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Abstract
In real world environments the state is almost never
completely known. Exploration is often expensive.
The application of planning in these environments
is consequently more difficult and less robust. In
this paper we present an approach for predicting
new information about a partially-known state. The
state is translated into a partially-known multi-
graph, which can then be extended using machine-
learning techniques. We demonstrate the effective-
ness of our approach, showing that it enhances the
scalability of our planners, and leads to less time
spent on sensing actions.

1 Introduction
Planning for real world environments often means planning
with incomplete and uncertain information. For example, in
robotic domains and other dynamic environments there can
be large numbers of unknown areas and objects. Moreover, in
dynamic environments planning has to be completed quickly.
However, exploration and observation in these scenarios can
be costly. This uncertainty has severe consequences for plan-
ning. The planning problem becomes more complex, taking
longer to solve, and exacerbating the issue of scalability.

Some uncertainty can be handled during the planning pro-
cess with, for example, contingency planning [Bonet and
Geffner, 2000; Hoffmann and Brafman, 2005], conformant
planning [Smith and Weld, 1998; Palacios and Geffner,
2006], probabilistic planning [Camacho et al., 2016], or re-
planning techniques [Brafman and Shani, 2014]. These ap-
proaches come with an associated cost in terms of complexity
and robustness. Moreover, if the lack of information is severe,
then the problem can be rendered unsolvable with current ap-
proaches.

We enhance the standard procedure of planning by adding
the state prediction step between sensing and planning as
shown in the Figure 1.

∗The research leading to these results has received funding
from the European Community’s Seventh Framework Programme
FP7/2007-2013 (Specific Programme Cooperation, Theme 3, Infor-
mation and Communication Technologies) under grant agreement
no. 610532, SQUIRREL.
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Figure 1: Proposed approach for decreasing uncertainty in planning.
Partially-known states are updated through both sensing actions and
prediction.

We propose an approach to reduce the uncertainty by mak-
ing predictions about the state. We translate the state to a
partially-known multigraph to enable prediction of the state
with machine learning techniques. In particular, we exploit
the method for prediction in partially-known multigraphs pre-
sented in [Krivic et al., 2015]. Missing edges are predicted by
exploiting the similarities between known properties. We in-
troduce a confidence measure for these edges. Edges with
high prediction confidence are translated back to the state,
decreasing uncertainty.

The resulting problem is consequently less costly to solve
and plans generated require fewer sensing actions. The re-
sulting problem can be passed to any kind of planning system.
Incorrect predictions can increase the chance of plan failure
during execution. We show in our evaluation, over a range
of planning domains, the accuracy of the predictions is very
high, and these cases are rare.

We integrated the prediction with a planning and execu-
tion system. Our system uses an adapted version of Maxi-
mum Margin Multi-Valued Regression (M3VR ) [Krivic et al.,
2015] for learning missing edges. The planner CLG [Bonet
and Geffner, 2000] is used to solve the resulting planning
problems. We demonstrate in real scenarios, when contin-
gency planning with CLG, prediction increases scalability,
allowing the solver to tackle many more problems at an ac-
ceptable cost to robustness.



The paper is structured as follows. In Section 2 we present
the problem formulation, and how a state can be represented
as a partially-known multigraph. In Section 3 we describe
the prediction process that acts upon a multigraph. In Sec-
tion 4 we present the experimental results and we conclude in
Section 5.

2 Predictions in the Planning Problem
In this section we describe in detail the problem of state pre-
diction.

Definition 1 (Planning Problem) A planning instance Π is
a pair 〈D,P 〉, where domain D = 〈Pred,A, arity〉 is a tu-
ple consisting of a finite set of predicate symbols Pred, a
finite set of (durative) actions A, and a function arity map-
ping all symbols in Pred to their respective arities. The triple
describing problem P = 〈O, s′, G〉 consists of a finite set of
domain objects O, the partial state s′, and the goal specifica-
tion G.

The atoms of the planning instance are the (finitely many)
expressions formed by grounding; applying the predicate
symbols Pred to the objects in O (respecting arities). The
resultant expressions are the set of propositions Prop.

A state s is described by a set of literals formed from the
propositions in Prop, {lp,¬lp,∀p ∈ Prop}. If every propo-
sition from Prop is represented by a literal in the state, then
we say that s is a complete state.

A partial state is a set of literals s′ ⊂ s, where s is a com-
plete state. A partial state s′ can be extended into a more
complete state s′′ by adding literals.

Definition 2 (Extending a Partial State) Let s′ be a partial
state of Planning problem Π. Extending the state s′ is a func-
tion Extend(Π, s′) : s′ → s′′ where s′ ⊆ s′′ and s′′ ⊆ s.

We describe a processing step implementing Extend. In
order to be able to apply a machine learning technique to ex-
tend an incomplete state, we first translate it to a multigraph.
Thus, the function Extend(Π, s′) is implemented as follows:
(1) the partial state s′ is converted into a multigraph; (2) edges
in the multigraph are learned using M3VR ; (3) the new edges
are added as literals to the partially-known state.

2.1 Constructing the Multigraph
We represent a partially-known state s′ as a partially-known
multigraph M ′.

Definition 3 (Partially-known Multigraph) A partially-
known multigraph M ′ is a pair 〈V,E′〉, where V is a set of
vertices, and E′ a set of values of directed edges.

The values assigned to all possible edges are {0, 1, ?} cor-
responding to {not-existing, existing, unknown}. We use E′
to denote a set of edge values in a partially-known multi-
graph, whileE denotes the set of edges values in a completed
multigraph M . The partial state s’ is described as a partially-
known multigraph with an edge for each proposition p ∈ P
that is either unknown or known to be true. That is:

V ≡ O
E′ = {epred(b, u)|(b, u) ∈ V × V } (1)

The existence of a directed edge epred(b, u) between two
vertices b and u for a predicate pred is described by the func-
tion Lpred : V × V → {0, 1, ?}. Edges are directed in the
order the object symbols appear in the proposition.

For example, let b and u be two vertices in set V . For
proposition p involving objects b and u, Lpred(b, u) = 0 if
¬lp ∈ s′, Lpred(b, u) = 1 if lp ∈ s′, and Lpred(b, u) =?
otherwise.

For an origin object b and a destination object u, we define
the edge-vector as the vector:

ebu = [Lpred(b, u),∀pred]

This vector describes the existence of all edges directed from
b to u. This is illustrated in an example below.

2.2 Example
Consider the problem where a robot is able to move be-
tween waypoints, pick up, push, and manipulate objects,
and put them in boxes. The predicates can-pickup,
can-push, can-stack-on, and can-fit-inside
describe whether it is possible to perform certain actions upon
objects in the environment.

In this problem we restrict our attention to four objects:
robot, cup01, box01, and block01. In PDDL 2.1 [Fox
and Long, 2003] literals that are absent from the state are
assumed to be false. However, we assume those literals to be
unknown.

A graph M is generated, the vertices of which are O :=
{robot, cup01, box01, block01} (Figure 2). An edge-vector
example in this graph is given with:

erobot,block01 = Lcan−fit−inside(robot, block01)
Lcan−stack−on(robot, block01)
Lcan−push(robot, block01)
Lcan−pickup(robot, block01)

 =

 0
0
1
?


This example edge-vector describes the edge between

the nodes robot and block01. In the example state it is
known that the propositions (can-fit-inside robot
block01) and (can-stack-on robot block01)
are false. It is also known that the proposition (can-push
robot block01) is true. Finally, (can-pickup
robot block01) is unknown.

3 Predicting Missing Edges in a Multigraph
Once a multigraph is created, a machine learning method can
be used for completing a multigraph [Cesa-Bianchi et al.,
2013; Gentile et al., 2013; Latouche and Rossi, 2015]. In our
system we use the Maximum Margin Multi-Valued Regres-
sion (M3VR ) which was used at the core of a recommender
system [Ghazanfar et al., 2012] and for an affordance learn-
ing problem [Szedmak et al., 2014]. Their results show that
it can deal with sparse, incomplete and noisy information.
Moreover, Krivic et al. [2015] use M3VR to refine spatial
relations for planning to tidy up a child’s room. We build on
this, describing how the approach can be generalised for use
in planning domains.
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Figure 2: A fragment of an example problem from the tidy-room
domain translated to the multigraph. Known edges are denoted by
solid lines and unknown ones by dashed lines.

The structure of the multigraph represents the structure of
the domain. Edges in the multigraph are partially known and
thus this is a supervised learning problem. The main idea of
M3VR is to capture this hidden structure in the graph with
a model and use it to predict missing edges. This model is
represented by a collection of predictor functions that learn
mappings between edges and vertices.

Edges are directed. Therefore we differentiate between ori-
gin and destination vertices for each edge. B denotes the set
of origin vertices and U the set of destination vertices, where
B = U = V . Edges between the vertices describe a relation
between the setsB and U . To predict a missing edge between
two vertices, knowledge about other known edges involving
those vertices can be exploited (Figure 3). This concept ex-
tends to predictions for n-ary relations.

Using M3VR we construct a function which captures
knowledge about existing edges. This is done by assigning a
predictor function fb to each origin vertex b ∈ B that maps all
destination vertices to corresponding edges. Thus the number
of predictor functions is equal to the number of vertices.

These predictor functions have to capture the underlying
structure of a graph which can be very complex and non-
linear. Thus it can be very hard to define in Euclidean space.
Therefore these functions are defined on feature representa-
tions of vertices and edges. Thus, we choose:

• A function ψ that maps the edges into a Hilbert space
Hψ .

• Another function φ that maps the destination vertices
u ∈ U into the Hilbert space Hφ which can be chosen
as a product space of Hψ .

Hφ and Hψ are feature representations of the domains of U
and E. The vectors φ(·) and ψ(·) are called feature vectors.
This allows us to use the inner product as a measure of simi-
larity.

Now prediction functions for each origin vertex b can be
defined on feature vectors, i.e., Fb : Hφ → Hψ . We assume
that there is a linear relationship in feature space between the
feature vector of all destination vertices Hφ and the feature
vector of all connected edges Hψ . This is represented by lin-
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Figure 3: The core mechanism of M3VR to predict a missing edge
based on the available information on the object relation graph. For
simplicity in this example, origin vertices are represented as rows
and destination vertices as columns for a single predicate pred. The
edge epred(b = 4, u = 5) is missing. To predict the existence
of the edge epred(b, u), those edges that share the same origin or
destination vertices as the missing edge can be exploited.

ear operator Wb. The non-linearity of the mapping fb can be
expressed by choosing non-linear functions ψ and φ.

To exploit the knowledge about existing edges linking the
same destination vertices u ∈ U , predictor functions for ori-
gin vertices are coupled by shared slack variables represent-
ing the loss to be minimized by the learners Fb. In this way,
knowledge about existing edges is exploited to train predic-
tion functions. Once determined, the linear mappings Wb

allow us to make predictions of missing edges for elements b.
The similarity between the vectors Wbφ(u) and ψ(ebu) is

described by the inner product 〈ψ(ebu),Wbφ(u)〉Hψ . If the
similarity between Wbφ(u) and ψ(ebu) is higher, the inner
product will have a greater value. As a consequence ψ(ebu)
can be predicted as

ψ(ebu)←Wbφ(u), (b, u) ∈ B ∩ U. (2)

Detailed descriptions of this procedure can be found in re-
lated work [Krivic et al., 2015; Ghazanfar et al., 2012].

In the optimization procedure for determining linear map-
pings there are as many constraints as the number of known
edges in E′. Therefore the complexity of the prediction prob-
lem is equal to O(|E′|), where |E′| stands for the cardinality
of the set E′.

The value of the inner product of the edge feature vector
ψ(ebu) and Wbφ(u) should be interpreted as a measure of
confidence of the edge belonging to a specific class (in this
case 0 or 1):

conf{L∗pred(b, u) = k} =

〈ψ(ebu|L∗pred(b, u) = k),Wbφ(u)〉
Hψ
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Figure 4: Extending the state. Example problem. After predictions, new literals are added.

where k ∈ {0, 1}, and L∗pred(b, u) is an unknown value in
ebu ∈ E r E′ of predicate pred.

For each prediction L∗pred(b, u), we update the existence of
the directed edges:

Lpred(b, u) = arg max
k∈{0,1}

conf{L∗pred(b, u) = k}

Thus, the graph is completed and each edge is labelled by a
confidence value.

3.1 Extending a Partialy-known State with
Predictions

Given a complete multigraph and confidences, we extend the
partially-known state s′ by adding literals to the state where
confidence exceeds a predefined confidence threshold, that is,

lp ∈ s′ ↔
(Lpred(b, u) = 1) ∧ conf{Lpred(b, u) = 1} > ct,

where lp is the positive literal of proposition p, formed from
predicate pred linking objects b and u, and ct is the confi-
dence threshold.

For edges predicted not to exist in a graph with confidence
higher than a threshold value ct, we extend the partially-
known state s′ in a similar fashion:

¬lp ∈ s′ ↔
(Lpred(b, u) = 0) ∧ conf{Lpred(b, u) = 0} > ct,

For example, the partially-known graph in Figure 4
contains a dashed edge representing that the proposition
(can-pickup robot block01) is unknown. Initially,

Lcan−pickup(robot, block01) = ?

After prediction, Lcan−push(robot, block01) = 1, with con-
fidence higher than ct. Therefore, the literal (can-pickup
robot block01) is added to the current state.

4 Evaluation
The system integrates the prediction into a planning and ex-
ecution framework, ROSPlan [Cashmore et al., 2015]. The

M3VR method is integrated as a ROS service enabling its use
as an automatic routine. Gaussian kernels, which appeared
the best for this family of the problems, are used as the fea-
ture functions in M3VR with equal parameters for all domains
and experiments.

With this framework we were able to generate randomised
problem instances from four domains: tidy-room, inspired
by the problem of cleaning a child’s room with an au-
tonomous robot presented in Krivic et al. [2015], course-
advisor, adapted from Guerin et al. [2012]; mars-rovers, a
multi-robot version of the navigation problem of Cassandra
et al. [1996], in which several robots are gathering samples;
and persistent-auv, described by Palomeras et al. [2016]. The
system together with all domains and test scripts is available
and can be found at github.com/Senka2112/IJCAI2017. The
system can be easily used with other domains as well.

4.1 Evaluating State Predictions
To evaluate prediction accuracies we generated examples of
states in each domain varying the size of the problem and
the percentage of the knowledge on the state. The prob-
lem size is varied by increasing the number of objects from
5 to 100 by an increment of 5. The knowledge is varied
by generating complete states and removing literals at ran-
dom. Percentages of knowledge used in tests are 0.5%, 1%,
2%, 3%, 5%, 8%, 10%, 20%, 30%, 40%, 50%, 60%, 70%,
80%. To examine the reproducibility of prediction problems
we randomly generated 10 states for each combination of
the percentage of knowledge and problem size utilizing 10-
cross-fold-validation. Thus, for each domain were generated
20× 14× 10 problems in total.

The prediction was applied to every problem and results
were compared to the ground truth. To examine the lower
limit on problem size, we extracted which amount of the
known data that is needed to achieve accuracy higher than
90%. This is shown in the Figure 5. The number of learned
relations is large for each domain: with 20% of the known
predicates and with 20 objects, accuracy is higher than 90%
for all domains except mars-rovers.

Accuracy increases with the size of the problems. With
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40 objects in the each problem domain only 8% of known
data is enough for accuracy over 90%. Course-advisor and
persistent-auv domains contain more instances of objects and
more predicates compared with the other two domains. This
results in larger networks. Thus, for these domains, the ac-
curacy is better for smaller numbers of objects as well. The
high accuracy of predictions in these domains indicates do-
mains with structure and order. Compared to other domains,
the rovers domain appears to be the most unbalanced. With a
small number of objects and initial knowledge, it is harder to
capture the structure. Thus 60% initial knowledge is required
to achieve 90% accuracy in the case of 15 objects.

The confidence for predictions is taken directly from the
learning algorithm as described in the Section 3. It repre-
sents the measure of similarity between the learner output
vector and the feature vector representing the existence of an
edge. Figure 6 demonstrates the mean values of confidences
for all four domains in case of 20 objects and varying percent-

Figure 7: Number of problems for which valid plans were generated,
for varying amounts of knowledge. Experiments were done for the
tidy-room domain with 70 objects.

age of initial data. Confidence saturates very quickly which
corresponds the high accuracy results given in the Figure 5.
This is the result of the structure which appears in the net-
works and which are captured by learners. Moreover, since
the datasets were created by randomly removing knowledge,
many vertices remained connected to the graph and their ex-
isting edges were exploited for predictions. The prediction
confidence is expected to be very low for vertices for which
no known edges exist within the rest of the graph.

The high accuracy and confidence allows us to solve many
otherwise unsolvable instances, while maintaining a high de-
gree of robustness.

4.2 Evaluating Robustness
We investigate whether the high accuracy results in robust
prediction. We make the problem deterministic by accepting
all predictions with any positive confidence. The problem
instances were made deterministic using prediction, and also
by a baseline of assuming unknown propositions to be true.
The problems were solved using POPF [Coles et al., 2010].
The resulting plans were validated against the ground truth
using VAL [Fox, 2004]. The results are shown in the Figure 7,
showing that even for > 30% of Known Data, the prediction
leads to robust plans.

Without prediction, none of our problems could be solved
using a deterministic planner. Even with knowledge of 80%
of the state, the goal was not in the reachable state-space. To
provide a more illustrative analysis, we generate a relaxed
plan-graph (RPG) and count the number of reachable actions
before and after prediction.

Figure 8 shows the number of new reachable actions as
a percentage of the total number of reachable actions in the
ground truth. The increase in reachable actions is very large,
especially with a smaller amount of Known Data. This in-
crease in valid actions enabled by the prediction demonstrates
an increase in size of reachable state space.

The prediction can be applied with a high confidence
threshold, removing some uncertainty. Conditional planning
can be used to deal with the remaining uncertainty by execut-



Figure 8: Number of newly reachable actions after prediction, as
a percentage of actions in the ground truth. Tests were done for
problems with 20 objects and varying amounts of knowledge in all
four domains.

ing sensing actions to observe remaining unknown proposi-
tions.

4.3 Evaluating with Conditional Planning
Sensing actions were introduced into the tidy-room domain,
allowing the agent(s) to determine the ground truth of un-
known propositions. Problems were generated as described
above, with 10% to 80% initial knowledge and 10-fold cross
validation. All of the problems involve 20 objects. The num-
ber of goals was varied from 2 to 6. We used the plan-
ner CLG [Albore and Geffner, 2009] (offline mode) to solve
problems in these extended domains, with a time limit of
1800 [s]. The prediction was applied before a single planning
attempt. We recorded the time taken to solve and the duration
of the execution trace of the contingent plan. The solution
times are shown in Figure 9.

For problems with 5 goals and 6 goals, the problem could
not be solved by CLG without predictions within the time
limit. With prediction these problems were solved with an
average of 89 [s]. These results illustrate the benefit of pre-
diction in enhancing the scalability of contingent planning.
The plan duration shows another benefit of state prediction in
the quality of the plans produced: predictions can be used to
avoid spending time on sensing actions when the confidence
is high.

5 Conclusion
An agent can build hypotheses on unknown relations in the
world model by exploiting similarities among the existing and
possible relations. In this paper we have shown how uncer-
tainty in planning can be decreased with predictions made by
exploiting these similarities. We presented a system for such
an approach where a state with uncertainty is represented as
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Figure 9: The time taken by CLG to solve problems with 2, 3, and
4 goals, with prediction (lower lines) and without prediction (upper
lines).

a partially-known multigraph, we showed how M3VR is used
to predict edges in such a graph, and finally showed how
these edges are reintroduced into the state as predicted propo-
sitions. This procedure is performed online.

We use the confidence values of predictions, filtering the
number of unknown facts verifiable by sensing action. A
lower confidence indicates a proposition that should be ver-
ified by a sensing action, while a high confidence prediction
indicates a proposition that can be assumed true (or assumed
false).

We have shown that with 20% knowledge of the state the
accuracy of the state prediction is 90% with prediction tests
in four different domains. We also demonstrated that the ac-
curacy of the predictions leads to plans that are robust, and
increase the scalability of our planners.

We noted that the high accuracy is in part due to the fact
that many vertices remained connected to the graph after
knowledge was randomly removed. This is not always the
case in practice. In future work we intend to investigate how
predictions can be used in order to inform a contingent plan-
ning approach. In particular, by directing the executive agent
to perform sensing actions that connect disconnected nodes.
These actions, while not supporting actions leading towards
the goal, will allow for a higher confidence prediction of
many other facts involving similar objects. This also might
include new definitions of the prediction confidence measure.
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