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ARTICLE

Whole-Genome Sequencing Coupled to Imputation
Discovers Genetic Signals for Anthropometric Traits

Ioanna Tachmazidou,1 Dániel Süveges,1 Josine L. Min,2 Graham R.S. Ritchie,1,3,4 Julia Steinberg,1

Klaudia Walter,1 Valentina Iotchkova,1,5 Jeremy Schwartzentruber,1 Jie Huang,6 Yasin Memari,1

Shane McCarthy,1 Andrew A. Crawford,2,7 Cristina Bombieri,8 Massimiliano Cocca,9

Aliki-Eleni Farmaki,10 Tom R. Gaunt,2 Pekka Jousilahti,11 Marjolein N. Kooijman,12,13,14

Benjamin Lehne,15 Giovanni Malerba,8 Satu Männistö,11 Angela Matchan,1

Carolina Medina-Gomez,13,16 Sarah J. Metrustry,17 Abhishek Nag,17 Ioanna Ntalla,18

Lavinia Paternoster,2 Nigel W. Rayner,1,19,20 Cinzia Sala,21 William R. Scott,15,22 Hashem A. Shihab,2

Lorraine Southam,1,19 Beate St Pourcain,2,23 Michela Traglia,21 Katerina Trajanoska,13,16

(Author list continued on next page)

Deep sequence-based imputation can enhance the discovery power of genome-wide association studies by assessing previously unex-

plored variation across the common- and low-frequency spectra. We applied a hybrid whole-genome sequencing (WGS) and deep impu-

tation approach to examine the broader allelic architecture of 12 anthropometric traits associated with height, body mass, and fat

distribution in up to 267,616 individuals. We report 106 genome-wide significant signals that have not been previously identified,

including 9 low-frequency variants pointing to functional candidates. Of the 106 signals, 6 are in genomic regions that have not

been implicated with related traits before, 28 are independent signals at previously reported regions, and 72 represent previously

reported signals for a different anthropometric trait. 71% of signals reside within genes and fine mapping resolves 23 signals to one

or two likely causal variants. We confirm genetic overlap between human monogenic and polygenic anthropometric traits and find

signal enrichment in cis expressionQTLs in relevant tissues. Our results highlight the potential ofWGS strategies to enhance biologically

relevant discoveries across the frequency spectrum.
Introduction

The escalating global epidemic of overweight and obesity

can be ascribed to a complex interplay between environ-

mental and genetic factors. Body size, shape, and composi-

tion are anthropometric measures correlated with obesity

and patterns of fat deposition and are associated with

important metabolic health outcomes.1–3 Large-scale

genome-wide association studies (GWASs) for body mass

index (BMI), waist to hip ratio, and height have to date

focused on the role of common-frequency variants and

have unveiled numerous associations that explain a

modest proportion of trait variance;4–6 the role of low-fre-
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quency variants has not been systematically explored

across the entire genome.

The application of whole-genome sequencing (WGS) at

a population scale and generation of high performance

imputation reference panels allows GWASs to systemati-

cally evaluate variation across the low- and common-

frequency minor allele frequency (MAF) spectra. Here, we

assessed the contribution of 15,844,966 sequence variants

to 12 anthropometric traits of medical relevance using

a hybrid approach of cohort-wide low-depth WGS7 and

imputation based on a sequence-based reference panel

comprising 9,746 haplotypes8 in a discovery set of

57,129 individuals (stage 1, Table S1). We followed up
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suggestive association signals at p % 10�5 in 210,823

individuals (stage 2, Table S1) of European descent and

identify 106 previously unreported signals for anthropo-

metric traits.
Material and Methods

Sequence Data Production
Low-read depth (�73) WGS was performed in two UK cohorts,

the St Thomas’ Twin Registry9 (TwinsUK; n ¼ 1,990) and the

Avon Longitudinal Study of Parents and Children10 (ALSPAC;

n ¼ 2,040) as part of the UK10K project.7 Methods for the gener-

ation of these data are described in detail in Walter et al.7 and

Huang et al.8 In brief, low-coverage WGS was performed at both

the Wellcome Trust Sanger Institute and the Beijing Genomics

Institute. Sequencing reads that failed QC were removed and the

rest were aligned to the GRCh37 human reference. Further pro-
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cessing to improve SNP and INDEL calling included realignment

around known indels, base quality score recalibration, addition

of BAQ tags, merging, and duplicate marking using GATK, Picard,

and samtools. SNPs and indels were called using samtools/bcftools

by pooling the alignments from 3,910 individual low-coverage

BAM files. All-samples and all-sites genotype likelihood files (bcf)

were created with samtools mpileup. Variants were then called

using bcftools to produce a VCF file.

After post-calling filtering, variant quality score recalibration

(VQSR) filtering was used to filter sites. VQSLOD scores are cali-

brated by the number of truth sites retained when sites with a

VQSLOD score below a given threshold are filtered out. For SNPs

and INDELs, a truth sensitivity of 99.5% and 97% was selected,

respectively. Sites that did not fail a number of further filters

(DP, MQ, AC, AN, LowQual, MinVQSLOD, BaseQRankSum, Dels,

FS, HRun, HaplotypeScore, InbreedingCoeff, MQ0, MQRankSum,

QD, ReadPosRankSum) were marked as PASS and brought forward

to the genotype refinement stage.
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Low-quality samples were identified by comparing the samples

to their GWAS genotypes using �20,000 sites on chromosome

20. Comparing the raw genotype calls to existing GWAS data, a to-

tal of 112 samples were removed for one or more of the following

causes: (1) high overall discordance to SNP array data, (2) hetero-

zygosity rate > 3 standard deviations (SD) from population

mean, (3) no SNP array data available for that sample, or (4) sam-

ple below 43mean coverage. Overall, 3,798 samples were brought

forward to the genotype refinement step.

Missing and low-confidence genotypes in the filtered VCFs were

filtered out through an imputation procedure with BEAGLE. Addi-

tional sample-level QC steps were carried out on refined geno-

types, leading to the exclusion of additional 17 samples for one

or more of the following causes: (1) non-reference discordance

with GWAS SNP data > 5%, (2) contamination identified by mul-

tiple relations (>25 to other samples with IBS> 0.125), or (3) failed

sex check. A final set of 3,781 samples (1,854 TwinsUK and 1,927

ALSPAC) in VCF files were submitted to the European Genome-

phenome Archive (EGA).
Cohort Descriptions
We consider 12 anthropometric traits: BMI, weight, height, waist

circumference, hip circumference, waist to hip ratio, total fat

mass, total lean mass, and trunk fat mass. Waist circumference,

hip circumference, and waist to hip ratio were also adjusted for

BMI. Our discovery stage consisted of 3WGS and 20GWAS datasets

genotyped on a variety of genotyping platforms (Table S2,

Figure S1). The WGS sets are from two UK cohorts, TwinsUK9

(EGAS00001000108) and ALSPAC10 (EGAS00001000090) as part

of the UK10K project,7 and from a Finnish cohort.11 Each of the

20 GWAS datasets was imputed on the combined UK10K and

1000 Genomes Project imputation panel (EGAS00001000713),

comprised of 4,873 WGSed individuals.8 The imputation of GWAS

data was conducted as follows. Raw data were obtained genome-

wide from each individual study, having undergone study-specific

quality control. The data were prephased with SHAPEIT v.2 and

the phased genotypes were then imputed to the combined UK10K

and 1000Genomes Project haplotype reference panel.8 Imputation

was carried out with IMPUTE v.2 with standard settings.12 In total,

GWAS data contributed up to 52,339 individuals of European

ancestry (UK, Italy, Greece, Germany, the Netherlands) (Tables S1

and S2). Therefore, our discovery phase included up to 57,129 indi-

viduals from23 cohorts of European origin.We followed up the top

signals de novo and in silico. Follow-up through de novo genotyp-

ing was sought in up to 37,851 UK13 and Danish samples14 using

Sequenom genotyping (Supplemental Data). In silico follow-up

was sought in up to 175,318 Europeans, the majority of whom

were imputed on the combined UK10K and 1000 Genomes Project

panel (Figure S1; Table S2). Descriptions of each of the cohorts are

given in the Supplemental Data.
Datasets Used for mQTL and eQTL Analyses
ARIES Data

The Accessible Resource for Integrative Epigenomic Studies

(ARIES) dataset represents genome-wide DNA methylation levels

on ALSPAC samples selected from 1,018 mother-child pairs at

three time points in children and two time points in their mothers

from cord blood drawn from the umbilical cord upon delivery or

peripheral blood15 using different cell types. The DNA methyl-

ation data were corrected for cellular heterogeneity (Supplemental

Data).
The Ame
MuTHER-ALSPAC Data

TheUK10KMuTHER-ALSPACgene expressiondataset is comprised

of the subset ofUK10K individualswithmicroarray expressionpro-

files available from the TwinsUK MuTHER study16 and ALSPAC

expression study.17 Complete details can be found in Grundberg

et al.16 and Bryois et al.17 Both datasets were profiled on the same

Illumina HT12v3 array in the same facility within the same year.

Expression data were available for 823 lymphoblastoid cell lines

(LCL) (394 TwinsUK/MuTHER and 429 ALSPAC) and 2 primary

tissues in MuTHER/TwinsUK only (391 subcutaneous fat and 367

skin). All individuals were unrelated.
Phenotype Preparation Protocol
A standardized protocol for preparation of phenotypes was applied

to each cohort, as follows. Female and male participants were

divided into separate groups and transformations were under-

taken in a sex-specific manner. Outliers greater than 5 SD were

manually checked for data entry errors. Outliers greater than 3,

4, or 5 SD (depending on trait and cohort) from the mean were

removed and raw phenotypes were then transformed to obtain a

normal distribution using an inverse normal transformation. Sub-

sequently, the transformed traits were regressed on covariates and

the resulting residuals were standardized to have amean of 0 and a

SD of 1. Females and males were standardized separately before

being combined. Covariates (age and age2) were fitted as fixed ef-

fects. The DXA traits were further adjusted for height, whereas

waist circumference, hip circumference, and waist to hip ratio

were also adjusted for BMI. Analyses of all anthropometric traits

in GoT2D were performed with similar methodology to previous

publications by the GIANT Consortium. Within each study,

height was first adjusted for age and sex, as well as relevant

study-specific covariates such as principal components in a linear

regression model, and residuals were standardized. Similarly, all

obesity measures (waist circumference, hip circumference, and

waist to hip ratio) were adjusted for age, age2, sex, and study-spe-

cific covariates in linear regression, and the residuals were inverse

normalized. Information on trait measurements and units is sum-

marized in Table S2.
Single-Variant Tests
Assuming an additive genetic model, we used the likelihood ratio

test within a linear regression framework to model relationships

between standardized traits, residualized for relevant covariates,

and genetic variants. To account for the genotype uncertainty

that might arise from sequencing and imputation, we used geno-

type dosages, where each genotype was expressed on a quantita-

tive scale between [0:2] (using in SNPTEST18 the function -method

expected). Cohorts that contained related samples were analyzed

using GEMMA19 or EMMAX,20 standard linear mixed models

that control for family and cryptic relatedness (Table S2). Only

variants with MAF R 0.1%, minor allele count (MAC) R 4, impu-

tation quality score R 0.4 (Figure S2), and Hardy-Weinberg equi-

librium (HWE) p R 10�6 were analyzed.
Meta-analysis Strategy
Summary statistics from individual studies (filtered for HWE,

imputation quality score, MAC, and MAF) were combined

using fixed-effect inverse variance meta-analysis implemented

in METAL21 software package. We discarded any variants whose

signal was from a single cohort and also any variants that were

not successfully analyzed in any of the four ALSPAC and TwinsUK
rican Journal of Human Genetics 100, 865–884, June 1, 2017 867



Table 1. Genome-wide Significant Associations at Newly Identified Loci

SNP Trait Chr:position
Nearest
Gene

Effect/Other
Allele

Stage 1

Frequency
(Effect
Allele) Beta (SE) p Value n I2 Phet

Low-Frequency or Rare

rs202238847 height 3: 49,263,637 CCDC36 C/CT 0.021 0.1091 (0.0233) 2.83 3 10�6 51,309 26.8 0.132

Common

rs1264622 height 6: 30,256,936 HLA-L/HCG17/
HCG18

T/C 0.190 0.0455 (0.0087) 1.76 3 10�7 50,372 13.0 0.296

rs11042397 hip 11: 9,524,255 ZNF143 T/C 0.056 0.0763 (0.0150) 3.56 3 10�7 45,588 2.3 0.429

rs13213884 height 6: 141,665,522 RP11-63E9.1 T/C 0.247 0.0419 (0.0074) 1.57 3 10�8 51,309 49.5 0.007

rs12424892 height 12: 132,623,389 DDX51 C/G 0.153 0.0457 (0.0095) 1.60 3 10�6 44,180 0.0 0.907

rs35863206 height 11: 101,055,183 RP11-788M5.4 C/CAG 0.222 �0.0384 (0.0082) 2.77 3 10�6 45,588 21.8 0.190

SNP positions are reported according to build 37 and their alleles are coded based on the positive strand. The reported gene is the closest in physical distance.
Association p values are based on the inverse-variance weighted meta-analysis model (fixed effects). Effect sizes are measured in standard deviation units. Abbre-
viations are as follows: BMI, body mass index; SNP, single-nucleotide polymorphism; Beta, effect size; SE, standard error; n, sample size; I2, measure of hetero-
geneity (based on Cochran’s Q-test for heterogeneity) that indicates the percentage of variance in a meta-analysis that is attributable to study heterogeneity;
Phet, p value assessing evidence of heterogeneity as reported by METAL.
cohorts. None of the traits showed evidence of inflation due to

population stratification (genomic control inflation factors esti-

mated close 1; Figures S3–S14). The variance explained by each

SNP was calculated using the weighted effect allele frequency (f)

and beta (b) from the overall meta-analysis using the formula b2

(1 � f)2f.

Clumping of Single Point Summary Statistics
We next applied a clumping procedure to represent each signal

from the association analysis as a clump of correlated variants.

This is achieved by assigning sets of variants to discrete LD bins

if their pairwise LD is r2 R 0.2 and if they are within 500 kb. For

each LD bin, the variant with the greatest evidence for association

with the trait in question was considered as the representative or

index variant for that locus.

Annotation of Index Variants for Previously

Reported Loci
A list of previously identified, GWAS-significant (p % 5 3 10�8)

anthropometric and obesity signals were collected from the

NHGRI-EBI GWAS catalog22 (accessed 4 March 2015, version

1.0). In addition to the GWAS catalog, our list contained signals

reported in the most recent anthropometric studies published by

the GIANT consortium.4–6 From these results, any signal reaching

genome-wide significance, either in the sex-specific or in sex-com-

bined analyses, was included in our positive control list with

the lowest reported p value. The total fat mass variants that we

regard as ‘‘known’’ are the total fat percentage variants reported

previously23,24 while the total lean mass variants reported in the

literature are for lean body mass.25 During the course of the study,

we updated our positive control list using the GWAS catalog and

by manual curation of all associations reported in the literature

reaching the same genome-wide significance cutoff.

Conditional Analysis
Conditional single-variant association analyses were carried out to

investigate statistical independence between index variants from
868 The American Journal of Human Genetics 100, 865–884, June 1,
the clumping procedure and previously reported variants. Associ-

ations of SNPs with the respective quantitative trait were condi-

tioned on all previously reported variants within 1Mb of the index

variant. The conditional analysis was performed independently

for each discovery phase cohort for which we had access to the

raw genotypes (17 out of a total 23 cohorts) and a meta-analysis

was conducted. A variant was considered independent if it had

a conditional p value % 10�5 or a p value difference between

conditional and unconditional analysis of less than 2 orders of

magnitude. Variants were classified as known (denoting either a

previously reported variant, or a variant for which the association

signal disappears after conditioning on a previously reported lo-

cus) or newly identified (denoting a variant that is conditionally

independent of previously reported loci).

Genome-wide Significance Threshold
We consider p% 53 10�8 as genome-wide significant. To account

for testing of multiple phenotypes, we used the biggest cohort

with all phenotypes available (ALSPAC) and the eigenvalues of

the correlation matrix of the 12 anthropometric traits tested26 to

calculate the effective number of independent phenotypes as

4.482. This yields a Bonferroni-corrected threshold that controls

the FWER at 5% as 0.05/4.482. We used this threshold, as well as

a 5% false discovery rate (FDR), for enrichment of association

signal in discovery andmonogenic and syndromic disorder-associ-

ated genes.

Fine Mapping
For both newly identified (Tables 1, 2, and S3) and previously re-

ported (those with p % 5 3 10�8 in Table S4) variants, we con-

structed regions for fine mapping, by taking a window of at least

0.1 centimorgans (HapMap estimates following previous sugges-

tions27) either side of the variant. The region was extended to

the furthest variant with r2 > 0.1 with the index variant within

a 1 Mb window. For each region we implemented the Bayesian

fine-mapping method CAVIARBF,28 which uses association sum-

mary statistics and correlations among variants to calculate Bayes’
2017



Stage 2 Stage 1 þ Stage 2

Variance
Explained
(%)

Frequency
(Effect
Allele) Beta (SE) p Value n I2 Phet

Frequency
(Effect
Allele) Beta (SE) p Value n I2 Phet

Low-Frequency or Rare

0.023 0.0908 (0.0129) 2.04 3 10�12 134,797 0.0 1.000 0.022 0.0951 (0.0113) 3.76 3 10�17 186,106 24.3 0.153 0.0787

Common

0.202 0.0257 (0.0047) 4.61 3 10�8 134,797 0.0 1.000 0.199 0.0302 (0.0041) 3.05 3 10�13 185,169 22.9 0.172 0.0291

0.057 0.0386 (0.0082) 2.68 3 10�6 134,797 0.0 1.000 0.056 0.0473 (0.0072) 5.20 3 10�11 180,385 18.3 0.226 0.0238

0.257 0.0176 (0.0043) 4.68 3 10�5 134,797 0.0 1.000 0.254 0.0238 (0.0037) 1.94 3 10�10 186,106 56.2 0.001 0.0215

0.148 0.0241 (0.0053) 5.80 3 10�6 134,797 0.0 1.000 0.149 0.0292 (0.0046) 3.06 3 10�10 178,977 0.0 0.731 0.0216

0.224 �0.0185 (0.0046) 5.17 3 10�5 134,797 0.0 1.000 0.224 �0.0232 (0.004) 5.91 3 10�9 180,385 31.0 0.093 0.0187
factors and posterior probabilities of each variant being causal. We

assumed a single causal variant in each region and calculated 95%

credible sets.

To inform the prediction of causal variants using functional pre-

diction information, we also applied a fine-mapping method that

assigns a relative ‘‘probability of regulatory function’’ (PRF) score

among candidate causal variants, reweighting association statistics

based on epigenomic annotations. In brief, we collected a set of

70 genomic and epigenomic annotations, primarily Gencode

(v.19) gene annotations, FANTOM transcription start sites and

enhancers,29,30 Roadmap Epigenomics histone marks, DNase

hypersensitivity, and ChromHMM genome segmentations for the

lymphoblastoid cell line epigenome (GM12878).31,32 We used

fgwas33 to train a Bayesian hierarchical model to compute enrich-

ment of eQTLs in these annotations based on summary statistics

from the Geuvadis RNA-sequencing project.34 We used forward

stepwise selection followed by cross-validation to arrive at a com-

bined model with 37 annotations and their associated enrich-

ments. The respective annotations from119 Roadmap epigenomes

were used to compute PRF scores for each GWAS variant in each of

the 119 epigenomes. At each locus we selected the top four epige-

nomes based on the maximum regulatory score among variants

in the 95% credible set and examined the regulatory annotations

for variants in the credible set (Table S5, Figure S15). We also pro-

duced Genomic Evolutionary Rate Profiling (GERP) scores35,36 as

a measure of cross-species conservation of the sequences around

each identified association (Figure S16).

Genetic Correlation
To investigate the genetic correlation between the 12 anthropo-

metric traits studied here, we ran the LD Score37 method that

uses genome-wide summary statistics (independent of p value

thresholds) and LD estimates between variants while accounting

for sample overlap. We used summary statistics from our discov-

ery phase and LD Score restricts analyses to common variants

to avoid biases due to inherent model assumptions (Figure 1,

Table S6).
The Ame
Enrichment of Association Signal
To evaluate enrichment of association signal in the meta-analysis,

we used the binomial test to determine whether the observed

number of variants with p value % 10�5 is higher than expected

by chance. We performed this test on all independent variants

(r2 < 0.2) present in the meta-analysis results and also after

excluding any previously identified variants (stringently defined

as all variants within 1 Mb window centered around previously re-

ported variants) (Figure S17).We also tested for enrichment within

different MAF categories (0.1% % MAF % 1%, 1% < MAF % 5%,

and MAF > 5%) (Figure S18).

To identify approximately independent variants, we used a

greedy selection strategy that processed variants sorted by their as-

sociation p value.We first retained the variant with the greatest ev-

idence of association and then filtered out any other variants

linked to it at an r2 threshold of 0.2 (calculated from the combined

ALSPAC and TwinsUK WGS data using the PLINK software38) and

then retained the next most strongly associated variant that has

not yet been filtered and repeat this process until there are no

further unfiltered variants remaining.
Enrichment of Association Signal in Monogenic and

Syndromic Genes Associated with Obesity, Height, and

Lipodystrophy
We examined whether the meta-analysis association signals clus-

ter near biologically relevant genes, specifically (1) genes mutated

in human syndromes characterized by abnormal skeletal growth,

(2) genes whose mutations lead to known human obesity-associ-

ated genetic disorders and syndromes, and (3) Mendelian lipodys-

trophy-associated genes. To this end, we used 241 abnormal

skeletal/growth-associated genes identified by Lango Allen

et al.39 (see Lango Allen’s Table S10) and 32 obesity-associated

genes (separated into 6 monogenic and 26 syndromic genes, i.e.,

obesity with developmental delay or dysmorphology) identified

via the OMIM database using the keywords obesity, growth, size,

and adipose tissue. The results were manually curated to identify
rican Journal of Human Genetics 100, 865–884, June 1, 2017 869



Table 2. Genome-wide Significant Independent Associations at Established Anthropometric Trait Loci

SNP Trait Chr:position Nearest Gene

Effect/
Other
Allele

Stage 1

Frequency
(Effect
Allele) Beta (SE) p Value n I2 Phet

Low-Frequency or Rare

rs62621197 height 19: 8,670,147 ADAMTS10 T/C 0.038 �0.1356 (0.0202) 2.13 3 10�11 47,739 0.0 0.657

rs62107261 BMI 2: 422,144 AC105393.2 C/T 0.049 �0.0712 (0.0169) 2.57 3 10�5 47,476 29.7 0.094

rs114976626 height 19: 56,001,665 SSC5D T/C 0.029 �0.1109 (0.0218) 3.87 3 10�7 44,180 0.0 0.691

rs183677281 height 1: 218,537,632 TGFB2 C/T 0.031 0.0993 (0.0225) 9.78 3 10�6 44,639 0.0 0.937

rs62038850 height 16: 2,262,987 PGP A/G 0.023 0.1046 (0.0234) 7.48 3 10�6 51,309 8.6 0.349

rs142854193 height 7: 33,045,510 FKBP9 T/C 0.025 0.1058 (0.0232) 5.24 3 10�6 51,309 0.0 0.720

Common

rs61734601 height 11: 67,184,725 PPP1CA/CARNS1 A/G 0.077 �0.0877 (0.0138) 1.96 3 10�10 45,588 14.1 0.282

rs41271299 height 6: 19,839,415 ID4 T/C 0.054 0.1322 (0.0157) 4.25 3 10�17 51,309 51.1 0.005

rs72755233 height 15: 100,692,953 ADAMTS17 A/G 0.112 �0.082 (0.0117) 2.10 3 10�12 44,180 0.0 0.679

rs73175572 height 3: 185,490,184 IGF2BP2 G/A 0.125 0.0783 (0.0104) 5.62 3 10�14 45,588 31.5 0.094

rs6930571 height 6: 32,383,208 BTNL2 T/G 0.166 0.0561 (0.010) 2.03 3 10�8 42,873 0.0 0.787

rs3888183 height 10: 121,604,702 MCMBP T/C 0.120 �0.0549 (0.0104) 1.50 3 10�7 45,588 0.0 0.898

rs35279483 height 12: 23,996,141 SOX5 C/CA 0.401 �0.0313 (0.007) 6.71 3 10�6 45,588 0.0 0.717

rs2003476 BMI 19: 18,806,668 CRTC1 C/T 0.400 �0.0341 (0.007) 1.12 3 10�6 45,341 7.3 0.366

rs4360494 height 1: 38,455,891 SF3A3 G/C 0.454 0.033 (0.0069) 1.78 3 10�6 45,588 15.5 0.265

rs78281959 height 7: 148,772,669 ZNF786 T/C 0.065 0.0587 (0.0131) 7.55 3 10�6 51,309 10.3 0.327

rs62065847 waist 17: 46,593,125 HOXB1 C/T 0.487 �0.0299 (0.0067) 8.15 3 10�6 45,996 0.0 0.523

rs13059073 height 3: 55,491,810 WNT5A C/T 0.453 0.0288 (0.0064) 6.82 3 10�6 51,309 0.0 0.982

rs4303473 height 16: 84,901,475 CRISPLD2 C/G 0.388 0.032 (0.0066) 1.23 3 10�6 51,309 0.0 0.855

rs16888802 height 4: 13,537,668 LINC01097 G/T 0.1787 0.0433 (0.0086) 4.57 3 10�7 51,309 24.9 0.151

rs56130800 waist 11: 43,729,853 RP11-472I20.4/ HSD17B12 A/G 0.318 0.0367 (0.0073) 4.16 3 10�7 44,742 0.0 1.000

rs2122823 WHR 7: 25,939,161 CTD-2227E11.1 T/C 0.209 0.0465 (0.0099) 2.66 3 10�6 32,507 0.0 0.789

rs1848053 height 15: 48,947,962 RP11-227D13.1 G/A 0.248 �0.0385 (0.0075) 3.16 3 10�7 51,309 0.0 0.933

rs12591979 height 15: 89,309,892 RP11-343B18.2 C/G 0.162 �0.0416 (0.0094) 9.22 3 10�6 45,588 0.0 0.889

rs57158761 height 3: 185,371,172 IGF2BP2 G/A 0.445 �0.0301 (0.0068) 9.73 3 10�6 45,588 0.0 0.857

rs765876 BMI 6: 143,185,891 HIVEP2 G/A 0.476 �0.0297 (0.0069) 1.52 3 10�5 44,092 33.1 0.086

rs2808290 height 10: 27,900,882 PPP1CA/CARNS1 T/C 0.499 0.0308 (0.0064) 1.58 3 10�6 51,309 12.7 0.296

rs116878242 height 17: 70,002,330 ID4 A/G 0.071 0.0688 (0.0126) 4.34 3 10�8 51,309 0.0 0.733

SNP positions are reported according to build 37 and their alleles are coded based on the positive strand. The reported gene is the closest in physical distance.
Association p values are based on the inverse-variance weighted meta-analysis model (fixed effects). Effect sizes are measured in standard deviation units. Abbre-
viations are as follows: BMI, body mass index; SNP, single-nucleotide polymorphism; Beta, effect size; SE, standard error; n, sample size; I2, measure of hetero-
geneity (based on Cochran’s Q-test for heterogeneity) that indicates the percentage of variance in a meta-analysis that is attributable to study heterogeneity;
Phet, p value assessing evidence of heterogeneity as reported by METAL.
32 genes whose variation directly leads to human obesity (Table

S7) and 15 OMIM genes with lipodystrophy morbidity (Table S8).

We then used GREAT40 to test whether variants with p value %

10�5 are more likely to overlap with these sets of pre-defined

genomic regions than we would expect by chance. We defined

the ‘‘regulatory domain’’ of all protein-coding genes annotated

in Ensembl release 7441 using the GREAT ‘‘basal plus extension’’
870 The American Journal of Human Genetics 100, 865–884, June 1,
strategy: each gene is assigned a basal domain 5 kb upstream

and 1 kb downstream of the gene’s transcription start site. This

domain is then extended in both directions to the nearest gene’s

basal domain but no more than 1 Mb in either direction. We

counted the number of independent variants at the relevant

p value and MAF thresholds overlapping any of the regulatory

domains in each set of monogenic disorder-associated genes. If a
2017



Stage 2 Stage 1 þ Stage 2

Variance
Explained
(%)

Frequency
(Effect
Allele) Beta (SE) p Value n I2 Phet

Frequency
(Effect
Allele) Beta (SE) p Value n I2 Phet

Low-Frequency or Rare

0.042 �0.1398 (0.0086) 1.87 3 10�59 204,461 0.0 0.529 0.042 �0.1392 (0.0079) 3.22 3 10�69 252,200 0.0 0.738 0.1542

0.047 �0.0763 (0.0076) 9.32 3 10�24 208,397 0.0 0.461 0.047 �0.0754 (0.0069) 1.27 3 10�27 255,873 22.6 0.146 0.0510

0.026 �0.0915 (0.0119) 1.73 3 10�14 134,797 0.0 1.000 0.027 �0.096 (0.0105) 5.00 3 10�20 178,977 0.0 0.712 0.0479

0.026 0.0618 (0.0126) 9.80 3 10�7 134,797 0.0 1.000 0.027 0.0708 (0.011) 1.24 3 10�10 179,436 0.0 0.885 0.0261

0.025 0.0605 (0.0127) 1.84 3 10�6 122,318 0.0 1.000 0.024 0.0706 (0.0112) 2.45 3 10�10 173,627 15.0 0.264 0.0237

0.022 0.06 (0.0138) 1.36 3 10�5 134,797 0.0 1.000 0.023 0.0719 (0.0119) 1.31 3 10�9 186,106 0.0 0.593 0.0227

Common

0.083 �0.1177 (0.0057) 1.19 3 10�93 204,253 47.6 0.106 0.082 �0.1133 (0.0053) 1.38 3 10�101 249,841 29.5 0.088 0.1933

0.056 0.1209 (0.0077) 3.86 3 10�56 175,844 0.0 0.502 0.055 0.1231 (0.0069) 1.90 3 10�71 227,153 44.8 0.010 0.1583

0.112 �0.0842 (0.006) 3.16 3 10�45 134,635 0.0 1.000 0.112 �0.0837 (0.0053) 5.42 3 10�56 178,815 0.0 0.740 0.1394

0.112 0.0626 (0.0061) 8.09 3 10�25 134,797 0.0 1.000 0.115 0.0666 (0.0053) 8.27 3 10�37 180,385 32.1 0.084 0.0903

0.182 0.0336 (0.0049) 6.61 3 10�12 134,462 0.0 1.000 0.179 0.0379 (0.0044) 6.01 3 10�18 177,335 0.0 0.563 0.0422

0.118 �0.0337 (0.0059) 8.86 3 10�9 134,797 0.0 1.000 0.118 �0.0388 (0.0051) 3.29 3 10�14 180,385 0.0 0.782 0.0314

0.402 �0.0232 (0.0039) 1.83 3 10�9 134,797 0.0 1.000 0.402 �0.0251 (0.0034) 1.00 3 10�13 180,385 0.0 0.707 0.0303

0.406 �0.0218 (0.0039) 3.31 3 10�8 134,509 0.0 1.000 0.404 �0.0248 (0.0034) 5.89 3 10�13 179,850 12.7 0.296 0.0296

0.445 0.021 (0.0038) 3.23 3 10�8 134,797 0.0 1.000 0.447 0.0238 (0.0033) 8.98 3 10�13 180,385 19.6 0.211 0.0280

0.062 0.0439 (0.0079) 2.77 3 10�8 134,797 0.0 1.000 0.063 0.0478 (0.0068) 1.56 3 10�12 186,106 9.6 0.334 0.0268

0.485 �0.0197 (0.0039) 3.23 3 10�7 134,798 0.0 1.000 0.486 �0.0222 (0.0033) 2.86 3 10�11 180,794 0.0 0.474 0.0246

0.456 0.0192 (0.0038) 4.52 3 10�7 134,797 0.0 1.000 0.455 0.0217 (0.0033) 3.23 3 10�11 186,106 0.0 0.967 0.0234

0.377 0.0188 (0.0039) 1.60 3 10�6 134,797 0.0 1.000 0.380 0.0222 (0.0034) 4.08 3 10�11 186,106 0.0 0.739 0.0232

0.175 0.0231 (0.005) 3.19 3 10�6 134,615 0.0 1.000 0.176 0.0282 (0.0043) 5.49 3 10�11 185,924 32 0.0796 0.0231

0.317 0.0191 (0.0041) 4.08 3 10�6 134,798 0.0 1.000 0.317 0.0234 (0.0036) 7.52 3 10�11 179,540 0.0 0.976 0.0237

0.211 0.0234 (0.0048) 9.97 3 10�7 134,795 0.0 1.000 0.211 0.0278 (0.0043) 1.14 3 10�10 167,302 0.0 0.523 0.0257

0.248 �0.0194 (0.0044) 1.24 3 10�5 134,797 0.0 1.000 0.248 �0.0243 (0.0038) 2.00 3 10�10 186,106 0.0 0.747 0.0220

0.165 �0.0236 (0.0052) 4.86 3 10�6 134,797 0.0 1.000 0.164 �0.0278 (0.0045) 8.06 3 10�10 180,385 0.0 0.788 0.0212

0.435 �0.0174 (0.0038) 5.20 3 10�6 134,797 0.0 1.000 0.437 �0.0205 (0.0033) 8.35 3 10�10 180,385 0.0 0.756 0.0207

0.491 �0.0177 (0.0039) 4.56 3 10�6 134,509 0.0 1.000 0.488 �0.0206 (0.0034) 9.64 3 10�10 178,601 35.1 0.066 0.0212

0.503 0.016 (0.0038) 2.63 3 10�5 134,797 0.0 1.000 0.502 0.0198 (0.0033) 1.34 3 10�9 186,106 22.3 0.175 0.0196

0.077 0.0224 (0.0067) 7.84 3 10�4 167,024 0.0 0.616 0.075 0.0326 (0.0059) 3.14 3 10�8 218,333 16.9 0.233 0.0148
variant overlapped more than one domain, it was counted only

once. To establishwhether there is a greater than expected number

of variants overlapping the domains, we computed the proportion

of the genome covered by the regulatory domains of each gene in

the set and used this as the expected proportion of overlapping

variants under the null hypothesis. To compute the proportion

of genome covered by the gene set, we divided the total length

of the regulatory domains of all genes in the set by the total length
The Ame
of the genome, excluding assembly gaps taken from the UCSC

database.42 We then tested whether the observed overlap was

greater than expected using a binomial test. We performed this

test on all independent variants (r2 < 0.2) present in the meta-

analysis results and also after excluding any previously reported

variants (5500 kb) (Figure 2). We also tested for enrichment

within different MAF categories (0.1% % MAF % 1%, 1% < MAF

% 5%, and MAF > 5%) (Figures S19 and S20).
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Figure 1. Heatmap of Pairwise Genetic
Correlation Estimates between Anthro-
pometric Traits
Correlation estimates with their 95% con-
fidence intervals and 5% FDR q values
across all 66 possible pairs are given in
Table S6. Abbreviations are as follows:
BMI, body mass index; WHR, waist
to hip ratio; WaistBMIadj, waist circum-
ference adjusted for BMI; HipBMIadj,
hip circumference adjusted for BMI;
WHRBMIadj, waist to hip ratio adjusted
for BMI; TFM, total fat mass; TLM, total
lean mass; TRFM, trunk fat mass.
mQTL and eQTL Enrichment
Previous studies have suggested links between DNA methylation,

QTLs, and complex traits.43,44 We tested the hypotheses that

methylation and expression quantitative trait loci (mQTLs and

eQTLs) are enriched among anthropometric GWAS signals by

calculating fold enrichment of variants at various significance cut-

offs in the ARIES mQTL resource which comprises cis and trans

mQTLs in blood samples15 and the MuTHER-ALSPAC eQTL

resource16,17 containing cis eQTLs for LCLs, subcutaneous fat,

and skin tissue. We computed enrichments for signals using all

variants and also after excluding previously reported variants

(and variants within 500 kb) using GARFIELD.45 GARFIELD per-

forms greedy pruning of SNPs (LD r2 > 0.1) and then annotates

them based on overlap with the mQTLs. Fold enrichment (FE)

was calculated at various p value cutoffs and assessed by permuta-

tion testing, while matching for MAF, distance to nearest tran-

scription start site (TSS), and number of LD proxies (r2 > 0.8).

FE ¼ (Nat/Nt)/(Na/N), where N is the total number of pruned var-

iants, Na is the total number of annotated variants (from the

pruned set), Nt is the number of variants that pass a p value

threshold T, and Nat is the number of annotated variants at

threshold T. We calculated fold enrichments for traits only when

there were ten or more annotated variants. We used 0.05/30

(2 GWAS annotations*five time points*3 mQTL annotations) as

threshold to determine enrichment significance for mQTLs and

0.05/6 (3 tissues*2 annotations) for eQTLs.

eQTL Analysis
eQTL analysis was performed in the subset of UK10K individuals

with microarray expression profiles available from the TwinsUK
872 The American Journal of Human Genetics 100, 865–884, June 1, 2017
MuTHER study16 and ALSPAC expression

study.17 Analysis was performed with the

program PANAMA, which is based on a

probabilistic model that accounts for

confounding factors within an eQTL anal-

ysis.46 Each probe was tested for associa-

tion with all variants within 250 kb of

the gene inclusive of the gene body

and MAF R 1%. Each anthropometric

trait-associated variant was evaluated for

cis-eQTL effects by identifying associated

cis-probes and performing mutual condi-

tional analysis with the lead cis-eQTL

for the corresponding probe (Table S9).

We consider a GWAS and eQTL signal

coincident (tagging the same underlying
variant) if the eQTL p value of both the lead GWAS variant and

lead eQTL variant is >0.01 when conditioned on the opposite

SNP. In the UK10K expression dataset, �40% of genes with an

eQTL have a secondary independent cis-eQTL. We consider the

GWAS variant an independent secondary eQTL if the p value of

the association between the GWAS variant and expression when

conditioned on the lead eQTL variant still passes the FDR 1%

threshold defined for that probe. FDR thresholds were defined

via permutation at each locus.
mQTL Analysis
mQTL analysis was performed in The Accessible Resource for Inte-

grative Epigenomic Studies (ARIES). Of the 106 anthropometric

trait-associated SNPs, 97 SNPs were genotyped or successfully

imputed and passed QC (MAF > 0.001 and imputation quality

score > 0.4) in ARIES. Association analysis of SNPs with CpG sites

was performed using an additive model (rank-normalized CpG

methylation on SNP allele count) where age (excluding birth),

sex (children only), the top ten ancestry principal components,

bisulfite conversion batch, and estimated white blood cell counts

(using an algorithm based on differential methylation between

cell types)47 were fitted as covariates. We removed probes that

had a SNP at the CpG with a MAF > 0.01 in Europeans from the

1000G project and probes that mapped to multiple locations.48

We inspected the distribution of CpGs for possible effects of

a SNP at the CpG or a SNP in the probe sequence. For significant

CpGs, the lead mQTL SNP (p < 10�7) within 1 Mb of the

GWAS SNP was fitted as covariate to examine whether the

GWAS SNP CpG association coincided with the mQTL association



(Table S10). We defined a mQTL as significant if the conditional

p value > 10�7.
Results

Association Signals

In the discovery stage across 57,129 individuals, we

observe an excess of suggestive association signals at

p % 10�5 (Figures S2–S14, S17, and S18, Tables S4 and

S11). We followed up these in 210,823 individuals (stage

2) of European descent (Figure S1, Tables S1 and S2).

In addition to genome-wide significant association at 187

established signals (Tables S4, S12, and S13, Figure S21),

we report 106 genome-wide significant associations with

no previous association evidence, the majority of which

are associated with human height and all of which individ-

ually have small effects (each explaining < 1% trait vari-

ance) (Tables 1, 2, and S3).

Six signals reside in genomic regions that have not been

implicated with related traits before (there are no estab-

lished positive controls for any of the 12 anthropometric

traits within 500 kb either side of the index variant; Table 1,

Figure S22), and 100 signals represent conditionally inde-

pendent associated variants at previously reported loci

(Tables 2 and S3, Figure S23). Of these 100 signals, 28 are

conditionally independent of all positive controls for any

of the traits studied (Tables 2, S14, and S15). Nine associa-

tions are at low-frequency variants. These are not captured

by the HapMap reference panel. 75 of the index variants

reside within genes, 9 are coding, and 6 are missense (Table

S16). Of the 6 variants implicating novel regions (Table 1),

2 are indels, while of 28 SNPs that are independent from

positive controls (Table 2), 1 is an indel. There are 10 indels

among the 72 variants in Table S3.
Sex-Specific Analysis

We also performed sex-specific single-point analyses

to investigate the presence of anthropometric trait signals

in males or females that are not present in the sex-com-

bined analysis. Using the same phenotype preparation

protocol, single-point and meta-analysis strategies, and

LD clumping as in sex-combined analysis, we found eight

signals in males and nine signals in females (Table S17)

that reached GWAS significance (p % 5 3 10�8) and are

not previously reported or identified in our sex-combined

analysis. For each of these variants and for the phenotypes

they were selected for, we computed p values testing for

difference between the meta-analyzed men-specific and

women-specific beta-estimates using a t-statistic49 and

the Spearman rank correlation coefficient across all SNPs

for each phenotype. We observe differences between sexes

for these variants at a 5% FDR (Table S17).
Rare Variant Tests

As part of the UK10K effort,7 burden tests (SKAT50

and SKAT-O51) were run separately for the ALSPAC and
The Ame
TwinsUK WGS datasets, and their summary statistics

were combined using metaSKAT and metaSKAT-O52

(Figure S24). The list of regions with metaSKAT or meta-

SKAT-O p value % 10�5 for the anthropometric traits can

be found in Tables S3 and S10 of Walter et al.7 There are

seven regions (five non-overlapping) associated with

height, weight, total fat mass, or total lean mass with

p % 10�7 across either metaSKAT or metaSKAT-O results

(Table S18), but no region reached stringent genome-

wide significance. All region associations appeared to be

led by a single variant, whose signal was weakened with

the inclusion of imputed cohorts (with good imputation

quality scores). Overall, rare variant association tests ap-

peared underpowered to detect strong associations using

our combined WGS sample size (3,049–3,559) for anthro-

pometric traits.

Sample Overlap across UK-Based Cohorts

The meta-analysis method used here assumes that individ-

ual cohorts are independent from each other, i.e., samples

are not shared or related. Using raw genotypes genome-

wide, we calculated IBD estimates for the UK-based studies,

namely UK Biobank (application numbers 10205 and

7439), UKHLS (EGAD00010000918), TwinsUK WGS and

GWAS data, arcOGEN (EGAS00001001017), and 1958

Birth Cohort (we did not include ALSPAC WGS or GWAS

data, as it consists of children only). The number of over-

lapping pairs of samples (pi-hat> 0.98) between each data-

set and UK Biobank as well as related pairs (pi-hat > 0.2) is

given in Table S19. To investigate the effect of sample over-

lap and relatedness across cohorts, we focused on height

and meta-analyzed the discovery cohorts with UK Biobank

using METACARPA, a meta-analysis method that corrects

for sample overlap and relatedness across studies, as well

as METAL (which does not correct for overlap) for a direct

comparison. METACARPA was run in two stages. In the

first stage, we used genome-wide results from all cohorts

to estimate correlation across studies, and in the second

stage we meta-analyzed betas across cohorts corrected for

relatedness for the variants associated with height (Table

S20). As expected, p values uncorrected for relatedness

are inflated compared to the corrected p values but the dif-

ference is not significant (Figure S25). The correlation be-

tween the uncorrected and corrected effect sizes is almost 1

(Figure S25), and therefore the presence of any relatedness

in our data has a minimal effect on the effect sizes.

Genetic Correlation

We observe genetic correlation in 43 pairs of anthropo-

metric traits out of 66 possible pairs at 5% FDR (Figure 1,

Table S21). For example, we observe high genetic correla-

tion of BMI with weight (0.81, p < 10�320), DXA traits

(0.64–0.86, p 7.14 3 10�25–1.34 3 10�42), waist circumfer-

ence (0.89, p< 10�320), hip circumference (0.83, p¼ 8.703

10�119), and waist to hip ratio (0.43, p ¼ 2.98 3 10�6). In

contrast, genetic correlation was not significant between

BMI and traits adjusted for BMI, such as height, waist
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Figure 2. Enrichment of Discovery Meta-analysis Results in Mendelian Height-, Monogenic Obesity-, Syndromic Obesity-, and Men-
delian Lipodystrophy-Associated Genes
We used independent variants (r2 < 0.2) with MAF R 0.1% (left) and after excluding previously reported loci (5500 kb) (right). Shown
are Mendelian height (A and B), monogenic obesity (C and D), syndromic obesity (E and F), and Mendelian lipodystrophy (G and H).
Enrichment of signal is observed if the p value (one-sided) from the binomial test of the observed versus the expected number of variants

(legend continued on next page)
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circumference, hip circumference, and waist to hip ratio

adjusted for BMI. Overall, we observe that when trait A

is positively correlated with traits B and C, the correlation

between trait A and trait B adjusted for trait C drops signif-

icantly, for example hip versus waist circumference and hip

versus waist circumference adjusted for BMI.

We also observe high genetic correlation of height with

weight (0.53, p ¼ 5.77 3 10�55), hip (0.37, p ¼ 2.30 3

10�13) and waist circumference (0.28, p ¼ 1.62 3 10�9),

as well as total fat mass (�0.25, p¼ 5.213 10�4) and trunk

fat mass (�0.23, p¼ 3.053 10�3) at 5% FDR.When adjust-

ing hip and waist circumference for BMI, their statistical

correlation with height becomes more significant (0.84,

p¼ 1.323 10�67 and 0.73, p¼ 1.113 10�51, respectively),

which implies that height could play a mediating role

in the genetic associations of these traits through its in-

verse relationship to BMI. More generally, when trait A is

positively correlated with trait B and negatively correlated

with trait C, the correlation between trait A and trait B

adjusted for trait C (or trait D positively correlated with

trait C) increases significantly. These findings are compat-

ible with previous work53 suggesting that unintended

bias, known as collider bias, can be introduced when a trait

is adjusted for another trait.

Total fat mass is highly correlated with trunk fat mass

(0.95, p ¼ 3.11 3 10�79), but total lean mass is not

correlated to either of these traits. DXA traits are highly

correlated with BMI, weight, waist circumference, and

hip circumference. Compatible with the observations

above, the strongest correlations of DXA traits are with

BMI, implying a mediator role of height. Also, as expected,

the correlation between DXA traits and waist and hip

circumference disappears when the latter traits are

adjusted for BMI.

The pleiotropy among anthropometric traits is recapitu-

lated by examining the overlap of all 106 signals (Tables

1, 2, and S3) robustly associated with an anthropometric

trait at p % 5 3 10�8 in stage1þstage2 (Table S15) with

each of the other anthropometric traits studied. As ex-

pected, we observe significant overlap of variants associ-

ated with both weight and height (49, Figure S26A), while

11/13 variants associated with BMI are also associated

with weight (Figure S26A) and both total fat mass signals

are also trunk fat mass and BMI signals (Figure S26B).

Furthermore, 8/13 BMI signals are associated with waist

and hip circumference (Figure S26C), but this overlap

disappears once waist and hip circumference analyses

are adjusted for BMI (Figure S26E). 25/35 hip circumfer-

ence signals are also height signals (Figure S26D). Again,

we confirm systematic relationships between waist and

hip circumference signals adjusted for BMI with height
with p % 10�5 in Mendelian-associated genes (as calculated by GREA
icance level Bonferroni corrected for the effective number of indepe
Bonferroni corrected p values, and FDR q values are given in Table S2
to hip ratio; WaistBMIadj, waist circumference adjusted for BMI; HipB
hip ratio adjusted for BMI; TFM, total fat mass; TLM, total lean mass

The Ame
variants, as 22/23 and 52/53 of those, respectively, are

also height signals (Figure S26F).

Collider Bias

Collider bias can be introduced when a trait is adjusted for

another trait,53 for example when adjusting waist to hip ra-

tio for BMI or DXA traits for height. To investigate whether

false phenotype-genotype associations are induced when

the phenotype of interest is adjusted for another pheno-

type, we initially looked at the effect sizes in our discovery

meta-analysis for waist circumference adjusted for BMI and

BMI. Out of 146 independent (pairwise r2< 0.2 and further

than 500 kb) variants associated with waist circumference

adjusted for BMI in the discovery meta-analysis with

p < 10�5, 77 (52.74%) had opposite direction of effects

for BMI and waist circumference adjusted for BMI, and

therefore there was no evidence of enrichment for SNPs

harboring opposite marginal effects on the two traits

(binomial p ¼ 0.28). The expected proportion of SNPs

having effect in opposite direction in a model where the

genetic variant is associated with the outcome but not

the covariate is smaller or equal to 50%,53 which is what

we observed in our results, indicating absence of collider

bias. We observed similar results for the effect of BMI on

hip circumference and waist to hip ratio adjusted for

BMI, as well as height on DXA traits (Table S21,

Figure S27). Moreover, variants that reached genome-

wide significance for waist or hip circumference and for

waist to hip ratio adjusted for BMI are not significantly

associated with BMI (their discoverymeta-analysis p values

are between 0.85 and 0.01, while their overall p value

ranged between 0.96 and 2.64 3 10�4, Table S15). The

two variants associated with total and trunk fat mass

reached genome-wide significance for height but also for

BMI (Table S15), which suggests true association with

adiposity rather than mediation through height. We

concluded that there is no evidence that our results suffer

from collider bias.

Fine-Mapping

To examine the fine-mapping potential of deep WGS

imputation, we undertook fine mapping28 of the 106 asso-

ciations reported here. By combining variants predicted to

be causal with posterior probability of association over 0.1

by either CAVIARBF or PRFScore, we find that out of 30 re-

gions that successfully produced 95% credible intervals,

14 credible sets narrowed down to a single variant, 12 nar-

rowed down to 2 or 3 variants, and 3 sets were reduced

down to 4 variants (Tables S5 and S22). To assess the overall

evidence supporting functional and causal interpretation

at the 30 fine-mapped regions, we combined information
T and denoted by the red dot) is less than 0.05/4.482 (5% signif-
ndent traits; horizontal red line). Observed and expected counts,
4. Abbreviations are as follows: BMI, body mass index; WHR, waist
MIadj, hip circumference adjusted for BMI; WHRBMIadj, waist to
; TRFM, trunk fat mass.
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Figure 3. Combined Information from Fine-MappingMethods, Functional Prediction Scores, and eQTL Analysis to Assess the Overall
Evidence Supporting Functional and Causal Interpretation at Fine-Mapped Regions of Newly Identified Variants
Example of fine-mapping and annotation at theADAMTS17 (left) and SSC5D (right) loci for associationwith height. LocusZoom regional
association plot shown in (A) and posterior probability (PP) statistics shown in (B) are from the fine-mapping methods CAVIARBF and
PRFScore (only variantswithPP>0.1 in eithermethods are shown); genome-wide annotationof variants (GWAVA) scores; genomic evolu-
tionary rate profiling (GERP) scores; averageGERP (in a 100 bpwindowaround each variant) scores; whether the variant is an eQTL signal;
number of cell lines in which the variant overlaps with a DNase footprints (peak calls from ENCODE); number of overlapping transcrip-
tional factor binding sites based on ENCODE and JASPARChIP-seq; number of cell lines inwhich the queried locus overlapswith aDNase
hypersensitivity site (ENCODE data, peaks from Ensembl); and Variant Effect Predictor (VEP) genic annotation. Circle sizes and colors for
all scores are scaled with respect to score type and numbers are plotted below each circle. Probabilities of causality from CAVIARBF and
PRFScore are colored in shades of purple. GWAVA scores range between [0,1] and scores greater than 0.5 indicate functionality (colored
inwhite for scores<0.5 and in shadesof orchid for scores>0.5).GERP scores rangebetween [�12.3,6.17]with scores abovezero indicating
constraint (colored in white for scores < 0 and in shades of orchid for scores > 0).
from the two fine-mapping methods, two functional pre-

diction scores (Genome Wide Annotation of Variants54

[GWAVA] and GERP scores), and eQTL analysis (Figures 3

and S28). Of the 30 regions, 6 were fine-mapped to a cod-

ing variant (5 missense and 1 synonymous) and 9 were

fine-mapped to a variant that was identified as an eQTL.

Two missense variants predicted to be causal are associ-

ated with height and reside in genes of the ADAMTS family

of extracellular matrix proteases, which have been previ-

ously associated with height.39,55,56 rs72755233 (weighted
876 The American Journal of Human Genetics 100, 865–884, June 1,
effect allele frequency [WEAF] 11.2%, beta ¼ �0.0837,

p ¼ 5.42 3 10�56) resides in ADAMTS17 and causes a

non-conservative threonine to isoleucine amino acid

change in the protease domain of this peptidase. Similarly,

rs62621197 (WEAF 4.2%, beta¼�0.139, p¼ 3.223 10�69)

resides in ADAMTS10, null mutations in which are impli-

cated inWeill-Marchesani syndrome, characterizedby short

stature.57 Previously reported, independent variants associ-

atedwithheight at this locus reside upstreamofADAMTS10

(rs40729106) and in intronic sequence (rs724909455)
2017



(Table S14). rs62621197, identifiedhere, results in an amino

acid substitution (p.Arg62Gln) directly adjacent to the furin

cleavage site, where the presence of glutaminemaydecrease

ADAMTS10 activation efficiency.58

We also undertook fine mapping28 of 186 anthropo-

metric trait loci established in the literature which also

reached p % 5 3 10�8 in the discovery stage (Table S4).

We find that 14 credible sets 95% likely to contain the

causal variant are narrowed down to a single variant, and

6 are narrowed down to 2 causal variants (Table S23).

For example, fine-mapping of the region around the

previously established variant rs28929474 resulted in a

credible set of two missense variants associated with

height. rs28929474 (WEAF 2.1%, beta ¼ 0.138, height

p ¼ 5.35 3 10�41) in SERPINA1 encodes a missense change

(p.Glu366Lys) in the serine protease inhibitor domain of

alpha-1-antitrypsin (AAT). Homozygosity results in AAT

deficiency, associated with increased risk of early-onset

chronic obstructive pulmonary disease.59 rs28929474 het-

erozygosity has been associated with increased pulmonary

function and height.60 AAT inhibits cleavage of the reac-

tive center loop of corticosteroid binding globulin (CBG)

(coded by SERPINA6, located next to SERPINA1), prevent-

ing the release of cortisol. Variation in this locus has

been associated with plasma cortisol levels61 and there is

epidemiological evidence that cortisol and height are

inversely correlated.62

Enrichment of Association Signal in Monogenic and

Syndromic Disorder-Associated Genes

Consistent with previous work,4,6,63 we find enrichment

of height-associated signals in genes mutated in human

syndromes characterized by abnormal skeletal growth

(2.51-fold enrichment; p ¼ 3.38 3 10�8), of BMI-related

signals in genes implicated in monogenic obesity (19.32-

fold enrichment for BMI; p ¼ 5.43 3 10�4) and of total

lean mass-related associations in Mendelian lipodystro-

phy-associated genes (52.86-fold enrichment for BMI;

p¼ 6.903 10�4) (Figure 2, Table S24). Enrichment remains

after the removal of established lipodystrophy loci and is

attenuated when previously identified height and BMI

common-frequency variant signals are removed (Figures

2, S19, and S20, Table S24).

We also observe enrichment of BMI-, weight-, waist-, and

height-related signals in monogenic obesity-related genes

(Figures 2 and S20), which can be explained by the fact

that these phenotypes are highly correlated (Figure 1). The

absence of enrichment of hip circumference, waist to hip

ratio, and DXA-related signals (despite their significant cor-

relation to BMI, estimated using genome-wide estimates in-

dependent of p value thresholds) is likely due to low power

to detect enough signals with p< 10�5 (their sample sizes in

our discovery phase are approximately 37K and 15K).

Proximity to OMIM Genes

We examined whether any genes with an associated

OMIM morbidity identifier were located within 1 Mb of
The Ame
the identified variants, andwe found 268 such genes across

103 out of the 106 signals (Table S25). Among these genes

many were implicated in bone development and musculo-

skeletal phenotypes. One gene (ADAMTS10) was overlap-

ping with an identified signal for height (index variant

rs62621197) and it is involved in Weill-Marchesani syn-

drome (MIM: 277600), a connective tissue disorder charac-

terized by short stature.57 Other genes and their implicated

roles are summarized in Table S25. Pathogenic mutations

associated with these OMIM genes were not in LD with

our reported signal (r2 is 0) and were not present in the

UK10K WGS dataset.

Musculoskeletal Phenotypes

Consistent with previous work,5,6 we observe a strong

theme ofmusculoskeletal implications (79 of 106 variants).

A variant was considered to have musculoskeletal implica-

tions if (1) it is located within 100 kb or if it is an eQTL for

a gene that has a relevant OMIM annotation, including

association with human syndromes and animal models of

relevant gene knock-outs,64–83 such as abnormal skeletal,

muscle, or cartilage development and abnormal body

size or bone morphology, and (2) there are any skeletal-

related GWAS signals within 100 kb, such as bone mineral

density. For example, rs35863206 (WEAF 22.35%, beta ¼
�0.0232, height p ¼ 5.91 3 10�9) is a deletion located

53 kb upstream of PGR, which encodes the progesterone

receptor protein and is correlated with rs147581469 (r2 ¼
0.72), a previously identified eQTL for PGR.84 Pgr mouse

knock-out models exhibit severe abnormal ossification

and skeletal irregularities.67

eQTL Analysis Results

We find cis eQTL enrichment (p < 0.008, Table S26) for

BMI, height, weight, waist circumference, and waist to

hip ratio adjusted for BMI signals in subcutaneous fat

and for BMI, height, weight, and waist circumference in

lymphoblastoid cell lines (Table S26). BMI and height

show the strongest enrichments at multiple GWAS thresh-

olds. No significant eQTL enrichments are found for

waist to hip ratio, hip circumference, hip circumference

adjusted for BMI, total fat mass, total lean mass, or trunk

fat mass. Overall, no enrichments are found for skin

eQTLs. After excluding regions of previously identified

loci, the enrichment remains significant for height and

waist circumference adjusted for BMI in subcutaneous fat

and for all traits in LCLs. Subcutaneous fat eQTLs is en-

riched among height and waist circumference adjusted

for BMI GWAS signals. GWAS signals show enrichments

at GWAS thresholds of 10�5 and 10�6. Given that the

LCL sample size is twice as that of the other two tissues

(n ¼ 823 in LCLs, n ¼ 391 adipose tissue, n ¼ 367 skin tis-

sue) and that the expression data of a transformed cell line

is less prone to environmental effects, the number of

eQTLs for LCLs is larger than for fat and skin, which

may explain the larger number of LCL eQTLs enrichments

among anthropometric traits.
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Table 3. Pairwise Overlap of Genes Implicated by the GWAS, Two
Fine-Mapping Methods, eQTL and mQTL Analyses

GWAS
Fine-
Mapping eQTL mQTL

Total
Genes

Unique
Genes

GWAS 99 13 8 41 99 49 (49.5%)

Fine-
mapping

13 24 2 9 24 8 (33.3%)

eQTL 8 2 19 9 19 6 (31.6%)

mQTL 41 9 9 211 211 162 (76.8%)

283 225 (79.5%)

Closest protein-coding genes identified by the GWAS and the two fine-map-
ping methods CAVIARBF and PRFScore, and genes identified by the eQTL
and mQTL analyses.
To integrate the identified variants with the eQTL data,

reciprocal conditional analyses were performed in the

expression data with the lead GWAS variant and peak

eSNP to identify coincident signals. Several of the GWAS

variants coincided with the lead eQTL for neighboring

genes, including rs3888183 forMCMBP in all three tissues,

rs4360494 for FHL3 in adipose and LCLs, rs6901225 for

ABT1 in LCLs and rs577721086 for RSPO3 in adipose

(Table S9). Additional GWAS variants were associated

with gene expression after conditioning on the lead

eQTL, indicating that they are tagging independent sec-

ondary eQTLs. We note that as some variants have low

MAF, the relatively modest size of the UK10K expression

dataset is underpowered to detect eQTLs and larger expres-

sion studies may reveal further regulatory effects associated

to these variants.

mQTL Analysis Results

Wefind signal enrichment for mQTL (p< 0.002, Table S27,

Figure S29) in blood samples at three time points in the life

course of ALSPAC participants and two time points in the

life course of their mothers15 at different p value thresh-

olds, mostly driven by cis mQTLs for BMI, height, waist

circumference, weight, total fat mass, and trunk fat mass.

After excluding previously reported variants (and all vari-

ants within 500 kb), BMI, height, waist circumference,

weight, total fat mass, and trunk fat mass variants re-

mained significantly enriched for mQTLs for several time

points. However, the total fat mass and trunk fat mass en-

richments disappeared after removing previous published

BMI and obesity GWAS signals.

Height and weight show enrichment of trans mQTLs

during pregnancy and birth, whereas BMI was not en-

riched for trans mQTLs using the same sample size in the

GWAS analysis. Enrichment of trans mQTLs is consistent

with the possibility that the relative influence of the envi-

ronment on methylation levels increases over time. Also,

given that trans mQTL signals may be polygenic them-

selves, enrichment of trans mQTLs may be explained by

the polygenic architecture of traits such as height. Overall,

stronger enrichments were found for cis mQTLs than trans
878 The American Journal of Human Genetics 100, 865–884, June 1,
mQTLs and a lower GWAS threshold resulted in stronger

enrichments. Comparing different GWAS thresholds con-

firms that among associations that do not surpass the

genome-wide significance p value threshold, functional in-

formation can enhance discovery of true associations.

These findings confirm that trait-associated SNPs will often

affect the trait by gene regulation. Using large sample sizes

leads to higher power to detect enrichment for complex

polygenic traits, such as the anthropometric traits studied

here.

Of the 97 reported variants tested in ARIES, 76 variants

showed evidence for mQTL (664 unique SNP-CpG pairs

across all time-points, p < 10�7) of which 550 associations

were in cis and 114 in trans (Table S10).
Discussion

We have conducted a sequence-based association scan

for anthropometric traits empowered by deep imputation

(Figures S30 and S31). A keymessage derived from our find-

ings is that large-scale, well-imputed association scans

continue to discover complex trait loci. As an exemplifica-

tion of the point, we identify associations at low-fre-

quency variants, not captured by previous reference

panels, including a large number of associations at com-

mon-frequency variants, which were missed by previous

studies.4–6,85 These are signals for traits not studied exten-

sively before (n ¼ 40/97 in Table S3) but are genetically

correlated to other well-studied anthropometric traits,

not tagged by previous imputation approaches (n ¼ 7/28

in Table 2, n ¼ 16/97 in Table S3), or reaching sub-

threshold significance levels in previous studies (n ¼ 21/

28 in Table 2, n ¼ 41/97 in Table S3). Therefore, further

increasing sample size and sequencing depth and building

large reference panels to facilitate accurate imputation is

likely to identify further potentially functional variants

underpinning the genetic architecture of medically rele-

vant human complex traits. Transethnic fine-mapping of

deeply imputed datasets can then deliver further resolu-

tion of causal genes and variants.86

We found moderate overlap of genes implicated by the

GWAS, the two fine-mapping methods, and eQTL and

mQTL analyses (Table 3). Altogether we have found 283

unique genes, 225 (79.5%) of which were found by only

one method, while there were no genes identified by all

methods (46 and 12 genes were found by two or three

methods, respectively). Out of 99 genes identified by the

GWAS, 13 were identified by fine-mapping, 8 by eQTL,

and 41 by mQTL. The observed moderate overlap across

analysis strands suggests that the closest protein-coding

gene to a susceptibility variant is not necessarily the gene

affected by the variant, or that indeed the variant does

not affect gene methylation or expression. Out of these

13 genes that were identified by both GWAS and fine

mapping, 12 (CDK6, IGF2BP2, HSD17B12, ID4, ZBTB38,

ADAMTS10, RSPO3, MAPK3, DLEU1, ADAMTS17, GDF5,
2017



Figure 4. Power to Detect Association in
the Discovery Stage, Stage 1
Effect sizes and 95% confidence intervals
(absolute value of beta, expressed in stan-
darddeviationunits) as a functionofminor
allele frequencies (MAF), based on stage 1
of this study. Newly reported variants are
denoted in diamonds, and previously re-
ported variants that reach genome-wide
significance (p % 5 3 10�8, two-sided) in
the discovery stage are denoted in circles.
The curves indicate 80% power at the
genome-wide significance threshold of
p%5310�8, for five representative sample
sizes of the discovery stage: (1) height,
BMI, weight; (2) TFM, TLM; (3) TRFM; (4)
waist circumference, waist circumference
adjusted for BMI; (5) hip circumference,
waist to hip ratio, hip circumference
adjusted for BMI,waist tohip ratio adjusted
for BMI. The sample size for height (blue
line) had 80% power to detect associations
down to 0.1% MAF for betas R 0.19 stan-
dard deviations (0.36 and 0.23 for TFM
[orange] and waist to hip ratio [purple],
respectively; not plotted). Further power
calculations for different sample sizes are
given in Figure S32. Abbreviations are as
follows: BMI, bodymass index;WHR,waist
to hip ratio; WaistBMIadj, waist circum-
ference adjusted for BMI; HipBMIadj,
hip circumference adjusted for BMI;
WHRBMIadj, waist to hip ratio adjusted
for BMI; TFM, total fat mass; TLM, total
lean mass; TRFM, trunk fat mass.
and PDXDC1) have been previously associated with

anthropometric GWAS signals.

To get a functional overview of the genes implicated by

the different methods, we classified them based on their

associated gene ontology (GO) terms for biological pro-

cesses. Before the analysis, GO gene sets were filtered to

keep the most reliable associations, namely only those

genes were kept in a biological process group, where the

supporting evidence was: physical interaction, mutant

phenotype, direct assay, expression pattern, or traceable

author statement. The final set contained 9,440 genes

distributed across 2,833 overlapping categories. Our 283

identified genes were assigned 377 different annotation

terms (Table S28). Focusing on 52 annotation terms that

contained three or more genes, the most pronounced cat-

egories were related to gene regulation, immune system,

signal transduction, and cell proliferation. Other high-

lighted processes were related to metabolism and develop-

ment terms, as well as skeletal system development repre-

sented by five genes (SOX9, BMP2, IGFBP4, NKX3-2, and

FBN1) (Table S28).

The gene sets associated with methylation and expres-

sion QTLs yielded 64 different gene ontology annotations

with at least two ormore genes (Table S29). Themost abun-

dant categories were related to immune system, cell prolif-

eration, and gene expression, and there were also ontology

terms with clear musculoskeletal consequences, such as

skeletal system development, chondrocyte differentiation,
The Ame
and regulation of ossification. These annotations were rep-

resented by genes previously identified from genome-wide

association studies of anthropometric traits, such as CDK6,

GDF5, HMGA2, IGFBP4, FBN1, and WNT5A, which sug-

gests that eQTL and mQTL analyses can contribute to

our understanding of the biology underlying complex

traits but were also represented by three genes (PDK1,

NKX3-2, VPS29) with no previously reported GWAS associ-

ations. Looking closely into these genes, we found animal

models and other biological information supporting their

relevance to anthropometric traits.

Specifically, PDK1 is the closest protein-coding gene to

rs28610092, associated with waist circumference adjusted

for BMI in our study, was implicated by fine-mapping,

and is a mQTL. Animal models of PDK1 show abnormal

adipose tissue development87 and a series of skeletal and

ossification abnormalities including abnormal radius88

and femur87 morphology, as well as abnormal osteoblast

differentiation.87 NKX3-2 is a homeobox gene and the

closest protein coding gene to rs16888802, associated

with height in our study, and identified by the GWAS

and mQTL analyses. Although NKX3-2 has no previous

anthropometric associations, it is associated with spon-

dylo-megaepiphyseal-metaphyseal dysplasia, an auto-

somal-recessive disorder characterized by diverse skeletal

abnormalities,72 including disproportionate short stature

with a short and stiff neck and trunk.72 These phenotypic

abnormalities were recapitulated in mouse models.89–91
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Finally, VPS29 was associated to the weight signal

rs112540634 by mQTL analysis. The protein product of

VPS29 is part of the retromer complex of theWnt signaling

pathway,92,93 which is involved in adipogenesis and adipo-

cyte development.94,95

The pronounced representation of immune-related an-

notations in the gene sets identified by eQTL and mQTL

might be explained by the blood-related sources of the

studied tissues (mQTL data come explicitly from blood;

LCLs, subcutaneous fat, and skin tissues were used for

the eQTL data, but the LCL sample size is twice as that of

the other two tissues).

In this study, we set out to identify associations across

the full allele frequency spectrum. Consistent with previ-

ous studies,96–98 we find substantial genetic overlap be-

tween monogenic and polygenic anthropometric traits,

driven primarily by common variants with small effect

sizes. Importantly, even though well powered to detect

them, we find no evidence of low-frequency variants

with strong effect sizes (Figure 4). For example, for height

and waist to hip ratio, this study had 80% power to detect

associations down to 0.1% MAF for betas R 0.19 and 0.23

standard deviations, respectively, at the genome-wide sig-

nificance level. It is possible that this picture might change

with larger sample sizes sequenced at higher read depths,

which would allow researchers to systematically interro-

gate variants with MAF < 0.1% and increase association

power for small effect sizes for low frequency and rare

variants. Millions of variants with MAF < 0.1% were not

included in this study, many due to imputation accuracy

score filters. There may therefore still be true signal to

discover in the 0.1%–1% MAF range—even with current

sample sizes—if the imputation qualities improve. In addi-

tion, within the power constraints of the study, we do not

identify any significant association with burdens of rare

variants. It is likely that such burdens exist but that the

rare variants contributing to them could not be detected

by the low read depth of the WGS data generated here.

Going forward, deep whole-genome sequencing of large-

scale cohorts holds the promise of comprehensively inter-

rogating the allelic architecture of complex traits.
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