newton Institute,
Cambridge, UK, for its support and hospitality during the semester Periodic
and Ergodic Spectral Problems.



52 Y. V. FYODOROV, B. A. KHORUZHENKO AND N. J. SIMM

REFERENCES

[1] Anderson, G. W., Guionnet, A. and Zeitouni, O. (2010). An Introduction to
Random Matrices. Cambridge Studies in Advanced Mathematics 118. Cambridge
Univ. Press, Cambridge. MR2760897

[2] Astala, K., Jones, P., Kupiainen, A. and Saksman, E. (2011). Random conformal
weldings. Acta Math. 207 203–254. MR2892610

[3] Bacry, E. and Muzy, J. F. (2003). Log-infinitely divisible multifractal processes.
Comm. Math. Phys. 236 449–475. MR2021198

[4] Barral, J. and Mandelbrot, B. B. (2004). Non-degeneracy, moments, dimension,
and multifractal analysis for random multiplicative measures (Random mul-
tiplicative multifractal measures. II). In Fractal Geometry and Applications: A
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