
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1148/radiol.2017161375

Document Version
Publisher's PDF, also known as Version of record

Link to publication record in King's Research Portal

Citation for published version (APA):
Gourtsoyianni, S., Doumou, G., Prezzi, D., Taylor, B., Stirling, J. J., Taylor, N. J., Siddique, M., Cook, G. J. R.,
Glynne-Jones, R., & Goh, V. (2017). Primary Rectal Cancer: Repeatability of Global and Local-Regional MR
Imaging Texture Features. Radiology, 161375. https://doi.org/10.1148/radiol.2017161375

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 26. Dec. 2024

https://doi.org/10.1148/radiol.2017161375
https://kclpure.kcl.ac.uk/portal/en/publications/8c559bb7-438a-49e9-ba14-eba3682ebc18
https://doi.org/10.1148/radiol.2017161375


Original Research 
n

 Technical Developm
ents

Radiology: Volume 000: Number 0—   2017  n  radiology.rsna.org� 1

1 From the Department of Radiology (S.G., D.P., V.G.) 
and PET Centre (J.J.S., G.J.R.C.), Guy’s and St Thomas’ 
Hospitals NHS Foundation Trust, Level 1, Lambeth Wing, 
St Thomas’ Hospital, Westminster Bridge Road, London, 
SE1 7EH; Division of Imaging Sciences and Biomedical 
Engineering, King’s College London, London, England 
(G.D., D.P., B.T., J.J.S., M.S., G.J.R.C., V.G.); and the Cancer 
Centre, Mount Vernon Hospital, Northwood, England (N.J.T., 
R.G.). Received June 15, 2016; revision requested August 
10; revision received December 7; accepted January 5, 
2017; final version accepted February 1. Address corre-
spondence to V.G. (e-mail: Vicky.goh@kcl.ac.uk ).

This work was financially supported by the Department of 
Health through the National Institutes of Health Research 
Biomedical Research Centre award to Guy’s and St 
Thomas’ NHS Foundation Trust, in partnership with King’s 
College London and the King’s College Hospital NHS 
Foundation Trust, and the Comprehensive Cancer Imaging 
Centre, funded by Cancer Research UK and Engineering 
and Physical Sciences Research Council in association with 
the Medical Research Council and Department of Health.

Published under a CC BY 4.0 license.

Purpose: To assess the day-to-day repeatability of global and local-
regional magnetic resonance (MR) imaging texture fea-
tures derived from primary rectal cancer.

Materials and 
Methods:

After ethical approval and patient informed consent were 
obtained, two pretreatment T2-weighted axial MR imaging 
studies performed prospectively with the same imaging 
unit on 2 consecutive days in 14 patients with rectal can-
cer (11 men [mean age, 61.7 years], three women [mean 
age, 70.0 years]) were analyzed to extract (a) global first-
order statistical histogram and model-based fractal fea-
tures reflecting the whole-tumor voxel intensity histogram 
distribution and repeating patterns, respectively, without 
spatial information and (b) local-regional second-order 
and high-order statistical texture features reflecting the 
intensity and spatial interrelationships between adjacent 
in-plane or multiplanar voxels or regions, respectively. Re-
peatability was assessed for 46 texture features, and mean 
difference, 95% limits of agreement, within-subject coef-
ficient of variation (wCV), and repeatability coefficient (r) 
were recorded.

Results: Repeatability was better for global parameters than for 
most local-regional parameters. In particular, histogram 
mean, median, and entropy, fractal dimension mean and 
standard deviation, and second-order entropy, homoge-
neity, difference entropy, and inverse difference moment 
demonstrated good repeatability, with narrow limits 
of agreement and wCVs of 10% or lower. Repeatability 
was poorest for the following high-order gray-level run-
length (GLRL) gray-level zone size matrix (GLZSM) and 
neighborhood gray-tone difference matrix (NGTDM) pa-
rameters: GLRL intensity variability, GLZSM short-zone 
emphasis, GLZSM intensity nonuniformity, GLZSM inten-
sity variability, GLZSM size zone variability, and NGTDM 
complexity, demonstrating wider agreement limits and 
wCVs of 50% or greater.

Conclusion: MR imaging repeatability is better for global texture pa-
rameters than for local-regional texture parameters, in-
dicating that global texture parameters should be suffi-
ciently robust for clinical practice.

Published under a CC BY 4.0 license. 
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level across longitudinal voxels; and var-
iations in zones or regions of intensity). 
The repeatability of these different tex-
ture parameters remains unknown in 
rectal cancer, there being no published 
studies with MR imaging to date (to our 
knowledge). Repeatability, an indica-
tion of measurement error, is essential 
information for clinical trials and future 
clinical practice; for example, if these 
quantitative parameters are used to 
augment therapy assessment. Thus, the 
aim of our study was to assess the day-
to-day repeatability of global and local-
regional MR imaging texture features 
derived from primary rectal cancer.

Materials and Methods

Patients
Institutional review board approval and 
informed consent were obtained for 
this study. Adults with locally advanced 
rectal cancer (stage  T3N-positive or 
T4N0) who were scheduled to undergo 
chemotherapy and radiation therapy 
(45 Gy in 25 fractions with concomi-
tant capecitabine 850 mg/m2) prior to 
surgery were recruited prospectively 
for a study investigating response bio-
markers to preoperative chemotherapy 

quantitative method to portray this in-
formation, facilitated by the availability 
of texture analysis software platforms in 
clinical and research practice (3–6).

Results of a number of magnetic 
resonance (MR) imaging–based studies 
have now suggested that texture analysis 
may augment conventional imaging in 
cancer therapy response assessment 
(7–10) and may have a role as a prog-
nostic and predictive biomarker, either 
alone or combined with clinical and 
genomic information (7,11). To date, 
there have been few studies assessing 
the robustness of such analysis (12–16). 
Image heterogeneity may be quantified 
by a number of postprocessing methods 
that address the variation of gray levels 
within a volume of interest, either on a 
global (whole-tumor) or local-regional 
(intratumoral, in-plane, or multiplanar) 
scale (Table 1, Tables E1–E7 [online]). 
These include (a) global model-based 
parameters such as fractal dimension 
and lacunarity, (b) global first-order 
statistical parameters derived from 
the gray-level intensity histograms (eg, 
mean, median, skewness, kurtosis, 
first-order entropy, and energy, also 
known as uniformity), (c) local second-
order statistical parameters derived 
by using co-occurrence matrixes that 
reflect the spatial and signal intensity 
interrelationships between adjacent in-
plane voxels (eg, contrast, homogene-
ity, second-order entropy, and energy), 
and (d) local-regional high-order pa-
rameters that examine the relationship 
between neighboring voxels in adjacent 
imaging planes (these include NGTDM 
parameters [eg, coarseness, contrast, 
busyness, complexity], which describe 
the dynamic range of intensities at a lo-
cal level; run-length parameters, which 
describe the variation in signal intensity 

Published online before print
10.1148/radiol.2017161375  Content codes:   

Radiology 2017; 000:1–10

Abbreviations:
CI = confidence interval
GLCM = gray-level co-occurrence matrix
GLZSM = gray-level zone size matrix
NGTDM = neighborhood gray-tone difference matrix
wCV = within-subject coefficient of variation

Author contributions:
Guarantors of integrity of entire study, S.G., V.G.; study 
concepts/study design or data acquisition or data analysis/
interpretation, all authors; manuscript drafting or manu-
script revision for important intellectual content, all authors; 
manuscript final version approval, all authors; agrees to 
ensure any questions related to the work are appropri-
ately resolved, all authors; literature research, G.D., M.S., 
G.J.R.C.; clinical studies, S.G., J.J.S., G.J.R.C.; experimental 
studies, G.D., D.P., N.J.T., G.J.R.C., R.G.; statistical analysis, 
G.D., B.T., M.S., G.J.R.C., V.G.; and manuscript editing, S.G., 
G.D., D.P., J.J.S., N.J.T., M.S., G.J.R.C., V.G.

Conflicts of interest are listed at the end of this article.

Advances in Knowledge

nn Several texture parameters dem-
onstrated good repeatability, 
with narrow limits of agreement 
and within-subject coefficients of 
variation (wCVs) of 10% or 
lower.

nn Global parameters that provided 
a global measure of signal 
distribution and demonstrated 
good repeatability included (a) 
histogram parameters (first-order 
histogram mean, median, and 
entropy) and (b) model-based 
fractal dimension mean and stan-
dard deviation.

nn Local parameters within a 
defined section within the lesion 
that reflected the intratumoral 
intensity and spatial interrela-
tionships between adjacent in-
plane voxels and demonstrated 
good repeatability included sec-
ond-order gray-level co-occur-
rence matrix entropy, homoge-
neity, difference entropy, and 
inverse difference moment.

nn Repeatability was poorest for 
high-order texture parameters 
that provided information about 
intratumoral local-regional inten-
sity and spatial interrelationships 
between multiplanar voxels or 
regions (in particular, several 
neighborhood gray-tone differ-
ence matrix and gray-level zone 
size parameters showed wCVs of 
50% or greater).

Implication for Patient Care

nn The day-to-day repeatability of 
MR imaging global whole-tumor 
texture parameters is excellent 
for rectal cancer and opens the 
possibility of future clinical usage 
of whole-tumor MR imaging tex-
ture analysis in view of its poten-
tial prognostic information.

It is now recognized that tumors may 
demonstrate considerable biologic 
heterogeneity that influences their 

clinical outcome (1). Heterogeneity is 
also apparent phenotypically and can 
be appreciated in medical images (2) 
where traditionally radiology descriptors 
such as heterogeneous signal intensity 
or enhancement, mixed signal pattern, 
presence of areas of necrosis, hemor-
rhage, or calcification have been used to 
capture such morphologic information. 
Descriptive approaches have a clinical 
role but have limitations, and there has 
been increasing interest in alternative, 
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[mean age, 70.0 years; range, 60–78 
years]).

MR Imaging and Image Analysis
The pretreatment baseline MR imaging 
examinations were performed on con-
secutive days to allow assessment of 
day-to-day repeatability by using a 1.5-T 
system (Avanto and Symphony; Siemens, 
Erlangen, Germany). Both MR imag-
ing examinations in each patient were 
performed on the same imaging unit by 
the same operator. No distention of the 
rectum was performed, and no rectal 
contrast material was administered. The 
T2-weighted axial turbo spin-echo pelvic 
MR images (repetition time msec/echo 
time msec, 4000/100; field of view, 263 
3 350; matrix, 288 3 512 mm; section 
thickness, 6 mm; intersection gap, 1.8 
mm) were selected and exported for fur-
ther analysis. Texture analysis was per-
formed by using an in-house program 
based on Matlab (Mathworks, Natick, 
Mass) to extract global whole-tumor 
and local-regional intratumoral features 
by using first-order, second-order, and 
high-order statistical methods and mod-
el-based methods (Table 1, Tables E1–
E7 [online]). Image analysis was per-
formed separately by two readers (G.D. 
[reader 1] and S.G. [reader 2], with 1 
year and . 10 years of experience in MR 
imaging, respectively).

A region of interest was defined 
around the visualized tumor border 
by each reader on each axial image to 
segment a tumor volume for analysis 
(Figure), and subsequent analysis was 
automated within the software plat-
form. A medium smoothing filter and 
32-bin width were applied for quan-
tization by the software. Global and 
local-regional texture features as listed 
in Table 1 and Tables E1–E7 (online) 
were extracted automatically for the 
defined tumor volume. This process 
was repeated for the second baseline 
MR imaging study, and the same global 
whole-tumor and local-regional intratu-
moral texture features were extracted 
for the defined tumor volume.

Statistical Analysis
To assess repeatability, the mean differ-
ence and 95% limits of agreement (with 

examinations on consecutive days. 
Two patients subsequently declined a 
second baseline MR imaging examina-
tion, and one had hepatic metastatic 
disease, leaving a study group of 14 pa-
tients (11 men [mean age, 61.7 years; 
range, 52–79 years] and three women 

and radiation therapy from May 2009 
through January 2012. Exclusion crite-
ria were contraindications to contrast 
material–enhanced MR imaging and 
metastatic disease at staging. Seven-
teen patients initially consented to un-
dergo two pretreatment MR imaging 

Table 1

Summary of Global and Local-Regional Features Extracted for Each Tumor

Type of Measure  
and Measure Scale Method Parameters

First order
  Histogram  

statistics
Global Describes the distribution  

of voxel signal intensity  
values without spatial 
information.

Mean, median, skewness, kurtosis, 
entropy, and energy

Second order
  GLCM Local Describes the statistical 

interrelationships between 
voxels with similar or dissimilar 
signal intensity values within 
an imaging plane.

Entropy, homogeneity, energy, 
contrast, autocorrelation, cluster 
shade, cluster prominence, 
difference entropy, difference 
variance, dissimilarity, inverse 
difference moment, maximum 
probability, sum average, sum 
entropy, and sum variance

  Gray-level  
difference matrix

Regional Describes the difference  
in signal intensity and 
displacement between two 
voxels within an imaging plane.

Mean, entropy, variance, and 
contrast

High order
  NGTDM Local Describes the signal intensity 

and spatial interrelationship 
between neighboring voxels 
between adjacent image 
planes.

Coarseness, contrast, busyness, 
complexity, and texture strength

  Gray-level  
run length

Regional Describes the signal intensity  
and spatial interrelationship 
along a longitudinal run of 
neighboring voxels.

Short-run emphasis, long-
run emphasis, gray-level 
nonuniformity, run-length 
nonuniformity, intensity 
variability, and run-length 
variability

  GLZSM Regional Describes the distribution of 
similar and dissimilar regions 
with intensity variations

Short zone emphasis, long 
zone emphasis, intensity 
nonuniformity, zone length 
nonuniformity, intensity 
variability,and size zone 
variability

Model based
  Fractal analysis Global Describes repetitive patterns 

within an image extracted by 
using filter grids.

Fractal dimension mean, fractal 
dimension standard deviation, 
lacunarity, and Hurst exponent

Note.—GLCM = gray-level co-occurrence matrix, GLZSM = gray-level zone size matrix (Figure), NGTDM = neighborhood gray-
tone difference matrix.
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narrow limits of agreement with low 
within-subject variability of 10% or less. 
Cluster shade, cluster prominence, and 
sum entropy demonstrated only mod-
erate limits of agreement and within-
subject variability of 30% or more for 
at least one observer.

Repeatability was poorest for high-
order local-regional parameters (Tables 
6–8), which reflects the interrelation-
ship between multiplanar voxels. GL-
ZSM and NGTDM parameters, with the 
exception of NGTDM coarseness, dem-
onstrated poorer limits of agreement 
and within-subject variability of 30% 
or greater for at least one observer. In 
particular, NGTDM complexity, gray-
level run-length intensity variability, 
GLZSM short-zone emphasis, GLZSM 
intensity nonuniformity, GLZSM inten-
sity variability, and GLZSM size zone 
variability demonstrated within-subject 
variability of 50% or greater.

Discussion

Low measurement error is essential 
for any quantitative technique to be 
translated into clinical practice. In our 
study, we found that global methods 
that reflect the voxel distribution within 
the whole tumor demonstrated higher 
repeatability than did local-regional 
methods that describe the intervoxel 
relationships on a local or regional 
level. Specifically, global first-order 

The difference between two measure-
ments for the same subject will be less 
than this value in 95% of cases.

Results

There were 10 T3N1 tumors, three 
T3N2 tumors, and one T4N0 tumor; 
mean tumor length was 50 mm (range, 
30–85 mm). The mean differences, 
95% limits of agreement, wCVs, and re-
peatability coefficients for the 46 image 
texture parameters are summarized in 
Tables 2–8 for both observers. Day-to-
day repeatability was variable depend-
ing on the class and type of parameter.

Repeatability was generally better 
for whole-tumor global parameters 
(Tables 2, 3) than for intratumoral 
local-regional parameters, with the 
exception of first-order skewness, kur-
tosis, fractal lacunarity, and Hurst ex-
ponent. In particular, first-order mean, 
median, and entropy and fractal dimen-
sion mean and standard deviation dem-
onstrated narrow limits of agreement, 
with low within-subject variability of 
10% or less. The repeatability of first-
order energy was also acceptable, with 
the within-subject variability ranging 
from 10% to 15%.

For second-order in-plane local-
regional parameters (Tables 4, 5), only 
GLCM entropy, GLCM homogeneity, 
GLCM difference entropy, and GLCM in-
verse difference moment demonstrated 

95% confidence intervals [CIs] for the 
upper and lower limits of agreement) 
were determined for each of the tex-
ture parameters (17) for each observer. 
The mean difference reflects the dif-
ference between two separate individ-
ual measurements, while the limits of 
agreement provide the 95% CIs for the 
difference between individual measure-
ments between different studies.

The within-subject coefficient of var-
iation (wCV), representing the within-
subject variability of parameters and ex-
pressed as a percentage, was calculated 
by dividing the within-subject standard 
deviation by the group mean as follows:

	

Σ

=

2

 / 2

wCV  
mean

d

n ,
�

where d is the difference and n is the 
number of subjects. wCVs of greater 
than 50% were considered to indicate 
unreliability for clinical implementation.

The repeatability coefficient rep-
resenting the precision of repeated 
measures was calculated as follows:

	
Σ

i i

2

2  1 .96   / 2
d

n
,
�

where d is the difference and n is the 
number of subjects. This is a 95% CI: 

Segmentation of a rectal tumor for heterogeneity analysis: An example of tumor delineation on, A, a single axial MR image, B, a corresponding surface histogram plot, 
and, C, a subsequent whole-tumor composite volume on which analysis was performed.
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poorly reproducible across the two MR 
imaging examinations. Although our 
observers had different levels of MR 
imaging experience, the level of repeat-
ability was consistent for most param-
eters. Discrepancies, where present, 
were primarily related to high-order 
local-regional parameters—for exam-
ple, NGTDM complexity, busyness, and 
contrast; gray-level run-length intensity 
and gray-level variability; and GLZSM 

GLCM homogeneity, GLCM difference 
entropy, and GLCM inverse difference 
moment demonstrated the narrow-
est limits of agreement, from 20.29 
to +0.29, 20.70 to +0.66, 20.099 to 
+0.10, 20.29 to +0.29, and 20.099 to 
+0.101, respectively.

Repeatability was poorest for high-
order local-regional parameters. GL-
ZSM and NGTDM parameters, with the 
exception of NGTDM coarseness, were 

mean, median, and entropy and frac-
tal dimension mean and standard de-
viation demonstrated narrow limits 
of agreement, with low within-subject 
variability of 10% or less. First-order 
energy was also acceptable, with the 
within-subject variability ranging from 
10% to 15% and thus being sufficiently 
robust for clinical practice. Of the local-
regional parameters, gray-level differ-
ence matrix entropy, GLCM entropy, 

Table 2

Repeatability between Two Baseline MR Imaging Examinations for Global First-Order Statistical Histogram Parameters

Parameter and 
Reader Mean Difference 95% Limits of Agreement 95% CI for Lower Limits 95% CI for Upper Limits wCV (%) Repeatability Coefficient

Mean
  Reader 1 +1.37 251.38, +48.65 272.94, –22.35 +25.09, +75.67 8.85 47.28
  Reader 2 24.07 255.68, +47.53 281.49, –29.88 +21.73, +73.34 9.05 49.36
Median
  Reader 1 21.46 249.28, +46.36 273.19, –25.37 +22.44, +70.26 8.69 45.22
  Reader 2 24.21 254.54, +46.11 279.71, –29.38 +20.95, +71.28 9.12 48.21
Skewness
  Reader 1 20.092 20.74, +0.55 21.06, –0.41 +0.23, +0.88 25.23 0.64
  Reader 2 20.11 21.00, +0.77 21.44, –0.56 +0.33, +1.22 27.67 0.87
Kurtosis
  Reader 1 20.49 23.27, +2.28 24.66, –1.88 +0.89, +3.67 17.73 2.79
  Reader 2 20.43 25.92, +5.07 28.67, –3.17 +2.32, +7.81 26.50 5.25
Entropy
  Reader 1 20.025 20.46, +0.41 20.67, –0.24 +0.19, +0.62 2.97 0.41
  Reader 2 20.22 20. 38, +0.34 20.56, –0.20 +0.16, +0.52 2.40 0.34
Uniformity
  Reader 1 +0.0002 20.0035, +0.0039 20.0053, –0.0016 +0.0021, +0.0057 14.82 0.0035
  Reader 2 +0.0003 20.002, +0.003 20.004, +0.001 +0.002, +0.004 12.29 0.0025

Table 3

Repeatability between Two Baseline MR Imaging Examinations for Global Fractal Parameters

Parameter and Reader Mean Difference 95% Limits of Agreement 95% CI for Lower Limits 95% CI for Upper Limits wCV (%) Repeatability Coefficient

Fractal dimension mean
  Reader 1 +0.013 20.10, +0.13 20.16, –0.045 +0.072, +0.19 2.17 0.11
  Reader 2 +0.014 20.044, +0.072 20.073, –0.015 +0.043, +0.10 1.19 0.061
Fractal dimension 

standard deviation
  Reader 1 20.00045 20.069, +0.069 20.10, –0.035 +0.034, +0.10 10.80 0.065
  Reader 2 20.0036 20.051, +0.043 20.074, –0.027 +0.019, +0.067 6.60 0.045
Lacunarity
  Reader 1 20.00054 20.012, +0.011 20.017, –0.0062 +0.0051, +0.016 27.90 0.011
  Reader 2 +0.0001 20.007, +0.007 20.011, –0.004 +0.004, +0.011 21.03 0.0069
Hurst exponent
  Reader 1 20.013 20.13, +0.10 20.19, –0.07 +0.045, +0.16 35.5 0.11
  Reader 2 20.0103 20.077, +0.056 20.11, –0.043 +0.023, +0.089 5.81 0.066
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imaging, to our knowledge. Fried et al 
(12) reported an average correlation co-
efficient of 0.67 for contrast-enhanced 
computed tomography (CT) of stage III 

There have been few studies inves-
tigating the repeatability of both global 
and local-regional texture parameters, 
and none have been published for MR 

short-zone emphasis. This is most likely 
to be related to the differences in voxels 
included in the volume of interest delin-
eation by the observers.

Table 4

Repeatability between Two Baseline MR Imaging Examinations for Local-Regional Second-Order Gray-Level Co-occurrence Matrix 
Texture Parameters

Parameter and Reader Mean Difference 95% Limits of Agreement 95% CI for Lower Limits 95% CI for Upper Limits wCV (%)
Repeatability 
Coefficient

Entropy
  Reader 1 20.022 20.70, +0.66 21.04, –0.36 +0.32, +0.99 5.73 0.64
  Reader 2 +0.036 20.58, +0.65 20.88, –0.27 +0.34, +0.95 5.40 0.58
Homogeneity
  Reader 1 +0.00086 20.099, +0.10 20.15, –0.049 +-0.051, +0.15 5.87 0.094
  Reader 2 20.012 20.068, +0.044 20.096, –0.040 +0.016, +0.072 3.38 0.058
Energy
  Reader 1 20.0002 20.031, +0.030 20.046, –0.015 +0.015, 0.046 27.63 0.028
  Reader 2 20.0042 20.035, +0.027 20.050, –0.019 +0.011, +0.042 21.18 0.030
Contrast
  Reader 1 20.075 23.66, +3.51 25.46, –1.87 +1.72, +5.31 21.00 3.39
  Reader 2 +0.083 23.34, +3.51 25.06, –1.63 +1.79, +5.22 24.35 3.24
Autocorrelation
  Reader 1 23.62 274.27, +67.03 2109.60, –38.94 +31.69, +102.35 24.64 67.05
  Reader 2 +3.65 255.60, +62.91 285.23, –25.97 +33.28, +92.54 23.30 56.38
Cluster shade
  Reader 1 231.56 2214.70, +151.57 2306.27, –123.13 +60.00, +243.15 32.38 183.55
  Reader 2 224.23 2338.00, +289.54 2494.89, –181.12 +132.64, +446.43 43.05 299.89
Cluster prominence
  Reader 1 21272.84 28714.67, +6168.98 212435.78, –4993.54 +2447.86, +9890.09 36.29 7452.37
  Reader 2 +32.85 21916.39, +1982.1 22891.08, –941.72 +1007.42, +2956.78 52.78 1840.67
Difference entropy
  Reader 1 +0.0034 -0.29, +0.29 20.44, –0.14 +0.15, +0.45 6.73 0.28
  Reader 2 +0.046 20.19, +0.28 20.30, –0.069 +0.16, +0.39 6.37 0.24
Difference variance
  Reader 1 20.075 23.67, +3.51 25.46, –1.87 +1.72, +5.31 21.00 3.39
  Reader 2 20.0022 20.62, +0.62 20.93, –0.31 +0.31, +0.93 13.87 0.58
Dissimilarity
  Reader 1 20.0022 20.62, +0.62 20.93, –0.31 +0.31, +0.93 13.7 0.58
  Reader 2 +0.071 20.29, –0.44 20.48, –0.11 +0.26, +0.61 11.14 0.37
Inverse difference moment
  Reader 1 +0.00086 20.099, +0.101 20.15, –0.049 +0.051, +0.15 5.87 0.095
  Reader 2 20.012 20.068, +0.044 20.096, –0.040 +0.016, +0.071 3.38 0.058
Maximum probability
  Reader 1 +0.00014 20.058, +0.058 20.087, –0.029 +0.029, +0.087 22.1 0.055
  Reader 2 20.0085 20.068, +0.051 20.097, –0.038 +0.021, +0.080 18.60 0.058
Sum average
  Reader 1 20.43 27.44, +6.58 210.96, –3.94 +3.08, +10.09 13.52 6.67
  Reader 2 +1.58 25.51, +8.67 29.06, +1.97 +5.12, +12.21 14.45 7.37
Sum entropy
  Reader 1 20.018 20.41, +0.37 20.59, –0.21 +0.18, +0.56 4.57 0.37
  Reader 2 +0.017 20.36, +0.40 20.56, –0.17 +0.20, +0.59 23.54 1.97
Sum variance
  Reader 1 210.77 2245.83, +224.29 2363.36, –128.29 +106.75, +341.83 26.79 222.83
  Reader 2 48.87 2179.59, +277.34 2293.83, –65.35 +163.09, +391.57 31.54 235.90
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The use of more than one statis-
tical method to evaluate repeatability 
reflects the fact that they provide com-
plementary information regarding in-
terstudy agreement. In our study, we 
selected Bland-Altman 95% limits of 
agreement, wCVs, and the repeatability 
coefficient, as they provide a measure of 
the variability of the parameters itself, 
a measure of the variability for individ-
uals within the study group, and the 
degree of measured parameter change 
that is likely to be beyond day-to-day 

that fractal dimension and lacunarity 
features in perfusion CT blood flow maps 
demonstrated coefficients of variation 
of less than 7.35% between studies. A 
further study of fluorine 18 fluorodeoxy-
glucose positron emission tomography 
statistic-based textural features in 16 
patients with esophageal cancer showed 
variable reliability, with intraclass corre-
lation coefficients ranging from 0.59 to 
0.99 (15). Our findings for T2-weighted 
MR imaging demonstrate a similar pat-
tern and degree of repeatability.

non–small cell lung cancer (NSCLC) in 
13 patients, with only 15 (23%) of the 
66 features studied (first-order [histo-
gram], second-order [GLCM] and high-
order [NGTDM] statistical parameters, 
as well as Laplacian of Gaussian filtra-
tion metrics) showing a correlation co-
efficient greater than 0.9 (12). Similarly, 
Balagurunathan et al (13) reported that 
66 (30.9%) texture features had a corre-
lation coefficient greater than 0.9 in 32 
patients with NSCLC undergoing non-
contrast CT. Sanghera et al (14) found 

Table 5

Repeatability between Two Baseline MR Imaging Examinations for Local-Regional Second-Order Gray-Level Difference Matrix Texture 
Parameters

Parameter and 
Reader Mean Difference 95% Limits of Agreement 95% CI for Lower Limits 95% CI for Upper Limits wCV (%) Repeatability Coefficient

Mean
  Reader 1 20.0027 20.62, +0.62 20.94, –0.31 +0.31, +0.93 13.89 0.59
  Reader 2 +1.33 20.40, +0.43 20.61, –0.19 +0.22, +0.64 10.70 0.39
Entropy
  Reader 1 +0.0034 20.29, +0.29 20.44, –0.14 +0.15, +0.45 6.76 0.28
  Reader 2 +0.007 20.21, +0.22 20.31, –0.098 +0.11, +0.33 5.16 0.20
Variance
  Reader 1 20.073 21.52, +1.37 22.24, –0.79 +0.65, +2.09 17.88 1.37
  Reader 2 +0.008 21.79, +1.81 22.69, –0.89 +0.91, +2.71 24.88 1.70
Contrast
  Reader 1 20.10 20.38, +0.36 25.66, –1.95 +1.75, +5.45 21.50 3.50
  Reader 2 +0.055 23.32, +3.43 25.02, –1.64 +1.75, +5.13 23.88 3.19

Table 6

Repeatability between Two Baseline MR Imaging Examinations for Local-Regional High-Order Neighborhood Gray-Tone Difference 
Matrix Texture Parameters

Parameter and Reader Mean Difference 95% Limits of Agreement 95% CI for Lower Limits 95% CI for Upper Limits wCV (%)
Repeatability 
Coefficient

Coarseness
  Reader 1 +0.034 247.39, +47.46 271.12, –23.68 +23.75, +71.18 19.43 44.76
  Reader 2 +0.13 215.59, +15.86 223.46, –7.73 +7.99, +23.72 9.08 14.34
Contrast
  Reader 1 +0.00043 20.0011, +0.0099 20.016, –0.0056 +0.0047, +0.015 34.70 0.0099
  Reader 2 20.0053 20.0089, +0.0079 20.013, –0.0047 +0.0037, +0.012 45.25 0.008
Busyness
  Reader 1 20.090 22.25, +2.07 23.33, –1.17 +0.99, +3.15 48.42 2.05
  Reader 2 +0.15 21.07, +1.36 21.68, –0.46 +0.75, +1.97 26.71 1.18
Complexity
  Reader 1 20.00092 20.022, +0.020 20.033, –0.011 +0.0098, +0.031 85.10 0.02
  Reader 2 20.00014 20.00047, +0.00019 20.00066, –0.00031 +0.00002, +0.00031 19.81 0.004
Texture strength
  Reader 1 20.16 21.64, +1.32 22.37, –0.89 +0.58, +2.05 32.3 1.43
  Reader 2 20.19 20.69, +0.29 20.94, –0.44 +0.049, +0.55 38.3 0.61
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Table 7

Repeatability between Two Baseline MR Imaging Examinations for Local-Regional High-Order Gray-Level Run-Length Texture Parameters

Parameter and Reader Mean Difference 95% Limits of Agreement 95% CI for Lower Limits 95% CI for Upper Limits wCV (%)
Repeatability 
Coefficient

Short-run emphasis
  Reader 1 20.0064 20.095, +0.082 20.14, –0.051 +0.038, +0.13 25.49 0.084
  Reader 2 20.0015 20.012, +0.0094 20.018, –0.0069 +0.0039, +0.015 33.44 0.011
Long-run emphasis
  Reader 1 25.17 294.72, +105.06 2144.67, –44.77 +55.11, +155.01 22.47 94.81
  Reader 2 +28.46 269.84, +126.76 2118.99, –20.69 +77.61, +175.92 19.49 108.23
Gray-level nonuniformity
  Reader 1 +118.98 22134.84, +1896.89 23142.83, –1126.85 +888.89, +2904.87 18.64 1916.63
  Reader 2 +520.83 22109.78, +3151.44 23425.16, –794.39 +1836.07, +4466.82 26.68 2683.98
Run-length nonuniformity
  Reader 1 230.38 2471.92, +411.12 2692.69, –251.15 +190.35, +631.89 16.94 420.91
  Reader 2 +37.80 21782.69, +1858.29 22692.99, –872.39 +947.99, +2768.59 22.49 1719.63
Intensity variability  

  (31023)
  Reader 1 215.94 2211.83, +179.95 2309.77, –113.88 +81.99, +277.89 23.05 187.48
  Reader 2 +64.87 2278.21, +407.95 2449.76, –106.66 +236.39, +579.49 51.03 347.81
Run-length variability  

  (31023)
  Reader 1 23.93 252.90, +45.05 277.39, –28.41 +20.56, +69.54 21.58 46.85
  Reader 2 +12.39 231.98, +56.78 254.17, –9.79 +34.59, +78.97 21.87 48.42

Table 8

Repeatability between Two Baseline MR Imaging Examinations for Local-Regional High-Order GLZSM Texture Parameters

Parameter and Reader Mean Difference 95% Limits of Agreement 95% CI for Lower Limits 95% CI for Upper Limits wCV (%) Repeatability Coefficient

Short zone emphasis
  Reader 1 20.014 20.11, +0.082 20.16, –0.062 +0.034, +0.13 90.25 0.094
  Reader 2 20.0026 20.042, +0.037 20.062, –0.023 +0.017, +0.057 43.44 0.038
Long zone emphasis
  Reader 1 +10.64 2108.60, +129.89 2168.23, –48.97 +70.26, +189.51 35.61 114.45
  Reader 2 +13.83 272.91, +100.57 2116.28, –29.57 +57.20, +143.94 23.13 86.23
Intensity nonuniformity
  Reader 1 27.85 272.36, +88.07 2112.47, –32.25 +47.96, +128.18 61.27 77.25
  Reader 2 +13.82 296.99, +124.62 2152.39, –41.58 +69.22, +180.03 71.32 108.01
Zone length nonuniformity
  Reader 1 20.75 217.49, +16.00 225.87, –9.12 +7.63, +24.38 39.03 15.88
  Reader 2 +8.66 232.88, +50.20 253.65, –12.10 +29.43, +70.97 20.74 42.72
Intensity variability
  Reader 1 +21.71 2215.64, +259.06 2334.33, –96.96 +140.38, +377.75 77.00 227.99
  Reader 2 +39.25 2349.13, +427.63 2543.34, –154.93 +233.43, +621.83 100.00 374.50
Size zone variability
  Reader 1 21.88 257.65, +53.89 285.53, –29.76 +26.00, +81.78 57.17 52.76
  Reader 2 +4.26 264.77, +73.29 299.29, –30.25 +38.77, +107.81 64.71 65.68

natural measurement variation in the 
therapy response setting.

Assessment of the repeatability 
of MR imaging texture parameters is 
highly relevant to rectal cancer. MR im-
aging plays a key role in the treatment 

of these patients (18). The additional 
information from texture analysis (3) 
may contribute to a more personalized 
management approach by providing 
prognostic and predictive information. 
Global first-order statistic-based (mean, 

standard deviation, skewness, kurtosis, 
entropy, and energy) and model-based 
metrics (fractal dimension, lacunarity) 
have been used most commonly to date 
because of their availability through 
commercial and open-access research 
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erogeneity of regional blood flow in rectal 
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(1.5 vs 3.0 T), and intensity normali-
zation algorithms (25) influence texture 
analysis, highlighting the importance of 
consistent methods. In our study, the 
MR imaging sequences were performed 
as part of a prospective research pro-
tocol and were therefore subject to 
standardization and quality control. In-
deed, the same MR imaging unit and 
operator were used for each patient. 
Therefore, our results reflect a “best-
case scenario” that may not necessarily 
be directly translatable to different MR 
imaging units with different protocols. 
However, the knowledge of the degree 
of variation in general remains relevant 
to future clinical practice. Our patient 
numbers were also small, reflecting the 
challenges of obtaining consent for a 
second acquisition that will not alter 
treatment and that is not perceived as 
having a direct clinical benefit.

In conclusion, few studies to date 
have assessed the repeatability of im-
age texture parameters. We found that 
the day-to-day fluctuations in MR imag-
ing texture parameters were lower for 
global parameters than for local-region-
al parameters. In particular, first-order 
histogram (mean, median, entropy) 
and model-based fractal parameters 
(fractal dimension mean, fractal dimen-
sion standard deviation) consistently 
demonstrated good repeatability, with 
narrow limits of agreement and a wCV 
of less than 10%, which is acceptable 
for clinical practice.
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