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Abstract 

A wide variety of formulations have been explored in attempt to improve the apparent 

aqueous solubility of poorly-water soluble drugs such as oil-in-water nanoemulsions 

(NE), oil-in-water microemulsions (ME) and drug nanoparticles (NPs). There would be 

advantage gained if two poorly-water soluble drugs could be combined in a single 

formulation, particularly with respect to the ability to personalise a patient’s medicine. 

In this study therefore, two novel combination formulations, which we have termed a 

“nanosusponanoemulsion (NSNE)” and a “nanosuspomicroemulsion (NSME)”, 

consisting of either NE or ME containing a low dose drug and NP comprised of a high 

dose drug, respectively have been studied. The particular aim of this study is to prove 

the principal that, by the rational design of NSNE and NSME, it is possible to prepare 

combination formulations suitable for the delivery of two poorly-water soluble drugs for 

use in personalised medicine. 

Studies involved the preparation and physico-chemical characterization of NSNE and 

NSME prepared from the mixing of NP, prepared by wet bead milling and stabilised by 

the anionic surfactant, sodium dodecyl sulphate (SDS), and either NE stabilised by the 

nonionic surfactant, Brij 97, and containing the triglyceride oil, glyceryl trioctanoate 

(TON) or a ME stabilised by SDS and containing either ethyl butyrate (EB) or ethyl 

caprylate (EC). Testosterone propionate (TP) was used as the low-dose model drug and 

was solubilised in the NE and ME, whilst griseofulvin (GF) was the high-dose model 

drug used to prepare the NPs. A range of physico-chemical techniques were used to 

characterize the individual systems, namely the NP, NE and ME, as well the NSNE and 

the NSME and included UV spectroscopy, photon correlation spectroscopy (PCS) as 

well as small angle neutron scattering (SANS) which was used to individually monitor 

the in situ stability of the individual components of the NSNE and NSME. 

Significantly in the combined formulations, some of the GF from the NPs was 

solubilised in the NE and the ME. In addition, while the solubility of TP in the NE 

remained constant in the presence of the SDS-stabilised GF-NPs, the amount of TP in 

the ME decreased upon contact with the GF-NP, suggesting that the GF displaced some 

of the TP molecules in the ME. PCS studies showed that the particle size of GF-NP, 

when in the form of a NSNE, i.e. in contact with the NE initially increased in size but 
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thereafter remained relatively stable whilst the particle size of GF-NP in the form of a 

NSME remained unchanged. On the other hand, the SANS studies indicated that the 

TP-containing NE with a low amount of TON were stable for at least 24 hours contact 

with the GF-NP when in the form of a NSNE. These results suggest that the NSNE is 

more suitable than the NSME for the administration of two poorly water-soluble drugs 

in a single formulation for use in personalised medicine. 
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ρsolvent scattering length density of solvent 

ῦ partial specific volume 

  
  partial specific volume of the solvent 

Φ  volume fraction 

ψ0  surface potential 

 [η]  Intrinsic viscosity 
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Chapter 1 Introduction 

1. Background 

A large number of extremely poorly-water soluble compounds have been developed as 

potential therapeutic agents in the pharmaceutical industry. Indeed, up to 70% of new 

drug candidates have been reported to show poor aqueous solubility (Kawabata et al., 

2011). One of the most important problems of oral administration arising from the poor 

water solubility of a drug is that insufficient drug is dissolved in the fluid of 

gastrointestinal tract to ensure its adequate uptake through the epithelial cells of the 

small intestine. One of the main challenges, therefore, facing researchers developing 

new drug formulations (or medicines) is the preparation of delivery systems containing 

poorly-water soluble drugs suitable for administration to patients. Another complication 

is whether the patient is in the fed or fasted state as this can affect the bioavailability 

and therefore the therapeutic response of the drug (Date et al., 2004; Merisko-

Liversidge et al., 2003).  

Two factors greatly influence a drug’s bioavailability, namely its solubility and its 

membrane permeability. These two factors that formulation techniques aim to improve 

(Leuner et al., 2000). However, the requirement for an innovative formulation to 

increase the apparent solubility of a poorly-water soluble is one of the most challenging 

aspects of drug development (Keck et al., 2006; Leuner et al., 2000; Serajuddin, 1999; 

Vasconcelos et al., 2007; Wang et al., 2013). Based on the knowledge of a drug’s 

solubility and permeability, the biopharmaceutics classification system or BCS divides 

drug molecules into four different classes as shown in Figure 1.1 (Lipinski et al., 2001; 

Rautio et al., 2008).  Most poorly-water soluble drugs fall into BCS class II and IV. One 

technique to improve the bioavailability of a poorly-water soluble drug is to improve the 

rate-limiting step of absorption by increasing the dissolution rate of the drug (El-Badry 

et al., 2009; Jia, 2005; Khadka et al., 2014; Pouton, 2006).  
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Figure 1.1 Classification of drugs into four different groups using the Biopharmaceutics 

Classification System or BCS (Rautio et al., 2008).  

 

In order to enhance the dissolution rate of a poorly water-soluble drug, several 

strategies/formulations have been employed. Over the last few decades, a range of 

strategies including increasing the surface area of powdered drug, changing the drug’s 

crystalline form and designing novel nanocarriers for its controlled release, have been 

used to try and improve the dissolution rate and bioavailability of a poorly water-soluble 

drug. A very promising way to improve a drug’s bioavailability is by the use of 

improved formulations, such as nanoemulsions, microemulsions and solid dispersion 

technologies. Numerous reviews support the hypothesis that such preparations can 

improve the solubility, dissolution kinetics and bioavailability of hydrophobic drugs 

(Chen et al., 2011; Ghosh et al., 2006; Mueller et al., 1994; Shafiq et al., 2007). Even 

though such approaches have been successfully used commercially to enhance the 

dissolution rate of low dose, poorly water-soluble drugs, many current research projects 

are focusing on the development of enabling nanoformulation technologies for the 

delivery of high dose drugs, for example, the production of nanosized of drug particles. 

Research illustrates that drug nanoparticles can be used to increase the drug dissolution 

rate by reducing particle size and therefore increasing surface area (Date et al., 2004; Hu 

et al., 2004; Merisko-Liversidge et al., 2008). In addition to increasing drug dissolution, 

drug nanoparticles have been proven to improve the drug bioavailability and enhance 
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the drug exposure in formulations intended for both oral and parenteral delivery 

(Merisko-Liversidge et al., 2008; Wang et al., 2013).  

In parallel, combination drug therapies have become increasingly popular as a means to 

improve the treatment for the patients with a range of chronic diseases including AIDS, 

TB, diabetes and also cardiovascular diseases where the polypill (which contains 4 

drugs - losartan, amlodipine, hydrochlorothiazide and simvastatin) is gaining much 

interest. Combination therapy is a term used for the administration of multiple 

medications or therapies to fight the same condition. There are many advantages of 

using combination formulations comprising two, or indeed more, drugs for combination 

therapy. For instance, combination formulations are considered to improve patient 

compliance, simplify disease management, reduce cost as well personalise the 

medication. For example, Kim et al. (2013) developed a fixed dose combination 

formulation comprising of 3 drugs, namely losartan, amlodipine and 

hydrochlorothiazide for prophylaxis or treatment of cardiovascular disease. The 

formulation demonstrated both a higher rate of dissolution and greater stability than the 

conventional formulations, thus showing the combination formulation to be at least 

biologically equivalent or possibly even superior to the conventional dosage forms of 

the same medicines. Furthermore, William et al. (1984) demonstrated advantages from a 

combination formulation comprising of triamterene and hydrochlorothiazide intended to 

treat patients with mild to moderate hypertension, which resulted in the maintenance of 

normal levels of serum electrolyte, while the levels of uric acid and creatinine were 

unchanged when compared to the conventional formulation. Indeed one combination 

therapy recently approved in the US by the FDA is the combination of paclitaxel and 

gemcitabine for the treatment of metastatic adenocarcinoma of the pancreas, paclitaxel 

acts as a microtubule inhibitor, while gemcitabine replaces segments of cell DNA to 

force apoptosis. Leyden et al. (2001) showed that a combination formulation comprising 

of 1% clindamycin and 5% benzoyl peroxide gel produced both a more rapid and 

greater reduction in the extent of Propionibacterium acne when compared to the 

traditional formulation of clindamycin alone. As demonstrated here, the use of 

combination drug therapies is opening the possibility of tailoring a dose to a patient 

individual need i.e. personalised medicine.  
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The goal of personalised medicine is to achieve the right drug in the right does for the 

right person at the right time in order to avoid the drug adverse reactions, eliminate 

invalid therapy, improve treatment efficiency, and thereby achieve optimal health 

outcomes. Although personalised medicine is not a new concept, doctors and 

pharmacists have been aiming to administer the right drugs to the right patients for 

many years, it has only recently attracted wide spread attention as our understanding of 

human genetics and its influence in disease, not only in cancer but also other chronic 

diseases such as HIV, TB and diabetes, has greatly improved. For example, it is now 

increasingly common to develop new drugs to treat specific sub-populations of patients 

based on their genetic make-up. One area, however, that has received, by comparison, 

very little attention to date is the personalisation of the medicine in respect to its dose. 

Indeed, as described above there is a strong case to prepare medicines that contain a 

combination of drugs, in this way it would be possible to reduce production costs, 

simplify disease management and improve patient compliance, amongst other things.  

In this study, two related novel combination drug delivery systems, namely a 

“nanosusponanoemulsion (NSNE)” and a “nanosuspomicroemulsion (NSME)” 

consisting of a nanosuspension of drug mixed with either a drug-containing oil-in-water 

nanoemulsion or an oil-in-water microemulsion, respectively, have been prepared. The 

aim of these formulations is to combine a high dose, poorly-water soluble drug in the 

form of a nanosuspension with a low dose, poorly-water soluble drug contained in either 

an oil-in-water nanoemulsion or microemulsion in a single formulation. 

The preparation of a drug nanoparticle, means that most of the nanoparticle is drug, 

unlike the situation of a drug-containing nanoemulsion and microemulsion, where only 

a small portion of the particle is drug. For this reason drug nanoparticles are ideal for 

the administration of high-dose drugs, while nanoemulsions and microemulsions are 

only suitable delivery vehicles for low dose drugs. Griseofulvin (class II BCS) is an 

antibiotic, fungistatic drug administrated orally for the treatment of dermatophyte and 

ringworm infections. The usual adult dose of micronized griseofulvin for the treatment 

of tinea corporis, tinea crusis or tinea capitis is 500 mg /day, while a 1 g/day is required 

for tinea pedis and tinea unguium treatment. Because of griseofulvin’s poor water-

solubility coupled with the high dose required for treatment using griseofulvin, means 

that it is an ideal model drug for the production of nanoparticles in the present study. 
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While the low dose (30-50 mg/mL) required for the poorly-water soluble, steroidal 

drug, testosterone propionate, makes it an ideal candidate for loading into either the 

nanoemulsions or the microemulsions in the novel combination formulation. 

 

1.2 Nanoemulsions and microemulsions 

1.2.1 Definition 

Over the last decade or so, nanoemulsions and microemulsions have become more 

popular in the food and pharmaceutical industries because of their many perceived 

advantages, including being able to protect and increase the bioavailability of lipophilic 

substances encapsulated within them (Narang et al., 2007). Unfortunately, there is much 

confusion around the terms microemulsion and nanoemulsion, mainly because of the 

prefixes used to describe them. The term of “micro-” means 10
-6

, whilst the term of 

“nano-” means 10
-9

, which would infer that a microemulsion contains on average 1000x 

larger particles than a nanoemulsion, when in reality the particles in a microemulsion 

are in fact smaller than those in a nanoemulsion. The reason for this confusion is that 

the phase microemulsion was used before the size of the particles they contained was 

determined and had become well-established before the term nanoemulsion was 

introduced. In this context it is interesting to note that the first microemulsions were 

prepared by diluting an emulsion, hence the prefix “micro-”. As a consequence in the 

present thesis, nanoemulsions and microemulsions will be defined in terms of size and 

structure of the particles they contain, their preparation and stability in order to 

understand the differences and similarities of these systems. 

In terms of size, recent literature has stated that the upper particle size of a 

nanoemulsion droplets could be as large as 500 nm (Anton et al., 2008), although upper 

limits of 200 nm (Huang et al., 2010) and 100 nm (Rao et al., 2012) have all been 

quoted. Recently McClements (2012) has argued that an upper limit of 100 nm would 

lead to a number of potential benefits of nanoemulsions including improved stability, 

high optical clarity and the increased bioavailability of any encapsulated lipophilic 

compounds. Although there is some variability in the size range quoted for 

nanoemulsions, a particle size range of 20-200 nm is most typically seen, in contrast to 

the widely quoted size range of 5-100 nm for microemulsions. Normally, the physical 



Introduction 

 

38 

appearance of a microemulsion is clear, whilst that of nanoemulsions can range from 

clear through translucent. In this context it is worth noting that the appearance of 

colloidal system is generally translucent or transparent when the dispersed particle size 

is less than 30 nm (Wooster et al., 2008).  

 

1.2.2 Structure  

Nanoemulsions and microemulsions are typically composed of oil, water, surfactant and 

possibly a co-surfactant.  Figure 1.2 shows schematic diagrams of the three of the most 

common types of microemulsions, namely droplets of oil-in-water (O/W), bicontinuous 

phases and droplets of water-in-oil (W/O), which type of microemulsion is formed 

depends on concentration of the various components, and the nature and arrangement of 

the molecules present. In contrast, nanoemulsions form only O/W and W/O droplets, 

they do not form bicontinuous phases. Both O/W nanoemulsions and microemulsions 

possess a disperse phase of oil which is separated from the bulk polar aqueous phase 

from an interfacial monolayer of surfactant molecules in which the hydrophobic portion 

is in contact with the disperse oil phase and the hydrophilic head groups of the 

surfactants is bathed by the continuous aqueous phase. W/O nanoemulsions and 

microemulsions similarly contain an interfacial surfactant monolayer but of reversed 

configuration such that the surfactant head groups are directed towards the centre of the 

droplets where disperse aqueous phase resides, while the hydrophobic or hydrocarbon 

chains of the surfactant are expressed on the exterior in contact with the non-polar 

phase.  

 

 

Figure 1.2 Schematic represents three common types of microemulsion structures: (a) oil-in-

water and, (b) bicontinuous and (c) water-in-oil type. 
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In this study, we are concerned only with a system suitable for encapsulating 

hydrophobic drug in a continuous aqueous phase so O/W nanoemulsions and 

microemulsions, consisting of oil surrounded with surfactant molecules dispersed in an 

aqueous medium, were examined due to their ability to solubilise poorly water-soluble 

drug in a core of their droplets and thereby increase apparent aqueous drug solubility. 

Figure 1.3 shows schematic diagram of microemulsions and nanoemulsions composed 

of oil, water and surfactant. 

 

 

Figure 1.3 Schematic diagram of nanoemulsion and microemulsion composed of oil, water 

and surfactant showing approximate dimensions.  

 

1.2.3 Formation of nanoemulsions and microemulsions 

The major distinction between nanoemulsions and microemulsions is their 

thermodynamic stabilities: nanoemulsions are thermodynamically unstable while 

microemulsions are thermodynamically stable. Figure 1.4 shows the differences in the 

free energy of nanoemulsion and microemulsion systems compared with their phase 

separated state (bulk oil and water phases). Nanoemulsions have a higher free energy 

than the phase separated state, while microemulsions have a lower free energy.      
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Figure 1.4 Schematic diagrams of the free energy of microemulsion and nanoemulsion 

systems compared to their phase separated state (McClements, 2012). 

 

A simple mathematical model of thermodynamic stability can be used to explain this 

difference by calculating the free energy of formation of a nanoemulsion and 

microemulsion from their individual components. To a first approximation, the free 

energy of formation of a colloidal dispersion from the individual phases depends on the 

interfacial free energy (ΔGI) and the configuration entropy (-TΔSconfig) : 

                             

where the interfacial free energy (ΔGI) is equal to the increase in the contact area 

between the oil and the aqueous phases (ΔA) multiplied by the interfacial tension (γ) at 

the oil-water interface at constant temperature, pressure and interfacial chemical 

potential: 

         

In addition, the interfacial free energy term is usually positive as increasing the contact 

area and the interfacial tension is positive. As a consequence, this interfacial free energy 

term always opposes nanoemulsion and microemulsion formation.  

The configuration entropy (-TΔSconfig) is dependent upon the number of ways in which 

the oil phase can be arranged within the system. The configuration energy is always 
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negative because the number of possible arrangements of the oil phase in an emulsified 

state is much greater than in a non-emulsified state, and therefore the configuration 

energy always favours the formation of a colloidal (emulsified) dispersion.  

Initially, the interfacial tension of the system depends on the curvature of the surfactant 

monolayer. Nanoemulsions are formed when the interfacial tension at the oil-water 

boundary in the emulsified system is similar to the interfacial tension at a planar oil-

water interface. However, upon decreasing particle size, the interfacial free energy 

becomes increasingly less negative/more positive (i.e. unfavorable to the formation of a 

colloidal dispersion) due to an increasing contact area, while the configuration free 

energy becomes more negative (i.e. favorable to the formation of a colloidal dispersion) 

as the oil droplets increase the number of different ways in which the oil can be 

organized. Overall, the total free energy change becomes increasingly positive because 

the interfacial free energy term dominates over the configuration entropy term. 

Microemulsions contain a larger number of smaller droplets than a nanoemulsion. The 

formation of the large number of smaller droplets leads to an increase in the contact 

area, resulting in an unfavourable energy change. In this case, however, the interfacial 

free energy contribution is complicated and depends upon the size of the droplets, in 

that the interfacial free energy increases as droplet size decreases, although when the 

droplet size approaches the radius of the optimum curvature of the surfactant monolayer 

this leads to creation of ultralow interfacial tensions, resulting in a reduction in the 

interfacial free energy that opposes the formation of a colloidal dispersion. As a 

consequence therefore, the overall free energy of formation is negative as a result of a 

large significant, favourable change in entropy.  

 

1.2.4 Preparation of nanoemulsions and microemulsions 

In terms of preparation, nanoemulsions always require the input of external energy to 

convert the separated oil and water phases into a (thermodynamically unstable) colloidal 

dispersion. Nanoemulsions are usually prepared by the input of external energy, the 

power of which depends upon the physico-chemical mechanism of the droplet 

disruption. Generally, high-energy emulsification procedures, such as high-pressure 

homogenizers (Schultz et al., 2004), sonicators and ultrasound generators (Gaikwad et 
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al., 2008; Kentish et al., 2008) are required to produce a nanoemulsion. Alternatively, 

nanoemulsions can be prepared by low energy methods such as phase inversion 

temperature (PIT), phase inversion composition and self-emulsifying methods 

(Izquierdo et al., 2005; Maestro et al., 2008). In these cases, smaller nanoemulsion 

droplets are formed when the system undergoes a phase inversion in response to a 

change in either composition and/or temperature (Mason et al., 2006). Indeed PIT is one 

of method widely used low energy methods to produce nanoemulsions (Forgiarini et al., 

2001a; Forgiarini et al., 2001b; Izquierdo et al., 2002).  

Oil-in-water nanoemulsions, of very small and uniform droplet size, stabilised by 

nonionic surfactants are typically prepared by the PIT method (Izquierdo et al., 2004; 

Rao et al., 2010). This approach is based on changes in the molecular 

geometry/hydrophobicity of nonionic surfactants with temperature (Shinoda et al., 

1964). Nanoemulsions are frequently prepared by heating a mixture of oil, water and 

surfactant to the PIT, where the hydrophilic and lipophilic properties of the mixed 

emulsifier are balanced (Forster et al., 1990), after which the mixture is rapidly cooled 

(Morales et al., 2003; Rao et al., 2010).  

In contrast, microemulsions can be formed spontaneously by simply mixing oil, water 

and surfactant without any external energy because they are thermodynamically stable 

systems. However, in practise, external energy, such as stirring or heating, is often 

added in order to overcome any kinetic energy barriers to microemulsion formation. 

Consequently, it is often difficult to distinguish between nanoemulsions and 

microemulsion based purely on their method of preparation.    

In the present study, nanoemulsions will be prepared using phase inversion temperature 

(PIT) method, which results in the formation of an optically transparent colloidal 

dispersion when a mixture of oil, water and surfactant is heated up just above the phase 

inversion temperature of the system and then cooled to ambient with continuous and 

vigorous stirring. In contrast, microemulsions will be prepared by mixing oil, water and 

surfactant with the aid of a stirrer at room temperature.  
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1.2.5 Stability  

Emulsions will normally breakdown over by a number of different physico-chemical 

mechanisms which includes separation (creaming and sedimentation), flocculation, 

coalescence (Capek, 2004; Solans et al., 2005; Tadros et al., 2004) and Ostwald 

ripening.  Which of these breakdown processes occurs depends upon the composition of 

the system, such as the nature of the oil and surfactant, solvent (continuous phase), the 

concentration of oil and surfactant, pH, ionic strength and environmental conditions, 

such as temperature and pressure. Figure 1.5 schematically illustrates the range of 

breakdown processes in emulsions.  

 

 

Figure 1.5 Schematic diagram of breakdown processes (Tadros, 1990). 

 

Even though nanoemulsions are stable against flocculation and coalescence (Deminiere 

et al., 1998), the particle size of the nanoemulsions tend to grow as a function of time by 

Ostwald ripening (Capek, 2004; Kabalnov, 2001; Tadros et al., 2004; Taylor, 1998). 

The process of Ostwald ripening in an O/W nanoemulsion is one of the main problems 

of nanoemulsions. This results from the difference in solubility between the small and 

large droplets (Izquierdo et al., 2004; Tadros, 1990). When the oil phase has some 

solubility in continuous, dispersion medium, the smaller nanoemulsion droplets possess 

a higher local oil solubility than the larger droplets due to the difference in Laplace 

pressure of the droplets (Tadros, 1990).  
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Furthermore, microemulsions may become unstable if chemical changes occur in the 

components during storage, or alternatively the environmental conditions are altered. 

For instance, microemulsions can breakdown if they are diluted or alternatively 

temperature changes (McClements, 2012; Rao et al., 2011). As a consequence, it is 

important to understand the effect of composition and environmental conditions on the 

phase behaviour of the oil, surfactant and water systems in order to develop the 

successful microemulsion system.  

 

1.2.6 Application of nanoemulsions and microemulsions in drug delivery 

Even though nanoemulsions and microemulsions can be formed in different ways, the 

advantages of their use as a carrier vehicle for drugs are the same. Indeed, 

nanoemulsions and microemulsions have attracted much interest over recent years as 

drug delivery vehicles because their many beneficial properties including their 

transparency, their ease of preparation, an ability to be sterilized by filtration and their 

ability to improve the apparent aqueous solubility of a wide range of drug molecules, 

especially poorly-water soluble drugs. Table 1.1 lists the commercially available 

nanoemulsion and microemulsion formulations. The most convenient, easiest and cost 

effective way to administer a drug is via the oral route, which as a consequence 

dominates the drug delivery market. However, the oral delivery of poorly water soluble 

drugs poses some serious problems, such as poor drug stability and a limited ability of 

the drug to permeate the gastrointestinal membrane. Both nanoemulsions and 

microemulsions have been proposed to enhance the oral bioavailability of a range of 

drugs due to a variety of reasons including the protection against degradation in the 

gastrointestinal tract they provide a drug, the prolongation of the drug transit time, and 

their ability to target to specific sites in the gastrointestinal tract to utilise specific 

absorption pathways (Thiagarajan, 2011). Besides their use as oral drug delivery 

systems, there are many reports of nanoemulsions and microemulsions being exploited 

for a whole range of delivery routes, such as, intranasal (Mistry et al., 2009), 

transdermal (Ktistis et al., 1998; Trotta, 1999; Valenta et al., 2004), pulmonary (Bivas-

Benita et al., 2004), ophthalmic (Kapoor et al., 2008), and parenteral (Araújo et al., 

2011) delivery. However, despite these reports, most of the research on nanoemulsions 

and microemulsions (including water-in-oil and oil-in-water types) as drug delivery 



Introduction 

 

45 

systems has focused on their use as oral drug delivery systems to improve the 

bioavailability of drugs.  

 

Table 1.1 Commercial nanoemulsion and microemulsion formulations 

Drug Brand Company Indication 

Nanoemulsion formulations 

Propofol Diprivan
®

 Astra Zeneca Anesthetic 

Dexamethasone  Limethason
®

 Mitsubishi Pharmaceuticals Steroid  

Flurbiprofen axetil Ropion
®
 Mitsubishi Pharmaceuticals Non-steroidal 

analgesic 

Vitamin A,D,E, K Vitalipid
®
 Fresenius Kabi Parenteral nutrition 

Microemulsion formulations 

Cyclosporine A Sandimmune 

Neoral
®

 

Norvartis Pharmaceuticals Immunosuppressant 

Ritonavir Norvir
®

 AbbVie, Inc. HIV/AIDS 

Tipranavir Aptivus
®
 Boehringer-Ingelheim HIV/AIDS 

 

1.3 Nanoparticle production 

Nanoparticles are defined as particles in the size range 10 to 1,000 nm (Mohanraj et al., 

2006). Generally reducing the particle size to the nano-sized range increases the surface 

area from which the drug can dissolve, which in turn leads to an improvement in drug 

dissolution rate and therefore most likely an increased bioavailability of the drug. The 

dissolution rate achieved from drug nanoparticles is much higher than that obtained 

using conventional size reduction techniques such as micronisation. As a consequence, 

nanoparticles have been explored as a means to improve the apparent aqueous solubility 

of a range of hydrophobic drugs (Khadka et al., 2014; Merisko-Liversidge et al., 2008; 

Yarnell, 2012). Moreover, research has found that using nanoparticles to deliver drug 

https://en.wikipedia.org/wiki/Immunosuppressant
https://en.wikipedia.org/wiki/Antiretroviral_medication
https://en.wikipedia.org/wiki/Boehringer-Ingelheim
https://en.wikipedia.org/wiki/Antiretroviral_medication
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can reduce the need for the use of solvents, such as Cremophor
®

 EL (polyethoxylated 

caster oil), in the formulation.  

Basically, drug nanoparticles can be prepared from one of two processes, either a ‘top 

down’ process in which large particles are broken down into smaller particles or a 

‘bottom up’ process whereby the precipitation or crystallization of materials is carefully 

controlled to obtain the desired particle size. The two main ‘top down’ methodologies 

are media (or wet bead) milling and high pressure homogenization while the two main 

‘bottom-up’ approaches are precipitation or crystallization. 

 

1.3.1 Media milling 

Making nanoparticles by  media (or wet bead) milling normally consists of mixing drug, 

water and stabiliser and milling the resultant crude suspension with milling media - 

generally yttrium zirconia, spherical glass, ceramic or plastic (highly cross linked 

polystyrene resin) beads. The diameter of the beads is usually in the size range 0.4-3.0 

mm. The process of making nanoparticles by wet bead milling starts with loading the 

crude aqueous suspension of drug and stabiliser together with the milling beads into the 

mill. Next the crude suspension is agitated at a very high shear rate in the milling 

chamber as shown in Figure 1.6. As a result of this agitation, the drug particle size is 

reduced by the presence of the beads to the nanometer size range. The advantages of 

this technique are minimal batch-to-batch variation, the avoidance of using organic 

solvents, the narrow particle size range, the ease of preparation and the ease of scale-up 

to industrial production levels. A number of crystalline drug nanoparticles, produced by 

wet bead milling, have been launched on the market including Rapamune
®
, Emend

®
 

and Megace
®

.  
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Figure 1.6 The media milling scheme (Merisko-Liversidge et al., 2003). 

 

1.3.2 High pressure homogenization  

Müller et al. (1999) developed homogenization methodology to produce nanometer 

particles. This methodology is now patented to SkyePharma using Dissocubes
®
 as the 

name trade. Triglide
® 

is an example of a drug produced by this technique. To produce 

nanoparticles by this methodology, typically, the drug is suspended in a stabiliser 

solution such as surfactant solution, which is then forced through a narrow gap at a high 

pressure of approximately between 15,000-30,000 psi resulting in a high velocity. 

Whilst maintaining the energy in the system, the static pressure of the system decreases 

dramatically below the vapour pressure of water leading to the suspension starting to 

boil. As a consequence the pressure of the system rapidly increases to ambient and 

consequently gas bubbles are imploded at the normal air pressure after the suspension 

exits from homogenization gap as shown in Figure 1.7. Therefore, reduction of particles 

can occur by the combination of this implosion force with the high shear forces 

experienced in the homogenization gap and the impact of particles. The resultant 

particle size can be controlled by the temperature, the power density of the homogenizer 

and the number of homogenization cycles used. The advantages of this technique are 

that it is easy to scale up, there is minimal batch-to-batch variation, the resultant 

particles are of a narrow size range and contain a low level of contaminates. One 
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drawback of this technique usually is the frequent clogging of the gap with highly 

concentrated drug formulations.     

 

Figure 1.7 High-pressure homogenization processing scheme (Ghadimi et al., 2011) 

 

1.3.3 Precipitation 

Practically, this technique is performed by dissolving drug in a solvent and then adding 

a miscible, anti-solvent to precipitate the drug out of solution. In addition, surfactants 

may be added to either the solvent or anti-solvent to improve the stability of these 

nanoparticles. Nevertheless, this technique has some limitations. Firstly, the selection of 

the optimal precipitation conditions for nanoparticle production requires a high 

nucleation rate and a low growth rate to ensure that crystal growth controls the size and 

size distribution of the nanoparticles. One problem with this technique concerns safety 

and arises from the use of non-aqueous solvents as well as the possibility of residual 

solvent contamination.  

Comparison of these three techniques of nanoparticles production led to the use in the 

present study, of wet bead milling for drug nanoparticle production. This particular 

technique was selected because of its many advantages, including the ease of 

nanoparticle production with no need to undertake prior pre-micronisation. 
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1.4 Nanoparticle stabilisation  

The formation of nanoparticles from larger drug particles can be broken down into three 

stages: (1) wetting of the powder, (2) breaking up of aggregates and agglomerates and 

the reduction of particles to the colloid size of 1 nm to 1 μm and (3) stabilisation of the 

colloidal dispersion (Goodwin, 2006). Note that it is essential that an adequate amount 

of stabiliser is able to coat the nanoparticles as soon as they are produced by fracture of 

the larger particles, otherwise the benefits of the increased drug surface area will be lost 

(Merisko-Liversidge et al., 2003).  

The strong forces of particle-particle attraction that increase as particle size decreases, 

arise from the high surface area to volume ratio and the resultant high surface energy. In 

order to reduce this high surface energy, the system responds by reducing its surface 

area, either by precipitation or agglomeration of the particles, as a result of the presence 

of strong, long-range attractive, van der Waals forces between particles. It is 

consequently essential, if the reduction in particle size is to be maintained, to provide a 

long range repulsion to overcome the tendency of the system to aggregate. It is 

necessary therefore to add a suitable stabiliser to provide these repulsive forces at the 

surface of the nanoparticles. The stabiliser can act to counterbalance the van der Waal’s 

forces of attraction between colloidal particles by providing either repulsive electrostatic 

and/or steric forces.  

 

1.4.1 Electrostatic stabilisation 

The use of ionic surfactant and/or polymers, for instance, sodium dodecyl sulphate, 

dodecyl trimethyl ammonium bromide and hypromellose acetate succinate, in a 

nanoparticle system can act to introduce an electrostatic charge on the particle surface to 

stabilise particles (Han et al., 2012; Kuo et al., 2004; Lee et al., 2011). Figure 1.8 shows 

schematic diagram of the electrical double layer that is seen when a negatively charged 

particle is immersed in a polar medium. As can be seen, the negative surface charge of 

solid particles attracts ions of the opposite charge, here positively charged ions, from the 

surrounding aqueous medium at the Stern layer. However as the number of ‘adsorbed’ 

positively charged counter ions is insufficient to neutralise the negatively charged 

particle, a diffuse ‘electrical double layer’ is formed comprising of both positively and 
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negatively charged co-ions but with an excess of positively charged counter ions to 

neutralise the surface charge of the particle surface. Beyond the edge of the diffuse 

double layer, in the bulk of solution, there are equal number of positively charged 

counter ions and negatively charged co-ions. Note that charged surfactants and 

polymers can easily adsorb to surfaces of opposite charge in aqueous medium. 

 

Figure 1.8 Schematic diagram of the electrical double layer formed when a negatively charged 

surface is immersed in a polar medium (Florence and Attwood, 1998) 

 

The theory of electrical stabilisation of colloids is referred to the Derjaguin, Landau, 

Verwey, and Overbeek (DLVO) theory of colloid stability. According to the DLVO 

theory, the total potential energy (VT) acting on a colloidal particle is the summation of 

van der Waal’s forces of attraction (VA) and the electrical repulsive forces (VR).   

         

 

1.4.1.1 Attractive forces  

Hamaker was the first to quantify the total effect of van der Waals forces on a collection 

of colloidal particles, assuming that the total attractive energy varied with the sixth 
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power of the distance between two particles. The equation describes the forces of 

attraction (VA) between two spheres of equal radius (R) at the distance between their 

centres (H): 

    
 

 
 

   

      
 
   

  
 
      

  
  

where h is the Hamaker constant which depends on the properties of the particles and 

the dispersion medium. When the distance between the surfaces of the two spheres (H’) 

is small, and the particles are large relative to the distance of separation, the equation 

reduces to: 

   
   

    
 

The van der Waals forces of attraction are high when the distance between particles is 

small, but drops off rapidly when the distance between particles increases.   

 

1.4.1.2 Electrical repulsive forces  

The repulsive forces between particles are increased by the osmotic effect which 

produces an increase in the number of charged species on the overlap region of the 

diffuse electrical double layer. These repulsive forces increase as a function of the 

distance between particles as shown: 

         
          

where ε is the permittivity of the polar liquid, R is the radius of the spherical particles,  

ψ0 is zeta potential, and H is the distance between particles. The surface potential of a 

particle be determined using electrophoretic measurements. 

 

1.4.1.3 Total potential energy  

The full DLVO theory is expressed as the variation in total potential energy (VT) as a 

function of the distance between particles, as shown in Figure 1.9. 
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Figure 1.9 The total potential energy curve (VT)  between two particles is the summation of the 

van der Waal’s forces of attraction (VA) and electrical repulsive forces (VR) as a function of the 

distance between particles (H). Taken from Rabinow (2004).  

 

According to the DLVO theory, as two particles approach, if the particles possess 

enough energy to overcome the energy barrier or primary maximum (VM), the attractive 

forces arise rapidly and dominate the total potential energy leading to irreversible 

aggregation of particles at the primary minimum (VD). It is therefore essential that the 

nanoparticles in dispersion do not reach the primary minimum. If two particles do 

approach each other this closely then the formation of either coalescence or 

recrystallisation may occur.  In contrast, at the secondary minimum (VS), particles are 

held in a weak and reversible flocculation which can be easily reversed and the particles 

re-dispersed with the additional energy, such as shaking. Stabilisers, such as surfactants 

and polymers, can be used to provide sufficient repulsive forces between particles to 

ensure that they never reach the primary minimum, thereby positively impacting on the 

stability of the system.  
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1.4.2 Steric stabilisation 

Nowadays, the term steric stabilisation has been widely used to describe the stabilising 

action of macromolecules particularly nonionic surfactants and/or polymers. Steric 

stabilisation generally occurs due to the absorbed surfactant and polymer layers on the 

dispersed particles. Steric stabilisation of particles can be achieved by a range of 

nonionic surfactants and/or polymers, for instance, Tween®, Brij®, 

hydroxylpropylmethylcellulose (HPMC) and polyvinylpyrrolidone (PVP). Figure 1.10 

shows schematic of steric stabilisation of colloidal particles is achieved by attaching 

macromolecules to the surfaces of the colloidal particles.  

 

 

Figure 1.10 Schematic of steric stabilisation (Shi, 2002). 

 

Modifications to the DLVO theory have been proposed to account for steric stabilisation 

(Vs) from adsorbed macromolecules: 

            

Figure 1.11 illustrates the effect of VS on the total potential energy curve showing that 

repulsive forces dominate between two particles at most interparticle distances and that, 

significantly, the primary minimum observed using electrostatic stabilisation alone is 

absent.   



Introduction 

 

54 

 

Figure 1.11 Total potential energy curve (solid line) for sterically stabilised particles showing 

the effect of the steric stabilisation term (VS). 

 

In non-aqueous dispersions, the adsorption of stabilisers onto the surface of particles 

results in a physical barrier to aggregation by either entropic or osmotic constraints. 

Firstly, in order for aggregation of two particles coated with nonionic polymers or 

surfactants to occur, the hydrophilic chains of the stabilisers have to be compressed 

which is entropically unstable and results in a repulsive force between the particles. 

Secondly, an osmotically-induced influx of solvent molecules into the region where the 

adsorbed surfactant and polymer layers overlap drives the particles apart. In both cases 

van der Waal’s forces are overcome. Stabilisation by these two effects is commonly 

encountered in non-aqueous dispersions. However in aqueous dispersions, enthalpic 

stabilisation predominates especially for the stabilisers possessing polyoxyethylene 

chains. For example, when two hydrated polymer molecules approach each other, some 

of the water of hydration is released, which consequently possess a greater degree of 

freedom than when it was associated with the polyoxyethylene chains. In order to 

release water molecules from the polymer chain, there must be an energetically 

unfavourable, positive enthalpic change. 
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Steric stabilisation of colloidal particles has several benefits over electrostatic 

stabilisation which includes a relative insensitivity to the presence of electrolytes, equal 

efficacy in both aqueous and non-aqueous dispersion media, equal efficacy at both high 

and low solids content, and a reversibility of flocculation (Shi, 2002). 

 

1.4.3 Electrosteric stabilisation 

Electrosteric stabilisation is the combined use of nonionic surfactants/polymers and 

ionic surfactants or charged polymers such as a polyelectrolyte. As two particles 

approach each other, the combined adsorbed polymer/charged layer causes electrosteric 

repulsions between particles (Runkana et al., 2006)  thereby overcoming the attractive 

van der Waals interactions (Lim et al., 2009; Seebergh et al., 1994; Yeap et al., 2012). 

Even though there is not much literature studying the effects of electrosteric 

stabilisation, there is increasing interest in the mechanism of this type of stabilisation.  

 

1.4.4 Application of nanosuspensions in drug delivery 

Drug nanoparticles have been widely used explored for use in a range of drug delivery 

technologies, including oral, injectable, inhalable, and buccal applications (Basa et al., 

2008; Cooper, 2010; Van Eerdenbrugh et al., 2008). Table 1.2 gives examples of 

nanosuspension formulations on the market.  
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Table 1.2 Nanosuspension formulations in the market (Gao et al., 2013; Junyaprasert et al., 

2015; Rabinow, 2004)  

Drug Indication Company Route 

Paclitaxel Anticancer American Pharmaceutical 

Partners 

Intravenous 

Silolimus Immunosuppressant Wyeth Oral 

Aprrpitant Anti-emetic Merck Oral 

Cytokine inhibitor Crohn's disease Cytokine PharmaSciences Oral 

Busulfan Anticancer Supergen Intrathecal 

Budesonide Asthma Sheffield Pharmaceuticals Pulmonary 

Silver Eczema, atopic 

dermatitis 

Self-developed Topical 

Paliperidone 

palmitate 

Anti-depressant Johnson & Johnson Injection 

Finofibrate Hypercholesterolemia Abbott Oral 

 

The oral route is the preferred route for drug administration due to its convenience, 

good patient compliance and low production costs. Drug nanoparticles can increase the 

drug dissolution rate as well as exhibiting improved adhesion to the intestinal mucosa 

which allows better contact of the delivery system with the intestinal cells and results in 

a greater concentration gradient of the drug across the gastrointestinal tract into blood 

which leads to an increase in intestinal drug absorption (Arunkumar et al., 2009; Chen 

et al., 2005; Yadollahi et al., 2015).  

For parenteral administration, advantages of this administration by this route include 

avoidance of first-pass metabolism, reliable dosing and higher bioavailability. However, 

drug particles for this route of administration need to be smaller than 5 μm in order to 

prevent the blockage of capillaries (Arunkumar et al., 2009). Nanosuspensions therefore 

improve therapeutic efficiency and reduce the cost of therapy through improved dosing 

efficiency and the need for smaller injection volumes (Lou et al., 2009). 

Nanosuspensions as ocular drug delivery systems offer several advantages. For 

example, the surface of the nanoparticles can be modified by using polymers 

appropriate for the desired effect (Nagarwal et al., 2009). Drug loss is reduced because 
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of the natural adhesiveness of drug nanoparticles (Das et al., 2011), while the enhanced 

drug dissolution rate results in an increase in the extent of absorption (Kassem et al., 

2007).    

Pulmonary nanosuspensions can not only solve the problem of poor drug solubility in 

pulmonary secretions as well as the lack of selectivity through direct delivery to the 

target pulmonary cells (Jacobs et al., 2002) but can also improve drug diffusion and 

dissolution rate, resulting in an increased bioavailability and the prevention of 

undesirable drug deposition in the mouth and pharynx (Yadollahi et al., 2015). 

It is clear that the advantages of nanoparticles can result in a significant increase in the 

drug dissolution rate and therefore an enhancement of the drug’s bioavailability 

(Chingunpituk, 2011; Rabinow, 2004).  

 

1.5 Classification of surfactants 

Normally, surfactants are classified into four types dependent upon the charged nature 

of their polar head group. Firstly, surfactants with a negatively charged head group are 

referred to as anionic, while a positively charged surfactant head group means that the 

surfactant is described as being cationic. Surfactants with uncharged head groups are 

termed nonionic surfactants. The last type of surfactant are the zwitterionic surfactants 

which consist of a head group that has both a negatively and positively charge. Table 

1.3 gives examples of each surfactant type. 
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Table 1.3 Examples of surfactants in each class. (Lindhardt C, 2005) 

Type of 

surfactant 

Example 

Nonionic polysorbates (i.e. Tween 20, Tween 80), ethoxylated 4-(1,1,3,3-

tetramethylbutyl)phenol (Triton X-100), alkyl-polyethylene glycol 

ether (i.e. polyoxyethylene (23) lauryl ether (Brij 35), polyoxyethylene 

(10) oleyl ether (Brij 97)) 

Anionic sodium dodecyl sulphate, sodium cholate hydrate,phosphatidyl inositol, 

deoxycholic acid, sodium salt, sodium propionate, potassium sorbate 

Cationic benzalkonium chloride, dodecyl trimethyl ammonium bromide, cetyl 

pyrimidinium bromide, cetyl trimethyl ammonium bromide 

Zwitterionic lecithins, cephalins  

 

Anionic surfactants contribute the largest group of available surfactants and include 

fatty acid salts, sulfates, ether sulfates and phosphate esters. As a rule, anionic 

surfactants are generally sensitive to salt, particularly to divalent or multivalent cations, 

and to pH. A consequence of this sensitivity, there is the possibly of controlling the 

release of drug from a delivery system as it passes down the gastrointestinal tract, 

experiencing changes in pH.  

Cationic surfactants frequently contain an amine head groups and are frequently used as 

antibacterial agents. Because of the nature of their head group charge, the properties of 

these surfactants, in particular their surface activity and self-assembly, are strongly 

influenced by the presence of salt and by solution pH. One important benefit of this type 

of surfactant is their use in topical drug delivery and in oral hygiene products. 

Nevertheless, cationic surfactants usually are irritant and sometimes toxic, leading to 

their limited use in drug delivery. 

Surfactants with uncharged or nonionic head groups (known as nonionic surfactants) 

often contain an oligo(ethylene oxide) head group, and with the exception of 

phospholipids, are the most widely used type of surfactant in drug delivery. The 

nonionic nature of this head group makes these surfactants relatively insensitive to salt 
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and changes in pH. In contrast, however, they are more sensitive to changes in 

temperature. As a consequence, nonionic surfactants as a group are less irritation than 

charged surfactants. Furthermore, for the same hydrocarbon chain length, the critical 

micelle concentration (cmc, i.e. the concentration at which the surfactants start to form 

micelles) of nonionic surfactants is much lower than the cmc of a charged surfactant 

making this group of surfactants more appropriate for the purposes of drug delivery. 

With the exception of phospholipids, zwitterionic surfactants are less commonly 

encountered than cationic, anionic and nonionic surfactants. The head group of 

zwitterionic surfactants frequently consists of a positively charged quaternary amine 

group and either a negatively charged sulphonate or carboxylate group. Because of the 

nature of the zwitterionic head group, this class of surfactant can either be positively 

charged (at low pH), negatively charged (at high pH) or effectively neutral (at 

intermediate pH). Due to their low irritation ability, surfactants in this class are widely 

used in personal care products. 

 

1.6 Physico-chemical characterization of nanoemulsion, microemulsion and 

nanosuspension systems 

1.6.1 Phase behaviour  

A study of the phase behaviour of nanoemulsions and microemulsions can help the 

understanding of both the theoretical and experimental results obtained. Generally, 

plotting the phase behaviour of nanoemulsions and microemulsions containing oil, 

water and surfactant using a ternary phase diagram is very common. In a ternary phase 

diagram, each of the apices represents 100% of the particular component. Figure 1.12 

illustrates the range of possible phase structures that can be formed upon mixing oil, 

water and surfactant, including micelles, nanoemulsions, microemulsions and bilayers. 

The microstructures formed can be divided into two main groups. Firstly, the size-

limited or ‘discrete’ self-assemblies, which might be characterized as spherical 

structures such as micelles and nanodroplets. The second group is the infinite or 

‘unlimited’ self-assemblies, which exhibit aggregation over macroscopic length scales 

in one, two or even three dimensions. As a consequence such structures are referred to 

as liquid crystalline structures. Examples of one, two or three dimensional, liquid 
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crystalline, structures include the hexagonal phase, the lamellar phase, and the cubic 

phase and bicontinuous structures. A micelle can be formed in one of two orientations, 

namely normal and reverse, similarly nanoemulsions and microemulsions can also be in 

normal and reverse orientation, namely as oil-in-water nanoemulsions and 

microemulsions and water-in-oil nanoemulsions and microemulsions. 

 

 

Figure 1.12 Schematic diagram representing the hypothetical phase behaviour of a ternary 

mixture of water, oil and surfactant. Modified from Moulik and Paul (1998).  

 

1.6.2 Phase inversion temperature (PIT) 

In addition to the PIT method being using for preparation of nanoemulsions, a PIT 

experiment can be used to explain the way in which oils of different molecular 

volume/weight are solubilised into either the microemulsion and nanoemulsion droplets 

(Wasutrasawat, 2011). Most of nonionic surfactants, particularly those containing a 

polyoxyethylene head group, form aqueous micellar solutions which exhibit a PIT upon 

heating (Corti et al., 1984). An oil-in-water microemulsion and nanoemulsion is formed 

a low temperatures but transforms into a water-in-oil microemulsion and nanoemulsion 

at higher temperatures (transitional phase inversion) (Engels et al., 1995; Engelskirchen 

et al., 2007; Morales et al., 2003). During cooling, a nanoemulsion crosses a point of 
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zero spontaneous curvature and minimal surface tension, promoting the formation of 

dispersed oil droplets in aqueous phase due to the surfactant is preferentially soluble in 

the water (Fernandez et al., 2004; Izquierdo et al., 2004).  

When the colloidal system containing a polyoxyethylene surfactant is heated up to the 

PIT, the clear solution becomes cloudy and vice versa as the solution temperature is 

increased. This clouding is due to the interactions between the polyoxyethylene-

containing surfactant monomers in the aggregate changing from repulsive to attractive 

as higher temperatures as a consequence of the dehydration of the polyoxyethylene 

chains. These changes lead to a decrease in the effective area of the surfactant head 

group and a change in aggregate shape upon increased temperature to more elongated, 

bicontinuous or even an inverted W/O structure. When the PIT of a nanoemulsion 

decreases in comparison to the corresponding parent micelle, it is suggestive of the 

shape of  nanoemulsion aggregates becoming more asymmetric. In contrast, an increase 

in the PIT as a function of increasing oil content is indicative of the oil forming a core in 

the centre of the nanoemulsion droplet which, as a consequence, becomes more 

spherical in shape(Aveyard et al., 1986; Malcolmson et al., 1998). Note, that if there is 

no increase in the PIT as a function of increasing oil content, this is suggestive that the 

oil chains intimately mix with the hydrophobic surfactant chains, rather than forming a 

core in the centre of the nanoemulsion droplet (Wasutrasawat, 2011). 

 

1.6.3 Viscosity 

Viscosity has been used widely as a technique for the analysis and/or characterization of 

a range of colloidal systems including synthetic polymers (Debye et al., 1948), 

biological macromolecules (López Martínez et al., 2003), nanoparticles (García de la 

Torre et al., 2007; Pamies et al., 2008), wormlike macromolecules and micelles 

(Bohdanecky, 1983; Masuelli, 2013), nanoemulsions (Kumar et al., 2009) and 

microemulsions (Hsieh, 2010). 

The viscometric behaviour of surfactants in solution is frequently studied to enable the 

physico-chemical characterization of their aggregation forms. In particular, the 

technique provides information about a number of fundamental properties of the 

colloidal systems in solution, including their interaction with the solvent and the 
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conformation of flexible (linear and nonlinear) chains and rigid particles of arbitrary 

shape (Ozeki et al., 1980; Pamies et al., 2008; Panmai et al., 1999; Penott-Chang et al., 

2007). Significantly for the present project, viscometry is used extensively to investigate 

the hydration and/or shape of nanoemulsion and microemulsion droplets in order to 

provide the complementary information for analysing small angle neutron scattering 

data. In this respect, Einstein’s viscosity equation relates the relative viscosity        of 

dilute dispersions of spherical non-deformable, non-interacting particles, such as a 

dilute micelle solution, to the volume fraction     they occupy in the system (Florence 

et al., 1999).  

            

The equation is valid in situations when   is less than 0.05.  

However, if the particles are asymmetric, Einstein equation can be modified to: 

          

where v is a shape factor related to the axial ratio (a/b) of the particle, defined as an 

oblate or prolate ellipsoid.  

In order to determine the intrinsic viscosity [η] of the surfactant aggregates, both the 

Huggins and Kraemer equations can be used. Extrapolation to zero surfactant 

concentration of the linear relationship obtained from the function of reduced viscosity 

and inherent viscosity against concentration, namely the Huggins and Kraemer 

equations, respectively yields the intrinsic viscosity (Pamies et al., 2008). An 

extrapolated value of [η] of 2.5 is indicative of unhydrated, symmetrical particles - a 

value of greater than this indicates that the particles are solvated and/or asymmetrical. 

Usually, the Huggins and Kraemer equations are used to illustrate the dilute solution 

properties of surfactant aggregates in solvents (Aveyard et al., 1989; Bergenholtz et al., 

1995; Devi et al., 2003; Ortega et al., 2007).  

The ‘reduced’ Huggins viscosity is defined as: 

   
 

             
   



Introduction 

 

63 

where     is specific viscosity, C is a given concentration,       is the reduced 

viscosity and     is the Huggins coefficient. 

The Huggins equation is frequently used in combination with the Kraemer equation to 

obtain a second estimate of intrinsic viscosity: 

      
 

           
   

where       is the relative viscosity and     is the Kraemer coefficient.  

Furthermore, if a particle is hydrated, it will be associated with a larger volume fraction 

than its unhydrated counterpart. The Oncley equation defines volume fraction as 

       
   (Elworthy et al., 1965), so that the equation  becomes as: 

            
   

where    is a partial specific volume of the particles,    is a solvation expressed as g 

solvent/g solute, and   
  is a specific volume of the solvent.  

The above equation allows the calculation of the level of hydration,          (for 

spherical particles). As expressed in the above equation, there are two contributions to 

the intrinsic viscosity, namely shape and size or volume. Consequently, the value of     

can be used to estimate the shape of the aggregates in solution, assuming that is if 

hydration is known.  

 

1.6.4 Zeta potential 

Figure 1.13 shows a particle surface in aqueous solution, predominantly covered with 

negative charges. Frequently, the zeta potential is the parameter used to represent the 

charge of the particle and is widely used in product stability studies and surface 

adsorption research (Delgado et al., 2007; Xu, 2008) even though it in fact corresponds 

to a potential at an unknown distance from the particle surface (Goodwin, 2006).  
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Figure 1.13 Schematic of the electrical double layer at the surface of solution-phase 

nanoparticles. Modified from Freire (2011). 

 

As is well known, in an aqueous solution, charged nanoparticles possess a layer of 

oppositely charged ions which are strongly associated with their surface, referred to as 

the Stern layer. A second, more diffuse outer layer contains an excess of ions of the 

opposite charge to that of the nanoparticle. Together, these two layers are called the 

electrical double layer. As the nanoparticle moves in solution due to Brownian diffusion 

or some externally applied forces, a distinction is created between ions in the diffuse 

layer that move with the nanoparticle and ions that remain with the bulk, continuous 

phase. The electrostatic potential at this “slipping plane” boundary, which is related to 

the surface charge of the nanoparticle is determined when measuring the zeta potential 

of the nanoparticle. The zeta potential is determined by applying an external electric 

field to the solution and measuring the resultant electrophoretic mobility of the 

nanoparticles (Clogston et al., 2011). Note that it is the electrophoretic mobility of the 

nanoparticles that is actually measured, rather than the zeta potential per se, in much the 

same way as the diffusion coefficient is measured when determining the particle size of 

a particle using photon correlation spectroscopy. Müller et al. (2001)  found that if the 

zeta potential of nanoparticles is ± 30 mV then that nanoparticle is likely to be stable.  
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1.6.5 Photon correlation spectroscopy  

Photon correlation spectroscopy (PCS) or dynamic light scattering is used to measure 

particle size. The random motion of colloidal particles in solution is called “Brownian” 

motion and is a result of the movement of the solvent molecules surrounding them. The 

motion of the colloidal particles in solution is inversely proportional to its particle size 

with small particles moving faster and further than large particles in the same time 

period. The velocity of the Brownian motion of the particles is defined as the 

translational diffusion coefficient (D), which can be related to particle size by the Stokes 

Einstein equation. 

      
   

    
 

where d(H) is the hydrodynamic diameter, D is the translational diffusion coefficient, kB 

is the Boltzmann’s constant, T is the absolute temperature in degrees Kelvin and η is the 

liquid viscosity. 

PCS measures an ‘equivalent particle diameter’ which is known as the apparent 

hydrodynamic diameter of the particles dispersed in solution, by mathematically 

analyzing the variation in the intensity of light scattering over time as determined using 

an autocorrelator. 

PCS is widely used for particle sizing since it is a rapid measurement technique and 

requires only a small amount of sample. In addition, it is possible to measure particle 

size in a wide variety of suspending liquids. There are, however, a few drawbacks to 

this technique. First, this technique does not provide the information about the shape of 

particles, while a small amount of dust can make the measurements and their subsequent 

interpretation difficult (Tscharnuter, 2006). This drawback can be addressed by the use 

of filtered water to prepare the samples.  

 

1.6.6 Small angle neutron scattering  

One of the most important techniques used to determine the structure of a particle on the 

nanometer scale is neutron scattering. Small angle neutron scattering (SANS) is a 
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diffraction technique that exploits the wave particle duality of a neutron and its unique 

nuclear properties to provide information on particle morphology including the size and 

shape of a molecule, such as a surfactant, and its assemblies, such as a micelle 

(Bergström et al., 1999; King, 1999). Despite this, the technique has a number of 

disadvantages, not the least being the fact that it is slow and expensive as the 

experiment takes several days and must be performed at large international facilities. 

Overall however, SANS is probably the best technique to measure the internal structure 

and shape of small, colloidal particles.  

There are two ways to produce neutrons. Firstly, neutrons are produced by the fission of 

a heavy atom such as uranium-235 in a nuclear reactor, i.e. a “continuous” or “steady 

state” source. The second way to produce neutrons is using a “pulsed” or “spallation” 

neutron source, where particle accelerators and synchrotrons are used to generate 

intense, high-energy, proton beams which are directed at a target composed of heavy 

nuclei to produce a beam of neutrons (King, 1999). After producing a beam of neutron, 

the beam is moderated to decrease its velocity and to produce neutrons of the required 

wavelength for the experiment. An example of a pulsed neutron source is the 

Rutherford-Appleton Laboratory, Didcot, UK, which was used in the present study.  

The most fundamental difference between neutron and other scattering techniques such 

as light scattering and X-ray scattering is that neutrons are scattered by the nucleus itself 

whereas light and X-ray are scattered by the electrons around atomic nuclei. 

Significantly, neutrons are scattered differently by different isotopes of the same 

element due to the fact that an isotopes neutron scattering ability is determined by its 

scattering length. For instance, H2O and D2O contain different isotopes of hydrogen 

which exhibit significantly different scattering lengths such that the scattering length 

densities of the two molecules are -0.56 x 10
-6

 and 6.39 x 10
-6 

Å
-2 

, respectively. As a 

result of this property, various part of a structure can be specifically highlighted by 

selectively protonated or deuterated chemical to be “invisible” to neutron by contrast 

matching.  

As with any scattering techniques, an image of the characteristic distances and 

interactions within the sample can be constructed from the ensemble of all the 

correlations production from the wave scattered by the sample at a given angle. Static 

light scattering and small angle X-ray scattering (SAXS) notionally provide the same 



Introduction 

 

67 

information for the sample as small angle neutron scattering. However, in contrast to 

light and X-ray scattering which occur due to interactions of the light and X-ray beams 

with the electron cloud around the atom, and are therefore dependent upon atomic 

number, the scattering of neutrons occurs due to interaction of the neutron beam with 

the nuclei and is not dependent upon atomic number, varying in intensity with atomic 

number of the atom.  

Although, light scattering, and particularly PCS, is used widely to determine the particle 

size of a colloidal sample, there are limitations when the samples are turbid or are 

highly concentrated (Brown et al., 1975; Goodwin, 2006) or contain more than one 

population of particles. Furthermore, due to the wavelength of light, the scattering 

vector, Q, is less than 0.002 Å
-1

, a fact which limits light scattering to larger aggregates 

and which means that light scattering cannot use for determination for determining the 

shape of small micellar aggregates. While X-ray scattering does not suffer these 

particular limitations, it does suffer from the drawback that the X-ray beam may cause 

irreversible sample damage, especially for biological samples such as proteins and lipids 

but also for molecules such as surfactants (Martis et al., 2011; Stanley et al., 2014).  

In contrast, neutron scattering possess many advantages over light and X-ray scattering, 

such as the fact that neutrons do not possess a charge and can therefore penetrate into a 

sample without damaging it, and that it is possible, by altering the scattering length of 

the sample, to specifically “highlight” (by contrast matching) part of the system of 

particular interest. As a consequence of these, and other advantages, small angle neutron 

scattering (SANS) was used in the present study to determine the size and morphology 

of the nanoemulsion and microemulsion droplets in a presence of nanoparticles over 

time.  

 

1.6.6.1 Theory of small-angle neutron scattering 

The scattering vector 

Once in contact with a sample, neutrons can undergo a series of events, including 

absorption by the sample, multiple, coherent/incoherent scattering by the sample, or 

even transmission through the sample. In SANS, only the coherent elastic interaction 
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between the neutron beam and the sample is considered. Figure 1.14 shows the coherent 

scattering of neutrons by a sample. The momentum transfer or wave vector transfer is 

known as the scattering vector or Q which is described by the relationship between the 

incident, namely ki, and the scattered, namely ks, wave vectors (Figure 1.14).  

 

Figure 1.14 Scattering of neutrons by a sample (NIST, 2015). 

 

The magnitude of scattering vector (Q) can be written as: 

                
        

 
  

 
 

when n is “neutron” refractive index, θ is the scattering angle and λ is the incident 

neutron wavelength. In practise, n is found to be slightly less than unity. Neutrons of the 

right wavelength are totally externally reflected from an interface so that n can be 

approximated to ~ 1. Normally, Q has dimensions of (length)
-1

 and is quoted either as 

nm
-1 

(SI units) or, more typically as Å
-1

.  

By substituting the equation above into Bragg’s law of diffraction: 

        
 

 
  

it is possible to obtain the very simple expression:  
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where the molecular length scale (d) is obtained over a particular Q range. 

This equation allows the ready determination of the molecular length scale (d) in a 

sample from the position of any diffraction peak in Q space (King, 1999)  

 

1.6.6.2 Scattering length density and contrast matching 

One of the important factors when determining particle size and morphology using light 

scattering technique is the difference in the speed of travel of light in the solute and 

solvent, namely the difference in refractive index. Exactly the same principle applies in 

X-ray scattering, although the difference here is known as the difference in electron 

density, while in neutron scattering, the equivalent difference is the neutron scattering 

length density. 

The scattering length density,      of a molecule with i atoms may be readily calculated 

from the simple expression: 

         
 

   
  

 

where D is the bulk density of the molecule, bi is the coherent neutron scattering length 

of nucleus i, NA is Avogadro’s constant and MW is molecular weight. The scattering 

length density normally has dimensions of (length)
-2

 and is expressed in units of 10
10

 

cm
-2

 or 10
-6 

Å
-2

.  

Contrast matching is a powerful tool, only useful in neutron scattering studies, to study 

multicomponent samples. In any experiment, the contrast term is described as the square 

of the difference between the scattering length density (or “neutron” refractive index) of 

the part of sample of interest, and the surrounding medium. At the contrast match point, 

i.e the point in where the difference in scattering length densities is zero, there is no 

neutron scattering observed from the part of the sample of interest, which has 

effectively become “invisible” to neutrons. For example, Smarsly et al. (2001) studied 

the mechanism of nitrogen sorption into porous silica by contrast matching the silica 

and the condensed nitrogen to each other in order to establish the number of “empty” 

(nitrogen free) pores.  
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In neutron scattering studies the difference in scattering (both in terms of phase and 

intensity) between a proton and a deuterium is widely exploited in contrast match 

studies. For example, using a mixture of D2O (scattering length density, 6.39 x 10
-6

 Å
-2

) 

and H2O (scattering length density, 0.56 x 10
-6

 Å
-2

) it is often possible to match the 

scattering length density of the medium to the scattering region of interest and thereby 

making it “invisible” as is illustrated in Figure 1.15. 

 

 

Figure 1.15 Schematic representation of a contrast variation experiment using different 

D2O/H2O mixtures to study core shell nanoparticles. The second row of figures schematically 

show the scattering length density profile across the core shell structure (Rübe et al., 2005) 

 

1.6.6.3 SANS data interpretations 

The absolute SANS intensity of scattering is outlined below; 

  

  
               

where d∑/dΩ is the differential scattering cross section, np is the average number 

density of droplet in scattering volume (V). The term P(Q) is well known as a form or 

shape factor, which is a dimensionless function which describes how d∑/dΩ is 

modulated by interference effects between radiation scattered by different parts of the 

same scattering centres (King, 1999). As a consequence, this term depends on both the 

size and shape of the scattering centre in an absence of interference effects. S(Q) or the 

structure factor represents the effect of interference due to neighbouring scatterers and 

depends on their relative positions. 
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1.6.6.4 Models of form factors P(Q) 

A core-shell model is widely used to describe the scattering obtained from micelles or 

microemulsions/nanoemulsions, where the core is considered to consist of the surfactant 

tails of the surfactant (or in the case of a microemulsion/nanoemulsion, oil) while the 

shell is composed of the surfactant head groups (or in the case of a 

microemulsion/nanoemulsion, surfactant). Pedersen (1997)  found that micelles or 

microemulsions could be well fitted by assuming one of two shapes, namely a sphere or 

an ellipsoid. The form factor is weighted by the relative volumes of the core and shell of 

the droplets as well as their scattering length densities.  

The form factor for a core shell model of spherical particle is:   

      
 

 
   

        
        

   
 
 

 
   

              
        

   
 

where                       , and when Vc and Vs are the volumes of core and 

shell, Rc and Rs are the radius of core and shell, ⍴c, ⍴s and ⍴solvent are the scattering 

length densities of core, shell and solvent. F(Q) is integrated during the fitting 

procedure using a Schultz distribution function to account for sample polydispersity. 

For ellipsoidal droplets, the corresponding form factor is written as: 

                                             
   

 

                                     
 
 
 

       

where Vc and Vs are the volumes of core and shell, ⍴c, ⍴s and ⍴0  are the scattering 

length densities of core, shell, and alkane, Rc and Rs are the semi-axes of core and shell, 

and ɛc  and ɛs  are the axial ratios of core and shell. 

 

1.6.6.5 Models for structure factor S(Q)  

The structure factor, S(Q), describes how (d∑/dΩ) is modulated by interference effects 

between neutrons scattered by different scattering bodies (King, 1999). As a 
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consequence, it depends on the degree of local order in the sample, which increases with 

the concentration of scattering bodies in the system.  

Many previous studies have found that a hard-sphere model can satisfactorily describe 

the structure factor for many nanoemulsion and microemulsion systems (Arleth et al., 

2001; Preu et al., 1999), particularly when a nonionic surfactant is used to 

prepare/stabilise the system (Nagao et al., 2005). As a consequence, therefore, the 

structure factor derived by using the Percus-Yevick approximation was used in the 

present study for analysis of the nanoemulsions stabilised by nonionic surfactant.  

The equation is used as following (Ashcroft et al., 1966): 

      
 

         
   

             
      

 

 

       

    

        
   

where c(qRs) is the direct correlation function and 

                    

    
          

      
  

                       

ƞ  is a packing-density parameter and it is related to the concentration of spheres (φ) as 

follows: 

          
  

As stated above, the hard-sphere model derived by Percus and Yevick is most suitable 

for fitting the SANS data of nanoemulsions stabilised by nonionic surfactant. However, 

in the case of microemulsions stabilised by an anionic surfactant, such as SDS, the 

Hayter-Penfold model is more appropriate and has been widely used to successfully 

describe charge interactions in such systems (Hayter et al., 1983): 
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where U0 is the depth of the potential, 1/k the decay constant of this potential, d is 

particle diameter and w is the distance from the centre of the reference particle. In the 

equivalent hard-sphere model, the repulsive potential is considered to be infinite when 

the inter-particle distance is smaller than the effective hard-sphere diameter and zero 

when the inter-particle distance is larger than the effective hard-sphere diameter. 

 

1.6.6.6 SANS fitting and analyzing 

For micelles and nanoemulsions stabilised by the nonionic surfactant, Brij 97, the best 

fit model for the SANS data was a monodisperese oblate ellipsoid (Wasutrasawat, 

2011). This form factor is described by: 

               
 

 

   

       
             

  
 

                      

where μ is the cosine of the angle between the scattering vector Q and the asymmetry 

axis of the ellipsoid, with major and minor axis a and b, respectively. 

As the interparticle structure factor, S(Q), for dilute nanoemulsions, stabilised by 

nonionic surfactants, is typically the result of very weak attractive interactions, the 

Percus Yevick approximation for hard spheres is most commonly used (MarzAn et al., 

1993). 

In contrast to the SANS data obtained for the Brij 97-stabilised systems, the SANS data 

obtained for micelles and microemulsions prepared using the anionic surfactant, SDS, 

have been reported to be most successfully fitted using the core-shell monodisperse 

prolate ellipsoid model (Caponetti et al., 2004; Griffiths et al., 2005; Hsieh, 2010). For 

the SDS-stabilised micelles when the core-shell particle model is used, it is assumed 

that the core is comprised of the hydrocarbon chains of surfactant, while the shell is 

made up of the surfactant head groups, the associated counter-ions and some solvent 
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molecules (Berr et al., 1986; Berr et al., 1989; Thurn et al., 2002; Yang et al., 2000; 

Zemb et al., 1985). While in case of SDS-stabilised microemulsions, it is assumed that 

the core is composed of all oil molecules together with the surfactant tails and shell is 

comprised of the surfactant head groups with any associated counter-ions and the water 

of hydration (Hsieh, 2010). In order to account for the strong intermicellar interactions 

present in the SANS data obtained for SDS containing systems, it is necessary to use a 

different interparticle structure factor, S(Q), than was used for the Brij 97 stabilised 

systems, the S(Q) in a Haytor-Penfold model was used instead (Hsieh, 2010).  

The intensity of the scattered radiation, I(Q) as a function of the wave-vector, Q, is 

given by: 

                  
                       

where F(Q) is the single particle form factor which depends on the size and shape of the 

particle, S(Q) is the interparticle structure factor, Binc is a constant term representing the 

incoherent scattering background, and nm is the number of micelles per unit volume. 

Hayter and Penfold (1983) showed that the term [S(Q) 〈F(Q)〉2 + 〈 F(Q) 2〉 -  F(Q)
2
] 

was calculated from the decoupling approximation for determining the morphology of 

the scattering species, where: 

                                             

subscript 1 shows the scattering from hydrocarbon core while subscript 2 represents the 

scattering from the polar shell.  

In the present study, an elliptical core-shell model was used for the anionic 

microemulsions. Here both F(Q) and F(Q)
2
 require numerical integration over a 

scattering angle θ between Q and the axis of the ellipsoid to account for the random 

distribution of orientations of the ellipse. The first term represents the scattering from 

the core (subscript 1) of radius Ri and axial ratio X, and the second, the polar shell 

(subscript 2): 
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and          
        

   
 

where ji is the first-order spherical Bessel function of the first kind. 

The S(Q) in Hayter-Penfold model is described by four parameters, namely, a hard 

sphere volume fraction,             , a hard sphere particle radius,             , the 

micellar charge, Z, and the inverse Debye screening length, k
-1

. 

The hard sphere volume fraction is given by: 

              
                   

 

     
 

where St and Sf correspond to the total and monomeric concentration of surfactant and a 

is the equivalent spherical outer radius of an ellipse, R = X
1/3

(Rcore+ ઠ) when ઠ  is 

defined as the shell thickness. 

The intermicellar interaction is modelled through a dimensionless screened Coulombic 

potential, given by: 

                         

     

where K is the Debye–Huckel inverse screening length, calculated by: 

        
               

and u0, the contact potential, given by: 

                        

where NA is Avogadro number, e is the electronic charge, ɛ is the dielectric constant of 

the medium, kB is the Boltzmann’s constant, T is the temperature of the sample, ɛ0 is the 

permittivity of free space, I is the ionic strength of the solution, and Z  is the micellar 

charge. 

The model used in this study for analyzing the morphology of the microemulsions 

stabilised by the anionic surfactant, SDS, was adopted from the model used to analyze 
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the SDS micelle, namely that of a charged elliptical core-shell particle. In this study, the 

hypothesis is assumed that core is consisted of the hydrocarbon chains of the surfactant 

and all oil molecules and shell is composed of the surfactant head groups along with  

any associated counter-ions and the water of hydration.  

The Vcore and Vshell of the microemulsions can be derived from the following equations: 

      
 

 
      

          

 where x is the inner axial ratio. 

                    
 

 
                   

   

or  

                            

In summary, in the present study, the SANS data obtained for the Brij 97-stabilised 

nanoemulsions were fitted using a core-shell monodisperse oblate model for the form 

factor together with the Percus and Yevick approximation for the structure factor, while 

the microemulsions stabilised by anionic surfactant SDS were fitted using a core-shell 

monodisperse prolate ellipsoid together with the Hayter-Penfold structure factor.  

 

1.7 Aims of the current project 

The aim of this study was the formulation of two novel combination formulations, 

termed a nanosusponanoemulsion (NSNE) and a nanosuspomicroemulsion (NSME), 

which are composed of either an oil-in-water nanoemulsion or an oil-in-water 

microemulsion, each containing the model hydrophobic drug, testosterone propionate, 

and a nanosuspension of griseofulvin nanoparticles. It is intended that such formulations 

might be of use in personalised medicine. In order to understand the novel combination 

formulations, the present study was divided into two main sections. The first being the 

preparation and characterisation of the oil-in-water nanoemulsions, oil-in-water 

microemulsions and nanosuspensions used to prepare the novel combination 

formulations and the second being the characterization of the NSNEs and the NSMEs. 
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Firstly, the formation and physico-chemical properties of oil-in-water nanoemulsions 

and oil-in-water microemulsions were investigated in determine whether it is possible to 

obtain as high loading delivery of poorly-water soluble drug, here testosterone 

propionate. For the nanoemulsions, nonionic surfactant namely polyoxyethylene-10-

oleyl ether (Brij 97) was chosen to stabilise nanoemulsions containing the oil, glyceryl 

trioctanoate (TON). In addition, sodium dodecyl sulphate (SDS) is selected to stabilise 

microemulsions containing either ethyl butyrate or ethyl capylate. Note that preliminary 

studies showed that it was not possible to prepare SDS stabilised microemulsions 

containing TON. Griseofulvin nanoparticles have been prepared using wet bead milling 

to determine the amount of the anionic surfactant, SDS to produce the correct size 

nanoparticle, taking account of particle size and zeta potential. Last but not least, the 

novelty of the present study is the formation of a combination formulation, termed 

either a NSNE or a NSME, comprising a combination of either an oil-in-water 

nanoemulsion or an oil-in-water microemulsion containing the model hydrophobic drug 

testosterone propionate and a nanosuspension of griseofulvin nanoparticles, 

respectively.  

In this study, the physico-chemical properties of nanoemulsions, microemulsions and 

nanoparticles when in a form of the NSNE and NSME, as well as the component 

systems have been determined using variety of techniques, including phase behaviour, 

the phase inversion temperature, viscosity, zeta potential, UV spectroscopy, photon 

correlation spectroscopy and small angle neutron scattering.  
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Chapter 2 Experimental  

2.1 Materials 

All chemicals were commercially available, were of the highest grade available and 

were used as received without any further purification. Griseofulvin (GF) (97% purity) 

was purchased from Alfa Aesar
®

 (Geel, Belgium) while testosterone propionate (TP) 

was obtained from Sigma Chemical Co. Ltd. (Dorset, UK). Sodium dodecyl sulphate 

(SDS) and polyoxyethylene-10-oleyl ether (Brij 97, C18:1E10, PEO-10) were supplied by 

the Sigma Chemical Co. Ltd. (Dorset, UK). Glyceryl trioctanoate (TON) was purchased 

from Fluka Chemicals (St. Gallen, Switzerland) while ethyl butyrate (EB) and ethyl 

caprylate (EC) were obtained from Sigma Chemical Co. Ltd. (Dorset, UK). Deuterated 

oil, glyceryl trioctanoate (d15, 98.9 atom% D), was purchased from QMX Laboratories 

(Essex, UK). Yttrium zirconia (YTZ) beads of size 0.44 mm (0.35-0.5 mm range), with 

minimal contamination levels acceptable for pharmaceuticals (Ruddy et al., 1998), were 

obtained from GlaxoSmithKline (Harlow, UK). Isopropanol was supplied by Fisher 

Chemical (Leics, UK). D2O (99.9 atom% D) was obtained from Aldrich Chemical 

Company (Dorset, UK). Ultrapure water (UPW) supplied by a well-seasoned, all glass 

still (D4000 Distinction, Sterling, UK) was used throughout. The chemical structure of 

oils, surfactants and drugs used are shown in Table 2.1. 
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Table 2.1 Chemical structure of oils, surfactants and drugs 

Chemical name Chemical structure 

glyceryl trioctanoate 

 

ethyl butyrate 

 

ethyl caprylate 
 

sodium dodecyl sulphate  

 

Brij 97 

 

griseofulvin 

 

testosterone propionate 
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2.2 Methodology 

2.2.1 Development of oil-in-water nanoemulsions and microemulsions 

The oil-in-water (o/w) nanoemulsions studied contained the triglyceride, TON, and 

were stabilised by the nonionic surfactant, Brij 97. All nanoemulsions were prepared 

individually in 2 g aliquots by weighing out the required amount of oil, surfactant and 

water directly into a vial. After the addition of a small magnetic stirrer bar, the mixture 

was heated at 70-75 °C for 15 minutes, after which time it was removed from the heat 

and continually and vigorously stirred for 15 minutes (i.e. until cool). 

The o/w microemulsions stabilised by the anionic surfactant SDS and containing either 

of the ethyl ester oils, EB or EC, were prepared without the use of heat. As with the 

nanoemulsions, all microemulsions were prepared individually in 2 g aliquots by 

weighing out the required amount of oil, surfactant and water directly into a vial. After 

the addition of a magnetic stirrer bar, the mixture was stirred continuously for 30 

minutes at ambient temperature. The stirring of the microemulsions was purely to speed 

up formation. 

 

2.2.2 Phase behaviour  

In order to characterize the range of compositions over which the nanoemulsions and 

microemulsions form, partial ternary phase diagrams were constructed by preparing a 

large number of individual samples of oil, surfactant and water, according to the 

methodology outlined in section 2.2.1. Typically, the surfactant concentration used was 

in the range 5 and 40 w/w%. The resulting phase behaviour of the samples at constant 

temperature and pressure were plotted on a partial ternary phase diagram. Each apex of 

the partial ternary phase diagram represents a w/w% of one component, while any point 

along on an axis represents a binary mixture of water and oil, oil and surfactant, or 

surfactant and water, while any point within the a partial phase diagram represents a 

mixture of the three components. Each sample was observed visually, immediately after 

preparation, after 1 week and after 1 month. In all cases, care was taken to avoid 

evaporation of the sample, particularly those containing the volatile ethyl ester oils. 

Nanoemulsions and microemulsions were defined in the present study as clear, fluid, 
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non-birefringent samples that were stable for 4 weeks. The main difference between a 

nanoemulsion and a microemulsion being the requirement for the in-put of energy, 

typically heat, during the preparation of a nanoemulsion. Previous studies have 

indicated that if a nanoemulsion or a microemulsion was stable at 1 month, then it 

would exhibit a long term stability for periods in excess of one year (Malcolmson, 

1993). Gels were classified by as clear, non-birefringent systems, the meniscus of which 

did not change after tilting the sample through an angle of 180°. 

After determining the phase behaviour of the Brij 97-stabilised nanoemulsions and the 

SDS-stabilised microemulsions, a range of nanoemulsion and microemulsion 

formulations were selected for further study as a component of a novel combination 

delivery system. As part of the intention of developing the novel drug delivery system 

was to increase the apparent aqueous solubility of a poorly-water soluble drug, 

nanoemulsions and microemulsions containing the highest amount of oil were selected 

for further study as it was hoped that these systems would be able to exhibit the greatest 

increase in the apparent solubility of any water insoluble drug they incorporate. 

Although selecting nanoemulsions and microemulsions for further study, other 

properties such as their viscosity were also considered. 

In the current study, two nanoemulsions stabilised by 24 w/w% of Brij 97 and 

containing either 3 or 5 w/w% of TON, denoted as B24T3 and B24T5, were selected for 

further investigation. In addition, two microemulsions stabilised by 20 w/w% SDS and 

containing either 14 w/w% of EB or 8 w/w% of EC and denoted as S20B14 and 

S20C08, respectively were chosen for study. The nanoemulsion, B24T3, and the 

microemulsions, S20B14 and S20C08, were selected as they were within the region of 

nanoemulsion and microemulsion existence, respectively while B24T5 was selected as 

it was just on the upper boundary of the area of nanoemulsion existence. In the novel 

delivery system, the B24T3 and B24T5 nanoemulsions were denoted as stock systems 

and diluted 10 times prior to use, while the microemulsions, S20B14 and S20C08, also 

denoted as stock were diluted 5 times prior to their use. It was found necessary to 

prepare stock solutions as it was not possible to prepare directly the nanoemulsions and 

microemulsions containing a low amount of surfactant and oil. For instance, 

Malcolmson (1993) found that a microemulsion could not be directly prepared at a 

composition of 4 w/w% of Brij 96 and 0.5 w/w% of soybean oil, although the same 
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composition could be achieved by the dilution of a microemulsion composed of 24 

w/w% Brij 96 and 3 w/w% soybean oil. Furthermore, in a previous study on Brij 97-

stabilised-nanoemulsions containing oils of varying molecular volume (namely EB, EC, 

ethyl oleate, tributyrin, Miglyol 812 and soybean oil) there was no evidence of a change 

in aggregate shape or size upon dilution of the sample to similarly low surfactant and oil 

concentrations as used in the present study (Warisnoicharoen et al., 2000). In contrast, 

the dilution of microemulsions stabilised by an ionic surfactant, such as bis-2-

ethylhexylsulfosuccinate (Aerosol-OT) and SDS, would be expected to undergo shapes 

change upon dilution (Eastoe et al., 1992), which may lead to slightly different 

properties such as solubilisation ability. The concentrations of the diluted 

nanoemulsions and microemulsions were found to be suitable for study by SANS as 

they were sufficiently dilute to avoid the presence of strong interparticle interactions 

(Hsieh, 2010; Wasutrasawat, 2011). Wasutrasawat (2011) found that, using SANS, 

interparticulate interactions were only observed in Brij 97 micelles at a concentration of 12 

and 24 w/w% surfactant - no peaks indicative of interparticulate interactions were seen at 

lower Brij 97 concentrations of 1.2-4.8 w/w%. While, Hsieh (2010) found that SDS 

micelles at a concentration of 3 w/v% showed the existence of a peak in the SANS data 

is common behaviour for ionic surfactant solutions.  

Table 2.2 lists the compositions of the stock and diluted nanoemulsions and 

microemulsions used in the present study, together with the codes by which these stock 

solutions were referred to. Note that when a stock solution had been diluted 10 or 5 

times, a /10 or /5 was added to the end of the code to denote this fact - for example 

“B24T3/10” means that the stock B24T3 (which contains 24 w/w% Brij 97 and 3 w/w% 

TON) had been diluted 10 times while “S20B14/5” denotes that the stock S20B14 

(which contains 20 w/w% SDS and 14 w/w% EB) had been diluted 5 times. 

Testosterone propionate (TP) saturated nanoemulsions and microemulsions were 

prepared by adding an excess of TP to the diluted nanoemulsions and microemulsions 

which were then left to rotate on a wheel, generally for 24 hours, following which time 

any excess TP was removed by passing the drug-saturated sample through a 0.22 µm 

(cellulose acetate) millipore filter. When a sample was saturated with drug in this 

manner, a -TP was added to the end of the code such that B24T3/10-TP means a 10 

times diluted stock nanoemulsion which contained 24 w/w% Brij 97 and 3 w/w% TON 

that is saturated with TP. 
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Table 2.2 Compositions and codes of the stock and diluted nanoemulsions and microemulsions  

used in the study, with or without a saturation amount of TP 

Sample Code 

Nature and 

amount of 

surfactant 

added (w/w%) 

Nature and amount 

of oil added 

(w/w%) 

Amount of 

aqueous 

phase added 

(w/w%) 

Brij 97 SDS TON EB EC Water 

Stock 

nanoemulsions 

B24T3 24 - 3 - - 73 

B24T5 24 - 5 - - 71 

Stock 

microemulsions 

S20B14 - 20 - 14 - 66 

S20C08 - 20 - - 8 72 

Diluted 

nanoemulsions 

B24T3/10 2.4 - 0.3 - - 94.6 

B24T5/10 2.4 - 0.5 - - 97.1 

Diluted 

microemulsions 

S20B14/5 - 4 - 2.8 - 93.2 

S20C08/5 - 4 - - 1.6 94.6 

TP saturated 

nanoemulsions 

B24T3/10-TP 2.4 - 0.3 - - 94.6 

B24T5/10-TP 2.4 - 0.5 - - 97.1 

TP saturated 

microemulsions 

S20B14/5-TP - 4 - 2.8 - 93.2 

S20C08/5-TP - 4 - - 1.6 94.6 

 

2.2.3 Nanoemulsions stability 

The stability of the nanoemulsions, B24T3/10, B24T5/10, B24T3/10-TP and B24T5/10-

TP, was assessed visually and by determining the apparent hydrodynamic size of the 

nanoemulsion droplets by photon correlation spectroscopy (PCS) immediately after 

preparation, and 24, 48 and 72 hours, and 1, 2 and 3 weeks, and 1 and 2 months after 

preparation. Each nanoemulsion was prepared and examined in triplicate. Note that 

because of the high charge and the very small particle size of microemulsions stabilised 

by SDS, it was not possible to measure their size in the present PCS study. The PCS 
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study, and therefore the apparent hydrodynamic size (i.e. effective diameter) and 

polydispersity index of the nanoemulsions, was performed using a Brookhaven ZetaPlus 

particle sizer v2.29 (Brookhaven instruments, UK), fitted with a He-Ne laser operating 

at 677 nm, using a measurement angle of 90° and operating at an experimental 

temperature of 25 ± 0.1°C. Unless otherwise stated, the analysis of the PCS data used a 

viscosity of 0.89 cP and a refractive index of 1.33 for the water, continuous phase. A 

clear, 4-sided, 10 mm path length disposable polystyrene cuvette was used for the PCS 

measurements. Each of the triplicate nanoemulsions prepared was measured for 30 

seconds and was the average of ten repetitions. As a consequence, the results were 

recorded as the average of the hydrodynamic apparent size ± the standard deviation as 

well as the average of the polydispersity index ± the standard deviation. 

 

2.2.4 Determination of cloud point and phase inversion temperature  

The cloud point (CP) or phase inversion temperature (PIT) is defined as the 

temperature, in which the micellar or nanoemulsion solutions changing from clear to 

turbid. Generally, the micelle CP and the PIT of each of the nanoemulsions is measured 

by detecting the increase in turbidity (either via by UV spectroscopy or by visual 

assessment) as a function of temperature. The appearance of turbidity is due to the 

growth in the size of the micelles with temperature. In this present study, the CP and the 

PIT of the micelles and Brij 97-stabilised nanoemulsions, respectively were determined 

by visual assessment. The Brij 97 micellar solutions and nanoemulsions were examined 

by both heating and cooling the samples at a rate of ~ 1ºC min-1 with stirring throughout and 

determining the temperature at which the samples become cloudy and clear, respectively. 

The temperatures at which cloudiness appears and the clearing occurs should be less than 

1oC different. The CP and PIT thus reported are the mean of 3 separate determinations of 

the clouding and clear temperatures. Note that the micellar and SDS-stabilised 

microemulsions solutions could not be determined as ionic surfactants such as SDS do not 

grow as a function of temperature, indeed the size of ionic micelles tends to slightly 

reduce when the temperature is increased. 
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2.2.5 Viscosity 

An Ubbelohde (dilution, or suspension capillary) viscometer was used to determine the 

intrinsic viscosity of the micelles, nanoemulsions and microemulsions. Prior to use, the 

Ubbelohde viscometer was cleaned by first soaking in concentrated detergent solution, 

repeatedly rinsing with distilled water, washing in acetone and finally drying under a 

stream of nitrogen. 10 mL of the most concentrated micellar, nanoemulsion or 

microemulsion sample to be measured (with or without TP) was then placed into the 

Ubbelohde viscometer along with a small magnetic stirrer to ensure adequate mixing of 

the sample. The Ubbelohde viscometer and its contents were then immersed in a 

precision water bath (CT 1650, Schott-Geräte, Hofheim, Germany) at a temperature of 

25 ± 0.01
º
C for 30 min equilibration prior to the measurement of viscosity. The speed of 

magnetic stirrer was altered so it was not fast enough to result in the formation of 

bubbles in the sample to be measured. Once the sample contained in the Ubbelohde 

viscometer had equilibrated, its flow time was automatically measured three times using 

the attached Viscosity Measurement Unit AVS 350 (Schott-Geräte, Hofheim, 

Germany). A difference in flow time of ± 0.02 s for the three measurements was 

considered to be of sufficient accuracy for the  present study. The sample in the 

viscometer was then automatically diluted with distilled water 4 times using a 

programmable ViscoDoser AVS 20 Piston Burette and the viscosity of the resulting 

samples determined. Viscosity results were analyzed to determine both the reduced 

viscosity and inherent viscosity as a function of concentration, which was plotted to 

obtain via linear regression the Huggins and Kraemer extrapolations, respectively (Devi 

et al., 2003). The average of the reduced viscosity and inherent viscosity from the 

Huggins and Kraemer extrapolations at a zero surfactant concentration was determined 

to the intrinsic viscosity of the sample (η). 

 

2.2.6 Density 

The density of individually prepared micellar, nanoemulsions and microemulsions 

(including B24T3/10, B24T5/10, S20B14/5 and S20C08/5 in the presence and absence 

of TP) samples (according to section 2.2.2) was determined. Sample was transferred 

into a previously calibrated pycnometer of 10 mL volume such that the pycnometer was 
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full with sample when no stopper was fitted. The pycnometer was then stored at a 

constant temperature of 25 ± 0.01°C and once equilibrated, the pycnometer was 

stoppered (reducing evaporation and contamination) and the mass of the sample 

contained in the pycnometer determined using a calibrated Sartorius analytical balance 

with a precision of ± 0.00001 g. The volume of the pycnometers was previously 

calibrated by  determining the weight of water they contained and converting this to 

volume using the density of pure water. 

   
 

 
 

where m is mass and v is volume of the sample. The unit of density is g/mL. The 

density of all samples was measured in triplicate using three different density bottles 

(i.e. n = 9). 

 

2.2.7 Preparation nanosuspension 

Nanosuspensions of griseofulvin nanoparticles (GF-NPs) were prepared by wet bead 

milling griseofulvin using a Retsch MM 400 mixer mill (Glen Creston Ltd, Stanmore 

UK), Figure 2.1. Solutions of stabiliser, namely 0.25, 0.5, 1, 1.5, 2 and 10 w/w% SDS, 

were prepared by weighing the required amount of surfactant and water and mixing 

using a magnetic stirrer. A crude GF suspension or slurry was then prepared by mixing 

40 g of the stabiliser solution with 10 g of GF and stirring for 30 minutes prior to 

milling. In this study, the crude suspension contained 20 w/w% GF to increase 

possibility of the yttrium zirconia (YTZ) beads impacting with the drug particles during 

the milling process thereby aiding the production of the GF-NPs (Tirop, 2012). 

 



Experimental 

87 

 

Figure 2.1 Retsch MM400 Mixer Mill 

 

To prepare GF-NPs, the crude GF suspension was milled for a total of 6 hours by 

mixing 10 mL of YTZ beads (0.44 mm diameter) with 10 mL of the crude GF 

suspension in a milling jar of 25 cm
3
 capacity (Nylube, Nylecast,UK). The milling was 

performed at a shaking frequency of 25 Hz. Every hour the milling was stopped for 10 

minutes in order to avoid over heating of the motor on the Retsch Mixer Mill. At this 

time a small amount of sample was taken from the milled suspension to assess its 

particle size. After 6 hours milling, the YTZ beads were separated from the GF 

nanosuspension (GF-NS) using a 60 mesh sieve, the GF-NS centrifuged at 13000 rpm 

for 90 minutes using a Biofuge Pico (Heraeus, Germany) and the supernatant removed 

and replaced with the same amount of fresh deionized water to maintain the same 

concentration of particles. In this way, the excess SDS was removed from the 

suspension in an attempt to reduce/prevent Ostwald ripening. The recovered YTZ beads 

were cleaned with copious amounts of water, rinsed with methanol, oven dried and 

reused. Before and after centrifugation to remove the excess SDS, the particle size of 

the various GF-NPs preparations was measured by PCS in order to determine which 

formulation(s) should be used for further study. 

 

2.2.8 Particle size measurement of the GF-NP 

The particle size (apparent hydrodynamic size and polydispersity index) of the GF-NP 

was performed using a Brookhaven ZetaPlus particle sizer v2.29 (Brookhaven 
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instruments, UK), fitted with a He-Ne laser operating at 677 nm, using a measurement 

angle of 90° and operating at an experimental temperature of 25 ± 0.1°C. Analysis of 

the PCS data used a viscosity of 0.89 cP and a refractive index of 1.33 for the water, 

continuous phase. A clear, 4-sided, 10 mm path length disposable polystyrene cuvette 

was used for the PCS measurements. The methodology was adapted from that of Tirop 

(2012), namely 2-3 drops of GF-NS were diluted with water to give a final GF 

concentration of 0.02 w/w% of GF to give a sensible count rate. In order to measure 

particle size of the GF-NPs stabilised by varying amounts of SDS, namely 0.25, 0.5, 1, 

1.5, 2 and 10 w/w% SDS, the samples were prepared triplicate. Each of the triplicate 

GF-NP samples were measured for 30 seconds and was the average of ten repetitions. 

As a consequence, the results were recorded as the average of the hydrodynamic 

apparent size ± the standard deviation as well as the average of the polydispersity index 

± the standard deviation. 

 

2.2.9 Zeta potential measurement of the GF-NP 

The zeta potential of the GF-NPs was determined using a Zetasizer Nano ZS (Malvern 

instruments, UK). The GF-NPs to be measured were placed in a disposable folded 

capillary cell with gold electrodes at 25 ± 0.1°C and, after 120 seconds equilibration, the 

zeta potential of the sample measured for 30 seconds with ten repetitions. Note that the 

zeta potential of all samples was measured at the same concentration as their particle 

size. The zeta potential was expressed as the average of zeta potential ± the standard 

deviation (n = 9). 

 

2.2.10 Preparation of nanosusponanoemulsions and nanosuspomicroemulsions  

The novel nanosusponanoemulsions (NSNEs) and nanosuspomicroemulsions (NSMEs) 

delivery systems were prepared by simply mixing 0.24 ml of GF-NPs (as prepared) and 

0.76 ml of either diluted nanoemulsions or microemulsions. This amount and 

concentration of nanosuspension (NS) was selected because, according to Goodwin 

(2006) and Tirop (2012), a final 3.5% volume fraction of GF-NPs was sufficient to 

avoid, or at least reduce, multiple scattering due to particle–particle interactions in a 
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scattering experiment. Similarly, the amount and concentration of nanoemulsions or 

microemulsions was enough to measure the sample using a scattering technique as well 

as avoid interparticulate interactions between the samples. 

Both freshly prepared GF-NPs (stabilised by 1.5 w/w% SDS) and either freshly 

prepared nanoemulsions or microemulsions were used to formulate the NSNEs or 

NSMEs, respectively. NSNEs and NSMEs were both prepared in 1.5 mL microfuge 

tubes, which were tightly closed and covered with aluminum foil to prevent the 

occurrence of any photoreaction. Table 2.3 shows the compositions and the codes of the 

NSNEs and NSMEs prepared in the absence and presence of TP. The letters NS added 

to the front of any code denote the fact that these systems are NSNEs or NSMEs - for 

instance the code NSB24T3/10-TP denotes a mixture of GF-NS and a 10 times diluted 

stock nanoemulsion (prepared form a stock of 24 w/w% Brij 97 and 3 w/w% TON) and 

containing a saturated amount of TP. 

 

Table 2.3 Compositions and the codes of the nanosusponanoemulsions and 

nanosuspomicroemulsions used in the study  

Nanosusponanoemulsions 

(NSNEs) and 

Nanosuspomicroemulsions 

(NSMEs) 

Code 
Nanosuspension 

(0.24 mL) 

Nanoemulsion or 

Microemulsion 

(0.76 mL) 

NSNEs no TP NSB24T3/10 GF-NS B24T3/10 

 NSB24T5/10 GF-NS B24T5/10 

NSMEs no TP NSS20B14/5 GF-NS S20B14/5 

 NSS20C08/5 GF-NS S20C08/5 

NSNEs with TP NSB24T3/10-TP GF-NS B24T3/10-TP 

 NSB24T5/10-TP GF-NS B24T5/10-TP 

NSMEs with TP NSS20B14/5-TP GF-NS S20B14/5-TP 

 NSS20C08/5-TP GF-NS S20C08/5-TP 
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2.2.11 Drug solubilisation 

In order to determine the solubility/solubilisation of TP in the various systems under 

study, a calibration curve of TP was prepared by first making a stock solution 

containing an accurately known quantity of TP (approximately 40 mg) in 20 mL 

isopropanol. This stock solution was then serially diluted by taking 50, 100, 150, 200, 

250 and 300 µl aliquots and made to volume (20 mL) with isopropanol. Similarly in 

order to determine the solubility of GF in the various systems, a calibration curve for 

GF was prepared from a stock solution containing an accurately known quantity of GF 

(approximately 10 mg) in 100 mL isopropanol was prepared. This stock solution was 

then serially diluted by taking 40, 80, 120, 160, 200, 240 and 280 µL aliquots and made 

to volume (20 mL) with isopropanol. Dilutions of both TP and GF stock solutions were 

carried out in triplicate. Isopropanol was used as blank. The UV spectra of each dilution 

of TP and GF was determined between 200 – 400 nm using 1 cm path length cells after 

correction for the absorbance of the isopropanol blank. The maximum absorption 

wavelengths of TP and GF were 240 and 292 nm, respectively. A UV/Vis 

spectrophotometer LAMBDA 2 (Perkin-Elmer, USA) was used throughout the study. 

Exemplar calibration curves obtained for both TP and GF are shown in the Appendix A.  

 

2.2.11.1 Solubility of testosterone propionate and griseofulvin in micelles  

In order to determine the amount of either TP or GF solubilised in the Brij 97 and SDS 

micelles, excess TP or GF was added to 1 mL of a micellar solution (either Brij 97 

concentration of 0.2, 0.6, 1.2, 1.8 and 2.4 w/w% or SDS concentration of 1, 2, 3, 4 and 5 

w/w% of SDS) contained in a microfuge tube (1.5 mL volume), which was then tightly 

closed and covered in aluminum foil ,to avoid the occurrence of any photodegradation 

reaction, and mixed on a rotating wheel. After mixing for 6, 24, 48, 72 and 96 hours, the 

samples were removed from the wheel and centrifuged for 30 minutes at a speed of 

13000 rpm using a Biofuge Pico (Heraeus, Germany), after which the supernatant was 

removed and filtered through a 25 mm PVDF filter of 0.22 µm pore size. An aliquot of 

the filtered sample was diluted with isopropanol before measuring its absorbance using 

UV/Vis spectroscopy at the wavelength of 240 nm and 292 nm (i.e. the wavelength of 

maximum absorbance determined for TP and GF, respectively). A ‘blank’ comprising 
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of the corresponding micellar solutions without drug was treated in the same way. The 

results were shown as the average ± the standard deviation.  

 

2.2.11.2 Solubility of griseofulvin nanoparticles in water  

The solubility of GF-NPs in water was determined by mixing 0.24 mL of the GF-NS 

stabilised by 0.25, 0.5, 1, 1.5, 2 and 10 w/w% of SDS and 0.76 mL of water in a tightly 

closed microfuge tube (1.5 mL volume), which was covered in aluminum foil to avoid 

the occurrence of any photodegradation reaction and mixed on a rotating wheel. After 

mixing for 6, 24, 48, 72 and 96 hours, the samples were removed from the wheel and 

centrifuged for 30 minutes at a speed of 13000 rpm using a Biofuge Pico (Heraeus, 

Germany), after which the supernatant was removed and filtered through a 25 mm 

PVDF filter of 0.22 µm pore size. An aliquot of the filtered sample was diluted with 

isopropanol before measuring its absorbance using UV/Vis spectroscopy at the 

wavelength of 292 nm (i.e. the wavelength of maximum absorbance determined for 

GF). The results were shown as the average ± the standard deviation. 

 

2.2.11.3 Solubility of both testosterone propionate and griseofulvin in either the 

nanoemulsions or the microemulsions  

The solubility of TP in the Brij 97-stabilised nanoemulsions and SDS-stabilised 

microemulsions was determined by adding excess TP (~ 25 mg) in a microfuge tube 

(1.5 mL volume) containing 1 mL of B24T3/10, B24T5/10, S20B14/5 and S20C08/5. 

The microfuge tube was tightly closed, covered in aluminum foil, to avoid the 

occurrence of any photodegradation, and mixed on a rotating wheel. After mixing for 24 

hours, the samples were filtered through a 0.22 µm pore size, 25 mm diameter PVDF 

filter. An aliquot of the filtrate was then diluted with isopropanol prior to measuring its 

absorbance using UV/Vis spectroscopy at the wavelength of maximum absorbance at 

240 nm for TP.  

Similarly, the solubility of TP in Brij 97-stabilised-nanoemulsions and SDS-stabilised 

microemulsions containing exactly the same amount of oil and surfactant as in the final 
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NSNE or NSME preparation was determined by mixing 0.76 mL of either B24T3/10-

TP, B24T5/10-TP, S20B14/5-TP or S20C08/5-TP with 0.24 mL of deionized water in 

1.5 mL microfuge tubes. A ‘blank’ comprising of the corresponding either 

nanoemulsions or microemulsions without drug was treated in the same way. These TP-

containing samples were then mixed on a rotating wheel for 24, 48, 72 and 96 hours, 

after which time the samples were centrifuged at 30 minutes at a speed of 13000 rpm 

using a Biofuge Pico (Heraeus, Germany). The supernatant from each centrifuged sample 

was filtered using a 0.22 µm pore size 25 mm diameter of PVDF filter. A known aliquot 

of each filtrate was diluted with isopropanol prior to measuring its absorbance using 

UV/Vis spectroscopy at 240 nm (i.e. the wavelength of maximum absorbance for TP). 

The results were shown as the average ± the standard deviation.  

Furthermore, in order to determine the solubility of TP in either the nanoemulsions or 

microemulsions in the presence of a saturation amount of GF, the solubility of TP in 

these samples was determined by adding an excess of GF in a microfuge tube (1.5 mL 

volume) containing 0.76 mL of either B24T3/10-TP, B24T5/10-TP, S20B14/5-TP or 

S20C08/5-TP and 0.24 mL of deionized water, tightly closing the microfuge tube, 

covering with aluminium foil, to avoid any photodegradation of the sample, and mixing 

the resulting sample on a rotating wheel. After 6, 24, 48, 72 and 96 hours, samples were 

removed from the wheel and centrifuged for 30 minutes at a speed of 13000 rpm using a 

Biofuge Pico (Heraeus, Germany), after which time the samples were removed from the 

wheel and filtered through a 0.22 µm pore size, 25 mm diameter PVDF filter. An 

aliquot of each supernatant was diluted with isopropanol before measuring its 

absorbance using UV/Vis spectroscopy at the wavelength of 240 nm (i.e. the 

wavelength of maximum absorbance determined for TP). 

In order to determine the solubility of GF in either the nanoemulsions or 

microemulsions in the absence or the presence of a saturation amount of TP, the 

solubility of GF in these samples was determined by adding the excess GF in a 

microfuge tube (1.5 mL volume) containing 0.76 mL of either B24T3/10, B24T5/10, 

S20B14/5, S20C08/5, B24T3/10-TP, B24T5/10-TP, S20B14/5-TP or S20C08/5-TP and 

0.24 mL of deionized water, tightly closing the microfuge tube, covering with 

aluminium foil and mixing the resulting sample on a rotating wheel. After 6, 24, 48, 72 

and 96 hours the samples were removed from the wheel and centrifuged for 30 minutes 
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at a speed of 13000 rpm using a Biofuge Pico (Heraeus, Germany), after which time the 

samples were removed from the wheel and filtered through a 0.22 µm pore size, 25 mm 

diameter PVDF filter. An aliquot of each supernatant was diluted with isopropanol 

before measuring its absorbance using UV/Vis spectroscopy at the wavelength of 292 

nm (i.e. the wavelength of maximum absorbance determined for GF).  

 

2.2.11.4 Solubility of testosterone propionate and griseofulvin in the nanoemulsion 

of nanosusponanoemulsions and the microemulsion of nanosuspomicroemulsions. 

NSNEs or NSMEs, with and without added TP, were prepared as described in Table 2.3 

were placed in 1.5 mL volume microfuge tubes, which were then tightly sealed and 

covered with aluminum foil to protect from light. The foil covered sample-containing 

microfuge tubes were then rotated on a wheel for 0.5, 1, 1.5, 2, 2.5, 3, 6, 8, 24, 48, 72 

and 96 hours, after which time the samples were centrifuged for 30 minutes at a speed 

of 13000 rpm using a Biofuge Pico (Heraeus, Germany) and then the resulting 

supernatant passed through 0.22 µm pore size filters using a 25 mm diameter PVDF 

filter. In order to determine the solubility of TP and GF in the nanoemulsion of NSNEs 

and the microemulsion of NSMEs containing TP, a known aliquot of each supernatant 

was diluted with isopropanol prior to measuring its absorbance using UV/Vis 

spectrometry at 240 and 292 nm, the wavelength maximums or TP and GF, 

respectively. 

 

2.2.12 Particle size of the griseofulvin nanoparticles and nanoemulsions in the form 

of a nanosusponanoemulsion and nanosuspomicroemulsion by photon correlation 

spectroscopy 

PCS was performed to determine the particle size of the GF-NPs when in the form of a 

NSNE and NSME in an absence and presence of a saturation amount of TP. The 

methodology used was  that described in section 2.2.8. Firstly, the NSNEs and NSMEs, 

with and without TP, were prepared in microfuge tubes, compositions as listed in Table 

2.3. The resulting samples (prepared in triplicate) were mixed on a rotating wheel for 4, 

8, 12, 24, 48, 72 and 96 hours. In addition, the size of the GF-NPs measured 
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immediately after their mixing with either nanoemulsions or microemulsions was 

denoted as a time of less than 5 minutes. At each time interval, 2-3 drops of sample 

were diluted with water to give a griseofulvin concentration of  approximately 0.02% wt 

- a concentration range optimised for particle size measurement. A clear, 4-sided, 10 

mm path length disposable polystyrene cuvette was used for measuring the GF NPs size 

which was measured for 30 seconds and was the average of ten repetitions. The particle 

size of three individual GF-NP samples was measured and as a consequence, the results 

are shown as the average of the apparent hydrodynamic size ± the standard deviation. 

During these measurements it was assumed that, because of the much larger volume of 

the GF-NPs, it was not possible to ‘see’ and therefore measure the size of the much 

smaller volume nanoemulsion droplets and therefore the size recorded is a good 

estimate of the size of the GF-NPs. 

In addition, the NSNE and NSME samples were centrifuged at 13000 rpm for 30 

minutes using a Biofuge Pico (Heraeus, Germany) in order to separate the GF-NPs from 

the nanoemulsions or microemulsions. After centrifugation, the supernatant was 

composed of either the nanoemulsion or the microemulsion (diluted with some of the 

aqueous phase of the NS) while the pellet contained the sedimented GF-NPs. The 

particle size of the sedimented GF-NPs and the nanoemulsions (note that it was not 

possible to measure the SDS-stabilised microemulsions using light scattering) was 

monitored after their removal from the NSNE and NSME immediately (< 5 minutes) 

and after 4, 8, 12, 24, 48, 72 and 96 hours of contact. Prior to measurement by PCS, the 

pellet of the GF-NPs was re-suspended with the same volume of ultrapure water as the 

volume of the nanoemulsions or microemulsions, while the nanoemulsions supernatant 

was filtered through 0.22 µm pore size filters of 25 mm diameter and PVDF 

composition prior to measuring their particle size. A clear, 4-sided, 10 mm path length 

disposable polystyrene cuvette was used for measuring the sample’s particle size which 

was measured for 30 seconds and was the average of ten repetitions. The particle size of 

three individual samples was measured and as a consequence, the results are shown as 

the average of the apparent hydrodynamic size ± the standard deviation. Note that 

because the particle size of SDS-stabilised microemulsions was too small and too highly 

charged to be determined using PCS, small angle neutron scattering (SANS) was used 

instead to characterize the microemulsions. 



Experimental 

95 

2.2.13 Small angle neutron scattering  

SANS was performed using both the SANS2D and LoQ beams line at the ISIS pulsed 

neutron source (Rutherford Appleton Laboratory, Didcot, Oxford). Neutrons of 

wavelengths from 2 to 14 Å used for SANS2D were separated by time-of-flight and 

recorded on a 96.5 cm
2
, two-dimensional detector positioned at 4 m from the sample. 

This instrumental set up produced a scatting vector in the range from 0.0045 to 0.8 Å
-1

. 

Neutrons of wavelengths between 2.2 and 10 Å using LoQ were separated by time-of-

flight and recorded on a 64 cm
2
, two-dimensional detector positioned at 4.1 m from the 

sample. This instrumental set up gave a scattering vector in a range 0.008 and 0.22 Å
-1

.  

In the present study, all samples were measured at 25 ± 0.1°C by using 12 mm diameter 

neutron beam. The scattering and the transmissions of the samples were measured 

separately on LoQ while they were simultaneously recorded on SANS2D. For LoQ, the 

scattering of both the sample and solvent was usually accumulated for 20 µA, while the 

transmission measurements were accumulated for 10 µA. On the other hand, for 

SANS2D, the scattering and the transmission of the sample and the solvent were 

simultaneously measured and accumulated for 20 µA. In both cases, an empty cell was 

used as direct beam. 

It is obvious that both the NSNE and NSME contain two populations of the particles. 

Because of the much smaller size and therefore volume of the nanoemulsions and 

microemulsions, it is not possible to measure their size using PCS these particles in situ 

in a NSNE or NSME, respectively. An important advantage of using SANS to examine 

the two populations of particles present in the novel combination system is that is 

possible to selectively make one of the populations of particles ‘invisible’ to the 

neutrons by matching the scattering length density of these particles to that of the 

solvent. This solvent is called the ‘contrast match solvent’. Furthermore, SANS has an 

additional advantage over PCS in that it can provide information on the size, shape and 

internal structure of the particles. As a consequence of this selective highlighting, SANS 

can be used, not only to determine the morphology of the particles, including their size 

and the shape (i.e. nanoemulsions or microemulsions in the presence of GF-NPs and 

vice versa), but also to monitor in situ the stability of the various nanoemulsions, 

microemulsions and GF-NPs over time. 
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In order to study the nanoemulsions or microemulsions when in the form of a NSNE or 

the GF-NPs when in the form of a NSNE or NSME, the experiments were effectively 

divided into two sets. In one set of experiments, the GF-NPs were ‘contrast matched’ to 

the solvent to ‘see’ the nanoemulsions or microemulsions, while in the other set of 

experiments, the nanoemulsions or microemulsions were contrast matched to the 

solvent to make the GF-NPs ‘visible’. Shown in Table 2.4 is the set of compositions 

were made containing different volume ratios of D2O and H2O in order to make the GF-

NPs ‘invisible’, while a second set of compositions prepared using a mixture of D2O 

and H2O to make the nanoemulsions and microemulsions ‘invisible’.  

 

Table 2.4 Sets of compositions containing different volume ratios of D2O and H2O to make 

either the GF-NPs or nanoemulsions and microemulsions ‘invisible’.  

Composition (v/v%) of D2O and H2O 

to make the GF-NPs ‘invisible’ 

Composition (v/v%) of D2O and H2O to 

make the nanoemulsions and 

microemulsions ‘invisible’ 

30 : 70  0 : 100  

35 : 65  5 : 95  

40 : 60  10 : 90  

45 : 55  15 : 85  

50 : 50 20 : 80 

55 : 45 25 : 75 

 

2.2.13.1 Determination of contrast match solvents 

In order to characterize the nanoemulsion or microemulsion drops, it was necessary to 

establish  the composition of the solvent that was necessary to contrast match the GF-

NPs and make them ‘invisible’. Tirop (2012) established that the mixture of D2O and 

H2O required for contrast matching the GF-NPs (at a volume fraction of 3.5%) 

comprised of 43.25 v/v% D2O/H2O. To confirm this, the contrast match point was 

experimentally determined in the present study using GF-NPs prepared in a range of 

D2O and H2O mixtures (namely as 30:70, 35:65, 40:60, 45:55, 50:50 and 55:45) at a 

volume fraction of 3.5% GF-NPs, prepared by mixing 0.24 mL of the GF-NPs (as 
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prepared) with 0.76 mL of the various D2O/H2O mixtures. The neutron scattering 

intensity of these GF-NPs was plotted as a function of the composition of the D2O/H2O 

mixture and the solvent composition at which the minimum scattering intensity was 

obtained was selected as the contrast match solvent and used to prepare NSNEs or 

NSMEs in which the GF-NPs are ‘invisible’. Encouragingly the experimentally 

determined composition of the D2O and H2O mixture agreed with the value reported by 

Tirop (2012). 

In order to study the GF-NPs in situ in a form of the NSNEs and NSMEs, another 

contrast match solvent was required to make the nanoemulsions and microemulsions 

invisible. The theoretical contrast match solvent was determined by calculating the 

scattering length density (SLD) of the nanoemulsions and microemulsions. Fortuitously, 

the SLD of the various nanoemulsions and microemulsions were very similar. Therefore 

B24T3/10 was selected as the nanoemulsion with which to determine the composition 

of the contrast match solvent experimentally. To do this B24T3/10 was prepared in a 

range of D2O and H2O mixtures (namely as 0:100, 5:95, 10:90, 15:85, 20:80 and 25:75) 

by mixing 0.24 mL of the various D2O/H2O mixtures with 0.76 mL of B24T3/10. The 

neutron scattering intensity of these B24T3/10 was plotted as a function of the 

composition of the D2O/H2O mixture and the solvent composition at which the 

minimum scattering intensity was obtained was selected as the contrast match solvent 

and used to prepare NSNEs or NSMEs in which the nanoemulsions and microemulsions 

are ‘invisible’. Encouragingly the experimentally determined composition of the D2O 

and H2O mixture was similar to that theoretically calculated. 

 

2.2.13.2 Preparation of samples for small angle neutron scattering 

In order to prepare GF-NPs-contrast matched NSNEs and NSMEs, GF-NPs stabilised 

with 1.5 w/w% SDS were prepared as described in section 2.2.7 using H2O as solvent. 

After milling the GF-NPs for 6 hours, the GF-NPs were centrifuged at 13000 rpm for 90 

minutes using a Biofuge Pico (Heraeus, Germany) and the H2O solvent removed and 

replaced with an equivalent volume of the contrast match solvent. The centrifugation 

process was repeated twice more to ensure complete replacement of the H2O with the 

contrast match solvent. 
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Before studying the nanoemulsions or microemulsions prepared using the NP contrast 

match solvent, the B24T3/10 nanoemulsion was studied using 3 contrasts, namely the 

drop, the core and shell contrasts, prepared using h-oil/h-surfactant/D2O, d-oil/h-

surfactant/H2O and d-oil/h-surfactant/D2O, respectively. After these initial experiments, 

nanoemulsions and microemulsions, namely B24T3/10, B24T5/10, S20B14/5, 

S20C08/5, B24T3/10-TP, B24T5/10-TP, S20B14/5-TP and S20C08/5-TP were 

individually prepared using the contrast match solvent in place of H2O which was 

necessary to make the GF-NPs ‘invisible’.   

Due to the limited availability of deuterated materials, nanoemulsions could only be 

prepared using two contrasts, namely the drop and the core contrast while the 

microemulsions could only be prepared as the drop contrast. As described above the use 

of hydrogenated and deuterated materials can ‘highlight’ specific components in the 

nanoemulsions and microemulsions as shown in Figure 2.2. Note that when a sample is 

(partially) made from deuterated material, it was necessary to increase the weight of that 

component used over its protonated counterpart to ensure that the same volume of each 

component. 

 

 

Figure 2.2 Schematic representation of a SANS experiment on oil-in-water nanoemulsions and 

microemulsions exploiting contrast variation. 
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The SANS profiles of all samples, including the NSNEs and NSMEs (Table 2.5) 

studied, were measured in disc shape quartz cuvettes (Hellma) of 1 mm path length at 

times of 5 min, 4, 8, 12 and 24 h after their preparation. Note that although the 

measuring of the samples using SANS commenced at these time points after their 

preparation, each SANS measurement takes about 20 minutes and so the age of the 

sample was the time post plus 20 minutes. After their preparation 24 h, the NSNEs and 

NSMEs were centrifuged at 13000 rpm for 30 min using a Biofuge Pico (Heraeus, 

Germany) to separate the nanoemulsions or microemulsions from the GF-NPs. Both the 

nanoemulsions and microemulsions were re-measured as well as the re-suspended GF-

NPs. In addition to measuring the NSNEs and NSMEs over time after their preparation, 

the GF-NPs, the nanoemulsions and the microemulsions that were used for the 

preparation of the NSNEs and the NSMEs were measured at the same concentrations as 

they were present in the NSNEs and NSMEs (Table 2.5). Note that determination of the 

GF-NPs in situ in a form of the NSNE composed of the GF-NPs and the nanoemulsions 

stabilised by Brij 97 containing high amount of TON were not studied because the PCS 

studies showed poor stability and also the limitation of beam time.  

Furthermore, all the GF-NPs, nanoemulsions and microemulsions in an absence and 

presence of TP were freshly prepared prior to perform SANS study. 
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Table 2.5 Composition of the nanosusponanoemulsions and the nanosuspomicroemulsions 

Composition of the 

NSNEs and NSMEs 

Nanosuspension 

(0.24 mL) 

Nanoemulsion or 

Microemulsion 

(0.76 mL) 

Contrast 

solvent 

Before mixing Nanoemulsions - B24T3/10 0.24 mL 

  - B24T5/10 0.24 mL 

 Microemulsions - S20B14/5 0.24 mL 

  - S20C08/5 0.24 mL 

 GF-NPs GF-NS - 0.76 mL 

NSNEs no TP NSB24T3/10 GF-NS B24T3/10 - 

 NSB24T5/10 GF-NS B24T5/10 - 

NSMEs no TP NSS20B14/5 GF-NS S20B14/5 - 

 NSS20C08/5 GF-NS S20C08/5 - 

NSNEs with TP NSB24T3/10-TP GF-NS B24T3/10-TP - 

 NSB24T5/10-TP GF-NS B24T5/10-TP - 

NSMEs with TP NSS20B14/5-TP GF-NS S20B14/5-TP - 

 NSS20C08/5-TP GF-NS S20C08/5-TP - 

 

2.2.13.3 Analysis of the SANS data for the nanoemulsions and microemulsions in 

the form of nanosusponanoemulsions or nanosuspomicroemulsions 

The SANS data was reduced by the program, Mantid (Akeroyd et al., 2013). Firstly, a 

mask file is created to remove stray data points around the beam stop and at the 

outermost perimeter of the detector and also to remove any damaged pixels on the 

detector. Then the each set of scattering data was normalised using their own 

transmission data and then the normalised solvent scattering was subtracted from the 

sample scattering in order to leave only the scattering from the sample which was put on 

an absolute intensity scale. 
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All the SANS data were analyzed using the ‘‘FISH’’ program developed by Heenan 

(1989) at the Rutherford Appleton Laboratory. Before fitting the SANS data, the 

scattering length density (SLD) of each component, namely the surfactant, oil and 

solvent was determined (Table 2.6). In addition, the volume fractions of the core, 

consisted only of oil, and the shell, contained the whole surfactant molecule, of the 

nanoemulsions and microemulsions droplets were calculated using the amount of each 

component in the system. The value obtained for the hydration of the nano- and 

microemulsions determined from the viscosity and density measurements was explored 

for fitting the SANS data. However, in order to establish the best value of the solvation 

of the shell contained the whole surfactant molecule, before analysing the SANS data of 

the samples measured using the contrast match solvent, the SANS data for the 3 

contrasts measured for B24T3/10 were fitted using FISH. In order to best fit to the 

SANS data, the results from the analysis must be physically reasonable and consistent. 

Note that each set of SANS data was individually fitted. 

Preliminary analysis of the SANS data showed that the best model for fitting the 

nanoemulsions or microemulsions was a core-shell ellipsoid model in which the core of 

a nanoemulsion consists all oil molecules, while the shell consists of hydrated 

surfactant. In contrast the core of a microemulsion consists of oil together with 

surfactant tails while the shell consists of only hydrated head group of surfactant. As a 

consequence of these observations, the SANS data obtained for the Brij 97-stabilised 

nanoemulsions were analyzed using the core-shell ellipsoid model together with the 

Percus-Yevick, hard sphere, structure factor whilst the SANS data measured for the 

microemulsions stabilised by SDS were individually analyzed using an ellipsoidal core-

shell model, together with Hayter-Penfold structure factor.  

 

 

 

 

 

 



Experimental 

102 

Table 2.6 Input parameters for the FISH program 

Sample 
Elemental 

composition 

Density 

(g/cm
3
) 

Molecular 

weight (g/mol) 

Molecular 

volume (Å
3
) 

SLD        

(Å
-2

)       

x 10
-6

 

h-TON C27H50O6 0.90 470.65 868.68 0.31 

d-TON C27D44.5H5.5O6 0.95 521.05 868.68 5.45 

h-Brij 97 C38H76O11 1.03 708.94 1143.34 0.28 

h-EB C6H12O2 0.88 116.1 232 0.284 

d-EB C6D12O2 0.97 128.2 232 0.095 

h-EC C10H20O2 0.87 172.3 340 5.670 

d-EC C10D20O2 0.97 192.4 340 6.220 

h-SDS CH3(CH2)11SO4Na 1.01 288.37 421.5 0.337 

solvent D2O 1.11 20.03 30 6.39 

 H2O 1.00 18.01 30 -0.56 

Please note that, the SLD of solvent in this study was calculated from the ratio of SLD of D2O 

and H2O by volume.  

 

2.2.13.4 Analysis of the SANS data for the griseofulvin nanoparticles in the form of 

nanosusponanoemulsions or nanosuspomicroemulsions 

Reduction of the SANS data was performed by the program, Mantid (Akeroyd et al., 

2013). To do this a mask file was first created in order to remove stray data points that 

are around the beam stop and any spurious points at the outermost perimeter of the 

detector, together with any damaged pixels on the detector. Subsequently, the scattering 

data from the solvent was normalised using the corresponding transmission data and 

then the normalised solvent scattering was subtracted from the sample scattering in 

order to leave only the scattering from the sample, which was then put on an absolute 

intensity scale. Before fitting the SANS data, the SLD of the griseofulvin and SDS-

stabiliser calculated (Table 2.6). In addition, the volume fraction of the GF-NPs was 

calculated. The SANS data were analyzed using the ‘‘FISH’’ program developed by 

Richard Heenan (Rutherford Appleton Laboratory). In the present study, all SANS data 
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of the GF-NPs was analyzed using an ellipsoid model together with the Hayter-Penfold 

structure factor. 
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Chapter 3 Preparation of oil-in-water 

nanoemulsions, oil-in-water 

microemulsions and nanosuspensions 

3.1 Preparation of nonionic surfactant stabilised nanoemulsions 

3.1.1 Phase behaviour 

In order to understand the phase behaviour of the oil-in-water nanoemulsion 

formulations, the area of nanoemulsion existence was determined by varying the 

concentration of the C8 triglyceride oil, TON, the nonionic surfactant, Brij 97 and water 

and plotting the results of the visibility studies, on a weight basis, on a triangular 

diagram (Figure 3.1a-b). Compositions that remained clear, one-phase and fluid for 1 

month were described as (clear) nanoemulsions for the purposes of the study and are 

indicated by the green circles on Figure 3.1a. The red circles represent cloudy, one 

phase systems while the inverted blue triangles represent gels. The solid line delineates 

the upper limit of the nanoemulsion region.  

Not surprisingly, because of the large molecular volume of TON, the maximum level of 

its incorporation into the clear nanoemulsions was only 4 w/w% at 30 w/w% of Brij 97. 

At higher oil concentrations, and/or at Brij 97 concentrations of less than 30 w/w%, 

cloudy, one-phase systems were formed while at higher Brij 97 concentrations, gels 

were formed (Figure 3.1a). These results are in agreement with those made by 

Wasutrasawat (2011) who reported a clear, nanoemulsion region of comparable extent 

(Figure 3.1b). In line with these observations, many researchers have suggested that the 

extent of the incorporation of oil into a nanoemulsion depends on its molecular weight 

and volume (Djekic et al., 2008; Malcolmson et al., 1995; Wasutrasawat, 2011). In this 

context, (Warisnoicharoen et al., 2000b) reported that the area of existence of oil-in-

water nanoemulsions stabilised by Brij 97 and containing liquid triglycerides was 

largest with the largest molecular volume triglyceride, soybean oil (SBO) and smallest 

with the smallest chain triglyceride, tribuytrin (TBN) and intermediate with the medium 

chain triglyceride, Miglyol 812. However, the area of existence of oil-in-water 
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nanoemulsions stabilised by Brij 97 was smallest when prepared using the triglyceride, 

TON and largest when containing the intermediate sized triglyceride oils, tripalmitin 

(TPN) and trilaurin (TLN) (Wasutrasawat, 2011). It should be noted that TLN and TPN 

were both solid at room temperature. Even though TPN has a larger molecular weight 

and volume, it was TLN that exhibited the largest region of nanoemulsion existence 

(Wasutrasawat, 2011). As a consequence, in addition to oil molecular weight and/or 

volume, nanoemulsion formation appears to also depend on other factors such as oil and 

surfactant structure (Hsieh, 2010; Wooster et al., 2008).  
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Figure 3.1 Partial phase diagram for the oil-in-water nanoemulsions stabilised by Brij 97 and 

containing the triglyceride oil, trioctanoate (TON) after 1 month storage at 25.0 ± 0.1 °C 

compared to the corresponding partial phase diagram of Wasutrasawat (2011). On the abscissa, 

the surfactant concentration (in w/w%) increases from left to right, while on the ordinate, the oil 

concentration (in w/w%) increases from bottom to top, and the water concentration (in w/w%) 

increases from top to bottom. The appearance of the samples was defined as clear (●), gel 

(●), cloudy (▼). The phase boundary was defined as a solid line. 

 

3.1.2 Solubilisation of testosterone propionate 

3.1.2.1 Solubility of testosterone propionate in Brij 97 micelles  

The solubility of testosterone propionate (TP) in Brij 97 micelles was determined over 

time in order to determine both the kinetics and the equilibrium solubility of TP in the 

surfactant solutions (Figure 3.2). As can be seen, the equilibrium solubility of TP in the 

Brij 97 micelles was reached within 6 h as evidenced by the fact that the solubility 
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remained constant for least 96 h, as there was no significant difference (p > 0.05) in the 

solubility recorded over this period (longer time courses were not tested) and could 

therefore be averaged. In addition, the average TP solubility varied in a linear fashion 

over a wide range of surfactant concentrations (Figure 3.3), specifically the solubility of 

TP in the Brij 97 micelles ranged from 0.005 to 0.051 w/v% as the surfactant 

concentration varied from 0.2 to 2.4 w/w%. It is well established that the solubility of a 

poorly water soluble drug as a function of the concentration of surfactant is very low 

until the surfactant concentration reaches its critical micelle concentration (cmc) after 

which the solubility of the drug increases linearly with surfactant concentration (Carlota 

et al., 2005). As the cmc of Brij 97 in water at 25
o
C is low at 0.028 M or 0.002 w/w% 

(Warisnoicharoen, 1998), all the surfactant concentrations in the present study are well 

above the cmc of Brij 97 and as a consequence the solubilisation of TP varies in a linear 

trend with increasing surfactant concentration. 
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Figure 3.2 Solubility of testosterone propionate in Brij 97 micelles over time at 25.0 ± 0.1 ºC 

(mean  ± SD, n = 9). 
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Figure 3.3 The average solubility of testosterone propionate of all time points (i.e. 6, 24, 48, 

72 and 96 h) in Brij 97 micelles as a function of surfactant concentration at 25.0 ± 0.1 °C (mean 

± SD, n = 5). 

 

3.1.2.2 Solubility of testosterone propionate in Brij 97-stabilised nanoemulsions 

In order to obtain the highest possible amount of the poorly-water soluble drug, TP, in 

an oil-in-water nanoemulsion, the nanoemulsions containing the highest amount of oil 

(namely 4 w/w% at 30 w/w% of Brij 97) were initially considered for use in the 

preparation of a NSNE, however this formulation was too viscous to prepare due to the 

high amount of surfactant present. As a consequence a clear, nanoemulsion containing 3 

w/w% TON and stabilised by 24 w/w% Brij 97 was selected for study. In addition, a 

cloudy system, just outside the nanoemulsion phase boundary containing 5 w/w% TON 

and stabilised by 24 w/w% was also studied. The systems selected for examination in 

the present study were coded as B24T3 and B24T5, respectively. These systems were 

prepared as stocks which were generally diluted 10 times prior to use. It was necessary 

to use a stock as it was not possible to directly prepare the nanoemulsions at the low 

concentrations of surfactant (Figure 3.1) suitable for incorporation into the mixed 

nanoemulsion and nanosuspension formulations, and for study using techniques such as 

dynamic light scattering (PCS) and small angle neutron scattering (SANS). The diluted 

nanoemulsions containing 2.4 w/w% of Brij 97 and either 0.3 or 0.5 w/w% of TON 

were denoted B24T3/10 and B24T5/10, respectively. 
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Table 3.1 Solubility of testosterone propionate in Brij 97 micelle and nanoemulsions at 24 h 

and at 25.0 ± 0.1 
o
C. 

Sample 
Concentration (w/v%) of testosterone propionate  

(mean ± SD, n = 9) 

2.4 w/w% Brij 97 micelle 0.05 ± 0.00 

B24T3/10 0.11 ± 0.01 

B24T5/10 0.14 ± 0.01 

 

An understanding of the affect of the presence of TP on the two TON-systems under 

examination was important. As shown in Table 3.1, the solubility of TP in 2.4 w/w% 

Brij 97 micelles, B24T3/10 and B24T5/10 at 24 h was approximately 0.05, 0.11 and 

0.14 w/v%, respectively. It is clear that, at 24 h the solubility of TP in the 

nanoemulsions was at least twice the solubility of TP in Brij 97 micelles at the same 

surfactant concentration. Furthermore, the solubility of TP was greatest in the Brij 97-

stabilised system that contained the most TON. These results suggest that the presence 

of TON had a positive effect on the level of incorporation of TP. In the absence of oil, 

i.e. in the case of surfactant micelles, it is expected that because TP is a hydrophobic 

drug, that it will most likely be solubilised in the interfacial region of the surfactant 

micelles. It is clear, however, that in the presence of TON, the drug is also soluble in the 

oil that forms the core of the nanoemulsion. 

In addition, the solubility of TP in Brij 97-stabilised nanoemulsions that had been 

diluted 10 times with water (designated as B24T3/10 and B24T5/10) and then further 

diluted by taking 0.76 mL of nanoemulsion and making to 1.00 mL with water (as 

would be the case in the final combination formulation, which were denoted as 

B24T3/10/0.76 and B24T5/10/0.76) was determined (Table 3.2). Knowledge of the 

solubility of TP in these diluted nanoemulsions is important when understanding the 

behaviour of these nanoemulsions when in a presence of the GF-NPs. Significantly, the 

results show that solubility of TP was constant regardless of whether it was incubated 

with an excess of TP for periods of 24 to 96 h. Furthermore, it should be noted that the 

concentrations of surfactant and oil in the nanoemulsions in Table 3.2 were about 76% 

of those in Table 3.1 and significantly, as is clear from the results in Table 3.2 the level 
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of TP solubility in the diluted B24T3/10/0.76 and B24T5/10/0.76 nanoemulsions has 

decreased proportionally to be about 76% of those in Table 3.1, suggesting that TP 

solubility scales with surfactant and oil concentration.  

 

Table 3.2 Solubility of testosterone propionate in diluted nanoemulsions over time at 25.0 ± 

0.1 
o
C. 

Sample 

Concentration (w/v%) of testosterone propionate  

(mean ± SD, n = 9) 

24 h 48 h 72 h 96 h 

B24T3/10/0.76 0.08 ± 0.00 0.08 ± 0.00 0.07 ± 0.01 0.07 ± 0.01 

B24T5/10/0.76 0.09 ± 0.01 0.09 ± 0.01 0.09 ± 0.01 0.09 ± 0.01 

 

Interestingly, previous studies have reported that nanoemulsions could be prepared 

simply by adding a microemulsion into water and have noted that transparent 

nanoemulsions could be formed from a bicontinuous microemulsion (Morales et al., 

2003; Solè et al., 2012; Tong et al., 2016; Wang et al., 2008). Once the Brij 97-

stabilised nanoemulsion had been prepared in the present study, it was found possible to 

dilute the nanoemulsion to much lower Brij 97 concentrations than it was possible to 

prepare them at; this is an important result for the use of the nanoemulsions as delivery 

vehicles. According to Warisnoicharoen et al. (2000a), who measured the size of 

nanoemulsions stabilised by Brij 97 and containing either a small molecular volume oil 

such as ethyl butyrate, ethyl caprylate and tributyrin or a large molecular volume oil 

such as Miglyol 812, soybean oil and ethyl oleate using photon correlation spectroscopy 

and total intensity light scattering, there was no evidence of any change in 

nanoemulsion shape or size upon dilution. 

The solubility of TP in these diluted nanoemulsions will be the starting point for 

comparing the solubility of TP in nanoemulsion in a presence of the GF-NPs.  
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3.1.3 Particle size of nanoemulsions in the presence and absence of testosterone 

propionate 

In order to understand the effect of the amount oil and the presence or absence of TP on 

particle size, photon correlation spectroscopy (PCS) was used to measure the average 

hydrodynamic size and size distribution of the Brij
 
97-stabilised nanoemulsions.  

Visual observation of the diluted Brij 97-stabilised nanoemulsions containing 0.3 w/w% 

of TON in an absence and presence of a saturation amount of TP showed that the 

nanoemulsions remained transparent for at least 2 months (longer time periods were not 

tested). In contrast, the diluted Brij 97-stabilised nanoemulsions containing 0.5 w/w% 

of TON, again in the absence and presence of a saturation amount of TP were 

transparent immediately after preparation, becoming bluish after 48 hours and cloudy by 

72 hours and remaining cloudy for 2 months (longer time periods were not tested).  

In this study, the droplet size of the Brij 97-stabilised formulations measured 

immediately after preparation by PCS was in the nanometre size range (Figure 3.4). In 

addition, the low polydispersibility values observed for the Brij 97-stabilised 

formulations suggest a high uniformity of droplet size. In terms of the nanoemulsion 

particle size, it can be seen that B24T3/10 nanoemulsions containing 0.3 w/w% of TON 

were about 2.5 nm smaller than the B24T5/10 nanoemulsions containing the higher 

amount of TON of 0.5 w/w%. As expected, the droplet size of the nanoemulsion 

increased with an increase in the amount of oil. Similar trends in droplet size have been 

previously seen in nanoemulsions prepared using polysorbate 20 as surfactant, ethanol 

as cosurfactant and a mixture of oleic acid and eucalyptus oil as oil, when the droplet 

size increased with an increase in oil concentration (Ali et al., 2014). In addition, it has 

been reported that the presence of a long chain oil in a nanoemulsion increases the 

volume of the core, decreasing the area of surfactant head group and increasing 

nanoemulsion droplet size, while the presence of short chain oils increase the area of the 

surfactant head group, favouring the formation of an oil-in-water droplet structure 

(Warisnoicharoen et al., 2000a). 
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Figure 3.4 Apparent hydrodynamic size of nanoemulsions stabilised with 2.4 w/w% Brij 97 

and containing 0.3 and 0.5 w/w% of trioctanoate (TON) in an absence and presence of a 

saturation amount of testosterone propionate immediately after preparation at 25.0 ± 0.1 
o
C 

(mean ± SD, n = 9). 

 

The presence of a saturation amount of TP on the droplet size of B24T3/10 

nanoemulsions containing 0.3 w/w% of TON resulted in a very slightly greater size than 

in the equivalent nanoemulsions in the absence of drug, whilst the B24T5/10 

nanoemulsions containing 0.5 w/w% of TON and saturated with TP were about 9 nm 

larger than their drug free counterparts (Figure 3.4).  

In terms of nanoemulsion stability, the particle size of the B24T3/10 nanoemulsions 

containing 0.3 w/w% of TON, both in the absence and presence of a saturation amount 

of TP, slightly increased over the period of 2 months from 11.4 to 12.7 nm and 11.9 to 

15.0 nm, respectively. Note that longer time courses were not studied. However, the 

droplet size of the nanoemulsions remained in the nanometre size range (Figure 3.5). In 

contrast, the particle size of the B24T5/10 nanoemulsions containing 0.5 w/w% of 

TON, in the absence and a presence of a saturation amount of TP, remained constant 

until 24 h and then thereafter increased in size up to 2 months (longer time courses not 

tested) reaching 146.4 and 150.7 nm, respectively (Figure 3.5). As a result, the 

nanoemulsions containing the higher amount of TON were less stable than those 

containing a lower amount of TON. In fact, nanoemulsions are possibly prone to the 
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growth of particle size over time by Ostwald ripening (Wooster et al., 2008). Wooster et 

al. (2008) found that the particle size of nanoemulsions stabilised by the mixture of 

surfactant composed of 5.6 w/w% of SDS and 16.6 w/w% of polyethylene glycol 6600 

and containing 15 v/v% alkane, including dodecane, tetradecane, hexadecane and 

octadecane, was found to increase over time due to Ostwald ripening. In contrast, 

however, the small droplet size of the Brij 97 nanoemulsions makes them more resistant 

to physical destabilisation via gravitational separation, flocculation and/or coalescence 

because of their high Brownian motion and their highly efficient steric stabilisation 

(Capek, 2004; Tadros et al., 2004). 
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Figure 3.5 Apparent hydrodynamic size 25.0 ± 0.1 °C of the nanoemulsions stabilised by 2.4 

w/w% Brij 97 and containing 0.3 and 0.5 w/w% of trioctanoate (TON) in an absence and 

presence of a saturation amount of testosterone propionate immediately after preparation (mean 

± SD, n = 9). 

 

In agreement with the visual observations, the PCS results showed that the particle size 

of nanoemulsions containing 0.3 w/w% of TON remained stable for 2 months. 

Conversely, the particle size of nanoemulsions containing 0.5 w/w% of TON 

significantly increased from 2 days to 2 months after preparation and were less stable 
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over time than their counterparts containing lower amounts of oil. In fact, it has been 

previously reported that nanoemulsions may lose their transparency over time due to an 

increase in droplet size (Tadros et al., 2004). 

 

3.1.4 Cloud point and phase inversion temperature 

The cloud point (CP) and phase inversion temperature (PIT) of micelles and 

nanoemulsions, respectively are sensitive to the structure and conformation of the 

surfactant aggregates. It is important to know the CP and PIT of the micelles and 

nanoemulsions to ensure that they are not close to the temperature range they will 

experience while being used as a drug delivery vehicle (Mathis et al., 1984). Figure 3.6 

shows the CP of a 2.4 w/w% Brij 97 micellar solution and the PIT of the corresponding 

nanoemulsions containing 0.1-0.3 w/w% TON, in the presence and absence of a 

saturation amount of TP. In this study, regardless of the presence or absence of a 

saturation amount of TP, the CP of micelles and the PIT of nanoemulsions were all in 

the range 47 to 54 °C, well above the body temperature of 37 °C and the ‘in-use’ 

temperature of approximately 20-25 °C. 
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Figure 3.6 The cloud point and phase inversion temperature of 2.4 w/w% Brij 97 

nanoemulsions as a function of trioctanoate (TON) concentration in the absence and presence of 

testosterone propionate (TP) (mean ± SD, n = 9). 
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The variation in the PIT of a nanoemulsion as a function of oil content is widely 

attributed to the variation in the location of the oil in the nanoemulsion droplet. For 

example increasing the oil content may result in the transformation of rod-like micelles 

(at low or no oil content) into globular aggregates upon increasing oil content and the 

formation of an oil core in microemulsions (Hoffmann et al., 1988). Indeed Malcolmson 

(1993)  and Wasutrasawat (2011) reported that the shape of Brij 97 micelles were 

asymmetric, becoming more spherical upon increasing oil content and the consequent 

formation of a nanoemulsion. In addition, the PIT of a nanoemulsion can be affected by 

altering the chemical nature of the amphiphile, the addition of inorganic salts and both 

the nature and amount of oil (Aveyard et al., 1986).  

In respect to the effect of the addition of oil on the structure of the surfactant aggregate, 

it is the relative molecular volume of oil that is important. Consequently, the definition 

of what is “small” or “large” molecular volume oil is related to the nature of the 

particular surfactant being studied. In general it is considered that the oil has a small 

molecular volume oil if its chain length is less than that of the hydrophobic chain length 

of the surfactant, whilst a large molecular volume oil has chain length similar to or 

longer than that of the surfactant hydrophobe (Chen et al., 1986).   

As a rule, the presence of a large molecular volume oil tends to increase the PIT while 

the incorporation of a small molecular volume oil tends to result in a decrease in the 

PIT, although at high oil contents they may cause an increase in the PIT (Malcolmson et 

al., 1998). Large molecular volume oils tend to form a core in the centre of the 

surfactant aggregate/nanoemulsion resulting in one of two effects depending on the 

initial shape of the micelles. If the micelle was originally spherical, the addition of the 

oil may result in a change in both the effective head group area and the effective 

hydrophobic volume of the surfactant, if these changes balance each other then the 

degree of curvature of the aggregate will remain the same and therefore the resulting 

PIT will be similar to that of the corresponding micellar solution (Aveyard et al., 1986). 

If, in contrast, the micelles were initially asymmetric in shape, the addition of oil may 

encourage a change in nanoemulsion shape to spherical and a corresponding increase in 

the PIT of the nanoemulsions. Note however, that it is possible that the addition of low 

amounts of small molecular volume oil, may actually act in the same way as a 

cosurfactant, by increasing the effective volume of the surfactant hydrophobic chain and 
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also decreasing the effective area of hydrophilic head group of the surfactant, resulting 

in a lower curvature of the aggregates which become even more asymmetric, thereby 

lowering the PIT in much the same way. 

The CP of the 2.4 w/w% Brij 97 micelles in an absence of TP was ~ 54 °C, which 

initially decreased to ~ 50 °C in the presence of 0.1 w/w% of TON, and then increased 

up to ~ 54 °C in the presence of 0.3 w/w% TON. The CP of the 2.4 w/w% Brij 97 

micelles in the presence of a saturation amount of TP was ~ 52 °C (~ 2°C less than in 

the absence of TP), which then decreased to ~ 48 °C in the presence of 0.1 w/w% of 

TON, and subsequently increased to ~ 52  °C when 0.3 w/w% of TON was added. 

Regardless of the absence or presence of TP, the addition of a small amount of TON 

(i.e. 0.1 w/w%) to Brij 97 micelles resulted in a decrease in the PIT while the addition 

of a more TON (~ 0.3 w/w%) caused  an increase in the PIT. Interestingly the PIT of 

nanoemulsions containing 0.3 w/w% TON was comparable to the CP of the equivalent 

Brij 97 micelles. As expected, the addition of the hydrophobic drug, TP to the Brij 97 

micelles and Brij 97-stabilised nanoemulsions reduced the CP and PIT, respectively of 

these systems.  

In this study, it appears that the presence of TON at low concentrations, acts in much 

the same way as cosurfactant by increasing the effective volume of the surfactant’s 

hydrophobic chain and decreasing the effective area of its hydrophilic head group 

leading to the formation of more asymmetric drops and a lower PIT (Warisnoicharoen 

et al., 2000b). In contrast, the PIT of nanoemulsion increases with a further increase in 

the amount of oil as a consequence of the oil tending to go into the core of the droplet 

leading to a transformation of the asymmetric droplets to more symmetrical aggregates 

(Ko et al., 2003).   

Based on these results, it would be anticipated that the 2.4 w/w% Brij 97 micelles and 

the nanoemulsions containing 0.1 w/w% TON were likely to be asymmetric, with the 

nanoemulsion droplets becoming more symmetric/less asymmetric upon the addition of 

further TON. In addition, as the PIT of nanoemulsions containing 0.3 w/w% of TON 

was the same as the CP obtained for the micelles, it is proposed that TON is, at least 

partially, solubilised in the interfacial surfactant region rather than being solubilised 

exclusively in the core. Encouragingly, the experimental results obtained in the present 

study are in good agreement with those of Wasutrasawat (2011).  
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Interestingly, Malcolmson et al. (1998) proposed that the hydrophobic drug, TP was 

likely to be solubilised in the interfacial region of a surfactant aggregate. As a 

consequence, it might be expected that any nanoemulsion containing TON would not 

exhibit an increase in the apparent aqueous solubility of TP solubility due to 

competition with TON for the site of solubilisation. However, as TP solubilisation in 

Brij 97-stabilised nanoemulsions in a presence of 0.3 and 0.5 w/w% TON was about 

twice and three times that obtained in Brij 97 micelles, it is most probable that TON is, 

at least partially, incorporated into the core of the nanoemulsion droplets. This result 

further supports the hypothesis that the asymmetric Brij 97 micelles become more 

spherical with the addition of TON and that the TON is both partially mixed with the 

surfactant tails as well as partially forming a core in the centre of the aggregate. This 

suggestion comes from combining the results of the PIT experiments (which indicated 

that TON penetrated into the surfactant layer but perhaps not deeply because the PIT did 

not changed much) with the solubilisation experiments (where the solubility of TP was 

significantly improved in the TON-containing nanoemulsion implying that the TON is 

located in the core of the nanoemulsion). 

 

3.1.5 Effect of solvent on the properties of Brij 97-stabilised nanoemulsions 

It is well established that differences in bond strength and bond length of hydrogen and 

deuterium may affect the resultant intermolecular interactions in systems prepared using 

H2O with D2O. For example Whiddon et al. (2001) found a large isotope effect on the 

critical points and phase boundaries when substituting H2O with D2O in an aqueous 

solution of alkylglucoside surfactant. The use of deuterium, as opposed to hydrogen, in 

this system caused the surfactant to ‘appear’ more hydrophobic due to the effect on the 

glucose head group of exchanging O-H for O-D, in particular the effect on its bond 

lengths and strengths. Despite these well-documented changes, however, when 

replacing H2O with D2O as a solvent in microemulsions stabilised by ionic and 

zwitterionic surfactants, there was no significant change in the solubilisation of drug in 

the microemulsions (Hsieh, 2010). Note that, in the present study. SANS measurements 

were performed at the solvent ‘contrast match’ point (see Chapter 4), which was a 43.25 

v/v% mixture of D2O in H2O. As a consequence of the use of 43.25 v/v% D2O/H2O as 

solvent in the SANS experiments, it was important to study the physical properties of 
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the nanoemulsions (including phase behaviour, particle size, CP and PIT) in this 

solvent. 

 

3.1.5.1 Effect of the presence of a mixture of D2O and H2O on phase behaviour of 

Brij 97-stabilised nanoemulsions 

The ternary phase diagrams of TON in Brij 97-stabilised nanoemulsions in an aqueous 

solvent of 43.25 v/v%D2O/H2O and H2O are shown in Figure 3.7a-b. As can be seen in 

Figure 3.7a, the maximum level of TON incorporation, which occurred at 30 w/w% of 

Brij 97, was 4 w/w%. Furthermore, at low to intermediate Brij 97 concentrations, 

cloudy nanoemulsions were formed at high TON and intermediate Brij 97 

concentrations, while gels were observed at high TON concentrations and Brij 97 

concentrations above 30 w/w%. Significantly for the present study, the area of 

nanoemulsion existence obtained for systems containing TON, Brij 97 and 43.25 v/v% 

D2O/H2O (Figure 3.7a) was the same as that obtained for the corresponding system 

using H2O as solvent (Figure 3.7b). 
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Figure 3.7 Partial phase diagrams for the oil-in-water (a; 43.25 v/v% D2O/H2O and b; H2O) 

nanoemulsions stabilised by Brij 97 and containing the triglyceride oil, trioctanoate (TON) after 

1 month storage at 25.0 ± 0.1 °C. On the abscissa, the surfactant concentration (in w/w%) 

increases from left to right, while on the ordinate, the oil concentration (in w/w%) increases 

from bottom to top, and the water concentration (in w/w%) increases from top to bottom. The 

appearance of the samples was defined as clear (●), gel (●), cloudy (▼). The phase 

boundary was defined as a solid line. 
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3.1.5.2 Effect of the presence of a mixture of D2O and H2O on nanoemulsion 

particle size at 25°C 

Previous studies have reported that the use of D2O as solvent in place of H2O affects the 

size of the micelles formed by alkylglucosides surfactants (Ericsson et al., 2004; 

Whiddon et al., 2001). For example, Ericsson et al. (2005) reported that the particle size 

(as assessed by PCS) of the micelles formed by n-tetradecyl-β-d-maltoside when 

dissolved in D2O were larger than those formed in H2O.     

In order to determine whether the use of the contrast match solvent, i.e. 43.25 v/v% 

D2O/H2O, had any effect on the particle size of nanoemulsion, PCS measurements were 

performed. Table 3.3 shows the apparent hydrodynamic size of nanoemulsions, in an 

absence and presence of a saturation amount of TP, when prepared in either 43.25 v/v% 

D2O/H2O or H2O at 25 ºC. It is clear, however, from the results that there was no 

significant change in the particle size of the nanoemulsions when made in the two 

solvents immediately after their preparation as well as after 1, 2 and 3 days. Indeed, the 

same trend in the variation in the apparent hydrodynamic size of nanoemulsions 

prepared in both 43.25 v/v% D2O/H2O and H2O was seen upon increasing the amount 

of oil (from 0.3 to 0.5 w/w% TON) and, whether or not a saturation amount of TP was 

present. Note that the apparent hydrodynamic size of nanoemulsions prepared in 43.25 

v/v% D2O/H2O as a solvent as assessed by PCS was corrected for the appropriate 

continuous phase viscosity.  
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Table 3.3 Comparison of the apparent hydrodynamic size of nanoemulsions prepared in an 

absence and a presence of a saturation amount of testosterone propionate at 25.0 ± 0.1 ºC.  

Sample 

Apparent hydrodynamic size (nm)   

(mean ± SD, n = 9)  

43.25 v/v% D2O/H2O H2O 

B24T3/10  after preparation 11.1 ± 0.1 11.4 ± 0.2 

  1 day 12.3 ± 0.2 12.1 ± 0.3 

  2 days 12.3 ± 0.1 12.4 ± 0.4 

  3 days 12.1 ± 0.1 12.5 ± 0.4 

B24T3/10-TP  after preparation 12.3 ± 0.2 11.9 ± 0.2 

  1 day 12.9 ± 0.4 12.1 ± 0.4 

  2 days 13.1 ± 0.1 12.8 ± 0.4 

  3 days 13.8 ± 0.3 13.0 ± 0.4 

B24T5/10  after preparation 13.8 ± 0.2 13.8 ± 0.4 

  1 day 14.2 ± 0.2 14.0 ± 0.3 

  2 days 38.3 ± 0.2 38.0 ± 0.9 

  3 days 64.3 ± 0.5 64.3 ± 0.8 

B24T5/10-TP  after preparation 22.6 ± 0.2 22.5 ± 0.7 

  1 day 23.3 ± 0.3 23.1 ± 0.5 

  2 days 39.9 ± 0.4 40.1 ± 0.4 

  3 days 46.8 ± 0.5 46.0 ± 0.8 
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3.1.5.3 Effect of the presence of a mixture of D2O and H2O on the cloud point and 

phase inversion temperature 

Figure 3.8 shows that the phase inversion temperature of TON-containing Brij 97-

stabilised nanoemulsions prepared in 43.25 v/v% D2O/H2O initially decreased slightly 

compared to the cloud point of Brij 97 micelles and then increased upon the addition of 

further oil, exactly the same trend as was seen in the Brij 97 micelles and Brij 97-

stabilised nanoemulsion prepared in H2O. There was however, a slight decrease in the 

CP of Brij 97 micelle and the PIT of nanoemulsions when prepared in 43.25 v/v% 

D2O/H2O as opposed to H2O (Figure 3.9).  Furthermore, it should be noted that, 

regardless of the precise composition of the aqueous solvent, the CP and PIT exhibited 

by the Brij 97 micelles and Brij 97-stabilised nanoemulsions are much higher than the 

experimental temperature of 25 ºC used in the SANS study, and as a consequence this 

difference should not cause any problems in the performance and interpretation of the 

SANS experiment.  
PIT of 2.4% Brij 97 varying concentration of TON in 43.25%D2O/H2O
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Figure 3.8 The cloud point and phase inversion temperature of 2.4 w/w% Brij 97-stabilised 

aggregates using 43.25 v/v% D2O/H2O as a function of trioctanoate (TON) content in the 

absence and presence of testosterone propionate (TP) (mean ± SD, n = 9). 
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PIT of 2.4% Brij 97 varying concentration of TON in H2O and 43.25%D2O/H2O
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Figure 3.9 The cloud point and phase inversion temperature of 2.4 w/w% Brij 97-stabilised 

aggregates using either H2O or 43.25 v/v% D2O/H2O as a function of trioctanoate (TON) 

content in the absence and presence of testosterone propionate (TP) (mean ± SD, n = 9). 

 

In summary, B24T3/10 and B24T5/10 nanoemulsions can be prepared using 43.25 

v/v% D2O/H2O as solvent without significantly affecting the physical properties of the 

nanoemulsions, in particular their phase behaviour, particle size, CP and PIT. 

 

3.2 Preparation of ionic microemulsions 

3.2.1 Phase behaviour  

Figure 3.10a-b shows the partial phase diagrams of microemulsions prepared using 

water, sodium dodecyl sulphate (SDS) as surfactant and either ethyl butyrate (EB) or 

ethyl caprylate (EC) as oil. The oil-in-water microemulsions were defined as clear, fluid 

systems that were stable at room temperature for a period of at least 1 month. The solid 

line presents the upper boundary of the microemulsion region.  

As can be seen from the partial phase diagrams of the SDS-stabilised microemulsions 

shown in Figure 3.10a, EB, the oil with the shorter alkyl chain length and smaller 

molecular volume, could be solubilised at a level of 18 w/w% at an SDS concentration 

of 20 w/w%, while in comparison, the larger molecular volume, longer alkyl chain 
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length oil, EC could be only solubilised up to a maximum of 9 w/w% at the same 

surfactant concentration. As shown in Figure 3.10b, Hsieh (2010) also determined the 

phase behaviour of microemulsions comprising water, SDS and either EB or EC and 

found that EB could be incorporated at levels up to 20% w/w at 25 w/w% of SDS, while 

EC could only be solubilised up to 8% w/w at 22 w/w% of SDS, results that are in good 

agreement with those obtained in the present study. Although noticeably, a small 

amount of either EB or EC could be incorporated at 30-35 w/w% of SDS, a result which 

Hsieh (2010) did not find and may probably reflects the purity of the two batches of 

SDS used as it is well known that SDS may degrade over time to produce dodecanol.  

It is clear from the present study and those of others that the structure of oil impacts on 

the level of oil incorporated into the microemulsion. According to other researchers 

(Monduzzi et al., 1997; Warisnoicharoen, 1998), decreasing the alkyl chain length of 

the add oil (such as an alkane and the ethyl ester of an alkanoic acid) increases the 

amount of oil incorporated into microemulsions prepared using a nonionic surfactant. 

Warisnoicharoen et al. (2000b) also suggested that not only the molecular volume of the 

oil has an effect on the amount incorporated but that the structure of the oil could 

explain its preferred location within the microemulsion droplets. For example small 

molecular volume oils such as EB and EC can act in much the same way as a 

cosurfactant in that they can penetrate the hydrocarbon chain region of the interfacial 

surfactant layer. As a consequence, it might be expected that the smaller molecular 

volume oil, EB could be incorporated into the SDS microemulsions to a much greater 

extent that the slightly larger molecular volume oil, EC. In addition, because of its 

slightly longer hydrophobic chain length, EC is more likely to remain in the core of the 

microemulsion droplets rather than reside amongst the hydrophobic chain region of the 

interfacial surfactant monolayer.  
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Figure 3.10 Partial phase diagrams for oil-in-water microemulsions stabilised by SDS and 

containing either ethyl butyrate (EB) ( --▼-- ) or ethyl caprylate (EC) (--●--) in water at 25.0 ± 

0.1 °C in this study comparing, on the right, that obtained by Hsieh (2010). On the abscissa, the 

surfactant concentration (in w/w%) increases from left to right, while on the ordinate, the oil 

concentration (in w/w%) increases from bottom to top, and the water concentration (in w/w%) 

increases from top to bottom.  

 

3.2.2 Solubility of testosterone propionate 

3.2.2.1 Solubility of testosterone propionate in oil 

In the present study, TP was used as a model of a very poorly-water soluble, low dose 

drug: its solubility in water is recorded as 0.0009 w/w% (Malcolmson et al., 1998). 

Table 3.4 shows the solubility of TP in the oils, EB, EC and TON. The results show that 

the solubility of TP in EB, EC and TON at 24 h was, respectively approximately 19.9, 

12.7 and 6.2 w/v% and that this solubility did not change over 3 days suggesting that 

the equilibrium solubility of TP in the oils was achieved within 24 h. The solubility of 

TP in EB was more than three times its solubility in TON, while the solubility of TP in 

EC was about twice the solubility of TP achieved in TON. The data obtained in the 

present study followed the pattern of TP oil solubility reported by Malcolmson et al. 

(1998) who found TP to be most soluble in the most polar oil.  
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Table 3.4 Solubility of testosterone propionate in oil over time at 25.0 ± 0.1 °C. 

Oil  

Concentration (w/v%) of testosterone propionate   

(mean ± SD, n = 9) 

24 h 48 h 72 h 

EB 19.92 ± 0.50 19.79 ± 0.33 20.04 ± 0.25 

EC 12.73 ± 0.13 12.42 ± 0.11 12.68 ± 0.23 

TON 6.18 ± 0.02 6.19 ± 0.02 6.18 ± 0.08 

 

3.2.2.2 Solubility of TP in SDS micelles  

The solubility of TP in SDS micelles was determined over a period of 4 days (Figure 

3.11). As there was no significant difference (p > 0.05) in the solubility of TP in the 

SDS micelles over the 6 and 96 h tested (longer time courses were not tested) the 

solubility data was averaged. The results in Figure 3.12 show a linear relationship 

between the average TP solubility and surfactant concentration over a 5 fold increase in 

surfactant concentration - TP solubility increases from about 0.2 to 1.1 w/v% with an 

increase in SDS from 1 to 5 w/w%. In this context it should be noted that all the SDS 

concentrations in this study are well above their critical micelle concentration (cmc): the 

cmc of SDS in water at 25
o
C being 8 M or 0.24 w/w% (Luckey, 2014). Comparing the 

solubility of TP in micelles of SDS with micelles of Brij 97 shows that TP can be 

solubilised by SDS micelles to a much greater extent than in Brij 97 micelles. 

According to Hsieh (2010), the level of TP solubilised in micelles formed using C12 

surfactants varied with the nature of the surfactant head group such that SDS exhibited a 

greater solubilising capacity than N,N-dimethyldodecyl-N-oxide which in turn was 

greater than dodecyltrimethylammonium bromide which was greater than 

dimethyldecylamminopropyl sulphate. This result was thought to be a consequence of 

the major site of drug solubilisation being the interface between the hydrocarbon core of 

the micelle and the hydrated head group region. Significantly, using molecular dynamic 

simulations, Allen et al. (2014) reported that, at equilibrium, the solubilised TP 

molecules are preferentially located among the polar head groups of the SDS molecules 

comprising the surfactant micelle.  



Preparation of oil-in-water nanoemulsions, oil-in-water microemulsions and nanosuspensions 

125 

2D Graph 2

Concentration of sodium dodecyl sulphate (w/w%)

1 2 3 4 5

S
o

lu
b

ilt
y 

o
f 
te

s
to

s
te

ro
n
e

 p
ro

p
io

n
a

te
 (

w
/v

%
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

6 h 

24 h 

48 h 

72 h 

96 h 

 

Figure 3.11 Solubility of testosterone propionate in sodium dodecyl sulphate micelles over 

time at 25.0 ± 0.1 ºC (mean ± SD, n = 9). 

 

Concentration of sodium dodecyl sulphate (w/w%)

0 1 2 3 4 5 6

S
o

lu
b

ili
ty

 o
f 
te

s
to

s
te

ro
n
e

 p
ro

p
io

n
a

te
 (

w
/v

%
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y = 0.2246x - 0.0044
      R² = 0.9995 

 

Figure 3.12 The average solubility of testosterone propionate of all time points (i.e. 6, 24, 48, 

72 and 96 h) in sodium dodecyl sulphate micelles as a function of surfactant concentration at 

25.0 ± 0.1 °C. (mean ± SD, n=5) 
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3.2.2.3 Solubility of testosterone propionate in sodium dodecyl sulphate-stabilised 

microemulsions 

The SDS-stabilised microemulsions that contained the highest amount of oil (namely 

either 18 w/w% of EB or 9 w/w% of EC at 20 w/w% of SDS) were originally 

considered suitable for use in the preparation of the NSME, in order to load the highest 

amount of the poorly-water soluble drug, TP. Unfortunately these formulations were 

thought to be too viscous for NSME preparation due to the high concentration of oil 

they contain. Consequently two microemulsions stabilised by 20 w/w% SDS were 

selected for further study, one containing 14 w/w% of EB and the other one containing 

8 w/w% of EC. The codes used to denote the selected microemulsions were S20B14 

and S20C08, respectively. S20B14 and S20C08 were both chosen because they were 

within the clear oil-in-water microemulsion area. The S20B14 and S20C08 

microemulsions were used as stocks and diluted 5 times prior to their use in subsequent 

studies. The codes of the diluted microemulsions were S20B14/5 and S20C08/5. The 

use of a stock solution to prepare these low surfactant concentrations microemulsions 

was necessary as it was not possible to directly prepare these microemulsions. The use 

of low SDS concentrations also has benefit when performing SANS as the interaction 

between particles is reduced to a minimum. 

An understanding of the effect of the presence of TP in the various microemulsions was 

important for this study. As can be seen in Table 3.5, the solubility of TP in micelles 

prepared using 4 w/w% of SDS and microemulsions also prepared using 4 w/w% of 

SDS containing either 2.8 w/w% EB or 1.6 w/w% EC was 0.88, 0.66 and 0.93 w/v% 

respectively. The solubility of TP  obtained in the SDS micelles was significantly 

greater than that observed in microemulsion containing 2.8 w/w% EB but significantly 

less than that recorded in microemulsion containing 1.6 w/w% EC at the same 

concentration of 4 w/w% of SDS. On the basis of the solubility of TP in the two ethyl 

ester oils, it was assumed that the microemulsions containing the oil with the greatest 

solubilising capacity for TP, i.e. EB, would demonstrate the greatest TP solubilisation. 

However as is clear from Table 3.5, this was not the case, as TP solubility was 

surprisingly greatest in the EC-containing microemulsions and least in the EB-

containing microemulsions. Reassuringly a similar observation was also been made by 

Hsieh (2010) who reported that, despite TP’s greater solubility in EB than EC, the 
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solubility of TP in microemulsions stabilised by zwitterionic surfactant, N-dodecyl-N,N-

dimethyl-3-ammonio-1-propanesulfonate (DDAPS) was greatest in the EC-containing 

microemulsions rather than the EB-containing microemulsions. As the result of this 

observation, Hsieh (2010) proposed that expected increase in TP solubility in the 

presence of EB did not occur because the oil did not form a core in the centre of the 

microemulsion droplet, but rather was incorporated into the microemulsions in much the 

same way as a cosurfactant, being intercalated amongst the alkyl chain region of the 

surfactant monolayer and thereby not providing the additional locus of solubilisation for 

the drug.  

 

Table 3.5 Solubility of testosterone propionate in sodium dodecyl sulphate micelles and 

sodium dodecyl sulphate -stabilised microemulsions at 25.0 ± 0.1 ºC. 

Sample  
Concentration (w/v%) of testosterone propionate  

(mean  ± SD, n = 9) 

4 w/w% SDS micelles 0.88 ± 0.01 

S20B14/5 0.66 ± 0.01 

S20C08/5 0.93 ± 0.01 

 

The solubility of TP in SDS-stabilised microemulsions that had been diluted 5 times 

with water, (designated as S20B14/5 and S20C08/5) and then further diluted, 0.76 mL 

of 5 times diluted microemulsion to a final volume of 1.00 mL with water (as would be 

the case in the final combination formulation, which were denoted as S20B14/5/0.76 

and S20C08/5/0.76) to  help understand the behaviour of the diluted microemulsions 

when mixed with the GF-NPs. Significantly, the results showed that solubility of TP in 

the diluted microemulsions did not change over the 1 to 4 days time period they were 

measured (Table 3.6). In addition, in terms of concentration scaling, the concentrations 

of surfactant and oil of the microemulsions shown in Table 3.6 were 76% of those in 

Table 3.5, (i.e. the 5 times diluted microemulsions were further diluted after mixing 

0.76 mL of the microemulsions with 0.24 mL water). As can be seen, it was clear that 
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the solubility of TP in the systems reported in Table 3.6 decreased proportionally to be 

about 76% of those in Table 3.5. 

 

Table 3.6 Solubility of testosterone propionate in the diluted nanoemulsions over time at 25.0 

± 0.1 ºC.  

Sample 

Concentration (w/v%) of testosterone propionate  

(mean  ± SD, n = 9) 

24 h 48 h 72 h 96 h 

S20B14/5/0.76 0.50 ± 0.02 0.51 ± 0.00 0.50 ± 0.02 0.49 ± 0.01 

S20C08/5/0.76 0.71 ± 0.00 0.71 ± 0.00 0.71 ± 0.00 0.71 ± 0.00 

 

Previous studies have reported that nanoemulsions could be prepared by adding a 

microemulsion into water and that a transparent nanoemulsion could be formed from the 

dilution of bicontinuous microemulsions (Morales et al., 2003; Solè et al., 2012; Tong et 

al., 2016; Wang et al., 2008). Interestingly, however once the SDS-stabilised 

microemulsions containing either 14 w/w% of EB or 8 w/w% of EC had been prepared, 

it was found to be possible to dilute the microemulsions using water to a much lower 

SDS concentration than it was possible to prepare them at. This was an important result 

for the use of these SDS-stabilised microemulsions as delivery vehicles.  

When comparing the solubility of TP in nanoemulsions stabilised by Brij 97 and 

containing TON to the solubility of TP in SDS-stabilised microemulsions containing 

either EB or EC, it was clear that TP was most soluble in the EC-containing SDS 

microemulsions, followed by the EB containing ones, and finally the Brij 97-stabilised 

nanoemulsions containing TON, although it should be noted that the amount of 

surfactant and oil in the nanoemulsion and microemulsions were not the same.   

This observation regarding the solubility of TP in the various nanoemulsions and 

microemulsions studied may be explained by the smaller molecular volume oils as EB 

and EC (which are the most polar oils and exhibit the greatest drug solubilising 

capacity) being more likely to penetrate into the hydrophobic chains of the interfacial 

surfactant region, while the larger molecular volume TON, in contrast, is more likely to 
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form in a core at the centre of the nanoemulsion droplets. Even in the case of SDS-

stabilised microemulsions there were differences in the TP solubilising capacity, in that 

the microemulsions containing EB exhibited a lower smaller capacity for TP than those 

containing EC. This difference is considered to be a consequence of the way in which 

the two ethyl ester oils are incorporated into the microemulsions in that EB was 

considered to penetrate more deeply into the hydrophobic chains of the interfacial 

surfactant region than EC. Therefore, in order to confirm this hypothesis, a further 

study, such as SANS is needed to obtain detailed information on the morphology of 

nanoemulsion and microemulsion droplets. 

 

3.2.3 Effect of solvent on the properties of sodium dodecyl sulphate-stabilised 

microemulsions 

3.2.3.1 Effect of the presence of a mixture of D2O and H2O on the phase diagram of 

sodium dodecyl sulphate-stabilised microemulsions 

When examining the microemulsion and nanosuspension combination product using 

SANS, it was necessary to use a mixture of D2O/H2O (43.25 v/v%) as solvent instead of 

H2O, in order to make the griseofulvin nanoparticles ‘invisible’ to neutrons, thereby 

allowing the effect of the griseofulvin nanoparticles on the microemulsions to be 

determined. In order to understand whether the use of the 43.25 v/v% D2O/H2O solvent 

had any effect on the phase behaviour of the SDS microemulsions, microemulsions 

were prepared using 43.25 v/v% D2O/H2O as solvent. The partial phase diagram of SDS 

microemulsions prepared using this solvent are shown in Figure 3.13a, where it can be 

seen that the maximum level of EB was 18 w/w% and the maximum level of EC was 9 

w/w%, both maxima occurring at 20 w/w% SDS. The formation of cloudy systems were 

observed at higher oil concentrations and low to medium SDS concentrations while the 

formation of gels were observed at high oil concentrations and SDS concentrations 

greater than 15-20 w/w%. The area of microemulsion existence for SDS 

microemulsions containing either EB or EC and prepared using 43.25 v/v% D2O/H2O 

(Figure 3.13a) was the same as when H2O was used as solvent (Figure 3.13b), 

suggesting that the use of 43.25 v/v% D2O/H2O in place of H2O had no significant 

effect on phase behaviour. 
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Figure 3.13 Partial phase diagrams for the oil-in-water microemulsions stabilised with SDS 

and containing either ethyl butyrate (EB) (--▼--) or ethyl caprylate (EC) (--●--) and made in (a) 

43.25 v/v% D2O/H2O and (b) H2O at 25.0 ± 0.1 °C. On the abscissa, the surfactant 

concentration (in w/w%) increases from left to right, while on the ordinate, the oil concentration 

(in w/w%) increases from bottom to top, and the water concentration (in w/w%) increases from 

top to bottom. 
 

In addition, microemulsions of composition S20B14 and S20C08 but diluted 5 times 

(i.e. S20B14/5 and S20C08/5) were also prepared using 43.25 v/v% D2O/H2O as 

solvent instead of H2O and showed that the use of 43.25 v/v% D2O/H2O as solvent did 

not affect the physical properties on these diluted SDS-stabilised microemulsions. These 

preliminary studies confirm that it is possible to use 43.25 v/v% D2O/H2O as solvent 

when preparing SDS microemulsions for performing SANS experiments.   

 

3.3 Preparation of nanosuspension 

3.3.1 Formulation of griseofulvin nanoparticles by photon correlation spectroscopy 

studies  

In order to make the desired NSNE and NSME it was necessary to prepare nanoparticles 

from the poorly-water soluble drug, griseofulvin (GF) using wet bead milling technique. 

A previous study by Goodwin (2006) confirmed that griseofulvin nanoparticles (GF-

NPs) could be formed using SDS as stabiliser. Tirop (2012) also studied SDS-stabilised 

GF-NPs and confirmed that even though GF is a neutral drug, possessing no formally 
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charged groups, it can be only stabilised as nanoparticles using either anionic polymer 

or surfactant such as SDS. SDS which is a monoalkyl chain surfactant possesses a 

negatively charged sulphate head group. The hydrophilic-lipophilic balance (HLB) of 

SDS is 40, which means that it is very hydrophilic surfactant, indeed SDS dissolves 

rapidly in water to form micelles at a concentration of 2.365 g/L or 0.24 w/w% (Luckey, 

2014).  

When preparing GF-NPs, the variation in particle size is one factor that helps 

understand the stability of the system. In this study, dynamic light scattering was used 

to determine the particle size of the GF-NPs prepared using the wet bead milling 

technique. First of all, the variation in the particle size of the GF-NPs at hourly intervals 

during their production was determined in order to establish the milling time required 

for production of GF particles in a nano-size range for each concentration of SDS 

between 0.25 -10 w/w%. Figure 3.14 shows that the particle size of the GF-NPs 

stabilised by 0.25 -2 w/w% of SDS was below 500 nm after 4 hours milling and 

remained the same until, at least, 6 hours (longer time points not tested) while the 

particle size of the GF-NPs stabilised by 10 w/w% of SDS was below 500 nm after 

milling for 5 hours. As a consequence, a 6 h milling time was chosen for GF-NP 

production with every SDS concentration tested.  
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Figure 3.14 Particle size of griseofulvin nanoparticles with various concentration of sodium 

dodecyl sulphate (SDS) between 0.25 -10 w/w% over milling time at 25.0 ± 0.1 °C (mean ± SD, 

n = 9).    
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3.3.2 Effect of SDS concentration on the particle size and zeta potential of 

griseofulvin nanoparticles after milling  

In order to understand the effect of SDS concentration on the production of GF-NPs, the 

particle size and zeta potential of the GF-NPs prepared using different concentrations of 

SDS were determined. Table 3.7 shows the particle size, polydispersity and zeta 

potential of GF-NPs prepared with various concentrations of SDS, i.e. between 0.25-10 

w/w% SDS, after milling for 6 hours. The results show in Table 3.7 indicate that after 

milling for 6 hours, GF-NPs of particle size ~ 320 nm, could be produced using a SDS 

concentration of 0.25 w/w%. Increasing the SDS concentration in the range 0.5 to 1.5 

w/w% resulted in a decrease of particle size from ~ 297 to 270 nm. Any further an 

increase of SDS concentration lead to an increase in the particle size of nanoparticle to 

~ 422 nm, showing a decreased efficiency of milling at the higher surfactant 

concentrations, probably due to the need for higher specific energy consumption 

(Kwade, 1999). Tirop (2012) similarly investigated the preparation of GF-NPs using 

concentrations of SDS ranging from 0.1 to 10 w/w% and found that a SDS 

concentration of 1.5 w/w% produced the smallest GF-NPs, suggesting this was the 

optimum SDS concentration.  

The stability of the nanosuspensions was assessed after they were centrifuged and the 

excess stabiliser removed and replaced with an equal volume of ‘fresh’ water. 

Significantly, after removal of excess surfactant all the GF-NPs remained in the nano-

size range, especially those nanoparticles prepared using 1.5 w/w% SDS in which case 

the NPs exhibited a size of ~ 342 nm, despite the fact that the apparent hydrodynamic 

size of the NPs after centrifugation tended to increase slightly, as seen in Table 3.7. In 

addition, the polydispersity of the GF-NPs was unchanged remaining below 0.2, with 

the exception of the GF-NPs prepared using 10 w/w% SDS after centrifugation to 

remove the excess SDS. Tirop (2012) confirmed that the particle size of the GF-NPs 

stabilised by between 0.5 - 2 w/w% of SDS after milling for 6 hours remained the nano-

size range after 1 year storage. Furthermore, the zeta potential of GF-NPs after milling 6 

hours increased from -23.9 to -34.8 mV upon increasing SDS concentration from 0.25 - 

10 w/w%. However, the zeta potential of GF-NPs stabilised by between 0.5 - 1.5 w/w% 

SDS after removing the excess SDS by centrifugation exhibited no significant change 

from the zeta potential of the GF-NPs before centrifugation. In addition, the zeta 
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potential of GF-NPs stabilised by 2 and 10 w/w% SDS changed from -30.0 to -27.7 mV 

and -34.8 to -27.1 mV, respectively. It is possible that the concentration of SDS at 2 and 

10 w/w% was more than enough to coat on the GF-NPs while 0.25 w/w% of SDS was 

insufficient to produce GF-NPs. Furthermore, electrostatically-stabilised particles of 

zeta potential of +/- 30 mV are normally regarded as physically stability, while a value 

of  +/- 20 mV is usually at 20 mV considered adequate for stabilisation (Jacobs et al., 

2002; Müller et al., 2002). As a consequence, the GF-NPs stabilised by 1.5% w/w of 

SDS were considered physically stable enough for use as a novel delivery system. 

 

Table 3.7 The apparent hydrodynamic size, polydispersity and zeta potential of griseofulvin 

nanoparticles prepared with varying concentrations of sodium dodecyl sulphate after 6 hours 

milling and after centrifugation to remove any excess sodium dodecyl sulphate at 25.0 ± 0.1 °C. 

Sample 
Particle size 

(mean ± SD, n = 9) 

Polydispersity 

(mean ± SD, n = 9) 

Zeta potential 

(mean ± SD, n = 9) 

After milling 6 hours 

0.25 w/w% SDS 320.3 ± 8.3 0.122 ± 0.040 -23.9 ± 0.7 

0.5 w/w% SDS 296.8 ± 6.8 0.081 ± 0.027 -27.2 ± 0.8 

1 w/w% SDS 275.7 ± 3.7 0.085 ± 0.029 -28.0 ± 0.7 

1.5 w/w% SDS 270.3 ± 3.8 0.142 ± 0.023 -29.2 ± 0.4 

2 w/w% SDS 301.0 ± 4.1 0.055 ± 0.017 -30.0 ± 0.8 

10 w/w% SDS 422.2 ± 9.0 0.165 ± 0.030 -34.8 ± 0.5 

After centrifugation 

0.25 w/w% SDS 361.4 ± 13.3 0.169 ± 0.040 -23.5 ± 0.9 

0.5 w/w% SDS 359.2 ± 4.6 0.151 ± 0.026 -26.7 ± 0.8 

1 w/w% SDS 353.4 ± 7.0 0.162 ± 0.027 -27.5 ± 0.6 

1.5 w/w% SDS 342.3 ± 6.8 0.079 ± 0.023 -28.5 ± 0.7 

2 w/w% SDS 352.2 ± 8.7 0.125 ± 0.028 -27.7 ± 0.4 

10 w/w% SDS 476.3 ± 46.9 0.281 ± 0.128 -27.1 ± 0.3 
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3.3.3 Solubility of GF nanoparticles 

In order to determine the most suitable SDS concentration for GF-NP production, the 

solubility of griseofulvin in the supernatant obtained after centrifuging to remove the 

excess SDS was compared to the solubility of powdered GF in water. The solubility of 

GF in water was determined by adding powdered GF into water. It can be seen that the 

solubility of powdered GF reached its equilibrium value of 0.006 w/v% by 6 h (Figure 

3.15). The aqueous solubility of GF in form of the GF-NPs was studied by measuring 

the solubility of GF in the supernatant after centrifugation by mixing 0.24 mL of the 

GF-NPs stabilised with various concentration of SDS with 0.76 mL of H2O.  

The solubility of GF in the supernatant after centrifugation of the GF-NP stabilised by 

0.25 - 2 w/w% of SDS with water for 6 hours was similar to the solubility of powdered 

GF in water. This result suggests that most of the GF used to prepare the nanoparticles 

stabilised by 0.25-2 w/w% of SDS was in the form of NPs. In addition, these results 

suggest that there is no excess of SDS detected in the supernatant after removing by 

centrifugation because the solubility of GF in supernatant was similar to the solubility 

of GF in a form of powder in water, as shown in Figure 3.15.  

This scenario did not happen with the GF-NPs stabilised by 10 w/w% of SDS as the 

solubility of GF in supernatant after mixing GF-NPs stabilised by 10 w/w% with water 

for 6 hours was more three times than the solubility of GF in a form of powder in water. 

It suggests that there were some free molecules of SDS left in a supernatant causing the 

formation of SDS micelles, leading to an increase in GF solubility. However, as can be 

seen in Figure 3.15, the solubility of GF in supernatant after centrifugation by mixing 

the GF-NPs stabilised by 0.5-1.5 w/w% with water did not significantly change from 6 

to 96 h (p > 0.05) while in contrast, the solubility of GF in supernatant after 

centrifugation by mixing the GF-NPs stabilised by 0.25, 2 and 10 w/w% with water 

increased over the 96 h time period tested. Furthermore, it was clear that the stability of 

the GF-NPs stabilised by 0.25, 2 and 10 w/w% was not as high as the GF-NPs stabilised 

by 0.5-1.5 w/w%, which may be a consequence of the GF-NPs being prepared with too 

little or too much stabiliser. Furthermore, Ostwald ripening is known to occur in 

suspensions, including nanosuspensions, where the disperse phase has some degree of 

solubility in the continuous phase and is polydispersity systems, where the smaller 

particles dissolve and re-crystallize on the larger particles (Verma et al., 2011). Ostwald 
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ripening occur over time and frequently at increased temperature (Tirop, 2012). In the 

case of the GF-NPs stabilised with the low concentrations of SDS, it can be seen that 

the solubility of GF in supernatant after centrifuging increased from 6 h to 96 h 

compared to the solubility of powdered GF in water. Consequently, this increased 

solubility of GF may possibly be due to the presence of insufficient stabiliser leading to 

Ostwald ripening. Combining this information, with the physical stability of the GF-

NPs stabilised with various concentrations of SDS shown in Table 3.7, it appears that 

the most suitable concentration of SDS for preparation of the GF-NPs was 1.5 w/w%,  

so all subsequent GF-NPs were prepared using 1.5 w/w% SDS. 
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Figure 3.15 Aqueous solubility of griseofulvin in the form of powder and in supernatant after 

centrifugation of nanoparticles stabilised by 0.25 – 10 w/w% of SDS mixed with water over 

time  at 25.0 ± 0.1 °C (mean ± SD, n = 9). 
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3.4 Chapter summary 

Knowledge of the solubility of GF in supernatant after separation of the diluted-1.5 wt% 

SDS stabilised GF-NPs is a key to understanding the behaviour of the NSNEs and the 

NSMEs. For example, if GF solubility in the supernatant was seen to increase by 

mixing the 1.5 wt% SDS-stabilised GF-NPs after their mixing with the nanoemulsions 

or microemulsions, it might be concluded that the increased GF solubility was due to a 

presence of either the nanoemulsion or microemulsion. 

Overall, it can be concluded that the solubility of hydrophobic drug, TP, can be 

increased by its incorporation into either a nanoemulsion or microemulsion, depending 

upon the molecular volume and structure of the incorporated oil. The nanoemulsions 

selected for further study were prepared from 24 w/w% of Brij 97 containing either 3 or 

5 w/w% of TON. The microemulsions selected for further study contained 20 w/w% of 

SDS and either 14 w/w% of EB or 8 w/w% of EC. Furthermore, the optimum amount of 

SDS stabiliser to formulate the GF-NPs was determined to be 1.5 w/w%. All 

formulations were prepared freshly prior to their mixing in a NSNE and a NSME. It was 

found the possible to prepare the nanoemulsions and microemulsions using 43.25 v/v% 

D2O/H2O as solvent without significantly affecting the physical properties of the 

nanoemulsions and the microemulsions as indeed it was possible to replace the water 

the GF-NPs were prepared in with the contrast match solvent without any detrimental 

properties on the NPs.  
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Chapter 4 Preparation of 

nanosusponanoemulsions 

4.1 Introduction 

In this chapter, the preparation of novel nanosusponanoemulsions (NSNEs) is explored. 

While, in theory a NSNE can be readily prepared by mixing of a nanoemulsion and a 

nanosuspension, to our knowledge no worked has reported doing this. The main 

objective of this chapter, therefore, is to determine the possibility of combining a 

nanoemulsion and a nanosuspension into a NSNE. Here the nanoemulsions studied were 

the TP-containing B24T3/10-TP and B24T5/10-TP while the nanoparticles used were 

composed of GF and stabilised by SDS. In order to understand the behaviour of 

griseofulvin nanoparticles (GF-NPs) in the presence of a saturation amount of TP in the 

nanoemulsions determine the likely stability/instability of the NSNEs, the physico-

chemical properties of NSNE over time were determined using a range of advanced 

analytical techniques including photon correlation spectroscopy (PCS) and small angle 

neutron scattering (SANS). It was also considered necessary to understand the likely 

solubilisation of the GF-NPs in the TP-saturated nanoemulsions to see if this would de-

stabilise the systems of interest. 

 

4.2 Solubility of griseofulvin  

4.2.1 Solubility of griseofulvin in micelles 

The solubility of GF in Brij 97 micelles was determined over time at 25 
o
C to establish 

the solubility of GF in the surfactant solutions (Figure 4.1). The equilibrium solubility 

of GF in micelles was reached within 6 h and remained constant for at least up to 96 h 

(longer time courses were not tested). As there was no significant difference (p > 0.05) 

in the solubility of GF in the Brij 97 micelles over the 6 - 96 hours recorded the 

solubility data was averaged. Figure 4.2 shows the average solubility of GF in Brij 97 

micelles. As can be seen the variation in GF solubility was linear over a wide range of 
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Brij 97 concentrations, with the solubility of GF in the Brij 97 micelles ranging from 

0.01 to 0.04 w/v% as surfactant concentration increases from 0.2 to 2.4 w/w%. In all 

cases the concentration of Brij 97 is greater than its critical micelle concentration (cmc) 

thereby explaining the linear increase in GF solubility with surfactant concentration 

(Carlota et al., 2005).  
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Figure 4.1 Griseofulvin solubilisation in varying concentrations of Brij 97 micelles over time 

at  25.0 ± 0.1 °C (mean  ± SD, n = 9). 
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Figure 4.2 The average solubility of griseofulvin of all time points (i.e. 6, 24, 48, 72 and 96 h) 

in Brij 97 micelles as a function of surfactant concentration at 25.0 ± 0.1 °C (mean  ± SD, n = 

5). 
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4.2.2 Effect of griseofulvin on Brij 97-stabilised nanoemulsions incorporating 

testosterone propionate 

In order to prepare a stable NSNE it is important to understand the behaviour of GF-

NPs in the presence of TP-saturated Brij 97-nanoemulsions. In this part of the  study, 

therefore, an excess of powdered GF was added to Brij 97-stabilised nanoemulsions, 

prepared in an absence and a presence of a saturation of TP. Note that the solubility of 

GF was investigated using the same concentration of nanoemulsions present in the 

NSNE, namely 0.24 ml of H2O (the volume of GF-NPs used in the preparation of 

NSNE) and 0.76 mL of the ten-fold dilution of the stock nanoemulsion (i.e. B24T3/10 

or B24T5/10). These further dilutions of B24T3/10 or B24T5/10 were denoted as 

B24T3/10/0.76 and B24T5/10/0.76. Table 4.1 shows the apparent aqueous solubility of 

powdered GF over time in diluted B24T3/10/0.76 or B24T5/10/0.76 nanoemulsions in 

both the absence and presence of a saturation amount of TP. As can be seen from Table 

4.1, the solubility of powdered GF in B24T3/10/0.76 and B24T5/10/0.76 

nanoemulsions was 0.04 and 0.05 w/v% at 6 h, regardless of the absence of TP. 

However, there was no significant effect (p > 0.05) on GF solubility of the oil content of 

the nanoemulsions at time points from 24 h to 96 h. The results showed that, with the 

exception of B24T5/10/0.76, there was no significant difference  (p > 0.05) in the 

solubility of GF in the diluted nanoemulsions namely B24T3/10/0.76, B24T3/10-

TP/0.76 and B24T5/10-TP/0.76 over the 6 h to 96 h tested. In the case of 

B24T5/10/0.76, there was a significant difference in GF solubility which decreased 

from 6 h to 24 h but thereafter remained constant up to 96 h (Table 4.1). It is worth 

commenting however that the decrease in GF solubility in the B24T5/10/0.76 

nanoemulsions, although significant was not large. Comparing the solubility of 

powdered GF in the Brij 97 micelles (Figure 4.1) and nanoemulsions (Table 4.1) at the 

same concentration of Brij 97 (namely 1.8 w/v%), it is clear that GF was more soluble 

in the TON-containing nanoemulsions. In addition, Table 4.1 shows that the apparent 

aqueous solubility of GF in the diluted nanoemulsions was not affected by the presence 

of TP, at all time points measured (i.e. up to 96 h) (p > 0.05).   
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Table 4.1 Solubility of powdered griseofulvin in diluted Brij 97-stabilised nanoemulsions with 

and without a saturation amount of testosterone propionate at 25.0 ± 0.1 °C 

Sample* 
 

Concentration (w/v%) of griseofulvin  

(mean ± SD, n = 9)  

6 h 24 h 48 h 72 h 96 h 

B24T3/10/0.76 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 

B24T3/10-TP/0.76 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 

B24T5/10/0.76 0.05 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 

B24T5/10-TP/0.76 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.01 0.04 ± 0.00 0.04 ± 0.00 

 

 

*The solubility of griseofulvin was determined in supernatant after centrifugation of the NSNE, 

composed of 0.76 mL of nanoemulsion (namely B24T3/10, B24T3/10-TP, B24T5/10 and 

B24T5/10-TP) and 0.24 mL of H2O, with and without a saturation amount of powdered 

griseofulvin (GF).   

 

Table 4.2 shows the apparent aqueous solubility of TP in diluted nanoemulsions in an 

absence and a presence of a saturation amount of GF. Note that the compositions of the 

diluted nanoemulsions in Table 4.2 are the same as those in Table 4.1. In terms of the 

effect of a saturation amount of GF on the solubility of TP in the diluted nanoemulsions, 

it is clear that there is a difference in the results depending upon the amount of TON 

present. When the diluted nanoemulsions contain a low amount of TON, there was no 

significant difference in the level of TP solubility measured in the presence or absence 

of GF (p > 0.05). In contrast, in the high oil content nanoemulsions, there was a higher 

level of apparent TP solubility in the absence of GF than in its presence, at all time 

points measured (i.e. up to 96 h) with the exception of the first time point at 6 hours 

where the solubility was high in both the GF free and GF containing nanoemulsions.  

 

 

 

 

 



Preparation of nanosusponanoemulsions 

141 

Table 4.2 Solubility of testosterone propionate in nanoemulsions, with and without a saturation 

amount of griseofulvin at 25.0 ± 0.1 
o
C. 

Sample* 

 
Concentration (w/v%) of testosterone propionate  

(mean ± SD, n = 9) 

6 h 24 h 48 h 72 h 96 h 

B24T3/10-TP/0.76 

without GF  

0.07 ± 0.00 0.08 ± 0.01 0.08 ± 0.00 0.06 ± 0.01 0.07 ± 0.01 

B24T3/10-TP/0.76 

with GF  

0.08 ± 0.00 0.07 ± 0.00 0.08 ± 0.00 0.08 ± 0.00 0.08 ± 0.00 

B24T5/10-TP/0.76 

without GF  

0.09 ± 0.01 0.09 ± 0.01 0.09 ± 0.01 0.08 ± 0.01 0.09 ± 0.01 

B24T5/10-TP/0.76 

with GF  

0.09 ± 0.00 0.08 ± 0.00 0.08 ± 0.00 0.08 ± 0.00 0.07 ± 0.00 

 
 

*The solubility of testosterone propionate (TP) was determined in the supernatant of the NSNE, 

composed of 0.76 mL of nanoemulsion (i.e. B24T3/10-TP or B24T5/10-TP) and 0.24 mL of 

H2O, with and without a saturation amount of griseofulvin (GF).  

 

Based on these results, it is highly likely that GF and TP are solubilised in the Brij 97-

stabilised nanoemulsions containing a low amount of oil in different locations so that 

neither impinges on the solubility of the other. In comparison, the solubility of TP in 

nanoemulsions containing high amounts of TON in the presence of GF was lower than 

in the nanoemulsions without GF, suggesting that the presence of a saturation of TP 

might displace GF molecules in the surfactant aggregates.  

 

4.3 Solubility of griseofulvin and testosterone propionate in the nanoemulsions 

contained in the nanosusponanoemulsions 

It was possible to use bench top centrifugation to separate the Brij 97-stabilised 

nanoemulsions from the GF-NPs due to the differences in particle size and density of 

the two preparations. The supernatant contains the nanoemulsion while the lower layer 

contains the NPs. Note that the solubility of GF and TP was investigated in the 

nanoemulsion supernatant of the centrifuged  NSNEs to remove the GF-NPs. (The 
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NSNE were composed of 0.24 ml of GF-NPs and 0.76 mL of a ten-fold diluted stock 

nanoemulsion (i.e. B24T3/10 or B24T5/10, with and without a saturation of TP). 

Figure 4.3 shows the solubility of GF in the nanoemulsion supernatant, composed of 

either B24T3/10 or B24T5/10 in the presence or absence of TP, after mixing with GF-

NPs for differing lengths of time. The nanoemulsions were separated from the GF-NPs 

using bench top centrifugation. The solubility of GF in the supernatant composed of 

B24T3/10 and B24T5/10 after separation of the GF-NPs was seen to increase to 0.022 

w/v% within 30 minutes of mixing with the GF-NPs, where after it remained constant 

over the whole of the 96 h of the test (p > 0.05). Note that the solubility of GF in the 

nanoemulsions under these experimental conditions is about half that recorded for 

powdered GF in the nanoemulsions (Table 4.1).   

In contrast with the data shown in Table 4.1, as can be seen from Figure 4.3, there was 

no significant effect (p > 0.05) on GF solubility of the oil content of the nanoemulsions, 

as the solubility of GF in the nanoemulsion supernatants, compare the results obtained 

for B24T3/10 and B24T5/10. However, it is consistent with the data in Table 4.1, there 

was no significant effect (p > 0.05) on GF solubilisation of the presence of a saturation 

amount of TP, compared B24T3/10 and B24T3/10-TP, and B24T5/10 and B24T5/10-

TP.  

Nanoemulsion in the NSNEs system
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Figure 4.3 Solubility of griseofulvin in nanoemulsion supernatant in the form of NSNEs after 

separation from the GF-NPs for differing lengths of time at 25.0 ± 0.1 °C (mean ± SD, n = 9).   
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Figure 4.4 shows the solubility of TP in the supernatant of the B24T3/10 and B24T5/10 

containing NSNEs after being mixing for differing lengths of time up to 4 days. The 

solubility of TP in the diluted nanoemulsions namely B24T3/10/0.76 and 

B24T5/10/0.76 before mixing with the GF-NPs was 0.08 and 0.09 w/v%, respectively 

(Table 4.2). As can be seen in Figure 4.4, the solubility of TP in supernatant of the 

B24T3/10 containing NSNEs remained constant throughout the whole 96 h of the test. 

In contrast, however, the solubility of TP in the supernatant of the B24T5/10 containing 

NSNEs almost halved over time of mixing with the GF-NPs, going from 0.09 to 0.05 

w/v% over the 96 h of the test. This result may be a consequence of the instability of the 

parent B24T5 nanoemulsions and suggests that the presence of the GF-NPs may have 

increased the rate of nanoemulsion destabilisation. 

 

Nanoemulsion in the NSNEs system
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Figure 4.4 Solubility of testosterone propionate in nanoemulsion supernatant in the form of 

NSNEs after separation from the GF-NPs for differing lengths of time at 25.0 ± 0.1 °C (mean ± 

SD, n = 9).   

 

In summary, the solubility of GF in the nanoemulsion supernatant of the centrifuged 

NSNE did not alter as a function of oil content or the presence of a saturation amount of 

TP. In contrast, while the solubility of TP in the supernatant of NSNE containing low 

amount of TON remained the same as in the starting diluted nanoemulsion, namely 

B24T3/10-TP/0.76,  the solubility of TP in the supernatant of NSNE containing the 
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higher amount of TON, decreased over the 96 h contact time to about half the value of 

the original B24T5/10-TP/0.76 nanoemulsions. As a consequence, in nanoemulsions at 

low TON concentrations, it is highly likely that GF and TP are solubilised in different 

locations in the nanoemulsions, while the addition of more TON seems to perturb the 

solubilisation of TP and GF in the system enhancing its destabilisation.  

 

4.4 Size characterization of the nanoemulsions and griseofulvin nanoparticles in 

the nanosusponanoemulsions 

Visual observation of the NSNEs showed the clear separation of the nanoemulsions 

from the nanosuspension when left to stand undisturbed for periods of greater than an 

hour. However, the system was readily reformed after gently shaking the container in 

which the formulation was contained. It is possible that the separation of the NSNE 

preparation into its constituent parts is the result of the difference in the size distribution 

of the nanoemulsions and nanoparticles coupled with the difference in the density of the 

nanoemulsion and nanoparticles. This is in contrast to the physical instability reported 

for suspoemulsions (i.e. systems comprising of an emulsion and suspension) where 

small droplets were observed on the top of the system (Santos et al., 2013). As a result 

of the knowledge of the component formulations, the top layer of the NSNEs was 

deemed to be the nanoemulsion while the bottom layer was considered to be the GF-

NPs. Investigating this phase separation using centrifugation to speed up the process 

revealed that there was no separation of oil on the top of nanoemulsion.  

Figure 4.5 shows the particle size stability (measured as apparent hydrodynamic size) 

over time of GF-NPs in a form of a NSNE, along with, for comparative purposes, the 

corresponding particle size of the GF-NPs before mixing with the nanoemulsions. The 

results in Figure 4.5 show a large increase in the particle size of GF-NPs when in the 

form of a NSNE, regardless of the composition of the nanoemulsion with which they 

are mixed. Note that preliminary experiments indicated that it was not possible to 

prepare GF-NPs using Brij 97 as stabiliser. 
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NSNEs system
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Figure 4.5 Particle size (as assessed by PCS) over time of griseofulvin nanoparticles (GF-NPs) 

when in a form of the NSNEs  at 25.0 ± 0.1 °C (mean ± SD, n = 9).   

  

These results suggest an interaction between Brij 97 and SDS resulting in either the 

desorption or thinning of the SDS layer of the electrostatically stabilised, GF 

nanoparticles and/or the incorporation of SDS molecules into the Brij 97 stabilised 

nanoemulsion droplets. Ruiz et al. (2000) reported that both chain-chain and head 

group-head group interactions may occur in a mixed micelle system. In this context it is 

interesting to note that in the case of the use of mixtures of ionic and nonionic 

surfactants to stabilise nanoparticles, nonionic surfactants which do not adsorb on their 

own may, in fact, co-adsorb in the presence of the other ionic surfactant. For example, it 

has been reported that the anionic surfactant, sodium p-octylbenzene sulfonate readily 

adsorbs on alumina, whilst the nonionic  octaoxyethylene dedecyl ether does not. 

However, mixing the nonionic surfactant with the anionic sulfonate surfactant induced 

significant co-adsorption of the nonionic surfactant onto the alumina surface. This 

synergistic adsorption is attributed to the hydrophobic interaction between the anionic 

and the nonionic surfactants at the alumina-water interface as well as a reduction in the 

electrostatic repulsion between the anionic head groups mediated by the presence of 

nonionic surfactant (Somasundaran et al., 1992). In addition, the length of the 

hydrocarbon chain of the surfactant has been found to play an important role in the 

enhanced adsorption of mixtures of the anionic surfactant, SDS and the nonionic 

surfactant, polyoxyethylene alkyl ethers namely octaoxyethylene dedecyl ether on 

kaolin (Xu et al., 1991; Zhang et al., 2006). For example, the adsorption isotherm of 
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SDS was found to remain unchanged if the hydrocarbon chain length of the 

polyoxyethylene alkyl ethers was equal to or longer than that of the anionic surfactant, 

namely C12 (Zhang et al., 2006). Furthermore, the stronger chain-chain interactions 

observed between the C18:1 chain of Brij 97 and the C12 chain in SDS compared to the 

C12 chains of Brij 35 (C12EO23) and SDS, was attributed by Glenn et al. (2005) to the 

presence of dissimilar alkyl chain lengths in the former case. In addition to these 

hydrophobic chain interactions, there may be some sharing of some water molecules by 

different head groups and, as a consequence some of the water molecules may act as a 

‘bridge’ between the different types of surfactant molecules (Glenn et al., 2005).  

The NSNEs were expected to contain two populations of particles, namely 

nanoemulsion particles in the size range of ~ 10 - 25 nm, and GF-NPs of particle size ~ 

350 nm. However, while it is possible to measure particle size in situ using PCS, it is 

difficult to confirm whether the particle size of the constituent particles, and in 

particular the nanoemulsions because of their very small particle size and volume, have 

changed. As a consequence, centrifugation was used to separate the nanoemulsion from 

GF-NPs and the particle size of the nanoemulsions and the re-suspended GF-NPs 

individually determined using PCS (Figures 4.6 and 4.7). Figure 4.6 shows the particle 

size of nanoemulsions (namely B24T3/10, B24T3/10-TP, B24T5/10 and B24T5/10-TP) 

before and after mixing with the GF-NPs for up to 96 h. The particle size of the 

nanoemulsions, namely B24T3/10, B24T3/10-TP, B24T5/10 and B24T5/10-TP, prior to  

mixing with the GF-NPs, were 11.4, 11.9, 13.8 and 22.5 nm, respectively. The particle 

size of 3 of the nanoemulsion types (namely B24T3/10, B24T3/10-TP, B24T5/10) 

indicated no change after mixing with GF-NPs for up to 96 h (longer time courses were 

not tested). Although in contrast, the particle size of the B24T5/10-TP nanoemulsions 

decreased significantly from 22.5 prior to mixing to 13.2 nm after minutes mixing with 

the GF-NPs, and thereafter fluctuated ~ 12 nm over the remaining 96 h. Infact, the only 

instability observed in nanoemulsions in contact with NSNE was observed in the 

nanoemulsions containing a high amount of TON and a saturation amount of TP. 
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nanoemulsion after separation from GF-NPs by centrifugation
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Figure 4.6 Particle size over time of the nanoemulsion after separation from the griseofulvin 

nanoparticles (GF-NPs) by centrifugation at 25.0 ± 0.1 °C (mean ± SD, n = 9).    

 

Figure 4.7 shows particle size of the GF-NPs before and after mixing with 

nanoemulsions, namely B24T3/10, B24T3/10-TP, B24T5/10 and B24T5/10-TP, for up 

to 96 h. The particle size of GF-NPs before mixing with the various nanoemulsions was 

342.3 nm. However, after mixing with the various nanoemulsions, their particle size 

increased to more than 2 microns.  

GF-NPs after separation from nanoemulsion by centrifugation

NSB24T3/10 NSB24T3/10-TP NSB24T5/10 NSB24T5/10-TP

A
p

p
a

re
n
t 
h
yd

ro
d

yn
a

m
ic

 s
iz

e
 (

n
m

)

0

1000

2000

3000

4000

5000

GF-NPs before mixing 

to nanoemulsion 
< 5 minutes
4 h 
8 h 
12 h 
24 h 
48 h 
72 h 
96 h 

Figure 4.7 The particle size variation of griseofulvin nanoparticles (GF-NPs) after separation 

from the nanoemulsions at 25.0 ± 0.1 °C (mean ± SD, n = 9).   
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4.5 Determination of the hydration value of nanoemulsions 

The intrinsic viscosity of a colloidal solution is a function of the size and shape of the 

particles present in the solution as well as any solute-solvent interactions present. 

Indeed the viscosity of a colloidal solution is very sensitive to any changes in the nature 

of the colloidal aggregates present. A value of the intrinsic viscosity of 2.5 mL/g, which 

was predicted by Einstein’s equation, means the colloidal particles are spherical and un-

solvated. Consequently, the intrinsic viscosity of a surfactant solution increases with an 

increase in surfactant concentration, due to either a change in the shape of the 

aggregates and/or an increase in the number of surfactant aggregates. For example, if 

there is an increase in the intrinsic viscosity of a colloidal solution and it was not due to 

a change in the shape of the aggregate, then the increase of intrinsic viscosity in likely 

to be a consequence of an increase in the number of aggregates present. Indeed 

Nagarajan et al. (1982) demonstrated that it is possible to understand a sphere-to-rod 

transition in micellar solutions by taking advantage of the use of viscometric techniques. 

The variation in the relative viscosity (ηrel) expressed as In ηrel/c, and specific viscosity 

(ηsp) expressed as ηsp /c, of Brij 97 micelles and nanoemulsions as a function of total 

surfactant concentration is shown in Figures 4.8 and 4.9, respectively.  
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Figure 4.8 Variation in the intrinsic viscosity of Brij 97 micellar solutions as a function of 

concentration at 25.0 ± 0.1 °C (mean ± SD, n = 9).    
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Figure 4.9 Variation in the intrinsic viscosity of Brij 97 nanoemulsions as a function of oil 

concentration at 25.0 ± 0.1 °C (●:B24T3/10, ▼:B24T5/10) (mean ± SD, n = 9).   

 

The variation in the relative viscosity (ηrel) expressed as In ηrel/c, and specific viscosity 

(ηsp) expressed as ηsp /c, of B24T3/10 and B24T5/10 nanoemulsions in an absence and 

presence of a saturation amount of TP are presented in Figures 4.10 and 4.11, 

respectively. As can be seen that the variation results in both ηrel and ηsp of micellar 

solutions and nanoemulsions, the values of both ηrel and ηsp increased linearly with 

increasing of surfactant concentration, corrected by the cmc and the presence of a 

saturation amount of TP. 

 



Preparation of nanosusponanoemulsions 

150 

Concentration (g/ml)

0.000 0.005 0.010 0.015 0.020 0.025 0.030

s
p
/C

  
&

 ln
 

r/
C

 (
m

l/g
)

0.0

5.0

5.5

6.0

6.5

7.0

Huggins 

Kramer 

 

Figure 4.10 Variation of the intrinsic viscosity of Brij 97 nanoemulsions containing 0.3 w/w% 

of TON in an absence and presence of a saturation of TP at 25.0 ± 0.1 °C (●:B24T3/10, 

▼:B24T3/10-TP) (mean ± SD, n = 9).   
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Figure 4.11 Variation of the intrinsic viscosity of Brij 97 nanoemulsions containing 0.5 w/w% 

of TON in an absence and presence of a saturation of TP at 25.0 ± 0.1 °C (●:B24T5/10, 

▼:B24T5/10-TP) (mean ± SD, n = 9).   

 

The intrinsic viscosity of Brij 97 micelles and nanoemulsions containing different 

amounts of TON, calculated from the average of the intercept of the Huggins and 
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Kraemers plots, is shown in Table 4.3. The effect of TON concentration and a presence 

of a saturation of TP on the intrinsic viscosity are shown in the extrapolation of the 

Huggins and Kraemers plots to zero surfactant concentration. As can be seen, the 

intrinsic viscosity increased with increasing oil content, suggesting that the presence of 

an increased amount of oil leads to an increased interaction with the surfactant 

molecules. Furthermore, the increased intrinsic viscosity obtained for the B24T3/10-TP 

and B24T5/10-TP nanoemulsions compared to the corresponding nanoemulsions, 

namely B24T3/10 and B24T5/10, suggests that either the shape of the aggregates have 

changed and/or an increase in the number of surfactant aggregates. 

 

Table 4.3 The intrinsic viscosity of the Brij 97 micelles and Brij 97-stabilised nanoemulsions 

containing different amounts of TON with and without a saturated amount of TP at 25.0 ± 0.1 

ºC.  

Sample 
Intrinsic viscosity (ml/g) 

(mean ± SD, n = 9) 

Brij 97 micelle 4.74 ± 0.29 

B24T3/10 5.52 ± 0.02 

B24T3/10-TP 5.64 ± 0.02 

B24T5/10 5.63 ± 0.03 

B24T5/10-TP 5.75 ± 0.02 

 

In order to support the fitting of the SANS data, the viscosity measurements were 

performed on the Brij 97-stabilised systems in order to determine the hydration and a 

percent solvation of the surfactant shell. The partial specific volume of the micelles and 

nanoemulsions was calculated by equation: 

               
 

where          is the density of the solution and solvent at the concentration, C, and ῦ 

is the partial specific volume of the micelles and nanoemulsions. The density of the 

micelles, nanoemulsions and solvent are given in Appendix B.  
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The hydration value (W1), expressed as the g of solvent/g of solute was calculated using 

the intrinsic viscosity (η) and the partial specific volume as shown in the following 

equation: 

            
   

where ν is the shape factor and   
  is the partial specific volume of the solvent. The 

shape factor can be determined from the conversion of the axial ratio value which was 

calculated by applying the Harding’s ellipsoidal table (Table 4.4)  

 

Table 4.4 Conversion of the shape factor (ν) to the axial ratio (a/b) values for oblate ellipsoid 

of Revolution taken (Harding et al., 1995).  

a/b 
shape factor 

(ν) 

1 2.5000 

1.1 2.5067 

1.2 2.5244 

1.3 2.5503 

1.4 2.5826 

1.5 2.6200 

1.6 2.6613 

1.7 2.7060 

1.8 2.7533 

1.9 2.8029 

2 2.8544 
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Figure 4.12 The variation in shape factor (ν) as a function of the oblate ellipsoidal axial ratio 

fitted to a quadratic polynomial equation. 

 

The percent solvent in the surfactant shell was used for fitting the SANS data and was 

calculated using the following equation: 

                   
                             

                                                                
      

where mol vol is the molecular volume, which has units of Å
3
. Note that the number of 

water molecules is calculated by the following equation: 

                                                
 

  
     

  

 
 

            
  

  

where MW is the molecular weight (g·mol
-1

).
 
 

It was also possible to determine the hydration of the aggregate from fitting the SANS 

using the droplet axial ratio obtained. In the SANS study, the shape determined for all 

the nanoemulsions droplets was that of oblate ellipsoids (discussed in the SANS 

section). During the initial fitting of the SANS data, it was established that the axial 

ratio of a whole drops of  B24T3/10, B24T3/10-TP, B24T5/10 and B24T5/10-TP was 

approximately at 0.7. Table 4.5 gives the values for hydration and shell solvation for the 

various nanoemulsions calculated using the equations above is shown in Table 4.5. The 
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hydration value of the Brij 97 nanoemulsions obtained from the SANS measurements 

was in the range 1.2-1.3 mL/g, while the % solvent in the shell was 55-57 %. It was 

clear from Table 4.5 that the values for the hydration and percent of solvent in shell for 

the nanoemulsions containing the higher amount of TON was slightly greater than the 

corresponding values obtained for nanoemulsions containing the lower amount of TON, 

suggesting that the hydration value of the nanoemulsion increased with oil content. In 

addition, the values for hydration and percent of solvent in shell for nanoemulsions in 

the presence of the a saturation amount of TP was slightly higher than the values 

obtained for nanoemulsions in the absence of TP.  

 

Table 4.5 Summary of the intrinsic viscosity and hydration value of the nanoemulsions 

containing different amounts of TON in the presence and absence at a saturation amount of 

testosterone propionate at 25.0 ± 0.1 ºC calculated by using the shape of the nanoemulsion 

obtained from SANS measurements. 

Sample 
intrinsic 

viscosity  

partial 

specific        

volume 

hydration  

no molecule 

of water/Brij 

97 

%solvent 

in shell 

B24T3/10 5.52 0.94 1.17 46.05 54.71 

B24T3/10-TP 5.64 0.92 1.24 48.98 56.24 

B24T5/10 5.63 0.92 1.22 48.16 55.82 

B24T5/10-TP 5.75 0.92 1.27 50.05 56.77 

 

4.6 Determination of aqueous solvent contrast match point for griseofulvin 

nanoparticles and nanoemulsions 

The theoretical aqueous solvent contrast match point for GF was calculated from the 

scattering length density of GF to be 43.25:56.75 v/v% D2O:H2O. In order to confirm 

this, GF-NPs stabilised by 1.5 w/w% of SDS, were re-suspended in an aqueous solvent 

containing varying amounts D2O ranging from 30 to 55 v/v%. The neutron scattering 

intensities of these samples were measured as a function of Q (Figure 4.13). The intensity 

of these samples at a Q value of 0 was then plotted as a function of % v/v D2O in solvent 

(Figure 4.14). As can be seen the lowest scattering intensity was measured at a 
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concentration of 43.25 v/v% D2O, confirming the theoretical calculation of the contrast 

match point of the GF-NPs.  
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Figure 4.13 Variation in neutron scattering intensity as a function of Q for GF-NPs stabilised 

by 1.5 w/w% of SDS re-suspended in aqueous solvent of differing D2O:H2O composition. 

Measurements were performed on SANS2D at 25.0 ± 0.1 ºC. 
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Figure 4.14 Variation in neutron scattering intensity at Q = 0 for GF-NPs stabilised by 1.5 

w/w% of SDS re-suspended in aqueous solvent of differing D2O:H2O composition. 

Measurements were performed on SANS2D at 25.0 ± 0.1 ºC. 
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In order to examine the GF-NPs in situ in the NSNEs, it is necessary to individually 

determine the contrast match solvent for Brij 97-stabilised nanoemulsions as well as the 

SDS-stabilised microemulsions. However, performing a SANS experiment takes several 

days and costs thousands of pounds per instrument day. Fortunately the theoretically 

calculated scattering length densities of the B24T3/10 and B24T5/10 nanoemulsions, 

S20B14/5 and S20C08/5 microemulsions were 0.29, 0.29, 0.30 and 0.24 × 10
-6

 Å
-2

 

respectively, which are very close to each other and as a consequence, the B24T3/10 

nanoemulsion was selected as an appropriate system with which to determine a suitable 

contrast match solvent to allow the study of GF-NPs in situ in the NSNEs. Therefore 

B24T3/10 nanoemulsions were prepared in a range of aqueous solvents of varying 

amount of D2O in H2O ranging from 0 and 25 v/v% and the variation in neutron 

scattering intensity measured as a function of Q (Figure 4.15). The B24T3/10 

nanoemulsions re-suspended in 12 v/v% of D2O in H2O exhibited the lowest scattering 

intensity (Figure 4.16), suggesting that the nanoemulsions or microemulsions prepared 

in 12 v/v% of D2O in H2O would be invisible in a presence of GF-NPs prepared in the 

same solvent. 
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Figure 4.15 Variation in neutron scattering intensity as a function of Q for B24T3/10 

nanoemulsion re-suspended in aqueous solvent of differing D2O:H2O composition. 

Measurements were performed on SANS2D at 25.0 ± 0.1 ºC. 
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Figure 4.16 Variation in neutron scattering intensity at Q = 0 for B24T3/10 nanoemulsion in 

aqueous solvent of differing D2O:H2O composition. Measurements were performed on 

SANS2D at 25.0 ± 0.1 ºC. 

 

In summary, in order to investigate the effect in situ in the NSNEs of GF-NPs on the 

nanoemulsions and microemulsions, the samples were prepared using a solvent of 43.25 

v/v% of D2O/H2O, while in order to study the effect in situ in the NSNEs of the 

nanoemulsions and microemulsions on the GF-NPs, the samples were prepared in at 12 

v/v% of D2O/ H2O. 

 

4.7 Characterization of nanoemulsions and griseofulvin nanoparticles in 

nanosusponanoemulsions using small angle neutron scattering 

4.7.1 Small angle neutron scattering studies of Brij 97 stabilised nanoemulsions 

using contrast match experiments  

In order to find the best fit to the SANS data for the 3 contrasts, the adopted model in 

this study comprised of a core-shell ellipsoid with the core being composed only oil, a 

shell consisting of a whole surfactant molecule together with any water of hydration. 

The B24T3/10 nanoemulsion was selected over the B24T5/10 nanoemulsion for the 

SANS study to determine its size, shape and percent of solvent in shell as B24T5/10 

was not a stable sample. In micellar solutions containing Brij 97 concentrations of 12 

and 24 wt%, Wasutrasawat (2011) reported the presence of strong interparticle 
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interactions in the SANS data at a high Q value (0.06 Å
-1

). In contrast, the SANS curves 

of Brij 97 micelles at lower surfactant concentrations of between 1.2 and 4.8 w/v% of 

Brij 97 exhibited no peak indicating the absence of strong interparticle interactions. As a 

consequence, in an attempt to avoid strong interparticle intereactions, the SANS 

measurements of the nanoemulsions were made using nanoemulsions comprising of 2.4 

w/w% of Brij 97. 

Originally the percent solvent in the shell of the Brij 97 nanoemulsions was assumed to 

be 55% from viscosity measurements. However, a previous study reported that the best 

fit to the SANS data of nanoemulsions containing 2.4 w/w% of Brij 97 and between 0.2 

and 0.5 w/w% of TON were obtained using 20% percent of solvent in the shell 

(Wasutrasawat, 2011). As a consequence of these observations, the SANS datum 

obtained for the B24T3/10 nanoemulsions was fitted with varying a percent of solvent 

in shell from 20 to 55% in order to find out the most reasonable fit to the experimental 

data. Figures 4.17 and 4.18 show the SANS data from LoQ together with the best fits 

individually obtained using values of 20 and 55% for solvent in the shell for B24T3/10 

nanoemulsions prepared using 3 contrasts, namely the core contrast (d-TON, h-Brij 97 

and H2O), the shell contrast (d-TON, h-Brij 97 and D2O) and the drop contrast (h-TON, 

h-Brij 97 and D2O).  Table 4.6 gives the summary of the parameters used to obtain the 

best fits to the 3 neutron contrasts using a core-shell ellipsoid together (varying the 

percent of solvent in shell from 20-55%) with a hard sphere structure factor. It is 

reassuring that the 3 individually fitted data sets required very similar parameters. It was 

difficult to tell, however, which parameters gave the best fit by simple observation of 

the fitted data. Hence the sum of squared errors (SSE) was also used to assess the 

quality of the fits, in this study the lowest of SSE in the 3 contrasts studied, namely the 

core, shell and droplet contrasts were obtained using a value of 20 % of solvent in the 

shell.  
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Figure 4.17 SANS data together with the individuals fit obtained for 3 contrasts, (namely the core (d-

TON, h-Brij 97 and H2O) the shell (d-TON, h-Brij 97 and D2O), and the droplet (h-TON, h-Brij 

97 and D2O) of nanoemulsion containing 2.4 w/w% of Brij 97 and 0.3 w/w% of TON at 20 

v/v% of solvent in shell. Measurements performed on LoQ at 25.0 ± 0.1 ºC. 
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Figure 4.18 SANS data together with the individuals fit obtained for three contrasts, namely 

the core (d-TON, h-Brij 97 and H2O) the shell (d-TON, h-Brij 97 and D2O), and the droplet (h-

TON, h-Brij 97 and D2O), of nanoemulsion containing 2.4 w/w% of Brij 97 and 0.3 w/w% of 

TON at 55 v/v% of solvent in shell. Measurements performed on LoQ at 25.0 ± 0.1 ºC. 
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Table 4.6 Summary of the individual fits for the core, shell and droplet contrasts of 2.4 w/w% 

Brij 97 nanoemulsions containing 0.3 w/w% of TON using a core-shell ellipsoid model together 

with a hard sphere structure factor S(Q). The data was constrained using Vshell(dry)/Vcore, with 

the percentage of solvent in shell from 20-55%. 

A - Core contrast  

solvent 

in shell 

radius 

of  

core 

(Å) 

core 

axial 

ratio 

(x) 

shell 

thickness 

(Å) 

sphere 

radius 

 (Å) 

minor 

radius 

(Å) 

major 

radius 

(Å) 

axial 

ratio 

(X) 

Nagg 

no 

oil 

in 

core 

ratio 

of 

SAA:

oil  

no. 

H2O 

/SAA 

20% 31.1 0.4 23.6 55.2 34.6 54.7 0.6 273 51 0.19 10 

25% 31.0 0.4 24.4 55.5 35.3 55.5 0.6 269 50 0.19 13 

30% 30.6 0.4 25.0 55.8 35.7 55.6 0.6 258 48 0.19 16 

35% 30.3 0.4 25.9 55.3 36.5 56.1 0.7 250 47 0.19 21 

40% 29.8 0.4 26.5 55.4 36.9 56.4 0.7 237 44 0.19 25 

45% 29.6 0.4 27.6 55.3 37.9 57.2 0.7 232 43 0.19 31 

50% 28.6 0.4 28.0 56.3 37.9 56.6 0.7 208 39 0.19 38 

55% 27.6 0.4 28.6 57.0 38.2 56.3 0.7 187 35 0.19 47 

Note that the SSE of these samples increased from 200 to 300 after fitting with varying the 

percentage of solvent in shell between 20 and 55 %. Estimated uncertainly for the radius of the 

core, x and the sphere radius were ± 0.1, ± 0.1, ± 1.0, respectively. 

B - Shell contrast  

solvent 

in shell 

radius 

of  

core 

(Å) 

core 

axial 

ratio 

(x) 

shell 

thickness 

(Å) 

sphere 

radius 

 (Å) 

minor 

radius 

(Å) 

major 

radius 

(Å) 

axial 

ratio 

(X) 

Nagg 

no 

oil 

in 

core 

ratio 

of 

SAA:

oil  

no. 

H2O 

/SAA 

20% 30.6 0.4 23.7 54.5 34.5 54.5 0.6 270 49 0.18 10 

25% 30.4 0.4 24.2 54.6 34.7 54.6 0.6 258 47 0.18 13 

30% 29.9 0.3 24.7 54.6 35.0 54.6 0.6 244 44 0.18 16 

35% 29.3 0.3 25.2 54.6 35.3 54.5 0.7 229 42 0.18 21 

40% 28.7 0.3 25.8 54.6 35.7 54.5 0.7 215 39 0.18 25 

45% 28.1 0.3 26.4 54.5 36.0 54.5 0.7 200 36 0.18 31 

50% 27.2 0.4 27.1 54.4 36.5 54.4 0.7 185 34 0.18 38 

55% 26.3 0.4 27.9 54.0 37.2 54.2 0.7 169 31 0.18 47 

Note that the SSE of these samples increased from 600 to 700 after fitting with varying the 

percentage of solvent in shell between 20 and 55 %. Estimated uncertainly for the radius of the 

core, x and the sphere radius were ± 0.1, ± 0.1, ± 1.0, respectively. 
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Table 4.6 Summary of the individual fits for the core, shell and droplet contrasts of 2.4 w/w% 

Brij 97 nanoemulsions containing 0.3 w/w% of TON using a core-shell ellipsoid model together 

with a hard sphere structure factor S(Q). The data was constrained using Vshell(dry)/Vcore, with 

the percentage of solvent in shell from 20-55%. (Continued) 

C - Drop contrast  

solvent 

in shell 

radius 

of  

core 

(Å) 

core 

axial 

ratio 

(x) 

shell 

thickness 

(Å) 

sphere 

radius 

 (Å) 

minor 

radius 

(Å) 

major 

radius 

(Å) 

axial 

ratio 

(X) 

Nagg 

no 

oil 

in 

core 

ratio 

of 

SAA:

oil  

no. 

H2O 

/SAA 

20% 30.7 0.4 23.8 54.8 34.7 54.4 0.6 271 50 0.18 10 

25% 30.0 0.4 24.2 54.4 35.0 54.3 0.7 257 47 0.18 13 

30% 29.5 0.4 24.8 54.3 35.4 54.3 0.7 244 45 0.18 16 

35% 29.2 0.4 25.3 54.5 35.6 54.5 0.7 231 42 0.18 21 

40% 28.8 0.3 25.9 54.6 35.8 54.7 0.7 217 40 0.18 25 

45% 28.2 0.3 26.5 54.7 36.2 54.7 0.7 203 37 0.18 31 

50% 27.4 0.4 27.2 54.3 36.7 54.6 0.7 187 34 0.18 38 

55% 26.4 0.4 28.0 54.7 37.4 54.4 0.7 172 31 0.18 47 

Note that the SSE of these samples increased from 400 to 1800 after fitting with varying the 

percentage of solvent in shell between 20 and 55 %.  

Note that each measurement took about 20 minutes. Consequently, the fitted parameters were 

obtained from the average of the scattering intensity of each sample over 20 minutes. 

Note that estimated uncertainly for the radius of the core, x and the sphere radius were  ± 0.1, ± 

0.1, ± 1.0, respectively. 

 

The surfactant aggregation number was obtained from the fitting of the SANS data by 

the dividing molecular volume of the surfactant shell after removal of the volume of 

water of hydration by molecular volume of one molecule of surfactant. Note that it was 

assumed that all the oil formed the core of the nanoemulsion. The aggregation number 

of the nanoemulsion decreased and a number of H2O molecules per molecule of 

surfactant increased as the percent of solvation of the shell increased. The ratio of 

surfactant to oil molecules in the nanoemulsion was obtained by from the ratio of the 

mass of surfactant/surfactant molecular weight to mass of oil/oil molecular weight. For 

the B24T3/10 nanoemulsion, the experimental ratio of surfactant to oil molecules was 

1:0.19, which means that 1 molecule surfactant solubilises 0.19 molecules of oil. After 

individual fitting the SANS data it was possible to calculate the ratio of surfactant to oil 
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molecules obtained from the SANS data as can be seen in Table 4.6, which, at a 

surfactant to oil ratio of 1:0.18 was reassuringly close to the experimental value.  

Figures 4.17 and 4.18 show the experimentally obtained SANS profiles along with the 

individual fits to the core, shell and droplet contrasts of B24T3/10 nanoemulsions with 

20 and 55 % solvent in shell, respectively. Significantly, however, the 3 SANS data sets 

(i.e. core, shell and droplet contrasts) were all fitted better when using the lower, 20 %, 

percent of solvent in shell (Figure 4.17) even though a value of 55 % of solvent in shell 

was obtained from the viscosity experiments. In addition, the data obtained from fitting 

the 3 contrasts using a 20 v/v% solvation value gave the closest value of the theoretical 

volume fraction (calculated from the composition of the nanoemulsions) to that of the 

total volume fraction calculated from the scale factor obtained from interpretation of the 

SANS data. 

Based on these results it is possible to draw a schematic representation of the possible 

molecular architecture of a nanoemulsion droplet containing 2.4 w/w% of Brij 97 as 

surfactant and 0.3 w/w% of TON and containing 20% of solvent in shell (Figure 4.19). 

 

 

Figure 4.19 Schematic representation of the molecular architecture of nanoemulsion drop 

containing 2.4 w/w% of Brij 97 as surfactant and 0.3 w/w% of TON as oil.        

   

Nanoemulsions in all subsequent SANS studies were prepared in a contrast match 

solvent of 43.25 v/v% D2O/H2O in order to study a potential of these nanoemulsions in 

a novel  drug delivery system. Thus only drop and core contrasts of the Brij 97-

stabilised nanoemulsions were examined. In all cases the solvation of the surfactant 

shell was assumed to be 20%. 
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4.7.2 Small angle neutron scattering of nanoemulsions prepared in 43.25 v/v% 

D2O/H2O 

In this part of the study, samples of drop contrast were prepared using h-TON, h-Brij 

and 43.25 v/v% D2O/H2O. The summary of the parameters used to obtained the best fit 

to drop sets of neutron data, assuming a core-shell ellipsoid model and hard-sphere 

interactions (using the Percus-Yevick approximation) are shown in Tables 4.7 and 4.8. 

Tables 4.7 and 4.8 give the best fits to the drop contrasts of B24T3/10 and B24T5/10 

nanoemulsions, both without and with a presence of a saturation amount of TP and 

assuming a 20 % level of solvent in shell, prior to exposure to GF-NPs.  

The results indicate that prior to exposure to the GF-NPs the radius of nanoemulsion 

core, drop radius and the axial of core of the B24T3/10 nanoemulsion were ~ 28.9 Å, 

52.5 Å and 0.4, while the equivalent dimensions of B24T5/10 nanoemulsion were ~ 

36.8 Å, 59.2 Å and 0.5 respectively. As a consequence, the B24T5/10 nanoemulsion 

was slightly more spherical than the B24T3/10 nanoemulsion. This observation suggests 

that the nanoemulsion becomes slightly more spherical as the concentration of oil 

increases. In contrast, the shell thickness was approximately the same in both types 

nanoemulsions, implying that there was no change in the (lack of) penetration of TON 

into the surfactant interfacial layer as a function of oil concentration, over the range 0.3 

and 0.5 w/w% of TON. This observation is in agreement with  that reported by 

Wasutrasawat (2011), who found no different in the penetration of TON into the shell of 

2.4 w/w% Brij 97-stabilised nanoemulsions containing TON concentrations in the range 

0.1 - 0.5 w/w%. In addition, the increase in size of the nanoemulsions observed in the 

presence of an increasing concentration of TON agreed with the PCS data, where the 

size of nanoemulsion droplets increased with increasing oil content, even though the 

shape of nanoemulsion droplets could not be determined by PCS. Furthermore, the 

surfactant aggregation number of the B24T3/10 nanoemulsions increased from 252 to 

357 with an increase in the amount of TON present from 0.3 to 0.5 w/w% Interestingly, 

there are clear differences in the surfactant aggregation numbers obtained with the two 

different amounts of oil present, even though the differences in size obtained with PCS 

were only slightly changed. This result is in agreement with the surfactant aggregation 

number of nanoemulsions prepared with Brij 97 and containing Miglyol 812, which 

increased from 155 to 238 as the surfactant-to-oil ratio increased from 1:0.1 to 1:0.3 
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(Warisnoicharoen et al., 2000). The increase in aggregation number seen upon 

increasing the oil concentration between 0.3 and 0.5 w/w%, in the present study, 

suggests that the oil was preferentially located into the core of the nanoemulsion droplet 

rather than in the interfacial surfactant monolayer.  

When comparing the difference the results obtained for the nanoemulsions without and 

with a presence of saturation of TP (Tables 4.7 and 4.8), it was clear that the 

morphology of the nanoemulsion droplets were slightly affected by the presence of TP 

as the size (minor radius and major radius) of the drops was slightly larger in its 

presence. There is two probable ways in which the TP molecules might sit in the 

nanoemulsions, namely either in the core of the nanoemulsion drop and/or by being 

located in the surfactant shell. The results obtained in the present study suggest that the 

TP molecules could be incorporated both into the core and penetrated in the shell 

regions as both the radius of core and shell thickness were very slightly larger in its 

presence. In addition, the volume of a whole droplet can be calculated by 

(4/3)×π×(Major radius)×(Minor radius)
2
 for oblate ellipsoidal. In terms of the effect of 

the presence of TP on the surfactant aggregation number, this increased slightly in the 

presence of a saturation amount of TP. For example the surfactant aggregation number 

of B24T3/10 nanoemulsion increased slightly from 252 in the absence of TP to 267 in 

its presence, while the surfactant aggregation number of B24T5/10 nanoemulsion 

increased slightly from 357 to 376 upon the addition of TP. 
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Table 4.7 Summary of the individual fits for the drop contrast of 2.4 w/w% Brij 97 nanoemulsions containing 0.3 w/w% of TON without and with a 

presence of a saturation amount of testosterone propionate over time using a core-shell ellipsoid model and the hard sphere structure factor S(Q), constrained 

Vshell(dry)/Vcore, at 20 % of solvent in the shell.  

Sample 
radius of 

core (Å) 

core axial  

ratio (x) 

shell 

thickness 

(Å) 

sphere 

radius 

(Å) 

major 

radius 

(Å) 

minor 

radius 

(Å) 

axial 

ratio 

(X) 

core  

volume  

(Å
3
) 

drop 

volume 

(Å
3
) 

Nagg 
no. 

H2O/SAA 

B24T3/10           

t=0 28.9 0.4 23.4 52.5 35.0 52.3 0.7 40817 401542 252 10 

t=4 29.0 0.4 23.4 52.9 35.1 52.3 0.7 40844 401800 253 10 

t=8 29.0 0.4 23.4 52.6 35.0 52.3 0.7 40821 401578 252 10 

t=12 29.0 0.4 23.4 52.5 35.0 52.4 0.7 40962 402960 253 10 

t=24 29.1 0.4 23.5 52.4 35.2 52.6 0.7 41372 406997 256 10 

B24T3/10-TP           

t=0 28.9 0.4 24.0 52.8 36.4 52.8 0.7 43242 425396 267 10 

t=4 29.0 0.4 23.9 53.0 36.2 52.9 0.7 43151 424494 267 10 

t=8 28.9 0.4 23.9 52.5 36.1 52.8 0.7 42779 420841 265 10 

t=12 28.9 0.4 23.9 52.7 36.1 52.8 0.7 42798 421300 265 10 

t=24 28.9 0.4 23.9 52.7 36.2 52.8 0.7 42947 422487 266 10 

 
Note that each SANS measurement took about 20 minutes. Consequently, the fitted parameters were obtained from the average of each samples scattering 

intensity for over minutes. The SSE of these samples fluctuated approximately between 100 and 300. Estimated uncertainly for the radius of the core, x and 

the sphere radius were ± 0.1, ± 0.1, ± 1.0, respectively. 
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Table 4.8 Summary of the individual fits for the drop contrast of 2.4 w/w% Brij 97 nanoemulsions containing 0.5 w/w% of TON without and with a 

presence of a saturation amount of testosterone propionate over time using a core-shell ellipsoid model and the hard sphere structure factor S(Q), constrained 

Vshell(dry)/Vcore, at 20 % of solvent in the shell. 

Sample 
radius of 

core (Å) 

core axial  

ratio (x) 

shell 

thickness 

(Å) 

sphere 

radius 

(Å) 

major 

radius 

(Å) 

minor 

radius 

(Å) 

axial 

ratio 

(X) 

core  

volume  

(Å
3
) 

drop 

volume 

(Å
3
) 

Nagg 
no. 

H2O/SAA 

B24T5/10           

t=0 36.8 0.5 23.2 59.2 40.1 60.0 0.7 95756 605656 357 10 

t=4 36.9 0.5 23.2 60.2 39.8 60.1 0.7 95254 602479 355 10 

t=8 37.1 0.4 23.1 61.2 39.6 60.2 0.7 95049 601183 354 10 

t=12 37.3 0.4 23.1 61.0 39.4 60.4 0.7 95136 601736 354 10 

t=24 36.7 0.5 23.2 60.0 39.1 60.7 0.6 95370 603217 355 10 

B24T5/10-TP           

t=0 37.3 0.5 23.8 60.0 40.5 61.4 0.7 100848 637861 376 10 

t=4 37.3 0.5 23.8 61.1 40.3 61.5 0.7 100855 637908 376 10 

t=8 37.2 0.5 23.7 61.3 40.4 61.4 0.7 101118 639572 377 10 

t=12 37.2 0.5 23.7 60.0 40.2 61.4 0.7 100269 634204 374 10 

t=24 37.2 0.5 23.8 60.9 40.4 61.5 0.7 101311 640795 377 10 

 

 

Note that each SANS measurement took about 20 minutes. Consequently, the fitted parameters were obtained from the average of each samples scattering 

intensity for over minutes. The SSE of these samples fluctuated approximately between 100 and 300. Estimated uncertainly for the radius of the core, x and 

the sphere radius were ± 0.1, ± 0.1, ± 1.0, respectively. 
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Table 4.9 contains a comparison of the best fits obtained for the drop contrast of Brij 

97-stabilised nanoemulsions, B24T3/10, prepared in D2O and in 43.25 v/v% D2O/H2O. 

As can be seen, the parameters used to obtain the best fit, including the core radius, the 

core axial ratio and the shell thickness, were very slightly different in both solvents. 

Therefore it can be concluded that either the reduced difference in the scattering length 

densities in the 43.25 v/v% D2O/H2O solvent influenced the analysis and/or changing 

the solvent slightly affected the size and shape of the nanoemulsions. These slight 

differences were however not considered significant as the aim of the study is to 

confirm the stability and morphology of the nanoemulsion over time, both in the 

presence and absence of GF-NPs.  

 

Table 4.9 Comparison of individual fitting of Brij 97-stabilised nanoemulsions, B24T3/10, 

prepared either in H2O, D2O or 43.25 v/v% D2O/H2O at 20% solvent in the shell. 

Sample 
radius 

of core 

(Å) 

core 

axial 

ratio 

(x) 

δ (Å) 
sphere 

radius 

(Å) 

major 

radius 

(Å) 

minor 

radius 

(Å) 

axial 

ratio 

(X) 
Nagg 

ratio of 

SAA:oil 

B24T3/10 prepared in H2O for core contrast and in D2O for drop and shell contrasts 

Core 31.1 0.4 23.6 55.2 34.6 54.7 0.6 273 0.19 

Shell 30.8 0.4 23.7 54.5 34.5 54.5 0.6 270 0.18 

Drop 30.7 0.4 23.8 54.8 34.7 54.4 0.6 271 0.18 

B24T3/10 prepared in 43.25 v/v%D2O/H2O 

Drop 28.9 0.4 23.4 52.5 35.0 52.3 0.7 252 0.19 

 

Note that the SSE of these samples fluctuated approximately between 200 and 600. Estimated 

uncertainly for the radius of the core, x and the sphere radius were ± 0.1, ± 0.1, ± 1.0, 

respectively. 

 

Figures 4.20-4.23 show the stability of the various Brij 97-stabilised nanoemulsions 

over the 24 hours of the experiment. As can be seen, all nanoemulsions were stable at 

least for 24 h (longer time courses not tested) as evidenced by the SANS profiles of the 

nanoemulsions which did not show any change in shape and size compared to that 

measured at t = 0, i.e. where the SANS  of the nanoemulsions was measured within 30 
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minutes of their preparation. This observation is in good agreement with the PCS 

results, where the apparent droplet size of B24T3/10 and B24T5/10 nanoemulsions, 

measured immediately after preparation (in the presence or absence of a saturation 

amount of TP) was similar to those nanoemulsions at 24 h after preparation. 

Stability of B24T3/10 (7 June 2015, 20%)
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Figure 4.20 SANS data (drop contrast) and individual fits to nanoemulsions prepared using 2.4 

w/w% of Brij 97 and 0.3 w/w% of TON at t = 0 and t = 24 hours after preparation. 

Measurements carried out on SANS2D at 25.0 ± 0.1 ºC. 
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Figure 4.21 SANS data (drop contrast) and individual fits to nanoemulsions prepared using 2.4 

w/w% of Brij 97 and 0.3 w/w% of TON in the presence of a saturation amount of testosterone 

propionate at t = 0 and t = 24 hours after preparation. Measurements carried out on SANS2D at 

25.0 ± 0.1 ºC. 
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Stability of B24T5/10 (7 June 2015, 20%)
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Figure 4.22 SANS data (drop contrast) and individual fits to nanoemulsions prepared using 2.4 

w/w% of Brij 97 and 0.5 w/w% of TON at t = 0 and t = 24 hours after preparation. 

Measurements carried out on SANS2D at 25.0 ± 0.1 ºC. 
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Figure 4.23 SANS data (drop contrast) and individual fits to nanoemulsions prepared using 2.4 

w/w% of Brij 97 and 0.5 w/w% of TON in the presence of a saturation amount of testosterone 

propionate at t = 0 and t = 24 hours after preparation. Measurements carried out on SANS2D at 

25.0 ± 0.1 ºC. 
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4.7.3 Small angle neutron scattering data of nanoemulsions in a 

nanosusponanoemulsion 

SANS profiles, together with the best fits obtained for the drop (h-TON, h-Brij and 

43.25 v/v% D2O/H2O) and core (d-TON, h-Brij and 43.25 v/v% D2O/H2O) contrasts of 

the nanoemulsions prior to their mixing with GF-NPs, after contact with GF-NPs for 

periods of up to 24 h, as well as after their separation from the GF-NPs after 24 h 

contact, were determined to assess the stability of nanoemulsions when in the NSNE 

(Tables 4.10 to 4.13). The parameters in Tables 4.10 to 4.13 were obtained using a core-

shell ellipsoid model together with a hard sphere structure factor S(Q), a constrained 

Vshell(dry)/Vcore, and assuming 20% of solvent in the surfactant shell.  

It should be noted that the parameters obtained from the SANS data using the core 

contrast as shown in Tables 4.10 to 4.13 are slightly different to those obtained when 

modelling the core contrast and shown in Tables 4.9. This difference might result from 

the SLD of d-TON being much closer in value to the SLD of contrast match solvent 

than the SLD of d-TON to the SLD of the H2O so a consequence of the smaller 

difference in SLD is a reduction in the total scattering of the sample.  
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Table 4.10 Summary of the individual fits for drop and core contrasts of nanoemulsions 

prepared using 2.4 w/w% of Brij 97 and 0.3 w/w% of TON in an absence of a saturation amount 

of testosterone propionate prior to mixing with GF-NPs, after contact with GF-NPs for periods 

of up to 24 h as well as after separation of the nanoemulsions from the GF-NPs by 

centrifugation after 24 h contact. 

Sample 

radius 

of core 

(Å) 

core axial 

ratio 

(x) 

shell 

thickness 

(Å) 

sphere 

radius 

(Å) 

major 

radius 

(Å) 

minor 

radius 

(Å) 

axial 

ratio 

(X) 

Drop contrast        

NE before mixing 29.3 0.4 23.6 52.9 35.4 52.9 0.7 

NE at t=0 31.0 0.3 22.4 53.5 32.1 53.4 0.6 

NE at t=4 30.9 0.3 22.2 53.0 31.7 53.1 0.6 

NE at t=8 30.8 0.3 22.2 53.3 31.7 53.0 0.6 

NE at t=12 30.6 0.3 22.3 52.8 32.1 52.9 0.6 

NE at t=24 30.6 0.3 22.3 52.9 32.1 52.9 0.6 

NE after separation 29.1 0.4 23.4 52.4 35.0 52.4 0.7 

Core contrast        

NE before mixing 32.9 0.3 22.3 55.4 30.9 55.2 0.6 

NE at t=0 33.9 0.2 21.9 55.8 29.9 55.8 0.5 

NE at t=4 33.4 0.2 21.5 54.9 29.3 54.9 0.5 

NE at t=8 33.1 0.2 21.5 54.4 29.4 54.5 0.5 

NE at t=12 33.0 0.2 21.3 55.2 29.2 54.3 0.5 

NE at t=24 32.9 0.2 21.3 54.1 29.1 54.1 0.5 

NE after separation 32.0 0.3 22.3 52.9 30.9 54.3 0.6 

 

 
Note that nanoemulsion (NE) at t = 0 was measured after mixing of the nanoemulsion and the 

GF-NPs for 5 minutes. In addition, each SANS measurement took 20 minutes. Consequently, 

the fitted parameters were obtained from the average scattering intensity of a sample over 20 

minutes. The SSE of these samples fluctuated approximately between 100 and 200. Estimated 

uncertainly for the radius of the core, x and the sphere radius were ± 1.0, ± 0.1, ± 2.0, 

respectively. 
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Table 4.11 Summary of the individual fits for drop and core contrasts of nanoemulsions 

prepared using 2.4 w/w% of Brij 97 and 0.3 w/w% of TON in the presence of a saturation 

amount of testosterone propionate prior to mixing with GF-NPs, after contact with GF-NPs for 

periods of up to 24 h as well as after separation of the nanoemulsions from the GF-NPs by 

centrifugation after 24 h contact. 

Sample 

radius 

of core 

(Å) 

core axial 

ratio 

(x) 

shell 

thickness 

(Å) 

sphere 

radius 

(Å) 

major 

radius 

(Å) 

minor 

radius 

(Å) 

axial 

ratio 

(X) 

Drop contrast        

NE before mixing 29.1 0.4 24.0 53.0 36.2 53.1 0.7 

NE at t=0 31.3 0.3 22.8 54.0 32.8 54.1 0.6 

NE at t=4 30.9 0.3 22.6 53.7 32.4 53.5 0.6 

NE at t=8 30.9 0.3 22.6 53.4 32.4 53.5 0.6 

NE at t=12 30.7 0.3 22.5 53.3 32.3 53.2 0.6 

NE at t=24 31.1 0.3 22.4 53.1 32.0 53.4 0.6 

NE after separation 28.4 0.4 23.1 51.6 34.8 51.5 0.7 

Core contrast        

NE before mixing 33.1 0.3 22.8 56.5 31.7 55.9 0.6 

NE at t=0 34.3 0.2 22.0 56.0 30.0 56.3 0.5 

NE at t=4 33.2 0.2 21.4 54.6 29.2 54.6 0.5 

NE at t=8 32.6 0.2 21.2 54.0 29.1 53.9 0.5 

NE at t=12 33.0 0.2 21.2 54.3 29.0 54.2 0.5 

NE at t=24 33.3 0.2 21.4 54.7 29.3 54.8 0.5 

NE after separation 32.1 0.3 22.0 53.7 30.7 54.0 0.6 

 
Note that nanoemulsion (NE) at t = 0 was measured after mixing of the nanoemulsion and the 

GF-NPs for 5 minutes. In addition, each SANS measurement took 20 minutes. Consequently, 

the fitted parameters were obtained from the average scattering intensity of a sample over 20 

minutes. The SSE of these samples fluctuated approximately between 100 and 200. Estimated 

uncertainly for the radius of the core, x and the sphere radius were ± 1.0, ± 0.1, ± 2.0, 

respectively. 
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Table 4.12 Summary of the individual fits for drop and core contrasts of nanoemulsions 

prepared using 2.4 w/w% of Brij 97 and 0.5 w/w% of TON in an absence of a saturation amount 

of testosterone propionate prior to mixing with GF-NPs, after contact with GF-NPs for periods 

of up to 24 h as well as after separation of the nanoemulsions from the GF-NPs by 

centrifugation after 24 h contact. 

Sample 

radius 

of core 

(Å) 

core 

axial 

ratio(x) 

shell 

thickness 

(Å) 

sphere 

radius 

 (Å) 

major 

radius 

(Å) 

minor 

radius 

(Å) 

axial 

ratio 

(X) 

Drop contrast        

NE before mixing 36.8 0.4 21.9 58.8 36.5 58.7 0.6 

NE at t=0 39.3 0.3 21.0 60.8 33.5 60.3 0.6 

NE at t=4 37.7 0.3 20.1 57.7 32.1 57.8 0.6 

NE at t=8 38.4 0.3 20.1 58.0 31.7 58.5 0.5 

NE at t=12 38.4 0.3 20.2 58.0 32.0 58.6 0.6 

NE at t=24 37.8 0.3 20.2 58.0 32.2 58.0 0.6 

NE after separation 33.7 0.4 20.1 53.8 33.7 53.9 0.6 

Core contrast        

NE before mixing 39.9 0.2 20.3 60.8 29.8 60.2 0.5 

NE at t=0 40.8 0.2 20.0 60.7 29.0 60.8 0.5 

NE at t=4 40.8 0.2 19.8 60.4 28.6 60.5 0.5 

NE at t=8 41.7 0.2 19.6 61.4 28.2 61.4 0.5 

NE at t=12 42.0 0.2 19.5 61.3 27.9 61.5 0.5 

NE at t=24 40.8 0.2 19.3 60.2 27.7 60.1 0.5 

NE after separation 34.9 0.2 17.7 52.2 26.1 52.6 0.5 

 
Note that nanoemulsion (NE) at t = 0 was measured after mixing of the nanoemulsion and the 

GF-NPs for 5 minutes. In addition, each SANS measurement took 20 minutes. Consequently, 

the fitted parameters were obtained from the average scattering intensity of a sample over 20 

minutes. The SSE of these samples fluctuated approximately between 100 and 400. Estimated 

uncertainly for the radius of the core, x and the sphere radius were ± 1.0, ± 0.1, ± 2.0, 

respectively. 
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Table 4.13 Summary of the individual fits for drop and core contrasts of nanoemulsions 

prepared using 2.4 w/w% of Brij 97 and 0.5 w/w% of TON in the presence of a saturation 

amount of testosterone propionate prior to mixing with GF-NPs, after contact with GF-NPs for 

periods of up to 24 h as well as after separation of the nanoemulsions from the GF-NPs by 

centrifugation after 24 h contact. 

Sample 

radius 

of core 

(Å) 

core 

axial 

ratio 

(x) 

shell 

thickness 

(Å) 

sphere 

radius 

 (Å) 

major 

radius 

(Å) 

minor 

radius 

(Å) 

axial 

ratio 

(X) 

Drop contrast        

NE before mixing 37.3 0.4 22.2 59.5 37.1 59.5 0.6 

NE at t=0 39.2 0.3 21.0 60.3 33.4 60.2 0.6 

NE at t=4 38.5 0.3 20.4 59.0 32.3 58.9 0.6 

NE at t=8 39.6 0.3 20.8 59.0 32.9 60.4 0.5 

NE at t=12 39.6 0.3 20.5 60.0 32.2 60.0 0.5 

NE at t=24 38.3 0.3 20.2 59.0 31.9 58.4 0.6 

NE after separation 34.7 0.4 20.7 55.6 34.6 55.3 0.6 

Core contrast        

NE before mixing 40.5 0.2 20.4 60.9 30.0 61.0 0.5 

NE at t=0 41.0 0.2 19.7 60.7 28.4 60.7 0.5 

NE at t=4 42.1 0.2 20.1 62.1 29.0 62.2 0.5 

NE at t=8 42.1 0.2 20.0 62.0 28.9 62.1 0.5 

NE at t=12 41.6 0.2 19.4 60.9 27.8 61.0 0.5 

NE at t=24 40.5 0.2 19.3 59.8 27.9 59.9 0.5 

NE after separation 35.5 0.2 18.1 54.0 26.6 53.6 0.5 

 
Note that nanoemulsion (NE) at t = 0 was measured after mixing of the nanoemulsion and the 

GF-NPs for 5 minutes. In addition, each SANS measurement took 20 minutes. Consequently, 

the fitted parameters were obtained from the average scattering intensity of a sample over 20 

minutes. The SSE of these samples fluctuated approximately between 100 and 200. Estimated 

uncertainly for the radius of the core, x and the sphere radius were ± 1.0, ± 0.1, ± 2.0, 

respectively. 
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From Tables 4.10 to 4.13 it can be seen that the values of the fitted parameters obtained 

from the drop contrast were slightly different to those obtained from the core contrast. 

However, the different is only relatively small and the trends obtained for both contrasts 

are the same. It is interesting that, although the size of the nanoemulsions prepared 

using 2.4 w/w% of Brij 97 and 0.3 w/w% of TON in an absence and a presence of a 

saturation amount of testosterone propionate, measured in the presence of GF-NPs was 

slightly different than that measured prior to mixing, it is clear that the size and shape of 

the nanoemulsions before mixing with the GF-NPs and the nanoemulsion after 

separation from GF-NPs by centrifugation are, to all intents and purposes identical. 

Figures 4.24 and 4.25 show the SANS data obtained for the B24T3/10 nanoemulsions 

prior to mixing with the GF-NPs in the absence and presence of testosterone propionate 

and after  separation by centrifugation after 24 hours contact with the nanoemulsions.  
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Figure 4.24 SANS data and best fits obtained for the core and drop contrasts of B24T3/10 

nanoemulsions prior to mixing with GF-NPs and after separation from GF-NPs by 

centrifugation after 24 h contact. Fitted line obtained using the core-shell ellipsoid model with a 

hard sphere S(Q). Measurements carried out on LoQ at 25.0 ± 0.1 ºC. 
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Figure 4.25 SANS data and best fits obtained for the core and drop contrasts of B24T3/10-TP 

nanoemulsions prior to mixing with GF-NPs and after separation from GF-NPs by 

centrifugation after 24 h contact. Fitted line obtained using the core-shell ellipsoid model with a 

hard sphere S(Q). Measurements carried out on LoQ at 25.0 ± 0.1 ºC. 

 

These SANS results were in good agreement with earlier PCS results, where the 

apparent drop size of the B24T3/10 and B24T3/10-TP nanoemulsions after their 

separation from the GF-NPs by centrifugation did not change from the size measured 

for those nanoemulsions prior to  their exposure to the GF-NPs. 

In contrast, the size and the shape of nanoemulsions prepared using 2.4 w/w% of Brij 97 

and 0.5 w/w% of TON in an absence and a presence of a saturation amount of TP after 

separation from GF-NPs by centrifugation had slightly decreased in size compared to 

the size of the nanoemulsions prior to mixing with the GF-NPs (Figures 4.26 and 4.27). 

This observation may be due to the greater instability of the B24T5/10 nanoemulsions 

compared to the B24T3/10 nanoemulsions.  
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Figure 4.26 SANS data and best fits obtained for the core and drop contrasts of B24T5/10 

nanoemulsions prior to mixing with GF-NPs and after separation from GF-NPs by 

centrifugation after 24 h contact. Fitted line obtained using the core-shell ellipsoid model with a 

hard sphere S(Q). Measurements carried out on LoQ at 25.0 ± 0.1 ºC. 
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Figure 4.27 SANS data and best fits obtained for the core and drop contrasts of B24T5/10-TP 

nanoemulsions prior to mixing with GF-NPs and after separation from GF-NPs by 

centrifugation after 24 h contact. Fitted line obtained using the core-shell ellipsoid model with a 

hard sphere S(Q). Measurements carried out on LoQ at 25.0 ± 0.1 ºC.  
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Note that the SANS profiles obtained for B24T5/10 and B24T5/10-TP in this study 

(Figures 4.26 and 4.27) were slightly different from the study of those obtained for the 

nanoemulsion stability studies (Figures 4.22 and 4.23) as the scattering intensity 

recorded in Figures 4.26 and 4.27 was higher especially in the Q range 0.008 - 0.02 Å
-1. 

In this part of the study, B24T5/10 and B24T5/10-TP were prepared 2 days before 

commencing the SANS experiment. In good agreement with the stability recorded for 

the freshly prepared nanoemulsions shown in Figures 4.22 and 4.23, the particle size of 

the B24T5/10 and B24T5/10-TP nanoemulsions increased over time. Even though the 

B24T5/10 and B24T5/10-TP nanoemulsions studied here are not highly stable, the 

overall aim of this study was the understanding of the stability and morphology of 

nanoemulsions prior to and after contact with the GF-NPs when in the form of a NSNE. 

Therefore the data obtained for the B24T5/10 and B24T5/10-TP nanoemulsions will 

provide valuable information on nanoemulsion stability in a form of NSNEs over time.   

In summary, nanoemulsions prepared using 2.4 w/w% of Brij 97 and containing 0.3 

w/w% of TON, regardless of the presence of a saturation amount of TP and the GF-NPs 

stabilised by 1.5 w/w% of SDS, appear to exhibit sufficient stability (in terms of drug 

solubility and size and shape of the nanoemulsion droplets) to be able to deliver two 

drugs into the form of a novel combination formulation namely NSNE.  

 

4.7.4 Small angle neutron scattering data of griseofulvin nanoparticles in a 

presence of nanoemulsion in a nanosusponanoemulsion 

In this part of the study, contrast matching was used to make the Brij 97-stabilised 

nanoemulsions containing TON without and with a presence of a saturation amount of 

TP ‘invisible’ when in the form of a NSNE in order to determine the stability over time 

of the GF-NPs in situ and after the GF-NPs separation from the nanoemulsions after 24 

h contact. Note that only nanoemulsions containing the lower amount of TON, without 

and with a presence of a saturation of TP namely as B24T3/10 and B24T3/10-TP, were 

studied as these nanoemulsions were the most stable as indicated by SANS and PCS in 

terms of drug solubilisation and morphology and also the limitation of beam time.  

Figure 4.28 shows the SANS profiles obtained for GF-NPs prior to mixing with the 

B24T3/10 nanoemulsions, the GF-NPs when in the form of a NSNE over the 24 h 
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incubation time and also  after their separation from the B24T3/10 nanoemulsion by 

centrifugation at 24 h contact. Figure 4.29 shows the SANS profiles obtained for the 

GF-NPs before mixing with the B24T3/10-TP nanoemulsions, GF-NPs in the form of 

NSNEs over the 24 h incubation time and also the GF-NPs after separation from 

B24T3/10-TP nanoemulsion by centrifugation at 24 h.     
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Figure 4.28 SANS profiles of GF-NPs before mixing with the B24T3/10 nanoemulsion, GF-

NPs in a form of NSNEs over time and GF-NPs after separation from the B24T3/10 

nanoemulsions by centrifugation at 24 h incubation time. Measurements carried out on 

SANS2D at 25.0 ± 0.1 ºC. 
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Figure 4.29 SANS profiles of GF-NPs before mixing with the B24T3/10-TP nanoemulsion, 

GF-NPs in a form of NSNEs over time and GF-NPs after separation from the B24T3/10-TP 

nanoemulsions by centrifugation at 24 h incubation time. Measurements carried out on 

SANS2D at 25.0 ± 0.1 ºC. 
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Firstly, the fitting of the SANS data obtained for the GF-NPs prior to mixing with the 

nanoemulsion was attempted using a solid ellipsoid model coupled with the Hayter-

Penfold charged sphere factor to account for the charged nature of the SDS coating. 

However, it proved very difficult to reliably fit these samples due to the fact that it was 

possible to satisfactorily fit the SANS data using a wide range of values for the 

parameters such as the radius of core and core axial ratio. It was concluded, therefore, 

that it was most probable that the particle size of the GF-NPs was too large to be 

determined using SANS.  

Interestingly, Figures 4.28 and 4.29 show that the slope of the SANS data for all the 

GF-NPs samples examined, i.e. the GF-NPs prior to mixing with the nanoemulsions, the 

GF-NPs when in the form of a NSNE and the GF-NPs after their separation from the 

nanoemulsions by centrifugation after 24 h incubation, were similar over the Q range 

0.03 to 0.4 Å
-1

, suggesting the particle size of the various GF-NPs did not change with 

the condition under which they were stored. 

Furthermore, the slope of the SANS data of the GF-NPs after separation from the 

B24T3/10 and B24T3/10-TP nanoemulsions by centrifugation after 24 h incubation 

were slightly lower than SANS profiles of the GF-NPs before mixing with the 

nanoemulsions. As known, scattering intensity is influenced by the volume of the 

scattering particles, amongst other things. Based on this observation it was thought 

possible that the SANS data obtained for the GF-NPs after separation from the 

nanoemulsions had decreased in volume, resulting from the loss of some nanoparticles 

when re-suspending the GF-NPs after centrifugation before re-measuring samples. As a 

consequence the SANS data for the GF-NPs after separation from nanoemulsions were 

multiplied by a factor to see how much would have needed to be lost during the re-

suspension process. It was found that the SANS data of the GF-NPs after separation 

from nanoemulsions including B24T3/10 and B24T3/10-TP by centrifugation at 24 h 

could be both multiplied by a factor of 1.2 to restore the data to the expected intensity 

(Figures 4.30 and 4.31) suggesting that about 20% of the GF-NPs had been lost during 

the process, possibly during the process of re-suspending the particles. 

 



Preparation of nanosusponanoemulsions 

181 

Q (1/Angstrom)

0.01

I (
Q

) 
(c

m
-1

)

1

10

100

GF-NPs before mixing to B24T3/10
GF-NPs after separation from B24T3/10
GF-NPs after separation from B24T3/10 x 1.2

0.01 0.1 1

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

 

Figure 4.30 SANS profiles of GF-NPs before mixing with the B24T3/10 nanoemulsion, GF-

NPs after separation from a B24T3/10 nanoemulsion and GF-NPs after separation from 

B24T3/10 nanoemulsion but multiplied by a factor of 1.2. 
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Figure 4.31 SANS profiles of GF-NPs before mixing with the B24T3/10-TP nanoemulsion, 

GF-NPs after separation from a B24T3/10 nanoemulsion and GF-NPs after separation from 

B24T3/10-TP nanoemulsion but multiplied by a factor of 1.2.  

 

As a consequence, it may be concluded that the GF-NPs after separation from 

nanoemulsions containing low amount of TON by centrifugation was slightly difficult 

to re-disperse. However,  this hypothesis could be tested if other advanced technique 
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such as scanning electron microscope was investigated in order to confirm the size and 

the shape of the GF-NPs after re-dispersing, unfortunately due to time constraints other 

techniques were not used. 
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Chapter 5 Preparation of 

nanosuspomicroemulsions 

5.1 Introduction 

In this chapter, the preparation of a novel delivery system is achieved by simply mixing 

a microemulsion and a nanosuspension. In this case 0.76 mL of a 5 times diluted 

microemulsion (either S20B14/5-TP or S20C08/5-TP) was mixed with 0.24 mL of GF 

nanosuspension. The main objective of this chapter is to determine whether it is possible 

to combine a microemulsion and a nanosuspension in one single formulation which has 

been termed a nanosuspomicroemulsion (or NSME). In the present study the 

microemulsions, which contained testosterone propionate (TP), were stabilised by the 

surfactant as SDS and contained either ethyl butyrate (EB) or ethyl capylate (EC) as oil 

while the nanoparticles were prepared from griseofulvin (GF). The physico-chemical 

properties of the SDS microemulsions and GF-NPs after mixing with each other were 

studied over time. For example, the individual and mutual solubility of GF and TP in 

the microemulsions comprising the NSMEs was determined by UV spectroscopy while 

the particle size and the shape of the microemulsions and nanoparticles were determined 

by small angle neutron scattering (SANS) and, where possible, photon correlation 

spectroscopy (PCS). 

 

5.2 Solubility of griseofulvin  

5.2.1 Solubility of griseofulvin in oil 

In a present study, GF was used a model of a poorly-water soluble drug suitable for 

formulation as NPs. The aqueous solubility of GF has been determined as 0.006 w/v% 

from a previous experiment in section 3.3.3. Table 5.1 shows the solubility of GF in the 

oils namely as EB, EC, both used to prepare microemulsions and TON, used to prepare 

nanoemulsions, over a period of 3 days. The results in Table 5.1 show that the solubility 

of GF in EB, EC and TON at equilibrium was 0.40, 0.14 and 0.10 w/v%, respectively. 



Preparation of nanosuspomicroemulsions  

184 

The equilibrium solubility was achieved within 24 h and thereafter remained constant 

over the 3 days of the study. The solubility of GF in EB was about four times its 

solubility in TON, while the solubility of GF in EC was almost twice the solubility of 

GF in TON. Furthermore, the solubility of GF followed the pattern of being most 

soluble in the most polar oil, namely EB, and least soluble in the least polar oil, TON. 

Comparing the solubility of GF and TP in the three oils, it is clear that the solubility of 

both GF and TP followed that the same trend, in that both were most soluble in EB and 

least soluble in TON. Even though there is a lack of general understanding in 

mechanism of drug solubilisation in oils, Malcolmson et al. (1998) reported that the 

solubility of poorly water-soluble drug, TP, in a wider range of followed the same trend 

in that the greatest solubility was observed in the most polar oil. As a consequence, it 

can be assumed that the oil polarity has an effect on the solubility of drug. 

 

Table 5.1 Solubility of griseofulvin in oils over time at 25.0 ± 0.1 °C 

Oil 
Concentration (w/v%) of griseofulvin (mean ± SD, n = 9) 

24 h 48 h 72 h 

EB 0.40 ± 0.00 0.41 ± 0.00 0.41 ± 0.00 

EC 0.14 ± 0.00 0.14 ± 0.00 0.14 ± 0.00 

TON 0.10 ± 0.00 0.10 ± 0.00 0.10 ± 0.00 

 

5.2.2 Solubility of griseofulvin in sodium dodecyl sulphate micelles 

The solubility of GF in SDS micelles was determined over time to understand the 

relationship between GF solubility and surfactant concentration (Figure 5.1). The 

equilibrium solubility of GF in SDS micelles of all concentrations, was achieved by 6 h 

and remained constant at least up to 96 h (longer time courses were not tested). Note 

that there was no significant difference in the solubility of GF recorded in the various 

concentration SDS micelles at the times points tested, ranging from 6 to 96 h (p > 0.05). 

As a consequence the solubility data obtained at each SDS concentration was averaged 

over the whole of the time period tested. In addition, as can be seen from Figure 5.2, 

that the average solubility of GF in the SDS micelles varied in a linear manner with 
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increasing SDS concentration - the solubility of GF in SDS micelles of concentration 

ranging from 1 to 5 w/w% increased from ~ 0.1 to 0.5 w/v%. Generally, when the 

solubility of a poorly soluble drug is examined as a function of surfactant concentration, 

the solubility of the drug is usually very low until the surfactant concentration reaches 

its cmc (Carlota et al., 2005). The cmc of SDS in water at 25
o
C is 8 M or 0.24 w/w% 

(Luckey, 2014) so that all the surfactant concentrations used in this study were well 

above their cmc. 
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Figure 5.1 Solubility of griseofulvin in varying concentrations of sodium dodecyl sulphate 

micelles as a function of time at 25.0 ± 0.1 ºC (mean ± SD, n =9). 
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Figure 5.2 The average solubility of griseofulvin of all time points (i.e. 6, 24, 48, 72 and 96 h) 

in sodium dodecyl sulphate micelles as a function of surfactant concentration at 25.0 ± 0.1 °C. 

(mean ± SD, n = 5). 
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When comparing the solubility of GF in Brij 97 and SDS micelles, it can be seen that 

the solubility of GF in Brij 97 micelles of concentration 0.2 to 2.4 w/w% varied from 

0.01 to 0.04 w/v%, whilst the solubility of GF in SDS micelles of concentrations 

ranging from 1 to 5 w/w% ranged from about 0.1 to 0.5 w/v%. From these results it is 

clear that GF is solubilised in SDS micelles to a much greater extent than in Brij 97 

micelles. A similar trend in results is seen when the solubility of TP in Brij 97 and SDS 

micelles is examined, where the solubility of TP in Brij 97 is much less than its 

solubility in SDS micelles. It must be remembered however, that drug solubilisation in 

surfactant solution depends on a range of factors, including the chemical structure of the 

surfactant and the drug, the experimental temperature, pH, ionic strength and so on 

(Torchilin, 2001). Hsieh (2010) reported that the level of solubilisation of TP was 

significantly different in micelles prepared by SDS, N,N-dimethyldodecylamine-N-

oxide (DDAO), dodecyltrimethylammonium bromide (DTAB) and 3-N,N-

dimethyldodecyl ammoniopropanesulfonate (DDAPS), possibly be due to the major site 

of drug solubilisation being the interface between the hydrocarbon core of the micelle 

and the hydrated head group region. Similarly Krishna et al. (1989) found that the 

solubility of an anti-malarial drug, β–arteether in micelles formed by 1 w/v% of 

nonionic surfactants such as polyoxyethylene-9-octyl phenol and polyoxyethylene-20-

cetyl ether was 0.39 and 0.43 mg/mL, respectively while the solubility of the drug in 

micelles formed by an equivalent amount of the ionic surfactants, SDS and tetradecyl 

trimethylammonium bromide, was 2.69 and 1.74 mg/mL, respectively. Krishna et al. 

(1989) suggested that these differences in β–arteether solubilisation where a 

consequence of whether it was incorporated into the micelle interior and/or it was 

adsorbed at the micelle-water interface. 

 

5.2.3 Solubility of griseofulvin in sodium dodecyl sulphate-stabilised 

microemulsions 

Firstly an understanding of the effect of the presence of GF on SDS-stabilised 

microemulsions is important to explain where the GF molecules could be solubilised 

within the microemulsions. An understanding of the behaviour of GF in the 

microemulsions when a saturation amount of TP was present was necessary prior to the 

mixing of the microemulsions with GF-NPs to produce the novel combination delivery 
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system. In this study, an excess of powdered GF was added to 0.76 ml of 5 times diluted 

SDS microemulsions in the absence and presence of a saturation amount of TP (i.e. 

S20B14/5, S20B14/5-TP, S20C08/5 and S20C08/5-TP) mixed with 0.24 ml of H2O as 

would be the case in the final combination formulation (these ‘double’ diluted 

microemulsions were denoted as S20B14/5/0.76, S20B14/5-TP/0.76, S20C08/5/0.76 

and S20C08/5-TP/0.76, respectively) to give the concentration of microemulsion 

present in the final NSME. After incubation of the powdered GF for the required time, 

the excess GF was removed via centrifugation and the amount of GF in the supernatant 

determined. 

Table 5.2 shows the solubility of GF in SDS-stabilised microemulsions containing 

either EB or EC in the absence and the presence of a saturation amount of TP over time. 

The equilibrium solubility of GF in the SDS microemulsions containing EB and EC was 

reached by 6 h and thereafter maintained for at least up to 96 h (longer time courses 

were not tested). The solubility of GF in the SDS micelles of 3 w/w% at 24 h was 0.30 

w/v% (Figure 5.1) whilst the solubility of GF in the diluted SDS microemulsions, 

S20B14/5/0.76 and S20C08/5/0.76, at the same SDS concentration was 0.172 and 0.236 

w/v%, respectively (Table 5.2). It was clear therefore that the solubility of GF in both of 

the diluted microemulsions was less than the solubility of GF in the SDS micelles. 

 

Table 5.2 Solubility of powdered griseofulvin in microemulsions with and without a saturation 

amount of testosterone propionate at 25.0 ± 0.1 
o
C. 

Sample* 
Concentration (w/v%) of griseofulvin (mean ± SD, n = 9) 

6 h 24 h 48 h 72 h 96 h 

S20B14/5/0.76  0.16 ± 0.02 0.17 ± 0.01 0.17 ± 0.00 0.16 ± 0.00 0.17 ± 0.00 

S20B14/5-TP/0.76  0.17 ± 0.00 0.16 ± 0.00 0.17 ± 0.00 0.16 ± 0.00 0.17 ± 0.01 

S20C08/5 /0.76 0.23 ± 0.01 0.24 ± 0.00 0.23 ± 0.00 0.24 ± 0.00 0.24 ± 0.01 

S20C08/5-TP/0.76 0.20 ± 0.01 0.19 ± 0.00 0.19 ± 0.00 0.19 ± 0.00 0.18 ± 0.01 

 

*The solubility of griseofulvin was determined in supernatant after centrifugation of 0.76 mL of 

microemulsions namely S20B14/5, S20B14/5-TP, S20C08/5 and S20C08/5-TP, and 0.24 mL of 

H2O, with and without a saturation amount of griseofulvin (GF).   
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This result was surprising because it was expected that the solubility of GF in the EB 

containing SDS microemulsions would be greater than the solubility of GF in the EC-

containing SDS microemulsions, because the measured solubility of GF in EB was 

almost three times that obtained in EC. Even despite the fact that the final concentration 

of EC was less than the final concentration of EB at the same concentration of 

surfactant, the solubility of GF in the EC-containing SDS-stabilised microemulsions 

was more than was achieved in those containing EB. Furthermore, the solubilisation 

obtained in both microemulsions was less than that achieved in the SDS micelles. This 

result for GF is consistent with the solubility determined for TP in SDS-stabilised 

microemulsions.  

Similarly Hsieh (2010) observed that, despite the fact that TP was more soluble in EB 

than EC, the solubility of TP in microemulsions stabilised by either the zwitterionic 

surfactant, dimethyldodecylamminopropylsulphate (DDAPS), the cationic surfactant, 

dodecyltrimethyl- ammonium bromide (DTAB), or the anionic surfactant, SDS was 

greater in the EC-containing microemulsions than those containing EB. In his study, 

Hsieh (2010) proposed that the reversal of the expected TP solubility in the 

microemulsions was a result of the difference way in which the two oils are 

incorporated. It is likely that the reversal in predicted GF solubility is also a 

consequence of the different sites of incorporation of the two oils into the 

microemulsions.  

In the present study, it is proposed that the reason why GF was solubilised to a greater 

extent in SDS micelles than in SDS-stabilised microemulsion containing EB is that GF 

prefers to sit in the surfactant head group and/or surfactant interfacial region and that 

EB disrupts the packing in this region and thereby replaces the GF molecules. As can be 

seen in Table 5.2, there was no significant difference between solubility of powdered 

GF in the EB containing SDS-stabilised microemulsions with and without a presence of 

a saturation amount of TP at any of the time points tested (p > 0.05). In contrast, 

however the solubility of powdered GF in the EC-containing SDS stabilised 

microemulsions with a saturation amount of TP (i.e. S20C08/5/0.76) was significantly 

lower than those without containing TP at all time points (p < 0.05). 

Table 5.3 shows the apparent solubility of TP in S20B14/5-TP/0.76 and S20C08/5-

TP/0.76 microemulsions, without and with the presence of a saturation of GF. Note that 
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the concentration of surfactant and oil in the microemulsions in Table 5.3 are the same 

as those in Table 5.2 and that, furthermore the solubility of TP was approximately 

constant between 6 and 96 h (p > 0.05). Significantly, the solubility of TP in the SDS-

stabilised microemulsions containing either EB or EC in a presence of saturation of GF 

was less than those in an absence of a saturation of GF, particularly in the EC-

containing microemulsions (p < 0.05).  

 

Table 5.3 Solubility of testosterone propionate in microemulsions, with and without a 

saturation  amount of griseofulvin, at 25.0 ± 0.1 
o
C. 

Sample* 

Concentration (w/v%) of testosterone propionate  

(mean ± SD, n = 9) 

6 h 24 h 48 h 72 h 96 h 

S20B14/5-TP/0.76 

without GF 

0.50 ± 0.00 0.50 ± 0.02 0.50 ± 0.00 0.50 ± 0.02 0.49 ± 0.01 

S20B14/5-TP/0.76 

with GF 

0.45 ± 0.01 0.45 ± 0.01 0.45 ± 0.00 0.45 ± 0.01 0.47 ± 0.01 

S20C08/5-TP/0.76 

without GF 

0.71 ± 0.00 0.71 ± 0.00 0.71 ± 0.00 0.71 ± 0.00 0.71 ± 0.00 

S20C08/5-TP/0.76 

with GF 

0.60 ± 0.01 0.60 ± 0.02 0.61 ± 0.01 0.58 ± 0.01 0.58 ± 0.02 

 

*The solubility of testosterone propionate (TP) was determined in supernatant after 

centrifugation of 0.76 mL of microemulsion (i.e. S20B14/5-TP or S20C08/5-TP) and 0.24 mL 

of H2O, with and without a saturation amount of griseofulvin (GF).  

 

As a consequence of these results it is likely that GF and TP are solubilised in the same 

place in the SDS-stabilised microemulsions particularly in the microemulsions 

containing EC. Indeed the solubility of GF in EC-containing SDS-stabilised 

microemulsions in the presence of TP was less than in the corresponding TP-free 

microemulsions. This observation may be a consequence of the replacement in the EC-

containing SDS-stabilised microemulsions of some TP molecules by some GF 

molecules. In order to substantiate this hypothesis, advanced techniques such as SANS, 



Preparation of nanosuspomicroemulsions  

190 

are required to fully understand the behaviour of the two drugs in SDS-stabilised 

microemulsions. 

 

5.3 Solubility of griseofulvin and testosterone propionate in microemulsion of a 

nanosuspomicroemulsions 

Fortunately it was possible to use centrifugation to separate the microemulsions from 

the GF-NPs due to their differences in particle size and density: the GF-NPs are both 

larger and denser. As a consequence the GF-NPs are sedimented upon centrifugation, 

while the supernatant is comprised of the microemulsions. In order to understand 

behaviour of the two drugs after mixing the microemulsions with the GF-NS, the 

solubility of GF and TP were determined in the supernatant of the NSME after 

centrifugation.     

Figure 5.3 shows the solubility of GF in the supernatant of the S20B14/5, S20B14/5-TP, 

S20C08/5 and S20C08/5-TP microemulsions after centrifugation of the NSME with 

respect to their time of preparation. The solubility of GF in supernatant of water was 

0.006 w/v% which then increased to 0.17 and 0.24 w/v% after 30 minutes mixing with 

the S20B14/5 and S20C08/5 microemulsions, respectively and remained approximately 

constant over the 96 h incubation finishing at 0.16 and 0.25 w/v%, respectively. As 

recorded previously the solubility of GF in the S10B14/5 microemulsion supernatant 

remained approximately constant (p > 0.05), regardless of the absence or presence of a 

saturation amount of TP. In contrast, the solubility of GF in the supernatant containing 

SDS microemulsion composed of EC (i.e. S20C08/5-TP microemulsions) was 

significantly less than in the supernatant of the S20C08/5 microemulsions (p < 0.05). 

Encouragingly, these results are consistent with the results of the solubility study of 

powdered GF and TP-containing, SDS-stabilised microemulsions. As mentioned before, 

it is possible to explain the results on the basis that GF and TP are solubilised in the 

same location in the microemulsions.  
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Microemulsion in NSMEs system
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Figure 5.3 Solubility of griseofulvin in the microemulsion-containing supernatant after 

centrifugation of the NSMEs with time after preparation at 25.0 ± 0.1 
o
C (mean ± SD, n = 9). 

 

In contrast, Figure 5.4 shows the solubility of TP in the supernatant containing the 

S20B14/5-TP or S20C08/5-TP microemulsions, either with time after mixing with the 

GF-NPs or immediately after separation from the GF-NPs. Initially, the solubility of TP 

in S20B14/5-TP and S20C08/5-TP microemulsions before mixing with the GF-NPs was 

at 0.50 and 0.71 w/v%, respectively. However, after mixing with the GF-NPs, the 

solubility of TP in the S20B14/5-TP and S20C08/5-TP microemulsion-containing 

supernatant decreased within 30 minutes to 0.46 and 0.61 w/v%, respectively and 

thereafter remained approximately constant for 96 h (longer time points were not 

tested).  
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Microemulsion in the NSMEs system
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Figure 5.4 Solubility of testosterone propionate in the microemulsion-containing supernatant 

after centrifugation of the NSMEs with time after preparation at 25.0 ± 0.1 
o
C (mean ± SD, n = 

9). 

 

These results are consistent with the solubility of TP in the diluted microemulsions (i.e. 

S20B14/5/0.76 and S20C08/5/0.76) in a presence of a saturation amount of powdered 

GF, in that the solubility of TP in the microemulsion-containing supernatant after 

centrifugation of the NSME decreased compared to the solubility of TP in the diluted 

microemulsions (i.e. S20B14/5/0.76 and S20C08/5/0.76) prior to their mixing to the 

GF-NPs. This observation supports the hypothesis that GF and TP are preferentially 

solubilised in the same location in the microemulsions, especially in the EC-containing 

SDS-stabilised microemulsions. 

 

5.4 Characterization of griseofulvin nanoparticles in the nanosuspomicroemulsions 

by photon correlation spectroscopy 

Visual observation of the NSMEs showed that, when left to stand about an hour in a 

standard size vial, the microemulsions separated from the nanosuspension. 

Reassuringly, however, the microemulsions and nanoparticles readily dispersed or re-

formed after gentle shaking. It is likely that the rapid separation of the NSME was a 

consequence of the differences in particle size distribution and density of the 
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microemulsion and nanoparticles. As a result, of the size and density differences, the top 

layer of the separated NSME was thought to be a microemulsion, while the bottom layer 

was considered to be comprised of the GF-NPs. Centrifugation speeded up this 

separation as did storing the NSME in the large surface to volume ‘banjo cells’ using 

for small angle neutron scattering. When using centrifugation to separate 

microemulsions from the GF-NPs, it was significant that there were no droplets of oil 

on the surface of the supernatant, suggesting that the microemulsion had remained intact 

and were not destabilised from contact with the GF-NPs (Santos et al., 2013). Indeed, in 

no case, any of the microemulsions exhibit any instability when or after being placed in 

the contact with the GF-NPs. 

It was not possible to determine the apparent droplet size of the SDS-stabilised 

microemulsions in situ in the NSMEs using PCS due to their small particle size, so as a 

consequence SANS was used to characterize their morphology instead. As a 

consequence, only the variation over time of the particle size of the GF-NPs after 

mixing with the microemulsions was determined using PCS and compared with their 

apparent hydrodynamic size prior to mixing.  

Assuming the microemulsion and the GF-NPs remained intact upon mixing then the 

NSMEs will contain two populations of particles, one in the size range of ~ 10 nm 

arising from the microemulsions and the second larger sized particles, in the range of ~ 

350 nm belonging to the GF-NPs. Figure 5.5 shows the apparent hydrodynamic size of 

the GF-NPs before mixing with the microemulsions and their apparent hydrodynamic 

size over time when in the form of a NSMEs after mixing with microemulsions, both 

with and without a saturation amount of TP. As can be seen in Figure 5.5 there was 

slight increase in the apparent hydrodynamic size of the GF-NPs from 342.3 nm prior to 

mixing with the microemulsions to 362.4, 370.7, 379.0 and 368.7 nm when in the form 

of NSMEs namely as NSS20B14/5, NSS20B14/5-TP, NSS20C08/5 and NSS20C08/5-

TP, respectively. However, as can be seen in Figure 5.5, the GF-NPs in a form of all 

NSMEs showed no increase in apparent hydrodynamic size from 5 minutes to 96 h 

(longer time courses were not tested). This stability could be due to the fact that the 

stabiliser for both the nanosuspension and the microemulsions were SDS. As a 

consequence, the use of SDS as stabiliser for both particles would eliminate the 
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stabiliser displacement events described by Tadros (1990) which would be expected to 

result in the destabilisation of the system. 

 

Formulation
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Figure 5.5 Apparent hydrodynamic size of griseofulvin nanoparticles with preparation time 

when mixed with microemulsions in the form of a NSME at 25.0 ± 0.1 
o
C (mean ± SD, n = 9). 

 

All NSMEs were centrifuged to separate then in their constituents parts in order to 

determine the apparent particle size of the GF-NPs after being removed from contact 

with the microemulsion. Figure 5.6 shows the apparent particle size of the GF-NPs prior 

to mixing with the microemulsions and GF-NPs after separation from microemulsions. 

The apparent hydrodynamic size of the GF-NPs before mixing to microemulsions was 

342.3 nm, while the apparent hydrodynamic size of the GF-NPs after separation from 

the microemulsions, S20B14/5, S20B14/5-TP, S20C08/5 and S20C08/5-TP, was 478.1, 

539.7, 658.7 and 728.0 nm, respectively, after only 5 minutes incubation. Interestingly 

at the measured hydrodynamic size of the GF-NPs decreased to 459.7, 522.0, 582.9 and 

678.9 nm after mixing with the microemulsions S20B14/5, S20B14/5-TP, S20C08/5 

and S20C08/5-TP, respectively after mixing for 96 h (longer time courses were not 

tested). As can be seen in Figure 5.6, the apparent hydrodynamic size of the GF-NPs 

that had been in contact with the ethyl caprylate microemulsions, S20C08/5 and 

S20C08/5-TP, were bigger than the GF-NPs that had been in contact with the ethyl 
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butyrate microemulsions, S20B14/5 and S20B14/5-TP. This result contradicts the 

results shown in Figure 5.5 and may suggest that after the GF-NPs had been in contact 

with and separated from the S20C08/5 and S20C08/5-TP microemulsions were more 

difficult to re-disperse than when the GF-NPs had been in contacted and separated from 

the S20B14/5 and S20B14/5-TP microemulsions. Despite this difference, the apparent 

hydrodynamic size of the GF-NPs after separation from all types of microemulsions, 

regardless of the incubation time, were significantly larger than the apparent 

hydrodynamic size of the GF-NPs measured in the form of a NSME. While the GF-NPs 

after contact with the EC-containing microemulsions appear to be more difficult to re-

disperse, this observation may be partly a consequence of the method of nanoparticle re-

dispersal which involved the use of a small microspatula. This suggests that it would be 

far better to measure the particle size of both the nanoparticles and the microemulsions 

in situ and as a consequence SANS studies were explored. 

 

GF-NPs after separation from microemulsion by centrifugation 
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Figure 5.6 Apparent hydrodynamic size of griseofulvin nanoparticles after separation from 

microemulsions with time the griseofulvin nanoparticles were in the form of a NSME at 25.0 ± 

0.1 
o
C (mean ± SD, n = 9). 
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5.5 Determination of the hydration value of microemulsions 

Viscosity measurement was performed in order to understand the shape of 

microemulsion droplet as aggregates shape and /or a number of surfactant aggregates. 

As we established a measured value of intrinsic viscosity of 2.5 mL/g means that the 

particle is an unsolvated sphere as predicted by Einstein’s equation. Figure 5.7 and 5.8 

present a function of relative viscosity (ηrel), expressed as In ηrel/c and specific viscosity 

(ηsp), expressed as ηsp /c of SDS micellar solutions and  the SDS-stabilised 

microemulsions containing either EB or EC, both in an absence and a presence of a 

saturation of TP, as a function of SDS concentration, corrected for the cmc of SDS in 

0.2M NaCl. As shown in Figure 5.7 and 5.8, the values of both ηrel and ηsp of SDS 

micellar solutions and microemulsions increase linearly with an increase in surfactant 

concentration. 
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Figure 5.7 Variation in the intrinsic viscosity of sodium dodecyl sulphate (SDS) micellar 

solutions as a function of concentration at 25.0 ± 0.1 °C (mean ± SD, n = 9).    
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Figure 5.8 Variation in the intrinsic viscosity of sodium dodecyl sulphate stabilised 

microemulsions containing with either ethyl butyrate and ethyl caprylate without and with a 

presence of a saturation of testosterone propionate at 25.0 ± 0.1 °C. (○:S20B14/5, Δ:S20B14/5-

TP, □:S20C08/5, ◊:S20C08/5-TP) (mean ± SD, n = 9). 

 

Table 5.4 lists the intrinsic viscosity of the SDS micelles and the EB or EC containing 

SDS-stabilised microemulsions, with or without a saturation amount of TP, calculated 

as the mean of the intercept values of the Huggins and Kramers plots. As can be seen, 

the intrinsic viscosity of the SDS micelles was much less than the intrinsic viscosity of 

the various SDS microemulsions. It is clear that the presence of EB and EC in the SDS-

stabilised microemulsions causes an increase in the viscosity of the SDS aggregates and 

suggests that the presence of the oils causes either a change in the shape of the 

aggregates and/or a change in hydration. In addition, the values of both ηrel and ηsp 

increase in the microemulsions containing a saturation amount of TP.   
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Table 5.4 The intrinsic viscosity of sodium dodecyl sulphate (SDS) micelles and SDS-

stabilised microemulsions containing either ethyl butyrate or ethyl caprylate, without and with a 

presence of a saturation of testosterone propionate at 25.0 ± 0.1 ºC. 

Sample 
Intrinsic viscosity (mL/g)  

(mean ± SD, n = 9) 

SDS micelle 3.64 ± 0.03 

S20B14/5 5.87 ± 0.03 

S20B14/5-TP 6.01 ± 0.05 

S20C08/5 5.13 ± 0.05 

S20C08/5-TP 5.64 ± 0.09 

 

Because it is not possible to determine whether the increase in the intrinsic viscosity is 

due to a change in shape and/or an increase in aggregation number of the SDS 

microemulsions, complementary SANS experiments were performed. By using 

information on the shape of the micelles and microemulsions determined from the 

SANS studies, it was possible to use the viscosity measurements to calculate the 

hydration value and therefore determine a percent hydration of the micelle and the 

microemulsion shell to help the fitting of the SANS data. The partial specific volume of 

the SDS micelles and the microemulsions (which is needed to interpret the viscosity 

data) was calculated by equation: 

               

where ρ is the density of the micellar solution or microemulsion at a given 

concentration (C),   ρ0 is density of aqueous solvent and ῦ is partial specific volume of 

the micelle or microemulsion. The density of micelles and microemulsions are shown in 

Appendix B.  

The hydration value, expressed as g of solvent divided by g of solute, was calculated by 

using the intrinsic viscosity and the partial specific volume as shown:  
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where ν is the shape factor and   
 

 

is the partial specific volume of aqueous solvent. The 

shape factor can be determined from knowledge of the axial ratio of the micelle or 

microemulsion (as determined by SANS) by applying Harding’s shape factor (Table 

5.5). 

 

Table 5.5 Conversion of shape factor (ν) to the axial ratio (a/b) values assuming a prolate 

ellipsoid of revolution (Harding et al., 1995).  

a/b shape factor (v) 
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Figure 5.9 Shape factor (ν) as a function of the prolate ellipsoidal axial ratio fitted by a 

quadratic polynomial equation. 
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The percent of solvent in the shell can be calculated using the following equation: 

                   
                             

                                                                
      

where mol vol is molecular volume (Å
3
). 

The number of molecules of H2O per molecule of surfactant can then be calculated 

using the following equation: 

                                                
 

  
     

  

 
 

            
  

  

where MW is the molecular weight (g mol
-1

).
 
 

Finally the percent of solvent per surfactant head group can be calculated by the 

following equation: 

                    
                             

                                                               
      

In the case of SDS, the head group is SO4Na which has a molecular volume of 60.5 Å
3 

(Vass et al., 1989). 

Alternatively, the level of hydration can be predicted from fitting the SANS data. From 

the SANS studies, the shape of all the microemulsions examined was prolate ellipsoid 

(see SANS section 5.6.1). The axial ratio determined from analysis of the SANS data 

for the following microemulsions, S20B14/5, S20B14/5-TP, S20C08/5 and S20C08/5-

TP, was 1.4, 1.7, 1.5 and 1.6, respectively, while the hydration value and a percent 

solvation of the shell at 25 ºC calculated using the droplet axial ratio are given in Table 

5.6. The hydration value of the SDS microemulsions obtained from the SANS 

measurements was in the range 1.1-1.3 mL/g, while the % solvent in the shell was 55-61 

% and the solvent per surfactant head group of surfactant was ~ 90%. It is clear from 

Table 5.6 that the values obtained for the hydration and the percent solvent in the shell 

for microemulsions containing either EB or EC in the presence of a saturation amount 

of TP was slightly higher than the values obtained for microemulsions in the absence of 

TP. 
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Table 5.6 Summary of the intrinsic viscosity and hydration value of microemulsions 

containing either ethyl butyrate or ethyl caprylate, with and without the presence of a saturation 

amount of testosterone propionate, at 25.0 ± 0.1 ºC calculated by using the shape of the 

microemulsion obtained from SANS measurements. 

Sample 
intrinsic 

viscosity 

partial 

specific        

volume 

hydration 

no molecule 

of 

water/SDS 

% 

solvent 

in shell 

% solvent/ 

head group 

S20B14/5 5.87 0.919 1.34 21.4 60.8 91.4 

S20B14/5-TP 6.01 0.901 1.32 21.2 60.5 91.3 

S20C08/5 5.13 0.896 1.06 17.0 55.2 89.4 

S20C08/5-TP 5.64 0.881 1.24 19.9 59.1 90.8 

 

5.6 Characterization of microemulsions and nanoparticles in the 

nanosuspomicroemulsions by small angle neutron scattering 

5.6.1 Small angle neutron scattering of microemulsions before mixing with the 

griseofulvin nanoparticles 

Small angle neutron scattering (SANS) studies were used to determine the 

microstructure of the SDS-stabilised microemulsions in dilute aqueous solution. In 

order to understand whether the presence of oil and TP had any effect on the 

morphology of the microemulsion droplets, including their size and shape, SANS 

experiments on the microemulsions, were performed using 43.25 v/v% of D2O in H2O 

as solvent. This solvent was selected because it was the solvent that is required when the 

GF-NPs are present in order to make the NPs ‘invisible’ to neutrons. Of particular 

interest in this study, is whether it was possible to study the SDS-stabilised 

microemulsions in situ in the presence of the GF-NPs in order to gain an understanding 

of effect of the GF-NPs on the stability of the microemulsion droplets.  

To establish the most suitable model with which to analyse the SANS data obtained for 

the microemulsion stabilised by the anionic surfactant SDS, preliminary analysis were 

performed, using two hypotheses, using the SANS data obtained for the S20B14/5 

microemulsions. The first hypothesis assumed that the core of the microemulsion 

consisted only of oil, while the shell contained the whole surfactant molecule plus any 

associated counter-ions and any solvent in shell. The second hypothesis assumed that 
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the core consisted of all oil molecules together with the surfactant tails, while the shell 

was composed of the surfactant head groups along with any associated counter-ions and 

the water of hydration. The SANS data for the S20B14/5 microemulsions dispersed in 

43.25 v/v% D2O in H2O were fitted using an ellipsoidal model together with the Haytor-

Penfold structure factor to account for inter particulate interactions. Regardless of the 

hypothesis assumed, the SLD and volume fraction of microemulsion droplets and the 

percent solvent in the shell were constrained while the radius of core (Rcore), shell 

thickness (δ), the axial radius of core, radius of Hayter-Penfold structure factor (RH-P) 

and the total charge of the aggregate (Z) were all varied in order to obtain the best fit to 

the experimental SANS data.  

Table 5.7 gives a comparison of the parameters used to obtained the best fit to the 

SANS data for the S20B14/5 microemulsion using the two hypotheses outlined above. 

The calculated percent solvent in shell of the S20B14/5 microemulsions obtained from 

the viscosity experiments (Table 5.6), was used to fit the SANS data obtained for 

S20B14/5. When the first hypothesis was explored, the percent solvent in shell was ~ 60 

v/v%, while when the second hypothesis was used, the percent solvent in the shell was 

~ 90 v/v%. However, the best fit to the SANS data obtained for S20B14/5 

microemulsion with the second hypothesis were obtained using a solvent in shell of 87 

v/v% as opposed to 90 v/v%. Reassuringly, the value of the fitted parameters obtained 

in the present study were in line with those reported by Griffiths et al. (2005), who 

reported that the length of SDS head group was 3.5 Å, while the length of the extended 

tail was 16.8 Å, values determined from SANS experiments on SDS micelles at an SDS 

concentration of 50 mM.  
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Table 5.7 Comparison of the parameters used to obtained the best fit to the SANS data for the 

S20B14/5 microemulsion using two different hypotheses. 

Sample 
Rcore 

(Å) 

core 

axial 

ratio 

(x) 

δ 

(Å) 

RH-P 

(Å) 
Z 1/ k SSE 

major 

radius 

(Å) 

minor 

radius 

(Å) 

axial 

ratio 

(X) 

1
st
 hypothesis 12.3 1.7 7.6 24.5 20.6 0.040 145 28.1 19.9 1.4 

2
nd

 hypothesis 18.0 1.5 3.5 24.6 20.7 0.040 115 30.8 21.5 1.4 

 
1st hypothesis - core of the microemulsion consisted only of oil while the shell contained the 

whole surfactant molecule plus any associated counter-ions and any solvent in shell 

2nd hypothesis - core consisted of all oil molecules together with the surfactant tails while the 

shell was composed of the surfactant head groups along with any associated counter-ions and 

the water of hydration. 

Note that estimated uncertainly for the Rcore, x, RH-P, Z and 1/k were ± 0.2, ± 0.1, ± 0.1, ± 1.0, ± 

0.002 respectively. 

 

In addition, Figures 5.10 and 5.11 show the best fit to the SANS data obtained for 

S20B14/5 microemulsion with hypothesis one (Figure 5.10) where the core of the 

microemulsion consisted only of oil, while the shell contained the whole surfactant 

molecule plus any associated counter-ions and any solvent in shell and hypothesis two 

(Figure 5.11) where core consisted of all oil molecules together with the surfactant tails, 

while the shell was composed of the surfactant head groups along with any associated 

counter-ions and water of hydration. As can be seen, the SANS data obtained for 

S20B14/5 were fitted slightly better in the Q range of between 0.1 and 0.4 Å
-1 

when 

using the second hypothesis as opposed to the hypothesis one.  
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Figure 5.10 SANS data and best fit to the S20B14/5 microemulsion assumed that the core of 

the microemulsion consisted only of oil, while the shell contained the whole surfactant molecule 

plus any associated counter-ions and any solvent in shell. Measurement carried out on SANS2D 

at 25.0 ± 0.1 ºC.  
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Figure 5.11 SANS data and best fit to the S20B14/5 microemulsion core consisted of all oil 

molecules together with the surfactant tails, while the shell was composed of the surfactant head 

groups along with any associated counter-ions and the water of hydration. Measurement carried 

out on SANS2D at 25.0 ± 0.1 ºC. 
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As a consequence of this preliminary analysis, the second hypothesis in which the core 

consisted of all oil molecules together with the surfactant tails, while the shell was 

composed of the surfactant head groups along with any associated counter-ions and 

water of hydration was used to fit all the remaining microemulsion SANS data, namely 

S20B14/5-TP, S20C08/5 and S20C08/5-TP. 

Table 5.8 summarises the parameters used to obtain the fit to the SANS data obtained 

for SDS-stabilised microemulsions containing either EB or EC, with and without the 

presence of a saturation amount of TP, using an ellipsoidal model together with the 

Hayter-Penfold structure factor to account for the charged nature of the microemulsion 

droplets. For the SDS-stabilised microemulsion containing EB, as can be seen, there 

was only a relatively small increase in the value of Rcore in the presence of a saturation 

amount of TP. Furthermore, Figure 5.12 shows the SANS data and best fits for drop 

contrast of both the S20B14/5 and S20B14/5-TP microemulsion. As can be seen there is 

only a small difference in the SANS data between the two samples. As a consequence of 

the slight increase in the size of the core, there was a slight increase of the major radius 

of the whole microemulsion drop, from 30.8 to 35.4 Å, and an increase in the axial ratio 

of the microemulsion drop from 1.4 to 1.7, although the charge on the microemulsion 

drop in the presence of TP did not change. Similarly, a previous study by Hsieh (2010) 

found that the major radius and the drop axial ratio of 3 w/v% SDS microemulsions 

containing 2.25 w/v% of EB and 0.48 w/v% of TP were larger than the corresponding 

microemulsions without the presence of TP. 

 

Table 5.8 Summary of the fits of the drop contrast of microemulsions containing 4 w/w% of 

sodium dodecyl sulphate and either 2.8 w/w% of ethyl butyrate or 1.6 w/w% of ethyl caprylate 

with and without the presence of a saturation amount of testosterone propionate. Measurement 

carried out on SANS2D at 25.0 ± 0.1 ºC. 

Sample  
Rcore 

(Å) 

core 

axial 

ratio (x) 

δ  

(Å) 

RH-P 

(Å) 
Z 1/ k SSE 

major 

radius 

(Å) 

minor 

radius 

(Å) 

axial 

ratio 

(X) 

S20B14/5 18.0 1.5 3.5 24.6 20.7 0.040 115 30.8 21.5 1.4 

S20B14/5-TP 17.9 1.8 3.6 24.8 21.4 0.040 96 35.4 21.5 1.7 

S20C08/5 23.3 1.5 3.5 28.8 27.0 0.034 184 39.5 26.8 1.5 

S20C08/5-TP 24.6 1.7 3.5 29.1 31.4 0.035 295 44.2 28.1 1.6 

Note that estimated uncertainly for the Rcore, x, RH-P, Z and 1/k were ± 0.2, ± 0.1, ± 0.1, ± 1.0, ± 

0.002 respectively. 
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Figure 5.12 SANS data and best fit for the drop contrast of S20B14/5 and S20B14/5-TP 

microemulsions. Measurements carried out on SANS2D at 25.0 ± 0.1 ºC. 

 

Similarly, for the SDS-stabilised microemulsions containing EC there was a slight 

increase in the value of Rcore in the presence of a saturation amount of TP as well as a 

slight increase in the major and minor radii of the whole microemulsion drop from 39.5 

to 44.2 Å and from 26.8 to 28.1 Å, respectively. As a consequence the axial ratio of the 

microemulsion drop increased from 1.5 to 1.6. In contrast to the EB-containing 

microemulsions, the charge on the EC-containing microemulsion slightly changed, 

suggesting that the presence of TP might have some effect in the head group region of 

the microemulsion droplets. As can be seen in Figure 5.13, there is slightly stronger 

interparticle repulsion, which occurs in the Q range of between 0.05 and 0.06  Å
-1

, 

present in the EC than the EB-containing microemulsions. Note that, however, in order 

to establish the most reasonable fitting of SANS data of S20C08/5 microemulsion, the 

percent solvent in the shell of this microemulsion was fitted at 78 v/v%, using a head 

group length for SDS at 3.5 Å (Griffiths et al., 2005), even though the viscosity 

experiment (Table 5.6) indicated that the percent solvent in SDS shell of the EC-

containing microemulsions was  ~ 90 v/v%. 
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Figure 5.13 SANS data and best fit for the drop contrast of S20C08/5 and S20C08/5-TP 

microemulsions. Measurements carried out on SANS2D at 25.0 ± 0.1 ºC. 

 

Comparing the EB- and EC-containing SDS-stabilised microemulsions containing TP, it 

is clear that the microemulsions containing EC were larger in size. Although the SDS-

stabilised microemulsions containing EC in the absence of a saturation amount of TP 

were more asymmetric than those containing EB, it appears that the EC-containing SDS 

microemulsions become less asymmetric in the presence of TP. This observation may 

the result of EC forming a central core in the SDS-stabilised microemulsion drop, 

whereas it is probable that EB does not form a central core and as a consequence the 

EC-containing microemulsions have a greater capacity for dissolving TP than the 

microemulsions containing EB. Figures 5.14 and 5.15 show schematics representation 

of the molecular architecture of SDS-stabilised microemulsions containing EB and EC, 

respectively. 
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Figure 5.14 Schematic representation of the shape and molecular architecture of sodium 

dodecyl sulphate stabilised microemulsion droplets containing ethyl butyrate.  

 

 

Figure 5.15 Schematic representation of the shape and molecular architecture of sodium 

dodecyl sulphate microemulsion droplets containing ethyl caprylate. 
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5.6.2 Small angle neutron scattering data of microemulsions in the presence of 

griseofulvin nanoparticles 

The SANS profiles and the best fit to drop contrast for each microemulsion prior to 

mixing with the GF-NPs, microemulsion in contacting with the GF-NPs and 

microemulsion after separation, by centrifugation, from the GF-NPs after 24 h contact 

were determined to examine the stability of microemulsions when in the form of a 

NSME and whether or not the size and/or shape of microemulsions was altered. Note 

that the physical appearance of the supernatant of the NSME after centrifugation, 

namely the microemulsion showed no separation, for example no drops of oil on the top 

of the supernatant, regardless of its composition, whether it contained EB or EC, or TP 

or no TP. 

Table 5.9 and 5.10 summarise the parameters used to obtain the best fit for the drop 

contrast of the EB-containing SDS microemulsions, with and without the presence of a 

saturation amount of TP, using a core-shell ellipsoidal model together with the Hayter-

Penfold structure factor to account for the charged nature of the SDS-coated particles. 

As can be seen the best fit parameters, including the major radius, minor radius and the 

drop axial ratio of the SDS microemulsions containing EB regardless of the presence of 

TP, were largely unaltered when the GF-NPs were present and were only slightly 

smaller after separation from the GF-NPs by centrifugation.  As can be seen from 

Figures 5.16 and 5.17, the SANS data and the best fits for the drop contrast for the 

S20B14/5 and S20B14/5-TP microemulsions before mixing with the GF-NPs were very 

similar to the corresponding microemulsions after their separation from the GF-NPs 

after 24 h contact by centrifugation. 
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Table 5.9 Summary of the parameters used for the best fit to the drop contrast of 

microemulsions containing 4 w/w% of sodium dodecyl sulphate and 2.8 w/w% of ethyl butyrate 

prior to mixing to griseofulvin nanoparticles, after contacting to griseofulvin nanoparticles for 

differing periods of time and also after separation from griseofulvin nanoparticles by 

centrifugation after 24 h contact. 

Sample 
Rcore 

(Å) 

core 

axial 

ratio 

(x) 

δ 

(Å) 

RH-P 

(Å) 
Z 1/ k SSE 

major 

radius 

(Å) 

minor 

radius 

(Å) 

axial 

ratio 
(X) 

ME before 

mixing 

18.0 1.5 3.5 24.6 20.7 0.040 115 30.8 21.5 1.4 

ME at t=0 17.7 1.5 3.5 24.2 20.4 0.041 303 30.4 21.2 1.4 

ME at t=4 17.8 1.5 3.5 24.2 20.3 0.040 164 30.2 21.3 1.4 

ME at t=8 17.8 1.5 3.5 24.2 20.5 0.040 214 30.4 21.3 1.4 

ME at t=24 17.7 1.5 3.5 24.1 20.5 0.040 222 30.7 21.1 1.5 

ME after   

separation 

17.0 1.5 3.4 24.2 20.2 0.041 102 29.1 20.4 1.4 

Note that estimated uncertainly for the Rcore, x, RH-P, Z and 1/k were ± 0.2, ± 0.1, ± 0.1, ± 1.0, ± 

0.002 respectively. 

Table 5.10 Summary of the parameters used for the best fit to the drop contrast of 

microemulsions containing 4 w/w% of sodium dodecyl sulphate and 2.8 w/w% of ethyl butyrate 

in the presence of a saturation amount of testosterone propionate prior to mixing to griseofulvin 

nanoparticles, after contacting to griseofulvin nanoparticles for differing periods of time and 

also after separation from griseofulvin nanoparticles by centrifugation after 24 h contact. 

Sample 
Rcore 

(Å) 

core 

axial 

ratio 

(x) 

δ 

(Å) 

RH-P 

(Å) 
Z 1/ k SSE 

major 

radius 

(Å) 

minor 

radius 

(Å) 

axial 

ratio 
(X) 

ME before 

mixing 

17.9 1.8 3.6 24.8 21.4 0.040 96 35.4 21.5 1.6 

ME at t=0 18.3 1.7 3.7 24.6 21.7 0.040 251 35.3 22.0 1.6 

ME at t=4 18.2 1.7 3.7 24.6 21.7 0.040 113 35.2 21.9 1.6 

ME at t=8 18.2 1.7 3.7 24.6 21.8 0.040 130 35.2 21.9 1.6 

ME at t=24 18.1 1.7 3.7 24.6 21.7 0.040 180 35.1 21.8 1.6 

ME after  

separation 

17.3 1.8 3.5 24.4 20.9 0.040 107 33.8 20.9 1.6 

Note that estimated uncertainly for the Rcore, x, RH-P, Z and 1/k = ± 0.2, ± 0.1, ± 0.1, ± 1.0, ± 

0.002 respectively. 
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Figure 5.16 SANS data and best fit for the drop contrast of S20B14/5 microemulsions before 

mixing with the griseofulvin nanoparticles and after separation from the griseofulvin 

nanoparticles by centrifugation at 24 h. Measurements carried out on SANS2D at 25.0 ± 0.1 ºC. 
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Figure 5.17 SANS data and best fit for the drop contrast of S20B14/5-TP microemulsions 

before mixing with the griseofulvin nanoparticles and after separation from the griseofulvin 

nanoparticles by centrifugation at 24 h. Measurements carried out on SANS2D at 25.0 ± 0.1 ºC. 
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Table 5.11 and 5.12 summarise the parameters used to obtain the best fit to the drop 

contrast of SDS microemulsions containing EC, with and without the presence of a 

saturation amount of TP, using a core-shell ellipsoidal model together with the Hayter-

Penfold structure factor to account for the charged nature of the particles. As can be 

seen, the parameters used for the best fit, including the major radius and minor radius of 

the SDS microemulsions containing EC, with and without a saturation amount of TP, 

after separation from the GF-NPs by centrifugation, slightly decreased from those used 

to fit the corresponding microemulsions prior to mixing with the GF-NPs. Figure 5.18 

and 5.19 shows the SANS data and the best fit to the drop contrast of the S20C08/5 and 

S20C08/5-TP microemulsions before mixing with the GF-NPs and the same 

microemulsions after their separation from the GF-NPs by centrifugation at 24 h. As can 

be seen from Figures 5.18 and 5.19, the SANS data and best fits to the S20C08/5 and 

S20C08/5-TP microemulsions after separation from the GF-NPs by centrifugation at 24 

h were slightly different to those  obtained from the corresponding microemulsions prior 

to mixing with the GF-NPs.  

Interestingly, the size and the shape of the microemulsions, regardless of whether they 

contained EB or EC or TP, remained constant in the presence of GF-NPs for at least 24 

h contact time (longer time courses were not tested).  
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Table 5.11 Summary of the parameters used for the best fit to the drop contrast of 

microemulsions containing 4 w/w% of sodium dodecyl sulphate and 1.6 w/w% of ethyl 

caprylate prior to mixing to griseofulvin nanoparticles, after contacting to griseofulvin 

nanoparticles for differing periods of time and also after separation from griseofulvin 

nanoparticles by centrifugation after 24 h contact. 

Sample 
Rcore 

(Å) 

core 

axial 

ratio 

(x) 

δ 

(Å) 

RH-P 

(Å) 
Z 1/ k SSE 

major 

radius 

(Å) 

minor 

radius 

(Å) 

axial 

ratio 
(X) 

ME before 

mixing 

23.3 1.5 3.5 28.8 27.0 0.034 184 39.5 26.8 1.5 

ME at t=0 23.2 1.6 3.5 28.3 27.2 0.035 727 39.5 26.7 1.5 

ME at t=4 23.1 1.5 3.5 28.5 27.5 0.034 56 38.9 26.5 1.5 

ME at t=8 22.9 1.6 3.5 28.2 28.0 0.035 364 39.1 26.4 1.5 

ME at t=24  22.8 1.6 3.4 28.2 27.2 0.034 297 38.7 26.2 1.5 

ME after   

separation 

21.6 1.5 3.6 27.4 26.5 0.034 211 36.9 25.2 1.5 

Note that estimated uncertainly for the Rcore, x, RH-P, Z and 1/k were ± 0.2, ± 0.1, ± 0.1, ± 1.0, ± 

0.002 respectively. 

 

Table 5.12 Summary of the parameters used for the best fit to the drop contrast of 

microemulsions containing 4 w/w% of sodium dodecyl sulphate and 1.6 w/w% of ethyl 

caprylate in the presence of a saturation amount of testosterone propionate prior to mixing to 

griseofulvin nanoparticles, after contacting to griseofulvin nanoparticles for differing periods of 

time and also after separation from griseofulvin nanoparticles by centrifugation after 24 h 

contact. 

Sample 
Rcore 

(Å) 

core 

axial 

ratio 

(x) 

δ 

(Å) 

RH-P 

(Å) 
Z 1/ k SSE 

major 

radius 

(Å) 

minor 

radius 

(Å) 

axial 

ratio 
(X) 

ME before 

mixing 

24.6 1.7 3.5 29.1 31.4 0.036 295 44.2 28.1 1.6 

ME at t=0 24.4 1.6 3.5 28.6 30.7 0.035 874 43.5 27.9 1.6 

ME at t=4 24.3 1.6 3.5 28.6 31.8 0.037 257 43.3 27.8 1.6 

ME at t=8 24.2 1.6 3.5 28.6 31.9 0.037 183 43.1 27.7 1.6 

ME at t=24 24.2 1.6 3.5 28.6 31.8 0.037 236 43.2 27.7 1.6 

ME after   

separation 

22.5 1.6 3.5 27.7 30.4 0.037 284 40.3 26.0 1.6 

Note that estimated uncertainly for the Rcore, x, RH-P, Z and 1/k were ± 0.2, ± 0.1, ± 0.1, ± 1.0, ± 

0.002 respectively. 
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Figure 5.18 SANS data and best fit for the drop contrast of S20C08/5 microemulsions before 

mixing with the griseofulvin nanoparticles and after separation from the griseofulvin 

nanoparticles by centrifugation at 24 h. Measurements carried out on SANS2D at 25.0 ± 0.1 ºC. 
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Figure 5.19 SANS data and best fit for the drop contrast of S20C08/5-TP microemulsions 

before mixing with the griseofulvin nanoparticles and after separation from the griseofulvin 

nanoparticles by centrifugation at 24 h. Measurements carried out on SANS2D at 25.0 ± 0.1 ºC. 
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In comparison to the NSMEs consisting of GF-NPs and EB-containing SDS-stabilised 

microemulsions, with a saturation amount of TP, the size of the SDS-stabilised 

microemulsions containing EC in the presence of TP after separation from the GF-NPs 

by centrifugation after 24 h contacting slightly decreased when compared to the 

microemulsions before mixing to the GF-NPs. This result, which was far less noticeable 

in the case of the EB-containing microemulsions, may be a consequence of the fact that 

EC forms a central core in the SDS microemulsion leads to a greater level of TP 

solubilisation. These results suggest the movement of some TP molecules from the 

microemulsion to the GF nanoparticles where they displace GF molecules in 

nanoparticle as a consequence of TP and GF being solubilised at the same location in 

the microemulsion. In agreement with this hypothesis, the solubility of GF and TP in 

the supernatant comprised of EC-containing microemulsions after separation from the 

GF-NPs had changed to a greater extent than was seen with the EB-containing 

microemulsions, as shown in Figures 5.3 and 5.4. 

In summary, the size and shape of SDS-stabilised microemulsions containing either EB 

or EC in the absence of TP after 24 h contact with the GF-NPs, were unchanged 

compared to their parent microemulsions. In contrast, the corresponding 

microemulsions in the presence of TP did slightly alter after contact with the GF-NPs. 

Indeed in comparison to the SDS-stabilised microemulsions containing EC in the 

presence of TP, the corresponding EB-containing SDS-stabilised microemulsions 

incorporating TP may be more advantageous in terms of delivering poorly water-soluble 

drug as their size and shape after separation from the GF-NPs by centrifugation did not 

change much. In addition, the solubility of TP in EB-containing microemulsions after 

separation from the GF-NPs by centrifugation was comparable to its solubility in the 

corresponding microemulsions prior to their mixing with GF-NPs.  

 

5.6.3 Small angle neutron scattering of griseofulvin nanoparticles in the presence 

of a microemulsion 

In this study, contrast matching was used to make the various SDS-stabilised 

microemulsions ‘invisible’ to neutrons, thereby allowing the stability of the GF-NPs, 
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when in the form of a NSMEs for 24 h and the GF-NPs after their separation from the 

microemulsions after 24 h contact, to be established.  

Figures 5.20 and 5.21 show the SANS profiles of the GF-NPs before mixing with either 

the S20B14/5 or S20B14/5-TP microemulsions, the GF-NPs when in the form of 

NSMEs over time and the GF-NPs after their separation from the EB-containing 

microemulsions, by centrifugation, after 24 h contact. Figures 5.22 and 5.23 show the 

SANS profiles of the GF-NPs prior to their mixing with either the S20C08/5 or 

S20C08/5-TP microemulsions, the GF-NPs when in the form of NSMEs over time and 

the GF-NPs after their separation from the EC-containing microemulsions, by 

centrifugation after 24 h contact. 
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Figure 5.20 SANS profiles of griseofulvin nanoparticles prior to their mixing with S20B14/5 

microemulsions, the griseofulvin nanoparticles when in the form of NSMEs over 24 h and 

griseofulvin nanoparticles after their separation from the S20B14/5 microemulsion by 

centrifugation after 24 contact. Measurements carried out on SANS2D at 25.0 ± 0.1 ºC. 
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Figure 5.21 SANS profiles of griseofulvin nanoparticles prior to their mixing with S20B14/5-

TP microemulsions, the griseofulvin nanoparticles when in the form of NSMEs over 24 h and 

griseofulvin nanoparticles after their separation from the S20B14/5-TP microemulsion by 

centrifugation after 24 contact. Measurements carried out on SANS2D at 25.0 ± 0.1 ºC. 
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Figure 5.22 SANS profiles of griseofulvin nanoparticles prior to their mixing with S20C08/5 

microemulsions, the griseofulvin nanoparticles when in the form of NSMEs over 24 h and 

griseofulvin nanoparticles after their separation from the S20C08/5 microemulsion by 

centrifugation after 24 contact. Measurements carried out on SANS2D at 25.0 ± 0.1 ºC. 
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Figure 5.23 SANS profiles of griseofulvin nanoparticles prior to their mixing with S20C08/5-

TP microemulsions, the griseofulvin nanoparticles when in the form of NSMEs over 24 h and 

griseofulvin nanoparticles after their separation from the S20C08/5-TP microemulsion by 

centrifugation after 24 contact. Measurements carried out on SANS2D at 25.0 ± 0.1 ºC. 

 

As stated in Chapter 4, it was not possible to successfully fit the SANS data obtained for 

GF-NPs prior to their mixing with the microemulsions.  It was, however, possible to 

compare the slope of the SANS data obtained for the GF-NPs  to see if the NPs had 

remained stable. Indeed, the slope of all the GF-NPs during remained constant over the 

Q range of 0.03 and 0.4 Å
-1

, suggesting that no matter what the state of the GF-NPs 

was, they remained stable when in contact with the microemulsions. Furthermore, 

blowing up the SANS data (Figures 5.24-5.27) to more closely examine it, supported 

the comment that the slope of the SANS data for the GF-NPs remained constant. The 

main difference observed was the height of the slope, suggesting a ‘loss’ of NPs.  This 

difference was particularly noticeable with the GF-NPs after their separation from the 

microemulsions, a process which required centrifugation of the GF-NPs, their dilution 

and re-suspension. Consequently, this difference may be a result of the ‘sedimentation’ 

and/or the incomplete ‘re-suspension’ of a portion of the GF-NPs. Note that the SANS 

profiles obtained for the GF-NPs when in contact with the various microemulsions (i.e. 

S20B14/5, S20B14/5-TP, S20C08/5 and S20C08/5-TP) was much more variable. To 

confirm that the slope of the SANS data remained unchanged, the SANS data of the GF-

NPs after their separation from the microemulsions were multiplied by factors to get 
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them to the same ‘height’. In order to obtain the same ‘height’ the SANS data of the 

GF-NPs after separation from the various microemulsions (i.e. S20B14/5, S20B14/5-

TP, S20C08/5 and S20C08/5-TP) were multiplied with 1.4, 1.7, 2.0 and 2.2 

respectively. The results of this manipulation of the SANS data are shown in Figures 

5.24 – 5.27. As can be clearly seen, the slopes obtained after manipulation of the SANS 

data were identical to the SANS slope obtained for the GF-NPS prior to their mixing 

with the microemulsions, suggesting that some GF-NPs were ‘lost’ during their 

separation from the microemulsions and re-suspension. Note that the GF-NPs were 

indeed slightly difficult to re-suspending after centrifugation. As the neutron scattering 

intensity is influenced by the volume of scattering particles, it is possible that the 

apparent decrease in scattering intensity of the GF-NPs after their separation from the 

microemulsions was due to a loss of some NPs leading to a decrease in the volume of 

the GF-NPs. 
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Figure 5.24 SANS profiles of griseofulvin nanoparticles prior to their mixing with the 

S20B14/5 microemulsions, the griseofulvin nanoparticles after their separation from the 

S20B14/5 microemulsions and the griseofulvin nanoparticles after their separation from the 

S20B14/5 microemulsions multiplied by 1.4.  
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Figure 5.25 SANS profiles of griseofulvin nanoparticles prior to their mixing with the 

S20B14/5-TP microemulsions, the griseofulvin nanoparticles after their separation from the 

S20B14/5-TP microemulsions and the griseofulvin nanoparticles after their separation from the 

S20B14/5-TP microemulsions multiplied by 1.7. 
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Figure 5.26 SANS profiles of griseofulvin nanoparticles prior to their mixing with the 

S20C08/5 microemulsions, the griseofulvin nanoparticles after their separation from the 

S20C08/5 microemulsions and the griseofulvin nanoparticles after their separation from the 

S20C08/5 microemulsions multiplied by 2.0. 

 



Preparation of nanosuspomicroemulsions 

221 

Q (1/Angstrom)

0.01

I (
Q

) 
(c

m
-1

)

1

10

100

GF-NPs before mixing to S20C08/5-TP
GF-NPs after separation from S20C08/5-TP
GF-NPs after separation from S20C08/5-TP x 2.2

0.01 0.1 1

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

 

Figure 5.27 SANS profiles of griseofulvin nanoparticles prior to their mixing with the 

S20C08/5-TP microemulsions, the griseofulvin nanoparticles after their separation from the 

S20C08/5-TP microemulsions and the griseofulvin nanoparticles after their separation from the 

S20C08/5-TP microemulsions multiplied by 2.2. 

 

A comparison of the SANS profiles obtained for the GF-NPs after their separation from 

the S20B14/5 microemulsions in both the presence and absence of a saturation amount 

of TP and the SANS profiles of the GF-NPs after their separation from S20C08/5 again 

both in the absence and presence of a saturation amount of TP by centrifugation showed 

that they were much less in intensity than the GF-NPs prior to their mixing with the 

microemulsions, suggesting that, regardless of both the absence and presence of TP, the 

SDS-stabilised microemulsions containing EC were harder to re-suspended the GF-NPs 

after contact with these microemulsions. In good agreement with the results of the PCS 

measurements of the particle size of the GF-NPs after their separation from 

microemulsions, the GF-NPs that had been in contact with the EC-containing SDS 

microemulsions, both with and without a saturation amount of TP increased in size to a 

greater extent than those GF-NPs that had been in contact with the EB-containing 

microemulsions, both with and without a saturation amount of TP. As a consequence, it 

might be concluded that the GF-NPs after their separation from the microemulsions, 

especially the EC-containing SDS microemulsions were much more difficult to re-

disperse. It would be interesting; however, if other advanced techniques such as 

scanning electron microscope were used to further substantiate these observations. 
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Chapter 6 Conclusion and future 

prospects 

6.1 Conclusion 

Oil-in-water nanoemulsions, oil-in-water microemulsions and nanosuspensions are 

excellent candidates as drug delivery systems because of their many advantages, for 

example, their ability to protect drug, their ability to increase the bioavailability of 

hydrophobic drugs, their high drug solubilisation capacity, their long shelf life, and their 

ease of preparation and administration. Alongside this, combining drug therapies into 

one single, preparation has become a popular approach for the treatment of chronic 

diseases such as AIDS, diabetes and cardiovascular disease. As a consequence, the 

considerable benefits of oil-in-water nanoemulsions, oil-in-water microemulsions and 

nanosuspensions, have led us to the concept of combining two of these formulations 

into a single preparation for the delivery of two poorly-water soluble drugs for the 

personalisation of the medicine in respect to dosing. By combining two products in this 

way, it should be possible to reduce production costs, simplify disease management and 

improve patient compliance, amongst other things. The ultimate goal of this thesis, 

therefore, was proof of concept of the preparation of such novel combination 

formulations with a view to their intended use in personalised medicine. 

This thesis reports the results of the formation of the novel combination formulations, 

termed either a nanosusponanoemulsion (NSNE) when the system is composed of an 

oil-in-water nanoemulsion and containing the model drug testosterone propionate (TP) 

and a nanosuspension of griseofulvin nanoparticles (GF-NPs) or a 

nanosuspomicroemulsion (NSME), when the formulation was comprised of an oil-in-

water microemulsion containing the model drug testosterone propionate (TP) and a 

nanosuspension of griseofulvin nanoparticles (GF-NPs). In order to better understand 

the formation of these novel combination formulations, the physico-chemical behaviour 

of the component oil-in-water nanoemulsions, oil-in-water microemulsions and 

nanosuspension prior to their mixing was determined. The physico-chemical properties 

of either an oil-in-water nanoemulsion or an oil-in-water microemulsion and 
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nanosuspension in the form of a NSNE or NSME were determined. This 

characterization was performed using a wide variety of physico-chemical techniques, 

including phase behaviour, UV spectroscopy, phase inversion temperature, viscosity 

and dynamic light scattering. In addition, small angle neutron scattering in combination 

with contrast matching was extensively used to study the detailed molecular architecture 

of either the oil-in-water nanoemulsions or the oil-in-water microemulsions alone and in 

combination with a nanosuspension in the form of a NSNE and NSME.  

The apparent solubility of the poorly water-soluble, low dose drug, testosterone 

propionate (TP), can be improved by its solubilisation within oil-in-water 

nanoemulsions composed of the nonionic surfactant as Brij 97 and containing the oil, 

glyceryl trioctanoate (TON) and in oil-in-water microemulsions composed of the 

anionic surfactant, sodium dodecyl sulphate (SDS), and containing one of the ethyl ester 

oils, namely ethyl butyrate (EB) or ethyl caprylate (EC). Indeed, many factors including 

the nature of the surfactant, the structure and molecular volume of oil have an influence 

on the drugs solubilisation capacity. Nanoparticles containing the poorly-water soluble, 

high dose drug, namely griseofulvin (GF) could be produced by wet bead milling using 

an anionic surfactant, here SDS. The optimum amount of SDS required for stable GF 

nanoparticle production was established to be 1.5 wt%.  

Light scattering was used to study Brij 97-stabilised nanoemulsions, with and without a 

saturation amount of TP. (Note that SDS-stabilised microemulsions are practically very 

difficult to study using light scattering due to their very small size and highly charged 

nature.) The light scattering measurements indicated that the particle size of the Brij 97-

stabilised nanoemulsions increased with increasing oil concentration and in the presence 

of a saturation amount of TP. In terms of nanoemulsions stability, Brij 97-stabilised 

nanoemulsion containing 0.3 wt% of TON was found to be more stable than those 

containing 0.5 wt% TON due to a growth in size of the latter nanoemulsions over time, 

most probably due to Ostwald ripening. 

After mixing either Brij 97-stabilised nanoemulsions or SDS-stabilised microemulsions 

with the GF-NPs, the solubility of TP in the case of Brij 97-stabilised nanoemulsion 

containing the low concentration of TON before and after mixing with the GF-NPs was 

about the same suggesting that TP and GF might be incorporated in different sites in 

Brij 97-stabilised nanoemulsion containing low amounts of TON. While the solubility 
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of TP in SDS-stabilised microemulsions containing either EB or EC after mixing with 

the GF-NPs was less than the solubility of TP in the same microemulsions prior to their 

mixing with the GF-NPs, suggesting that TP and GF might be incorporated in the same 

site in SDS-stabilised microemulsions.  

In addition, the particle size of the GF-NPs when in the form of either a NSNE or 

NSME was determined by PCS, although light scattering has a major limitation when 

measuring particle size in turbid samples. In addition, assessing the particle sizes of the 

NSNEs and NSMEs using light scattering is complicated due to the presence in these 

novel combination formulations of two populations of particle size. As a consequence, 

small angle neutron scattering (SANS) was used to determine the particle size of the 

Brij 97-stabilised nanoemulsions, the SDS-stabilised microemulsions and the GF-NPs 

in situ in the form of a NSNE or a NSME using contrast matching. 

Both the shape and size of either Brij 97-stabilised nanoemulsions or SDS-stabilised 

microemulsions when in the form a NSNE or a NSME using contrast matching were 

determined by SANS. The results showed that the shape of Brij 97-stabilised 

nanoemulsions were oblate ellipsoid while the shape of SDS-stabilised microemulsions 

were prolate ellipsoid. Furthermore, the droplet size of the Brij 97-stabilised 

nanoemulsions increased in size as the concentration of the oil was increased and in the 

presence of a saturation amount of TP. The droplet size of the SDS-stabilised 

microemulsions containing either EB or EC was larger in a presence of a saturation 

amount of TP. In addition, the SANS experiments showed that the apparent drop size of 

the Brij 97-stabilised nanoemulsion containing the low amount of TON did not change 

after separation from the GF-NPs for 24 h compared to their size prior to mixing with 

the GF-NPs. In contrast, however, the size of the SDS-stabilised microemulsions 

containing EC after separation from the GF-NPs for 24 h, slightly decreased when 

compared to their size prior to mixing with the GF-NPs. This size decrease was far less 

noticeable in the case of the EB-containing microemulsions. Moreover, the size of the 

GF-NPs after separation from either the Brij 97-stabilised nanoemulsion containing the 

low amount of TON or the SDS-stabilised microemulsions containing either EB or EC 

did not change, even though the scattering intensity of the GF-NPs fluctuated due to the 

difficulty of re-suspending the GF-NPs. It can be concluded, however, that the GF-NPs 

that had been in contact with the Brij 97-stabilised nanoemulsion containing a low 
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amount of TON were re-suspended easier than those that had been in the presence of 

SDS-stabilised microemulsions containing either EB or EC. 

In conclusion, the studies detailed in the present thesis confirm the proof of principle of 

the novel combination formulations (i.e. the NSNE and the NSME). Overall, based on a 

consideration of particle size, particle size stability and drug solubilisation capacity of 

the novel system, the NSNE comprising an oil-in-water nanoemulsion comprising of 2.4 

wt% of Brij 97 and 0.3 wt% of TON when mixed with the GF-NPs stabilised by 1.5 

wt% SDS were the most promising combination formulation. This combination 

formulation might be useful for the delivery of two poorly water-soluble drugs in one 

preparation suitable for use in personalised medicine.  

 

6.2 Future prospects 

In addition to the novel combination formulations developed in the present study, a 

short study using a second high dose drug, namely indomethacin (IND), and low dose 

drug, namely testosterone propionate (TP), was performed. This novel combination 

formulation was composed of indomethacin nanoparticles (IND-NPs) stabilised by 1.5 

wt% of the nonionic polymer namely polyvinylpyrrolidone 30 (PVP 30) and an oil-in-

water nanoemulsion stabilised by the nonionic surfactant, Brij 97, and glyceryl 

trioctanoate (TON) as oil and incorporating the poorly-water soluble drug, TP. 

Observations from this preliminary study showed that the particle size of the IND-NPs 

as determined by PCS when in the form of a combination formulation was the same as 

prior to their mixing with the nanoemulsion. This result might be a consequence of the 

fact that both stabilisers used were both nonionic molecules. In contrast, however, the 

particle size of the nanoemulsion after contact with the IND-NPs was increased 

compared to its size prior to mixing with the IND-NPs. Interestingly in terms of drug 

solubilisation, the solubility of TP in the nanoemulsions after contact with the IND-NPs 

remained constant compared to the solubility of TP in the nanoemulsions prior to their 

mixing with the IND-NPs. Again this observation might be a consequence of the fact 

that both stabilisers are nonionic molecules, either a surfactant or a polymer coupled 

with differences in the location of IND and TP in nanoemulsion droplets. These results 
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also support the importance of carefully formulating these novel combination 

formulations.  

Based on the results reported in the thesis a series of preliminary guidelines can be 

drawn up to successfully formulate the novel combination formulations:  

a) the amount of drug incorporated in the nanoemulsion/microemulsion 

formulations should be more than the minimum required for a patient, 

b) the stabiliser used for nanoemulsion production should not be as same as that 

used to stabilise the nanoparticle,  

c)  the stabiliser used for nanoparticle formation should not be used to prepare either 

the nanoemulsions or the microemulsions,  

d) both of the poorly-water soluble drugs should not be solubilised in the same 

location in the  nanoemulsion or microemulsion and  

e) the greater the water insolubility of the drug, the more appropriate it is to be 

incorporated in the novel combination formulation.  

The goal of personalised medicine is the right drug for the right person at the right time 

in order to avoid drug adverse reactions, to eliminate invalid therapy, to improve 

efficiency of treatments, and thereby achieving optimal health outcomes. In order to 

exploit the benefits of personalised medicine, different dose combinations will be 

required for different patients. The novel combination formulations present in the 

present thesis aims to do just that. It would be of benefit if the two parent preparations 

(i.e. a nanoemulsion/microemulsion and a nanosuspension) could be in the form of an 

anhydrous preparation, which could be reconstituted upon the addition of water. Freeze-

drying is one means of preparing anhydrous pre-concentrate forms of both the 

nanoemulsion/microemulsions and nanosuspension. The advantages of this would be 

the ability to reconstitute the original liquid systems after storage in a dry form which 

would reduce the cost of transportation and allow a longer shelf life. Consequently, a 

preparation of anhydrous forms of these two formulations (i.e. a 

nanoemulsion/microemulsion and a nanosuspension) would be of interest in further 

studies.  
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Furthermore, additional possible studies could usually focus on: 

a) gaining an understanding of the interactions between stabilisers from the 

different component formulations.  

b) varying the ratio of the amount of the oil-in-water nanoemulsion or the oil-in-

water microemulsion and the nanosuspension to optimize the formulation for use 

in personalised medicine. 

c) examining a range of poorly water-soluble drugs that could be incorporated 

within either the oil-in-water nanoemulsion or the nanosuspension in order to 

understand the influence of the drugs on the stability of the novel combination 

systems. Table 6.1 shows examples of combinations of high dose drug and low 

dose drug on the market to treat patients with diabetes type II, HIV and 

hypertension using oral administration. The most interesting combination to 

study would be the combination of verapamil and trandolapril as their solubility 

in water in Table 6.1 are the lowest in the table at 0.00394 and 0.0207 mg/mL, 

respectively. 

 

Table 6.1 Examples of high dose drug and low dose drug combinations for oral administration 

in the market  

Disease 
Brand 

name 
Combination of drugs dosage 

Diabetes type II Kazano alogliptin /metformin 12.5 mg/500 mg 

12.5 mg/1000 mg 

a) Invokamet  canagliflozin/metformin 50 mg/500 mg 

Janumet sitagliptin/metformin 50 mg/500 mg 

HIV Eviplera  

 

rilpivirine/emtricitabine/ 

tenofovir disoproxil 

25 mg/200 mg/ 

245 mg  

Hypertensive  Aldoril methyldopa/ hydrochlorothiazide 250 mg/15 mg, 

250 mg/25 mg, 

500 mg/30 mg, 

500 mg/50 mg 

Tarka verapamil/trandolapril 180 mg/2 mg, 

240 mg/1 mg, 

240 mg/2 mg 
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An understanding of these properties should enable us to more successfully formulate 

the combination formulations containing two poorly water-soluble drugs for use in 

personalised medicine.  
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Appendix A Supplementary UV/VIS 

spectroscopy results 

Calibration curve of griseofulvin in isopropanol by UV/Vis spectroscopy 

Figure A1 and A2 showed the absorbance when scanning to find out the maximum 

wavelength at vary concentration of griseofulvin in isopropanol which were 2, 4, 6, 8, 

10, 12 and 14 µg/ml. As the result, griseofulvin presented λmax at 292 nm However, the 

absorbance when scanning to find out the maximum wavelength at vary concentration 

of testosterone propionate in isopropanol which were 5, 10, 15, 20, 25 and 30 µg/ml as 

shown in Figure A3 and A4. As the result, testosterone propionate presented λmax at 240 

nm. So that the wavelength at 292 and 240 nm will be chosen to measure the solubility 

of griseofulvin and testosterone propionate, respectively. 
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Figure A1  UV/Vis spectra of varying griseofulvin concentrations in isopropanol. 
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Figure A2 The absorbance of griseofulvin concentration in isopropanol at 2, 4, 6, 8, 10, 

12 and 14 µg/ml at the wavelength 292 nm (mean ± SD, n=9), error bars within size of 

symbol. 
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Figure A3 UV/Vis spectra of varying testosterone propionate concentrations in 

isopropanol.  
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Figure A4 The absorbance of testosterone propionate concentration in isopropanol at 5, 

10, 15, 20, 25 and 30 µg/ml at the wavelength 240 nm (mean ± SD, n=9), error bars 

within size of symbol. 
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Appendix B Supplementary density 

measurements  

Table B1 Density values and partial specific volumes of micellar, nanoemulsion and 

microemulsion solutions at 25 ºC. (mean ± SD, n =9) 

Sample Density (g/cm
3
) Partial specific volume (cm

-3
/g

-1
) 

Brij 97 0.9980 ± 0.0012 0.969 

B24T3/10 0.9986 ± 0.0015 0.936 

B24T3/10-TP 0.9990 ± 0.0018 0.919 

B24T5/10 0.9989 ± 0.0013 0.924 

B24T5/10-TP 0.9991 ± 0.0016 0.924 

SDS 1.0021 ± 0.0002 0.832 

S20B14/5 1.0003 ± 0.0009 0.919 

S20B14/5-TP 1.0010 ± 0.0003 0.901 

S20C08/5 1.0006 ± 0.0005 0.896 

S20C08/5-TP 1.0018 ± 0.0004 0.881 
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