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_________________________________________________________________________ 

Abstract 

Despite recent advances in developing HER-family targeted drugs, clinical trials have 

shown poor results. Tumour evolution takes place overtime, frequently leading to aberrant 

new signalling cascades that disrupt the efficacy of targeted therapies and ultimately cause 

patients to develop resistance against initially effective drugs. To predict outcome and 

stratify treatment there is an imperative need to develop a systems understanding of 

concentration- independent parameters that could be monitored in trials and report on 

tumour evolution. Amongst the circulating tumour markers, exosomes offer a suitable 

platform for the longitudinal monitoring of protein network signalling in the form of a liquid-

biopsy by imaging receptor dimerization status. Here, we illustrate the biomarker utility of 

monitoring oncogenic receptor signal rewiring using exosomal FRET/FLIM to aid the 

prediction of clinical outcome and patient treatment stratification. 
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1. Introduction 

An increasing number of drugs and treatments against cancer have shown high 

efficacy and promises in vitro with recent technological developments. However, many of 

these promising agents showing low primary resistance were presented with poor long term 

results in the clinic due to acquired secondary resistance, leading to inevitable disease relapse 

and a dramatic reduction of patients’ survival. The acquired resistance is one of the main 

hurdles for the drug treatment efficacy. Recent studies have not only shown high inter-tumour 

heterogeneity between different patients of the same cancer types, but also significant intra-

tumour heterogeneity within the same patient. This heterogeneity is caused by clonal evolution 

of the tumour, whereby mutational changes give rise to many different subpopulations of the 

tumour [1-3]. This complex and somewhat unpredictable tumour evolution process 

complicates the efficacy of long term treatment, as resistance easily develops against single-

targeted cancer therapies. Moreover, the individual heterogeneity makes the stratification of 

personalised medicine extremely difficult [4, 5].Thus, being able to understand and monitor 

the underlying mechanisms of acquired resistance remains very important for the clinic [6]. 

Currently, the clinic mainly uses information obtained from tissue 

immunohistochemistry combined with imaging techniques such as magnetic resonance 

imaging (MRI) and positron emission tomography (PET) for the purpose of prognosis and 

choosing therapy for the patients. However, with the rise of the –omics era and the continuous 

emergence of state-of-the-art techniques, there is now more information at the clinicians’ 

disposal to make much better informed decisions. Amongst the many emerging biomarkers, 

a type of cell-derived extracellular vesicles found in almost all bodily fluids called exosomes 

have much to offer. They have been implicated by many to play a role in cancer [7-11], and 

they also provide clinicians with a minimally invasive method of obtaining valuable information 

via liquid biopsy. Cell surface receptors are also found on the surface of exosomes, and many 

studies have shown the role of these cell surface receptors in acquired resistance [12-16]. 

The focus of this review will be on how resistance is acquired against HER (Human 

Epidermal growth factor Receptor) family targeted drugs, the role played by the individual 

receptors and the importance of using HER family receptor dimerization status as a means to 

track early tumour evolution development. As an example, we show our results in patient 

cancer tissue samples as previously reported [1]  and suggest expanding this approach to 

patient serum exosomes which have the additional advantage of easily allowing the 

longitudinal monitoring of the tumour.  

 



2. HER Family and cancer 

 

The HER (Human Epidermal growth factor Receptor) family are RTKs (Receptor Tyrosine 

Kinase) that include EGFR (Epidermal Growth Factor Receptor) (also known as ErbB1 or 

HER1), HER2 (Erb2), HER3 (Erb3), and HER4 (Erb4), all of which participate in regulation of 

cellular homeostasis [17]. Each member of the HER family plays key roles in many cellular 

processes such as proliferation, differentiation, migration, and cell death programming. With 

the exception of HER2, other HER family members are inactive prior to ligand binding. These 

transmembrane receptors will dimerize upon activation by ligand binding on the extracellular 

domain, forming homo- and heterodimers. Receptor dimerization causes a transactivation of 

the intracellular domain by trans-autophosphorylation, which is the first of a series of signal 

transduction events. This leads to the recruitment of intracellular molecules, and activates the 

4 main intracellular pathways downstream of the HER family: Ras/Raf/MEK/MAPK, PI3K/Akt, 

JAK/STAT, and PLC γ/PKC. These signalling pathways regulate a wide range of intracellular 

events including proliferation, differentiation, apoptosis, migration, adhesion, gene expression, 

cell cycle progression, transcription, translation, and angiogenesis. 

Disease progression is often favoured when the tightly regulated and highly complex 

interactions between these proteins are altered. In cancers, these pathways trigger hallmarks 

of cancer: apoptosis inhibition, survival, proliferation, loss of cell cycle control, invasion, and 

metastasis. Changes in EGFR - upregulation, mutation, overexpression, translocation - and 

EGFR signalling, are frequently found in many different cancers such as brain, breast, ovarian, 

cervical, colorectal, gastric, melanoma, head and neck, as well as pancreatic cancers, and are 

often associated with poor prognosis and survival. HER2 has long been identified as an 

important biomarker for a major subtype of breast cancer that is overexpressing HER2, and is 

routinely being used in the clinic as a biomarker for therapeutic decisions [18]. Apart from 

gastric [19], prostate[20], and ovarian cancers [21], recent studies have also suggested the 

potential of HER2 as a therapeutic target in other cancers, such as biliary tract cancer[22]. In 

cancers of epithelial origin such as breast, ovarian, cervical, colorectal, gastric, melanoma, 

head and neck, and pancreatic cancers, HER3 overexpression has been observed and is 

associated with poor prognosis. HER4 has been gaining increasing attention in the recent 

years, where its expression profile is implicated to be important in several cancers such as 

breast [23, 24], gastric[25], rectal [26], and lung [27]. 

The apparent causative link between the HER family and tumourgenesis is the reason 

why EGFR and the HER family have been studied vigorously for decades and remains one of 

the most valuable therapeutic targets since the discovery of EGFR. 

 

3. Oncogenic rewiring 



The key roles that the HER family play makes them obvious therapeutic targets for 

anti-cancer therapies. Unsurprisingly, the current standard clinical practice for stratifying 

cancer patient treatment is based on the expression level of HER family members, depending 

on the cancer type [17, 26]. To date, all FDA approved cancer therapies in the clinic targeting 

the HER family members can be divided into 2 classes [3]. First, there are small molecule 

TKIs (tyrosine kinase inhibitors). They inhibit phosphorylation of RTK (Receptor Tyrosine 

Kinase) domain either by competitive binding or allosterically by locking the RTKs in a non-

functional/inactive conformation. Examples of TKIs include Erlotinib (EGFR inhibitor), Gefitinib 

(EGFR inhibitor), Lapatinib (EGFR & HER2 dual inhibitor), Osimertinib (EGFR inhibitor), and 

Vandetanib (EGFR inhibitor). The other class of targeted therapy is represented by blocking 

antibodies. These mAbs (monoclonal antibodies) act by directly binding to the extracellular 

domains of RTKs, causing blockage to RTK activities and therefore trigger apoptosis. Drugs 

of this class include Cetuximab (EGFR mAb), Panitumumab (EGFR mAb), Necitumumab 

(EGFR mAb), Pertuzumab (HER2 mAb), and Trastuzumab (aka Herceptin, HER2 mAb). 

These drugs have been very effective in many cancers in the clinic, however many patients 

develop resistance against these therapies often within one year or less [28, 29]. 

The principle of all targeted therapies is based on the interruption of pro-oncogenic 

signalling cascades. However, many of these pathway interventions can be disrupted by 

cancer-induced changes, resulting in the formation of new, ectopic signalling that favours 

tumour development. This acquired resistance is known as oncogenic rewiring [30], and is 

one of the main reasons for the failure of targeted therapies against the HER family in the 

clinic [16].This principle of oncogenic rewiring has led to a successful implementation of anti-

HER therapeutic, multi-targeted combination in preclinical cancer models [31]. In clinical trials 

many cases of initial responders eventually become resistant by developing secondary (or 

acquired) resistance. Several mechanisms were proposed to explain the oncogenic rewiring 

of the tumour leading to the acquisition of resistance against HER family targeted therapies. 

Mutations in the RTK’s extracellular domain could prevent inhibitory binding by targeted mAb 

therapies while those in the intracellular kinase domain could interfere with TKIs inhibitory 

functions. Mutations activating downstream effectors of the targeted RTK lead to consistent 

active signalling despite inhibition of the receptor’s kinase activity. Activation of an alternative 

signalling pathway could lead to a compensatory shift in the dependence of the survival 

signalling away from the target under therapeutic pressure. All of the above support the 

existence of an escape mechanism by which tumour can resist and evade targeted therapies. 

EGFR, being the target of many clinical drugs, displays oncogenic rewiring through 

different ways. In lung cancer, EGFR can develop a secondary, acquired T790M mutation, 

which is commonly found in resistant patients [12]. Besides receptor mutations, there is also 



aberrant activation of downstream pathways such as MAPK amplification [32], as well as 

shifting the pro-oncogenic signalling into other pathways including c-MET [33]. 

In colorectal cancer in particular, HER2 activation has been shown to cause acquired 

resistance against Cetuximab, an EGFR-targeted antibody therapy [34]. This is particularly 

noteworthy in the process of oncogenic rewiring in the HER family, and has been implicated 

as a major cause for the development of such resistance as pointed out by several studies 

[15, 28, 33, 35, 36]. Moreover, HER2 amplification has been suggested to assist the 

acquisition of resistance against anti-EGFR TKIs [37]. HER3 is known to be a ‘pseudokinase’ 

because it lacks a functional intracellular tyrosine kinase domain for intrinsic kinase activity, 

and is therefore entirely dependent on its heterodimerization partners and ligand binding for 

all downstream signalling [38]. Known dimerization partners of HER3 include EGFR, HER2, 

HER4, and c-Met. The pseudokinase HER3 has more tyrosine kinase residues on its 

intracellular C-terminus than the other HER family members, and is therefore able to directly 

bind to the PI3K subunit p85 for activation of the PI3K/Akt signalling pathway [17, 38]. In 

particular, the HER2/3 dimer is known to be the most potent oncogenic activator of the 

PI3K/Akt pathway [39]. As the key regulator of proliferation, the PI3K/Akt signalling cascade 

is often found to be activated in drug-resistant tumours [1], suggesting the highly pivotal role 

of HER3 in reducing the efficacy of targeted treatments against the HER family. There are 

many examples of HER3 oncogenic rewiring in the literature. The activation of HER3 signalling 

by c-Met has been shown to induce resistance against the EGFR TKI Gefitinib in lung cancer, 

where the Gefitinib-induced inhibition of EGFR-HER3 signalling pathway lead to the 

prevalence of HER3 activation by c-Met [33]. A different study showed that resistance to 

erlotinib in lung cancer patients involves HER2/3 feedback loops which stimulated the 

extracellular signal–regulated kinase (ERK) pathway, induce transcription of HER2 and HER3 

and  stimulate the interaction between MET and HER3 [31]. The mechanisms of interaction 

between c-Met, the epidermal growth factor receptor family and other cell surface protein 

families, how these contribute to signalling crosstalk, oncogenesis, and drug resistance have 

been excellently reviewed [13].The compensatory shift from HER2/3 cascade to EGFR/HER3 

cascade under the treatment pressure by pertuzumab [40], alternative HER3 phosphorylation 

leading to evasion of EFGR and HER2 TKIs [29], HER3 expression-driven resistance against 

trastuzumab [14], the heregulin β1 (HRG)-activated HER3 that leads to resistance against 

lapatinib [41].Thus, it is of great clinical interest to detect, prevent, and reverse the aberrant 

activation of new HER3 signalling cascades which lead to intensified efforts to 

pharmacologically  target it [42]. Despite the increased attention towards this particular 

member of the HER family, no HER3-targeting drugs have been approved for use to date. The 

development of anti-HER3 therapies (such as monoclonal anti-HER3 antibody therapy) is still 

facing difficulties due to a lack of established biomarkers for the stratification of anti-HER3 



therapy [43]. It has been suggested that HER3 expression level is not the only important 

biomarker to be taken into consideration during cancer treatment, but also the interactions of 

this pseudokinase with the other RTK heterodimerization partners [35]. To measure changes 

in the heterodimer quantities with treatment and monitor the tumour longitudinally we have 

developed a FRET/FLIM assay as detailed in the following section.  

 

4. Dimerization measurement by FRET/FLIM 

A significant body of our previous work supported the idea that the HER dimerization 

status may be more important than HER receptor expression per se in determining sensitivity 

or resistance to a given therapeutic agent. The extent of HER dimerization between any two 

receptor pairs could be quantified by Fluorescence Resonance Energy Transfer (FRET) 

between a pair of suitable FRET fluorophores directly conjugated to the primary antibodies. 

FRET is the radiationless transfer of energy between the dipole of a fluorophore called 

the donor (D) to the dipole of a fluorophore called the acceptor (A). The transfer efficiency 

depends on the spectral overlap of the fluorescence emission spectrum of the donor with the 

absorption spectrum of the acceptor, the relative orientation of the two fluorophores and their 

separation distance. The FRET efficiency varies with the inverse 6th power of the distance 

between the donor and acceptor and is typically negligible for distances greater than 10 

nm.[44] 

The spatial scale on which FRET occurs is compatible with the protein dimension 

which renders FRET as a powerful tool to probe intra- and inter-molecular distances.[45] If 

one of the HER family members is labelled with a donor conjugated primary antibody and 

another HER receptor is labelled with an acceptor conjugated primary antibody, the detection 

of FRET yields proximity information interpreted as heterodimerization.   

To identify and quantify FRET we used Fluorescence Lifetime Imaging Microscopy 

(FLIM). The fluorescence lifetime refers to the average time the molecule stays in its excited 

state before emitting a photon, which is an intrinsic property of a fluorophore. Fluorescence 

lifetime is sensitive to the local environment including pH, refractive index, temperature and 

insensitive to change in concentration and laser excitation intensity. Time-resolved 

measurements can distinguish between effects due to FRET or probe concentration. For 

example, a low donor fluorescence intensity can be caused by either a low donor 

concentration or efficient quenching by FRET—but only in the latter case is the fluorescence 

decay shortened. Measurements of the fluorescence lifetime are less susceptible to artefacts 

arising from scattered light, photobleaching, non-uniform illumination of the sample, light path 

length, or excitation intensity variations compared to fluorescence intensity measurements. 

[46] 



FRET/FLIM measures the fluorescence lifetime of the donor in the absence and 

presence of the acceptor and allows for the distinction between average FRET efficiency and 

FRET sub-population, independent of the local concentration and stoichiometry of donor and 

acceptor. If the stoichiometry is not known, i.e. the sample contains both interacting and non-

interacting donors, then a bi-exponential donor fluorescence decay would result. The non-

interacting donors do not undergo FRET, and thus emit fluorescence with the lifetime of the 

unquenched donor. The donors undergoing FRET exhibit shortened fluorescence decay. The 

ratio of the preexponential factors, or amplitudes, of the bi-exponential decay represents the 

ratio of interacting donors undergoing FRET to those not interacting[47]. 

FLIM can be based on various optical and electronic principles.[48] We have 

developed a custom-built inverted microscope system operating in the single-photon 

excitation regime as described elsewhere[49].The FLIM images were analysed to produce 

distinct lifetimes or a distribution of lifetimes across the image depending on the number of 

collected photons and the exponential model used.  The donor fluorescence was fit to a multi-

exponential decay using in-house written software (TRI2) utilising a Levenberg-Marquardt 

algorithm.  Pseudo-colour fluorescence lifetime maps were also produced using TRI2.   

Previously, we applied our FRET/FLIM technique to assess various HER receptor 

dimerization in different cancer cell models, xenografts, FFPE tissues and recently to 

circulating exosomes from cells, xenograft models and patients as detailed in the next section. 

We have shown in MCF7 breast cancer cells that erlotinib and gefitinib, but not lapatinib induce 

EGFR homodimerization[50]. Also, we have demonstrated in the same cell model the 

existence of EGFR-HER4 dimers and their importance to cell motility [51]. In Hcc1954 breast 

cancer cells we have shown that gefitinib treatment leads to enhanced EGFR 

homodimerization[52]. Finally, our aim was to apply this assay to tumour samples in order to 

assess the prognostic significance and predictive value of HER receptor dimerization in 

various cancers. In the first clinical application of this technique we quantified EGFR-HER3 

dimerization in FFPE tissues from basal-like breast cancer patients treated with a neoadjuvant 

anti-EGFR treatment (cetuximab or patritumab) and suggested that increased HER3 

expression and HER3 activation may mediate residual tumour growth after EGFR-targeted 

therapy [1]. Figure 1 shows an illustration of the tumour microenvironment (Fig. 1A) and the 

labelling scheme used to detect EGFR-HER3 FRET (Fig. 2B). The EGFR and HER3 receptors 

were labelled with fluorescently conjugated cytoplasmic primary antibodies Alexa 546 F4 

(EGFR) and Cy5 2F12 (HER3). The fluorescence lifetime of the donor is measured in the 

absence and in the presence of the acceptor and the FRET efficiency is calculated according 

to the equation EFRET = 1 - DA/D. Lifetime images are reconstructed pixel by pixel and pseudo 

colored. Representative FRET/FLIM images of the FRET efficiency in two distinct TMAs 

before (low FRET efficiency shown as dark blue in the donor lifetime pseudocolor map) and 



after the treatment (high FRET 

efficiency shown as 

turquoise/orange in the donor 

lifetime pseudocolor map). We 

established that there is a 

physical interaction (rewiring) 

between the two receptors in 

resistance development, 

where EGFR-targeted 

therapies in TBNC patients 

residual cancer burden post 

neoadjuvant EGFR therapy, 

were shown to induce HER3 

activation as well as an 

increase in HER3 in 70% of 

patients, pointing towards 

EGFR-HER3 rewiring post-

treatment. We suggest that 

this change in receptor status 

may prevent therapy induced 

tumour regression. Two key 

points highlighted in this study 

were the importance to enrol 

patients on therapies specific 

to multiple receptor status 

(changes in the abundance of 

EGFR and HER3 in residual 

tumours), as well as evidence 

of oncogenic-rewiring in 

patients treated with anti-

EGFR therapies that can be 

seen by an increase in EGFR-HER3 dimer quantities with treatment.  

Another example is the HER2-HER3 dimer which has been shown to drive proliferation 

and tumour progression. Targeting of this dimer with pertuzumab alongside chemotherapy 

and trastuzumab, has shown significant clinical utility. By quantifying the HER2-HER3 dimer 

in 131 formalin fixed paraffin embedded (FFPE) breast cancer tissue microarrays from 

METABRIC patients we found that the extent of HER2-HER3 dimer formation predicts the 

 

Figure 1. Increased HER1-HER3 interaction in breast 

cancer during neoadjuvant treatment with cetuximab (as 

previously described by Tao et al[1]) comparing pre-

treatment biopsy and post-treatment surgical sample. a. 

Time –resolved intenisty and FRET efficiency maps before 

and after the treatment. FRET efficiency was calculated 

EFRET = 1 - DA/D where  DA is the donor lifetime in the 

presence of acceptor and D is the donor lifetime in the 

absence of acceptor. Receptors were fluorescenly labelled 

with Anti-EGFR-IgG-Alexa 546 and Anti-HER3-IgG-Cy5 

antibodies. b. Schematic illustration of the tumour tissue and 

receptors staining using the above mentioned intra-cellular 

antibodies. Carcinoma cells are shown in red and blue to 

visualize cellular heterogeneity. Macrophages are shown in 

grey.  

 

 
a. 

b. 



likelihood of metastatic 

relapse up to 10 years after 

surgery, independently of 

HER2 expression[53].  

This technique could 

be applied to assess various 

HER receptor dimerization 

and other protein interactions 

by varying the primary 

antibodies. Of further interest 

would be to explore the 

predictive value of 

EGFR/cMet dimers. Other 

methodologies of HER 

receptor quantification which 

can give positive results at a 

distance between substrates 

of 30-40nm such as ligation 

of proteins have been 

reviewed elsewhere [54]. 

However, FRET is used to 

assess protein interaction for 

distances less than 10 nm. 

FRET/FLIM methods are the 

most sensitive in their ability 

to determine small changes 

in interaction distance and 

thus likely to represent direct 

interaction between 

receptors.  

Even though we have 

successfully used 

FRET/FLIM to quantify 

various heterodimers in 

human cancer tissues, the 

invasive nature of biopsies 

makes FLIM histology less 

  

Figure 2. FRET/FLIM fluorescence assay of circulating 

exosomes extracted from H1975 lung cancer tumour 

xenografts mice serum. a. Time-resolved intensity images 

and donor lifetime map of exosomes labelled with Anti-

EGFR-IgG-Alexa 546 and Anti-HER3-IgG-Cy5 extracellular 

antibodies. b. Schematic illustration of the fluorescent 

labelling geometry on exosomes and distance-dependence 

of FRET efficiency. c. Fluorescence decay data and 

exponential fit of the signal counts collected from all the 

pixels in the image shown in Fig. 2a. The fluorescence 

lifetime is at 1/e of the fluorescence intensity at time t=0.  

a.

b.

c.

Time





attractive to longitudinally monitor patient response to therapy. Molecular analyses similar to 

those in human tissues may be possible on a new type of liquid biopsy for solid tumours based 

on analysing exosomes in the patients’ blood.  

 

5. Circulating exosomes 

Back in 2014, Ng and Beck proposed an alternative approach for personalised cancer 

medicine – the “C2c (cancer to chronic disease)” approach[55]. Their proposal was to convert 

current cancer treatments into regimens throughout the disease progression that mimic 

manageable chronic diseases in the clinic, by combining different state-of-the-art tools and 

strategies taken from multiple disciplines (physics, biology, and medicine). A key part of C2c 

was to develop advanced tools for liquid biopsy analysis. The advantages of liquid biopsy over 

tissue biopsy are obvious. Firstly, the minimally invasive procedure of obtaining patient blood 

will allow for frequent and longitudinal collection of samples, offering continual monitoring of 

the cancer throughout the disease progression. Secondly, collecting samples from circulating 

blood allows the capture of information originating from tumour sites all around the body. In 

contrast to the solid biopsy of a local region – which has long been known to be an inaccurate 

representation of the patient’s cancer status [5, 56] – liquid biopsies could potentially 

overcome inter- and intratumour heterogeneity. Lastly, there is a plethora of information that 

can be obtained from a single blood sample. This includes circulating tumour cells, DNA, 

microRNA, proteins, onco-metabolites, and exosomes. 

 Exosomes are small (30 – 100 nm) vesicular bodies of endocytic origin, and are 

secreted by most cells in the body as a type of extracellular vesicles (EVs). They were first 

observed in 1981. In 1983 the secretion of these vesicles from multi-vesicular bodies (MVBs) 

were observed, then confirmed in 1985, and finally termed ‘exosomes’ in 1987[9, 11]. Tumours 

are also known to secret EVs, including exosomes. However it must be noted that the amount 

and content of these EVs and exosomes varies between different types of cancers, therefore 

the concentration of tumour exosomes in any given amount of patient serum is not known[7, 

11].Exosomes are unique in the way that they affect other cells. Even before the term 

‘exosome’ was coined, Poutsiaka et al had already demonstrated that melanoma MVBs are 

capable of activation of immune cells and interfere with immune response[57]. Wolfers et al 

demonstrated that exosomes can present tumour antigens to dendritic cells to activate anti-

tumour response[11].The immunogenic effects of tumour-derived exosomes were later 

demonstrated by others in-vivo[7, 8, 58].In vitro studies have shown many pro-tumourigenic 

functions of these tumour derived exosomes, such as their interactions with local and distant 

microenvironments (such as the stroma) to increase cell motility, promote migration and 

metastasis[10, 59-63], as well as proangiogenic effects upon interactions with endothelial[64, 



65]. All these are possible because of their specific biogenesis pathway, which allows the 

vesicular contents as well as receptors found on the vesicular surface to remain functionally 

active. By targeting these active RTKs on the surface of exosomes, Coban, Weitsman and Ng 

et al. (data not published) have recently demonstrated that it is possible to apply FRET/FLIM 

technology to interrogate the HER heterodimers on circulating exosomes from lung cancer 

xenografts (Fig. 2). Fig. 2a shows the time-resolved intensity image and the corresponding 

donor lifetime pseudocolored map of circulating exosomes. Exosomes were extracted from 

mice serum using an optimized repeated centrifugation protocol as previously published and 

imaged after simple adsorption to a glass surface [9]. The receptors of interest were labelled 

with extracellular Anti-EGFR-IgG-Alexa 546 and Anti-HER3-IgG-Cy5. Fig. 2b shows the 

dependence of FRET efficiency on the D-A separation and illustrates the high FRET efficiency 

detection when the receptors are dimerized and no FRET occurring when the donor and 

acceptor labelled molecules are not in close proximity. The distance dependence of the FRET 

efficiency is plotted for a (D,A) pair with a Foerster radius of 60 Å. The fluorescence decay 

data and exponential fit of the photon counts collected from the exosome imaged in Fig. 2a is 

shown in Fig. 2c. The fluorescence life-time is determined by the time point at which the 

fluorescence intensity drops to 1/e of its value at the beginning of the measurement.  

 Considering the small size of exosomes (<100 nm) we utilized extracellular labelled 

antibodies to rule out FRET detection via simple proximity of the receptors cytoplasmic 

domains within these small extracellular vesicles. Their size also limits their accurate detection 

and imaging by conventional microscopy which is limited by optical diffraction. However, 

current single-molecule localization techniques have achieved resolutions of 20 to 50 nm 

which open the possibility of imaging and tracking of cancer-derived exosomes. Recently, 

using a generalized single-molecule high-resolution imaging with photobleaching (gSHRImP) 

method based on quantum dot blinking - which achieved a 15 nm lateral resolution - we were 

able to show that the measured number of EGFR receptors per super-resolved cluster 

together with the intra-cluster distances have predictive power for the phosphorylation of 

mitogen-activated protein kinase in a Hcc1943 breast cancer cell model[66]. Exosomes are 

enriched with a subset of specific proteins of the tetraspanin family (CD9, CD63 and CD81), 

members of the endosomal trafficking proteins (ESCRT-related proteins/Alix), heat-shock 

proteins, mRNA and miRNA and play an important role in cell-to-cell communication. In the 

future, the use of single-molecule localization microscopy to image exosomes would allow for 

the analysis of cancer metastasis-specific miRNA or protein distribution on the nanoscale 

which may provide new insights into the processes driving metastasis.  

As pointed out by Beck and Ng[55], liquid biopsy is imperative for the C2c approach in the 

management of cancer. When serology-based –omics are used alongside imaging, the 

combined sensitivities and specificities of molecular imaging and next-generation sequencing 



techniques will be able to facilitate early detection of the treatment-resistant variants that 

evolve as a mechanism of acquired resistance. Examples of other biomarkers are prostate-

specific antigen as exemplar protein biomarker, and 2-hydroxyglutarate as an example of 

epigenetic oncometabolite. By tracking liquid biopsies, clinicians will be able to monitor the 

ever-evolving -omics heterogeneity of the cancer, which in turn informs the next best 

treatment(s) as soon as any tumour evolution occurs. The ability to measure receptor status 

in circulating exosomes allows for the continual monitoring of cancer evolution in the long term. 

This is something that cannot be done by non-invasive imaging or biopsy, and thus makes a 

potentially valuable and novel tool that adds to the C2c approach. 

 

6. Conclusions 

 

It had long been observed that different cancers utilise different mechanisms to rewire their 

signalling cascades, which leads to resistance development against cancer therapies [35]. In 

order to improve current prognosis, outcome prediction, and long term efficacy of treatments 

in the clinic, it is important to gain an in-depth understanding of the underlying mechanisms of 

signalling rewiring that regulate drug resistance. 

 The initial exosomal measurement of receptor status at diagnosis will help making 

decisions on patient treatment, as an added parameter to other biomarkers [53]. The ability to 

measure receptor status in circulating exosomes also allows the continual monitoring of 

cancer evolution in the long term. Upon identification of oncogenic rewiring, via FRET/FLIM 

observation in changes of receptor dimerization status, clinics can use this information to 

adjust the treatment used for each individual patient. Strategies include designing 

combinational and/or adjuvant therapies to supress the newly rewired signally cascades, or in 

some cases even changing the whole regimen altogether to counteract any observed 

oncogenic rewiring in the individual. As suggested by many and demonstrated by some 

studies, this combinatorial targeted approaches have very positive outcome in suppression of 

the rewired resistances[16, 33, 35, 53, 67, 68].This longitudinal monitoring of receptor 

dimerisation sheds light on the potential of C2c approach to personalized medicine. Taken 

together, FLIM histology and exosomal FLIM can be combined to form a powerful tool for 

monitoring receptor signal rewiring to predict clinical outcome as well as to stratify treatment. 

The ultimate objective is to use protein network rewiring information to stratify and guide future 

therapies that can overcome primary or acquired resistance and either turn cancer into a 

chronic disease or achieve cure. 

With rising interest in exosomes as a platform, receptor dimers as a biomarker, and exosomal 

FRET/FLIM as a potential tool, many ongoing studies and clinical trials in different cancers - 

including colorectal[69], breast[70], lung[71], head and neck [72], and more - are all producing 



data that are compiling and contributing to bringing different aspects of this into clinic. Whilst 

still a long way from completion, the C2c approach of combining biology, physics and medicine 

to stratify and personalise cancer medicine will take a major step forward with the addition of 

this new tool. 
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