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Abstract 

The cutaneous T-cell lymphomas (CTCLs) mycosis fungoides (MF) and Sézary syndrome (SS) are 

T-cell malignancies affecting the skin. The heterogeneous genomic landscape of CTCL has 

hindered the identification of driver genes. However, maturing sequencing technologies and 

candidate gene studies of chromosomal hotspots such as 9p21 can be used to identify putative 

driver events. The aims of this thesis were to investigate: (i) if MTAP (found on 9p21) 

undergoes selective loss; (ii) if MTAP loss affects dimethyl-arginine status; and (iii) identify 

putative driver genes of CTCL. Tumour samples from 280 CTCL patients were analysed by QPCR 

for copy number changes across 9p21. There is a high propensity for MTAP loss (34%) 

occurring independently of CDKN2A loss (12%) across all CTCL stages. Expression of MTAP 

mRNA was measured by QPCR in 20 tumours, reduced MTAP mRNA coincides with MTAP loss. 

However, reduced mRNA also occurs in tumours without MTAP loss indicating selective 

pressure to silence MTAP. Genomic screening indicates that mutations are rare in CDKN2A and 

MTAP in CTCL suggesting that epigenetic mechanisms may be repressing MTAP expression. 

Promoter methylation studies in CTCL cell lines suggest aberrant methylation inhibits MTAP 

expression. Knock-down of MTAP by RNAi in HEK293 cells suggested protein-arginine 

methylation maybe reduced in MTAP absence; though further confirmation is required. A 

genomic screen of 101 tumours and 32 healthy controls, including 10 germline matched whole 

exomes and 91 tumours undergoing targeted sequencing was used to probe for driver events. 

Novel putative drivers identified include: genes which maintain genome integrity; POT1 (14%) 

and BRCA2 (14%), master epigenetic regulators; ASXL3 (8%) and KDM6A (6%), and 

programmed cell death regulators; PDCD11 (35%) and TRPM3 (11%). In conclusion, putative 

driver events of CTCL have been identified using; (i) targeted analysis of a candidate region to 

identify selective pressure silencing MTAP; and (ii) a genomic sequencing approach to define a 

shortlist of genes. 

  



10 
 

Abbreviations 

BCNU – Bis-chloroethylenitrosourea 

BER – Base excision repair 

CTCL – Cutaneous T-cell lymphoma 

CNV – Copy number variations 

DDR – DNA damage response 

DISC – Death inducing signalling complex 

DSB – Double stranded break 

ECM – Extra-cellular matrix 

ECP - Extracorporeal photophoresis 

FP – False positive 

FN – False negative 

HC – Healthy control 

HDAC – Histone deacetylase  

HR – homologus recombination 

INDEL – Insertion or deletion 

LOH – Loss of heterozygousity 

MCC – Mathews correlation coefficient  

MF – Mycosis fungoides 

MMR – Missmatch repair 

MPS – Massively parallel sequencing 

MSP – Methylation specific PCR 

MTA – Methylthioadenosine 

NER – Nucelotide excision repair 

NHEJ – Non-homologus end joining 

NGS – Next generation sequencing 

PBMC – Peripheral blood mononucleocyte 

PBS - Phosphate buffered saline 

PCD – Programmed cell death 

PCR – Polymerase chain reaction 

PUVA – Psoralen and UVA 

ROS – Reactive oxygen species 

RPMI – Roswell Park Memorial Institute 

SNV – Single nucleotide variation 

SS – Sézary syndrome 



11 
 

TBST – Tris buffered saline and 1% tween 

TC – Targeted capture 

TCR – T-cell receptor 

TN – True negative 

TP – True positive 

VAF – Variant allele frequency 

WES – Whole exome sequencing 

WT – Wild type 

  



12 
 

1 Introduction 

1.1 Cutaneous T-cell lymphoma overview 

Cutaneous T-cell lymphomas (CTCL) are a rare group of extra nodal, non-Hodgkin lymphomas 

(1). There are a variety of subgroups of CTCL which exhibit wide phenotypic heterogeneity 

varying by their histopathological, clinical, immunophenotypic and genetic features (1, 2). 

Though a heterogeneous disease group, all CTCLs are a malignancy of mature, skin homing T-

lymphocytes which maintain a persistent effect on the skin (2). The overall incidence of CTCLs 

has been observed at 4.1/1,000,000 people per year (3), though discrepancies may appear in 

the literature which are likely due to differences in patient cohorts used to assess the 

incidence, as well as the demographic and genetic background of the population from which 

the cohort was described. The most common CTCL subgroups are mycosis fungoides (MF) and 

Sézary syndrome (SS) (4) which together will be the focus of this PhD thesis.  

1.2 Mycosis fungoides background 

The name ‘mycosis fungoides’ is related to the mushroom like appearance of the nodules in 

the tumour stage of the disease (Figure 1.1)(2) and  was first recognized over 2 centuries ago 

by Alibert and Bazin (2, 4). The incidence of MF is estimated to be between 0.36-0.90 cases per 

100,000 people per year (5, 6). The median age of patients at diagnosis is 57 years although 

MF can occur in children and adolescents (2, 4). There is a higher incidence in people of African 

descent (1) and a gender bias in MF with males at greater risk than females (2:1)(7). The 

clinical course of MF is generally indolent with a disease specific 5 year survival of 88% (4), 

although this is dependent on disease stage; patients with stages IA, IB and IIA typically survive 

over 15 years whereas IIB and more advanced stages have median survival less than 5 years 

(3). A small subset of MF patients progress to develop advanced stage disease which will be 

discussed in later sections. (See table 1 for summary of disease features) 
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Figure 1.1 MF stages of progression  
(A) Patch (B) Plaque (C) Tumour. Adapted from: An. Bras. Dermatol. vol.87 no.6 Rio de Janeiro 
Nov./Dec. 2012. 
 

The early phenotype of MF presents scaly patches and plaques which occur in multiple sun 

protected regions of the skin such as the proximal extremities and the trunk (8)( Figure 1.1). 

Early MF bears a resemblance to benign skin disorders such as psoriasis, eczema or contact 

dermatitis and these features, in combination with its low incidence, means MF can remain 

undiagnosed for many years (2). Progression from stage I or II MF to stage III or IV disease 

occurs in 20% of patients (9). Those MF patients who show disease progression show a 

significantly reduced survival with median typically less than five years (3). The later stages of 

MF present with multiple patches and plaques as well as ulcerated tumours, erythroderma and 

leukemic involvement, with some patients showing involvement of the visceral organs and 

lymph nodes (4, 7). 

Histological features of MF are dependent on disease stage, with the earlier patch stage 

showing band-like infiltrates of histiocytes and lymphocytes (4). The tumour cells are atypical, 

with a characteristic ceribreform nucleus and are restricted to the epidermis 

(epidermotrophism) colonizing the basal layer (10). In plaques, intra-epidermal aggregates of 

tumour cells form around Langerhans cells in a classic feature of MF known as Pautrier 

microabsesses (Figure 1.2)(2, 11). Though Pautrier microabsess formation does not occur in all 

cases, epidermotrophism is generally more pronounced (4).   
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Figure 1.2 Pautrier micro-abscess.  
Histological section showing MF T-cell infiltrates. The arrow indicates a Pautrier micro-abscess. 
Adapted from (Willemze et al 2005) WHO-EORTC classification for cutaneous lymphomas 
(Willemze et al, 2005). 
 

A marked increase in the size and number of tumour cells occurs in tumour stage MF (12). In 

addition a range of cells with cerebriform nuclei may be present in the lesion along with blast 

cells with prominent nuclei (4). Cells with cerebriform nuclei are also known as Sézary cells and 

are a feature shared with Sézary syndrome (Figure 1.3). Epidermotrophism may be lost as 

aggregates of tumour cells become more diffuse (4). 

 

 

Figure 1.3 A Sézary cell.  
Electron micrograph showing the characteristic irregularly shaped ‘cerebriform’ nucleus. This is 
a hallmark feature of all stages of MF and SS, blast cells also become more numerous in 
advanced stages of mycosis fungoides. 
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The immunophenotype of MF tumour cells is somewhat variable but broadly consistent with a 

mature memory T-cell phenotype presenting CD2+, CD3+, CD5+ and either CD4+/CD8- or CD4-

/CD8+ (4, 13). Neoplastic cells often lack the expression of T-cell markers such as CD7 and 

CD26 (14, 15). In MF plaques and tumours the normal CD4+/CD8+ T-cell ratio may become 

elevated from 2:1 to >4:1 (2). Large cell transformation with CD30+ or CD30- can occur and is 

associated with worse prognosis for life expectancy with median survival for those diagnosed 

with large cell transformation being 37 months verses 163 months for the untransformed 

group (12, 16).  

A diagnosis of MF is dependent on a range of criteria and varies according to disease stage. 

Clinically, the presence of asymmetrical, persistent, irregular erythematous lesions on sun-

protected areas must be observed along with failure to respond to conventional treatments 

(13). Histopathologically, superficial lymphoid infiltrates with epidermotrophism, without 

spongiosis and/or hyperchromatic, cerebriform nuclei and the accompanied detection of a T-

cell clonal rearrangement (10, 17). 

CTCLs express CD4 in the majority of cases (18).Other immunopathological diagnostic criteria 

include, CD2, 3, 5 expression in <50% T-cells, or CD7 expression in <10% T-cells, or epidermal 

discordance from expression of CD2, 3, 5 or 7 on dermal T-cells (3, 17). Reduction or loss of 

CD7 is often the first CD marker to lose expression in CTCL .(19). Diagnosis can be guided 

histologically by the presence of pautrier microabsesses which are strong criteria for diagnosis, 

however these occur infrequently (4). For cases of erythrodermic MF, multiple skin biopsies 

are usually required and additionally where progression has advanced to a leukemic state, 

biopsies of enlarged lymph nodes are often used as support (20, 21) with the detection of an 

identical T-cell clone in the circulating blood (10).  

The genotype of MF is heterogeneous with complex karyotypes. The composite of gains and 

losses from studies investigating structural variation in MF indicate that large regions of the 

genome have been affected (22-26). (See table 2 for summary of common chromosomal 
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alterations in MF) These alterations overlap between studies and chromosomal ‘hotspots’ 

appear between cohorts but the foci and specific sites of structural alteration are somewhat 

variable. This indicates that there is no single underlying structural variation driving the disease 

and that genomic instability is a general characteristic. Chromosomal regions affected by CNVs 

often contain genes known to play a prominent role in cancer such as TP53 and members of 

the JAK/STAT family on chromosome 17 (22, 24, 26), CDKN2A on chromosome 9 (22, 23, 25-

27) and MYC on chromosome 8 (22, 23, 26) to name some of the better known candidates. 

However, numerous other genes, including many of unknown function can be found within MF 

structural genomic alterations. 

Recent next generation sequencing (NGS) studies have confirmed and extended the earlier 

work and identified key mutations as well as CNVs (28-30) involved in MF. Heterogeneity is 

consistent and the most plausible explanation for how MF manifests is at the pathway level 

where alterations in key gene regulatory networks and signalling cascades drive the T-cell 

towards an MF phenotype. Considerable discussion will be devoted to signalling cascades and 

pathways later in the thesis. 

1.3 Sézary Syndrome background 

The French dermatologist Albert Sézary was the first to recognize SS in 1938 (31). This variant 

of CTCL has a significantly lower incidence than MF, occurring at a rate of just 0.3 cases per 

100,000 (32). However, the age of onset is similar at 55-60 years and the higher risk of 

development in males is skewed similarly to MF at 2:1 (32). The prognosis of SS patients is 

considerably worse than MF with a median survival of just 3.13 years after diagnosis (3) and 

only 24% surviving more than 5 years (4). (See table 1 for summary) 

A widespread, red, inflammation affects the entire skin in SS patients and is known as 

erythroderma (Figure 1.4) (4). This often co-occurs with exfoliation and lichenification and is 

intensely pruritic (4). Other common phenotypic features include; alopecia, onychodystrophy, 

palmoplantar hyperkeratosis, lymphadenopathy and edema (33).  
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Figure 1.4 Erythroderma in a Sézary syndrome patient.  
A hallmark feature of SS is that the entire skin is involved. 

 

A key feature of SS is that, as a leukaemic tumour type, the neoplastic cells are present in the 

circulating blood (3, 4). However, the skin histopathology of SS shares considerable overlap 

with MF with both presenting atypical, hyperchromatic, ceribriform nuclei of T-cell origin (4). 

However, SS can show more monotonous cellular infiltrates and absent epidermotrophism (4). 

Biopsies from SS patients can be non-specific in up to 1/3 of cases (34, 35). Lymph node 

biopsies from affected nodes show effaced architecture with high numbers of infiltrated 

Sézary cells (36). Additionally, some patients present with sparse, interstitial infiltrates in the 

bone marrow (37).  

Much like MF, the immunophenotype of SS tumour cells can be inconsistent but often show a 

CD3+ and CD4+ antigens but are CD8- (4). Furthermore the neoplastic cells usually do not 

express CD7 and CD26 (38). Expression of many common markers can vary although subsets of 

SS cells that express PLS3 are consistently associated with loss of CD26 expression (39). 

For a diagnosis of SS, patients must present with erythroderma, generalized lymphadenopathy 

and an identical neoplastic T-cell clone in the peripheral blood, skin and lymph nodes (33). 

More recently additional criteria have been added to guide diagnosis including; a Sézary cell 
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count in the peripheral blood of >1000 cells per mm3; a T-cell population with a CD4/CD8 of 

>10; loss of normal T-cell antigen expression including CD2, CD3 and CD5 (38). 

Much like MF, complex and heterogeneous chromosome alterations are a hallmark genetic 

feature of SS (26, 40). (See table 2 for summary of common chromosomal alterations in SS) 

Some karyotypes are more common than others such as 8q gain (25, 41-43), 9p21 losses (27, 

44), 10q losses (25, 26, 40-42, 45-47), 17p losses (25, 26, 41, 42, 47, 48) and 17q gains (25, 26, 

40-42, 48) . Studies have shown alterations are common in these key chromosomal regions but 

a predictive pattern that is clearly driving disease is lacking. Recent NGS studies have shown 

that both CNVs and mutations affect genes that are likely drivers of the disease (16, 29, 49-51). 

However, these recent high resolution studies confirm that, much like MF, considerable 

heterogeneity occurs between different SS tumours, implying that there are multiple possible 

genetic routes that converge on an SS phenotype. It seems plausible that at the level of gene 

regulatory networks and signalling pathways, the diverse genotype seen in the disease group 

consolidates and manifests itself as perturbations in key pathways controlling the phenotype 

of the T-cell. Considerable discussion will be devoted to gene regulatory networks and 

signalling cascades later in the thesis. 

1.4 Similarities and differences between MF and SS 

Both MF and SS are both subgroups of CTCL (4) and between them represent 65% of CTCL 

cases (4). Both tumour types are of mature T-cell origin and express CD4 and CD5RO but have 

lost expression of other markers associated with mature T-cells (4, 52). Currently SS is 

regarded as a distinct erythrodermic disease entity to MF (34) and is leukaemic by definition 

(38). Later stages of MF can become leukaemic as well and meet clinical criteria to meet a 

diagnosis of SS but are classified separately (4, 52). A prior diagnosis of MF leading to 

leukaemic involvement is known as ‘secondary SS’ or ‘SS preceded by MF’ (53). There is some 

evidence that different cell surface markers can be expressed between MF and SS which 

appear to be consistent with different tissues of origin. One study demonstrated MF clones 
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lacked expression of CCR7, CD62L and the differentiation marker CD27 but strongly express 

CCR4 and CLA which is suggestive of cells derived from skin resident effector memory T-cells. 

In contrast clonal cells from SS patients universally expresses CCR7, CD62L and CD27 

suggesting they are more likely to be derived from central memory T-cells (54). (Summarised in 

table 1) 

It has been established that at the genomic level both MF and SS tumour cells feature complex 

chromosomal rearrangements (25, 28, 31, 50). Similar rearrangements are shared by both 

disease groups (26) although some rearrangements appear to be more common in MF than SS 

and vice versa. The heterogeneity at the genetic level of both diseases is ironically the most 

consistent feature, however genes rarely function as single entities and gene regulatory 

networks are commonly perturbed in both disease groups. 
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Table 1. Summary of features of MF and SS  
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Table 2. Common chromosomal changes associated with MF and SS  
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1.5 Treatment of MF and SS 

In MF, if disease is confined only to the skin then the most commonly used therapies are 

photochemo-therapy such as PUVA (psoralen and UVA), topical application of carmustine 

(BCNU) or nitrogen mustard, or radiotherapies such as total skin electron bean irradiation (55, 

56). For patch stage MF treatment can include bexarotene gel or topical steroids, biological 

treatment including interferon alpha or IL12 or receptor targeted cytotoxic fusion proteins 

such as DAB389 IL2  (55, 57, 58). Multi-agent chemotherapy is generally used for later stage 

disease but not in early stages (59). 

In SS treatment is of limited use but some patients respond to treatment such as 

extracorporeal photophoresis (ECP), often in combination with interferon alpha (60, 61). Other 

treatments used include PUVA, low dose chlorambucil, prednisone, methotrexate, bexarotene, 

alemtuzumab (55, 58, 62) but none appears to be of great benefit.  

Other treatments for CTCL include HDAC inhibitors such as Romidepsin (63) and Vorinostat 

(64) which attempt to alter the epigenetic landscape and hence gene expression patterns. The 

most effective treatment option for late stage CTCLs to date remains to be allogenic 

haematopoietic stem cell transplantation (65). Whilst often effective, this approach tends to 

be reserved for younger patients due to risk factors involved. 

As our understanding of the biological mechanisms underlying CTCL grows, there has been an 

increasing shift toward the use of targeted biological therapies; the development of HDAC 

inhibitors is an example of this. This approach is currently in its infancy in all malignancies but 

holds much promise. However, in order to maximise success, an increased understanding of 

malignancies at the molecular level must be sought including an understanding of genes, their 

normal functions and expression patterns and how CNVs and mutations can drive cancer. 
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1.6 Early genomic studies of MF and SS 

Much of the constellation of genomic structural alterations in CTCL was observed prior to the 

more recent NGS studies. Lower resolution array based studies, including studies from our 

research group began to establish regions of gain and loss in a number of key regions such as 

chromosomes 1p, 4, 6q, 7, 8q, 9p21, 10, 13q, 17 and 19 (24, 26, 41, 42, 44, 66). Further studies 

using array based methods confirmed existing data (25, 48) demonstrating that losses and 

gains in these regions were reproducible between datasets and therefore fairly common. 

Some of the early work was able to correlate specific chromosomal alterations with prognosis 

such as 8q gain, 6q loss and 13q loss with shorter survival (42) and 9p21 loss and 1q21-1q22 

gain with worse prognosis in MF (23). A more recent study was able to further refine the 

genomic regions that correlate with poor survival to 8q24.21, 9p21.3 and 10q26qter (22). 

Though array based studies highlighted many regions of structural alterations and CNVs, what 

was predominantly lacking was resolution to identify individual genes as large regions contain 

far too many to all be considered a definitive list driving tumourigenesis, the large scale 

changes often observed on chromosome 17 are a good example of where it can be challenging 

to identify specific genes. Some areas are an exception to this and minimal affected regions 

were identified such as cMYC on chromosome 8q24, loss of MNT on 17p13 and loss of MXI1 on 

10q25 (25, 41). Another important area that seems to be regularly compromised in CTCL by a 

minimally affected region is 9p21 which was first reported in CTCL in 2002 (44). This region has 

been reduced to a minimal region of 9p21.3 and includes the genes MTAP, CDKN2A and 

CDKN2B and has come up in several major CTCL genomic studies since it was first connected to 

the disease (22, 23). The small number of genes in these regions, which are also linked to 

prognosis, is intriguing and highlights the importance of further investigation. The 9p21 region 

will be a key focus of investigation and discussion in this thesis. 
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1.7 The driver mutation model of cancer 

The development of CTCLs, like all cancers seem to involve the accumulation of multiple rate 

limiting steps (67), progression through each step is similar in principle to Darwinian evolution. 

In this model surpassing each step is supported by the acquisition of genetic events which 

confer a selective growth advantage upon its host cell over neighbouring cells in an 

increasingly heterogeneous population. The genetic events range from simple point mutations 

to whole chromosome duplications (68). This process, like Darwinian evolution is more often 

passive or detrimental to the cell but occasionally an event will increase the viability of the cell 

and in this instance is known as a driver mutation (Figure 1.5)(68). 

 

Figure 1.5 The lineage of mitotic cell division leading to neoplastic transformation.  
Somatic mutations are acquired throughout all cell lineages. Some will confer a selective 

growth advantage and are known as driver mutations. Passenger mutations do not contribute 

to the process. Often during therapeutic intervention Darwinian processes shift the selection 

pressure towards mutations that protect the neoplasia from treatment effects. Illustration 

from Stratton et al (2009).  

 

Events that contribute to the enhancement of several cellular processes known as the 

hallmarks of cancer (Figure 1.6A)(68, 69) are termed driver mutations. These hallmark 

processes include; Sustaining proliferative signalling, evading growth suppressors, activating 

invasion and metastasis, enabling replicative immortality, resisting cell death and in the case of 

solid tumours inducing angiogenesis (68, 69). Several additional emerging features are also 



25 
 

likely contributors to tumourigenesis including; the ability to avoid immune-response 

mediated destruction, deregulated cellular energy metabolism, the presence of tumour 

promoting inflammation and general genomic instability (Figure 1.6B) (69). 

 

 

 

Figure 1.6 Hallmarks of Cancer. 
(A) Original hallmarks of cancer Hanahan and Weinberg 2000. (B) Additional hallmarks of 
cancer highlighted in the revised hallmarks of cancer Hanahan and Weinberg 2011. 

 

Identifying the genomic events that contribute to these hallmarks and features is a priority in 

all cancer related research, including CTCL. Identifying the genes will highlight targets for drug 

development and have important implications for the development of novel therapeutics and 

translational medicine. The challenge remains in separating driver events from the myriad of 

passenger events that co-occur in CTCL and other cancers.  
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1.8 Molecular processes and signalling networks affected in MF and 

SS 

Driver events by definition, will contribute to the hallmarks of cancer, but different driver 

events can contribute to the same hallmark in ways which can be independent of each other 

as well as cumulative. Many genes contribute to each molecular process that takes place 

within a cell. Processes such as signalling cascades and gene regulatory networks are examples 

of multi-gene processes. As an example, driver events could occur within the same network or 

signalling cascade but in different genes and still produce very similar phenotypes. In this 

section, well known tumourigenic processes will be reviewed and examples of events 

contributing to CTCL in each molecular process will be highlighted. In many of these processes 

several genes have been discovered to be defective, highlighting the genetic heterogeneity of 

CTCL. Furthermore, it is important to consider that many of these processes exhibit 

considerable crosstalk and it remains an arduous challenge to fully elucidate their interactions. 

Information from several large sequencing studies has been included in this section to show 

alterations in many of these pathways and it would be desirable to analyse co-occurrences of 

genes across CNV and SNV events. However, these studies do not report co-occurrences and 

this analysis would require a large meta-study which is beyond the scope of the work 

contributing to this thesis. For this reason, events have been presented as individual events 

though I would like the reader to consider that co-occurrences of both CNVs and SNVs are a 

likely feature of the pathways presented in this section.  

1.8.1 NF-ĸB 

The nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-ĸB) pathway is a well-

studied signalling network involved in inflammatory and innate immune responses (Figure 1.7) 

(70). Downstream targets of the NF-ĸB pathway include regulation of a number of cellular 

processes that function during tumourigenesis such as; cell survival, proliferation, 

differentiation, angiogenesis and metastasis (71). It therefore comes as no surprise that the 
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NF-ĸB pathway is dysregulated in numerous tumour types including leukaemic neoplasms (70) 

such as CTCL where the pathway is constitutively active (41, 71-73).  

 

 

Figure 1.7 NF-ĸB pathway.  
In the canonical NF-ĸB pathway IĸB proteins bind NF-ĸB family members in the cytoplasm until 
IĸB is phosphorylated by the IKK complex. IĸB is then targeted for ubiquitin mediated 
degradation allowing NF-ĸB homo and heterodimers to enter the nucleus where they act as 
transcription factors. Some members of the NF-ĸB family such as p100 are not bound by IĸB 
and require cleavage, after which the NF-ĸB dimmers can translocate to the nucleus and act as 
transcription factors. This is known as the non-canonical NF-ĸB pathway. 

Genes with mutations MF and SS Reference 

CD28, CARD11, NF-ĸB2, RELB, MALT1, 

PRKCQ 

Ungewickell et al 2015, da Silva Almeida et 

al 2015, Choi et al 2015, Wang et al 2015 

Table 3. Genes reported as mutated in NF-KB in CTCL 

 

The NF-ĸB pathway (Figure 1.7) is a complicated gene regulatory network, the core 

components are the NF-ĸB proteins which are bound by IĸB proteins in the cytoplasm and 

sequestered preventing activation of target genes (70, 74). To activate the pathway, the IĸB 
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component is phosphorylated by the IKK complex which consists of IKKα, IKKβ and IKKγ (75, 

76). The NF-ĸB family members consist of 5 known members (RelA/p65, RelB, c-Rel, 

p50/p105/NF-ĸB1 and p52/p100/NF-ĸB2) (74). The IĸB family consists of 7 known members 

(IĸBα, IĸBβ, IĸBγ, IĸBζ, Bcl3, p50/p105/NF-ĸB1 and p52/p100/NF-ĸB2)(74).  Both p50 and p52 

fit into both families. Upon activation, the NF-ĸB family members form up to 15 homo and 

hetero dimers in a cell type and context dependent manner (74). In addition, only the RelA, 

RelB and c-Rel have transcriptional activation potential via a domain called the TAD (carboxy-

terminal transactivation domain) (74), RelB requires further addition of an amino-terminal 

leucine zipper to become fully active (77). Furthermore, the NF-ĸB family members are 

regulated by an array of post-translational modifications which allow the pathway to regulate 

different groups of target genes (78).  

The NF-ĸB pathway has previously been shown in a study of 30 CTCL patient samples to be 

constitutively active in 100% of cases and cause resistance to apoptosis(79). In CTCL the NF-ĸB 

pathway directly regulates 3 sets of genes (70); survival genes (cIAP1, cIAP2, Bcl2), pro-

inflammatory genes (IL-1β, IL-8, IL-17, TNFα, CCL2, CXCL5) and anti-inflamatory genes (IL-10, 

TGFβ) (70). The NF-ĸB mediated activation of inflammatory and survival genes contributes to 

inhibition of apoptosis and enhanced proliferation (70). This would lead to an increase in the T-

cell pool. Activation of anti-inflamatory genes however, seems somewhat contradictory, 

especially as IL-10 and TGFβ are thought to repress the pro-inflamatory genes (70). There is 

speculation that this contributes to the immunosuppressive nature of CTCL. It is possible that 

different targets of the pathway are activated/repressed in different stages of the disease 

which may be at least partially facilitated by changes in the microenvironment, however it 

seems more plausible that specific subtleties of this complex network are yet to be fully 

established. Interestingly, mutations in CARD11, a positive mediator of NF-ĸB signalling have 

been identified in SS in 6% (50), 8% (51) and 15% (16) of cases. Focal copy number gains in the 

CARD11 activator PRKCQ have also been reported in 32% of SS tumours which would likely 

have a positive effect on the pathway if they are transcribed (49). Mutations in other 
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regulators of the pathway have also been detected such as CD28 in 10% of SS cases (49) and a 

CD28-CTLA4 fusion caused by chromosome alteration in 2 MF cases (29), the same study also 

reported alterations in 16 genes involved in NF-ĸB signalling, with 8 genes affecting just 1 

tumour each across MF and SS cases which adds weight to the argument that alterations in 

pathways are more relevant to CTCL than alterations in individual genes. Together these 

findings highlight a selection pressure for mutagenesis of components of the NF-ĸB pathway. 

1.8.2 JAK-STATs 

Members of the JAK-STAT family play roles in a number of cellular processes and have well 

studied roles in inflammation and cancer (80, 81), including haematological malignancies (82). 

The Janus tyrosine kinase (JAK) family consists of 4 members (JAK1, JAK2, JAK3, Tyk2) (80) 

which form hetero and homodimers in the cell membrane (81). JAK family members transduce 

signals through several cytokine receptor types; type I receptors include the granulocyte 

colony stimulating factor (G-CSF) and the erythropoietin receptor (81), type II receptors are 

subdivided into type IIa and type IIb receptors such as granulocyte-macrophage colony 

stimulating factor (type IIa) and the IL2/6 and leukaemia-inhibitory factor (type IIb) (81). Upon 

activation of the receptor, JAK family members become active tyrosine kinases capable of 

phosphorylating members of the STAT family (83).  

The Signal transducers and activators of transcription (STAT) family is made up of 7 members 

(STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, STAT6)(80). Upon phosphorylation, the STATS 

form dimers which translocate to the nucleus and act as transcription factors, this is known as 

the canonical JAK-STAT pathway (81). The JAKs and STATs can also act through a non-canonical 

method (84) where each has direct effects within the nucleus on the regulation of 

heterochromatin (85)(Figure 1.8).  

  



30 
 

 

Figure 1.8 JAK-STAT pathways.  
Cytokine receptors including type IIb, transduce signals though the JAK-STAT pathway. Upon 
ligand binding to the receptor, JAKs become activated and recruit and phosphorylate STATs. 
The STATs form homo and heterodimmers before transclocating to the nucleus to act as 
transcription factors or the receptors can themselves translocate. Signal transduction can be 
inhibited by the SOCS family. STATs can also act non-cannonically affecting or maintaining the 
state of hetero and euchromatin. 

Genes with mutations MF and SS Reference 

JAK1, JAK3, STAT3, STAT5B, SOCS5 Kiel et al 2015, Choi et al 2015, Vaque et al 
2015 

Table 4. Genes with reported mutations in the JAK/STAT pathway in CTCL. 

 

Perturbations in JAKs and STATs are well documented in numerous blood born neoplasms (82) 

as well as in MF and SS at the genetic level with recent studies identifying mutations in up to 

11% of SS (50) and up to 20% of MF cases with low variant allele frequency (VAF) (28, 30, 50), 

single JAK1 and JAK3 variants have also been identified in MF and SS tumours in another study 

(30). Gains of STAT5B were also reported in 25/40 SS tumours and a mutation in 1 further 

patient in a recent NGS study (49). Some variants were found to make the pathways 

constitutively active (86-88). Differences in their activity state have also been reported in the 

absence of genetic variants (89). In SS, a study published by our lab has also indicated that 
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overactive STAT3 is driven by constitutive aberrant activation of JAK family members rather 

that by loss of inhibition (90). Earlier work from our group also suggests that alternate 

transcripts of STAT5 are preferentially driving gene expression in SS compared with healthy 

controls (91). Overall perturbations in JAK-STAT signalling seem to affect a high proportion of 

CTCL tumour cells and likely constitute key driver events of the disease. 

1.8.3 PI3K-PKB/AKT 

A particularly well studied gene regulatory network is the PI3K-PKB/Akt pathway which is 

known to have a key role in regulating proliferation, survival and growth, reviewed in (92, 93). 

In this pathway growth and proliferation factors bind receptor tyrosine kinases (RTKs) such as; 

PDGFRs and FGFRs or G-protein coupled receptors (94). These receptors in turn activate class 

IA or class IB PI3Ks (respectively) in coordination with groups of co-factor molecules such 

insulin receptor substrates (IRS) and/or Ras (95). Active class I PI3Ks can then catalyse the 

conversion of phosphatidylinositol (3,4)-bisphosphate (PIP2) lipids into phosphatidylinositol 

(3,4,5)-trisphosphate (PIP3) (93) (Figure 1.9). There are additional class II and class III PI3Ks, but 

to date these have not been implicated in cancer (95).  
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Figure 1.9 Signal transduction through RTKs and GPCRs.  
Activated receptors can trigger transduction through the class I PI3K which promotes the 
conversion of PIP2 to PIP3 activating the AKT signalling hub. Signals can also be transduced 
through the RAS/RAF pathway, activating one or more of the MAP-kinase pathways. This 
network activates numerous oncogenic processes when active and is constitutively activated in 
many neoplasms. 

Genes with mutations MF and SS Reference 

PTEN, RHOA, BRAF, KRAS, NRAS, PI3K, PI3KR Scarrisbrick et al 2000, Caprini et al 2009, 
Choi et al 2015, Wang et al 2015, Kiessling et 
al 2011, Ungewickell et al 2015 

Table 5. Genes with mutations in RTK and GPCR pathways in CTCL. 

 

The availability of PIP3 is highly controlled by its reconversion to PIP2 by the phosphatase and 

tensin homolog (PTEN), which acts as the primary negative regulator of PI3K (92). PIP2 and PIP3 

are both bound to the cells outer membrane but PIP3 is the active form which transduces 

signals by binding via a pleckstrin homology (PH) domain (92). A key downstream target of PIP3 

is PKB/AKT which is a central signalling node of numerous core cellular processes (95). Direct 

targets of PKB/AKT include FOXO and TSC2 (95). PKB/AKT retains FOXO in the cytoplasm which 

can increase survival and proliferation by preventing FOXO from regulating apoptotic 

machinery such as FASL and BIM and cell cycle regulators such as p27Kip1 (92). The effects of 
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PKB/AKT on TSC2 lead to activation of the mTOR complex which acts as a growth promoter by 

increasing protein synthesis via 4E-BP1 (96). 

The PTEN gene is located on the long arm of chromosome 10, a region shown by our group 

and others to be deleted in up to 23% MF tumours (46) and up to 68% of SS tumours (48) (46, 

97). PTEN is a known tumour suppressor gene and its loss leads to an increase in activity 

through the PI3K-PKB/AKT pathway (95). Furthermore, PTEN has been shown to be down-

regulated in most SS tumours by a group of regulatory RNAs (miR-106b, miR-486, miR-21) 

which also leads to over-activation of AKT (97). The PI3K and PI3KR genes themselves have also 

been altered in 5-10% of MF and SS tumours (29). Miss-regulation of gene expression in the 

PI3K/AKT pathway has also been reported in both MF and SS in a transcriptome sequencing 

study (98).  

1.8.4 RAS/RAF 

Proliferative signals can be transduced by RTK receptors through a cascade which starts at the 

receptor by the recruitment of a multi-protein complex (99). The complex includes Src 

homology 2 domain containing protein (SHC) and the RAS-GTPase Son of sevenless (SOS), 

which together activate membrane bound RAS family members (100). The cascade progresses 

with the recruitment of RAF family members to the membrane, which themselves becomes 

activated and target one or more of the 4 major MAP-kinases (101) (Figure 1.9). 

Several components of this signalling cascade are members of multi-gene families which show 

some degree of redundancy (102) as well as cell and context dependent functionality (99), i.e 

the downstream targets of members of the pathway may vary depending on the cell type or 

the ‘state’ it is currently in (stressed or dividing etc). The RTKS which have been discussed in 

the previous section are the first variable component, RAS-GTPases are another (94, 102). The 

RAS family has 3 members (K-RAS, N-RAS, H-RAS)(99), as does RAF (B-RAF, RAF-1/C-RAF, A-

RAF) (103, 104). The 4 core MAP-kinase pathways include the MEK1/2 pathway which acts 

through ERK1/2, and MAP3K which acts through the remaining 3 pathways; JNK1/2 via 
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MKK4/7, p38 via MKK3/6 and ERK5 via MEK5 (101). The MAPK pathways have numerous 

upstream and downstream targets (over 60 are known for ERK1/2 alone) and their activity is 

under tight intrinsic and extrinsic control (99), i.e. internal feedback loops maintain fine tuning 

of the intracellular environment via the transcriptome and the proteome as well as other 

processes, these are further tuned and fed into by extracellular cues such as nutrient levels or 

signalling events. Broadly the pathway regulates (and is to some extent regulated by) 

processes involved in proliferation, cell transformation, stress responses and cell survival and 

apoptosis (105). 

Mutations in KRAS and NRAS have been reported in CTCL, including SS and MF although at 

frequencies of less than 1% (106). However, targeting this pathway with antagonists in CTCL 

cell lines induced apoptosis which has implications for translational medicine (106). A recent 

study also reported activating mutations in a single patient in BRAF in SS (49) and another 

reported 2 mutations in RHOA in SS (16, 49). Further down the cascade, the p38 MAP kinase 

pathway has also shown promise as a therapeutic target in SS as its inhibition lead to cell death 

in CTCL cell lines and patient samples (107). 

1.8.5 Phospholipase C gamma pathways 

Phospholipase-C gamma 1 (PLCγ1) is involved in several signalling pathways activated by 

receptor tyrosine kinases including those that signal through PI3K (108) and several of the ras-

activated MAP-kinase pathways (101). Upstream activators include EGFRs, FGFRs, VEGFRs, IGF-

1R and PDGFRs (108). Activation of PLCγ1 activates second messengers DAG and IP3 which 

cooperate in the activation of protein kinase-C (PKC) and intracellular calcium mobilisation 

amongst other targets (108) (Figure 1.10). Mutations in PLCγ1 have been identified in 

numerous cancers and are thought to primarily be activating mutations including several in 

CTCL in a host of recent publications (16) (30, 49, 50). The incidence of PLCγ1 mutations has 

been reported at 9% (50), 10% (49), 13.5% (16) and 19% in recent studies looking SS tumours 

(30) and at 27% in MF tumours (30). Mutations in PLCγ1 are of particular interest because they 
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likely effect transduction through several known tumourigenic signalling networks previously 

discussed.  

 

 

Figure 1.10 PLCγ1 signal transduction.  
Signalling through this pathway is transduced by receptor tyrosine kinases and converges on 
several networks known to be perturbed in CTCL. These include MAP-kinase pathways, NF-ĸB, 
NFAT and AKT. Mutations have also been reported in PLCγ1 itself in CTCL and other lymphoid 
neoplasms. 

 

1.8.6 Programmed cell death 

Programmed cell death (PCD) is essential for normal developmental processes and 

homeostasis as it plays a key role in maintaining the equilibrium between cell survival and 

death (109). The breakdown of this process is a well-known contributing factor to the initiation 

and progression of all known cancers (69). The term PCD was originally used synonymously 

with apoptosis but has more recently been understood to encompass at least 3 varieties; 
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apoptosis, autophagy and programmed necrosis (110, 111). Each of these processes is 

morphologically distinct (112, 113).  

1.8.6.1 Apoptosis 

Apoptosis was first described microscopically in 1972 by Kerr et al (114), cells show shrinkage 

combined with nuclear compartmentalization and fragmentation and detachment from the 

surrounding cells and extracellular matrix (ECM). A process called blebbing orchestrates the 

controlled breakup of the cell into membrane bound compartments (115) and ultimately 

phagocytosis by surrounding cells (109).  

Apoptosis can be induced by 2 main methods which both converge on activation of caspase 3, 

the penultimate step in the execution pathway (109). The extrinsic method requires 

membrane bound FAS receptors (including TNFR-α, FAS and TRAIL)(116) to bind an 

extracellular ligand (TNF-α, FAS-L), bound receptors recruit further members including FADD, 

TRADD and RIP (117, 118), then pro-caspase-8 to form the death inducing signalling complex 

(DISC). This complex then activates caspase 3 to trigger the execution pathway (114). Inducing 

apoptosis via the FAS pathway is the primary method of maintaining homeostasis in the 

immune system and is also used by cytotoxic T-cells to induce apoptosis in virally infected cells 

and other target cells (119) (Figure 1.11).  

The other major apoptotic pathway is known as the intrinsic pathway (Figure 1.11) and is 

primarily induced by pathological levels of stress from a variety of sources including; hypoxia, 

toxins, high levels of reactive oxygen species (ROS) and irreparable DNA damage (109, 111). 

Under these conditions, pro-apoptotic members of the BCL2 gene family (such as BAX and 

BAK) become active (120, 121) and form pores in the mitochondrial outer membrane 

facilitating the release of cytochrome-c, amongst other apoptotic factors, into the cytosol 

(110). Cytosolic cytochrome-c combines with APAF1 and pro-caspase-9 to generate a large 

protein complex called the apoptosome which induces the execution pathway via caspase-3 

(122).  
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Figure 1.11 Apoptosis. 

Extrinsic induction of apoptosis is mediated by signalling through FAS, TNFR-α and TRAIL. 

Further proteins TRADD, FADD and RIP are recruited through the intercellular domains along 

with pro-caspase-8 to produce the death inducing signalling complex (DISC). DISC signals 

through caspase-3 to switch on apoptotic genes. The intrinsic apoptosis pathway is activated 

by ROS, toxicity, irreversible DNA damage or other mechanisms which compromise the cell. 

BLC2 family members such as BAX and BAK cause the release of cytochrome-C from the inner 

mitochondrial membrane to the cytoplasm which are detected by APAF1. Pro-caspase-9 is 

then cleaved and binds APAF1 before activation of caspase-3 and induction of apoptosis. 

 

T-cell mediated apoptosis can also be induced via the perforin/granzyme pathway. This is a 

special case pathway whereby perforin secreted by the T-cells forms pores in the target cell 

through which the T-cell releases cytoplasmic granules containing granzymes A and B which 

ultimately cause DNA cleavage, activation of caspase-10 and can even cleave BID to activate 

the intrinsic mitochondrial apoptosis pathway (109). 

In CTCL there is evidence to suggest that a high proportion of tumours lack the ability to 

initiate apoptosis through the FAS pathway. Specifically, the presence of the FAS receptor has 

been shown to be down-regulated (123-126), in many cases as a result of deletion of all or part 

of chromosome 10q up to 68% in SS tumour cells (48) (26, 31, 40, 41, 127). Furthermore, point 
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mutations have been reported in a number of cases (128-130) alongside reduced sensitivity to 

FAS-L (128, 129). Downregulation of the FAS gene has also been shown by our group to be 

associated with promoter hypermethylation (131). These examples highlight the FAS pathway 

as a striking example of a pathway that is heavily compromised by selective pressure acting 

against several components of the pathway. 

1.8.6.2 Autophagy 

The process of autophagy is highly conserved by a core set of ~30 genes discovered in yeast 

termed the ATG genes (132). These genes function as part of several interrelated signalling 

cascades that regulate autophagy (133). In brief, autophagy is mediated by the formation of 

relatively large, double membraned organelles called autophagosomes which essentially 

assimilate other cell components that are damaged or otherwise need recycling (134, 135). 

The mature autophagosomes fuse with lysosomes and the components are reduced into 

building blocks for de-novo biosynthesis or used to generate ATP (134, 135). 

Our understanding of the link between autophagy and tumourigenic processes has grown 

considerably in recent years. Autophagy was once considered to be primarily a survival 

function that becomes active in response to both extra and intracellular stress, it is now known 

to have complicated effects that vary depending on the circumstances (133, 136). Evidence is 

accumulating that over-activation of autophagy can have a tumour suppressive role by 

inducing a form of programmed cell death that is distinct from apoptosis and necrosis (113, 

136, 137). Conversely, autophagy can also play an oncogenic role by regulating a number of 

other molecular signals involved in oncogenic processes such as  BLC2, beclin-1, class I and III 

PI3K, mTORC1/C2 and P53 (138). 

To date, little work has been carried out linking autophagy directly to MF or SS. However, 

several histone deacetylase (HDAC) inhibitors including Vorinostat and Romidepsin, which are 

used in the treatment of CTCL including MF and SS (139) are thought to act at least partly by 
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facilitating transcription of genes involved in caspase-independent, autophagy mediated cell 

death (139, 140). 

Another possible link between autophagy and CTCL relates to the adenine biosynthesis 

pathway (141) Autophagy is known to be promoted by spermidine and increasing the 

bioavailability of spermidine promotes longevity and prevents necrosis (142). Interestingly, 

spermidine production has been shown to be inhibited in-vitro by Methyl-thioadenosine 

(MTA) (141) (Figure 1.12). Tumour cells of both SS and MF often have deletions of 

chromosomal region 9p21 (27, 44), a region where the Methyl-thioadenosine-phosphorylase 

(MTAP) gene is found. MTAP is the only known enzyme capable of degrading MTA (143, 144) 

and tumours cells lacking the MTAP gene show highly altered levels of spermidine and its 

downstream product spermine (141) suggesting a possible link between loss of MTAP and 

alterations in the regulation of autophagy. Loss of 9p21 will be discussed in more detail in later 

sections. 
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Figure 1.12 Loss of MTAP may inhibit autophagy.  
MTAP is lost in a high number of CTCL tumours allowing MTA to accumulate. High 
concentrations of spermidine promote autophagy, however increased concentrations of MTA 
inhibit the production of spermidine suggesting that loss of MTAP may indirectly inhibit 
autophagy. The effect this may have on tumourigenic processes is not yet clear. 

 

1.8.6.3 Programmed necrosis and inflammation 

The hallmark feature that differentiates necrosis from other forms of cell death is the 

destruction of the plasma membrane (145). Necrosis has historically been considered as an 

unregulated, pathological process but more recently several genes have been shown to 

promote or inhibit necrosis suggesting that necrosis can be a programmed event (145). Several 

of these signals also promote apoptosis and autophagy but the intensity of the signal, as well 

as subtleties of the context can alter the balance and it has been speculated that programmed 

necrosis may be a last ditch attempt to induce cell death in cells that could otherwise cause 

catastrophic problems such as tumourigenesis  (145). 
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Activation of several receptors including; TNF-R1, FAS, TOL-like receptors and TRAIL activated 

death receptors have been shown to converge through a necrosis signalling hub centred 

around the protein kinase RIP1 (146). RIP1 is an activator of NF-ĸB and can inhibit apoptosis, 

but under normal circumstances caspase-8 cleaves RIP1 allowing apoptosis if necessary (147). 

However, if apoptosis is suppressed or caspase-8 is disabled, RIP1 has been shown to induce a 

cascade of events that results in necrosis, it has been suggested that this may serve as a 

backup to more controlled forms of PCD (145, 148).  

Necrosis is generally thought to elicit harmful effects through the tumour microenvirionment 

whereby the break-up of cells causes tumour promoting effects by inducing or enhancing 

general inflammatory processes (149). Indeed, numerous cancers are associated with chronic 

inflammation (150) and inflammatory processes, such as those mediated by IL-17 are thought 

to play a role in the development of CTCL (151, 152). Inflammation also contributes to the 

proliferation and survival of malignant cells and mediates genomic instability, creating an 

environment that can accelerate the evolution of tumour cells (153). There are several 

mechanisms of how this occurs; reactive oxygen species are increased in regions of 

inflammation and are known to be a factor contributing to DNA damage, the other key reason 

is that sites of inflammation require cells to undergo division to repair damaged tissue (154). 

This double edged sword underlies the association between inflammation and cancer. There is 

also increasing evidence that inflammation may promote tumourigenesis by altering the 

epigenetic landscape of cells which endure chronic inflammation as a feature of their 

microenvironment (155, 156). 

1.8.7 Global epigenetic regulation 

Epigenetics is an umbrella term for heritable changes to the regulatory machinery of DNA that 

do not alter the sequence of bases in the genome (157). Epigenetic changes can be a direct 

downstream consequence of driver events, or other processes such as inflammation (155) and 

can result in altered transcriptional patterns of many genes, including those involved in 
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tumourigenic processes (157). This section will summarize well studied global epigenetic 

regulatory mechanisms and discuss their relevance to CTCL. 

1.8.7.1 DNA Modifications 

There are 4 known epigenetic modifications that occur on mammalian DNA, of which 

methylation is by far the most widely studied and best understood (157). DNA Methylation 

occurs on cytosine bases when a methyl group is covalently added to the 5’ carbon to produce 

5-methylcytosine (5mC) (158). Methylated cytosine is found predominantly on cytosine-

guanosine dinucleotides (CpGs) spanning ~4% of the genome (159). The CpG sites occur less 

than would be expected by chance but are generally clustered into small groups near gene 

promoters where they are known as CpG islands (160). The methyl groups generally have an 

inhibitory effect on transcription by projecting into the major groove of DNA and likely 

reducing the binding efficiency of the transcriptional machinery, however methylation is not 

enough to repress transcription by itself (159). Furthermore, methylation has been reported 

within the gene body of highly transcribed genes suggesting that the spatial distribution and 

context of methylation are important additional factors regulating transcription and it seems 

very plausible that these modifications are involved in the alternate splicing of genes (161). 

Methylation is regulated in higher eukaryotes by the DNA-methyl-transferase family of genes. 

Making sure inheritance of DNA methylation occurs correctly during replication is the function 

of DNMT1 (162). DNMT3A and DNMT3B are mostly responsible for de novo DNA methylation 

although can reportedly maintain existing methylation as well (163), whereas DNMT2, despite 

the name, does not seem to be involved in DNA methylation (164). 

Cytosine methylation can be further altered to produce 5-hydroxymethylcytosine (5hmC), a 

distinct epigenetic modification to 5mC (157). The TET family of DNA hydroxylases (TET1, TET2, 

TET3) are known to be responsible for this process as well as further oxidation of the residues 

(157). The purpose of these modifications appears to be complex with modifications in gene 

bodies and promoters of both transcribed and repressed genes mediated by TET genes (165). 
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In CTCL the DNA methyltransferase genes DNMT3A has been reported as both deleted in 

14/66 and mutated in 5/66 (50) and DNMT3B which was deleted in 9/80nand mutated in 5/66 

cases (50), another study reported 15 deletions and 4 mutations in DNMT3A  (49, 50). 

Furthermore, recent NGS work has discovered focal deletions overlapping the TET1 gene in 

50% of SS tumours as well as nonsense mutations in SS tumours in 4/66 in TET1 and 6/66 in 

TET2 (50, 51). Perturbations in global DNA epigenome regulators would likely have significant 

effects on the epigenetic landscape of the disease and affect the regulation of many genes. 

Indeed, hypermethylation has been reported to affect several genes involved directly in key 

tumourigenic processes such as FAS (131) and T-plastin(39). 

Genes with mutations MF and SS Reference 

DNMT3A, DNMT3B, TET1, TET2 Kiel et al 2015, Choi et al 2015, 

Table 6. Genes involved in DNA methylation reported as mutated in CTCL. 

 

1.8.7.2 Histone modifications 

Post-translational modifications to histones are both diverse and dynamic mechanisms 

regulating the structure and function of chromatin. Different modifications show both 

repressive and activating effects on transcription, furthermore they are not necessarily 

mutually exclusive which can lead to so called ‘bivalent domains’ (157). Modifications across 

several histones exert a local combinatorial influence on transcription and other process, 

including signals which can lead to further modifications of other histones, this has been 

dubbed ‘histone crosstalk’ and is of great biological significance (166). The list of documented 

modifications to histones and their effects is extensive and detailed coverage is beyond the 

scope of this thesis; however, perturbations in several histone modifying genes have been 

identified in CTCL and are described below. 

The chromatin modifiers ARID1A and ARID5B were found to be deleted or mutated in 25/62 

and 23/80 SS tumours respectively in a recent study (50). Deletions and mutations in ARID1A 

have been observed in SS in 23/40 tumours by others as well (49). SMARCC1, an interacting 
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partner of the ARID family has also been reported as deleted 17/80 SS tumours (50). Members 

of several histone methyletransferase families including genes from SETD (SETD1A, SETD1B, 

SETD6) and MLL2 have also been shown to be deleted or mutated in SS tumours (50), with 

MLL2 deleted in 11/80 and mutated in 7/66 tumours, MLL3 mutated in 39/66 tumours and 

MLL4 mutated in 12/66 tumours (50). The SETD1A and SETD1B genes were deleted in 14/80 

and 12/80, and mutated in 4/66 and 11/66 respectively (50) Numerous other histone modifiers 

including the lysine-demethylase KDM6B and the histone deacetylase NCOR1 were reported as 

deleted in the same study (50). Overall, a large variety of chromatin modifiers have been 

reported as mutated or deleted in CTCL, table 7 lists recurrent genes reported in recent 

studies. 

Genes with mutations MF and SS Reference 

ARID1A, ARID1B, SMARCC1, SETD1A, 

SETD1B, SETD6, MLL2, MLL3, NCOR1, 

NCOR2, SMARCA4, CREBBP, CHD3, BRD9, 

ZEB1 

Choi et al 2015, Kiel et al 2015, da Silva-

Almeida et al 2015, Wang et al 2015 

 

Table 7. Genes with roles in chromatin regulation with mutations reported in CTCL. 

1.8.8 Cell cycle control 

The cell cycle of all eukaryotes can be divided into 4 main sections; Growth 1/0 (G1/0), 

Synthesis (S), Growth 2 (G2) and Mitosis (M) (167). The most well studied mechanism which 

drives progression through the cell cycle is involves interactions between 2 key groups of 

genes; the cyclin-dependent kinases (CDKs) which are constitutively expressed, and the 

corresponding cyclins which are expressed in a specific temporal pattern (168). Without the 

presence of the corresponding cyclins, the CDKs remain inactive but when the cyclins are 

expressed, different cyclin-CDK complexes form and activate CDKs is a specific spactio-

temporal manor driving progression through the cell cycle (168). A less well studied pathway 
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that can also push the cell through the cycle involves activation of the C-MYC gene by growth 

stimuli, C-MYC is thought to bypass the default cell cycle process and directly drive expression 

of cyclin-E and CDC25 (168).  

In G1, cyclin D’s are the first cyclins to be expressed (168). The binding of cyclin-D family 

members (D1,D2,D3) to CDK4 or CDK6 activates the complex which can then phosphorylate 

retinoblastoma (RB), RB can then dissociate from a complex containing members of the E2F 

transcription factor family, as well as DP1 and RB (168). Once released, E2F members become 

active which results in the transcriptions of cyclin E, cyclin A, CDC25A and many other genes 

associated with the transition from G1 to S where DNA replication takes place (168). When the 

DNA has been completely replicated the cell is said to have completed S phase and be in G2 

(168)(Figure 1.13). 
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Figure 1.13 G1/S Regulation.  
Progression from G1 to S phase is driven by increasing expression of CDC25 and Cyclin D/E 
combining with CDK4/6. The cylclin CDK complex formation can be inhibited by the INK4 genes 
and the CDK activity is negatively regulated by CIP/KIP genes. Sufficient cyclin/CDK activity 
phosphorylates RB, releasing E2F and DP1 to drive increased expression of Cyclin A/E and 
pushing the cell from G1 to S. This mechanism can be bypassed by C-MYC activity which can 
drive expression of CDC25 and Cyclin E by itself. Further negative regulation is controlled by 
ATR signalling which can prevent progression through S-phase in response to replicative stress. 
Several layers of tight regulation control the balance of active cyclin/CDK complexes which 
promote G1/S transition. Green indicates cell cycle drivers, red genes indicate cell cycle 
repressors, genes in yellow are neutral. 

 

The G1/S transition is negatively regulated by many factors; well-studied inhibitors include the 

INK4 family which interfere with the cyclin-D binding CDKs (CDK4 and CDK6). P15INK4B is 

transcribed by the CDKN2B gene (169). P16INK4A is also a product of the CDKN2A gene (170), 

the remaining members include P18INK4C and P19INK4D (171). The other CDK inhibitors are the 

CIP/KIP family; P21CIP, P27KIP1 and P57KIP2, which inhibit all CDKs (171, 172). Many further 

factors can inhibit cell cycle progression through different mechanisms; the CDKN2A gene 

produces a functionally and structurally distinct transcript called P14ARF which mediates TP53 
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induced cell cycle arrest, reviewed in (173). Furthermore, the G1/S transition can be halted 

under replicated stress by ATR signalling (174).  

Progress from G2 to M is dependent on the accumulation of active CDK1 (also called CDC2) 

bound by cyclin-B or cyclin-A (175, 176). CDK1 is initially rendered inactive by WEE1 and MYT1 

phosphorylation, so to achieve full activation of the complex, further de-phosphorylation by 

CDC25 family members is necessary (177, 178). The B and A cyclins are degraded as the cell 

progresses from metaphase to anaphase during mitosis thus removing the activity of CDK1 

(176). Further negative regulators of the G2/M transition include; GADD45, P21 and 14-3-3-

sigma, all of which are targets of TP53 (175). In addition, the ATM/ATR genes can negatively 

regulate progression by directly activating CHK1 and CHK2 which themselves inactivate CDC25 

(175) (Figure 1.14). 
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Figure 1.14 G2/M Regulation.  
CDK1 activation by Cyclin A/B drives the G2/M transition. CDK1 is rendered inactive by 
phosphorylation via WEE1 and MYT1, however CDC25 activity reverses this phosphorylation 
allowing CDK1 to form active complexes with Cyclin A/B. CDC25 can itself be activated by PLK1 
or inactivated by the ATM/ATR pathway via CHK1/2. TP53 can also prevent G2/M transition by 
activating GADD45, P21/CIP and/or 14-3-3-SIGMA. As with G1/S a series of tightly orchestrated 
events facilitate or inhibit the build-up of cyclin/CDK complexes which drive cell cycle 
progression. Green indicates cell cycle drivers, red genes indicate cell cycle repressors, genes in 
yellow are neutral. 

Genes with mutations MF and SS Reference 

CDKN2A, CDKN2B, ATM, TP53 Salgado et al 2010, van Doorn et al 2009, 

Laharanne et al 2010, Laharanne et al 2010b, 

Scarrisbrick et al 2002, Caprini et al 2009, 

Wang et al 2015, da Silva Almeida et al 2015, 

Choi et al 2015. 

Table 8. Genes reported as mutated or deleted in CTCL which affect the cell cycle and 
checkpoint activation. 
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In CTCL several core components of the cell cycle have been reported as disrupted, most 

prominent among these is loss of chromosomal region 9p21 in up to 41% of MF and SS 

tumours (16, 22, 23, 25, 27, 44, 48) which includes the genes CDKN2A and CDKN2B (Table8). 

Both of these genes express potent cell cycle inhibitors of the INK and ARF family (171). 

Members of the CIP/KIP family of cell cycle inhibitors also show loss of expression in CTCL 

(179). Cyclin-E has also been reported as constitutively expressed in CTCL cell lines (180). PLK1 

is a serine/threonine kinase that is crucial in regulating the G2/M transition by initially 

activating CDC25 (181, 182). It has been reported as over-expressed in advanced CTCL and 

CTCL cell lines, RNAi knockdown resulted in increased cell cycle arrest and apoptosis 

suggesting that this gene may be a good target for translational investigation (181, 182). 

1.8.9 DNA repair and genome maintenance processes 

As previously discussed, complex chromosomal rearrangements and genomic instability are 

key features of MF and SS. Non-tumourigenic cells repair damaged DNA on an ongoing basis 

and remain healthy (183). Therefore, a sensible line of inquiry would be to examine how 

pathological DNA damage manifests and accumulates in CTCL cells. The DNA damage response 

(DDR) is the most obvious candidate network and includes ATM, TP53 and the checkpoint 

activation network (184). Problems with DNA repair processes themselves are also highly 

plausible candidates and problems with either or both would have catastrophic effects on 

genome maintenance.   

1.8.9.1 Repair activation  

Ataxia telangiectasia mutated (ATM) and the closely related ATR (ATM and RAD3-related) are 

protein kinases which become activated in response to DNA damage (185, 186). They have 

numerous targets and similar substrate specificity (187), with differing substrates depending 

on the phase of the cell cycle. ATR responds mainly to DNA damage caused by replication 

stress and DNA cross-linking whereas ATM is a principle activator of double stranded break 

(DSB) repair, cell cycle checkpoint induction and  responses to radiation (188). ATM has been 



50 
 

shown to phosphorylate TP53, MDM3 and CHK2 and activate the G1 checkpoint (189-192). The 

S-phase checkpoint can be activated by ATM phosphorylation of NBS1, FANCD2, and BRCA1 

(193-195). In G2, the checkpoint can be initiated by ATM phosphorylation of BRCA1 and RAD17 

(195, 196). Numerous studies show that ATM can utilize cell cycle checkpoints in all phases to 

elicit the DDR. ATM has been reported as lost in 12/40 or mutated in 1/40 SS tumours (49) and 

this would likely result in problems initiating the DDR and contribute to problems relating to 

genome maintenance. See table 8 for a list of genes affected in CTCL involved in the cell cycle 

and checkpoint activation. 

Tumour protein 53 (TP53) is one of the most widely studied tumour suppressors implicated in 

cancer. It operates as a master controller of many biological processes and activates genes 

involved in arrest of the cell cycle, activation of DNA repair, senescence and if necessary 

programmed cell death pathways (197). TP53 is part of a family of related genes which 

includes TP63 and TP73, which have separate roles but may also play a part in tumour 

suppression (188). Under normal conditions, TP53 is held in an inactive cytoplasmic complex 

with MDM2, MDM4, DAXX and HAUSP where it is targeted for ubiquitinylation and subsequent 

degradation by the proteasome complex (188). The complex is extremely sensitive to 

disruption by small molecules, stress stimuli and other activator pathways which release and 

activate TP53 (188). TP53 is directly activated and released from its cytosolic complex by ATM 

and ATR (188), the cell cycle regulator ARF also indirectly activates TP53 by sequestering its 

main binding partner MDM2 (198). Increasing activity in oncogenic signalling cascades, 

including MAPK pathways, can also raise the level of free TP53 by disrupting is sequestration 

by MDM2 (188). TP53 can then be activated by residual levels of ATR which is regarded as the 

classical route by which TP53 responds to hyper-proliferation (188, 199).  

TP53 is located on the short arm of chromosome 17, a region frequently lost in CTCL in up to 

45% of tumours (22, 24, 31, 46, 127). In addition, loss of function mutations have been 

recently reported in large sequencing studies in SS in 7/40, 7/37, and 4/25 tumours (16, 49, 51, 
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200), See table 8 for a list of genes affected in CTCL involved in the cell cycle and checkpoint 

activation. Loss of key tumour suppressor genes such as TP53 is likely to contribute 

significantly to the progression of CTCL as it causes reduced functionality of many tumour 

suppressing processes, key among them is the ability to initiate DNA repair or PCD. In addition, 

the 9p21 locus, which contains several tumour suppressor genes including CDKN2A, is often 

deleted in CTCL as has been previously discussed. CDKN2A produces several transcripts 

including P14ARF, which normally sequesters MDM2 when cell cycle arrest is necessary. Loss of 

P14ARF  indirectly leads to reduced active TP53 by increasing the availability of MDM2 to retain 

TP53 in its inactive state (188, 199). 

1.8.9.2 DNA repair 

There are several known mechanisms of DNA repair, each used to repair different types of 

damage (Figure 1.15). The main mechanisms include: 

(1) Base excision repair (BER). This mechanism is used for repairing DNA lesions that do 

not alter the structure of the helix and involve the creation of scaffolding proteins and 

a single stranded DNA break as an intermediate step, reviewed in (201). Many of the 

same enzymes involved in the initial stages of the pathway are also involved in the 

repair of single stranded breaks that occur as a result of damage (202). 

(2) Mismatch repair (MMR). The most common use of MMR is to replace mismatched 

bases after DNA replication that have not been corrected by the polymerase complex’s 

initial proofreading, reviewed in (203). In addition, MMR also corrects INDEL loops that 

arise from polymerase slippage (203). The process is highly conserved between 

organisms as distant as humans and E.coli (204) and involves a recognition step, an 

excision step where a gap is generated, and finally a repair synthesis step to fill in the 

gap (205-207). Problems with the MMR process causes cells to by highly mutatable 

and display characteristic microsatellite instability (208), interestingly up to 27% of 

CTCL patients demonstrate microsatellite instability (209, 210). Promotor hyper-
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methylation has been demonstrated in HMLH1 which is involved in MMR (210) 

suggesting a link between loss of MMR functionality and CTCL. 

(3) Nucleotide excision repair (NER). DNA lesions that distort the helical structure are 

mainly repaired by NER. An example of such damage includes UV-induced cyclobutane 

pyrimidine dimers. Although NER is mechanistically similar to BER, it involves many 

steps and ~30 genes are known to play a role (211-213). The steps include; recognising 

the damaged DNA, unwinding ~30bp of the helix surrounding the lesion, excising a 

single-stranded DNA segment surrounding the lesion, repair synthesis and finally 

ligation of the repaired strand (183). A key gene involved in binding the unwound 

single-stranded helix prior to endonuclease cleavage is known as replication protein A 

(RPA), this gene is found on the short arm of chromosome 17 which is deleted in up to 

45% of CTCL patients (25, 26, 41, 42, 47, 48). This suggests that loss of function of NER 

may contribute to genomic instability in CTCL. 

(4) Homologous recombination (HR). Double stranded breaks (DSBs) are repaired in one 

of 2 ways, HR is the less error prone method because it uses the sister chromosome as 

a template (214). It occurs in several phases, the first of which is presynapsis which 

involves the conversion of both of the DSB ends into 3’ overhangs. The synapsis phase 

involves aligning the 3’ DSB ends to homologous regions on the sister chromosome 

and the formation of Holiday junctions. The postsynapsis phase involves elongation of 

the 3’ end and subsequent re-joining of the DSB ends to form 2 separate 

chromosomes again (214). The HR method of DSB repair is mainly active during the 

late-S and G2 phases of the cell cycle (183, 215). The RPA gene, is involved in binding 

the 3’ ends to stabilise the structure prior to binding by the RAD51 recombinase, 

BRCA2 and several other members of the HR repair process (183). Loss of the RPA 

gene from chromosome 17p is likely to affect HR in CTCL cells. 

(5) Non-homologous end joining (NHEJ). NHEJ is the other method by which DSB repair 

occurs. It is considered an error prone process compared to other mechanisms of DNA 
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repair (216) but is able to act throughout all phases of the cell cycle(215). As the name 

suggests it involves the direct ligation of DSBs (217). A relatively small number of 

components facilitate the process by first identifying DSB termini, encapsulating it and 

recruiting additional components. These encapsulated ends are then able to form a 

synapse with other DSBs and allow the repair process to take place (218). The breaks 

may be of varying complexity and require clean-up steps to allow ligation to take 

place. Components involved in this process may vary according to the type of DSB but 

are thought to include components from other repair mechanisms such as lesion 

specific base excision repair (BER) enzymes including APEX1, TDP1 and PNKP (219). The 

final end processing is likely responsible for the error prone nature of NHEJ (220). A 

reduced level of Ku70/Ku80 has been reported in CD4+ T-cells in CTCL tumour sites 

(221). This heterodimer is an important component involved in the initial recognition 

and binding of DSBs in the NHEJ process which may confer a reduced ability to respond 

to DSBs in CTCL cells.  

 

 

Figure 1.15 Summary of DNA damage and repair mechanisms.  
Known sources of DNA damage are shown (top) with examples DNA lesions caused by each 
mutagen (middle). The relevant repair mechanism used for amending the damage is listed 
below (Adapted from Mathews and Dexheimer 2013). 
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1.8.9.3 Telomere maintenance 

The structure of DNA and chromatin at the ends of the chromosomes is different from the rest 

of the chromosome arms and is known as a telomere (222, 223). Healthy telomeres are stable 

structures that differ to the standard DNA double-helix, predominantly being arranged in a 

formation known as a G-quadruplex (224). Telomeric sequences consist of repetitive ‘5 to 3’ 

TTAGGG sequences ranging from a few Kb to >100Kb in length (222).  The terminus of the 

telomere is separated into a complex single-stranded arrangement involving a large loop 

known as a T-loop and a smaller inner triple stranded loop known as a D-loop (222). The 

complex structure is coated by a 6-protein compound known as shelterin which consists of 

TRF1, TRF2, TIN2, RAP1, POT1 and TPP2 and serves to protect the telomere from being 

recognized by the DDR system and targeted for repair (225)(Figure 1.16).  

Polymerase enzymes generally replicate DNA in a 3’ to 5’ direction and are initiated by an RNA 

primer (226). Replicating DNA in this way means that the 3’ end cannot be fully replicated so 

the long repeated regions in telomeres are a solution to the problem, as small sections of the 

telomere are lost with each mitotic cycle (222). In terminally differentiated cells a division limit 

called the Hayflick limit (227) is reached when enough cell cycles have passed so that the 

telomere reaches a critically short size, upon which replicative senescence and exit from the 

cell cycle are triggered (228). The telomeres are maintained by a retrotranscriptase called 

telomerase which can elongate the repeat elements in the telomeres as it does in gametes, 

stem cells and many cancer cells (229), but is inactive in most cells that have undergone 

terminal differentiation (230, 231). 

Paradoxically in CTCL, short telomeres have been observed in aggressive subgroups in parallel 

with active telomerase (232, 233), it has been suggested that telomerase may exert additional 

functions in CTCL besides telomere maintenance (232). 
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Figure 1.16 The structure of human telomeres.  
Human telomers contain long repeats of TTAGGG with a 3’ overhang. At the terminus, the 
telomere loops back on itself to form a protective structure coated in a protein complex called 
shelterin. This structure prevents the telomere from being recognised by ATM and 
components of the double-stranded break response. Shelterin is composed of the proteins 
TRF1, TRF2, TIN2, RAP1, POT1 and TPP2 and perturbations in these proteins are likely to 
compromise the structure of telomeres and hence the integrity of the chromosome ends. 
Ilustration from (O’Sullivan and Karlseder 2010). 
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1.9 Case study of a common focal deletion: driver genes on 

chromosome 9p21.3 

CTCL tumours show a relatively high level of structural variation. This was detected in the 

earlier studies by us and others using low resolution genomic approaches (22-24, 26, 27, 31, 

41, 48, 127, 234) and subsequently confirmed in recent NGS papers (16, 28, 29, 49-51). Many 

structural variations encompass large sections of chromosomes, most notably chromosome 17 

which carries many known cancer driver genes such as TP53 and likely even more passenger 

genes. However, some recurrently deleted chromosomal regions are much smaller and 

therefore one hypothesis is that these so called focal deletions are more likely to contain 

predominantly driver genes. One such region is chromosome 9p21.3 which sits ~500kb 

centromeric from the interferon-α cluster and contains the genes (from centromeric to 

telomeric) CDKN2B-AS1, CDKN2B, CDKN2A and MTAP (Figure 1.21). This region has been 

reported as deleted in many malignancies such as cutaneous B-cell lymphoma (235), non-

melanoma skin cancer (236) and melanoma (237). Whilst CDKN2A and CDKN2B have well 

known roles in tumourigenesis, as has been previously discussed, the contribution of MTAP is 

less well known. In this section a recap of CDKN2A and CDKN2B and their established roles in 

cancer will be briefly reviewed, followed by a discussion of MTAP and evidence that MTAP may 

also act as a tumour suppressor. 
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Figure 1.17 Schematic of genes in 9p21.3.  
This small region on chromosome 9 is deleted or otherwise inactivated in many malignancies. 
The CDKN2A and CDKN2B genes expresses cell cycle regulators of the INK4 and ARF families 
(Figures 1.13-1.14) which have well known roles in tumourigenesis. The CDKN2B-AS1 gene is a 
non-coding RNA involved in the regulation of CDKN2B. The MTAP gene is also selectively 
deleted in several malignancies but the mechanism by which it contributes to tumourigenesis 
is currently undefined. 

 

1.9.1 CDKN2A and CDKN2B 

There is a great deal of evidence to suggest that CDKN2A and CDKN2A have prominent roles in 

tumourigenesis. The genes encode several alternatively transcribed tumour suppressor 

proteins with functionally distinct roles named p14ARF, P16INK4A, p15INK4B. The function of these 

genes has been previously discussed and they are known to have roles in cell cycle control and 

DNA repair activation (Figures 1.13-1.14). Further evidence for a tumour suppressing role 

includes; correlative deletion of the loci in tumour cells (235-237) and aberrant promoter 

hypermethylation leading to loss of expression (238-240), including in CTCL (44). 

1.9.2 MTAP 

MTAP, or 5’-methylthioadensine phosphorylase is the only known enzyme responsible for the 

breakdown of 5’-methylethioadenosine (MTA) (241). MTAP phosphorylates MTA which then 
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degrades into adenine and 5-methylthioribose-1-phosphate (MTR-1-P) (242). Adenine can then 

be further degraded into AMP whilst MTR-1-P is metabolized into methionine (242)(Figure 

1.12, 1.22). Loss of MTAP expression is reported in a range of solid (243-245) and 

haematological malignancies (246-252) and it has been suggested that changes in MTA 

concentration and its downstream effects could cause a selective growth advantage which 

may explain the high frequency of MTAP deficiency in tumour cells (242). 

There is increasing functional evidence that MTAP may act as a tumour suppressor. One of the 

strongest lines of evidence comes from an MTAP loss mouse model (253). Homozygous loss of 

MTAP is embryonic lethal in the mouse which highlights an essential developmental role. 

Perhaps more interestingly, mice heterozygous for MTAP loss are highly susceptible to 

developing mature T-cell lymphoma (253). Further evidence of MTAP acting as a tumour 

suppressor comes from the MCF-7 MTAP(-/-) cell line where reintroduction of MTAP inhibits 

tumour formation in xenographted in-vitro mouse models (141), the mechanism appears to be 

related to the enzymatic function of MTAP and its effect on intracellular polyamine pools as 

constructs engineered with defective catalytic regions show similar effects to MTAP loss (141). 
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Figure 1.18 How MTAP may act as a tumour suppressor.  
MTA is usually broken down by MTAP as the first step in the adenine and methionine salvage 
pathways. In the absence of functional MTAP, MTA is known to accumulate. High 
concentrations of MTA is thought to inhibit the PRMT family of methyltransferases. Several 
members of the PRMT family are known to reduce activity of the JAK/STAT and MAPK/ERK 
oncogenic pathways. It is possible that inhibition of PRMTs by increased MTA may lead to 
over-activity of these pathways and contribute to tumourigenesis. 

 

Correlative genetic studies provide further support that MTAP is an active participant in 

tumourigenesis. In non-small cell lung cancer and astrocytomas MTAP loss has also been 

shown to occur without loss of CDKN2A indicating a possible selective pressure specifically for 

loss of MTAP in the development of these malignancies (254). Loss of MTAP is also recognized 

as a factor contributing to the difference between superficial spreading melanoma and nodular 

melanoma implying MTAP exerts a phenotypic effect on tumour subtype (255). In malignant 

melanoma, functional MTAP is established as a positive prognostic factor and its expression is 

predictive of response to adjuvant interferon therapy (238, 256-259). MTAP is also known to 

be silenced epigenetically via promoter methylation in gastric (260) and lung (261) cancers as 

well as hepatocellular carcinoma (262, 263) and melanoma (238). 

The mechanism by which MTAP deficiency contributes to oncogenesis is likely to be via 

accumulation of MTA. Functional MTAP is essential for MTA breakdown and increased MTA is 

directly linked to increased tumourigenicity in several malignancies including hepatocellular 
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carcinoma (262, 263), melanoma (264) and head and neck cancers (265). In addition MTA has 

been shown to influence numerous critical cellular functions including regulation of gene 

expression, proliferation, differentiation and apoptosis (144).  

How MTA affects these critical cellular functions is unclear but one possible mechanism is by 

inhibiting a key class of enzymes called protein-arginine methyltransferases (PRMTs). There are 

9 of these enzymes and they are responsible for methylation of arginine and lysine residues on 

numerous target proteins which can have activating or repressive activity depending on the 

specific target (266). Importantly, STATs 1, 3 and 6 require methylation of the arginine-31 

residue by PRMTs in order for dephosphorylation to occur, dephosphorylation is an essential 

step in the deactivation of activated STATs (267-269) suggesting that increased MTA as a result 

of MTAP loss may contribute to the constitutive activation of STAT family members (Figure 

1.22). MTA has been shown to inhibit PRMT1 and thus prevent arginine methylation of STAT1 

(267).Whilst activating mutations and copy number gains have been documented in JAKs and 

STATs in CTCL (16, 28, 30, 49, 50), JAK-STAT pathways are also known to be over-active in the 

absence of genetic anomalies, for example constitutive activation of STAT3 (90). High 

concentrations of MTA may contribute to inactivation of further PRMT family members and 

have downstream effects on STAT3 and/or others such as STAT5A/B. 

A study in melanoma demonstrated loss of both symmetric and asymmetric arginine 

methylation correlated with loss of MTAP and increased MTA levels. In cell line models, 

restoring MTAP expression was able to restore protein methylation (270). Protein methylation 

by PRMT5 is also known to modulate ERK signalling (271). Interestingly, MTA levels also 

correlate with MAPK/ERK activity and restoration of MTAP expression was able to restore 

PRMT function and reduce ERK activity (270) suggesting another key cancer pathway may be 

indirectly attenuated by MTAP (Figure 1.22). 

A recent study of MTAP in fibrosarcoma cells suggested the possibility that MTAP has tumour 

suppressing properties unrelated to its enzymatic function (272). Reintroducing MTAP into 



61 
 

MTAP negative cells resulting in loss of tumourigenic properties, however reintroducing a 

catalytically inactive version of MTAP also resulted in a similar loss of tumourigenic properties 

suggesting MTAP has other functions besides MTA metabolism (272), though it is not clear 

how this may work. Intriguingly, this is in contrast to earlier work which suggested the 

enzymatic function was responsible for the tumour suppressing properties of MTAP (141). 

From a translational perspective, MTAP could be targeted therapeutically (242) as cells that 

lack MTAP cannot salvage adenine and methionine from MTA making them sensitive to de-

novo purine biosynthesis inhibitors and methionine starvation (246, 252). Further work that 

supports a tumour suppressing role for MTAP will add weight to therapeutic strategies which 

target MTAP. 

1.10 The application of next generation sequencing to the study of 

cancer 

1.10.1 Overview of NGS 

Next generation sequencing (NGS), also referred to as massively parallel sequencing, is a 

maturing technology that has kick-started a revolution in the way we can interrogate 

sequences of nucleic acids, primarily in terms of how many bases we can sequence per unit 

cost but also in how rapidly a genome can be sequenced. It expands on the earlier sequencing 

methodologies created in the late 1970s by Fred Sanger (273, 274). Whilst Sanger sequencing 

is still used as a gold standard, reliable method for detecting variants at known locations, its 

main limitation is the cost per base which currently stands at approximately $2400 per MB ($1 

per 400-900bp read). The other key limitation is that it can only be used to interrogate specific 

target sites of the genome in any practical sense. The first NGS platform was the 454 

pyrosequencing method which was developed commercially by Roche in 2005 and reduced 

costs and turnaround time considerably, allowing a full genome to be sequenced for between 

$10-25,000,000 (depending on size) in a matter of weeks (275). To give some perspective of 

the rate of improvement, the first complete publication of the human genome was published 
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in 2003 and took approximately 10 years to complete at an estimated cost of $2.7 billion (276). 

Since then the year on year reduction in price has drawn comparison to Moore’s law (277),  

currently the Illumina HiSeq X10 is said to deliver sequencing at approximately $10 per Gb 

making it the first commercially available platform capable of sequencing a human genome for 

under $1000  (278). The emerging, so called third generation sequencing technologies such as 

Pacific Biosciences RS have several novel advantages over previous systems as they utilize a 

sequencing by synthesis approach that can read sequences in excess of 20,000bp, enabling the 

detection of complex structural variants and reducing error from duplicate PCR reads (278). 

The fall is price will undoubtedly mark the start of an era of personalized medicine from which 

society will greatly benefit. 

1.10.2 NGS as a discovery tool 

Over the past 10 years NGS has been used increasingly in genetic studies of malignancy. It has 

been used primarily in the discovery of variants and genes that are affected by mutations and 

copy number variations (CNVs). Recently a flurry of publications has discovered many genes 

perturbed in CTCL that were not previously known to be implicated. These studies used NGS as 

the main investigative tool and have galvanized some already known signalling and genomic 

perturbations as well as some which appear in other malignancies that were not previously 

implicated in CTCL. The Full list of genes is too numerous to list here but important groups 

include; the JAK-STAT pathway (28, 50), global epigenetic regulators (49, 50), PLCG1 and 

related pathways in SS and MF (29, 30, 49), the ATM DNA repair initiation pathway (49). 

Rapid and cost effective discovery of numerous genes implicated in CTCL has confirmed the 

genetic heterogeneity of the tumours but also brought to light some commonalities. Gene 

families, signalling pathways, as well as genome maintenance and regulatory mechanisms are 

commonly perturbed and at this level some homology starts to emerge in terms of functional 

effects. A good example of this is that most tumours seem to show perturbations in global 

epigenetic regulators (50). In addition some signalling pathways appear to be shared with 
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other blood born malignancies including PLCG1 pathways which are dysfunctional in adult T-

cell lymphoma (ATL) (279). This is particularly important as it raises the possibility of using 

treatment options that were originally developed for other malignancies. Whilst NGS has 

highlighted many genes as implicated in the disease, a massive amount of functional work is 

now needed in order to confirm these genes as driver genes, as well as characterisation of 

their roles in the initiation, maintenance and/or progression. 

1.10.3 NGS as a molecular diagnostic tool 

Whilst initial use of NGS has been predominantly restricted to research, it has begun to be 

used in a clinical setting as a molecular diagnostic tool and will undoubtedly feature more 

prominently in this area in the coming years. Haematological malignancies have historically 

been diagnosed using a combination of cytogenetics, immunology and PCR based methods 

(280). Histological criteria have also been used to guide diagnosis, including in CTCL (4). 

However, NGS will likely supersede many of these methods in the near future as it combines 

the ability to detect specific variants with single base resolution as well as structural variants 

for an entire tumour in a single experiment (281). 

Characterizing the entire genome of a tumour has implications well beyond diagnosis, indeed 

it is likely to change the way that diagnosis and classification of tumours occurs in general. The 

reason for this is because accumulating whole genomic data of a tumour type will likely at 

some point allow that tumour type to be categorized, very accurately, into distinct tumour 

subtypes which can be treated differently if necessary and given different prognostic outcomes 

using multivariate models. This has already started to happen in other cancer types such as 

breast cancer (282) and glioblastoma where over 500 tumours have undergone NGS studies 

and been separated into proneural, neural, classical and mesenchymal subtypes (283-285). 

In a further somewhat unexpected development it seems that underlying genetic similarities 

can even be drawn between different tumour types suggesting that the biology of some 

tumours may in some cases be more similar to completely different tumour types than to 
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superficially related sub-categories (278). An example of this is squamous cell lung cancer, 

which has a similar mutation and variant profile to non-HPV head and neck carcinomas (286). 

Overall this implies that NGS will be a necessary tool in the design of targeted therapies as 

tumours initially thought of as similar may require radically different treatment between 

different patients. 

1.10.4 Challenges presented by NGS 

NGS studies produce massive amounts of data, often on the order of gigabytes to terabytes 

per sample for deep whole genome sequencing (278). The vast majority of this data is not 

likely to be relevant to the disease and storage of large data sets remains one of the major 

challenges of NGS studies.  

Another major drawback is the large start-up costs associated with NGS sequencing, ranging 

from the ION torrent PGM which is currently the cheapest at $80,000 plus reagents, up to the 

illumina HiSeqX10 currently priced at $10 million (278). However, the large start-up costs can 

be mostly offset by the cost per base of sequencing.  

Resolving different subclones within the same tumour sample will remain a challenge for some 

time, although this is not strictly an NGS problem as it is equally related to tumour sample 

collection. The Pacific Biosciences platform is currently the only platform capable of long read 

sequencing but has a relatively high operational cost, improving the cost effectiveness of long 

read sequencing should contribute to improving the ability of NGS to resolve subclones in a 

single sample. 

High performance computing infrastructure is currently required to analyse NGS datasets with 

a minimum of 8 quad core, 32 gig RAM and 10 terabytes of hard disk space (280). Additional 

costs of dedicated ICT and bioinformatics staff required to operate and maintain the 

computing infrastructure can be prohibitive for most research and diagnostic labs (287). 

However modest improvements to IT and bioinformatics training for bioscience graduates 
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should make this challenge easily surmountable in the near future. This coupled with cloud 

based analysis pipelines will likely generate considerable advancement in the field (288) 

1.11 Identifying cancer driver genes  

The first mutation identified as a bona-fide cancer driver was a single base G>T which converts 

a glycine to a valine in codon 12 of the HRAS gene (289, 290). The confirmation that genetic 

events cause tumourigenesis motivated the race to find more genes and events that 

contribute. This enthusiasm continues today and many more have been discovered with 518 

driver genes confirmed through functional studies and a further 1053 strong candidate genes 

identified through bioinformatic approaches (291). As previously discussed, NGS has been 

widely applied to the study of cancer, particularly in the pursuit of identifying cancer driver 

genes. In this section an overview of the general workflow and initial analysis pipeline and will 

be presented. Then the different bioinformatic approaches used downstream to screen for 

driver variants will be discussed. Finally, a brief general discussion of functional methods that 

can be used to validate candidates will be mentioned. 

1.11.1 Preparing libraries for next generation sequencing  

Staring from genomic DNA, libraries are prepared for sequencing by a series of steps beginning 

with fragmentation by ultrasound to uniform lengths. Fragments are then processed to repair 

the ends and ligate universal adaptors to each fragment. At this stage samples can be 

sequenced if whole genome sequencing is required of further target enrichment can be 

undertaken such as whole exome capture. A popular method of target enrichment is to 

hybridize the libraries with streptavidin coated RNA probes which are complimentary to the 

target region. Various biotinylated surfaces can be used to capture and isolate the target 

regions from the non-target regions (292)(Figure 1.17).  

The universal adaptors ligated previously are used to anneal the ends of the remaining 

fragments to a solid platform where the sequential addition of fluorescent dNTPs, followed by 

image capture is performed. This is the mechanism used in current Agilent and Illumina 
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technologies which make up the bulk of large scale sequencing studies and were used to 

generate sequence data for experiments contributing to this thesis. 

 

Figure 1.19 Summary of Library preparation for NGS.  
Genomic DNA is sheared by ultrasound to 170-190bp. Fragments can have overhangs on the 5’ 
and 3’ ends or can be blunt ended, all fragments are repaired to be blunt ended. After repair, 
3’-‘A’ overhangs are ligated followed by universal adaptors which can be used to amplify the 
successfully ligated fragments. Libraries are then ready for whole genome sequencing if 
required, or additional target enrichment can be carried out to select exomes or other parts of 
the genome that may be of interest. Target regions are isolated by hybridization with 
streptavidin coated RNA probes, followed by subsequent binding to biotinylated magnetic 
beads. Non-target regions can then be simply washed away and the bound targets amplified 
by low cycle PCR and finally sequenced. 

 

1.11.2 Upstream bioinformatic analysis 

After FASTQ reads have been retrieved from the sequencing platform, initial analysis steps are 

typically performed by bioinformatic pipelines. These steps generally include; quality checks, 

removal of duplicates and low quality reads, trimming of reads, alignment/mapping, SNP and 

small indel calling, the removal of common variants and the identification of structural 

variants. The choice of QC thresholds, alignment and variant calling software can strongly 

influence the final output. Common aligners used include BWA, Novoalign, Bowtie2, and SOAP 

(293). The more commonly used variant callers include SAMtools m-pileup, and GATK (294).  
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Functional understanding about the algorithms behind aligners and variant callers encompass 

bioinformatic and mathematical disciplines beyond the scope of this thesis so discussion will 

be limited to some of the more superficial analytical choices that can be applied to variant 

calling. The most obvious filter that can be applied relates to the depth of the sequence, i.e. 

the number of reads covering a given base and the proportion of wild-type to mutant calls 

represented throughout the depth. For example, to call standard germline variants it is typical 

to require a minimum depth of 20 reads and ~50% of those reads should show the mutant 

allele to call a heterozygote. Analysis of impure tumour samples can be much more 

complicated due to the presence of tumour sub-clones as well as healthy host tissue 

contaminating the sample (Figure 1.18). As a result, variants are often called if only 

represented by a few reads and require validation by follow-up experiments. It stands to 

reason that the greater the depth is then the higher confidence one has in accurately calling 

potential variants. 

 

Figure 1.20 Calling variants in NGS data.  
Standard heterozygous variants, such as many of those detected in healthy germline DNA, are 
relatively easy to call because contigs from each allele make up approximately 50% of reads. In 
contrast, variants from impure tumour DNA or tumour sub-clones can be much more dilute 
within a sample leading to lower confidence when calling variants. Sequencing target genes in 
more depth can partially address this, as can enriching tumour populations wherever possible. 

 

Variants can also be filtered based on strand bias, during pair-end sequencing the reads are 

sequenced from both the 5’ and 3’ ends. If a variant is called and most of the non-wild type 
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(WT) reads appear to only occur on one strand (often referred to as the forward or reverse 

strands) then it is often reasonable to exclude this variant as the bias has likely arisen due to a 

sequencing artefact or a mistake arising from low complexity sequence.  

Calling structural variants is considerably more developed and reliable for whole genome data 

as libraries are less biased by the target enrichment process and coverage tends to be more 

uniform. WES or targeted capture studies tend to be limited to calling losses or gains of genes 

or exons rather than mapping the exact location of structural variants. Usually additional 

software is required to call structural variants and these are technically more challenging and 

often ambiguous to detect but strategies fit into several main approaches. These include; read-

count methods - whereby detection is based on the number of reads at a given location 

relative to control samples, read-pair based methods - where differences between reads and 

sections of the reference genome are visible during alignment, split-read approaches which 

tether part of a read to the reference genome and then allow the other part of the read to the 

align independently. De-novo assembly based methods can also in principle be used to detect 

structural variation independently of a reference genome (295).  

1.11.3 Bioinformatic approaches and the interpretation bottleneck 

Once a list of variants has been generated the challenge remains to identify true driver 

variants from the myriad of passenger events. A human exome contains ~12,500 non silent 

coding variants, excluding structural variation (296). It has been estimated that between 2 and 

8 driver events are required to cause a malignancy (297). If we accept these estimates then 

mere superficial observation of most NGS cancer datasets would suggest that most of the 

variants in a dataset are passenger events. However, there are some exceptions with relatively 

low numbers of mutations such as cancers that occur in children (298). Several approaches 

have been developed in order to identify driver events and are discussed in this section. 
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1.11.3.1 Frequency based methods 

As the name implies, this method simply looks for the genes that contain the highest number 

of novel mutations in a dataset. This is a relatively crude approach that can easily be 

confounded by several factors. The most obvious confounding factor is that the larger a gene is 

then just by probability the gene is more likely to harbour a mutation in any given sample. 

However, this method requires little bioinformatics expertise and can be useful for quickly 

identifying recurrent variants or candidate genes that had been previously hypothesized as 

being drivers.  

1.11.3.2 Enrichment methods 

Beyond basic frequency approaches, more sophisticated methods have been developed that 

model the expected mutation rate and look for enrichment. Genes that appear to be mutated 

above the background rate are more likely to be drivers because a selection pressure must be 

driving a rate of mutation above what would be expected. These methods rely on empirical 

Bayesian statistics and various methodologies have been developed which rank genes 

according to the number and nature of mutations (299).   

Synonymous and non-synonymous mutations can be calculated to occur at a certain ratio at 

each given codon. This can be used as a type of enrichment method to calculate if a selection 

pressure is occurring by observing whether or not non-synonymous mutations are occurring at 

a rate higher than expected by chance. Similar approaches have been widely used to identify 

selection during studies of evolution (299-301). The selection pressure that drives mutagenesis 

in cancer can be thought of as a similar process to Darwinian selection as previously 

mentioned (68, 69). 

The frequency of non-synonymous coding mutations has been shown to be approximately half 

of that found in non-coding regions (302, 303). This can be used as a guide to identify selection 

pressure and therefore aid in identifying driver genes (299). To make full use of this approach 
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it is important to correct for (or exclude) regions where loss of heterozygosity (LOH) has 

occurred (299).  

1.11.3.3 Mutation clustering as a predictor 

Cancer driver genes are often classified as oncogenes or tumour suppressor genes, the former 

can also be thought of as dominant and the latter recessive. Each are known to be positioned 

non-randomly throughout their respective genes with oncogene mutations often clustering to 

specific regions and tumour suppressor genes more likely to be truncating or spread 

throughout the gene (297) (Figure 1.19), although it is noteworthy that some cancer driver 

genes can be oncogenes or tumour suppressors depending on the tumour type (297), for 

example NOTCH1 can function as a tumour suppressor gene in solid tumours but in 

lymphomas tends to be an oncogene (304-306). Several bioinformatic software packages have 

been developed in order to predict cancer driver genes based on these mutation localization 

differences including SomlnaClust (307) and OncodriveCLUST (308).  
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Figure 1.21 Distribution of mutations in two oncogenes (PIK3CA and IDH1) and two tumor 

suppressor genes (RB1 and VHL).  

The distribution of missense mutations (red arrowheads) and truncating mutations (blue 

arrowheads) in representative oncogenes and tumor suppressor genes are shown. The data 

were collected from genome-wide studies annotated in the COSMIC database (release version 

61). For PIK3CA and IDH1, mutations obtained from the COSMIC database were randomized by 

the Excel RAND function, and the first 50 are shown. For RB1 and VHL, all mutations recorded 

in COSMIC are plotted. aa,= amino acids. (Vogelstein et al 2013). 

 

Ratio and spatiometric methods have been applied to the Catalogue of Somatic Mutations in 

Cancer (COSMIC) database (309, 310) in a recent large study in order to identify and classify 

mutation driver genes (297). The COSMIC database is a large composite bank of mutations 

reported in numerous cancer types. At the time of the original analysis COSMIC contained 

404,863 mutations across 18,306 different genes (297).  In this study the so called 20/20 rule 

was proposed whereby genes are classified as oncogenes if over 20% of mutations occur at 

recurrent sites and are missense. Alternatively genes are classified as tumour suppressor genes 

if over 20% of mutations are inactivating (297). This study reported 125 mutation based driver 

genes of which 71 are tumour suppressors and 54 are oncogenes (297). Whilst it is clear that 

there are likely many more cancer driver genes mutated less frequently such as those reported 

in the network of cancer genes (291), this serves are a useful approach that can be improved 

upon with more recent builds of COSMIC and on individual datasets.  
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1.11.3.4 Composite methods 

The enrichment methods of identifying driver genes discussed earlier in this section rely on the 

assumption that as sample sizes grow, so will the power to detect driver genes that occur less 

frequently. However, there have been growing signs that the picture is more complicated than 

this as many genes which are implausible as candidates, such as olfactory receptors, show 

enrichment.  

False positives largely stem from mutational heterogeneity across different samples within a 

cohort as most enrichment methods use assumptions about the expected rates of different 

types of mutations (298). Individual samples within a cohort which carry more passenger 

mutations will contribute to the enrichment of a pool of false positives if the heterogeneity 

between the samples is not accounted for (311). This is particularly important for cancers 

which show a higher range of mutations across samples such as melanoma and lung cancers 

where the sample specific mutation rate can vary by several orders of magnitude (0.1-

100/Mb)(298)(Figure 1.20). Recent NGS studies have reported mutation ranges approaching 

the higher end for CTCL (49-51), indicating that inter-sample heterogeneity may partially 

confound simple methods for calling drivers in this cancer type.  
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Figure 1.22 Inter and intra-heterogeneity of mutational patterns across different cancer 
types.  
Somatic mutation frequencies observed in exomes from 3,083 tumour-normal pairs. Each dot 
corresponds to a tumour-normal pair, with vertical position indicating the total frequency of 
somatic mutations in the exome. Tumour types are ordered by their median somatic mutation 
frequency, with the lowest frequencies (left) found in haematological and paediatric tumours, 
and the highest (right) in tumours induced by carcinogens such as tobacco smoke and UV light. 
Mutation frequencies vary more than 1000-fold between lowest and highest mutation rates 
across cancer and also within several tumor types. The lower panel shows the relative 
proportions of the six different possible base-pair substitutions, as indicated in the legend on 
the left. (Lawrence et al 2013). 

 

Another type of mutational heterogeneity contributing to false positives is the occurrence of 

mutational hotspots across the genome which can vary by up to five fold (298). Several factors 

seem to account for most of this heterogeneity the first being expression level. Highly 

expressed genes tend to be less prone to mutations most likely  as a result of transcription 

coupled nucleotide excision repair (312). The other main contributor appears to be the time 

during S-phase that replication occurs for a particular gene. Late replicating genes are known 

to be more prone to germline mutations (313-315), possibly as a result of depletion of free 

dNTPs (313). The increased rate of mutation in late replicating genes has been shown to 

extend to cancer cells (298). 
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Any method of identifying driver genes that doesn’t account for each of these areas of 

heterogeneity will inevitably be flawed at least to some extent and will call some false 

positives as well as overlook some genes that only affect a modest number of tumours (311), 

the so called hills (297). One method that attempts to take account of differing mutations rates 

within a cohort as well as expression and timing of replication is MutSigCV (298). Whilst it is 

not possible to fully implement without coupled transcriptomic data as well as mutational data 

MutSigCV accounts for many sources of variation that standard enrichment techniques do not 

and could therefore act as a very effective screening tool. 

Another method that uses multiple factors to predict driver mutations in a dataset is MuSic 

(mutational significance in cancer) (316). This algorithm applies a number of statistical 

methods as well as making predictions based on the known pathway interactions that 

potential drivers are involved in, furthermore clinical data associated with the individual 

tumours can also be used by the algorithm (316).  

1.11.4 Challenges for current methods of identifying cancer drivers 

One key challenge for current methods are that they show little in terms of overlap with each 

other (317). Whilst it would be unreasonable to expect any algorithm to flawlessly predict all 

drivers in a dataset, it is of some concern that predictions vary by a significant margin with less 

than 25% overlap in some composite approaches applied to the same datasets (317, 318). 

Although selection of the features that are used to identify drivers will play a large role in how 

each algorithm will perform (317) the research community has yet to reach consensus about 

what these features should be, furthermore it is likely to vary between different malignancies.  

Another significant challenge relates to the changing roles of driver genes throughout the 

development of a cancer. Some drivers may be passengers in the early development of a 

cancer but play a significant role in later stages of the disease (or vice-versa), or when the 

environment changes, for instance in response to treatment (317). No strategies currently 

exist to address this, however sequencing efforts tend to concentrate on late stage diseases. If 
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efforts were made to collect samples and sequence tumours from all disease stages in the 

same patients then identifying drivers that operate at different disease stages may be feasible. 

However, it’s acknowledged that it may be challenging to isolate enriched tumour tissue from 

early stage tumours in many cancers. 

The cumulative effect of multiple small-effect or rare drivers is a challenge that is very difficult 

to measure or investigate algorithmically with current datasets. These genes/variants are the 

so called hills that are infrequently affected in small proportions of tumours or have a very 

small effect on tumour progression (298). By far the most effective way to identify them is to 

increase the size of the datasets which will increase statistical power whilst also considering 

the caveats identified in the previous section. The next generation of machine learning 

algorithms, particularly deep learning neural networks, may also prove to be an excellent tool 

for identifying small effect or rare driver genes. 

1.11.5 Functional approaches 

Hypothesis driven, functional investigations are the traditional approach in experimental 

genetics. Whilst bioinformatic approaches are a powerful tool for short listing candidate genes 

for consideration as cancer driver genes, they are essentially screening tools and candidates 

need to be followed up by functional studies. This section will describe in general the main 

experimental approaches that can be taken to discern gene function. 

1.11.5.1 Correlative studies 

These are the first step towards functional characterisation; they are theoretically not 

dissimilar to bioinformatic screening. The main difference is that a range of methods can be 

used and analyzing single genes is often considerably more cost effective than analyzing large 

numbers of genes. The main disadvantage is that a good rational or hypothesis is required to 

investigate specific genes. Approaches such as QPCR can be used to analyze both gene copy 

number changes and changes in expression. Sanger sequencing can be used to investigate 

SNVs and/or small indels and methylation specific PCR (MSP) can be used to investigate 
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differentially methylated nucleotides in comparison with control samples. If significant 

differences are seen between cases and controls then further experiments can be designed 

around modelling the differences. 

1.11.5.2 Loss and gain of function experiments 

Often the most straightforward experiment that can be undertaken in order to investigate a 

gene of interest is a loss of function experiment, i.e. knock out the gene entirely or aim to 

reduce its expression. The opposite of this is a gain of function experiment, whereby the aim is 

to add extra copies of a gene or otherwise increase its expression. After the desired effect is 

conferred on the gene of interest then observations can be made about the effects (of either 

losing or gaining the gene) on the model system being used. In cancer studies loss of function 

is likely to be more appropriate for studies of tumour suppressor genes whereas gain of 

function is likely to be more appropriate for studying oncogenes. In the case of some SNVs the 

change may well be ambiguous prior to investigation but emerging tools such as the CRISPR-

Cas9 system (319) are well placed to design studies investigating such variants. Both gain and 

loss of function experiments can be conducted in stable cell lines, model organisms such as 

mice or in wild type or tumour derived cells, although the latter two models are often 

technically challenging. 
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1.12 Hypothesis 

The highly heterogeneous genomic landscape of CTCL contains a mix of driver and passenger 

events, recurrent genomic events are more likely to contain driver genes. In addition, driver 

events may occur in different genes in different tumours but affect related gene regulatory 

networks.  

1.13 Aims of this thesis  

1.13.1 Investigating the role of MTAP in CTCL: A candidate gene based approach 

An initial aim of this thesis is to analyse the chromosome 9p21.3 focal deletion in CTCL 

patients. The CDKN2A and CDKN2B loci are well established cancer driver genes whose 

function is under selective pressure in numerous malignancies. Therefore, it is important to 

establish if the MTAP gene, which is often co-deleted, is also under a selection pressure in 

CTCL as this would support a role for MTAP as a driver of CTCL. The main focus of this section is 

to determine if MTAP is lost independently of CDKN2A in CTCL. Independent loss would 

indicate a selective pressure against MTAP, supporting the hypothesis that MTAP is a driver 

gene in CTCL. Other mechanisms of inactivation will also be investigated such as the presence 

of SNPs using the NGS data generated from the other section of the project. Furthermore, the 

presence or absence of promoter hypermethylation will also be investigated. In addition to 

genetic and epigenetic characterization of the MTAP status in CTCL patient samples, a 

preliminary study of the functional effect of MTAP loss will be undertaken. Specifically, 

characterization of the effect of MTAP loss on protein-arginine methylation by the PRMT 

family of genes will be sought. 

1.13.2 Identification of driver events in CTCL: A high throughput global approach 

A major aim of this thesis aims to examine CTCL using a genomic approach to screen for driver 

events in CTCL. NGS is a maturing technology which enables the detection of a large number 

and variety of genetic perturbations, including SNVs and CNVs, simultaneously in one large 

experiment. As SS is the most severe form of the disease with the worst prognosis, this section 
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of the project will focus on SS. CTCLs are an incredibly heterogeneous malignancy and whilst 

similarities are likely to be detected at the level of single genes, it is important to consider that 

genetic perturbations may be more common at the level of gene families, gene regulatory 

networks and signalling pathways. Therefore, particular attention will be focused on 

identifying these higher level genomic patterns and features to identify common themes that 

appear in the disease. Validation will be sought for biological processes that are commonly 

perturbed and are likely to be key contributors to the disease such as mechanisms that effect 

genome stability. Work in this area has important implications from the perspective of 

translational medicine as it will aim to identify targets for possible therapeutic intervention 

and as a long term objective; foundations will be laid for personalized therapeutic strategies.  
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2 Materials and Methods 

2.1 Collections and Processing of Samples 

All patients fulfilled the WHO-EORTC diagnostic criteria for SS (4). A dominant clonal T-cell 

receptor (TCR) gene rearrangement was detected in all samples using PCR based methods 

(320). Furthermore, in matched samples (skin and PBMC) from SS patients an identical T-cell 

clone was demonstrated. Patient samples were obtained from the nationally approved CTCL 

research tissue bank (National Research Ethics Committee: 07/H10712/111+5); healthy control 

samples were obtained with the approval of the Guy's and St Thomas' Hospital Research Ethics 

Committee (EC01/301). Written and informed consent was obtained from all 

patients/volunteers.  

Whole exome sequencing discovery samples: DNA was extracted from CD4+ enriched 

peripheral blood mononuclear cells (PBMCs) using RosetteSep (Stemcell Technologies, 

Cambridge, UK) and matched primary fibroblasts from skin explants obtained from 10 

untreated SS patients at diagnosis. Targeted capture samples: DNA was extracted from PBMCs 

of 101 SS and 32 healthy control samples.  

MTAP targeted study: Samples from 280 CTCL patients were used in this study (319 total 

samples), 234 of these patients were analyzed by Q-PCR (273 samples), 77 patients were 

analyzed by NGS, of which 31/77 were also analysed by QPCR. This cohort of 77 were a subset 

of the 101 prevalence screen patients that underwent targeted capture during the genomic 

screening study and were used alongside the 32 healthy controls (HCs) also used in this part of 

the study to call mutations as well as CNVs across the 9p21 region with the exome depth 

package (See section 2.28 for further detail of this). DNA samples from PBMCs of 84 HCs were 

obtained from the Human Random Control DNA Panel 4 (ECACC, Sailsbury, UK) for use as 

controls in the QPCR gene copy number analysis, a further cohort of.14 age matched HCs were 

recruited at King’s College London to analyse gene expression of MTAP, CDKN2A and control 
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genes by QPCR in CD4+ T-cells for comparison with SS tumour CD4+ T-cells. The CTCL cell lines, 

HuT78 and SeAx were gifts from Dr S John (King’s College London) and Professor M Vermeer 

(Leiden University Medical Centre) respectively. Jurkat and MyLa cells were obtained from the 

ECACC (Sailsbury, UK).  

2.2 Isolation of PBMCs from Whole Blood 

Whole blood samples were made up to 20ml with PBS and then layered on top of lymphoprep 

before centrifuging to separate PMBCs from eurythrocytes. PBMCs were then harvested, 

washed with PBS, RCLB (red cell lysis buffer) and RPMI medium (Roswell Park Memorial 

Institute) before re-suspending in ‘RNAlater’ (Qiagen, Manchester, UK).  

2.3 Enrichment of CD4+ T-Cells from PBMCs 

Whole blood samples were made up to 20ml with PBS (phosphate buffered saline) and 

incubated at room temperature with Rossettesep (1ml per 20ml blood) for 20 minutes. 

Samples were then layered on top of lymphoprep and CD4+ T-cells were isolated using the 

same method as for PBMCs. 

2.4 Isolation of Fibroblasts  

Fibroblasts were obtained from primary skin explants. Cultures were maintained in RPMI 

containing 10% fetal calf serum and 1% penicillin/streptomycin (Invitrogen, Paisley, UK) 

2.5 Mycoplasma testing 

Mycoplasma testing was carried out monthly. Cell media was collected from a minimum of 24 

hours after passage. Testing was carried out using the ‘Mycoplasma detection kit-quick test’ 

(B39032, Biotool) according to manufacturer’s instructions. 

2.6 DNA Extraction 

Frozen or fresh cell pellets were treated with nuclei lysis buffer (Promega, Southampton) and 

digested with proteinase K (Qiagen, Manchester, UK) for up to 24 hours before removing 
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proteins with protein precipitation solution (Promega, Southampton, UK). DNA was then 

precipitated in isopropanol and washed in 70% ethanol before re-suspension in MilliQ or low 

TE. Alternatively, where high yields were not necessary the DNeasy blood and tissue kit 

(Qiagen, Manchester, UK) was used according to manufacturer’s instructions.  

2.7 RNA Extraction 

RNA was extracted from cell pellets using the RNeasy mini kit (Qiagen, Machester, UK) as 

instructed by the manufacturer’s guidelines. 

2.8 Synthesis of cDNA 

High capacity cDNA reverse transcription kit (Applied Biosystems, Paisley, UK) was used to 

convert RNA into cDNA from 1000ng of RNA per 20ul reaction according to instructions 

supplied by the manufacturer. 

2.9 PCR 

PCR primers were designed using the Primer3 online software and assessed in-silico using the 

NCBI online primer design tools before optimization. PCR was performed in 25µl reactions 

containing 0.1-0.1-0.2mM of each primer, 0.06-0.08mM of each dNTP and 1.0-2.0 Units of 

AmpliTaq Gold DNA polymerase (Applied Biosystems, Paisley, UK). The concentration of MgCl2 

was 1.5-2.5mM. Primer-pair annealing temperatures were optimised in parallel starting at the 

theoretical melting point and decreasing in 1°C decrements to 5°C below the theoretical 

melting point. PCR cycles were fixed at 35 cycles for end point experiments and ranged down 

to 25 cycles for semi-quantative experiments.  

PCR products were electrophoresed through a 2% agarose gel supplemented with 0.005% 

ethidium bromide for visualization of PCR products. A negative control containing water was 

run with each master mix preparation. Appropriate cell line DNA was used as a positive control 

where possible. 
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2.10 QPCR 

Real-time quantitative PCR (qPCR) reactions were carried out on an ABI 7900 (Applied 

Biosystems, Paisley, UK). Reactions continued for 40 cycles with an initial denaturation at 95°C 

for 10 minutes with a 60°C, 60 second annealing and extension phase. Probes/primer sets 

(Table 1) were combined with TaqMan gene expression mastermix (Applied Biosystems, 

Paisley, UK). Reaction volumes were 25ul and samples were analyzed in triplicate for both 

probes and with 3 wells of water per probe as a negative control. The ddCT method was used 

for the analysis with standard deviation of healthy samples used to calculate normal 

distribution. The ddCT method quantifies the amount of nucleic acid by measuring the number 

of cycles it takes for the reaction to progress to the log phase. This number of cycles (CT-value) 

can then be compared to housekeeping genes to quantify relative abundance of target nucleic 

acid sequences and then compared to healthy controls or other experimental samples to 

measure relative expression or copy number. In order to determine the normal range of ddCT 

for each experiment, the mean and standard deviation of the ddCT of the HC group was 

calculated and 3 standard deviations was set as the boundary for normal copy number or gene 

expression. Samples with ddCT lower than 3 standards deviations of the HC mean were said to 

have reduced gene copy number or gene expression for the respective experiments. ANOVA 

and Tukeys HSD was used to assess differences between groups used in QPCR for gene CN 

assays. 

Target Catalogue Number Manufacturer Experiment 

CDKN2A Hs00923894_m1 Applied Biosystems Expression 

PPIA Hs99999904_m1 Applied Biosystems Expression 

MTAP 2.10.1.1 Hs00559618_m1  Applied Biosystems Expression 

RnaseP 4404631 Applied Biosystems Copy number 

TERT 4401663 Applied Biosystems Copy number 

MTAP P1 Custom (M’Soka et al 
2000) 

Applied Biosystems Copy number 

CDKN2A P1 Custom (M’Soka et al 
2000) 

Applied Biosystems Copy number 

MTAP P2 Hs06918311_cn Applied Biosystems Copy number 

CDKN2A P2 Hs03721302_cn Applied Biosystems Copy number 

Table 9 Taqman QPCR probes. 
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2.11 Whole Exome Capture and Sequencing 

Whole exome capture was performed by ‘in-solution hybridization’ using the Agilent Sure 

Select XT target enrichment system for Illumina paired-end sequencing Libraries according to 

manufacturer’s instructions (Agillent, Sureselect-XT). Subsequent massively parallel 

sequencing (MPS) was performed on an Illumina HiSeq 2000. 

DNA was extracted from enriched CD4+ tumour cells of 10 SS patients. Libraries were prepared 

from patient CD4+ tumour cells and from corresponding patient fibroblasts individually prior 

to exome capture. Patient matched fibroblasts were chosen as a control source of DNA for 

subsequent MPS analysis in order to distinguish between germline mutations and somatic 

mutations detected in the CD4+T-cell population. Fibroblasts and CD4+T-cell reads were 

distinguished post-sequencing by the use of separate index-tags ligated during the post 

capture PCR amplification stage of the library preparation. A total of 10 PCR cycles was 

selected as the optimum cycle number used to increase the post capture library DNA 

concentration whilst maintaining fragment diversity in the library. 

2.12 Targeted Capture and Sequencing 

Capture probes were designed based on the exons of genes found to carry variants fitting 

three criteria: non-synonymous, novel, somatic tumour mutations from patients who had 

undergone whole exome sequencing. Novel was defined as a mutation not found in the 1000 

genomes, dbSNP or in house exome databases’ and non-synonymous also included all exonic 

stop, frameshift, INDELs and splice site variants. Somatic tumour mutations are variants that 

were found only in the tumour DNA and not in the fibroblast control DNA. Probes were also 

designed to cover recurrent regions of LOH (loss of heterozygousity). In addition, probes were 

designed to capture the JAK, STAT and TET family of genes as well as to cover all coding exons, 

all CpG islands and all multi-transcription factor ChIP sites from the encode project within 5kb 

of coding exons within the chromosomal region of 9p21. See Appendix ‘Final targeted capture 

BED list.txt’ for complete list of target regions. 



84 
 

Targeted capture library preparation was performed according to manufacturer’s instructions 

(Agilent, Sureselect-XT) as for whole exome library preparation (Figure 23).Sequencing was 

performed on an Illumina Highseq-2000 in the BRC genomics core facility. 

2.13 Preparation of Whole Cell Lysates 

Fresh RIPA buffer was prepared prior to lysing (sc24948A, Santa-Cruz Biotech). Cells were 

initially washed in PBS to remove excess freezing medium or growth medium and cell pellets 

produced by centrifuging at 1500rpm for 5 minutes. The supernatant was then decanted and 

1ml of complete RIPA buffer was added per 2x107 cells. Cells were then disrupted by pippeting 

and incubated at 4˚C for 20-30 minutes. Supernatent was then decanted and protein 

concentration quantified by BCA (Thermoscientific, UK) and diluted to appropriate 

concentrations and denaturing at 95˚C with 4x Laemmli buffer (161-0747, Biorad, UK) for 5 

minutes. 

2.14 Immunoblotting 

Whole cell lysates containing 15-40ug of total protein were loaded onto 5-15% PAGE gels 

(BioRad, UK). Following electrophoresis proteins were transferred to nitrocellulose or PVDF. 

Blocking was carried out in with 3-5% BSA or 3-5% fat-free milk in Tris-buffered saline and 1% 

tween (TBST) depending on antibody for 1 hour minimum. Antibodies were diluted to 

optimized concentrations in 3-5% BSA or 3-5% milk in TBST and incubated overnight under 

agitation at 4°C (primary antibody) (Table 2). Membranes were washed in TBST from between 

20 minutes and 2 hours to remove residual primary antibody and blocked again before being 

incubated with secondary antibody for 2-4 hours.  
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Antibody Manufacturer Incubation 
time 

Blocking 
time 

Other 
Conditions 

Dilution 

Goat polyclonal 
HRP-conjugated 
anti-rabbit 
(secondary) 

Abcam-
ab97051 

2-4 hours 1hour 5% milk/TBST 1:3000 

Goat Anti-
mouse 
(secondary) 

Sigma - 
A2304 

1 hour 1 hour  5% milk/TBST 1:8000 

Dimethyle-
Arginine 
asymetric 

 Active Motif 
SA - 39231 

12-16 hours 
at 4˚C 

2-4 hours 5% milk/TBST 1:1000 

Mouse 
polyclonal 
MTAP 

Abnova – 
H00004507-
M01 

12-16 hours 
at 4˚C 

1 hour 5% milk/TBST 1:500 

Anti-beta Actin Abcam – 
ab8227 

1 hour  5% milk/TBST 1:2000 

Table 10 List of antibodies and optimized conditions for use. 

2.15 Stripping Membranes for Re-probing 

Stripping buffer was prepared using 20ml of 10% SDS, 12.5ml of 0.5M Tris HCL, 67.5ml of milli-

Q water and 0.8ml of β-mercaptoethanol. Membranes were incubated in a fume hood at 50˚C 

for up to 45 minutes with stripping buffer. Membranes were then rinsed for 1-2 hours with 

running water to remove residual β-mercaptoethanol, then washed in TBST before blocking for 

re-probing. 

2.16 Detection of Proteins 

Detection was performed using the ECL plus Western blotting system (RPN2232, GE Healthcare 

UK Ltd) combined with exposure to X-ray film (12705325, FUJI, Fisher Scientific Ltd, UK). 

2.17 Thawing Frozen Cells 

Cells were thawed at 37°C for 2-3 minutes before re-suspending in fresh medium. Cells were 

then briefly centrifuged again before further re-suspending in fresh medium to remove excess 

DMSO. Growth media was replaced again after 24 hours and cells were assessed for growth 

and viability. 
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2.18 SeAx culture and passage 

SeAx cells were maintained in RPMI medium (21875-034, Gibco) supplemented with 10% FBS 

(51800-500, Biosera, UK) and 1% penicillin/streptomycin (15140-122, Gibco, UK). Media was 

also supplemented with 25U/ml IL-2 (PHC0026, Gibco, UK). Cells were passaged at a 

confluency of 1 x106 cells/ml to 1/5 or 1/10. 

2.19 HEK293 culture and passage 

HEK293 cells were maintained in DMEM medium (61965-026, Gibco, UK) supplemented with 

10% FBS (51800-500, Biosera, UK) and 1% penicillin/streptomycin (15140-122, Gibco, UK). Cells 

were washed in sterile PBS and then passaged at a confluency of 90-95% to 1/5 to 1/20 

depending on requirements. 

2.20 Freezing Cells 

Log phase cells were prepared for long term storage by suspending up to 10 x 106 cells in 1ml 

of freshly prepared freezing medium (50% DMSO, 50% FBS) (sc358801, Santa-Cruz 

Biotechnology). Cryovials were stored at -80°C for 24 hours in a controlled rate freezing device 

before being transferred to liquid nitrogen. 

2.21 Nucleofection 

Transfection of SeAx cells was performed using the Amaxa human T-cell nucleofector kit (VPA-

1002, Lonza, UK) optimized for unstimulated human T-cells according to manufacturer’s 

instructions. Between 5-10x106 cells were transfected in each cuvette. One siRNA (table 3) or 

plasmid was transfected per cuvette unless specifically stated. 2µg of a GFP expressing control 

plasmid (pmaxGFP, supplied with the kit) was transfected in 1 cuvette as a positive control to 

ensure transfection took place successfully with each batch of nucleofection. Between 30-

300nM of siRNA was transfected per 100µl cell suspension. 
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Transfected siRNA 5’->3’ Transfected siRNA 3’->5’ Target Manufacturer 
and 
Catalogue 
Number 

GCGAUAUUGUCAUUAUUGAtt UCAAUAAUGACAAUAUCGCcg MTAP Ambion-  
s9021 

CGAGAGAGGUUCUUAUAGAtt UCUAUAAGAACCUCUCUCGtt MTAP Ambion-  
s9022 

GCUGGAAUUUGUUACGCAAtt UUGCGUAACAAAUUCCAGCct MTAP Ambion-  
s9023 

Not provided Not provided Scrambled 
control 

Ambion - 
AM4611 

Table 11 List of siRNAs. 

2.22 Transfection with Lipofectamine 2000 

Transfection of Seax cells using Lipofectamine2000 (11668-030, Invitrogen) was attempted 

using 1-4x105 cells per ml in 24 well plates as suggested by the manufacturers but was 

ineffective at all concentrations of siRNA (5-300pmol, final concentration when combined with 

cells) and lipofectamine (0.5-3.55µl/50ml) attempted. Serum free and antibiotic free media 

were also attempted but no difference was observed. Transfection of pGFPmax plasmid was 

attempted (100-1500ng/ml final concentration) but observation using florescence microscope 

(Zeiss Axio Observer Z1) showed very few cells had undergone transfection (20-30 cells per 

4x105 cells in any given well). 

HEK293 cells were seeded in 24 well plates at 50% confluency at least 24 hours prior to 

transfection in antibiotic free media. Lipofectamine2000 was mixed with Optimem (61965-

026, Gibco) in a range of concentrations between 0.5-2.5µl/50ml as suggested by 

manufacturers (Thermofisher Scientific). Media was mixed with siRNA (table 3) at 

concentrations between 5-50pmol (final concentration when combined with cells). 

Media/Lipofectamine and media/siRNA were incubated for 5 minutes before being gently 

combined and further incubated for 20 minutes to allow formation of complexes containing 

nucleic acid and Lipofectamine2000. After incubation, the solution was added dropwise to the 



88 
 

cell cultures and incubated for at least 24 hours before extraction of protein lysates and 

nucleic acids. 

2.23 Micro-dissection 

Sections were cut 9μm thick and mounted on glass slides. After drying for 24 hours the 

sections were dewaxed in Xylene and rehydrated. Sections were then stained with CD3+ and 

H/E. Target tissues were then removed and dissolved in lysis buffer. DNA was extracted using 

the QIAamp DNA micro kit (Qiagen, Manchester, UK) whilst the remaining areas of the sections 

were dehydrated and cover slipped. 

2.24 Variant calling  

Paired-end sequencing library preparation was performed according to manufacturer’s 

instructions (Agilent, Sureselect-XT) and sequenced on an Illumina Hi-Seq2000 with reads 

aligned to Hg19 using Novoalign v2.07.11 and post-alignment processing performed by picard 

tools 1.114.  

For WES, Varscan2 Somatic (v2.3.5) was used to separate tumour variants from patient 

matched fibroblasts. ANNOVAR was used for variant annotation (version available in January 

2013) (321) (WES annotation was carried out with ANNOVAR in April 2013). Somatic and non-

synonymous variants were selected based on exclusion of variants in dbSNP, the 1000 

genomes project, exome variant server, in-house exome database and genes reported to be 

error prone in NGS analysis due to sequence repeats and high GC content (322).  

For targeted capture Varscan2 and ANNOVAR were also used but the threshold on the 

minimum allele frequency for calling tumour variants was calibrated to account for the 

heterogeneity of tumour samples derived from PBMCs (see selection of minimum allele 

frequency). Mpileup2cns was used for SNV and INDEL identification with >=20x depth, >=15 

phred score, >=6% minimum variant frequency and read frequency <=90% in either direction. 

Variants from 32 non-matched healthy controls were used to identify tumour specific variants 
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and exclude sequencing artefacts. Variants selected from WES and targeted capture data were 

validated by Sanger sequencing on original tumour and additional skin, lymph node and 

tumour derived cDNA samples from the same patients. 

2.25 Selection of minimum allele frequency 

A low allele frequency of 6% was chosen to apply for the targeted capture (TC) samples based 

on the empirical data obtained from 10 WES samples that were also included in TC. The list of 

high quality variants from 10 WES samples was used to identify the variants in each of the TC 

samples with WES. In the comparison of variants between WES and TC samples, variants that 

were identified from both WES and TC were considered to be True Positives (TP), while those 

identified in TC and not in WES as False Positives (FP). Variants identified in WES and not in TC 

were considered False Negatives (FN) and variants not present in both WES and targeted 

capture were considered True Negatives (TN). Information was obtained from TC samples at 

various thresholds starting from 1 to 60% and calculated Matthew’s Correlation Coefficient 

score (MCC: 0 to 1) at each threshold. A threshold with highest MCC score was considered as 

optimal threshold for calling variants in the targeted capture data. Individual samples resulted 

in a range of thresholds (5% to 30%) optimal for each sample, although combined analysis of 

all the samples has resulted in a maximum MCC score of 0.271 at a threshold of 6%.  

2.26 Mutational pattern analysis.  

Several types of mutational pattern analysis were conducted, custom in-house Python scripts 

were used to assess SNV base changes and the proportions of different types of variant 

(Synonymous, Non-synonymous etc). Analysis of SNV base change patterns and mutation 

context (motif) analysis upstream and downstream at 3bp was assessed using the ‘R’ 

Bioconducter package ‘Somatic Signatures’ (time of analysis: September 2015). 



90 
 

2.27 Identification of SNV drivers 

Several parallel criteria were used to identify genes affected by SNVs. These included 

MutSigCV version 1.3 (298), the 20/20 rule as described by Vogelstein et al (297) and simple 

frequency filtering of over 5% after removing genes previously identified as problematic (322). 

We also compared the list of candidate driver genes to those present in the network of cancer 

genes version 4.0 (291). 

2.28 Gene copy number analysis 

Tumour specific CNVs were identified through integrative analysis of discovery and targeted 

capture data generated using exome/targeted sequencing and SNP array technologies. Data 

from WES was analyzed by Excavator v2.2 in matched pairs. HumanOmni5Exome arrays were 

analyzed using OncoSNP v1.4. Raw data (BAF and LRR) required for OncoSNP was extracted 

using Illumina Genome Studio software v1.9.4.  Data from WES and SNP array were combined 

for final analysis (n=16). Remaining prevalence samples (n=91) were analysed with 

ExomeDepth software (323) using the targeted capture data and 32 healthy controls. This 

analysis was restricted to targeted capture genes (n=549) but allowed deeper resolution.  

2.29 Pathway analysis 

To investigate significant perturbations at the pathway level, gene set enrichment analysis was 

performed on WES and TC SNVs using the MSigDB repositories (date of analysis was January 

2015). MSigDB is a collection of a curated gene sets including gene sets from pathways in KEGG, 

REACTOME, BIOCARTA and PID. Initially the list of genes used for targeted capture was used to 

look for enriched pathways with a Fisher’s exact test P.value <= 0.05. 

Next, enriched pathways in each tumour sample were selected using all the Non-Synomymous 

variants from that sample. To perform this task, the list of genes from each tumour sample was 

searched against MSigDB for a significant overlap. All the samples with a significant enrichment 

of genes in a pathway were counted and the pathway(s) with highest number of tumour samples 
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were reported. In this analysis, the background and the size of the pathways in MSigDB used to 

calculate the Fisher’s exact test P-value were corrected to represent the priory selected and 

small size of the genes in the targeted capture. A background of 598 genes were used and 

resulted in the decrease of number of genes in a pathway which corresponds to the genes seen 

in 598 genes background. 

Pathway-level perturbations were quantified using two inter-related metrics. One metric, 

“fraction of pathway genes mutated”, captures the proportion of pathway genes involved in 

non-synonymous SNV’s or indels across all patients. The second metric, “pathway perturbation 

frequency score”, captures how often each pathway is perturbed as a proportion of all samples 

(both uncorrected and corrected for pathway size), assuming perturbation occurs if at least 

one of the pathway’s genes is mutated. As this analysis was predominantly qualitative, i.e.a hit 

was counted if any gene in the pathway was found to harbour a mutation, we therefore did 

not consider it appropriate to calculate a false discovery rate.  
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3 Independent loss of methylthioadenosine phosphorylase 

(MTAP) in Primary Cutaneous T-cell Lymphoma 
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3.1 Candidate contributions to chapter 3. 

The chapter is a publication that several members of a research team contributed work 

towards. My personal contributions were as follows: initial draft and subsequent revisions to 

the manuscript with oversight of my supervisors, collating the data and producing final figures 

1-3, producing the data for figures 1b, 2a, 2d, 3, producing all tables, design of targeted 

capture experiment used in the NGS work, library preparations for the NGS work, downstream 

analysis of mutation data, producing and calculating normalized depth plots from ExomeDepth 

R-objects. 

3.2 Additional statistical tests for chapter 3. 

Correlation between QPCR CN assay probes 1 and 2 (Figure 1e and 1f). Probes were 

compared for correlation between P1 and P2 using Pearson’s correlation. Disease samples 

assayed using both MTAP probes were highly correlated (PCC=0.79, P<0.01). Disease samples 

assayed using both CDKN2A probes were also correlated, but with weaker correlation 

(PCC=0.37, P<0.01). As discussed in the published work, the reason for the discrepancy is likely 

to be due to the different locations of the probes corresponding to sites of focal deletion in 

some cases, and the other probe being located outside of the boundary of the focal deletion. 

Another source of variation could be differences in the efficiency of PCR reactions for each 

different probe. 

MTAP expression correlated with loss of MTAP CN in SS samples. To clarify this statement; 

‘concordance’ is a more accurate description as these data were assigned into qualitative 

categories based on being within or below a threshold of 3 standard deviations of the healthy 

control mean. All samples where a loss of MTAP was detected also showed reduced expression 

that was <= -3 standard deviations of the mean expression in the healthy control group. 

Interestingly, 9 patient samples that did not demonstrate copy number changes in MTAP also 

showed expression lower than 3 standard deviations of the healthy control mean. There were 

no healthy samples that showed expression lower than 3 standard deviations. In total, 20 
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tumours were analysed for expression. To further test for concordance between MTAP CN loss 

and reduced MTAP expression, samples with reduced MTAP CN (MTAP CN less than 3 standard 

deviations below HC mean) were assigned a categorical variable ‘CN loss’. Samples with MTAP 

expression below 3 standard deviations below the HC expression mean were assigned a 

categorical value ‘reduced EXP’. These categorical variables were compared using a Chi-

squared test which resulted in a P<0.01.  

    



Independent Loss of Methylthioadenosine
Phosphorylase (MTAP) in Primary
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Methylthioadenosine phosphorylase (MTAP) and the tumor suppressor genes CDKN2A-CDKN2B are frequently
deleted in malignancies. The specific role of MTAP in cutaneous T-cell lymphoma subgroups, mycosis
fungoides (MF) and Sézary syndrome (SS), is unknown. In 213 skin samples from patients with MF/SS, MTAP
copy number loss (34%) was more frequent than CDKN2A (12%) in all cutaneous T-cell lymphoma stages using
quantitative reverse transcription PCR. Importantly, in early stage MF, MTAP loss occurred independently of
CDKN2A loss in 37% of samples. In peripheral blood mononuclear cells from patients with SS, codeletion with
CDKN2A occurred in 18% of samples but loss of MTAP alone was uncommon. In CD4þ cells from SS, reduced
MTAP mRNA expression correlated with MTAP copy number loss (P < 0.01) but reduced MTAP expression was
also detected in the absence of copy number loss. Deep sequencing of MTAP/CDKN2A-CDKN2B loci in 77
peripheral blood mononuclear cell DNA samples from patients with SS did not show any nonsynonymous
mutations, but read-depth analysis suggested focal deletions consistent with MTAP and CDKN2A copy number
loss detected with quantitative reverse transcription PCR. In a cutaneous T-cell lymphoma cell line, promoter
hypermethylation was shown to downregulate MTAP expression and may represent a mechanism of MTAP
inactivation. In conclusion, our findings suggest that there may be selection in early stages of MF for MTAP
deletion within the cutaneous tumor microenvironment.

Journal of Investigative Dermatology (2016) 136, 1238e1246; doi:10.1016/j.jid.2016.01.028

INTRODUCTION
Primary cutaneous T-cell lymphomas (CTCLs) are a hetero-
geneous group of extranodal lymphomas that arise from skin
homing T cells. Mycosis fungoides (MF) accounts for more
than 50% of CTCL cases (Agar et al., 2010; Willemze et al.,
2005) and responds well to skin-directed therapy. In contrast,
a related CTCL subtype Sézary syndrome (SS) is an aggressive
leukemic variant with no treatment options proven to prolong
overall survival.

In both MF and SS, no disease specific translocations have
been identified although genomic instability, illustrated by
recurrent “hotspots” of chromosomal structural and

numerical abnormalities, is a consistent feature. Studies from
our own group and others using multiple genomic platforms
have identified chromosome 9p21 as a region of frequent
deletion (Laharanne et al., 2010; Mao et al., 2003; Salgado
et al., 2010; van Doorn et al., 2009). The 9p21 locus in-
cludes CDKN2A/CDKN2B, which encode the well-
characterized tumor suppressor genes p14ARF, p16INK4A,
and p15INK4B.

The MTAP gene lies 110 kb telomeric to CDKN2A and
encodes the metabolic enzyme 50-methylthioadenosine
phosphorylase. MTAP metabolizes 50-methylthioadenosine, a
byproduct of polyamine biosynthesis, to almost undetectable
levels (Kamatani et al., 1981). This occurs in all normal cells as
part of the adenine nucleotide salvage and methionine
biosynthesis pathways and is considered a housekeeping
function. Loss of MTAP expression has been described in a
range of solid malignancies, including melanoma (Behrmann
et al., 2003; Garcia-Castellano et al., 2002; Hellerbrand et al.,
2006; Watanabe et al., 2009), and hematological malig-
nancies (Batova et al., 1996). MTAP-deficient tumor cells
exhibit specific alterations in polyamine metabolism induced
by elevated 50-methylthioadenosine levels that could drive a
selective growth advantage (Kamatani and Carson, 1980).
Melanoma cells with elevated 50-methylthioadenosine levels
show increased expression of matrix metalloproteinase and
growth factor genes (Stevens et al., 2009).

Emerging evidence supports a role for MTAP as a
tumor suppressor gene independent from CDKN2A/CDKN2B
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(Christopher et al., 2002). In mice, homozygous deletion of
MTAP is embryonically lethal, whereas mice heterozygous
for germ-line MTAP knockout are viable but die prematurely
of a mature T-cell lymphoma (Kadariya et al., 2009). A meta-
analysis of genetic association studies in cutaneous mela-
noma highlights an association between single nucleotide
polymorphisms in MTAP and cutaneous melanoma risk
(Antonopoulou et al., 2014). In addition, copy number (CN)
alterations in eight genes including MTAP differentiate
superficial spreading melanoma from nodular melanoma
(Rose et al., 2011).

In common with other genes (CDKN2A/CDKN2B) on
chromosome 9p21, epigenetic silencing of MTAP via pro-
moter methylation is also recognized as an alternative
mechanism for MTAP inactivation in human malignancy.
Studies of melanoma (Behrmann et al., 2003) and a range of
other malignancies (Berasain et al., 2004; Leal et al., 2007;
Watanabe et al., 2009) have all demonstrated loss of MTAP
expression is associated with inactivation of MTAP by
aberrant promoter hypermethylation.

Our aim was to investigate genetic aberrations of MTAP in
CTCL. Analysis of tumor DNA derived from MF and SS skin
and blood samples demonstrated that loss of MTAP CN is
common and frequently occurs independently of CDKN2A
deletion. Furthermore, in SS CD4þ-enriched tumor cells
derived from PBMCs, reduced MTAP mRNA expression is
associated with MTAP CN loss. Studies of CTCL cell lines
identified aberrant MTAP promoter hypermethylation as an
alternative mechanism of MTAP silencing and that methyl-
ation reversal can restore MTAP expression. In contrast, we
demonstrate that mutational events in MTAP, CDKN2A, and
CDKN2B are rare in SS and are unlikely to contribute
significantly to the disease. In conclusion, our findings
suggest that loss of MTAP is an early event in MF and further
investigation is now justified to establish whether MTAP loss
may have a role in disease initiation.

RESULTS
MTAP and CDKN2A gene copy number loss in mycosis
fungoides and Sézary syndrome

It is well established that chromosome 9p21 is a region of
frequent deletion in advanced stage CTCL (Laharanne et al.,
2010; Scarisbrick et al., 2002; van Doorn et al., 2009). We
sought to establish if MTAP loss occurs simultaneously with
CDKN2A/CDKN2B as part of a larger region of deletion, or if
loss of these genes occurs independently.

Previously published quantitative reverse transcriptase in
real time (Q-PCR) CN assays for MTAP and CDKN2A were
performed with the two control genes PFKL and BCMA
(M’Soka et al., 2000). CN status for MTAP and CDKN2A was
determined in the CTCL cell lines Hut78, MyLa, SeAx, and
the leukemic T-cell line Jurkat. Homozygous loss of MTAP
and CDKN2A was detected in both HuT78 and Jurkat, but
not in MyLa or SeAx cells (data not shown).

MTAP and CDKN2A gene CN was then assessed in 84
healthy controls (HCs) and 273 tumor DNA samples from
CTCL subgroups comprising MF IB-IIA, 101 samples; MF
IIB-IV, 73 samples; and SS III-IV, 99 samples (including 78
samples from matched skin lesions and PBMCs from 39
patients, and 21 unmatched samples from PBMCs).

Loss of MTAP occurred in all disease stages and was sta-
tistically significant compared with HC samples (P < 0.05).
Whereas loss of CDKN2A compared with HCs was only
significant in advanced stages of patients with MF (IIB-IV) and
SS (P < 0.05). Gain of MTAP or CDKN2A was an infrequent
event across all of the patient samples. The distribution of CN
variation forMTAP and CDKN2A is shown in Figure 1a and b,
respectively, within patient and HC groups.

CN gains and losses were then compared between skin
and blood and disease stage (Table 1). Strikingly, in the skin
compartment, loss of MTAP was more frequent than
CDKN2A alone or combined loss in all disease stages, this
was particularly prominent in early stage MF (IB-IIA). In
contrast, loss of CDKN2A was more frequent than MTAP in
the tumor cells derived from the blood in advanced stage
disease. Furthermore, data from matched skin and blood
samples in the SS (III-IV) group (Table 2) also showed loss of
MTAP CN in the skin but independent loss of MTAP in blood
was infrequent.

To confirm the CN analysis, additional probes were used
(probe set 2) for both genes on a subset of 94 DNA samples
comprising 32 matched skin and PBMCs (64 samples) from
stage SS III-IV; 14, MF IB-IIA skin; and 16, MF IIB-IV skin
(Figure 1e and f). Overall concordance between CN probes
was 75.0% and 58.3% for MTAP and CDKN2A, respectively,
with some losses detected with each probe that were not
detected on the other. Differences between probe sets are
consistent with a pattern of focal deletions across the region
rather than large structural variations.

To further investigate the pattern of CN variations across
MTAP and CDKN2A, we applied next generation sequencing
(NGS) depth analysis using previously published methods
(Plagnol et al., 2012) to 31 SS PBMC-derived DNA samples
that had also been analyzed by Q-PCR and 32 HCs (Figure 2).
Of the 31 samples analyzed, the ExomeDepth package
predicted CN variation with 90.3% concordance to at least
one probe. Normalized exome depth was plotted as a heat
map to highlight deviations in the depth of coverage
consistent with focal deletions (Figure 2).

Reduced MTAP mRNA expression in SS CD4D-enriched
tumor cell populations correlates with copy number loss

Next, we sought to determine if MTAP and CDKN2A CN loss
was associated with reduced gene expression at the RNA
level using cDNA derived from peripheral blood CD4þ-
enriched tumor cell populations from 20 patients with SS.

A significant difference in MTAP mRNA expression was
observed between SS and HC samples (P < 0.01). Further-
more, reduced MTAP expression correlated with loss of
MTAP CN in all SS samples (Figure 3). In contrast, no
decrease in CDKN2A expression was detected despite eight
cases showing CDKN2A CN loss.

Aberrant MTAP promoter hypermethylation as an
alternative mechanism of MTAP gene inactivation

We then examined promoter methylation as a possible
regulatory mechanism of MTAP expression using the CTCL
cell lines MyLa and SeAx. SeAx cells had normal MTAP CN
and abundant expression of MTAP, whereas although MyLa
cells had normal MTAP CN, MTAP expression was not
detectable (Figure 4). The methylation status of the entire
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Figure 1. Gene CN analysis for MTAP and CDKN2A in MF and SS. (a)MTAP and (b) CDKN2ACNwas determined byQ-PCR in 84HCs, 52MF IB-IIA, 73MF IIB-
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CpG island, containing three discrete regions of CpG sites,
termed CG1, CG2, and CG3, was analyzed by direct
sequencing of bisulfite-converted DNA. In SeAx cells com-
plete methylation of all CpG sites in CG1 and CG2 was
observed, whereas the CG3 region was completely unme-
thylated (Supplementary Figure S1a online). In contrast, MyLa
cells were found to be completely methylated at all CpG sites
within the three regions (Supplementary Figure S1b). This
suggests that differential methylation of CG3 may be regu-
lating MTAP expression.

Promoter hypermethylation and loss of MTAP expression
is reversible

To determine if the observed differential methylation of the
CG3 region regulates MTAP expression, methylation reversal
experiments using the demethylating agent 50-aza-2’-deoxy-
cytidine were performed. MyLa and SeAx cells were treated
with 50-aza-2’-deoxycytidine for up to 72 hours. After treat-
ment, MTAP expression levels were measured by reverse
transcriptase-PCR (Figure 4a) and intracellular flow cytometry
(Figure 4b) to assay cDNA and protein levels, respectively.
These studies demonstrated a strong induction of MTAP
expression in 50aza-treated MyLa cells and consistent MTAP
expression before and after treatment in SeAx. This supports a
role for methylation of the CG3 region regulating MTAP
expression.

Polymorphisms of MTAP, CDKN2A, and CDKN2B are rare
in Sézary syndrome

Finally, we sought to determine if rare variants in the genes
MTAP, CDKN2A, and CDKN2B are present in SS tumor DNA
samples. We defined rare variants as those not observed in
the “1,000 genomes” data or dbSNP (build 138). Only one
rare nonsynonymous variant was discovered in a coding
region and only very few variants were discovered in non-
coding regions, none of which were predicted to affect
transcription (Supplementary Table S1 online). Although

functional analysis has not been performed, these results
suggest that somatic mutational events in MTAP, CDKN2A,
and CDKN2B rarely contribute to the pathogenesis of SS.

DISCUSSION
This study of a large cohort of 280 patients with MF/SS (319
samples) demonstrates that MTAP gene deletion is common
and can occur independently of CDKN2A gene deletion in
early stage MF and skin-derived tumor cells from patients
with SS. Loss of MTAP CN also correlates with reduced
MTAP expression, but significantly reducedMTAP expression
can also occur in the absence of MTAP loss. In CTCL-derived
cell lines, aberrant promoter hypermethylation of one of the
MTAP CpG islands (CG3) leads to loss of MTAP expression.
Epigenetic mechanisms such as promoter hypermethylation
may therefore be an alternative mechanism of MTAP gene
inactivation in CTCL as demonstrated in other malignancies
(Behrmann et al., 2003; Hellerbrand et al., 2006; Ishii et al.,
2005; Leal et al., 2007). In contrast to loss of CN, somatic
mutations in CDKN2A/B or MTAP are rare in SS.

Loss of MTAP has been reported in association with
deletion of CDKN2A/CDKN2B in advanced disease stages
of CTCL (Laharanne et al., 2010; Salgado et al., 2010;
Scarisbrick et al., 2002; van Doorn et al., 2009) and has
been shown to be an independent prognostic marker for
survival. However, recent studies using mouse models have
begun to define a role for MTAP as an independent tumor
supressor gene (Kadariya et al., 2009, 2013). MTAP-hetero-
zygous mice show reduced MTAP expression levels
compared with wild-type mice and die prematurely because
of the development of mature T-cell lymphomas. Further-
more, reducedMTAP expression has been reported in several
rare lymphomas (Bertino et al., 2012). These data suggest that
MTAP loss alone may be a contributing factor in the devel-
opment of T-cell lymphomas. Our data support a role for
MTAP loss in CTCL pathogenesis as we show significant

Table 1. Frequencies of copy number variation in MTAP and CDKN2A in CTCL

MTAP loss
only

MTAP and
CDKN2A loss

CDKN2A loss
only

MTAP gain
only

MTAP and
CDKN2A gain

CDKN2A gain
only

No loss or gain
of copy number

IB-IIA MF (101) 38S 13S 2S 0 1S 3S 44S

IIB-IV MF (73) 19S 13S 10S 0 1S 2S 28S

III-IV SS (39s/39b þ 21b) 0B/16S 11B/15S 13B/1S 0 0 1B/0S 35B/7S

Total 73S (52) 11B/41S (26) 13B/13S 0 2S (6) 1B/5S (114) 35B/79S

Abbreviations: B/S, blood/skin; MF, mycosis fungoides; MTAP, methylthioadenosine phosphorylase; PBMCs, peripheral blood mononuclear cells.

Tumor DNAwas analyzed in 273 samples comprising MF lesional skin samples from 101 stage IB-IIA and 73 IIB-IV; and in SS (III-IV), 78 matched skin and
PBMCs (39 patients) and an additional 21 from PBMCs. The number of samples of each disease stage harboring each type of copy number variation is
shown.

Table 2. Concordance of gene copy number between matched skin and PBMCs in SS

Copy number loss in
skin but not blood

Normal copy number
in skin and blood

Copy number loss in
blood but not skin

Copy number loss
in blood and skin

MTAP loss 21 8 0 10

CDKN2A loss 2 20 3 14

Abbreviations: MTAP, methylthioadenosine phosphorylase; PBMCs, peripheral blood mononuclear cells; SS, Sézary syndrome.

Gene copy number of MTAP and CDKN2A was analyzed in both blood and skin tissue in 39 patients with SS stage III-IV (78 samples) and concordance
compared between the two tissues.
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MTAP CN loss in all disease stages. Importantly, in early stage
of MF, MTAP CN loss is independent of CDKN2A suggesting
MTAP loss precedes CDKN2A loss, which in contrast only
becomes significant in advanced stages. Furthermore, our
results suggest thatMTAP CN loss is more frequent in lesional
skin than in the peripheral blood of patients with SS.
Discordant loss of MTAP and CDKN2A in different tumor
compartments and stages likely reflects tumor heterogeneity
and subclonal evolution. Although overall numbers studied
are small, multilineage progression of genetically unstable
tumor subclones has been reported in CTCL (Rubben et al.,
2004) and may contribute to these. However, the apparent
selection pressure for subclones with loss of MTAP in skin
and retention of MTAP in the peripheral blood of patients
with SS is intriguing and remains to be explained but
could reflect a role for the skin microenvironment that is
not present in the peripheral blood. Interestingly, a recent
study suggested that MTAP may act as a tumor suppressor
independently of its enzymatic function (Tang et al., 2014);
however, the precise mechanism remains unclear.

Analysis using additional Q-PCR probes demonstrated
75% and 58.3% concordance for MTAP and CDKN2A,
respectively, between probe sets 1 and 2. The probe sets were
located in different gene regions that are likely to account
for these differences and these data are consistent with a

genomic landscape in SS and MF, which is shaped by a series
of focal deletions. ExomeDepth analysis from the NGS data
of 9p21 was 90.3% concordant with at least one probe set
that confirms this interpretation. In addition, recent NGS
studies examining late stage CTCL (Choi et al., 2015; da Silva
Almeida et al., 2015; Kiel et al., 2015; Ungewickell et al.,
2015; Wang et al., 2015) indicate that structural alterations
and CN variations frequently involve 9p21. Losses commonly
affect 9p21 and include MTAP and CDKN2A (Choi et al.,
2015; da Silva Almeida et al., 2015; Kiel et al., 2015;
McGirt et al., 2015; Wang et al., 2015) in many cases.
However, the size and position of the deletions show
considerable variation. Our data relating to advanced stage
disease are consistent with these reports but currently no
NGS study has addressed early stage CTCL.

Reduced MTAP expression has previously been reported
in SS and tumor stage MF and shown to correlate with gene
CN loss and reduced survival (van Doorn et al., 2009). Our
findings confirm SS tumor samples with MTAP CN loss show
a significant reduction in MTAP mRNA expression; however,
reduced MTAP expression was also observed in the absence
of a detectable loss in MTAP CN. This indicates that other
mechanisms are disrupting expression such as mutations,
polymorphisms, or epigenetic events. We did not detect any
rare mutations that are likely to affect MTAP transcripts in a

P31

M
TAP1

M
TAP2

M
TAP3

M
TAP4

M
TAP5

M
TAP6

M
TAP7

M
TAP8

Exons (Telomeric to Centromeric)

C9O
RF53

CDKN2A
.5

CDKN2A
.4

CDKN2A
.3

CDKN2A
.2

CDKN2A
.1

M
TAP

CDKN2A

M
TAP

CDKN2A

M
TAP

CDKN2A

P30
P29
P28
P27
P26
P25
P24
P23
P22
P21
P20
P19
P18
P17
P16
P15

S
am

pl
e

P14
1.25

1.00

0.75

0.50

0.25

P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1

a b c d

Normalized Depth

Figure 2. Comparison of methods to call gene copy number in SS. From left to right: (a) Normalized exome depth across each exon plotted as a heat map,

see the Materials and Methods section for the description of normalized depth calculation. Exons are arranged telomeric to centromeric along the x-axis and

SS samples that were assayed by Q-PCR are plotted on the y-axis. (b) Normal or loss (ivory/blue, respectively) as called by the “ExomeDepth” package.

(c) Normal or loss as assayed by Q-PCR probe set 1, MTAP-P1 ¼ exon 8, CDKN2A-P2 ¼ exon 3. (d) Normal or loss as assayed by Q-PCR probe set 2, gray

represents samples not assayed by probe set 2 MTAP-P2 ¼ intron 4, CDKN2A-P1 ¼ intron 1. MTAP, methylthioadenosine phosphorylase; Q-PCR, quantitative

reverse transcriptase in real time; SS, Sézary syndrome.
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large cohort of 77 patients with SS, which is consistent
with other reports (Choi et al., 2015; da Silva Almeida et al.,
2015; Kiel et al., 2015; Ungewickell et al., 2015; Wang et al.,
2015). In contrast, epigenetic silencing ofMTAP via promoter
hypermethylation is known to produce MTAP inactivation in
other tumors (Behrmann et al., 2003; Hellerbrand et al.,
2006; Ishii et al., 2005; Leal et al., 2007). This is supported
by the demonstration that in the CTCL cell line MyLa, MTAP
expression is induced by treatment with the demethylating
agent 50-aza-2’-deoxycytidine. Reversible promoter hyper-
methylation of MTAP has also been shown in primary tissue
and cell lines of other malignancies including histiocytic
lymphoma (Ishii et al., 2005), hepatocellular carcinoma
(Hellerbrand et al., 2006), gastric adenocarcinoma (Leal
et al., 2007), and malignant melanoma (Behrmann et al.,
2003).

Studies demonstrating reduced expression of MTAP in
melanoma support a causal link with tumor cell proliferation,
tumor progression, and metastasis (Behrmann et al., 2003;
Bertino et al., 2012; Meyer et al., 2010; Wild et al., 2006).
Specifically, reexpression of MTAP led to a significant
reduction in the invasive potential of melanoma cells
(Behrmann et al., 2003). These studies in melanoma have
also identified MTAP expression as an independent positive
prognostic marker for remission free and overall survival.
Loss of MTAP expression has also been proposed as a

predictive marker of interferon therapy resistance (Wild et al.,
2006).

In contrast to MTAP, loss of CDKN2A CN did not result in
loss of expression. This is consistent with previous reports of
heterozygous CDKN2A deletion producing mixed expression
patterns (Zhao et al., 2012). In addition, two reports suggest
that mRNA expression does not correlate with protein
expression in CDKN2A (Brownhill et al., 2007; Takasaki
et al., 2003). Together these reports present a complex
pattern of regulatory control for CDKN2A.

In conclusion, our findings indicate MTAP CN loss occurs
more frequently than CDKN2A in early stage MF and
skin-derived tumor cells from SS. Interestingly, our data
indicate that reduced MTAP expression is a prominent
feature of SS and can be attributed to more than one
mechanism. This adds weight to the mounting evidence that
MTAP acts as an independent tumor suppressor gene. The
functional impact of MTAP gene inactivation in CTCL has
yet to be defined, but may yield potential novel therapeutic
possibilities.
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MATERIALS AND METHODS
Patient samples and cell lines

Samples from 280 patients with CTCL were used in this study (319

total samples); 234 of these patients were analyzed by Q-PCR (273

samples), 77 patients by NGS, and 31 patients by both methods.

Patients were classified according to the TNM staging system. Of the

280 patients, 174 were MF including 101 stage 1B-IIA and 73 stage

IIB-IV and 106 stage III-IV SS. All patients fulfilled the WHO-EORTC

diagnostic criteria for either MF or SS (Willemze et al., 2005). A

dominant clonal TCR gene rearrangement was detected in all

samples using PCR-based methods (Brüggemann et al., 2007).

Furthermore, in matched samples (skin and PBMC) from patients

with SS, an identical T-cell clone was demonstrated. Supplementary

Tables S2 and S3 online detail the breakdown of samples used in

different study components.

DNA samples from lesional skin and PBMCs were obtained from

the nationally approved cutaneous lymphoma research tissue bank

(National Research Ethics Committee: 07/H10712/111þ5). Written

and informed consent was obtained from all patients/volunteers in

this study. DNA samples from PBMCs of 84 HCs were obtained from

the Human Random Control DNA Panel 4 (ECACC, Sailsbury, UK)

for use as controls.

The CTCL cell lines, HuT78 and SeAx were gifts from Dr S. John

(King’s College London) and Professor M. Vermeer (Leiden

University Medical Centre), respectively. Jurkat and MyLa cells were

obtained from the ECACC. All cell lines were maintained in the

RPMI medium containing 10% fetal calf serum and 1% penicillin/

streptomycin (Invitrogen, Paisley, UK). SeAx cells were supple-

mented with IL-2 (25 U/ml).

Assessment of gene copy number by Q-PCR

Probe set 1. Q-PCR was performed on 273 patient samples and

84 HCs. Reactions were performed in triplicate on the ABI Prism

7000 Sequence Detection System (Applied Biosystems, Cheshire,

UK) using previously published primer/probe sequences for

CDKN2A (M’Soka et al., 2000), MTAP (M’Soka et al., 2000), BCMA

(De Preter et al., 2002), and PFKL (De Preter et al., 2002). BCMA and

PFKL control genes were used to control the amount of input DNA

and selected to detect diploid genes in chromosomal regions not

previously reported to be affected by structural or numerical changes

in CTCL. Mean DDCTwas calculated from the DDCT of both control

genes and patient DDCTwas compared with the mean and standard

deviation of the HC group to infer gene CN. Further statistical an-

alyses are described below.

Probe set 2. Q-PCR was performed on 94 of 273 samples with

additional probes to validate findings from the probe set 1. Probes

for MTAP (Hs06918311_cn), CDKN2A (Hs03721302_cn), and the

control gene TERT (probes purchased from Life Technologies,

Paisley, UK) were run in triplicate. Analysis was performed using the

DDCT method and the mean and standard deviation of 84 HCs were

used to determine the normal DDCT for the probes. Samples below

3 standard deviations of the HC mean were called CN loss.

Assessment of gene expression

RNA was extracted from CD4þ-enriched PBMCs of 20 patients with

SS and 14 HCs and converted to cDNA. Previously published

primer/probe sequences for cyclophilin-A/PPIA (Riemer et al.,

2012), MTAP (Hs00559618_m1), and CDKN2A (Hs00923894_m1)

were used to perform RT-Q-PCR on the ABI 7900HT high-

throughput real-time PCR system (Applied Biosystems); reactions

were performed in triplicate. Cyclophilin-A/PPIA was used as an

endogenous control. The DDCT thresholds of MTAP and CDKN2A

were compared between patient cDNA and HC cDNA. The normal

range of MTAP and CDKN2A expression was defined as within 3

standard deviations of the HC mean DDCT (P < 0.01). A sample with

DDCT below this range was considered to have reduced expression.

Statistical analysis

All statistical analysis was performed in R (www.r-project.org/). A

CN of 2 was determined to be the mean � 3 standard deviations of

the HCs with 99% confidence. Any patient values that fell outside of

these limits were considered to have CN loss or gain. For Q-PCR

probe set 1 analysis of variance was used to test for significant

differences between healthy and patient subgroups followed by

Tukey’s HSD test for pairwise comparisons. A Wilcoxon-rank-sum

test was used to test for a significant difference in expression

between patient and healthy groups.

Bisulfite conversion of DNA

One microgram of DNA was bisulfite converted using the Epitect

Bisulfite kit (Qiagen, Manchester, UK) according to the manufac-

turer’s instructions.

Bisulfite sequencing PCR

A set of PCR primers specific to bisulfite-treated DNAwere designed

for each discrete region CG1, CG2, and CG3 of the MTAP CpG

island using Methprimer software (Li and Dahiya, 2002). DNA was

then subjected to PCR amplification with primers specific to:

CG1 (F-ATTGGATTATTTTAGTAGGGAAGGG, R-AAAACCTTAC

ACAACTCCCAATCTA)

CG2 (F-AGTTTTGGGTTAAGTTTATTTTAGT, R-AAAAAAAACAA

CACTCCCTACTTAAC)

CG3 (F-GGGGAGATTTTATATAAGTAGTTAATT, R-TAATACCAA

AAACCATATCTACAC)

PCR was carried out using AmpliTaq Gold (Applied Biosystems)

with 2 mM MgCl2 and an annealing temperature of 59 �C for CG1,

61 �C for CG2, and 58 �C for CG3.

Reverse transcriptase-PCR

RNAwas extracted fresh from cell lines. The following primers were

used for PCR amplification of cDNA:

MTAP (F-CTCCCGCGCAGTGAGGTTGG, R-CGCCGGGCTGAA

ATCTCCTCC)

CDKN2A (F-GCTGCCCAACGCACCGA, R-GCGCTGCCCATCA

TCATG)

Cyclophillin (F-AAAGCATACGGGTCCTGGCATC, R-CGAGTTG

TCCACAGTCAGCAATG)

PCR was carried out using AmpliTaq Gold (Applied Biosystems)

with an annealing temperature and MgCl2 concentration of 55 �C,
1.5 mM for cyclophillin and 60 �C, 1.5 mM for CDKN2A. A

touchdown PCR approach using 2.0 mM MgCl2 was employed for

MTAP.

Intracellular flow cytometry

The cell lines SeAx and MyLa were fixed in 1% formaldehyde and

then permeabilized in 90% methanol at 1 � 106 cells/ml. Cells were

incubated with an MTAP monoclonal antibody (ab55517, AbCam,

Cambridge, UK) followed by treatment with a fluorescently labeled
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secondary antibody (Alexa Fluor 555 goat antimouse, A-21422, Life

Technologies). To detect background fluorescence, samples were

incubated with the mouse isotype control (Life Technologies). Flow

cytometry analysis was performed on a FACSAriaII (BD Biosciences,

Oxford, UK); machine settings were standardized and retained

throughout the study, 10,000 events were acquired per sample, and

delta mean fluorescent intensity was calculated by subtracting the

mean fluorescent intensity of the isotype control from the mean

fluorescent intensity of the specific antibody using Flowjo software

(Tree Star, Ashland, OR).

Capture library design

A targeted capture was designed using the “Agilent SureDesign”

probe selection software (Agilent, Cheshire, UK). Probes were

designed to cover all exons and UTRs of MTAP, CDKN2A, and

CDKN2B (Supplementary Table S4 online). Additional probes were

added to the 30 and 50 ends of each exon to ensure efficient capture

of splice site sequences.

Library preparation, target capture, and sequencing

Tumor DNA was derived from PBMCs of 77 patients with SS and

32 HCs. Libraries were prepared according to the manufacturer’s

instructions using the SureSelect XT library preparation kit (Agilent).

Libraries were incubated for 24 hours with biotinylated custom

capture probes designed against the target region. Streptavidin-

coated magnetic beads were utilized to isolate the probe-bound

target DNA and any unbound DNA was washed off. A low cycle

number PCR was then used to amplify the bound DNA but minimize

PCR duplicates. The target enriched DNA was finally sequenced

with 100 basepairs paired-end reads on an Illumina (San Diego, CA)

Hi-Seq2000.

Next generation sequencing analysis

Reads were aligned to the reference genome (hg19, NCBI build)

using Novoalign (Novocraft Technologies). SAMtools was used to

call variants and remove PCR duplicates. ANNOVAR (Wang et al.,

2010) was used to annotate variants with respect to coding genes.

In-house scripts and the BEDTools package were used to calculate

the depth of sequencing and overall coverage. A total of 32 HCs

underwent NGS and were used as controls to exclude sequencing

artifacts from the capture.

For 31 patient with SS samples that were also included in the

Q-PCR study, CN analysis was performed on NGS data using the

“ExomeDepth” R-package (Plagnol et al., 2012). Briefly, this pack-

age uses normalized exome depth, which is the ratio of depth at any

given base to the total number of reads for that sample. This metric is

considered across each exon in comparison to expected values

based on HCs included in our NGS study. The final output is based

on a hidden markov model that outputs either deletion, normal, or

duplication for each exon; see Plagnol et al (2012) for more detailed

description.
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3.3 Additional figures and data for chapter 3 
 

 

Figure 3.1. Tukey's HSD for probe sets 1 and 2 for gene copy number analysis. ANOVA, 
followed by post hoc testing was carried out for each probe for each gene. Box plots show the 
distribution of samples for each probe/gene combination and Tukeys test results are shown 
adjacent. Results for probe set 2 should be interpreted with caution as samples included in this 
set were selected from probe set 1 to validate original data. 
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Figure 3.2. Linear Regression analysis to determine MTAP/CDKN2A Copy Number 

The MyLa cell line has normal gene copy number of MTAP and CDKN2A whereas the Jurkat cell 

line has homozygous loss of both genes. Mixed DNA samples from the cell lines were assayed 

by Q-PCR for MTAP and CDKN2A using TERT as a control gene (See materials and methods 

section). The gene copy number for MTAP and CDKN2A in each mixed sample can be directly 

inferred from the ratios of MyLa and SeAx in the samples and is plotted on the x-axis. From left 

to right (x-axis) samples comprising 10%- MyLa /90% -Jurkat up to 100% MyLa/0% -Jurkat 

mixed in 10% intervals. Delta-CT was calculated and plotted on the y-axis. Linear regression is a 

method for modelling a scalar, dependent variables on the y-axis with an independent variable 

on the x-axis. Linear regression was used to derive a line of best fit demonstrating a clear 

positive trend for both MTAP and CDKN2A with increasing target DNA relative to TERT. 

Regression lines were extrapolated to infer copy number in subsequent microdissected DNA 

samples from patient tumour and epidermis (DCT=Delta-CT, CN=gene copy number). 
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Figure 3.3. Micro-dissection of tumour rich tissue and epidermal regions from FFPE sections 

Micro-dissection was performed on 2 MF cases for which paraffin embedded material of the 

original lesion (analysed by probe sets 1 and 2) was available. Slides were assessed and marked 

by an expert dermatopathologist. DNA was extracted from microdissected FFPE tissue from 

the epidermis and focal areas of tumour cells.  Images were obtained of sections for each case: 

A = H/E stain of MF plaque showing the epidermis and lymphocyte infiltrates. B =  CD3+ stain 

of the same tumour, lymphocytes can be seen clearly in large numbers. C =  Microdissected 

area containing tumour cells which was used for enriched tumour DNA extraction. D =  

Microdissected area showing regions where epidermis was removed for DNA extraction. An 

additional H&E was taken after cutting the sections (not shown). 
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Case 1 

 

Case 2 

 

Figure 3.4. Determination of CDKN2A and MTAP Copy Number in DNA from micro-dissected 
tissue. 

Q-PCR was performed on DNA extracted from tumour enriched and epidermal FFPE tissue 

(shown in figure 1A). Delta CT values were calculated for MTAP and CDKN2A relative to the 

housekeeping gene TERT. Gene copy number was calculated from the regression analysis of 

Delta-CT values (shown in figure 1). The data demonstrates reduced MTAP gene copy number 

and no loss of CDKN2A in the tumour compared to the epidermis in both cases. Error bars 

show standard error of gene CN. T-tests were carried out for MTAP and CDKN2A comparing to 

a gene copy number of 2 which was previously determined by the cell line MyLa. In both cases; 

for MTAP a significant difference was detected between tumour and MyLa (P<0.05), there was 

no significant difference between the MTAP CN in epidermis and MyLa, or CDKN2A from the 

tumour or epidermis compared to MyLa in either case.  
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4 The effect of MTAP loss on type I PRMT activity 
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4.1 Backgound 

Loss of MTAP is known to occur in a range of haematological malignancies (246-252) and 

several studies suggest MTAP has a role as a tumour suppressor. The most prominent lines of 

evidence include a mouse model where loss of MTAP leads to mature T-cell malignancies (253) 

and studies involving xenografted tumours where tumour growth is inhibited upon 

reintroduction of MTAP (141).  

The only known function of MTAP is to metabolize MTA (241, 242) and the most prominent 

hypothesis of MTAPs tumour suppressing function is that it prevents the accumulation of MTA 

and thus prevents MTA from inhibiting other cellular processes (144, 242). 

One class of enzymes thought to be inhibited by the accumulation of MTA is the PRMT family. 

Increased MTA has been shown to inhibit the activity of PRMT1 and prevent the deactivation 

of STAT1 leading to constitutive STAT1 activation (267). Levels of MTA have also been shown 

to correlate with MAPK/ERK activity, this is a well-known oncogenic pathway known to be 

modulated by PRMT5 (271). Restoring MTAP function has been shown to lead to the 

restoration or PRMT function which correlates with a reduction in overactive ERK (270). 

To date, the effect of loss of MTAP on the PRMT family has not been investigated in CTCL. The 

aim of this investigation is as a preliminary study to first determine if PRMTs are expressed in 

CTCL and if loss of MTAP has an effect on their activity. 

4.2 Expression of PRMTs in SeAx and Jurkat cells 

In order to determine that PRMT family members are expressed in model cell lines, qualitative 

expression of the PRMT gene family was assessed in SeAx and Jurkat CTCL cell lines using RT-

PCR. Expression of all but one PRMT family member was confirmed, with the only exception 

being PRMT8 which showed no detectable expression (Figure 4.1). 
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Figure 4.1 Expression of PRMTs in SeAx and Jurkat.  
Qualitative expression of PRMTs is shown in the positive control (Healthy CD4+ T-cells) and the 
cell lines SeAx and Jurkat. Single bands of the expected length were shown in each case. 

4.3 Transient knock-down of MTAP in SeAx cells 

Seax cells were chosen as a model to assess in vitro effects of MTAP loss. Other lines reviewed 

as candidate models included the cell lines Hut78 and Jurkat, however both copies of MTAP 

are deleted in these lines. Also, the cell line MyLa was considered but MTAP is silenced by 

promotor methylation. Therefore, SeAx was considered the most suitable T-cell model. 

Transient knockdown of MTAP was attempted in SeAx using a siRNA construct complimentary 

to MTAP and a scrambled siRNA control. Initial attempts by nucleofection yielded a high rate 

of cell transformation (Figure 4.2). However, this was accompanied by high rates of cell death 

and aggregation in the following 24 hours so that lysates and RNA could not be extracted 

consistently. 
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Figure 4.2 Nucleofection of SeAx cells.  
SeAx cells underwent nucleofection using GFP expression vector as a control. Qualitative 
assessment of nucleofection was performed using fluorescence microscopy; the image shows 
the typical appearance of cells 24 hours after transfection. 

 

Subsequent transfection of SeAx was attempted by Lipofectamine 2000. This was shown to 

have low to no toxicity to SeAx cells however the rate of transformation was considered too 

low (<0.1% transformation) to detect a signal with all recommended experimental conditions 

(Figure 4.3). Transfection was also attempted at concentrations of both DNA and 

Lipofectamine2000 beyond those recommended by the manufacturer (Invitrogen, UK) and 

showed no significant improvement. Transient transfection of SeAx was considered unpractical 

at this point for the planned investigation. 

 

 

 

 

 

 

 

 

 

Figure 4.3 Transfection of SeAx by Lipofectamine2000.  
SeAx cells transfected with 1000ng GFP expression vector using 2.5µl Lipofectamine2000 in 50µl 
of antibiotic free Optimem media per 4x105 SeAx cells. Limited transfection occurs. 
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4.4 Proof of principle experiments in HEK293 cells 

The human embryonic kidney cell line HEK293 was considered for use in a proof of principle 

experiment to assess the in-vitro effects of MTAP knock-down. This cell line is known to be 

easily transfected and so signals from transient knock-down of MTAP should be detectable in 

downstream experiments.  

4.5 Expression of PRMTs in HEK293 cells 

Qualitative expression of the PRMT gene family was assessed in HEK293 cells using RT-PCR in 

the first instance. Expression of most (8/9) PRMT family members was confirmed, similar to 

SeAx and Jurkat with the only exception being PRMT8 which showed no detectable expression 

(Figure 4.4). 

 

Figure 4.4 Expression of PRMTs in HEK293 cells.  
All PRMTs except PRMT8 show bands of the expected size demonstrating expression in 
HEK293 cells. A negative control containing no target DNA was run for each reaction. 

4.6 Transient knock-down of MTAP in HEK293 cells 

Transient knockdown of MTAP was attempted in HEK293 cells using the siRNA constructs that 

were used for the previous experiment in SeAx. The Lipofectamine2000 chemical transfection 

kit was used according to manufacturer’s recommendations (Invitogen, UK). Qualitative 

assessment of transfection using a GFP expression vector and fluorescence microscope 

indicated that transfection was efficient (Figure 4.5).    
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Figure 4.5 HEK293 cells transfected with pmaxGFP.  
High rates of transfection of the GFP expressing vector pmaxGFP was confirmed qualitatively 
by fluorescence microscopy. The image shows a typical transfection after 24 hours. 

 

4.6.1 Assessment of MTAP expression by RT-PCR 

In order to determine that the MTAP siRNAs can effectively target MTAP, expression of MTAP 

in HEK293 cells was analysed in untransfected cells, cells that were transfected with two 

different siRNA constructs complimentary to MTAP and cells were transfected with a 

scrambled siRNA control. Cells were collected prior to transfection (0h) and at 24, 48 and 72 

hours post transfection to extract RNA and cell lysates. RT-PCR of MTAP and PPIA was 

performed for all samples and products were run on a 2% agarose gel. The cells transfected 

with MTAP siRNA show reduced expression of MTAP compared to untransfected cells and cells 

transfected with scrambled siRNA suggesting that transfection with MTAP siRNA can reduce 

MTAP mRNA (Figure 4.6).  
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Figure 4.6 Expression of MTAP and PPIA by RT-PCR in HEK293.  
Expression of MTAP and PPIA was analysed in HEK293 cells. From left to right; untransfected, 
scrambled siRNA, MTAP siRNA1, MTAP siRNA 3 after 24 hours, scrambled siRNA, MTAP 
siRNA1, MTAP siRNA 3 after 48 hours, scrambled siRNA, MTAP siRNA1, MTAP siRNA 3 after 72 
hours. 

 

4.6.2 Assessment of MTAP expression by RT-QPCR 

MTAP expression was further analysed by RT-QPCR which confirmed with greater accuracy 

reduced MTAP expression in cells transfected with MTAP siRNA compared to cells transfected 

with scrambled siRNA or untransfected cells (Figure 4.7). Untransfected HEK293 cells had 

comparable expression to cells prior to transfection (data not shown). 
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Figure 4.7 MTAP expression in HEK293 cells analysed by RT-QPCR.  
Expression of MTAP relative to PPIA in HEK293 cells transfected with scrambled siRNA, MTAP 
siRNA1 and MTAP siRNA3. Expression was analysed before transfection and at 24, 48 and 72 
hours after transfection. All samples were run in triplicate. Error bars show standard error. 

 

4.7 Assessment of MTAP protein expression  

To assess if loss of MTAP mRNA correlates with loss of MTAP protein, whole cell protein lysates 

were prepared from; untransfected HEK293 cells, cells transfected with a scrambled siRNA 

control, cells transfected with MTAP siRNA1 and cells transfected with MTAP siRNA3. Lysates 

were extracted from transfected cells at 24, 48 and 72 hours post-transfection and run on a 5-

15% SDS-PAGE gel. 
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Immunoblot analysis of MTAP shows similar expression of untransfected HEK293s compared 

to cells transfected with scrambled siRNA at all timepoints (Figure 4.8). Cells transfected with 

MTAP siRNA appear to show reduced MTAP protein expression suggesting that MTAP siRNAs 

can reduce MTAP protein. However, this assay was only performed a single time and further 

confirmation would be required to validate this claim. 

 

 

Figure 4.8 Immunoblot analysis of MTAP, Asymetric dimethyl arginine methylation and β-
actin. 
Whole cell lysates from untransfected HEK293s, HEK293s transfected with scrambled siRNA, 
MTAP siRNA 1, and MTAP siRNA 3 were run on a 5-15% SDS-PAGE gel. Lysates were extracted 
from transfected cells at 24, 48 and 72 hours after transfection and probed with the indicated 
antibodies. 
 

4.8 Assessment of pan asymmetric-dimethyle-arginine methylation in MTAP 

knock-down HEK293 cells 

To determine if reduced MTAP affects the activity of the PRMT family the blot was re-probed 

to assess asymmetric dimethyl arginine methylation. This is an assay to detect the activity of 

type I PRMT family members which include PRMTs 1, 2, 3, 6 and 8.  
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The inferences reported in this section relating to the Western blot analysis are suggestive 

hints derived from a single experiment which require further confirmation rather than 

conclusive results. Untransfected HEK293s and HEK293s transfected with scrambled siRNA 

show similar patterns of dimethyl arginine methylation at all timepoints (Figure 4.8). HEK293 

cells transfected with MTAP siRNA appear to show slightly reduced dimethyl arginine 

methylation on several proteins. This can be inferred from the slightly reduced intensity of 

bands at ~150KDa, ~80KDa, ~50KDa, ~45KDa and ~40KDa. Cells transfected with MTAP siRNA1 

also appear to show fainter bands at ~60KDa. The reduction in dimethyl arginine methylation 

peaks at 24 hours in the majority of cases.  

The apparent reduction in asymmetric dimethyl-arginine methylation correlates with reduced 

MTAP expression. This assay suggests the possibility that loss of MTAP could reduce pan-

dimethyle-arginine methylation, likely via reducing the activity of type I PRMT family members. 

However, this assay has not been repeated and the result is very weak at this stage so would 

require further optimisation to draw any strong conclusion.  

  



110 
 

 

 

 

 

 

 

 

 

 

5 Candidate driver genes in Sézary syndrome: frequent 

perturbations of genes involved in genome maintenance and 

DNA repair 
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5.1 Candidate contributions to chapter 5 

This chapter is work that has been contributed to and published by a team of researchers. My 

personal contributions are as follows: library preparation of all tumour and germline WES 

samples, downstream filtering of somatic WES variants, design and library preparation of all 

targeted capture samples including patient samples and HC’s, Sanger sequencing validation of 

numerous WES and targeted capture variants, comparison of genes in our dataset to the 

network of cancer genes, comparison of variants in our dataset to identical variants in other 

similar NGS studies, Figure 1, all tables, all supplementary tables and heatmaps, selection of 

genes to be included in submatrices of figure 4, I also produced alternate versions of figure 2a, 

2b and matrices from figure 4 though versions produced by the BRC were selected for the final 

manuscript, furthermore I produced the original draft and subsequent revisions of the 

manuscript with oversight from my PhD supervisors. 

 

5.2 Introductory remarks for chapter 5 

In this study, patients from the cohort used in the MTAP study (Chapter 3) were shared with 

this study. In total 31/101 patients that underwent NGS in this study were used in the MTAP 

study and overlapped with the QPCR gene CN study in chapter 3. A total of 77/101 were used 

for mutational analysis across 9p21 in the chapter 3. 

Gene copy number variations and mutations across the chromosome 9p21 region have not 

been analysed in this study as this was looked at more specifically in chapter 3 and the data 

had been published in the Journal of Investigative Dermatology. Data from this chapter was 

published in the journal ‘Blood’ and the studies are bound by publishing rules of both journals 

which do not allow data to be duplicated across separate studies. For this reason data relating 

to 9p21 is not analysed as part of chapter 5. 
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Key Points

• Aberrations in genome
maintenance and DNA repair
genes including POT1 occur
at a high frequency in Sézary
syndrome.

• Candidate driver genes and
affected pathways in Sézary
syndrome show extensive
heterogeneity but overlap with
other mature T-cell
lymphomas.

Sézary syndrome (SS) is a leukemic variant of cutaneous T-cell lymphoma (CTCL) and

represents an ideal model for study of T-cell transformation. We describe whole-exome

and single-nucleotide polymorphism array–based copy number analyses of CD41 tumor

cells from untreated patients at diagnosis and targeted resequencing of 101 SS cases.

A total of 824 somatic nonsynonymous gene variants were identified including indels,

stop–gain/loss, splice variants, and recurrent gene variants indicative of considerable

molecular heterogeneity. Driver genes identified using MutSigCV include POT1, which

has not been previously reported in CTCL; and TP53 and DNMT3A, which were also

identified consistent with previous reports. Mutations in PLCG1 were detected in 11% of

tumors includingnovel variantsnot previously described inSS.This study is also the first

to show BRCA2 defects in a significant proportion (14%) of SS tumors. Aberrations in

PRKCQwere found tooccur in20%of tumorshighlightingselection foractivationofT-cell

receptor/NF-kB signaling. A complex but consistent pattern of copy number variants

(CNVs)wasdetectedandmanyCNVsinvolvedgenes identifiedasputativedrivers.Frequent

defects involving the POT1 and ATM genes responsible for telomere maintenance

were detected and may contribute to genomic instability in SS. Genomic aberrations identified were enriched for genes implicated

in cell survival and fate, specifically PDGFR, ERK, JAK STAT, MAPK, and TCR/NF-kB signaling; epigenetic regulation (DNMT3A,

ASLX3, TET1-3); and homologous recombination (RAD51C, BRCA2, POLD1). This study now provides the basis for a detailed

functional analysis of malignant transformation of mature T cells and improved patient stratification and treatment. (Blood. 2016;

127(26):3387-3397)

Introduction

Primary cutaneous T-cell lymphomas (CTCL) represent a heteroge-
neous group of mature T-cell lymphomas. Targeted treatment options
for advanced stages of CTCL are limited and associated with modest
and short-lived responses.1,2 Sézary syndrome (SS) is a leukemic variant
of CTCL and represents an ideal model for defining the molecular
pathways involved in the malignant transformation of mature T cells.

Recent studies3-9 have revealed marked genomic heterogeneity
in SS illustrated by extensive copy number variants (CNVs) and
single-nucleotide variants (SNVs) affecting many genes, including
known cancer genes, and selection for genes involved in T-cell
receptor (TCR), JAK-STAT, and NF-kB signaling3,5,6,9 and epigenetic
regulation.3,7,8

Furthermore, nodal T-cell lymphomas (TCL) show consider-
able genomic overlapwithCTCL.10-13Although adultT-cell leukemia

lymphoma (ATLL) is associated with HTLV-1 transformation, both
ATLL and CTCL are mature T-cell lymphomas of skin-homing
memoryCD41Tcellswithmarked clinical and phenotypic overlap.A
recent comprehensive genomic studyofATLLhas also shown striking
similarities at the genomic level with high rates of CNV.13 However
the underlying basis for genomic instability, reflected in the high
prevalence of CNVs detected in mature T-cell lymphomas, including
CTCL, has yet to be clarified.

We have performed a discovery screen using next-generation
sequencing (NGS) to analyze enriched tumor cell populations and
matched normal DNA from samples obtained at diagnosis from
untreated patients using whole-exome sequencing and SNP arrays.
This was followed with a prevalence screen in a large cohort of SS
samples using targeted resequencing.
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Patients, materials, and methods

Samples

All patients fulfilled the WHO-EORTC diagnostic criteria for SS.2 Patient
samples were obtained from the nationally approved CTCL research tissue bank
(National Research Ethics Committee: 07/H10712/11115); healthy control
samples were obtained with the approval of the Guy’s and St Thomas’Hospital
Research Ethics Committee (EC01/301). Written and informed consent were
obtained from all patients and volunteers. Discovery samples: DNA was
extracted fromCD41-enriched peripheral bloodmononuclear cells (PBMCs)
using RosetteSep (Stemcell Technologies, Cambridge, UK) and matched
primary fibroblasts from skin explants obtained from 10 untreated patients
with SS at diagnosis. Targeted capture samples: DNA was extracted from
PBMCs of 101 SS and 32 healthy control samples (supplemental Table 1,
available on the Blood Web site).

Whole-exome sequencing (WES) and targeted capture

The workflow overview is summarized in Figure 1. Paired-end sequencing
library preparation was performed according to manufacturer’s instructions
and sequenced on an Illumina Hi-Seq2000 with reads aligned to Hg19 using
Novoalign v2.07.11 and postalignment processing performed by picard tools.

For WES, Varscan2 Somatic was used to separate tumor variants from
patient-matched fibroblasts. ANNOVAR was used for variant annotation.14

Somatic and nonsynonymous variants were selected based on exclusion of

variants in dbSNP, the 1000-genomes project, exome variant server, in-house
exome database, and genes reported to be error prone in NGS analysis because
of sequence repeats and high GC content.15

For targeted capture, Varscan2 and ANNOVAR were also used but the
threshold on the minimum allele frequency for calling tumor variants was
calibrated to account for the heterogeneity of tumor samples derived from
PBMCs (supplemental Methods). Mpileup2cns was used for SNV and INDEL
identification with $203 depth, $15 phred score, $6% minimum variant
frequency, and read frequency #90% in either direction. Variants from 32
nonmatched healthy controls were used to identify tumor-specific variants and
exclude sequencing artifacts. Variants selected from WES and targeted capture
data were validated by Sanger sequencing on original tumor and additional skin,
lymph node, and tumor-derived cDNA samples from the same patients.

Mutational pattern analysis

Several types of mutational pattern analysis were conducted using custom in-
house Perl scripts. These included proportions of different types of variant
(synonymous, nonsynonymous), SNV base change patterns, and mutation
context (motif) analysis upstream and downstream at 3 bp.

Identification of SNV drivers

Several parallel criteria were used to identify genes affected by SNVs. These
includedMutSigCV,16 the 20/20 rule17 (see supplementalMethods for details),
and simple frequency filtering of.5% after removing genes previously iden-
tified as problematic.15 We also compared the list of candidate driver genes to
those present in the network of cancer genes.18

10 matched
controls from
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patients
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(dbSNP, 1000 genomes, in-
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Figure 1. Workflow overview of experimental methods. Discovery screen (whole-exome sequencing), prevalence screen (targeted capture), and CNV analysis.
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Gene copy number analysis

Tumor-specific CNVs were identified through integrative analysis of discovery
and targeted capture data generated using exome/targeted sequencing and SNP
array technologies.Data fromWESwere analyzedbyExcavator v2.2 inmatched
pairs. HumanOmni5Exome arrays were analyzed using OncoSNP, v1.4. Raw
data (BAF and LRR) required for OncoSNP was extracted using Illumina
Genome Studio software. Data from WES and SNP array were combined for
final analysis (n5 16). Remaining prevalence samples (n5 91) were analyzed
with ExomeDepth software19 using the targeted capture data and 32 healthy
controls (Figure 1). This analysis was restricted to targeted capture genes
(n5 549) but allowed deeper resolution. The genotype array data have been
deposited in NCBI’s Gene Expression Omnibus and are accessible through
GEO Series accession number GSE80650 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc5 GSE80650).

Pathway analysis

To investigate for significant perturbations at the pathway level, we performed a
gene set enrichment analysis on WES and TC SNVs (supplemental Methods)
using the MSigDB repositories. Pathway-level perturbations were quantified
using 2 inter-related metrics. One metric, “fraction of pathway genes mutated,”
captures the proportion of pathway genes involved in nonsynonymous SNVs
or indels across all patients. The secondmetric, “pathway perturbation frequency
score,” captures how often each pathway is perturbed as a proportion of
all samples (both uncorrected and corrected for pathway size), assuming
perturbation occurs if at least one of the pathway’s genes is mutated.

Results

Whole-exome sequencing of CD41-enriched cells and matched

controls (discovery screen)

For 10 CD41-enriched/control-matched DNA samples, we obtained
depth .20 reads covering 82% to 95% of the target region across all
samples, with a median of 91.12%. The most frequent type of variant
effect (Figure 2A) was nonsynonymous (63%) followed by synony-
mous (26%) and stop-gain (3.5%). After filtering, we identified 824
somatic, nonsynonymous variants (750 genes; supplemental Table 2)
fromwhichwe selected 549genes for targeted capture analysis.Overall
mutation rates for filtered somatic tumor variants were between 0.54
and4.2mutations permegabasewith total nonsynonymousvariants per
tumor from 23 to 182, with amedian of 98 comparable with other NGS
studies of CTCL.3,4,7 Furthermore this rate is similar to rates reported
for other non-Hodgkin lymphomas13 and distinct from tumors with a
higher median (130-160) associated with specific carcinogens such
as lung cancer and melanoma.16 Two samples showed low levels of
nonsynonymous variants (23 and 41 SNVs) with the youngest patient
having the lowest number (supplemental Table 2). The most common
type of nucleotide change (Figure 2B) was C.T and G.A (61%), in
keeping with what has been observed already in many types of
cancers.20 Specifically, 42% of the C.T variants occurred at NpCpG
sites, reflecting age-related spontaneous deamination at methylated
CpG sites, and 27.5% occurred at NpCpC sites, but there were ,1%
CC.TT mutations (14 of 1520 SNVs affecting 6% of samples).
Although interpretation is limited by our sample size, mutation context
analysis shows consistency with several trinucleotide signatures
(Figure 2C) identified in a recent study.20

Copy number analysis of WES sequence data from the discovery
panel (Figure 3, outer track) revealed recurrent (.1) tumor-specific
CNVs consisting of large (.1 MB) and focal (,1 MB) regions of
amplification and deletion and confirmed using SNP array (Figure 3,
inner track). Noticeably, 2 deleted regions on chromosomes 7 and 14

containing the g and a TCR genes occurred in all samples, reflecting
clonal TCR gene rearrangements.

Analysis of SNP array and WES CNV data confirms and ex-
tends previous findings in SS using array CGH and cytogenetic
techniques,21-25 including large complex chromosomal abnormal-
ities such as isochromosome 17q (loss of 17p .70% and gain
of 17q .50% of tumor samples),26-28 and recurrent focal CNVs
often affecting individual genes already subject to SNVs. Other
frequently observed large CNVs were losses on 1p, 2p, 13p, and
10q, and gains on 8, consistent with previous reports.3,21-25 However,
array data showed gains on chromosome 4 that were not observed in
the WES data, although these have been previously reported in SS.21

Targeted capture sequencing of 101 SS samples from patients

(prevalence screen)

In the targeted custom capture of 549 genes—depth was between 149
and 848 reads starting from the list of all variants in tumors—we filtered
out those also present in the healthy control panel. To enrich for somatic
variants, we further filtered out variants present in dbSNP, the 1000
Genomes Project, Exome Variant Server (National Heart, Lung, and
Blood Institute Exome Sequencing Project), and our in-house exome
database.Wealsofilteredout variants ingenes reported tobeerror-prone
in NGS analysis because of sequence repeats and high GC content.15

From this list we focused on the final subgroup of nonsynonymous
variants including Indels, stop gain/loss, splice variants, and indels, for a
total of 1520 variants. There were between 2 and 93 variants per tumor,
with a median of 13 variants per tumor (supplemental Table 3).

Analysis of CNVs in the targeted capture samples revealed
a similar distribution of CNVs to the discovery WES samples.
Overall, 453 of 549 genes in the targeted capture were affected by
CNVs in at least 1 tumor (supplemental Table 4). Illustration of CNVs
and mutations occurring in each gene are reported in Figure 4 and
supplemental Figure 2.

Identification of potential driver genes

In view of the marked genomic heterogeneity, we applied different
parallel criteria (supplemental Methods) to identify 21 potential driver
genes based on SNVs and 42 genes based on high rates of CNVs
(Figure 4; supplemental Tables 4 and 5).

We identified 51 genes with SNVs occurring in .5% of tumors.
Analysis of all SNVs using MutSigCV16 confirmed that 5 of these 51
genes (DNMT3A,FAM47A, POT1,CADPS, TP53)weremutatedmore
often than expected by chance (q, 0.1) and all except FAM47A have
been implicated as driver gene mutations in other cancer types. Two
genes (PREX2 and PCLO) hadMutSigCV values close to significance
(q50.11). In thisdata set,ATM andbothTP53 andDNMT3A identified
withMutSigCV, have been previously defined as driver genes based on
specific criteria applied to COSMIC and the Cancer GenomeAtlas and
functional validation.17,29 In contrast CSMD1, CSMD3, PCLO, and
CNTNAP516 have been identified as likely false-positive cancer genes,
although overexpression of CSMD3 has been associated with growth
advantage in epithelial cells.30 Finally, correlation of these putative
driver genes with data sets annotating candidate driver genes18

identified 21 genes as potential or established driver genes. Analysis
of SNVs using the “20/20” rule17 identified 16 of these 21 genes (sup-
plemental Table 5) as either potential oncogenes (5 genes including
FAM47A, PLCG1, andGPR158) or tumor-suppressor genes (11 genes
including POT1, ANK3, UNC13C, ATM, DNMT3A, and TP53).

The overall frequency of SNVs affecting these 21 potential driver
genes in our prevalence data set ranged from 5.5% to 19% (6-21), with
7 mutated genes affecting.10% of tumors. These consisted of known
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tumor suppressor genes TP53 and FAT3/FAT4 (upstream regulators of
theHpopathway31) andputative oncogenes such asPLCG1,6,32 aswell
as GPR98, CADPS, and CACNAIE,33 whose potential functional role
in cancer has yet to be established. Of these potential driver genes, 15
had identical recurrent variants, with 2 genes having more than one
recurrent variant, namely GPR98 (2) and PLCG1 (5).

Two tumor samples were notable for having relatively few SNVs
detected in thewhole-exomestudy(supplementalTable2).Both tumors
had aberrations affecting only a few of our potential driver genes
including identicalvariants reported inCOSMICv71namelyPOT1R117C,
JAK3A573V, and PREX2 in one tumor and PREX2, DNMT3A,
STAT5BN642H, FAT4R3615W, and GPCR158R757C in the other tumor,
suggesting that these gene mutations could be sufficient for tumor
development.

We identified 42 genes with at least 1 SNV and CNVs affecting
.10% of tumors as additional potential driver genes. CNVs affected all
21 potential driver genes identified based on analysis of SNVs. We also
identified a higher prevalence of aberrations (14%-48%of tumor samples)
for other putative driver genes such asDNAH9, ENPP2, ELAVL2, RFX6,
PDCD11, GPR158, PTPRK, PRKCQ, BRAC2, TET1, RAD51C, and
PREX2. Notably few tumor samples had SNVs affecting individual JAK
and STAT genes, but overall 55% of tumors had combined SNVs and
CNVsaffecting thesegenes including regulatorsofSTAT3 suchasSOCS7.

Overall, 510 of 549 genes in our targeted capture had SNVs and/or
CNVs reported in recent studies of SS and mycosis funcgoides (MFs)
(supplemental Table 6). Specifically, SNVs affecting 15 of our 21
potential driver genes have been detected in recent studies of SS and/
or MF.3-9 Identical gene variants have also been functionally

validated in these and other studies, namely TP53,34, POT1,35

PLCG1,3,6,36-38 ATM,39 JAK3,40,41 STAT3,42 and STAT5B43-46

(Table 1). In addition, identical variants without functional validation
have been reported in COSMICv71 for 4 other genes from our 21
potential drivers, namely FAT3R4213C, FAT4R3615W, GPR158R757C,
and UNC13CR2037H/G2150R.17

Analysis of signaling pathways affected by SNVs

Our gene set enrichment analysis highlighted aberrations affecting
numerous pathways involved in cell fate, cell survival, genome
maintenance, and immune-related functions in both the TC and
WES data sets (Figure 5; supplemental Figure 3). Notably, several
pathways have SNVs affecting the same gene(s), specifically JAKs,
STATs, PLCG1, and TP53. This analysis showed enrichment for
genetic aberrations involving many of the putative driver genes
affecting pathways including homologous recombination (RAD51C,
BRAC2, POLD1: 45%) and DNA repair (ATM, TP53, BRAC2: 32%).

Gene perturbations (SNVs andCNVs; supplemental Figure 4)were
also grouped into families with related functions including DNA repair
(at least 1 perturbation 64%;.1 perturbation 36%), global epigenetic
regulation (at least 1 perturbation 42%; .1 perturbation 14%), and
programmed cell death (at least 1 perturbation 64%; .1 perturbation
37%) in line with well-known hallmarks of cancer.47

Lack of correlation with clinical outcome

A pairwise analysis of gene mutations using Bonferroni adjustment
failed to identifyanySNVsandCNVs,whicheitheroccurred togetheror
were mutually exclusive. In addition, we did not detect any correlation
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Figure 2. Summary of somatic tumor mutations in 10 whole-exome sequences. (A) Types and ratios of all somatic mutations detected in the discovery panel. (B)
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betweenmutational load (including total SNVs and CNVs) and overall
survival. Analysis of individual genes in the targeted capture data set
identified 10 genes affected by SNV, CNV, or a combination of both,
which were associated with a worse overall survival (supplemental
Table 7). Only one of these 10 genes (RELN) was identified as a
potential driver gene. However in view of lack of power, these results
should be interpreted cautiously because the likelihood of chance
occurrence is 1 in 5.

Validation of potential driver gene mutations

Sanger resequencingwasperformedonvariants from55genes from the
Discovery Panel (supplemental Table 8). A total of 97 of 101 variants
were validated, consistent with other NGS cancer studies.48-52 Similar
proportions of variants were successfully validated on the prevalence
screen data (134/139). Highly recurrent gene mutations in the targeted
capture analysis were also validated in multiple and different tissue

samples (blood, lesional skin, and lymph node) from the same patients
at diagnosis and at disease progression, further supporting their role as
candidate drivers (supplemental Table 8). In contrast for those patients
who achieved a complete clinical remission after reduced intensity
allogeneic transplantation, we could not detect specific gene variants,
identified in the diagnostic samples, in the post-transplant tissue
samples consistent with the absence of the original T-cell clone and
a complete molecular remission.

The presence of POT1R117C and ATMG2863V variants were con-
firmed in additional blood and skin samples and at the transcriptional
level in mRNA from enriched CD41 tumor cells (Figure 6 and
supplemental Table 8). Interestingly, for POT1R117C, predominant
expression of the mutant was detected over the wild-type allele.
This is likely attributable to LOH affecting the wild-type allele.
This was confirmed by sequencing genomic DNA from the same
CD41-enriched tumor cells, inwhichPOTR117Cwas also predominantly
detected (data not shown).
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For personal use only.on September 6, 2016. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/site/subscriptions/ToS.xhtml
http://www.bloodjournal.org/


ANK3

0Samples

G
en

es

10 20 30 40 50 60 70

CDH23

TP53

GPR98

FAT4

CACNA1E

WDFY3

LAMA2

POT1

PLCG1

FAT3

PCDH15
CADPS

UNC80
DNMT3A

PKHD1

ADAMTS12
TMEM132B

ATM
UNC13C

FAM47A

DNAH9

PDCD11

GPR158

TET1

PTPRK
BRCA2

ELAVL2

RFX6

JAK2
SETDB1

KIAA0100

BPTF

PREX2

RAD51C

STAT3
ENPP2

STAT5B

SOCS7

PRKCQ

PATHWAYS

Color Key

0 2 4
Value

6 8 10

TCR (BIOCARTA)

HOMOLOGOUS_RECOMBINATION (KEGG)
Mutation
Deletion only
Amplification only
Mutation + Deletion
Mutation + Amplification

JAK_STAT_SIGNALLING (KEGG)

DNA_REPAIR (REACTOME)

MAPK (BIOCARTA)

ERK (BIOCARTA)

PDGF (BIOCARTA)

CALCIUM_SIGNALLING (KEGG)

RELN

Frequently
amplified

genes

Frequently
deleted
genes

Candidate
Genes

0 10 20 30 40 50 60 70

0
2

4
6

8
10

12
14

0
2

4
6

8
10

12
14

0

0
20

40
60

80
100

120

2
4

6
8

10
12

14

Figure 4.

3392 WOOLLARD et al BLOOD, 30 JUNE 2016 x VOLUME 127, NUMBER 26

For personal use only.on September 6, 2016. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


Finally, we sought to identify variants from our study that had been
detected and/or functionally validated in previous studies. Several such
variants (Table 1) were identified includingPLCG1(S345F, S520F, D342N),

3,6,36-38 JAK3A573V,40,41 STAT3Y640F,42 STAT5B(Y665F N642H),43-45

ATME2423K,39 and POT1R117C,35. Other candidate driver genes from
our study including PTPRK and FAT3 (as opposed to proven drivers
such as TP53) have also been functionally validated based on analysis
of different variants.18

Discussion

Our analysis of a large series of SS patient samples has identified novel
variants and CNVs predicted to be potential drivers. Specifically, we
found a high frequency of perturbations in POT1, ATM, and BRCA2,
which are involved in genomemaintenance. Dysregulation of genome
maintenance processes may contribute to the high prevalence of
structural variation observed in CTCL. We also detected mutations of
JAK-STAT,DNMT3A,TP53, andPLCG1, genes previously reported as
likely drivers in other lymphomas17,53 and CTCL.3-5,7-9 These putative
driver gene mutations were present in diagnostic blood, skin, and node
samples and samples collected at disease progression time points,
but that were absent in samples from those patients who achieved a
complete remission after stem cell transplant.

Genomic instability is a feature of SS with complex copy number
variation reportedusingdifferent techniques.3,21,22,24More than50%of
tumors hadSNVsand/orCNVsaffectinggenes involved inDNArepair
and telomere maintenance. Notably, a significant number of tumors
(23%) had mutations and/or loss of genes involved in telomere
maintenance such as POT1 and ATM. POT1 is part of the multiprotein
Shelterin complex responsible for telomere length and loss of POT1
function increases chromosomal instability.54 All the POT1 variants
occurred in the oligonucleotide/oligosaccharide binding (OB) domains

and loss of OB function has been shown to cause extensive telomere
elongation55 and frequent telomere fusions.56 Recurrent POT1 muta-
tions have also been detected in a subset of patients with CLL (5%)57

and ATLL.13 In addition, the POT1R117C variant has recently been
identified as the cause of an inherited cancer syndrome inwhich loss of
function causes an age-related increase in telomere length and genomic
instability, contributing to the development of malignancies including
lymphomas.35ATM is a PI3 kinase involved in the recognition ofDNA
double-strand breaks and recruitment of telomerase, and copy number
losses have recently been reported in SS.3,58 The ATME2423K variant is
associated with loss of function in non–small-cell lung cancer.39 POT1
also represses the ATM damage response checkpoint.56 Other genes
involved in telomere maintenance include ATRX and TEP1, both
with somatic mutations. We also detected frequent SNVs/CNVs
affecting genes involved in homologous recombination such as
RAD51C, BRCA2, andPOLD1, a component of the DNA polymerase
d complex,59 and lossof functionTP53mutations,which are described
in CTCL.60,61 Previous mouse models showed that combined defects
of telomerase and cell-cycle genes are associatedwith thedevelopment
ofmature T-cell lymphomas.62 Loss of cell-cycle control (TP53), telo-
mere maintenance (POT1/ATM), and DNA repair initiation (BRCA2)
could contribute to the genomic instability, which is a consistent
feature of SS.

Overall, 40% of tumors had somatic mutations affecting genes in-
volved in TCR/NF-kB signaling. We detected recurrent PLCG1 gene
variants in 11 patients including several variants reported previously3-9,37

inMF andSS, aswell as PTCL,AITL, andATLL.13,36 ThePLCG1S345F

variant has been shown to induce expression of both NFAT via
IP3 activation and NF-kB via DAG activation of PKC signaling.
This mutation is predicted to impair the auto-inhibitory function
of PLCG1, which limits TCR signaling downstream of receptor
ligation.6,63 In addition, a further recurrent variant (PLCG1D342N)
has been shown to increase inositol phosphate production in COS-7
cells.38 It is not yet clear whether the other recurrent PLCG1
variants identified affect this same catalytic function and whether
these variants are sufficient alone to enable constitutive TCR signaling
without costimulatory signals, but recent studies in SS andATLLhave
detected activating CD28 mutations and CTLA4-CD28 and ICOS-
CD28 gene fusions.3,13 Although we did not detect abnormalities of
CD28, key findings in our study included mutations of other TCR/
NF-kB signaling genes, notably PRKCQ (20% of cases) as well as
NFATC2, NFkB1, and PAK7. PRKCQ belongs to the PKC family
of serine/threonine kinases, is highly expressed in T cells, and has
a pivotal role downstream of PLCG1 in transducing TCR and cost-
imulatory CD28 signals.13 In all but 2 cases,PRKCQ aberrations were
independent of PLCG1 mutations. In ATLL, studies have identified
gain-of-function PRKCB mutations and associated downstream acti-
vating mutations ofCARD11, leading to enhanced NF-kB activation.13

CARD113-5,7,8 activating mutations and PRKCQ3,4 SNVs and CNVs
have also been detected recently in SS.

Constitutive activation of NF-kB is described in CTCL,64,65 and
recurrent gain-of-function mutations affecting the TNFRSF1B gene in
MF/SS have been shown to enhance noncanonical NF-kB signaling.5

In PTCL, the t(5;9)(q33;22) results in an ITK-SYK fusion kinase, which
induces constitutive TCR activation,66 and LCK mutations have been
documented in lymphoma.67 These findings now provide compelling
support for the hypothesis that the survival of malignant T cells in

Table 1. Identical gene variants reported in other studies

Gene Variant Functional validation References

JAK3 A573V Yes 40, 41

STAT3 Y640F Yes 42

STAT5B Y665F Yes 43, 44

STAT5B N642H Yes 43, 45, 46

STAT5B E150Q Yes 46

PLCG1 S345F Yes 3-6, 8, 9, 13, 36, 37

PLCG1 S520F Yes 4, 6, 8

PLCG1 D342N Yes 3, 37, 38

PLCG1 R48W Not done 3, 4, 7, 13

PLCG1 E1163K Not done 3, 4, 7, 8, 13

PLCG1 D1165H Not done 4, 13

POT1 R117C Yes 35

TP53 S127F Yes .10 papers

TP53 H20R Not done 5

TP53 R37X Not done 5

ATM E2423K Yes 39

CSMD1 A408V Not done 4

ENPEP V97L Not done 7

LRP1B R790Q Not done 4

Several specific variants have been reported previously in CTCL and other

malignancies. Functionally validated specific variants are indicated.

Figure 4. Genomic data of 549 genes from 101 Sézary tumors identifies candidate driver genes. Heat map showing all genes (y-axis) and all tumors (x-axis) (left);

pathways identified as frequently perturbed are aligned below the main panel (bottom). The color code represents the percentage of mutationally perturbed genes in each

tumor sample for each pathway. Candidate driver genes showing high frequencies of SNVs (top right), frequently deleted genes (middle right), and frequently amplified genes

(bottom right) are subsetted from the main panel.
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SS and other mature T-cell lymphomas is at least partly dependent
on TCR and NF-kB signaling: In mature T-cell lymphomas such as
SS, selection for activating mutations of PLCG1, PRKCQ, PREX2,
and CARD11 is likely to enhance cell survival if accompanied by
appropriate costimulatory signals and resistance toTNFRSF-mediated
apoptosis.68-72

Although we did not detect a high frequency of SNVs affecting
individual JAKSTAT genes, the presence of activating JAK1/3, STAT3,
and STAT5A/B mutations and copy number gains of 17q including
STAT3 and STAT5 could explain constitutive STAT3 activation in
some cases of SS.63,65,73-75 STAT5B mutations have recently been
described in gd T-cell lymphomas10 and JAK/STAT mutations have
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nowbeen documented in other extranodal and nodal T-cell lymphomas
including SS.8,42,44,76 Recent studies have also shown that constitutive
STAT3 expression in ALCL can be the result of gene fusions.77

Previously we reported constitutive STAT3 protein expression in 10
patientswithSS, all ofwhomwere included in this study.76Overall, 6of
these cases showed copy number gains but no SNVs of JAKs, STAT3,
or SOCS7, suggesting that other upstream events can lead to aberrant
STAT3 signaling in SS. There is growing interest in the role of GPCRs
in malignancy, and one, SIPR1, is involved in noncanonical activation
of JAK STAT signaling in lymphoid cells via PI3K signaling.78

Whether other GPCRs are implicated in JAK STAT signaling is
unclear, but SNVs affecting 2 GPCRs (98, 158) were detected in 30%
of tumors. One variant (GPR158R757C) has been reported in COSMIC,
and recent studies in ATLL also detected a high prevalence of GPCR
aberrations including SNVs affecting GPR183.13

Overall, 40% of tumors had either SNVs and/or CNVs affecting
genes involved in epigenetic regulation includingASLX3, TET1,TET2,
andDNMT3A,whichhavebeendescribed inmyeloidmalignancies and
lymphomas.79,80 These include inactivating mutations of TET1/2,
ASLX3, and DNMT3A, which have a role in DNA methylation, and
IDH2mutations affecting histonemethylation inAITL.81 Both histone
acetylation and methylation are known to be critical for T-cell dif-
ferentiation and memory. Loss of epigenetic regulation in SS is
reflected by promoter hypermethylation of multiple genes82 and
clinical responses to HDAC inhibitors such as Romidepsin.83 In
addition, recent studies in both CTCL and PTCL have shownmutations
of ARID1A/B involved in chromatin remodeling.3,84 These findings
suggest that chromatin modification plays a key role in malignant
transformation of mature T cells as recently described for B-cell
non-Hodgkin lymphoma.85

Analysis of our data sets revealed that 42% of the C.T variants
occurred at NpCpG sites, which could be consistent with at least 5 of
21 recently described signatures including age-related deamination
of methylated cytosines.21,86,87 Although UV-specific TP53 mutations
(CC.TT transversions at pyrimidine sites) have been described
previously inMF,61 we only detected very rare CC-TT transversions in
SS.MF is considered tobederived fromskin residentmemoryTcells,88

which may be exposed to environmental UV, and MF patients are
often treated with phototherapy. In contrast, SS is thought to derive
from central memory T cells. Further studies of larger data sets are
required to define the mutational signatures associated with SS and
other CTCL variants including MF.

In conclusion, our findings illustrate that the genomic landscape of
SS is markedly heterogeneous. We suggest that the high prevalence of
perturbations in genes maintaining genome integrity is a likely cause
of the loss of genome stability in SS. Furthermore, there is selection
for gene mutations/structural variation contributing to deregulation of
key pathways regulating T-cell homeostasis, cell survival, and global
epigenetic processes. These findings provide the basis for detailed
functional analyses to define novel therapeutic targets for CTCL.
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mycosis fungoides/Sézary syndrome: validation of
the revised International Society for Cutaneous
Lymphomas/European Organisation for Research
and Treatment of Cancer staging proposal. J Clin
Oncol. 2010;28(31):4730-4739.

2. Willemze R, Jaffe ES, Burg G, et al. WHO-
EORTC classification for cutaneous lymphomas.
Blood. 2005;105(10):3768-3785.

3. Choi J, Goh G, Walradt T, et al. Genomic
landscape of cutaneous T cell lymphoma.
Nat Genet. 2015;47(9):1011-1019.

4. Wang L, Ni X, Covington KR, et al. Genomic
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Discovery of somatic STAT5b mutations in large
granular lymphocytic leukemia. Blood. 2013;
121(22):4541-4550.

45. Bandapalli OR, Schuessele S, Kunz JB, et al. The
activating STAT5B N642H mutation is a common
abnormality in pediatric T-cell acute lymphoblastic
leukemia and confers a higher risk of relapse.
Haematologica. 2014;99(10):e188-e192.

46. Yamada K, Ariyoshi K, Onishi M, et al.
Constitutively active STAT5A and STAT5B in vitro
and in vivo: mutation of STAT5 is not a frequent
cause of leukemogenesis. Int J Hematol. 2000;
71(1):46-54.

47. Hanahan D, Weinberg RA. Hallmarks of cancer:
the next generation. Cell. 2011;144(5):646-674.

48. Nikolaev SI, Santoni F, Vannier A, et al. Exome
sequencing identifies putative drivers of
progression of transient myeloproliferative
disorder to AMKL in infants with Down syndrome.
Blood. 2013;122(4):554-561.

49. Pleasance ED, Stephens PJ, O’Meara S, et al.
A small-cell lung cancer genome with complex
signatures of tobacco exposure. Nature. 2010;
463(7278):184-190.

50. Turajlic S, Furney SJ, Lambros MB, et al. Whole
genome sequencing of matched primary and
metastatic acral melanomas. Genome Res. 2012;
22(2):196-207.

51. Sutton LA, Ljungström V, Mansouri L, et al.
Targeted next-generation sequencing in chronic
lymphocytic leukemia: a high-throughput yet
tailored approach will facilitate implementation in
a clinical setting. Haematologica. 2015;100(3):
370-376.

52. Vater I, Montesinos-Rongen M, Schlesner M,
et al. The mutational pattern of primary lymphoma
of the central nervous system determined by
whole-exome sequencing. Leukemia. 2015;29(3):
677-685.

53. Xie M, Lu C, Wang J, et al. Age-related mutations
associated with clonal hematopoietic expansion
and malignancies. Nat Med. 2014;20(12):
1472-1478.

54. Robles-Espinoza CD, Harland M, Ramsay AJ,
et al. POT1 loss-of-function variants predispose
to familial melanoma. Nat Genet. 2014;46(5):
478-481.

55. Loayza D, De Lange T. POT1 as a terminal
transducer of TRF1 telomere length control.
Nature. 2003;423(6943):1013-1018.

56. Lazzerini Denchi E, Celli G, de Lange T.
Hepatocytes with extensive telomere deprotection
and fusion remain viable and regenerate liver
mass through endoreduplication. Genes Dev.
2006;20(19):2648-2653.

57. Ramsay AJ, Quesada V, Foronda M, et al. POT1
mutations cause telomere dysfunction in chronic
lymphocytic leukemia. Nat Genet. 2013;45(5):
526-530.

58. Ambrose M, Gatti RA. Pathogenesis of ataxia-
telangiectasia: the next generation of ATM
functions. Blood. 2013;121(20):4036-4045.

59. Valle L, Hernández-Illán E, Bellido F, et al.
New insights into POLE and POLD1 germline

mutations in familial colorectal cancer and
polyposis. Hum Mol Genet. 2014;23(13):
3506-3512.

60. Marrogi AJ, Khan MA, Vonderheid EC, Wood GS,
McBurney E. p53 tumor suppressor gene
mutations in transformed cutaneous T-cell
lymphoma: a study of 12 cases. J Cutan Pathol.
1999;26(8):369-378.

61. McGregor JM, Crook T, Fraser-Andrews EA, et al.
Spectrum of p53 gene mutations suggests a
possible role for ultraviolet radiation in the
pathogenesis of advanced cutaneous
lymphomas. J Invest Dermatol. 1999;112(3):
317-321.

62. Canela A, Martı́n-Caballero J, Flores JM, Blasco
MA. Constitutive expression of tert in thymocytes
leads to increased incidence and dissemination of
T-cell lymphoma in Lck-Tert mice. Mol Cell Biol.
2004;24(10):4275-4293.

63. Koss H, Bunney TD, Behjati S, Katan M.
Dysfunction of phospholipase Cg in immune
disorders and cancer. Trends Biochem Sci. 2014;
39(12):603-611.

64. Sors A, Jean-Louis F, Pellet C, et al. Down-
regulating constitutive activation of the
NF-kappaB canonical pathway overcomes the
resistance of cutaneous T-cell lymphoma to
apoptosis. Blood. 2006;107(6):2354-2363.

65. Izban KF, Ergin M, Qin JZ, et al. Constitutive
expression of NF-kappa B is a characteristic
feature of mycosis fungoides: implications for
apoptosis resistance and pathogenesis. Hum
Pathol. 2000;31(12):1482-1490.

66. Pechloff K, Holch J, Ferch U, et al. The fusion
kinase ITK-SYK mimics a T cell receptor signal
and drives oncogenesis in conditional mouse
models of peripheral T cell lymphoma. J Exp Med.
2010;207(5):1031-1044.

67. Wright DD, Sefton BM, Kamps MP. Oncogenic
activation of the Lck protein accompanies
translocation of the LCK gene in the human HSB2
T-cell leukemia. Mol Cell Biol. 1994;14(4):
2429-2437.

68. Contassot E, French LE. Targeting apoptosis
defects in cutaneous T-cell lymphoma. J Invest
Dermatol. 2009;129(5):1059-1061.

69. Wu J, Nihal M, Siddiqui J, Vonderheid EC, Wood
GS. Low FAS/CD95 expression by CTCL
correlates with reduced sensitivity to apoptosis
that can be restored by FAS upregulation. J Invest
Dermatol. 2009;129(5):1165-1173.

70. Zoi-Toli O, Vermeer MH, De Vries E, Van Beek P,
Meijer CJ, Willemze R. Expression of Fas and
Fas-ligand in primary cutaneous T-cell lymphoma
(CTCL): association between lack of Fas
expression and aggressive types of CTCL. Br J
Dermatol. 2000;143(2):313-319.

71. Jones CL, Wain EM, Chu CC, et al.
Downregulation of Fas gene expression in Sézary
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5.3 Additional figures for chapter 5 

 

Figure 5.1. Heatmap of tumours affected by perturbations in gene families. 

DNA Repair and Maintenance (Top): 64% of Tumours are affected by a perturbation in at least 

1 of these genes and 36% have perturbations in more than 1 of these genes. Global Epigenetic 

Regulators (Middle): 42% of Tumours are affected by a perturbation in at least 1 of these 

genes and 14% have perturbations in more than 1 of these genes. Programmed Cell Death 

(Bottom): 64% of Tumours are affected by a perturbation in at least 1 of these genes and 37% 

have perturbations in more than 1 of these genes. 
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Figure 5.2. Summary heatmap showing targeted capture gene alterations. 

This was a preliminary alternative heatmap figure that was produced as a summary of the data 

produced in this chapter. An alternative version produced by the BRC was chosen for inclusion 

in the manuscript. 
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6 Discussion 

6.1 Focal deletions of 9p21 in CTCL 

In CTCL several previous studies have demonstrated loss of the broader region of 9p21 

including CDKN2A, CDKN2B and MTAP (22, 23, 27, 127). In addition recent NGS studies have 

confirmed with higher resolution that focal deletions in this region are very common (16, 49), 

but whilst the majority of losses cover MTAP and CDKN2A and CDKN2B the lost regions can 

vary considerably in size and position. Two important aspects of these NGS studies is that (a) 

they focus on advanced stage disease and (b) derive tumour samples exclusively from 

circulating blood making it currently unfeasible to contrast differences in tumour sub 

compartments such as skin. A novel finding of this study is that it shows that MTAP is often lost 

as an earlier event in MF, preceding the loss of CDKN2A. The SS skin tumour sub compartment 

also shows a propensity for independent MTAP loss on 9p21, although the reason for this 

remains unclear. Four independent QPCR probes (two on MTAP and two on CDKN2A) were 

used to identify copy number variations across 9p21 and the pattern of loss was in many cases 

consistent with the presence of several small focal deletions being present across the region. 

Data from the next generation sequencing study was able to validate the QPCR methodology 

as 31 overlapping samples were shared by both studies. These samples were used to reassess 

copy number variation and the synteny between both datasets was over 90%. When this study 

was designed the available DNA samples of early MF tumours were not of sufficient purity or 

quantity to undergo NGS, it would have been of tremendous benefit to validate MTAP loss as 

an early event in MF. Two cases were selected for microdissection and subsequent QPCR of 

the higher purity micro-dissected tumour DNA which allowed more specific interrogation of 

MF tumour tissue. This experiment served as a further validation to the original QPCR results. 

Recent advancements in laser capture microdissection and advancements in NGS library 

preparation would now make NGS studies of early MF very feasible. 



115 
 

One curious outcome of the MTAP CN study was the apparent difference in independent 

MTAP CN loss between the SS blood and SS skin compartments. It is conceivable that the 

reason for this may be related to tumour subclone selection pressure being different in the 

tumour microenviroment of the skin compared to the microenviroment of the circulating 

blood. 

Gene expression analysis of MTAP was concordant with MTAP gene loss but loss of MTAP 

expression also seemed to be occurring in samples where loss of MTAP CN was not detected. 

One limitation of this study is that we were not able to validate the promoter 

hypermethylation hypothesis in patient samples where MTAP gene CN was normal but MTAP 

expression was reduced. The reason for this was that the DNA samples available which were 

used in the gene CN study were predominantly legacy samples extracted from PBMCs and 

therefore were not pure tumour DNA. This would have made it challenging to detect MTAP 

promoter methylation differences between patient and healthy control samples using 

bisulphite sequencing as PBMCs are a mixed population of cells. Any differences would not be 

able to robustly attributed to tumour cells and any signal that may have been present would 

have been weakened by the presence of other (non-tumour) cell types in the DNA sample. It 

would be interesting to investigate MTAP promoter hypermethylation using bisulphite 

sequencing in a new cohort with DNA and RNA extracted from CD4+ enriched tumour samples. 

6.2 The effects of MTAP loss on type I PRMT activity 

Part of the work contributing to this thesis has shown that MTAP is lost as an early event in 

CTCL. Several previous studies suggest that MTAP may act as a tumour suppressor (141, 253, 

324). However, questions remain about the possible mechanisms by which MTAP may be 

contributing to tumourigenesis in CTCL.  

Evidence largely points to a build-up of MTAP’s known substrate, MTA, as playing the main 

role (141, 144, 242). There has been a study suggesting there is at least one other as yet 

unknown mechanism that MTAP may act via which differs to its enzymatic function (272). 
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However, the majority of evidence hints that MTA accumulation is the primary tumourigenic 

driver. Downstream of MTA, processes that may be disrupted include the conversion of 

peutricine into spermidine (141). Spermidine itself promotes autophagy (136) by inhibiting 

acetyltransferase EP300 (325). Autophagy is an important part of cellular homeostasis and 

under certain circumstances acts as a backup to apoptosis (113, 133, 136). The long term 

effects of reduced or partially compromised homeostatic functions such as autophagy are not 

well understood but there is suggestion that it may create an environment that is conducive to 

the acquisition of further tumorigenic advantages (326, 327). It is also conceivable that loss of 

MTAP may indirectly prevent autophagy induced programmed cell death, which alone may be 

a minor contribution to tumourigenesis but amongst a plethora of other damaging events 

could prove significant. 

The accumulation of MTA is also known to inhibit PRMT enzymes such as PRMT1 (267). This 

has been shown to prevent the deactivation of STAT1 and lead to overactive JAK/STAT 

signalling (267). Furthermore, in melanoma asymmetric and symmetric dimethyl-argnine 

methylation was shown to correlate with loss of MTAP and increased MTA (270). This justifies 

similar investigation in other cancers including CTCL.  

As part of this thesis it has been demonstrated that all PRMT family members except PRMT8 

are expressed in the CTCL cell line SeAx. However, this cell line was difficult to transfect making 

downstream experiments challenging. As proof of principle the HEK293 cell line was chosen to 

assay the effects of MTAP loss on asymmetrically dimethyled-arginine. This cell line was also 

shown to express all PRMTs except PRMT8. Reduced MTAP expression was successfully 

demonstrated in HEK293s transfected with MTAP siRNAs at the mRNA level compared to 

untransfected HEK293s or HEK293s transfected with scrambled siRNAs. One preliminary 

experiment also showed reduced MTAP expression at the protein level though this would 

require further demonstration to confirm. The same western blot assay also seemed to show 

subtle suggestions of reduced asymmetrically dimethylated-arginine levels on at least 5 
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proteins ranging in size from 40KDa to 150KDa, though again this experiment was only 

performed once and lacked a clear signal. This would need to be repeated to draw any 

conclusion from. This indicates that reduced MTAP expression may affect type I PRMT activity 

although which of the type I PRMTs are affected is not yet known. It is thought that PRMT1 has 

the highest activity of the PRMT type I family (266) but the other type I PRMTs; 3, 4 and 6 are 

also plausible candidates for inhibition by MTA and their inhibition may also be contributing to 

reduced asymmetrically dimethylated arginine. The PRMT family have already been shown to 

regulate STAT1 (267) but other STATs such as STAT3 may be affected by PRMT1 or other 

PRMTs. The STAT family have been shown to have a selective pressure targeting them in SS by 

mutation and copy number variation. This has been demonstrated as part of the NGS study 

contributing to this thesis and by others previously (50, 90). Therefore, establishing other 

mechanisms by which abrogated STAT signalling could occur in CTCL is of significant interest. 

This work has suggested that several type I PRMT targets may be affected by reduced MTAP 

expression so further experiments may be able to confirm this. If successful, then identifying 

them could help identify further pathways where loss of MTAP may have functional 

consequences. 

6.3 High throughput screening for putative driver genes in CTCL 

It is well established that high genomic instability is a consistent feature of CTCL. Recent NGS 

studies (16, 28, 29, 49-51) strongly support and extend the previous lower resolution and array 

based studies however the underlying cause of genomic instability associated with this 

malignancy has remained elusive. Establishing the cause of genomic instability is likely to pay 

dividends for both scientific and clinical purposes. A major novel finding of this study is that 

the screen highlighted a large proportion of tumours as having perturbations in genes involved 

in genome maintenance which now warrant functional investigation. 

Global epigenetic regulators were also significantly affected by aberrations and this study 

confirms several genes of this class previously reported in CTCL including DNMT3A, SETDB1 



118 
 

and the TET family (50). Global epigenetic regulators not previously reported in CTCL but 

highlighted by this study include ASXL3 and KDM6A, which were perturbed in 8% and 6% of 

tumours respectively. The ASXL family are polycomb group proteins involved in maintaining 

transcriptional repression of developmental genes. They have been reported in other cancers 

including ASXL3 in melanoma and ASXL2 in ATLL (328). The histone modifier KDM6A catalyses 

the demethylation of tri/dimethylated histone H3 and has been reported as altered by  several 

mutation types in 24% of bladder cancers (329).  

Loss of apoptotic regulatory machinery is a hallmark feature of all cancers so it is not 

unexpected that SS tumours share this feature. This study confirms loss of several previously 

reported apoptotic regulators including ATM and TP53 (16, 49, 51). In addition, several further 

candidates that may impact programmed cell death processes were identified including; 

PDCD11 (also known as ALG4) in 35% of tumours and TRPM3 in 11% of tumours. The majority 

of defects in PDCD11 identified in this study were loss or deletion. The FAS cell death pathway 

is known to be activated by upregulation of PDCD11 (330) so loss is likely to have a significant 

effect on apoptotic activation via  this pathway. TRPM3 is known to play a major role in the 

regulation of oncogenic autophagy in clear cell renal cell carcinoma (331). Whilst a specific role 

for autophagy in CTCL is currently unclear, defects in autophagy are emerging to have key roles 

in cancers and are intricately linked to programmed cell death (138). In addition the histone 

deacetylase inhibitor vorinostat, is thought to partially act by attenuating oncogenic autophagy 

(139, 140) offering the possibility of more targeted therapy to patients identified as having 

defective autophagy components. 

Another signal transduction pathway related to proliferation that showed numerous mutations 

in this study is the MAP-Kinase network, with 53% of tumours showing defects in at least one 

of 14 genes listed in the KEGG MAPK gene list. Other NGS studies have also reported defects in 

MAP-kinase downstream components including MAPK1 (51) and upstream components such 
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as PI3K members (29). The MAPK pathways are arguably the most well studied pathways in 

cancer biology so it perhaps comes as no surprise to find they are disrupted in CTCL. 

Given the diversity of SNVs and CNVs identified by this study and others and the insight gained 

from these studies that CTCLs are largely driven by alterations at the pathway level; a potential 

improvement to this study could have been to increase the size of the discovery cohort. If the 

discovery cohort were larger, then the number of true driver genes included in the targeted 

capture would also have been larger and we may have covered a higher percentage of genes in 

the key pathways identified. 

As we move into an era of personalized genomic medicine we will begin to diagnose and treat 

malignancies based more on genetic events and their consequences for specific molecular 

pathways, rather than traditional criteria such as tissue of origin and morphological or 

histological features. Therefore, characterising the many facets of genomic variation in CTCL 

and other cancers will become increasingly important and continue to grow over the coming 

years. Extensive genomic screens are the first important milestones that must be undertaken 

for cancer studies in the genomic era.  

7 Conclusions 

The work produced through the course of this thesis has identified putative driver genes of 

CTCL using two different approaches. Firstly, the 9p21 candidate region was analysed in detail 

using several methods. This work highlights that MTAP loss often occurs as an early event prior 

to the loss of the more established driver gene CDKN2A, on 9p21. This suggests that MTAP is 

under selective loss and may therefore act as a tumour suppressor gene. Secondly, a larger 

number of putative driver genes were identified using a high throughput next generation 

sequencing approach. Many candidates identified by this approach are known to play 

important roles in other malignancies but have been highlighted for the first time as potential 
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driver genes of CTCL. The identification of multiple candidate driver genes supports the 

hypothesis that a variety of different driver events underlie CTCL. 

Both approaches used in this thesis are in concordance with the established knowledge that 

genetic events in CTCLs are highly variable and support the hypothesis of this thesis. However, 

the high throughput screen has hinted at a possible explanation as to why. The screen 

identified two groups of genes which may drive this variability. The first is the identification of 

genetic events occurring in genes that maintain genome integrity, particularly genes that 

facilitate double stranded break repair. Without adequate maintenance of the genome it is 

easily envisaged that mutations, copy number changes and structural variants such as 9p21 

loss and isochromosome 17 would accumulate over several cell divisions. Those alterations 

that convey an advantage to the tumour, namely those that contribute to the hallmarks of 

cancer (68, 69) are maintained in the lineage in a manor akin to Darwinian natural selection. 

The 9p21 region has been highlighted by numerous previous studies as one such region (16, 

22, 23, 27, 49, 127), and is thought to be particularly susceptible to deleterious DSB repair 

events (332) which may explain why 9p21 often undergoes loss in a malignancy highly affected 

by loss of DSB repair genes.  

An interesting feature of SS shown by the whole exome data is the existence of significant 

parts of the genome where loss of heterozygousity (LOH) events have occurred. The existence 

of numerous LOH regions supports the model that SS tumours lose the ability to accurately 

repair DSB events. Moreover, the presence of numerous LOH regions could also indicate that 

DSB events are taking place in SS tumours more regularly than in other cells. It is conceivable 

that this is linked to a high rate of cell division as is the case in many cancers but the presence 

of LOH events is intriguing and justifies further research into DSB events and the related genes 

in SS and other CTCLs.  

The INK and ARF cell cycle regulators transcribed by CDKN2A and CDKN2B are by far the most 

obvious tumour suppressors on 9p21 and this has perhaps overshadowed the potential role of 
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MTAP. As a metabolic gene in close proximity on the loci it could easily be viewed as 

coincidentally deleted as part of a larger deletion (243, 333). Contrary to expectations, MTAP 

appears to be deleted as an early stage event in CTCL and at a higher frequency than CDKN2A 

in MF and SS skin. This implication of these findings is that there is selective pressure for CTCL 

tumours to lose MTAP at an early stage in development prior to a selective loss of CDKN2A. 

One further insightful perspective is that selective loss of MTAP may have been overlooked by 

a broad genomic screen. This demonstrates a niche for candidate gene based studies to build 

on initial screens.  

A common thread that emerges through this thesis is the selection for epigenetic mechanisms 

of gene silencing by the tumour. The high throughput screen identified numerous genes that 

had undergone CNVs and/or mutations with key roles in altering the epigenetic landscape of 

the cell. Novel genes identified include ASXL3 and KDM6A, whilst others previously reported 

include DNMT3A and the TET family. On 9p21 the MTAP gene is silenced by several 

mechanisms; whilst CNVs are very common, repression also occurs by other mechanisms. No 

mutations were detected in MTAP implicating epigenetic mechanisms as a possible cause. The 

cell line work performed as part of this study indicates that DNA methylation could be a 

possible mechanism of MTAP silencing in CTCL tumours and the identification of loss of 

DNMT3A in several NGS studies including this one could possibly facilitate hypermethlation of 

the MTAP promoter. Additional promotor methylation studies of MTAP would also be 

required, ideally in enriched CD4+ tumour samples from patient samples to confirm this 

hypothesis and support the cell line studies conducted in chapter 3. However, the possibility of 

other epigenetic silencing mechanisms such as histone modifications driving MTAP repression 

cannot be excluded at this stage. Changes to global histone modification genes ASXL3 and 

KDM6A, identified during the course of this thesis, open the possibility that changes to local 

histone structure may underlie repression of MTAP as well as numerous other genes that may 

not be detected in any genomic screen. This perspective gives insight into a whole alternative 

class of driver genes known as epigenetic driver genes (334) which may be of particular 
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importance to CTCL given that we detected 42% of tumours with aberrations in global 

epigenetic regulatory genes, and similarly high proportions were also detected by others (50). 

The identification of multiple candidate driver genes affecting global epigenetic regulation 

supports the hypothesis that different driver genes may contribute to disruption in the same 

gene regulatory networks. 

7.1 Future work 

The findings of this thesis have identified several areas that could be further investigated. The 

first study has identified MTAP as a candidate tumour suppressor and it would be highly 

pertinent to identify possible mechanisms of how MTAP may act as a tumour suppressor. The 

key aim here would be to identify further downstream targets that may be therapeutically 

exploitable. Preliminary work has shown that loss of MTAP may affect type I PRMT activity. 

Which type I PRMTs specifically may be affected by loss of MTAP has yet to be confirmed. 

Furthermore, an evaluation of type II PRMTs would be of great interest, as this subgroup may 

also be affected by loss of MTAP in CTCL. It would also be of significant interest to identify 

specific targets downstream of PRMTs that are affected by reduced MTAP expression. These 

studies could be extended to more appropriate models such as cells from primary tumours 

that show loss of MTAP copy number or gene expression. This would help to establish if the 

pattern of reduced PRMT activity occurs in primary tumour cells, rather than relying on in-vitro 

manipulated cell lines and potentially identify therapeutic targets which are currently 

undiscovered.  

One important general consideration for future NGS studies is that gene expression data is an 

invaluable accompaniment to genomic data and would ideally accompany genomic datasets 

wherever possible in the form of transcriptomic data. This adds a level of robustness to any 

genomic screen as it would serve to validate copy number changes, small indels and stopgains 

in genes that may be associated with changes in gene expression and thus identify genes that 

are haplosufficient or haploinsufficient. In the absence of readily obtainable sample material, 
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as can be the case with many diseases, candidate gene based RT-QPCR is the next best 

alternative.  

The other major arm of investigation in this thesis surrounds the considerable amount of 

genomic data that has now been collected on late stage CTCL. Future studies should focus on 

defining the roles of pathways and individual candidate driver genes using loss and gain of 

function experiments. Future NGS studies should also attempt to focus on early stage disease 

as the technical challenges associated with it are now surmountable and early putative drivers 

have not yet been identified. A comprehensive understanding the role of these will likely form 

a crucial part of early intervention strategies. Histological sections of early stage CTCL could 

undergo laser capture microdissection to extract DNA from enriched early stage tumour cells. 

Antibodies that target CD4+ cells could be used and stained cells from histological features 

such as Pautrier microabsesses could be laser captured to yield enriched DNA from early stage 

tumours. Library prep methods for NGS have developed considerably since the initial studies in 

this thesis were undertaken and sequencing can now be efficiently performed on samples with 

as little as 20ng of DNA. 

One group of genes identified as putative drivers in this thesis and by others (50) is the master 

epigenetic regulators. This group of genes is likely to affect transcription across significant 

parts of the genome by targeting the regulation of genes which are not affected by SNVs or 

CNVs. This subgroup of downstream targets are known as epigenetic driver genes (159, 335) 

and cannot be identified by genomic screening. Further work addressing their roles in mature 

T-cells could highlight important targets for therapeutic intervention. One approach could be 

to use a Chip-Seq approach in T-cells to identify regions targeted by master epigenomic 

regulators, specifically to identify regions that are differentially regulated in CTCL tumour cells 

compared to healthy control T-cells. The first step could involve checking transcript levels of 

master epigenomic regulators using simple QPCR, ideally followed by assays at the protein 

level. The next step would be to Chip-seq candidates that show the highest expression change. 
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This approach could be used to identify genes, that may be therapeutically targetable, that 

would not be identified by genomic screening. In addition, this approach could be combined to 

identify genes that are targeted by both epigenetic changes; and genes that had been 

previously identified as putative drivers by NGS genomic screens. Identifying genes that are 

targeted by two (or more) different selective pressures such as CNVs and epigenetic 

alterations strongly increases the likelihood of that gene being a bona fide driver gene. This 

has been shown to be the case for MTAP in this thesis, 

 

7.2 Concluding remarks 

Before this thesis MTAP was known to be lost in CTCL but it was not known that MTAP loss 

frequently occurred independently of CDKN2A. It is also a novel finding that additional 

mechanisms of gene silencing act to supress MTAP expression in CTCL. A selective loss of 

MTAP, by copy number loss and as well as by epigenetic mechanisms, supports the hypothesis 

that MTAP acts as a tumour suppressor in CTCL. Evidence from other tumour types regarding 

MTAP loss adds further weight to this view. Prior to the NGS study produced as part of this 

thesis it was widely known that genomic instability was a key feature of CTCLs. However, the 

underlying cause of this instability remains elusive. This study is the first to propose that 

genomic instability is acquired in CTCL tumours because genes involved in genome 

maintenance are highly perturbed. This study is also the first to highlight this in CTCL at the 

level of gene families and networks rather at the level of individual driver genes. 

A gene network orientated view must be taken to comprehend the constellation of SNVs and 

CNVs and integrate our understanding of focal deletions on 9p21 and other perturbation in SS. 

Genomic perturbations in CTCL, as in many cancers, undoubtedly encompasses numerous 

passengers as well as driver events. But despite the range of genetic events and lack of 

consistency at the level of individual genes, patterns begin to emerge when a molecular 

pathway or network is viewed as a functional unit rather than genes in isolation. This is highly 
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evident in this thesis as multiple components involved in genome maintenance, global 

epigenetic regulators and pathways that regulate growth and cell fate are perturbed in 

significant proportions of SS tumours. Broad challenges remain in cancer genomics with 

regards to standardising; (i) sample collection and processing, (ii) data generation, and (iii) 

analysis techniques. Applying a consistent approach as well as integrating genomic, 

transcriptomic and proteomic data in a systems biology approach will likely deliver the most 

efficient benefit in the long term to both patients and the research community. 
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