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A note on generalized hydrodynamics:
inhomogeneous fields and other concepts
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Department of Mathematics, King’s College London, Strand WC2R 2LS, UK

Abstract

Generalized hydrodynamics (GHD) was proposed recently as a formulation of hydrody-
namics for integrable systems, taking into account infinitely-many conservation laws. In
this note we further develop the theory in various directions. By extending GHD to all
commuting flows of the integrable model, we provide a full description of how to take
into account weakly varying force fields, temperature fields and other inhomogeneous
external fields within GHD. We expect this can be used, for instance, to characterize the
non-equilibrium dynamics of one-dimensional Bose gases in trap potentials. We further
show how the equations of state at the core of GHD follow from the continuity rela-
tion for entropy, and we show how to recover Euler-like equations and discuss possible
viscosity terms.
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1 Introduction

The emergence of hydrodynamics in many-body extended systems is based on the phenomenon
of local entropy maximization (often referred to as local thermodynamic equilibrium) [1–5].
This is the phenomenon according to which, at large times, the system decomposes into slowly
varying local “fluid cells" where homogeneous Gibbs states exist. At leading order in a deriva-
tive expansion, the ensuing dynamics on the Gibbs potentials is completely fixed by the local
conservation laws – this is often referred to as “pure hydrodynamics”, as viscosity terms are
absent. This is a powerful description, replacing the full many-body evolution, either quan-
tum or classical, by differential equations for the few (or at least fewer) relevant local state
parameters. It allows for the precise description of large-scale structures and the unearthing
of exact results, and its universal applicability has been demonstrated in various situations and
models [6–9]. In particular, it provides striking results in the context of quantum transport far
from equilibrium [10–17] (see also the review [18]).

Recently [19], see also the related work [20], the hydrodynamic idea was extended to
many-body integrable systems, where infinitely-many conservation laws are present. In this
context, entropy maximization is conjectured to generate states in the infinite-dimensional va-
riety of so-called generalized Gibbs ensembles1 (GGEs) [22, 23], which therefore are used to
characterize fluid cells. In [19], it was shown, in general diagonal-scattering integrable models
of quantum field theory including the Lieb-Liniger and sinh-Gordon models, that the infinite
system of conservation laws – for the infinite number of GGE potentials – can be recast into a
system of hydrodynamic equations for quantities characterizing occupations and densities of
quasi-particle states. In [20], the same equations were obtained in integrable quantum Heisen-
berg chains (the derivation making use of an additional assumption about the underlying dy-
namics). Interestingly, as will be studied in a coming work, these equations appear to give
a universal description of quantum and classical quasi-particle elastic scattering; they widely
generalize, for instance, hydrodynamic equations proven to emerge in the classical hard-rods
model [5, 24]. In the same context, the effect of a localized defect on the non-equilibrium
transport in quantum chains was also analyzed in [25, 26]. In fact even in free models, the
hydrodynamic idea, as a semi-classical approximation, has found many applications [27–32].

The purpose of this letter is to extend this “generalized hydrodynamics” (GHD) theory
further, within the quantum framework. We start by reviewing the main results of GHD in
Section 2. In Section 3, we show that the GGE equations of state, at the core of GHD, are
consequences of hydrodynamic entropy conservation. In Section 4 we show how to represent
the dynamics associated to all conservation laws, not just the Hamiltonian. Using this, in
Section 5 we derive GHD equations in the presence of external inhomogeneous fields, including
force fields. Finally, in Section 6 we connect with aspects of ordinary fluid dynamics, including
a derivation of Euler equations and a proposition for possible viscosity terms. We provide
additional details in appendices, and especially in Appendix A we discuss how, in general free
models, weak space-time variations of local densities and currents at large times guarantee
the emergence of local GGEs, hence of GHD.

We emphasize that the force-field equations obtained can serve as a powerful tool in de-
scribing the late time non-equilibrium dynamics of a one-dimensional Bose gas confined in a
weakly-varying trap potential. We also note that, recently, an alternative method to incorpo-
rate the inhomogeneity introduced by an external potential in a one-dimensional conformal
field theory was proposed in [33].

1This has been widely studied in quantum models, but similar ideas can be used within classical dynamics [21].
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2 Review of GHD

In this section we recall some of the basic concepts developed in [19] and [20], concentrating
on the approach taken in the former, which puts emphasis on hydrodynamics ideas. The basic
objects in the hydrodynamic theory of many-body extended systems are the local conserved
densities qi(x , t) and local currents ji(x , t). These are quantum operators satisfying, under
unitary dynamics, the continuity relations, or conservation laws,

∂tqi(x , t) + ∂x ji(x , t) = 0, (1)

as a consequence of the total charge Q i :=
∫

dx qi(x , t) being conserved ∂tQ i = 0. The set of
such local conservation laws is a characteristics of the many-body system.

In integrable systems, this set is infinite, and the charges Q i relevant to the problem span
the space of pseudolocal conserved charges [34]. In particular, entropy maximization of local
subsystems under constraints of these conservation laws, as occurs under unitary dynamics,
gives rise to GGEs, formally described by density matrices of the form2 exp

�

−
∑

i βiQ i

�

. It
was in fact shown rigorously [35] that, in homogeneous systems, the existence of the long
time limit implies that the stationary state is a GGE, where the completeness of the space of
pseudolocal charges plays an important role. We will denote averages in such GGEs as 〈· · ·〉β
(with β = (βi)i), and, for lightness of notation,

qi := 〈qi〉β , ji := 〈 ji〉β . (2)

The problem of pure generalized hydrodynamics, as formulated in [19], is a direct general-
ization of usual pure hydrodynamics (without viscosity): it is the continuity problem applied
to local cells where independent entropy maximization has occurred. That is, one assumes
β = β(x , t), and writes

∂tqi + ∂xji = 0, (3)

where qi = 〈qi〉β(x ,t) and ji = 〈 ji〉β(x ,t).
A convenient way of fixing the hydrodynamic problem for a given model is to provide the

equations of state: relations connecting averages of currents to averages of densities. The
thermodynamic Bethe ansatz (TBA) formulation of GGE averages offers a powerful way of
obtaining these equations of state. In this formulation, the most natural objects are the quasi-
particles. Quasi-particles are parametrized by their internal quantum numbers a (parametriz-
ing the spectrum of the model) and a continuous “rapidity” parameter θ . In this letter we
concentrate on Galilean and relativistically invariant models, wherefore θ will be identified
with the velocity (Galilean) or the rapidity (relativistic). We will use the combined parameter

θ = (θ , a). (4)

The fundamental object that complete the full specification of the model is the differential
scattering ϕ(θ ,θ ′), describing the scattering between particles. By relativistic or Galilean
invariance, it depends on the rapidities or velocities only through their differences θ − θ ′.
In this paper we keep the discussion general and do not specify any particular model (any
particular choice of particle spectrum and differential scattering phase), except when stated
otherwise.

A conserved charge Q i is characterized, in terms of quasi-particles, by its one-particle eigen-
value hi(θ ). It will be convenient to consider the linear space of pseudolocal conserved charges
as a function space spanned by the his: we will denote Q[h] the conserved charge (a linear

2More precisely [35], the conserved densities qi form a basis for the Hilbert space H with inner product gen-
erated by their susceptibilities, and a GGE state is given by a path in a variety whose tangent space isH .
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functional of h) associated to one-particle eigenvalue h(θ), and likewise q[h] and j[h] for
the density and current. The density and current operators are also linear functionals of h.3

Therefore, in any state (it does not even need to be homogeneous or stationary), the aver-
ages 〈q[h]〉 and 〈 j[h]〉 are linear functionals of h, and we may consider the kernels ρp(θ ) (a
“quasi-particle density”) and ρc(θ ) (a “current spectral density”)

〈q[h]〉=
∫

dθ ρp(θ )h(θ ), 〈 j[h]〉=
∫

dθ ρc(θ )h(θ ) (5)

where here and below
∫

dθ =
∑

a

∫

dθ . These kernels are characteristics of the state. One
may conveniently introduce the effective velocity veff(θ ) which relates them:

ρc(θ ) =: veff(θ )ρp(θ ). (6)

The GGE equations of state, obtained from the TBA quasi-particle picture, which is the
requirement of the existence of β such that both

〈q[h]〉= 〈q[h]〉β =: q[h] and 〈 j[h]〉= 〈 j[h]〉β =: j[h] for all h, (7)

are the following integral relations for these kernels [19] (here and below prime symbols (′)
represent rapidity derivatives ∂ /∂ θ):

ρc(θ )
ρp(θ )

=
E′(θ ) +

∫

dαϕ(θ ,α)ρc(α)

p′(θ ) +
∫

dαϕ(θ ,α)ρp(α)
, (8)

where E(θ ) and p(θ ) are the energy and momentum of a particle of type a at velocity or
rapidity θ . These relations are independent of the state itself, they characterize the family of
GGE states for a given model. In terms, instead, of the doublet ρp(θ ) and veff(θ ), the GGE
equations of state can be represented as [19]

veff(θ ) = vgr(θ ) +

∫

dα
ϕ(θ ,α)ρp(α)

p′(θ )
(veff(α)− veff(θ )) (9)

with the group velocity vgr(θ ) := E′(θ )/p′(θ ) (that is, (8) and (9) are equivalent under (6)).
In this form, the equations of state of integrable systems are seen as equations specifying an
effective velocity of quasi-particles, as a modification of the group velocity that depends on
both the model and the state.

GGE equations of states mean that ρp(θ ) completely determine the state, as both q[h] and
j[h] may be evaluated once it is known. Hence the function ρp(θ ) is a state variable. Other
state variables exist. A particularly useful one is the occupation number n(θ ) (taking values
in [0,1]). Given n(θ ), consider the symmetric bilinear form4

(h, g) :=

∫

dθ
2π

h(θ )n(θ ) gdr(θ ) (10)

3This is because every matrix element of q[h] and j[h] is. Indeed, let hi be a basis of the space of one-particle
eigenvalues of conserved charges. Then Q[

∑

i aihi] =
∑

i aiQ[hi] by linearity. Since Q[hi](x) =
∫

dx q[hi](x),
by locality we must also have q[

∑

i aihi] =
∑

i aiq[hi] (this is up to a total derivative of a local field, which
can be set to zero by our choice of the density q[hi]). Thus linearity holds at the operator level, and therefore
q(x) =

∫

dθ h(θ )q̂(x;θ ) for some density q̂(x;θ ). For the current, linearity then follows from the general relation
between matrix elements of currents and densities (see e.g. appendix D of [19], equation D10).

4Although the fact that the bilinear form (h, g) is symmetric is not completely apparent from this definition, it
can be proven from it [36] (see also the short proof given in [19]).
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where the dressing operation is defined by solving

hdr(θ ) = h(θ ) +

∫

dα
2π
ϕ(θ ,α)n(α)hdr(α). (11)

Charge densities and currents are expressed in terms of n(θ ) as [19]

q[h] = (p′, h), j[h] = (E′, h). (12)

The nonlinear relation between the state variablesρp(θ ) and n(θ ) is 2πρp(θ ) = n(θ )(p′)dr(θ ),
and the effective velocity takes the simple form

veff(θ ) =
(E′)dr(θ )
(p′)dr(θ )

(13)

(see [19] for more details).
Finally, as a consequence of completeness of the set of functions h(θ ), the GHD equations

(3) can be expressed in various forms, using either state variables:

∂tρp(θ ) + ∂x(v
eff(θ )ρp(θ )) = 0 (14)

∂t n(θ ) + veff(θ )∂x n(θ ) = 0. (15)

The first form is immediate, and the second form can be derived from the first using the
equations of state. The second form, involving occupation numbers, is particularly useful
to solve initial-domain-wall problems (again see [19] for details).

Showing that GGE equations of state do indeed emerge in nontrivial integrable models is
of course extremely difficult, and will not be discussed here. See however appendix A for a
general discussion of how the GGE equations of state may emerge in free-particle models.

3 GGE equations of state from hydrodynamic entropy conserva-
tion

It was noted in [19, 20] that the density of available states ρs(θ ) = ρp(θ )/n(θ ), which takes
the form

2πρs(θ ) := p′(θ ) +

∫

dαϕ(θ ,α)ρp(α) = (p
′)dr(θ ), (16)

and the density of holes, defined asρh(θ ) := ρs(θ )−ρp(θ ), also satisfy the continuity equation
(14) (that is, the equation holds with the replacements ρp(θ ) 7→ ρs(θ ) and ρp(θ ) 7→ ρh(θ )).
Further, the fact that (14) holds for the densities of particles, states and holes with the same
effective velocity implies that the Yang-Yang entropy density also follows the same continuity
equation. The entropy density is

s(θ ) := ρs(θ ) logρs(θ )−ρp(θ ) logρp(θ )−ρh(θ ) logρh(θ ). (17)

Its integral
∫

dθ s(θ ) gives the specific entropy of the fluid cell at position x , t (that is, the
specific von Neumann entropy of the local GGE). It is found in [19] that

∂ts(θ ) + ∂x

�

veff(θ )s(θ )
�

= 0. (18)

The statement (18) provides an interesting physical interpretation of GGE equations of
states. Indeed, in ordinary pure hydrodynamics (with finitely-many conservation laws), any
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function of the state identified as an entropy must obey a similar, natural conservation law; the
exact form of the entropy is therefore related to the fluid equations of state.5 One may then
postulate that local conservation of entropy s(θ ) is a basic principle, in some way equivalent
to the GGE equations of state.

Assume the following.

(i) There exists a functional of ρp, denoted veff(θ ), with the following property. Define the
entropy density s(θ ), as a functional of ρp, by (17) and (16). If a space-time dependent
ρp(θ ) is nonzero (ρp(θ ) 6= 0 for all θ ) and satisfies the continuity equation (14), then
s(θ ) satisfies the continuity equation (18).

(ii) veff(θ )→ vgr(θ ) as ρp(θ )→ 0 (uniformly in θ ).

Then we show that the GGE equations of state (9) hold.
The proof is as follows. With ρh(θ ) = ρs(θ )−ρp(θ ), combining (14) and (18) gives

�

∂tρs(θ ) + ∂x(v
eff(θ )ρs(θ ))

�

log
ρs(θ )
ρh(θ )

= 0. (19)

Using ρp(θ ) 6= 0, we have log ρs(θ )
ρh(θ )

6= 0 hence ρs(θ ) satisfies the same continuity equation

with velocity veff(θ ). Let us replace, in the continuity equation for ρs(θ ) , the constitutive
relation (16). We obtain

0= p′(θ )∂x veff(θ )

∫

dαϕ(θ ,α)
�

∂tρp(α) + ∂x(v
eff(θ )ρp(α))

�

. (20)

Using the continuity equation for ρp(α), we then find

0= ∂x

�

p′(θ )veff(θ ) +

∫

dαϕ(θ ,α)(veff(θ )− veff(α))ρp(α))
�

. (21)

Therefore the expression in the square brackets on the right-hand side of (21) must be inde-
pendent of x . Since this holds for any x-dependent ρp(α), it must be independent of it. Using
the condition that the limit ρp(α) → 0 of the effective velocity gives the group velocity, we
finally find (9) as claimed.

In relation to the above result, it has recently been pointed out that entropy conservation
can be seen as the conservation of an effective Noether current associated to a certain symme-
try emerging at late times [38,39]. It would be illuminating to understand if similar concepts
can be applied to the specific fluid entropy s(x , t) =

∫

dθ s(θ ) (note that if we integrate (18)
over θ , we obtain a conservation law for the specific entropy s(x , t)). This might be the case,
as entropy conservation is a dynamical symmetry, and emerges only when the GHD descrip-
tion becomes sensible. In the context of classical many-body systems, for models that follow
trajectories consistent with quasi-static processes in thermodynamics, a symmetry whose con-
served charge is the entropy was found recently in [39]. Applying this finding to the present
situation might shed some light on the role of entropy in non-equilibrium dynamics.

4 Equations of states and GHD on commuting flows

In integrable systems, one may consider flows generated not only by the Hamiltonian, but also
by any other conserved quantity Qk; this will be useful when studying the effect of force fields

5The entropy is also related to viscosity terms, which must account for positive entropy production.
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in the next section. The goal of this section is to report on the main equations that generalize
GHD to such commuting flows. Since the conserved charges Qk are linear functionals of the
one-particle eigenvalues hk, we will also use the notation Qk =Q[hk].

Let us denote by tk the associated “time”, ∂tk
O := i[Qk,O ] (with t1 = t the ordinary time,

under Hamiltonian evolution Q1 = H). By involution, all flows commute, wherefore conserved
quantities Q i are also conserved with respect to all tk evolutions. There are associated currents
jk,i:

∂tk
qi + ∂x jk,i = 0, (22)

which are bilinear functionals of hk and hi , denoted by jk,i = j[hk, hi] (we will also use the
notations jk,i and j[hk, hi] for averages in GGEs)6. Generalized hydrodynamics may also
be applied to all these flows. Below we assume that the set of local conserved charges in
involution, from which GGEs are formed, with respect to time tk, is the same as that with
respect to the original time t – this is usually case in integrable systems. Thus local entropy
maximization is described by the same set of GGE states. By commutativity of the flows, under
local entropy maximization, local GGE potentials are well-defined functions simultaneously of
all time variables, β = β(x , {t}), and we have

∂tk
qi + ∂xjk,i = 0. (23)

Note that the currents jk,i are fixed by conservation, (22), only up to the addition of a con-
stant times the identity operator. We fix this gauge freedom, implicitly, by providing explicit
expressions for these currents in GGE states below.

Bilinearity implies, in general states, the existence of the kernel ρc(γ,θ ) (by abuse of nota-
tion, we use the same symbol ρc as in (5) but with two rapidity arguments in order to represent
this new kernel) such that

〈 j[h, g]〉=
∫

dγdθ ρc(γ,θ )h(γ)g(θ ). (24)

The GGE equations of state encompass relations between this kernel and ρp(θ ), generalizing
(8) in a natural manner. This can be obtained following the derivation of [19] and using the
results of [19, App D]:

ρc(γ,θ )
ρp(θ )

=
∂θδ(θ − γ) +

∫

dαϕ(θ ,α)ρc(γ,α)

p′(θ ) +
∫

dαϕ(θ ,α)ρp(α)
. (25)

This is the most general form of the equations of state, as integrating over γ against E(γ)
reproduces the GGE equations of state for the usual time evolution. Likewise, one may define a
γ-dependent group velocity vgr(γ,θ ) := ∂θδ(θ−γ)/p′(θ ) and a γ-dependent effective velocity

ρc(γ,θ ) =: veff(γ,θ )ρp(θ ), (26)

and the equations of state (25) are equivalent to

veff(γ,θ ) = vgr(γ,θ ) +

∫

dα
ϕ(θ ,α)ρp(α)

p′(θ )
(veff(γ,α)− veff(γ,θ )). (27)

Using the bilinear form (10), results of [19, App D] also enable us to express the density and
current associated to a conserved charge Qk, in any GGE state parametrized by the occupation

6Linearity of jk.i as a functional of hk follows from (22) and the fact that ∂tk
qi = i[Q[hk], qi].
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number n(θ ), as follows:7

q[h] =
�

p′, h
�

, j[h, g] = (h′, g). (28)

Note that integrating ρc(γ,θ ) (resp. veff(γ,θ )) against h(γ) gives a current spectral density
ρc[h](θ ) (resp. the effective velocity veff[h](θ )) corresponding to a flow produced by Q[h],
and we have

2π

∫

dγh(γ)ρc(γ,θ ) =: 2πρc[h](θ ) = n(θ )(h′)dr(θ ) (29)

and
∫

dγh(γ)veff(γ,θ ) =: veff[h](θ ) =
(h′)dr(θ )
(p′)dr(θ )

. (30)

with the usual effective velocity being veff(θ ) = veff[E](θ ). We have the equations of state

ρc[h](θ )
ρp(θ )

=
h′(θ ) +

∫

dαϕ(θ ,α)ρc[h](α)

p′(θ ) +
∫

dαϕ(θ ,α)ρp(α)
. (31)

or equivalently

veff[h](θ ) =
h′(θ )
p′(θ )

+

∫

dα
ϕ(θ ,α)ρp(α)

p′(θ )
(veff[h](α)− veff[h](θ )). (32)

The generalized hydrodynamic problem (23) including all commuting flows of a given
integrable model can then be recast as follows. Consider times th generated by Q[h] (that is,
∂thO = i[Q[h],O ]). Then

∂thρp(θ ) + ∂x

�

veff[h](θ )ρp(θ )
�

= 0 (33)

with equations of state (30). Following the derivation of [19], the GHD equations for arbitrary
flows can also be written in terms of occupation number variables n(θ ),

∂th n(θ ) + veff[h](θ )∂x n(θ ) = 0. (34)

Finally, commuting-flow continuity equations hold for state and hole densities, as well as
for the density of the entropy:

∂ths(θ ) + ∂x

�

veff[h](θ )s(θ )
�

= 0. (35)

5 Evolution in inhomogeneous fields

It is natural and physically meaningful to consider how external potentials, temperature fields,
or inhomogeneous fields associated to other conserved quantities modify the GHD equations
(14), (15).

Recall the basic hydrodynamic assumption that averages of local densities and currents,
in an inhomogeneous state, may be approximated by averages in a homogeneous, entropy-
maximized state, with inhomogeneous potentials. This approximation leads to Euler-type hy-
drodynamic equations. These equations are first-order differential equations for hydrodynamic

7The second of Equations (28) was explicitly obtained in [19, App D] (see Eq. (D13)), but only for h(θ ) with
certain properties – corresponding, in the sinh-Gordon model, to time evolution with respect to local charges. It is
natural, however, to assume that the same form holds for any quasi-local charge, and it is under this assumption
that (28) is written in this general form.

8

https://scipost.org
https://scipost.org/SciPostPhys.2.2.014


SciPost Phys. 2, 014 (2017)

variables, which may be taken as the densities, or as the inhomogeneous potentials themselves.
The hydrodynamic assumption is expected to be a good approximation when variations of
densities and currents occur on large scales, so that locally, the state looks homogeneous. The
Euler-type hydrodynamic equations are in fact the leading terms in a derivative expansion;
higher derivative terms would give rise to viscosity and other effects. It is within this pic-
ture that we may consider external inhomogeneous fields affecting the time evolution. We
assume that these external fields also only display variations on large scales, so that locally the
evolution looks homogeneous. The Euler-type hydrodynamic equations obtained will there-
fore again be leading-order terms in a derivative expansions, neglecting any term containing
derivatives of hydrodynamic variables or potentials with a total order of 2 or more. The equa-
tions are simply obtained by deriving leading-order evolution equations at the operator level,
and then using the hydrodynamic approximation of local entropy maximization.

Inhomogeneous fields, of course, break the integrability of the dynamics. However, since
locally the dynamics still looks like a homogeneous evolution with respect to an integrable
Hamiltonian, the local GGE approximation stays valid under time evolution. This is made
clear below, as we show that the first-derivative-order approximation of the dynamics leads to
a consistent equation for local GGE states (the initial state does not know about the dynamics,
and thus can be chosen within the space of local GGE states). This is certainly not surprising. In
usual hydrodynamics (such as for water waves), local fluid cells are approximated by Galilean
boosts of equilibrium states, thus involve the momentum operator. In an inhomogeneous
field, this description still holds and Euler and Navier-Stokes equations with force terms give
a good description. This is so even though inhomogeneity breaks translation invariance (thus
the momentum operator is not a conserved quantity of the dynamics). The derivation below is
simply a generalization of this fact to infinitely-many conserved charges. Naturally, the higher-
order derivatives terms neglected would modify this picture, and may be expected to lead to
integrability breaking effects at large times. But this is beyond the scope of this work.

To start with, let us briefly recall a typical case in relativistic one-dimensional quantum
field theory with U(1) symmetry: coupling the particle current Jµ(x , t) to an external elec-
tric field, Aµ(x) = (V0(x), 0) where V0(x) is the electric potential8. Here in order to fix the
notation, we assume the particle current is associated to some conserved charge Q0 (that is,
J0(x , t) = q0(x , t) and J1(x , t) = j0(x , t))), and we take Q1 = H to be the total energy without
external field. The external field deforms the evolution Hamiltonian in a familiar fashion:

Hforce = H −
∫

dx Aµ(x)J
µ(x , t) (36)

= H +

∫

dx V0(x)q0(x , t). (37)

Accordingly the hydrodynamic conservation equations become [42] (keeping the (x , t)-depen-
dence implicit), at the first order in a derivative expansion,

∂ν〈Tµν〉= Fµν〈Jν〉, ∂µ〈Jµ〉= 0 (38)

where Tµν is the energy-momentum tensor, F01 = −F10 = ∂x V0 and F00 = F11 = 0, and
averages are taken in local fluid cells. Alternatively this can be written as

∂tq1 + ∂xj1 + (∂x V0)j0 = 0, ∂tq0 + ∂xj0 = 0. (39)

We now generalize this, as well as more complicated external fields, to GHD.
In order to have a clearer general framework, we divide the external field, in general, into

two types. We first understand an external force field, arising from a potential V0(x), as a

8We choose the metric ηµν = diag(−1,1).
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field coupled to a conserved density q0(x) = q[h0](x) which has the property the associated
conserved charge Q0 =

∫

dx q0(x) commutes with all conserved densities qi(x):

[Q0, qi] = 0. (40)

This is a sensible definition of an external potential V0, as it implies that physical quantities
in GGEs only depend on potential differences. Indeed, if V0(x) = V0 is independent of x ,
then

∫

dx V0(x)q0(x) = V0Q0, and as a consequence of (40), evolution of local densities with
respect to H+V0Q0, and averages of local densities with respect to density matrices of the form
e−

∑

i βiQ i−V0Q0 , are independent of V0. Note that thanks to (40), all currents associated to the
Q0 evolution must vanish9, j0,i = 0. Therefore, using (28), the one-particle eigenvalue h0(θ )
must be independent of the rapidity, h0(θ , a) = h0(a) (that is, h′0(θ ) = 0). As an example, in
the Lieb-Liniger model (a Galilean model with one particle type only) one may choose Q0 to
be the number operator, which counts the number of quasi-particles, h0(θ ) = 1. In a model
with an internal charge a ∈ {+1,−1}, such as the (relativistic) sine-Gordon mode, one may
take Q0 to be the total charge, with h0(θ , a) = a.

We are thus interested, in a first instance, in deriving a force-field, pure hydrodynamic
equation describing the time derivative of local conserved densities under the time evolution
with respect to the force-field Hamiltonian,

∂tO = i[Hforce,O ], Hforce = H +

∫

dx V0(x)q0(x). (41)

We show in Appendix B that the infinite set of force-field hydrodynamic equations, under the
assumption both of local entropy maximization and of weak spacial variations of the potential
V0(x), are

∂tqi + ∂xji + (∂x V0)ji,0 = 0 (force field). (42)

We see that the force term, proportional to the space derivative ∂x V0 of the potential, involves
the charge current associated to the time evolution with respect to Q i (see (23)). Specializing
to the energy Q1 = H (choosing i = 1), we observe that the force term controlling the conti-
nuity equation for the energy density is proportional to the usual particle current j1,0 = j0, as
is intuitively clear and in agreement with (39). Equation (42) is to be seen as the leading part
of a derivative expansion, where neglected terms are higher space derivatives in the potential
and in conserved densities and currents.

In a second instance, we consider more general external fields, associated to general con-
served densities. These are perturbations of the type

∫

dx
∑

k Vk(x)qk(x):

∂tO = i[Hfield,O ], Hfield = H +
∑

k

∫

dx Vk(x)qk(x). (43)

For instance, as q1(x) is the energy density (according to the convention we use), the term
∫

dx V1(x)q1(x)may be understood as a perturbation by an inhomogeneous temperature field,
with x-dependent temperature (V1(x))−1 (this interpretation being valid under the hydrody-
namic assumption, with weak variations). It is useful to introduce the one-particle potential

W (x) :=
∑

k

Vk(x)hk, (44)

9More precisely the argument is as follows. The current must satisfy ∂x j0,i(x) = 0. In QFT, this implies that
j0,i(x) is proportional to the identity operator. Hence its GGE average is independent of the potentials β , hence
independent of n(θ ). Using (28), we find that h′0 = 0, and thus the constant must be zero.
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which is the one-particle eigenvalue function of the operator
∑

k Vk(x)Qk (in this notation,
W (x) is, implicitly, a function of θ ). Using qk(x) = q[hk](x), the perturbation is written in a
somewhat more general way in terms of any W (x):

Hfield = H +

∫

dx q[W (x)](x). (45)

We show in Appendix B that the infinite set of hydrodynamic equations in inhomogeneous
fields, again under the assumption both of local entropy maximization and of weak spacial
variations of the potentials Vk(x) (weak spacial variations of W (x)), are

∂tqi + ∂xji +
∑

k

�

∂x(Vkjk,i) + (∂x Vk)ji,k

�

= 0 (46)

or equivalently
∂tqi + ∂x

�

ji + j[W, hi]
�

+ j[hi ,∂xW ] = 0. (47)

These generalize (42), which is recovered by choosing Vk(x) = 0 for all k ≥ 1 and using
j0,i = 0.

Equations (42), (46) and (47) are derived without invoking integrability, which is only
included in the fact that there are infinitely-many of these equations. They are valid under the
following assumptions. First, there is the usual hydrodynamic assumption that local averages
of densities and currents are well approximated by averages within local GGEs. Second, all
higher-derivative terms occurring from the quantum dynamics with respect to Hfield are ne-
glected. These are terms composed of products of the first or higher derivative of the potentials
Vk(x), times local fields and their derivatives, with, in total, two or more space derivatives. As
long as the potentials are varying in a smooth enough fashion, such higher-derivative terms
are indeed negligible. We recall that the assumption of local GGEs (which comes from that
of local entropy maximization) gives rise to a continuity equation, which is a first-derivative
equation. It therefore only gives the leading first-derivative terms in a derivative expansion
of the full hydrodynamics (thus neglects higher derivatives of hydrodynamic variables such as
viscosity terms). Assuming that variations of the potentials are of the order of the variations of
the hydrodynamic variables, it is thus consistent to neglect higher derivative terms as above,
and to keep the total number of derivatives, of hydrodynamic variables and potentials, to a
maximum of 1. Of course, such derivative expansions, common in hydrodynamic problems,
are not controlled approximations, and it is difficult to evaluate the corrections.

Further, we show in Appendix B that (46), (47) can be recast, in the quasi-particle basis,
into the following equivalent equations for the occupation number n(θ ) and for the densities
(here keep implicit the x and t dependencies),

∂t n(θ ) + veff[E +W ](θ )∂x n(θ ) + aeff(θ )∂θn(θ ) = 0 (48)

and
∂tρ(θ ) + ∂x

�

veff[E +W ](θ )ρ(θ )
�

+ ∂θ
�

aeff(θ )ρ(θ )
�

= 0, (49)

which holds for ρ = ρs, ρp and ρh. Recall that E is the function of θ giving the one-particle
energy (the Hamiltonian one-particle eigenvalue). Here the effective acceleration is

aeff(θ ) =
Fdr(θ )
(p′)dr(θ )

. (50)

The space-dependent force function F(θ ) is the derivative of the total energy E(θ ) +W (θ )
with respect to space; since E(θ ) is independent of space, this is

F(θ ) = −
∑

k

hk(θ )∂x Vk = −∂xW (θ ). (51)
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The effective velocity veff[E +W ](θ ) depends on x both through the one-particle potential
W (θ ) = W (x;θ ), which modifies the local energy to E(θ ) +W (x;θ ), and thus modifies the
local group velocity; and through the (x , t)-dependent occupation number n(θ ), or particle
density ρp(θ ), which determines it (see (30) and (32)). Likewise, the effective acceleration
depends on x both through the potentials and through the dressing operation.

Equations (48) and (49) invoke integrability in the use of the TBA formalism, and of the
completeness of the space of pseudolocal conserved charges. They are otherwise both direct
consequences of (46) (or equivalently (47)), without further approximation. They use the
quasi-particle expressions of the local GGE densities and currents that are involved in (46),
(47).

We see that the effects of the potential W (x) (or equivalently Vk(x)) are twofold. First,
there is a modification of the effective velocity to veff(θ ) = veff[E](θ ) 7→ veff[E+W ](θ ), which
takes into account the local potential W at the position x . Second, there is an extra term
involving θ derivatives, which takes into account the acceleration due to spacial variations
of W around the position x . We note that since veff[E +W ](θ ) only involves θ -derivatives
W (x)′ of the one-particle potential, and since h′0 = 0, it is clear that the force-field potential
V0(x) does not affect the effective velocity. A force field only leads to an acceleration, without
modifying the local effective velocity. Other external fields such as temperature fields, however,
do modify the local effective velocity.

Consider a pure force field in a Galilean model with a single-particle spectrum (such as
the Lieb-Liniger model). In this case, we have θ = θ , h0(θ ) = 1 and p(θ ) = mθ . Then, the
effective acceleration aeff(θ ) simplifies to the usual acceleration, independently of θ ,

aeff(θ ) = −∂x V0/m (Galilean, single-particle spectrum, pure force field). (52)

Equation (48) (or equivalently (49)) represents evolution in the presence of space-dependent
external fields; it is valid in the limit of weak variations of both the hydrodynamic quantities
and of the potentials themselves. As it is a pure-hydrodynamic equation, it does not take into
account any viscosity effects, which give rise to terms with higher derivatives of the hydrody-
namic variables, or, similarly, any effect related to the presence of nonzero higher derivatives
of the potentials. In a pure force field, Vk≥1 = 0, the effective velocity is not affected, and if
the force field is constant, ∂ 2

x V0(x) = 0, the effective acceleration does not depend on space.
In this case, one may argue that, as usual, at large times variations of hydrodynamic variables
become smaller, and thus pure hydrodynamics provides a good description.10. Otherwise, spa-
cial variations of potentials are present in the pure hydrodynamic equations, and as they do
not change with times, they will fix a minimum spacial-variation scale for the hydrodynamic
variables. Thus, in this case, the pure hydrodynamic equations cannot become more accurate
at large times, and we must understand (48) as being valid for a finite period of time, whose
extent depends on the size of spacial variations of the potentials. During this time, discrepan-
cies between the predictions of (48) and the actual evolution, due to neglected terms whose
amplitude does not decay, accumulate. Beyond this time, one might expect the integrability-
breaking effects of the presence of space-varying potentials to become important.

Let us now investigate stationary solutions to the force-field equations (48). Consider a
fluid state which is, at every position x , the Gibbs state associated to H +

∑

k Vk(x)Qk at the
temperature β−1 (independent of x). This is the local density approximation of the finite-
temperature, inhomogeneous state e−βHfield . We show that the one-parameter family of such
local-Gibbs states, parametrized by the temperature β−1, is indeed a stationary solution to
(48).

10In fact, in this case, if the force is nonzero, one has to consider carefully the large-distance asymptotics of
hydrodynamic variables, a subject which is beyond the scope of this paper.
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For this purpose, consider the one-particle eigenvalue w(θ ) =
∑

i βihi(θ ) of the operator
in the exponent in the GGE density matrix exp[−

∑

i βiQ i]. The function w(θ ) is yet another
GGE state variable. For instance, by standard (G)TBA arguments [36, 37], it is related to the
occupation number n(θ ) as follows: setting the pseudoenergy to be

ε(θ ) = log(1− n(θ ))− log(n(θ )), (53)

we have

w(θ ) = ε(θ ) +

∫

dα
2π
ϕ(θ ,α) log(1+ e−ε(α)). (54)

Clearly ε(θ ) satisfies the same equation (48) as does n(θ ). Note that ∂xε(θ ) = (∂x w)dr(θ ),
and that, using the fact that ϕ(θ ,α) depends on the rapidities through their difference θ −α
only, ∂θε(θ ) = (∂θw)dr(θ ) (we recall that the superscript dr indicates dressed quantities as per
(11)). Using these statements and setting ∂t n(θ ) = 0, one finds that in terms of the local-GGE
one-particle eigenvalue w(θ ), a stationary solution satisfies the equation

(∂x w)dr(θ )
(∂xW )dr(θ )

=
(∂θw)dr(θ )

(∂θ (E +W ))dr(θ )
(55)

(we also used (50), (16) and (13)). It is simple to see that

w= β (E +W ) (56)

is a solution to this equation for any β (recall that E = E(θ ) depends on θ = (θ , a) but not
on x , and that W = W (x) = W (x)(θ ) depends on both x and θ ). This is the local density
approximation of the state e−βHfield .

The above statement is very natural physically. Assuming that the spatial variations of
the potential occur only on large distance scales, we do not expect these inhomogeneities to
lead to localization (the latter would of course break the hydrodynamic assumptions). Yet,
we expect inhomogeneities to lead to integrability-breaking effects. Therefore, at very large
times, after integrability-breaking effects have arisen, we expect the stationary-state density
matrix to be of the thermal form e−βHfield for some β . In such a state, variations of all densities
and currents occur on large distance scales, hence this is well approximated by a local den-
sity approximation – the “fluid form” of this state. Further, since the force-field hydrodynamic
equations should approximate well the dynamics when variations are on large scales, we ex-
pect this approximation to be a stationary solution to these equations, as indeed shown above.
That is, although the force-field equations do not contain all integrability breaking effects and
might not by themselves lead to thermalization, the thermalized state should be stationary
with respect to it. This is much like the fact that the ideal-gas distribution is invariant under
the free-particle evolution, although it may only arise, physically, as a consequence of the small
interactions between the particles of the gas.

We have not established uniqueness of this stationary solution to the force-field equations
– in particular, it is simple to see that in the case of free-particle models, any function f (E +W )
is a solution. One may wonder if, similarly, there are additional stationary solutions in inter-
acting integrable models, and if these make physical sense. One may also wonder what, if any,
stationary solution is actually reached at long times from solving the pure hydrodynamic equa-
tions (48) without higher-derivative terms. If it is not the local-Gibbs state above, then this
might correspond to a “pre-thermalization” plateau, which appears before the integrability-
breaking effects of the inhomogeneous potential become important. We leave these questions
for future works.
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6 Euler and Navier-Stokes equations

An important ingredient in conventional hydrodynamics is what is often referred to as the Euler
equation: this is a continuity equation relating the fluid velocity v to the internal pressure P
and the fluid’s mass density ρfl:

∂t v + v∂x v = −
1
ρfl
∂xP . (57)

It is a simple consequence of conservation of the mass density and mass current, and expresses
the variation of the fluid’s velocity as a convection term and a term due to pressure variations.

In generalized hydrodynamics, such equations also arise in a natural fashion. It is obvious
from the symmetry of the bilinear form (10) that, in any GGE state, the current associated
to the conserved quantity with one-particle eigenvalue h(θ ) = p′(θ ) is equal to the density
associated to h(θ ) = E′(θ ):

j[p′] = q[E′]. (58)

For instance, in Galilean invariant systems, p′(θ ) = ma is the mass of the particle, and its
momentum is E′(θ ) = p(θ ), and this is equality between mass current and momentum density.
In relativistic system, p′(θ ) = E(θ ) and E′(θ ) = p(θ ), so this is instead equality between
energy current and momentum density (which amounts to the fact that the energy-momentum
tensor is symmetric).

Let us then define the fluid velocity v as follows:

j[p′] =: v q[p′]. (59)

This is the velocity for the mass current (Galilean) or energy current (relativistic). The quan-
tity v depends on x and t (but is of course independent of θ ). The two conservation laws
∂tq[p′] + ∂xj[p′] = 0 and ∂tq[E′] + ∂xj[E′] = 0 then immediately imply

q[p′]∂t v + ∂xj[E
′]− v ∂x(v q[p

′]) = 0. (60)

We may then define the fluid mass density and pressure as

ρfl := q[p′], P := j[p]−ρflv
2, (61)

and we recover (57), using E′(θ ) = p(θ ). The interpretation of the above identification is
particularly clear with Galilean invariance. In this case ρfl is indeed the physical mass density,
and the second equation in (61) is the correct relation between the momentum current j[p]
and the pressure P : it identifies the momentum current as the internal pressure plus v times
the current associated to the displacement of the fluid cell ρflv. In the relativistic case, ρfl is
the energy density, and P has a similar interpretation.

Notice that the physical pressure P is not equal to the generalized specific free energy
(free energy per unit volume) f =

∫

dp(θ )/(2π) log(1+ e−ε(θ )) (where the pseudoenergy is
defined in (53)); this is of course natural in states that are not thermal Gibbs states. As such,
unlike the case in conventional hydrodynamics, in the Galilean case the continuity equation
for the energy ∂tq[E] + ∂xj[E] = 0 is no longer expressible in terms of the fluid velocity and
thermodynamic variables.

It is also straightforward to generalize the above to the forced equation (42). Repeat-
ing the above derivation with the conservation laws ∂tq[p′] + ∂xj[p′] + j[p′, h0] = 0 and
∂tq[E′] + ∂xj[E′] + j[E′, h0] = 0, and using the following identities (see (12) and (28)):

j[E′, h0] = j[p, h0] = (p
′, h0) = q0 (62)
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and

j[p′, h0] = (p
′′, h0) =

�

0 (Galilean)
(E′, h0) = j0 (relativistic),

(63)

we find

∂t v + v∂x v = −
1
ρfl
∂xP − ∂x V

� q0

ρfl
−
�

0 (Galilean)
vj0 (relativistic)

�

�

, (64)

where q0 is the charge density and j0 is the charge current (the densities and current of the
charge Q0 associated to the force term). In the Galilean case with a single-particle spectrum
(such as the Lieb-Liniger model), we have ρfl = mq0 and thus we find the usual forced Euler
equation,

∂t v + v∂x v = −
1
ρfl
∂xP −

∂x V
m

(Galilean, single-particle spectrum). (65)

So far we have considered only ideal fluids, that do not account for viscosity. An accurate
consideration of viscosity terms corresponding to the underlying many-body model requires
an analysis of how the unitary dynamics approaches pure hydrodynamics. However, one may
consider a simple, possible correction to (14) that could account for the presence of viscosity
effects. Let us exemplify in the Galilean case with a single-particle spectrum. From standard
hydrodynamic arguments, the Navier-Stokes equation in one-dimensional non-relativistic sys-
tems reads

∂t v + v∂x v = −
1
ρfl
∂xP + ζ

1
ρfl
∂ 2

x v, (66)

where ζ is the (mass-normalized) bulk viscosity (note that we do not have the kinematic
viscosity as there occurs no shear flow in one dimension). A continuity equation for ρp(θ )
that gives the above Navier-Stokes equation is

∂tρp(θ ) + ∂x(v
dr(θ )ρp(θ )) = ζ∂

2
x

�ρp(θ )

ρfl

�

. (67)

This might or might not correspond to any underlying quantum model, but in any case it
could provide a way of regularizing the GHD equations for numerical purposes.11 It would be
interesting to analyze further such viscosity corrections.

7 Conclusions

In this letter, we further developed the generalized hydrodynamics (GHD) theory first pro-
posed in [19]. We showed that the GGE equations of state, at the basis of GHD, follow from a
principle of hydrodynamic conservation of entropy. We provide in Appendix A arguments for
the emergence of GHD in general free-particle relativistic models under smoothness assump-
tions, which we expect could be extended to interacting models using the form factor program.
Then, we generalized to flows generated by arbitrary conserved charges, and employed this in
order to establish the conservation equations (46), (47) and continuity equations (48), (49)
within an external field, be it a force field, a temperature field or any other field associated to
conserved quantities of the model. We expect that these equations should effectively capture
the large-scale (long-wavelength) dynamics of a Lieb-Liniger model in an external potential,
such as a harmonic potential (see e.g. [43]). This, we believe, is particularly interesting:
indeed, despite a lack of full justification, conventional hydrodynamics has been exploited in

11We remark that this correction does not applied to noninteracting models, such as the free Galilean fermion
model where no viscosity term is admitted.
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analyzing the quench dynamics of one-dimenional bose gases in a trap potentials [44–46], and
we believe our equations might lead to more accurate results. In particular, the consideration
of all conservation laws in the force-field GHD might give rise to a more accurate theoretical
description of the notable “quantum Newton’s cradle” experiment [47]. All equations hitherto
derived within GHD are, however, for ideal fluids: no dissipation effect has been taken account
of. For a precise treatment one has to add viscosity terms. We proposed one possibility from
considering the Navier-Stokes equation, but we expect a more in-depth study will be necessary
in order to clarify this aspect.
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A Emergence of GGE equations of state in free-particle models

The problem of showing the emergence of hydrodynamics in many-body systems is notoriously
difficult, see [40,41] for recent progress. This is particularly true because usual hydrodynam-
ics requires, as per its principles, strong interactions, by their nature hard to treat analytically.
The interaction should provide the mixing necessary in order for all degrees of freedom that
do not follow a conservation law to thermalize; thus minimizing, locally, the free energy un-
der the conditions of all local conservation laws, and rendering applicable, locally, the thermal
equations of state. As explained in [19], the sole assumption at the basis of GHD is, likewise,
the emergence, in a uniform enough fashion and at large enough times, of the GGE equations
of state at every point in space-time. GHD follows from this, simply by combining it with
the conservation equations (1) of the model’s unitary dynamics. In this respect, GHD offers a
unique opportunity in that it accounts for infinitely-many conservation laws: as a consequence
much less interaction effects, or mixing, is required for the emergence of the GGE equations
of state. This is particularly evident in “quadratic models”, or models whose asymptotic par-
ticles do not interact. In such models, GGE equations of states should still emerge, although
the interaction between fundamental degrees of freedom is quadratic and amenable to exact
treatment. Thus, in these models, we may analyze with much more depth these fundamental
principles, making use of the large simplification afforded by the triviality of the scattering
matrix.

An important question is therefore what basic properties either of the initial state or of
the large-time evolution guarantee that the GGE equations of state emerge in free-particle
models. Although hydrodynamic ideas have been used successfully in the past in such models
[27–32], to our knowledge, no general assessment of such conditions for the emergence of GGE
equations of states, or of hydrodynamcis, have been provided.12 In this section we propose

12It is also an interesting question to connect the free-particle hydrodynamics developed in past works with the
free-particle specialization of the present GHD. However we keep this question for future works.
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such conditions. We provide arguments to the effect that, under homogeneous time evolution,
if densities and currents become, at long times, smooth enough in space-time, with a variation
scale growing unboundedly with time, then the GGE equations of state and GHD emerge. In
other words, we show that GGE equations of state hold in homogeneous, stationary states;
and if the size of fluid cells, wherein uniform near-homogeneity and near-stationary hold,
grow with time, then GGE equations of states are approached and GHD becomes increasingly
accurate.

A free-particle model is characterized by the fact that ϕ(θ ) = 0. For simplicity and clarity,
in the following we specialize to the case of a single relativistic particle, but the derivation be-
low can be generalized straightforwardly (to many particles, and to other dispersion relations).
Let us therefore consider some initial state 〈· · ·〉, and let us evaluate in this state observables
evolved in time:

〈O (x , t)〉= 〈eiHtO (x)e−iHt〉. (68)

Of course, it cannot be expected in general that GGE equations of state emerge for any
initial state, as cases where hydrodynamics fail certainly exist. Hence we need a condition
which will guarantee that such “pathological” cases are avoided. A natural condition is the
requirement that the long-time limit be smooth enough.

We first assume that everywhere in space-time (at positive times), average densities and
currents 〈O (x , t)〉 stay uniformly finite. Let us also assume that, as time t becomes large, and
uniformly within some regionR of space-time that is unbounded in the positive time direction,
average densities and currents display order-1 variations in space-time on lengths scales that
diverge as t grows. We express this latter assumption more precisely by considering averages
over Gaussian cells centered at x , t of extent T = T (t):

Ō (x , t;λ) =
1

2πλ2T2

∫

dτdy e−
r2

λ2T2 〈O (y,τ)〉, (69)

where r =
p

(y − x)2 + (τ− t)2. Then the assumption is that there is a T = T (t) growing
unboundedly with time, such that

lim
λ→0
Ō (x , t;λ) = 〈O (x , t)〉 uniformly on (x , t) ∈ R . (70)

For any finite (x , t), it is clear that the limit is as above; the assumption is that this holds
uniformly in R , this being most nontrivial in the long-time subregion of R .

Then, under this assumption, we argue in below that the GGE equations of state emerge
uniformly at long times in R .13 In order to make this conclusion more precise, recall that the
averages of conserved densities q[h] and currents j[h] associated to one-particle eigenvalue
h(θ ) are linear functionals of h as per (5):

〈q[h](x , t)〉=
∫

dθ ρp(θ ; x , t)h(θ )

〈 j[h](x , t)〉=
∫

dθ ρc(θ ; x , t)h(θ ).
(71)

For a generic state and generic x , t, the densities ρp(θ ; x , t) and ρc(θ ; x , t) are functionally
not related to each other. The emergence of the GGE equations of state is the statement of the
emergence of the relation (8), or equivalently (6) with (9) (or (13)). In free relativistic particle
models, this is particularly simple as the effective velocity is the group velocity vgr(θ ) = tanhθ :

13In the present discussion, we do not discuss conditions of uniformness in θ or in h(θ ) that might be necessary
in order to go between quasi-particle quantities and local observables.
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the relation is ρc(θ ; x , t)−vgr(θ )ρp(θ ; x , t) = 0. We show that this relation emerges uniformly
in the region R as t →∞:

lim
τ→∞

sup
�

ρc(θ ; x , t)− vgr(θ )ρp(θ ; x , t) : (x , t) ∈ R , t > τ
�

= 0 (72)

A sketch of the proof is as follows. Let j[h](x , t) be the current associated to the GGE
determined by quasi-particle density ρp(θ ; x , t). Then this implies that the current difference
〈 j[h](x , t)〉 − j[h](x , t)) goes to zero uniformly as above. This gives rise to the integral form
of conservation equations, with uniform correction terms that are smaller than the total length
of the path:

∫ x2

x1

dx (q[h](x , t2)− q[h](x , t1)) +

∫ t2

t1

dt (j[h](x2, t)− j[h](x1, t)) = o
�

|x2 − x1|+ |t2 − t1|
�

(73)

(as t1, t2→∞ and uniformly for (x1, t1) and (x2, t2) inside R). We therefore conclude that
the integral form of the conservation equations on finite paths, up to o(1) corrections, holds
for the scaled quantities q̃[h](x , t) = q[h](λx ,λt) and j̃[h](x , t) = j[h](λx ,λt), for any scale
λ that diverges with time. With λ∝ T , these scaled quantities have O(1) variations on O(1)
lengths, and are the hydrodynamic variables; the scaling with λ emulates the taking of large
fluid cells (and often one may take T (t) = t, so that fluid cells grow linearly with time).
We therefore find the emerging hydrodynamic conservation equations, in integral form, for
hydrodynamic variables. Assuming differentiability, this implies the differential form (3).

We finally note that we may apply the above result to the case where the state is stationary
and homogeneous. In this case, it is clear that the assumption is fulfilled, and we conclude
that in such states, be them GGE states or not, averages of local densities and currents must
be reproducible by a GGE.

In a free particle model, average densities and currents take are bilinears in terms of canoni-
cal annihilation and creation operators A(θ ), A†(θ ). Therefore, they take the following general
form

〈q[h](x , t)〉=
∫

dθ1dθ2

�

b[h](θ1,θ2)〈A
†
1A2〉ei(E1−E2)t−i(p1−p2)x

+ c[h](θ1,θ2)〈A1A2〉e−i(E1+E2)t+i(p1+p2)x + h.c
�

(74)

〈 j[h](x , t)〉=
∫

dθ1dθ2

�

b̃[h](θ1,θ2)〈A
†
1A2〉ei(E1−E2)t−i(p1−p2)x

+ c[h](θ1,θ2)〈A1A2〉e−i(E1+E2)t+i(p1+p2)x + h.c
�

(75)

where b[h](θ1,θ2), b̃[h](θ1,θ2), c[h](θ1,θ2) and c̃[h](θ1,θ2) are linear functionals of h (here
and below indices in A j , E j and p j represent the rapidity argument θ j , and E j is the energy
and p j the momentum). Recall that 〈· · ·〉 represents the initial state.

In specific models, it is a simple matter to evaluate the coefficients b[h](θ1,θ2), b̃[h](θ1,θ2),
c[h](θ1,θ2) and c̃[h](θ1,θ2) explicitly. In some simple free-fermionic models, these coeffi-
cients may be simple enough to guarantee that, with Galilean invariance, the hydrodynamic
equations hold exactly independently of the initial state and at all times [48]. However, here
we leave these coefficients as general as possible, and impose only conditions that arise from
general principles.

We may use the fact that h(θ ) is the one-particle eigenvalue in order to have conditions on
b[h](θ1,θ2). For definiteness, consider the normalization 2π[A(θ1), A†(θ2)] = E(θ1)δ(θ1−θ2)
(where [·, ·] is either the commutator or the anti-commutator) and the one-particle states
|θ 〉= (2π)

1
2 E(θ )−

1
2 A†(θ )|vac〉. These have normalization 〈θ1|θ2〉 = δ(θ1 − θ2). In order to
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get a condition on b[h](θ1,θ2), we use the fact that it is independent of the initial state, and
choose it of the form 〈· · ·〉=

∫

dθ1dθ2 f (θ1,θ2)〈θ1| · · · |θ2〉 with f (θ1,θ2) smooth and f (θ ,θ )
decaying fast enough at infinity. On one hand, we have

〈A†(θ1)A(θ2)〉= (2π)−1
Æ

E(θ1)E(θ2) f (θ1,θ2), (76)

and 〈A(θ1)A(θ2)〉 = 0. Evaluating the integral 〈Q[h]〉 =
∫

dx 〈q[h](x , 0)〉 using (75) with
t = 0, we therefore obtain Q[h] =

∫

dθ b[h](θ ,θ ) f (θ ,θ ). On the other hand, since we know
that Q[h]|θ 〉= h(θ )|θ 〉, we have 〈Q[h]〉=

∫

dθ f (θ ,θ )h(θ ). Therefore, we must have

b[h](θ ,θ ) = h(θ ), (77)

and we further assume that b[h](θ1,θ2) is Taylor expandable around θ1 = θ2 (which is the
case in all free models we know).

Further, by the conservation law, it is immediate that

b̃[h](θ1,θ2)
b[h](θ1,θ2)

=
E1 − E2

p1 − p2
,

c̃[h](θ1,θ2)
c[h](θ1,θ2)

=
E1 + E2

p1 + p2
. (78)

We are looking to show (72). This can be written as the statement that

lim
t→∞

� δ

δh(θ )
〈 j[h](ξt, t)〉 − tanh(θ )

δ

δh(θ )
〈q[h](ξt, t)〉

�

= 0, (79)

uniformly on ξ.
In order to prove this, let us first analyze what uniform finiteness in space-time means for

the initial state itself. Assuming that 〈A†
1A2〉= O

�

(θ1−θ2)b
�

as θ1→ θ2, we will conclude that

we must have b ≥ −1; the distribution 〈A†
1A2〉 may also containt a delta-function term of the

type f (θ1)δ(θ1 − θ2) with f (θ ) decaying fast enough at infinity. We consider Gaussian-cell
averages of densities, q̄[h](x , t;λ) (see (69)) (the same conclusion is obtained using currents
instead of densities). This should stay finite, in particular, with T = t, λ = 1 and x = 0, as
t →∞. We use

1
p

2πT

∫ ∞

−∞
dτ e−

(τ−t)2

2T2 +iτE = ei tE−T2E2/2, (80)

and similarly for the y integral in (69), as well as the mode expansion (75). We see, from the
fact that E1 + E2 is always positive, that all terms in (75) involving 〈A1A2〉 and its hermitian
conjugate will have exponentially decaying contributions as t →∞. The remaining terms are

∫

dθ1dθ2 b[h](θ1,θ2)e
iE12 t−t2(E2

12+p2
12)/2〈A†

1A2〉, (81)

where p12 := p1− p2 and E12 := E1− E2. We recall that b[h](θ1,θ2) is regular at θ1 = θ2. We
further assume that it behaves well enough at large rapidities, so that we do not worry about
the large-rapidity region of the integrals.

The eventual delta-function term in 〈A†
1A2〉 leads to a finite contribution to (81) by our

assumptions concerning behaviors at infinite rapidities. On the other hand, at large t, the
algebraic contribution of 〈A†

1A2〉 to (81) can be analyzed by a stationary phase argument.
Setting u := p2 and w := p2

2 + E2
2 , the stationary phase occurs at

θ1 − θ2 =: θ12 = θ
? := iu/(wt) +O(1/t2). (82)

Keeping only the terms up to quadratic order in θ12 − θ ? in the exponential and using that
〈A†

1A2〉= O
�

(θ12)b
�

we are left with

∼
∫

dθ1dθ2 O(θ b
12)e

− w(t2+O(t))
2

�

θ12−
iu
wt+O

�

1
t2

��2
− u2

2w+O( 1
t ) =

∫

dθ2 O
�

1
t1+b

�

. (83)
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Finiteness thus requires b ≥ −1.
Now consider

δ

δh(θ )
j̄[h](x , t;λ)− tanh(θ )

δ

δh(θ )
q̄[h](x , t;λ) (84)

for some T = T (t) in (69) that grows unboundedly with t. Again, we see that all terms in (75)
involving 〈A1A2〉 and its hermitian conjugate will have exponentially decaying contributions
in (84) as t →∞. Terms involving 〈A†

1A2〉, on the other hand, are of the form

∫

dθ1dθ2

�

E1 − E2

p1 − p2
− vgr(θ )

�

δ

δh(θ )
b[h](θ1,θ2)× eiE12 t−ip12 x−T2(E2

12+p2
12)/2 〈A†

1A2〉. (85)

We may bound this integral by replacing the oscillatory factor eiE12−ip12 x by 1. At large T this
can then be analyzed by a stationary phase argument. The position of the stationary phase is
exactly θ1 = θ2, hence the main contribution occurs around θ1 ≈ θ2. Thanks to (77), we find
�

E1 − E2

p1 − p2
− vgr(θ )

�

δ

δh(θ )
b[h](θ1,θ2) =

�

E1 − E2

p1 − p2
− vgr(θ )

�

�

δ(θ − θ2) +O(θ12)
�

=
�

vgr(θ2)− vgr(θ ) +O(θ12)
��

δ(θ − θ2) +O(θ12)
�

= O(θ12). (86)

Therefore, the delta-function part of 〈A†
1A2〉 does not contribute to the integral (85), and the

algebraic contribution becomes, as t →∞,

≤
∫

dθ1dθ2 O(θ b+1
12 ) e

− wT2
2 θ2

12 =

∫

dθ2 O
�

1
T b+2

�

. (87)

This is clearly uniform on (x , t) ∈ R . Since b ≥ −1, as a consequence, we have found that

lim
t→∞

� δ

δh(θ )
j̄[h](x , t;λ)− tanh(θ )

δ

δh(θ )
q̄[h](x , t;λ)

�

= 0 (88)

uniformly on R . By the assumption (70), this is sufficient to show (79).
This is of course far from being a complete or rigorous proof. For instance, we have omit-

ted the discussion of how the assumption (70) is uniform with respect to the observables O
themselves (allowing us to take h(θ )-derivatives). We have also omitted the detailed depen-
dencies on θ1,θ2 in expressions of the form O(θ c

12), while these are important to make sure
that the rapidity integrals are finite. In addition, of course, the stationary phase arguments,
while treated with some care, would need to be developed in order to become rigorous. Nev-
ertheless, we believe this provides the main arguments, and shows how GGE equations of state
may indeed emerge.

B Derivation of hydrodynamic equations within inhomogeneous
fields

In order to describe the first part of the result, equation (42), consider the conservation law of
the conserved density qi with respect to the time evolution generated by a conserved quantity
Qk,

i[Qk, qi] + ∂x jk,i = 0. (89)

20

https://scipost.org
https://scipost.org/SciPostPhys.2.2.014


SciPost Phys. 2, 014 (2017)

GGE averages of the associated currents can be evaluated using (28) as jk,i = j[hk, hi], which,
thanks to (28), takes the explicit form

jk,i =

∫

dθ
2π

h′k(θ )n(θ )h
dr
i (θ ). (90)

Equation (47) (which implies (42)) is shown as follows. Locality of densities imply that
there exists a field O j,i(x , y) supported at x = y (i.e. local at this position) such that

i[qk(y), qi(x)] = Ok,i(y, x). (91)

Since q j(x) and qi(x) are local conserved densities, they are not affected by any nontrivial
renormalization, and therefore Oi(x , y) can be written as a finite sum of terms with increasing
derivatives of the delta function,

Ok,i(y, x) =
L
∑

`=0

Ok,i;`(x)δ
(`)(y − x) (92)

where Ok,i;`(x) are local fields. Integrating over y , by (89) we find that

Ok,i;0(x) = −∂x jk,i(x). (93)

On the other hand, integrating over x , we obtain

−i[Q i , qk(y)] =
L
∑

`=0

∂ `yOk,i;`(y) (94)

and therefore comparing with (89) we can make the following identification, using the fact
that the only local fields whose derivative is zero are those proportional to the identity:

Ok,i;1(y) = ji,k(y) + jk,i(y)− ∂yQk,i(y)− Ak,i1 (95)

where Qk,i(y) :=
∑L
`=2 ∂

`−2
x Ok,i;`(y).

Here Ak,i = Ai,k is a constant. It can be seen to vanish as follows. We write it as the
following quantity, involving an averages 〈· · ·〉 in any GGE:

Ai,k =

∫

dx
�

ix〈[qk(x), qi(0)]〉+ ji,k + jk,i

�

. (96)

By symmetry, this constant is zero whenever qk and qi are both parity symmetric or parity
anti-symmetric, or whenever their combined transformation under some internal symmetry is
nontrivial. One can argue this constant should in fact be identically zero as follows. Note that
Ai,k is a bilinear functional of hi and hk, that is Ai, j = A[hi , hk]. Let us consider

A[h, g] =

∫

dx
�

ix〈[q[g](x), q[h](0)]〉+ j[h, g] + j[g, h]
�

, (97)

for functions h(θ ) and g(θ ) that decay fast enough at infinite rapidities. Let us also consider
the GGE 〈· · ·〉 to be a thermal state in the limit of large temperatures. In this limit [36], the
occupation number n(θ ) has a large flat plateau, and decays to zero beyond this plateau. The
regions where it starts decaying to zero are further and further away from θ = 0 as the large
temperature limit is taken. Therefore, in (11) and (10), for h, g as above, we may consider
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n(θ ) to be a constant, independent of the rapidity. Hence by integration by parts, we have
(h′)dr = (hdr)′. Thus, using (28) and (10) (and its symmetry property), we have

j[h, g] = (h′, g) =

∫

dθ
2π

h′(θ )gdr(θ )

=−
∫

dθ
2π

h(θ )(gdr(θ ))′

=−
∫

dθ
2π

h(θ )(g ′)dr(θ )

=− (h, g ′) = −(g ′, h) = −j[g, h].

That is, in this limit j[h, g] + j[g, h] = 0. Further, in the infinite temperature limit the state
is the trace state, which has the cyclic property 〈AB〉= 〈BA〉. As a consequence14, in this limit
〈[q[g](x), q[h](0)]〉 = 0. Therefore, since A[h, g] is independent of the state, we must have
A[h, g] = 0. We thus conclude that this is the zero bilinear functional, and thus Ai,k = 0 for all
i and k.

Note that one can further check that the result (95) with Ak,i = 0 agrees, in the case
where qi and qk are either energy or momentum densities, with the first-derivative terms of
the commutators of the stress-energy tensor calculated in [49].

We can then compute the time evolution within the inhomogeneous field as follows:

i[Hfield, qi(x)] = i[H, qi(x)] + i
∑

k

∫

dy Vk(y) [qk(y), qi(x)]

= − ∂x ji(x) +
∑

k

L
∑

`=0

(−∂x)
`Vk(x)Ok,i;`(x)

= − ∂x ji(x)−
∑

k

�

∂x(Vk(x) jk,i(x)) + ji,k(x)∂x Vk(x)
�

+ . . .

= − ∂x ji(x)−
�

∂x( j[W (x), hi](x)) + j[hi ,∂xW (x)](x)
�

+ . . .

(98)

where W (x) =
∑

k Vk(x)hk is the one-particle external-field function (for every x , it is a func-
tion of θ ). We have used integration by parts, assuming that boundary terms at infinity do not
contribute. The terms omitted are “higher-derivative terms”: they are composed of products
of the first or higher derivative of the potentials Vk(x) times local fields and their derivatives,
with, in total, two or more space derivatives.

Integrating over a large space-time cell Ω, we obtain the integral form of a conservation
equation,

∫

∂Ω
d~x ∧ ~q(~x) = SΩ, ~x = (x , t), ~q = (q, j), for the density q = qi and the modified

current j = ji+ j[W, hi], with sources within the cell, SΩ =
∫

Ω
dxdt j([hi ,∂xW ](x , t). We may

now make the hydrodynamic assumption that averages of local observables are evaluated in
local GGEs, and reverting to the differential form of this conservation equation, this shows
(47).

In a pure force field, i.e. with W (x)′ = 0, the equation simplifies, since in this case
j[W (x), hi](x) = 0. For evolution within a pure force field, we are therefore left with

i[Hforce, qi(x)] = −∂x ji(x)− j[hi ,∂xW (x)](x) + . . . (99)

14Taking the infinite-temperature limit in QFT is delicate, as large temperatures bring the system much beyond
the quantum critical point. However, choosing h and g to decay at large rapidities amounts to a UV regularization
of the fields q[h](x) and q[g](x) (which are therefore not local anymore). This UV regularization guarantees that
the energy scale of the temperature, in the large-temperature limit, is beyond the UV scale of the observables, and
thus the limit is indeed described by the microscopic formula, which is a trace state.
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which implies (42).
In order to show (48) and (49), Equation (98) is written, using TBA and in particular using

(90) and the symmetry of the bilinear form (10), as

0=

∫

dθ
2π

�

2πhi

�

∂tρp + ∂x

�

veffρp

��

+
∑

k

�

hi∂x(Vk n(h′k)
dr) + (∂x Vk)nhdr

k h′i
�

�

, (100)

(here for lightness of notation, we omit the explicit θ and x dependences, and recall that
primes (′) indicate θ -derivatives). Using integration by parts for the last term in the square
brackets, and using the fact that this holds for every function hi (assuming completeness of
this space of functions), we obtain

2π
�

∂tρp + ∂x

�

veffρp

��

+
∑

k

�

∂x(Vk n (h′k)
dr)− ∂x Vk (nhdr

k )
′�= 0. (101)

Let us use integral-operator notations, with measure
∫

dθ/(2π). Consider the diagonal op-
eratorN with kernelN (θ ,α) = 2πn(θ )δ(θ−α)δa,b, the vectors p′, E′ and h0 with elements
p′(θ ), E′(θ ) and h0(θ ) respectively, and the operator ϕ with kernel ϕ(θ ,α). Then

2πρp = N (1−ϕN )−1p′

2π veffρp = N (1−ϕN )−1E′

nhdr
k = N (1−ϕN )

−1hk

n(h′k)
dr = N (1−ϕN )−1h′k. (102)

Using the first, second and last of these relations, as well as (30), we see that we can combine
the term ∂x(veffρp) with ∂x(Vk n (h′k)

dr) into ∂x(veff[E +W ]ρp). On the other hand, using the
first and the third, as well as (50), we see that

∑

k ∂x Vk(nhdr
k )
′ = 2π∂θ (aeffρp). Therefore, this

indeed reproduces (49).
Next we derive (48). Note that N (1−ϕN )−1 =N +N ϕN +N ϕN ϕN + . . .. Differ-

entiating with respect to any internal parameter (say u = x or u = t) that ϕ does not depend
on, we have

∂u

�

N ϕN ϕ · · ·
�

=
�

∂uN
�

ϕN ϕ · · ·+N ϕ
�

∂uN
�

ϕ · · ·+ . . . (103)

Therefore, it is seen that

∂u

�

N (1−ϕN )−1
�

= (1−N ϕ)−1
�

∂uN
�

(1−ϕN )−1. (104)

Similarly, in order to differentiate with respect to θ we may use integration by parts, along
with the fact that ϕ depends on the difference of rapidities. Explicitly, we have for instance

∂θ

�∫

dθ ′ n(θ )ϕ(θ ,θ ′)n(θ ′)hk(θ
′)

�

=

∫

dθ ′ ∂θn(θ )ϕ(θ ,θ ′)n(θ ′)hk(θ
′)

+

∫

dθ ′ n(θ )∂θϕ(θ ,θ ′)n(θ ′)hk(θ
′), (105)

and the last term can be written as
∫

dθ ′ n(θ )ϕ(θ ,θ ′)∂θ ′
�

n(θ ′)hk(θ
′)
�

.

Hence,
�

N ϕN hk

�′
=N ′ϕN hk +N ϕN ′hk +N ϕN h′k. (106)
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Generalizing to all orders, this gives
�

N (1−ϕN )−1hk

�′
= (1−N ϕ)−1

�

N ′
�

(1−ϕN )−1hk + n(h′k)
dr. (107)

Writing ∂x(Vk n(h′k)
dr) = ∂x Vk n(h′k)

dr + Vk ∂x(n(h′k)
dr), the last term in the equation above

cancels one of the terms in the summand in (101). The summand in (101) therefore simplifies
to

∂x Vk (1−N ϕ)−1
�

N ′
�

(1−ϕN )−1hk + Vk∂x(n(h
′
k)

dr).

We may evaluate the last term in this expression, as well as the derivatives of ρp and veffρp in
(101), using (104). Premultiplying by (1−N ϕ) in order to cancel the common operatorial
factor, and then multiplying by 2π and dividing by (p′)dr, we obtain the following:

∂t n(θ ) + veff[E +W ](θ )∂x n(θ ) + aeff(θ )∂θn(θ ) = 0. (108)

This indeed reproduces (48).
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