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Abstract 

 
Transcription factors are important control proteins in cells that bind to their cognate DNA sequences 

in the promoter regions of genes, either up-regulating or down-regulating protein expression.  In many 

cancer types, transcription factors are up-regulated and promote the expression of genes important in 

survival and metastasis.  For this reason, transcription factors are good targets for novel anticancer 

agents. 

The STAT family of transcription factors (seven are now acknowledged) recognize and bind to a ~10 

base pair sequence of DNA in the promoter region of a number of genes, enhancing the expression of 

oncogenic proteins such as Survivin, Cyclin D1, Bcl-2 and VEGF.  There are currently no small-

molecule STAT3 inhibitors in clinical use, so there is a need for the development of assays that can 

be used to screen molecules to identify lead compounds.  The main focus of this project has been to 

develop an in vitro homogenous time resolved FRET (HTRF) assay that can be used in low-, medium- 

and high-throughput modes for the discovery of novel inhibitors. 

The project started with the cloning, production and purification of recombinant STAT3βTC, which is a 

homodimeric protein.  This was challenging and time-consuming as initial solubility and stability 

issues were encountered.  However, experimental conditions were eventually established that 

allowed useful quantities (i.e.10 mg batches) of purified and stable protein to be obtained.  As part of 

the optimization process, the STAT3βTC was re-cloned into a HIS-Tag vector which facilitated 

purification using affinity (Ni
2+

) chromatography along with size exclusion chromatography to produce 

pure monomeric STAT3βTC.  This could be dimerised to provide pure STAT3βTC homodimer. 

The pure protein was used to develop a HTRF assay by first labelling the STAT3βTC with Europium.  

Next, the cognate DNA recognition sequence in the form of an 18-mer duplex oligonucleotide was 

biotinylated and joined to the second fluorophore label (D2) via a streptavidin linkage.  The strength of 

the FRET signal between these two components could then be used to measure the interaction 

between them.  As part of a multi-well system, this could then be used to screen for small molecules 

capable of disrupting the protein/DNA complex.    The assay was validated using unphosphorylated 



STAT3 that does not form the biologically-relevant homodimer, and non-biotinylated DNA, which 

would not form the active FRET pair. 

Further validation of the assay was carried out using known STAT3 inhibitors such as the 

peptidomimetics PYLKTK and YLPQTV, and the small-molecule inhibitors STA-21 and Stattic.  It was 

then used to screen a 40-membered library of novel SH2-targeted molecules produced in-house, in 

which it successfully identified six “hit” molecules with low micro molar activity. These were further 

evaluated by establishing IC50 values in a number of cell lines including MDA-MB231, HELA, A4 and 

NCI-H1975.  These studies revealed a correlation between the FRET assay results and the 

cytotoxicity of the molecules in the STAT3-dependent cell lines.  The molecules were also studied in 

cellular experiments to establish their effect on STAT3-regulated genes such as Cyclin D1 and 

Survivin, in which a correlation was also observed.  As a result, these molecules are now in further 

development.   

Finally, the assay has been modified for high-throughput use in a 384-well system, and will be used 

for robotic screening in the future. 
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1 General Introduction 

1.1 Cancer 

Almost one out of every two people born today will at some point in their lives be diagnosed 

with cancer (American Cancer Society, 2013). It is testament to the way modern medicine 

has reduced the threat posed from external threats to health that cancer in its many forms 

affects so many lives. In learning how to treat and prevent cancer, we are increasing our 

understanding of many branches of biology, from genetics and evolutionary biology to cell 

and developmental biology. It sometimes seems that the more questions we answer the 

more complex the intracellular environment appears and it is this complex system that has 

formed over billions of years that we must understand in order to come up with specific 

treatments for very specific errors in function.  

Cancer is an umbrella term for over 200 different types of disease, named after the type of 

cell or organ from which it originates. Our bodies’ cells must multiply and divide to replace 

old and damaged cells in what is normally a tightly controlled and regulated process. Cancer 

occurs when this process goes awry, with either cells not dying when they should or new 

cells forming when they should not. This accumulation of cells can have local and systemic 

effects, especially when they invade or metastasise to other tissues of the body. 

The initiation and development of the cancerous phenotype involves an interaction, damage 

and/or change to the genomic DNA. These changes have been linked to many factors such 

as tobacco smoking, alcohol consumption, exposure to excessive sunlight or radiation, poor 

diet and exposure to carcinogenic chemicals or viruses (Human papilloma virus). The 

disease state develops further when cells are unable to regulate their division, proliferation 

and homeostasis. Cancerous phenotypes are the result of the accumulation of mutations to 

genes; these mutations favour selection for cells with aggressive phenotypes and in a time 

dependent manner lead to invasive malignancy (1). The progression of the disease state is 
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driven by the activity of two oncogene categories; tumour suppressor genes (recessive/loss 

of function) that regulate cell growth and proto-oncogenes (dominant /gain of function), 

which function as accelerators to activate the cell cycle (2). These oncogenes are active in 

all cancers and organ tumour subtypes.  

A cancer cell exhibits phenotypes that include; loss of differentiation signal, unregulated cell 

division,  loss of stop signal for proliferation, invasion of tissues and metastasis, sustained 

angiogenesis and evasion of apoptosis. These alterations allow tumour cells to stay viable, 

adapt and stay one step ahead of the bodies anticancer defence mechanisms (3). 

The three main traditional approaches to treatment are surgery, radiation therapy and 

chemotherapy. Surgery and radiotherapy are currently the most widely and effective used 

local treatments, although ultrasonic and targeted radio wave destruction are becoming 

more routinely used. When the disease becomes metastatic however, chemotherapy is often 

the therapy of choice. 

 

1.1.1 Current Approaches to Cancer Chemotherapy 

 

Traditionally cytotoxic drugs have targeted either the cellular DNA or the mechanisms of cell 

proliferation. Alkylating agents intercalate between DNA bases covalently, preventing cell 

division by stopping the separation of DNA strands. Cytotoxic drugs may chemically change 

DNA structure (e.g. Platinum compounds) or substitute bases for inactive structures (e.g. 5-

fluorouracil, gemcitabine). Drugs may deplete the supply of bases required for DNA and 

RNA synthesis (Methotrexate. 6-mercaptopurine, 6-thioguanine). Some drugs react directly 

with DNA-associated proteins such as topoisomerase I (e.g. topotecan, irinotecan) or 

topoisomerase II (e.g. etoposide). They may also affect microtubule formation during mitosis 

(e.g. taxanes, vinca alkaloids). Cisplatin works by intra- and inter-strand cross-linking of 

guanine residues; this causes inactivation of mismatch repair genes (4). All these 

approaches do little to distinguish between malignant and normally dividing cells, and, 
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therefore, cells with high turnover are highly impacted alongside the cancerous cells (e.g. 

bone marrow, hair follicle and gastrointestinal mucosa) and the search for ever increasingly 

specific drugs continues. 

In the post-genomic era, pharmaceuticals are increasingly designed for a specific target as 

the understanding of cancer biology has increased (5). These novel targets are often 

focused on the deregulated control of cancer cell growth and division, and these signal 

transduction inhibitors are thought to have fewer side effects than traditional cytotoxics. The 

consequence of this less aggressive approach, however is that these agents may be 

primarily cytostatic and therefore used as a combination therapy where early disease 

diagnosis is essential. 

Some forms of cancer are very hormone dependent (breast, prostate and ovarian cancers) 

so drugs that block the hormone from interacting with the cancer cell receptors are known as 

hormone therapies. Tamoxifen is commonly used in breast cancer and acts by blocking cell 

oestrogen receptors. Similarly, luteinising hormone blockers (e.g. Goserelin) and anti-

androgens (e.g. bicalutamide) are used in prostate cancer by antagonizing testosterone 

receptors. 

Various biological agents are used where more conventional drug compounds are 

ineffective.  Monoclonal antibodies (MABs) work in various targeted ways,  

Trastuzumab (Herceptin) binds to human epidermal growth factor receptor 2 (HER2) 

inhibiting the cancer cells ability to grow.  

Bevacizumab is an anti-angiogenesis MAB that inhibits vascular endothelial growth factor 

(VEGF). Inhibition of overexpressed VEGF limits the blood and hence oxygen supply 

available to cancer tumours, retarding growth and subsequent metastasis. 
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1.1.2 Transcription Factors 
 

Transcription factors associated with over activity in cancer cells are attractive drug targets 

as the products of their transcription are required for metastasis and cancer cell growth. An 

understanding of the eukaryotic transcriptional machinery is required before an approach at 

its inhibition can be attempted. Genes consist of three distinct regions, the promoter region, 

the enhancer region and the coding region itself. 

Promoter sequences are DNA sequences that define where transcription of a gene begins. 

Promoter sequences are located at the 5' end of the transcription initiation site and indicate 

which DNA strand will be transcribed; this strand is known as the sense strand. Many 

eukaryotic genes have a conserved promoter sequence called the TATA box (6). This is a 

type of promoter sequence located 25 to 35 base pairs upstream of the transcription 

initiation site. Its conserved DNA sequence of TATAAA led to its naming, and transcription 

factors bind to the TATA sequence and initiate the formation of the RNA polymerase 

transcription complex, promoting transcription. A response element is a promoter or 

enhancer sequence closely associated with the gene it regulates. It is, therefore, known as a 

cis-acting element. Steroids or hormones released due to cellular stresses bind to response 

elements causing a gene expression response; p53 also forms response element complexes 

as part of its regulatory role as an activator protein (7). Enhancer regions act similarly to 

promoter regions but may be located either upstream or downstream of the gene it 

regulates. Also, an enhancer does not need to be located near the transcription initiation site 

to affect transcription; some have been found located in several hundred thousand base 

pairs upstream or downstream of the start site. Enhancers are bound by activator proteins. 

These activator proteins interact with the mediator complex, which recruits polymerase II and 

the general transcription factors, which then begin transcribing the genes. 

Transcription factors may also be described as either general or gene specific transcription 

factors. General transcription factors, along with RNA polymerase II, assemble and bind on 
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the promoter regions of genes whereas gene specific transcription factors bind to the 

enhancer regions and contact RNA polymerase II via a large protein complex known as 

mediator. Mediator is essential to transcription of RNA polymerase II promoters. The gene 

specific transcription factors form a protein complex with coactivators which are responsible 

for acetylating the lysine residues of histones and, therefore, alleviating a physical barrier to 

transcription (8). 

Many signalling pathways (~16) have been implicated in the control of cell division and 

apoptosis; these pathways are usually highly conserved and are often activated during 

embryogenesis and fetogenesis. Extracellular ligands (Interleukin-6, cytokines, growth 

factors) interact with receptor associated Janus kinases (JAKs) and Src family kinases 

which, through phosphorylation cascades, transmit the signal into the cell. The 

phosphorylated cytoplasmic proteins are then transported into the cell nucleus where they 

up or down regulate gene expression by acting as part of a transcription factor complex 

(9).These signal transduction steps are mediated at many points by the Protein-Protein 

interactions of transcription factor complexes. Octamer transcription factor (Oct-1) has been 

found to regulate the expression of the genes of the JAK-STAT signaling pathway (IFNAR2, 

STAT1, STAT2, and STAT4). Overexpression of Oct-1 isoforms caused a decrease in the 

activity of these JAK-STAT genes in a lymphoma cell line (10). 

The activation of latent transcriptional regulators, allows an efficient and direct route for 

cellular communication from the receptors on the cell surface to the regulation of gene 

expression. Transcription factor pathways can be classified as in Fig 1.1 (11). 
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Figure 1.1 Schematic representation of the different classes of transcription factor 

(12) 

Latent cytoplasmic transcription factors (LCTFs) are activated by a cell surface receptor-

ligand interaction. Upon activation the transcription factor translocates into the cell nucleus 

where it interacts with other proteins of the transcriptosome in the regulation of gene 

expression. STATs are latent cytoplasmic transcription factors and are unique in their ability 

to respond to a cell receptor through to DNA binding (13). 

1.1.3 Protein-Protein Interactions 

 

Genetic studies have identified transcription factors as a rich source of potential targets for 

cancer therapeutics. While enzymes and receptors have long been modulated by drug-like 

molecules, the modulation of protein-protein interactions is more challenging. However, this 
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broad perception is not appropriate as we learn more of protein structure and with the aid of 

increasingly powerful modelling docking algorithms, these once featureless protein surfaces 

are being seen with greater resolution and detail.  

Protein surfaces are characterized by numerous indentations and clefts which in the 

unbound state may associate with water molecules creating a unique environment of 

charged features commonly referred to as a “hotspot”. These hotspots are small specific 

areas of just a few amino acids which are crucial to the success of the entire interaction 

between two proteins; therefore, by targeting this relatively small but crucial area can be 

enough to prevent dimerization. Small drug-like molecules are capable of modulating a 

protein interaction of approximately 300-1000Å. The average size of a hot spot is 600Å (14) 

and so hot spots represent a valid therapeutic target. 

 

1.1.4 Protein-Protein Interactions as a Drug Target 

 

PPI specificity is important in organising the regulatory processes of cells and is commonly 

mediated by modular protein domains such as the Src homology domain (SH-2) (15) and 

Per Arnt Sim (PAS) domain. The inhibition of specific protein-protein interactions within 

pathways, especially those involved in signal transduction leading to carcinogenesis and 

tumour formation, are fast becoming attractive targets for novel anticancer therapeutics (16). 

There are three main approaches to therapeutic targeting of a protein-protein interaction. 

Firstly, and most common, is to target a domain hot-spot, which is the approach taken in this 

study. However, allosteric regulation may be equally effective and may help to explain 

experimental results where inhibition does not agree with predicted modelling data. Thirdly, 

PPI stabilization rather than inhibition may also have the effect of down regulating 

transcription by reducing protein disassociation and subsequent re-activation. 
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Most PPI inhibitors share a structural similarity in the projection of lipophilic residues in a 3-D 

projection; this is thought to mimic the shape of either the α-helices or β-turns with which 

they are in competition (17). 

There are a number of promising PPI inhibitors that are in development as chemotherapeutic 

agents showing that this area is steadily growing. For example, Navitoclax (ABT-263) 

(Abbott laboratories) is a dual inhibitor of anti-apoptosis proteins Bcl-2 and Bcl-XL., the major 

negative regulators of apoptosis. The Bcl-2 proteins work by binding to two other groups of 

proteins, the executioners (Bax, Bak) that actually start the apoptotic pathway. Inhibiting this 

PPI induces apoptosis in the cancer cell. Navitoclax is also bioavailable orally and, in animal 

studies, it was found to induce apoptosis in senescent cells (17, (18, 19).  ABT-737 (an ABT-

263 mimetic) is in phase II clinical trials and has been found to be most effective when used 

in combination with a pharmacological up regulator of Noxa (a BH3-only pro-apoptotic BCL-2 

family protein) such as Vorinostat (an HDAC inhibitor) (20).  

Nutlin-3 is a specific small-molecule inhibitor of MDM2, which blocks the protein-protein 

binding of MDM2 with p53, activating the anticancer activity of p53 (21).  Nutlin-3 also binds 

to Bcl-X, an anti-apoptotic protein. Forming a Bcl-X/Nutlin-3 complex in modelling studies 

and spectroscopic analysis shows Nutlin 3 to be a good example of competitive targeted PPI 

inhibition (22). 

1.1.5 Drug Parameter Challenges 

 

Four main classes of PPI modulators are currently considered: 

1. Monoclonal antibodies- despite being expensive and not orally bioavailable, 

antibodies are highly specific and represent the majority of PPI inhibitors currently in 

use in the clinic (23). 

2. Peptides and peptidomimetics- poor stability and low oral bioavailability, although 

advances are being made into improving metabolic and pharmacokinetic properties 
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(24). Peptides are often used as molecular probes and antagonists for investigating 

PPI modulators. 

3. Small molecule PPI modulators- drug like molecules that fall within Lipinski’s rule of 

five. 

4. Unconventional PPI modulators- These molecules do not conform to classic drug-like 

classification, but, through advances in drug delivery, are very much worth further 

investigation (25). 
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1.2 Signal Transducers and Activators of Transcription (STATs)  

STATs (signal transducers and activators of transcription) have been found in many 

biological systems from unicellular Dictyostelium (slime moulds) to mammals and so are 

thought to have been highly conserved from early eukaryotes (26). JAK/STAT signalling 

appears to be an early adaptation to facilitate intercellular communication that has co-

evolved with a myriad of cellular signalling events. This co-evolution has given rise to highly 

adapted, ligand-specific signalling pathways that control gene expression. 

STATs are characterized as a group of proteins found in the cell cytoplasm that are activated 

by extracellular polypeptides interacting with cell membrane receptors in an interconnected 

series of pathways of PPIs (27) . The latent STATs are subsequently phosphorylated, which 

enables them to form homo- and hetero-dimers. The dimers then relocate to the nucleus 

where their effect on gene transcription and hence regulation is achieved. They do not 

require secondary messengers to convey a signal from the cell membrane to activate 

transcription and this makes them unique. 

 STATs were first identified by Darnell, Kerr and Stark in a study of their activation with 

interferon (21,(28), although many polypeptide activators have now been identified. As the 

name suggests, the family has dual functionality of transducing an extracellular signal into an 

intracellular one and then subsequently activating transcription.  

The STAT protein is phosphorylated on a tyrosine residue, a key residue in the 

homodimerisation at the Src-Homology 2 (SH2) domain. The dimer then enters the nucleus 

where it binds to DNA promoter regions and regulates transcription of many genes; STATs 

are bound by an ability to convert an extracellular receptor signal into a genetic response. 

Currently seven mammalian STATs have been identified: STAT1, STAT2, STAT3, STAT4, 

STAT5a, STAT5b and STAT6. In humans the genes are spread across three chromosomal 

clusters (Table 1.1). 
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 Gene loci Activators Cancers Oncogenes 

STAT1 Chromosome 2, 

band q12 to q33 

 Breast, head and 

neck, lung, brain 

 

STAT2 Chromosome 17, 

band q11-1 to 

q22 

   

STAT3 Chromosome 12, 

band q13 to q14-

1  

 Breast, head and 

neck, prostrate, 

melanoma, thyroid, 

myeloma 

Src, eyk, ret, 

lck, Gαo, Npm-

alk 

STAT4 Chromosome 2, 

band q12 to q33 

IL-12, IL-23   

STAT5a Chromosome 12, 

band q13 to q14-

1 

 Chronic 

myelogenous 

leukaemia, Acute 

myeloid leukaemia, 

acute lymphoblastic 

leukaemia, 

Erythroleukaemia 

lck 

STAT5b Chromosome 12, 

band q13 to q14-

1 

 Chronic 

myelogenous 

leukaemia, Acute 

myeloid leukaemia, 

acute lymphoblastic 

leukaemia, 

Erythroleukaemia 

lck 

STAT6 Chromosome 17, 

bands q11-1 to 

q22 

   

 

Table 1.1 STAT loci, activators and cancer implications, adapted from (29) 
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1.2.1 STAT Sequences and Domains 

 

STAT molecules share distinct domains that link them in structure and function. These have 

been determined through comparing gene sequence and mutagenesis. STATs 1, 3, 4, 5A 

and 5B are between 750 and 795 amino acids long whereas STATs 2 and 6 are larger, at 

approximately 850 amino acids (30). The first 130 amino acids at the amino terminal of 

STATs are involved in multiple STAT cooperative binding of DNA consensus sequences 

where multiple copies exist in the genome; these sites are thought to be specific for the 

different STAT proteins and may exist to direct selective transcriptional activation (31, 32). 

However, the first 130 amino acids of the NH2 terminus are not required for STAT 

dimerization or subsequent binding to a single consensus sequence so are often omitted in 

recombinant studies. The next ~190 amino acids (130 to 320) form a bundle of 4 α-helices 

known as the coiled coil domain, followed by ~150 amino acids (320 to 470) which make up 

an eight stranded β-barrel known as the DNA binding domain, but, although it confers 

specificity, it is not enough to bind DNA on its own (33). A ~110 amino acid (470 to 580) 

linker region follows, made up of 4 short α-helices, which lead onto the ~135 amino acid 

(585 to 720) SH2 domain important in STAT protein-protein interaction in dimerisation via 

phosphorylation at tyrosine 705. The C terminal domain is a transcriptional activation domain 

whose activity is enhanced by phosphorylation of serine 727 (Fig 1.2). 

 

1.2.2 STAT3 Isoforms 

 

Splicing variations are known to exist in all seven of the known STAT genes resulting in the 

expression of a number of additional proteins. These isoforms exist in different cell types and 

may be expressed in order to regulate STAT function. STAT3 has a beta (β) isoform that has 

a shortened TAD domain at the C-terminal of the gene, where 55 amino acids from the α 

form are replaced by a 7 amino acid sequence (34). The β isoform therefore lacks the 

phosphoseryl residue (S723), but retains the tyrosine (Y705) critical for homodimerisation in 
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the SH-2 domain (35). The phosphorylation of tyrosine 705 occurs constitutively, so the 

dimer is very stable and constitutively binds to the DNA consensus sequence, hence 

regulating gene expression (36). The gene set is different between the two isoforms; in vivo, 

the β isoform may exist as a regulator of the α-isoform (37).  A study of green fluorescent 

protein-tagged Stat3α and Stat3β demonstrated that the two isoforms have very different 

intracellular activity, with Stat3β shown to be retained in the nucleus for longer and less 

nuclear mobile, especially following ligand stimulation. This makes STAT3β the preferred 

isoform drug study target as its exposure to DNA consensus sequences is greater (38). 

 

1.2.3 STAT3β 

 

Splicing variations are known to exist in all seven of the known STAT genes resulting in the 

expression of a number of additional proteins. These isoforms exist in different cell types and 

may be expressed in order to regulate STAT function (39). 

STAT3β is a truncated isoform of STAT3α in that the last 55 C-terminus amino acids are 

replaced by a 7 residue string (34)34, (40). 

STAT3β was first observed for its DNA-binding activity in IL-6 stimulated hepatocytes as an 

acute–phase response factor (41, 42). It was later discovered that this same protein is 

activated by the entire family of IL-6 like cytokines, which signal through gp130 and related 

receptors (43). Similar to other STATs, STAT3β has a conserved amino-terminus involved in 

tetramerisation (31), a DNA-binding domain. 

As well as homodimerisation, STAT3β can form a heterodimer with STAT1 (44), although  

specificity is conferred to different cytokine activation profiles (45). 

STAT3β has long been described as an oncogenic transcription factor that mediates 

oncogenic transformation in cultured cells and tumour formation in nude mice (46). STAT3β 

protects the cancerous cell and progresses the malignant phenotype by up-regulating key 
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proteins. Cell survival (anti-apoptotic) proteins such as Bcl-2 and Mcl-1 protect the cell from 

destruction. Bcl-2 promotes cell survival by inhibiting cytochrome C, which is an important 

signal in the apoptosis pathway.  Cyclin D1/D2 and c-Myc regulate the cell-cycle and 

proliferating cell division (47). The cyclins regulate transition through the cell cycle stages 

through regulation of cyclin-dependent kinases and subsequent complex formation.  

Vascular endothelial growth factor (VEGF) induces angiogenesis ensuring the malignant cell 

maintains its supply of oxygen and nutrients. 

 

1.2.3.1 STAT3β Structure 

 

STAT3β’s binding relationship to its consensus DNA sequence was first shown along with 

STAT1 in 1998 (48, 49). An adaptation of this structure is seen below in figure 1.2. This 

resolution at 2.25Å (PDB 1BG1) shows STAT3β homodimer bound to DNA covering 

residues aa127 to aa722, the truncated form used in this study. The elongated 4-helix coil 

domain (aa127-aa320) is shown in magenta. The coiled-coil domain at the amino terminus 

contains four antiparallel α-helices and is essential for Stat3 recruitment to the receptor and 

the subsequent tyrosine phosphorylation and tyrosine phosphorylation-dependent activities, 

such as dimer formation, nuclear translocation, and DNA binding (50). The DNA binding 

domain (DBD)(aa320-aa465) is shown in red interacting with the bound DNA (cyan); it forms 

the physical binding region with STAT3’ target DNA consensus sequence and has been 

linked to binding to NF-kappaB p65 in order to inhibit NF-kappaB-mediated transactivation of 

the inducible nitric oxide synthase (iNOS) gene (51). The linker domain (aa465-aa585) is in 

gold and sits between the DBD and the SH2 domain with both being structurally 

compromised if mutations are introduced to the linker, affecting pSTAT3-dependent 

transcription (52). The SH2 domain in blue (aa585-aa722) incorporates the C terminal 

domain (C-TAD) in yellow (aa688-aa722), a major tyrosine phosphorylation site at Y705. 

Phosphorylation leads to dimerization of STAT3 via intermolecular pTyr-SH2 interactions. 

The STAT3 beta isoform (84 kDa) is missing from this domain (1-715 + 7 unique amino 
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acids resulting from frameshift) and is sometimes used as a dominant negative though there 

is also evidence that it regulates distinct genes as well. 

 

 

 

Figure 1.2  Model of the crystal structure of STAT3β homodimer bound to DNA and 

domain map showing region size {adapted from Muller (48)}.  The N–terminal coiled-

coil domain (CCD) is shown in magenta, the DNA binding domain (DBD) in red, the 

linker domain (LD) in gold, the SH2 domain (SH2) in blue and the C-terminal domain 

(TAD) in yellow. The double stranded DNA (dsM67) is shown in cyan. The structure 

was adapted from PDB/1BG1 (53). 
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1.2.3.2 STAT3 Physiological Functions in Normal Cells 

 

STAT3 first gained recognition as an acute phase response factor that was activated by IL-6 

(54), but now the number of activating compounds has grown to include other cytokines (e.g. 

IL-7, IL-10 and IL-20), and also growth factors, granulocyte colony stimulating factor and 

leptin. This physiological function of effecting cytokine and chemokine receptor signaling led 

to signal transducer and activator of transcription (STAT) naming.  

In normal biology, several different mechanisms are responsible for STAT3 down regulation. 

A family of proteins named suppressors of cytokine signaling (SOCS) inhibit STAT3 by 

binding to upstream Janus kinases and inhibiting their phosphorylation of STAT3 (55, 56). 

Another family, called protein inhibitors of activated STAT (PIAS) (57), are ligases that act 

similarly to ubiquitin by specifically binding STAT3 and blocking its activity (58, 59). 

STAT3 down regulation is also controlled by the enzymatic de-phosphorylation of Y705 

through protein tyrosine phosphatases (PTPs). These enzymes can be either integrated into 

the cell membrane (PTPR) or are cytosolic (PTPN). In addition deacetylases (I.e. SirT1) play 

a part in STAT3 down regulation through the removal of K685’s acetyl group (60). 

STAT3’s complex network of activation and deactivation regulation illustrates its importance 

in normal cell biology homeostasis and it has been ubiquitously present in a high proportion 

of the bodies’ tissues.  

STAT3’ role in normal tissue is most understood in the immune and inflammation response 

(1, 61). It was the response to Il-6 and interferon (IFN) that initially led to STAT3’s discovery, 

where the pro-inflammatory activity is reactionary and transient (self-regulated through 

SOCS3, itself up-regulated by STAT3). The anti-inflammatory response to Il-10 however 

results in a more sustained activation of STAT3 (62). High STAT3 activity within normal cells 

is also associated with wound healing, again through IL-6 up regulation at sites of cell 

damage. Indeed IL-6 knockout mice have a heal time three-times longer than the wild type 

(63). 
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STAT3 has been implicated as a downstream effector of hormone systems in the brain such 

as insulin and leptin, indicating a role of STAT3 in the homeostasis of metabolite and energy 

levels (64, 65). 

Partly due to its ubiquity, STAT3 has been shown to play a role in embryogenesis; in fact, 

STAT3 knock out mice die early in embryogenesis, prior to gastrulation.(66) Mammary 

development, thymic function and autophagy are also highly dependent on STAT3 activity 

(66-69). This activity in normal tissue is tightly controlled and transient. Its role in cancer 

whereupon this regulation goes astray is where its interest as an anticancer drug target 

originates. STAT3 has been shown to inhibit the p53 gene transcription rate through binding 

to the p53 promoter in vitro and in vivo. p53 protein is a potent inhibitor of cell growth, 

arresting cell cycle progression at several points and inducing apoptosis of cells undergoing 

uncontrolled growth. (70) 

 

1.2.4 STAT3 in Cancer 

 

Most human cancer cell types have been shown to have overexpressed STAT3 protein 

levels (71). As a key communication transducer of signals from extracellular ligands through 

to specific genome expression, many mutations can result in abnormal STAT3 levels; here I 

summarize some of the main oncogenic targets and their effects.(72) 

 

1.2.4.1 Genomic Deregulation of STAT3 

 

The over activity of STAT3 in human cancers is an effect of the deactivation of tumour 

suppression proteins and activation of oncoproteins. Mutation of the STAT3 gene itself is 

very rare (1.08% of tumours of ~5000 tumours analysed by The Cancer Genome Atlas) (73). 

Abnormal regulation of the many pathways that regulate STAT3, causes the normally highly 
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regulated and transient STAT3 signaling to become unregulated, leading to angiogenesis, 

proliferation, invasion and survival. 

In the disease state upstream kinases become mutated, causing constitutive activation of 

STAT3 (e.g. myeloproliferative neoplasms are often the result of the JAK2 mutation V617F) 

(74). Gene amplification of epidermal growth factor receptor (EGFR) occurs in glial tumours 

which in turn lead to greater activation of wild-type receptor kinases and subsequent lasting 

STAT3 activation (75-77). 

Similarly epigenomic inactivation of STAT3 down regulating proteins in cancer cells 

consequently leads to over activity of STAT3. For instance protein tyrosine phosphatases 

receptor type D and T (PTPRD and PTPRT respectively) are often changed in cancer cells 

(through methylation of their promoter region) inhibiting their ability to regulate pSTAT3 

through de-phosphorylation (78) 

By targeting STAT3 directly a wide range of upstream abnormal changes to both activators 

and deactivators of STAT3 in cancer cells can be minimized. 

 

1.2.4.2 STAT3 in Proliferation and Growth 

 

Unregulated STAT3 activation leads to transcriptional up regulation of genes encoding 

Cyclin D1 and MYC.  Cyclin D1 acts through a Cyclin-dependent kinase to facilitate the 

movement of the cell through the G1 stage of the cell cycle. In this way excess Cyclin D1 

leads to perpetual cell grow and proliferation (79). The transcription factor Myc acts to 

promote growth in the cell. Myc is up regulated by STAT3, therefore causing premature 

progress through the cell cycle in many cancers (80).  

  



 Introduction 

 
32 

1.2.4.3 STAT3 in Cell Survival and Apoptosis 

 

STAT3 is implicated in the transcriptional over-expression of anti-apoptotic proteins such as 

Bcl-xL and Bcl-2 (81, 82). The Bcl-2 family regulates cytochrome c release in the 

mitochondria which is responsible for the initiation of apoptosis. The over-expression of the 

anti-apoptotic Bcl-2 protein in lymphocytes alone does not cause cancer. However, simultaneous 

over-expression of Bcl-2 and the proto-oncogene Myc may produce aggressive B-

cell malignancies including lymphoma (83). The transcription of excessively high levels of Bcl-2 

through STAT3 decreases the propensity of cells for apoptosis (84). 

 

1.2.4.4 STAT3 in Malignancy and Invasion 

 

STAT3 has been shown to cause an increase in metastasis to the brain in melanoma (85). 

This metastasis is initiated by matrix metalloproteases (MMP’s); these endopeptidases 

degrade extracellular matrix proteins. Tumour metastasis is a multistep process involving the 

release of tumour cells from the primary tumour to secondaries at a distant organ or tissue 

(86). One of the first steps in metastasis is the degradation of the basement membrane 

releasing anchored cells from their clustered state. MMP-2 and MMP-9 genes are up-

regulated by STAT3, and STAT3 knockdown in esophageal squamous carcinoma cells leads 

to MMP down-regulation, dysregulation of cell migration and decreased migration speed 

(87).  

Transmembrane glycoprotein Podoplanin (PDPN) is similarly overexpressed through STAT3 

over activity in squamous cell carcinoma cells. PDPN is believed to play a key role in the 

cancer cell invasiveness by mediating efficient extracellular matrix degradation (88). 

Increased cell migration and invasion due to increased cell density can be reversed by RNA 

knockdown of PDPN (89). 

  

https://en.wikipedia.org/wiki/B-cell
https://en.wikipedia.org/wiki/B-cell
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1.2.4.5 STAT3 in Angiogenesis 

 

STAT3 works to promote angiogenesis in two distinct ways; firstly STAT3 causes up 

regulation of pro-angiogenic factors such as vascular endothelial growth factor (VEGF) and 

IL-6, which leads to an autocrine feedback loop (90). STAT3 also acts as a downstream 

effector of cytokine receptors such as leptin, IL-6 and VEGF. Inactivation of STAT3 in vivo 

enhanced the death of the cytokine-dependent sensory neurons of the nodose ganglion, 

demonstrating that STAT3 signalling plays a role in mediating the survival response of 

neurons to cytokines (91).  Increased angiogenesis is crucial to tumour development, 

ensuring that energy and oxygen are in ready supply to the dividing cells (92). 
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1.2.4.6 STAT3 Activation and Regulation 

 

More than 35 different polypeptide ligands, along with oxidative stress (93), have been 

identified to interact with cell surface receptors to activate the dormant intercellular STATs 

(94). In a simple flow path STATs are phosphorylated at a specific tyrosine residue on the 

Src-homology 2 (SH2) domain. A mutual SH2 phosphotyrosine interaction occurs between 

two STAT monomers. The homodimer complex is then able to pass into the nucleus and 

bind to promoter consensus sequences to effect transcription of target genes. A summary 

table of STAT3 activators and the kinases they activate is given in Table 1.2. 

Ligand (family) Phosphorylating enzyme 

Gp 130 
IL-6 
IL-11 
Oncostatin M (OSM) 
Leukaemia inhibitory factor (LIF) 
Ciliary neurotropic factor (CNTF) 

 

yC family 
IL-2 
IL-7 
IL-9 
IL-15 

 
JaK1, JaK3 
JaK1, JaK3 
JaK1, JaK3 
JaK1, JaK3 

Interferon (IFN) 
IFN-α/β/ω 
IL-10 
IL-20 
IL-22 

 
Tyk2, JaK1 
Tyk2, JaK1 
? 
? 

Single chain family 
Growth hormone (GH) 

 
JaK2 

Receptor tyrosine kinases 
Epidermal growth factor (EGF) 
Platelet derived growth 
factor(PDGF) 
Colony stimulating factor (CSF-1) 
Hepatocyte growth factor(HGF) 

 
JaK1, JaK2 
 
JaK1, JaK2 
Tyk2, JaK1 
? 

 

Table 1.2 STAT3 activation ligands and associated enzymes {adapted from (95)} 
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1.2.5 JAK/STAT Signaling 

 

The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway 

represents a major mechanism used to transmit signals from extracellular receptors to the 

nucleus. The canonical pathway consists of JAK and STAT proteins activated by receptor 

ligation and inactivated by negative regulators, including SH2-containing protein tyrosine 

phosphatase (SHP) and suppressor of cytokine signaling (SOCS) proteins.(96)  

The Janus kinase (JAK) signaling pathway starts outside the cell with the binding of the 

ligands given in Table 1.2 to its associated receptor. The cross membrane receptor subunits 

are bound together either as homodimers (erythropoietin and growth hormone) or 

heterodimers (interferon and interleukins). Upon extracellular ligand binding the receptor 

complex undergoes a conformational change that allows intracellular binding of two of the 

receptors associated JAKs. The close proximity of the JAKs allows trans-phosphorylation of 

the receptor endodomain at multiple tyrosine residues (97). 

These receptor phosphotyrosyl motifs recruit cytoplasmic STAT3 via its SH-2 domain and 

once in association with the receptor/JAK complex, the active JAK phosphorylates the 

STAT3 (98).  The phosphorylated STAT3 disassociates from the enzyme/receptor complex 

where it is free to homodimerise with a partner pSTAT3. Once dimerised, the complex 

diffuses to the nucleus where, in association with importin-α, the complex is transported 

across the nuclear pore by the Ran nuclear import pathway (99, 100). 

Once transported into the nucleus, dimerised STAT3 binds to genomic regulatory sequences 

of DNA in order to either “switch on” (i.e. VEGF) or “turn off” (i.e. p53) the transcription of 

target genes. In this way the JAK/STAT signalling pathway provides a crucial mechanism of 

transducing an extracellular signal ligand into a transcriptional change (101).  

 

  

http://www.qiagen.com/products/genes%20and%20pathways/pathway%20details.aspx?pathwayID=263&ID=NM_007315,NM_005419,NM_139276,NM_003151,NM_003152,NM_012448,NM_003153
http://www.qiagen.com/products/genes%20and%20pathways/pathway%20details.aspx?pathwayID=263&ID=NM_002227,NM_004972,NM_000215
http://www.qiagen.com/products/genes%20and%20pathways/pathway%20details.aspx?pathwayID=263&ID=NM_007315,NM_005419,NM_139276,NM_003151,NM_003152,NM_012448,NM_003153
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1.2.6 Positive Regulation of STAT3 

 

In addition to phosphorylation through the JAK pathway, STAT3 has been shown to be 

phosphorylated at Y705 through activation of non-receptor tyrosine kinases (v-Src and v-Abl) 

(102), hormones (insulin and angiotensin) and guanine nucleotide-binding proteins (G-

protein receptors) (103, 104). Upon activation, dimers bind to DNA consensus sequences 

(TT (N)4-6AA) and regulate gene transcription of specific target genes. A 2013 study of our 

group also showed that unphosphorylated STAT3 could bind to the DNA consensus 

sequence and, thereby, validating unphosphorylated STAT3 as a drug target in inhibiting 

downstream gene expression (105). 

A reporter gene study (106) showed that phosphorylation of serine residue 727 by mitogen-

activated protein kinase (MAPK) in a conserved C-terminal PMSP motif is essential for 

prolonged maximum STAT3 activation. This extra activity suggests that there is collaboration 

between different signalling cascades regarding STAT3 (107, 108). For example MAPK is 

activated by the Ras pathway (109, 110).  

microRNAs (miRNAs) are small non-coding RNAs that bind to complementary sequences on 

target mRNAs, often silencing gene expression. miR-19a has been shown to regulate 

suppressor of cytokine signalling (SOCS1) expression, thus enhancing STAT signalling 

(111). 

 

1.2.7 Negative Regulation of STAT3 

 

The phosphorylation of JAKs and STAT3 are negatively regulated by protein tyrosine 

phosphatases (PTPs). A tyrosine phosphatase (SHP-1) contains two SH-2 domains and 

binds to phosphorylated JAKs and phosphorylated receptors to initiate de-phosphorylation of 

these activated signalling complexes. This upstream de-phosphorylation regulates the 

downstream phosphorylation of STAT3 (112). 
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A second group of negative STAT3 regulators are suppressors of cytokine signalling 

(SOCS). The SOCS family of proteins become associated with target proteins (JAKs and 

STATs) through their SH-2 domain, inhibiting JAKs and competing with STAT for 

phosphotyrosine binding sites. The bound STAT-SOCS complex is targeted for 

ubiquitination and the polyubiquitinated complex is in turn targeted by the proteasome for 

degradation (113). SOCS proteins form a negative feedback loop in this way, as they are 

themselves overexpressed through STAT3 target genes and act to turn off the pathway 

(114). For example SOCS2 inhibits STAT5 phosphorylation in response to growth hormone 

signalling. Hepatocytes derived from SOCS2 knock-out mice have prolonged STAT5a and 

STAT5b phosphorylation in response to growth hormone. The mechanism by which SOCS2 

regulates STAT5 activation is still not completely understood. However, it appears to involve 

the competitive binding of SOCS2 to STAT5 and binding sites on the growth hormone 

receptor (115). 

Protein inhibitors of activated STAT (PIAS’) act primarily in the nucleus inhibiting STAT3 

homodimers from binding to DNA consensus sequences. The mechanism for this is not 

clear, but it is thought that sumoylation (small ubiquitin-like modification) is involved (59). 

Low protein and mRNA expression levels of PIAS3 have been found in gastric cancer 

tissues compared with surrounding healthy tissue, indicating an important role in STAT 

regulation. (116) 

Cleavage of STAT proteins by proteases is a form of proteolytic processing and results in 

the generation of C-terminally truncated proteins, called STAT gamma, which are missing 

the transactivation domain (CTAD) and behave as functional dominant-negative proteins, 

playing a role in regulation during times of STAT3 overexpression. STAT gamma isoforms 

have been identified for STAT3, STAT5a, STAT5b and STAT6 in different cellular contexts 

and biological processes (117). 
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1.2.8 The phosphorylated STAT journey 

 

The Src-homology 2 domain (SH-2, amino acids 575-680) was first recognised in 1996 (118) 

and is fundamentally conserved through all STAT proteins, but has also been observed in 

many other functionally different proteins (i.e. enzymes, adaptors, regulators and docking 

proteins) (119). The SH-2 phosphotyrosyl domain binding is a polar interaction that occurs 

between residues Lys591, Arg609, Ser611 and Ser613 of one STAT3 monomer and Y705 of 

another activated STAT3 monomer (120). This binding interaction facilitates a 

conformational change in the dimer that allows nuclear translocation and subsequent DNA 

binding to occur (121). Activated STAT3 homodimers, once transported into the nucleus, 

bind to a consensus DNA sequence which is a member of the interferon-gamma activated 

sequence (GAS) family of transcription enhancers (122, 123). Biochemical analysis has 

shown that STAT3 has a strong binding affinity for the sequence TTCN2-4GAA, with the 

optimum being the 9 base pair palindrome (TTCCNGGAA) (124). 

 

1.2.9 STAT3 Targeting Ligands 

 

STAT3 has long been considered a desirable and “druggable” target, and various STAT3 

inhibitors have been described with varying success and specificity (125). A STAT3 inhibitor 

must work by preventing STAT3 dimerisation, either by inhibiting STAT3 translocation into 

the nucleus or inhibiting STAT3 DNA binding (126). The inhibition needs to be specific 

enough that other STAT family members are unaffected and should not target the JAK 

phosphorylation event, as this is implicated in many other phosphorylation events. A clear 

distinction needs to be made between a STAT3 inhibitor and STAT3 pathway inhibition. 

STAT3 pathway inhibitors are compounds that cause reduced activation of STAT3 by 

indirect means and I will touch briefly on the advances in this field. This study however is 

primarily interested in STAT3 inhibitors, compounds that inhibit the STAT3 mechanism of 

action through direct protein binding. 
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1.2.9.1 Inhibitors of STAT3-STAT3 Dimerization 
 

STAT3 monomers have been shown to dimerise in vitro independently of associated 

receptors (127) making possible the study of complex inhibitors. Inhibitors of the STAT3-

STAT3 homodimerisation event generally target the SH2 domain of STAT3 and specifically 

the region of amino acids around Y705 as the phosphorylation of this tyrosine residue is of 

great importance to the dimerisation event.  The 3D structure model of the STAT3β 

homodimer suggests that dimerization of STAT3β occurs primarily at the SH2 domain. The 

SH2 domains are hinged to each other by a looped segment (from Ala-702 to Phe-716) 

within each monomer. The phosphorylated tyrosine residue (Y705) crucial to the biological 

action of STAT3 forms an attraction to this  loop segment and binds along  with several 

adjacent amino acid residues (Leu-706, Thr-708, and Phe-710) to an accommodating pocket 

on the other SH2 domain. Specific binding by a small molecule to this residue on either or 

both of the STAT3 monomers would block further docking through steric hindrance and 

consequently block the dimerization of STAT3. 

 

 

Figure 1.3 Molecular model of PYLKTKFI phosphopeptide (red) docked between 

STAT3 monomers (blue and yellow) (courtesy of Dr Paul Jackson) 
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This principle was first displayed by Turkson et al in 2001 where the presence of PY*LKTK 

(Y* being phosphotyrosine) disrupted STAT3 activity in vitro. The minimum active sequence 

was mapped to be the tripeptide XY*L (X being any substituent amino acid) and when 

associated with a membrane trans locating sequence (AAVLLPVLLAAP) to aid 

transportation into the cell; this was found to inhibit selectively constitutive and ligand-

induced STAT3 activation in vivo (128). 

 

Figure 1.4. Structure of PYLKTK peptide 

 

A number of tripeptide derivatives based on PY*L and AY*L (where Y* represents 

phosphotyrosine) have been developed in order to be more drug like and condensed than 

the full peptides. ISS- 610 and ISS-840 have a 4-cyanobenzoate substitution at the Y-1 

position and were found to be over 5 times more potent than the native tripeptide. ISS-610 

caused apoptosis and inhibited cell growth in Src transformed mouse fibroblasts and human 

lung carcinoma cells (128-130). 

A peptidomimetic, Ac-Tyr (PO3H2)-Leu-Pro-Gln-Thr-Val-NH2, was found to bind optimally to 

the primarily hydrophobic SH2 region utilising lipophilic amino acid groups at the N-terminus 

providing a backbone structure to optimise. Further optimisation resulted in hydrocinnamoyl-

Tyr (PO3H2)-Leu-cis-3,4-methanoPro-Gln-NHBn, with increased affinity along the molecule 

and improved IC50 of 125 nM versus 290 nM for the original peptide (131-133). 
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Peptide inhibitors are metabolically unstable, have poor permeability into cells and are 

therefore considered at the moment to be unsuitable for clinical use (134). The challenge 

subsequently has been to find small molecules that have a greater bioavailability and 

efficacy and a number of non-peptide small molecules have been reported as inhibiting 

STAT3 by directly binding to the SH-2 domain (135). 

STATTIC (Figure 1.7) was discovered in 2006 by a group in Germany (131, 136). STATTIC 

was unique as it inhibited STAT3 SH2 domain function regardless of whether the STAT3 

was phosphorylated or not. They screened a 17,000 small molecule library for an ability to 

compete with a fluorescein-labelled, phosphotyrosine-containing peptide specific to the 

STAT3 SH2 domain. One hundred and forty four compounds were found to inhibit 

phosphopeptide-protein interactions by >60%. A secondary inhibition screen looking at IL-6 

driven STAT3 transport into the nucleus and inhibition of phosphorylated STAT3-DNA 

binding identified STATTIC as the front running compound. It is selective for STAT3 over 

STAT1 and STAT5. However, STATTIC was found to be susceptible to nucleophilic attack 

as the compound lost its inhibitory action in the presence of DTT. Inhibition also increased 

over time suggesting that alkylation of STAT3 was occurring. A cysteine residue on the 

opposite side of the protein from the phosphopeptide binding face is thought to be the 

modified residue and, if so, STATTIC is not a direct competitor of phosphopeptide binding; 

its inhibition may instead be due to an altered conformation of the SH2 domain. 

 

 

Figure 1.5 Structure of STATTIC 
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The screening of a library of molecules (Wyeth’s) led to the discovery of a SH2 domain 

inhibitor that had an IC50 of 106 µM in a myeloma cell line. This catechol (1, 

2-dihydroxybenzene) moiety was found not to be permeable to cells, but has proved useful 

to the adaption of drug like structures (137).  

S3I-201 (also known as NSC74859) was also identified as a STAT3 dimerisation inhibitor 

through SH2 domain association in a NCI library screen, with an IC50 of 60–110 μM. S3I-201 

was shown to inhibit STAT3 DNA-binding, alter STAT3’ transcriptional profile, caused death 

in STAT3 dependent tumour cells, and slowed growth in human breast cancer xenografts 

(138). 

Greater potencies were seen in several S31-201’s derivatives, including S3I-201.1066, and 

S3I-1757, with IC50 values of 35 μM, and 13.5 μM respectively, in constitutively active 

STAT3 cancer cells (16, 139). 

  
A)                                                                 B) 

 

  

      C)                                                         
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Figure 1.6 Structures of A) S31-201, B) S31-201-1066 and C) S31-1757 

 

Of these derivatives S3I-201.1066 was shown to have good potency and cause senescence 

in human breast and mouse non-small cell lung xenografts (140) (Figure 1.6). 

A modelling library screen identified Cpd30 (4-(5- ((3-ethyl-4-oxo-2-thioxo-1, 3-thiazolidin-

5-ylidene) methyl)-2-furyl) benzoic acid) and Cpd188 (4-((3-((carboxymethyl) thio)-

4-hydroxy-1-naphthyl) amino) sulphonyl) benzoic acid). Cpd 30 blocks STAT3 nuclear 

translocation and induces apoptosis in STAT3-dependent breast cancer cells (141). Cpd-188 

decreased tumour growth in resistant breast cancer xenograft models when used in 

combination with docetaxel (142). 

  

A)                      B) 

Figure 1.7 Structures of A) Cpd-30 and B) Cpd-188 

 

A natural compound, cryptotanshinone (from Salvia miltiorrhiza) is thought to inhibit STAT3 

functions through SH2 domain binding, although this requires further confirmation. The 

compound down regulated STAT3 regulated genes in prostate cancer cells (143). 
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Figure 1.8 Structure of cryptotanshinone 

 

Honokiol (figure 1.11) is a naturally-occurring compound found in extracts of magnolia bark. 

It has an acceptable bioavailability profile and has been shown to cross the blood-brain 

barrier. In an orthotopic mouse model, honokiol significantly decreased lung tumour growth 

compared with the vehicle control group. In a brain metastasis model, honokiol inhibited 

metastasis of lung cancer cells to the brain to approximately one third of that observed in 

control mice. Honokiol’s mechanism of action is inhibition of STAT3 phosphorylation, and 

knockdown of STAT3 was seen to nullify the antimetastatic effects of honokiol. (144) 

 

 

 

Figure 1.9 Structure of honokiol 

 

Crispene E, a clerodane-type diterpene, was shown to inhibit STAT3 dimerization in a cell-

free fluorescent polarisation assay and was found to have significant toxicity against STAT3-

dependent MDA-MB 231 breast cancer cell line and selectively inhibited the expression of 
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STAT3 and STAT3 target genes cyclin D1 and bcl-2. Molecular docking studies suggest the 

molecule inhibits STAT3 by interacting with its SH2 domain (145). 
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1.2.9.2 Inhibitors of STAT3 DNA Binding 

 

STA-21 (Figure 1.10) (146) was first published in 2005 by a group in Michigan who virtually 

screened over 400,000 database compounds, the top 100 of which were evaluated using a 

STAT3 dependent luciferase reporter assay. STA-21 inhibits STAT3 DNA binding, STAT3 

dimerisation and reduces the survival of breast carcinoma cells with constitutive STAT3 

signalling. STA-21 has been shown to decrease the progression of rheumatoid arthritis in 

mice through a decrease in T-cells. TNF-α and IL-6 production were decreased, along with 

affecting mRNA expression levels of key factors such as NF-κB, JAK1, STAT3 and p65 

(147, 148). 

 

Figure 1.10 Structure of STA-21 

 

A STA-21 structural analogue called LLL-3 (Figure 1.11) is significantly more membrane 

permeable, more cytotoxic  in vitro, and decreased viability of intracranial cancer cells in a 

glioblastoma animal model (149).  The acetyl group of LLL-3 was then replaced with 

sulphonamide to give LLL-12 
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Figure 1.11 Structure of LLL-3 

 

Oligodeoxynucleotide (ODN) decoys are one approach to inhibiting STAT3 DNA binding that 

is showing great promise in several clinical trials. ODNs work by competing with endogenous 

sequence equivalents for transcription factor association and, therefore, prevent gene 

expression. A 15-mer STAT3 decoy sequence (5’-CATTTCCCGTTAATC-3’) replicates the 

sis-inducible element of the FOS promoter. Its toxicity was evaluated in a non-human 

primate and encouragingly no organ toxicity was seen during a two-week observation with 

intramuscular injection (150). A clinical trial of this ODN decoy (ClinicalTrials.gov identifier: 

NCT00696176) saw a single dose injected intra-tumourally in Head/Neck Squamous Cell 

Carcinoma (HNSCC) patients resulting in a reasonable safety profile and suppression of 

STAT3 target genes (151). 
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Figure 1.5 Structure of BP-1-102 

BP-1-102 binds STAT3 with an affinity (KD) of 504 nM, blocks STAT3-phospho-tyrosine 

(pTyr) peptide interactions and STAT3-DNA binding at 6.8 μM (IC50). (139) A cyclic 

modification that is resistant to serum nucleases (5’-CATTTCCCGTAAATC-3’) decreased 

tumour growth and down regulated STAT3 target genes in mouse glioblastoma xenografts 

and suppressed HNSCC and bladder cancer cell viability (151, 152). A hairpin version 

containing 2 STAT3 binding sites is able to select specificity for STAT3 over STAT1 and was 

active in a colon cancer cell line (SW480) (153).  

A novel probe (inS3-54) showed selective inhibition of STAT3 binding to DNA without 

affecting the activation and dimerization of STAT3 through interaction with STAT3’ DNA 

binding domain. InS3-54 also inhibits expression of STAT3 downstream target genes and 

STAT3 binding to chromatin in situ (154). 

1.2.9.3 Inhibitors of STAT3 mRNA Translation 

 

Antisense oligonucleotides (ASOs) work by targeting deviant STAT3 signalling. Single 

stranded complimentary versions of the overexpressed mRNA of downstream STAT3 gene 

targets inhibit their expression and then induce a blockade in the transfer of genetic 

information from DNA to protein (155). An early clinical study showed that ASOs specific to 
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STAT3 inhibited STAT3 expression and caused vascular endothelial growth factor (VEGF) 

down regulation in melanoma and breast carcinoma models (90). ASOs also suppressed 

malignancy in hepatocellular carcinoma and prostate cancer cells (156, 157). 

ISIS pharmaceuticals (ISIS 481464) designed an ASO sequence targeting human STAT3 

mRNA which was well tolerated in cynomolgus monkeys at 10 mg/Kg per week and over a 6 

week period decreased STAT3 protein levels by up to 90% (158). 

 

1.2.10 Thurston/Rahman Library Construction 
 

A group developed scaffold, RH-06 (Fig 1.13) showed a moderate ability to disrupt 

dimerisation of the STAT3 protein by interacting with the SH2 domain (159). RH-06 inhibited 

STAT3 dimerisation in a fluorescent polarisation (FP) based primary protein-protein 

interaction assay with an absolute inhibition of 25.4%, compared to 41% observed for the 

natural ligand pYLKTKF. As RH-06 showed moderate STAT3 dimerisation inhibition by 

interacting with the SH2 domain, it was decided to use this molecule as a chemical scaffold 

and develop more potent and selective inhibitors of STAT3 dimerisation. Our group’s aim to 

develop novel inhibitors of the STAT3 signalling pathway led to a library of arylsulphonamidyl 

thiophene amides being prepared after promising in silico observations. The library was 

based on a commercially available thiophene scaffold (Figure 1.13). 

(A)    (B)   

Figure 1.6 Initial thiophene scaffold (A) and RH-06 intermediate (B). 
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This compound first underwent chlorosulfonation, followed by the formation of sulfonyl amide 

derivatives. R1 groups were attached with an amide bond by 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC) coupling or 4-dimethylaminopyridine (DMAP) 

esterification to give initial intermediates. A final Suzuki reaction with various boronic acids 

gave the range of final ligands (Fig 1.12). 

 

Figure 1.7 Synthetic scheme of compound formation (Courtesy of Mrs Kazi Rahman) 

 

The target compounds synthesized were first confirmed by mass through LC-MS. 

Determination of structure was confirmed by NMR, FTIR and HRMS. Additionally, two 

separate HPLC gradient solvents were used to determine the purity of each compound. 
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1.3 Techniques 

1.3.1 Cell Free PPI Characterisation 

 

The study of protein-protein interactions starting with analytical techniques such as co-

immunoprecipitation and affinity chromatography has been progressing at a phenomenal 

rate. Techniques such as analytical ultracentrifugation (AUC), light scattering, surface 

plasmon resonance (SPR) and iso-thermal calorimetry (ITC) create a broad spectrum of 

approaches. This study however is focussed on fluorescence spectroscopy techniques 

(160). Fluorescent screening technologies now make up the majority of high-throughput 

assays due to both the sensitivity and the high adaptability of the fluorescent signal. 

 

1.3.2 Homogeneous Time-Resolved Fluorescence (HTRF) 

 

Forster resonance energy transfer (FRET) is the observation that an excited donor 

fluorophore is able to transfer this excitation state, via a dipolar interaction to a suitable 

acceptor fluorophore (161). The distance between the two fluorophores must not be too 

great (~10Å – 50Å) and there must be a spectral overlap between the donor emission and 

the acceptor absorption. FRET has a greater chance of occurring when the excited state of 

the donor is long lasting and this is particularly utilised in time-resolved FRET.  The 

fluorescence emission must occur in an area of the spectrum as different as possible from 

that produced by proteins; for example, a near infrared emission is well placed to avoid 

proteins medium-intrinsic fluorescence. When the fluorescent probes are placed on different 

biological subunits i.e. transcription factor complex and consensus DNA, the technique is 

particularly robust when studying molecular interactions (162).  
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A homogeneous immunoassay that utilized the FRET effect was first performed in 1976 

(163). HTRF is a homogenous method which has the advantages of FRET whilst eliminating 

background fluorescence and quenching effects by introducing a time delay (50-150µs) 

between the fluorophore excitation and the emission measurements. Background 

fluorescence represents the baseline non-specific signal due to unbound fluorescence probe 

or sample auto-fluorescence. This baseline signal is subtracted from every sample test. 

A transfer of energy occurs between a fluorescent donor (e.g. Europium stabilised in a 

cryptate cage) and an acceptor fluorophore such as d2 or XL665.  In this HTRF assay, the 

donor and acceptor fluorophores are conjugated to biomolecules (anti-His antibody and 

streptavidin) in order to study molecular interactions. The two fluorophores used in this study 

were a europium fused 6HIS antibody and a streptavidin fused d2.  

Europium cryptate (Eu3+cryptate) acts as the donor fluorophore in this FRET pairing; this 

complex consists of a macrocycle within which the Eu3+ ion is embedded. The cryptate 

cage allows both energy collection and transfer to the Eu3+ ion, which releases the energy 

with a specific fluorescent wavelength. Cryptates are formed by the inclusion of a cation into 

a tridimensional cage. The cage acts as a light collecting device and relays the energy to the 

core lanthanide ion. These properties of the macrocycle favour such a tight association with 

the lanthanide ion that this interaction becomes virtually unbreakable and leads to an 

exceptionally inert complex. . In comparison, chelates are not stable in acidic media and 

prone to exchange their rare earth ions with ions present in the media, like Mn2+. Cryptates 

are, therefore, less likely than chelates to dissociate the europium ion from its cage, This 

type of structure supports long-lived fluorescence, making Eu3+cryptate very suitable for 

time resolved studies.  

The first generation of acceptor developed for HTRF was XL665, a phycobiliprotein pigment 

purified from red algae. XL665 is a large heterohexameric edifice of 105 kDa, cross-linked 

after isolation for better stability and preservation of its photophysical properties in HTRF 
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assays. This acceptor fulfils the compatibility criteria mentioned above. Its excitation 

spectrum overlaps that of Eu3+ cryptate emission, therefore allowing the donor to excite the 

XL665, and its maximum emission at 665 nm spans a region where Eu3+ cryptate does not 

emit or only does so weakly. This study uses the second generation of acceptor (d2), 

characterized by organic structures 100 times smaller, but displaying a series of 

photophysical properties very close to those of XL665. The comparison of d2 with XL665 

was achieved by screening 14,700 compounds in an assay for quantifying a phosphorylated 

peptide. The correlation between the two systems was extremely close, and validated the 

integration of d2 in different HTRF assays. As a much smaller entity, d2 limits the steric 

hindrance problems which may occur in XL665-based systems.  

The development of fusion proteins has enabled HTRF assays to use purified recombinant 

proteins by utilising the sequence tags on the protein. These tags are often present at the -

terminal ends to aid in the identification and purification of the recombinant protein.  

6HIS tag (six consecutive histidine amino acids) was used in this study for both purification 

(with a metal chelating solid phase) and assay development.  Mouse monoclonal antibody 

HIS-1 is an IgG2a raised against polyhistidine tagged fusion protein. It is specific to synthetic 

polyhistidine or polyhistidine-tagged fusion proteins.  

Streptavidin is a tetrameric protein (~60kDa) isolated from Streptomyces avidinii that binds 

strongly and with high affinity to biotin, a 244 Da vitamin found in the blood. It is an extremely 

strong non-covalent bond (Ka =10-15M). The association is quick to form and the complex is 

virtually unbreakable under normal biological conditions. As biotin is a fairly small molecule, 

it can be conjugated to biomolecules without affecting their activity (164). 
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1.3.3 Cell Culture 

 

This study used three cancer cell lines, HeLa, MDA-MB-231 and A4. 

HeLa cells derive from human cervical cancer cells. They were originally cultured in 1951 

and were the original human cancer cell line. HeLa cells are extremely fast growing given 

the correct conditions and nutrients, due to their metastatic nature. HeLa cells are cancerous 

due to infection with human papilloma virus 18 (HPV18), which is an initiator of cervical 

cancer. These cells are effectively immortal (no Hayflick limit) as the uncontrolled production 

of telomerase ensures that the chromosomal telomeres do not shorten after each division. 

MDA-MB-231 is a breast cancer cell line derived from breast carcinoma which originated 

from the pleural effusion of a 51-year-old woman in 1973. Sixty per cent of breast cancer 

carcinomas are associated with constitutively active STAT3 (165). MDA-MB-231 is 

described as being triple negative (for ER-, PR- and no HER2 overexpression). Triple 

negative breast cancer (TNBC) is a subtype of breast cancer that is usually associated with 

poor outcome and lack of benefit from targeted therapy. 

A4 is a STAT-null human DLD1 colon carcinoma cell line generated by homologous 

recombination (166) that is used in this study as a positive control for any cytotoxic effects 

seen in the MDA-MB-231 STAT3 dependent breast cancer cells. 
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1.3.4 MTT Assay 

 

In this study an MTT assay was used to measure the cytotoxicity of the compound library. 

MTT assay has been used in STAT3 inhibition studies to support observations seen with in 

vitro (167, 168). A 2010 study found that the use of MTT as a measure of cell proliferation 

and viability can underestimate the anti-proliferative effect of compounds when compared to 

methods which measure metabolic activity through quantifying ATP (i.e.CellTiter-Glo) and 

cellular DNA content (i.e CyQUANT ) MTT is useful in this context of a large scale screen, 

but once compounds are narrowed down any positive result seen may actually be more 

accurately seen with an ATP or DNA measuring screen (169) 

An MTT assay is used to estimate proportionally the number of viable cells present. Viable 

cells are able to reduce the yellow tetrazole MTT to the reduced purple formazan by 

mitochondrial oxidoreductase enzymes (Figure 1.15). 

The insoluble formazan is solubilised in dimethyl sulfoxide (DMSO) to produce a coloured 

solution that can be colourimetrically assessed by measuring the wavelength at 570 nm on a 

spectrophotometer. 

 

 

 

Figure 1.8 Reduction of MTT to formazan  

  

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide                  (E,Z)-5-(4,5-dimethylthiazol-2-yl)-1,3-diphenylformazan 

          (MTT)      (Formazan) 

 

Mitochondrial Reductase 
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2 Materials and Methods 
 

2.1 Biological Materials 

2.1.1 Laboratory Reagents 
 

All laboratory chemicals and organic solvents were of research/analytical grade and were 

purchased from reputable suppliers (Table  2.3). 

 

Supplying company Reagent/Chemicals/Kits 

Bio-Rad 

(Hertfordshire, UK) 

Bio-Rad Bradford protein assay reagent 

Fisher Scientific 

(Leicestershire UK) 

Luria Bertani Broth (LB Broth) 

Agar powder 

Casamino acids 

Organic solvents (Ethanol, Methanol, Propan-2-ol) 

Bovine Serum Albumin (BSA) 

Genron (Berkshire, 

UK). 

NuSep coomassie brilliant blue G-250 dye 

 Instant brilliant blue stain  

Melford laboratories 

(Suffolk UK) 

TRIS Base [Tris(hydroxymethyl)aminomethane] 

HEPES [N-(2-Hydroxyethyl)piperazine N’-(2-ethanesulphonic acid] 

Ampicillin sodium salt 

Dithiothreitol (DTT) 

Isopropyl-β-D-galactopyranoside (IPTG) 

National Diagnostics 

(Yorkshire, UK) 

Protogel (30% [w/v] acrylamide: 0.8% [w/v] bis-acrylamide) 



 Materials and methods 

 
57 

New England Biolabs 

(Hertfordshire, UK). 

1kb DNA marker 

Pre-stained Broad range protein marker 

OXOID 

(Hampshire, UK) 

Phosphate buffered saline (PBS) tablets 

Promega 

(Southampton, UK). 

PCR nucleotide mix (dATP, dCTP, dGTP and dTTP) 

QIAGEN  

(West Sussex, UK).  

 

Miniprep kit 

Maxiprep kit 

PCR clean-up kit 

Gel extraction kit 

Sigma-Aldrich 

(Poole, UK) 

N,N,N′,N′-tetramethylethylenediamine (TEMED) 

Tween-20
 

Ammonium persulphate 

Dimethyl sulphoxide (DMSO) 

Boric acid 

Ethylenediaminetetraacetic acid (EDTA) 

3,3′-Diaminobenzidine (DAB) tablets 

SIGMAFAST
TM 

Protease Inhibitor Tablets 

Antifoam 

Protease inhibitor cocktail for Histidine tagged proteins 

Phenylmethanesulphonyl fluoride (PMSF) 

Kanamycin 

Tetracycline 

Chloramphenicol 

Ethidium bromide 

Igepal 

Triton X100 
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Agarose powder 

3-Indoleacrylic acid (IAA) 

Imidazole 

VWR International Ltd 

(Dorset, UK) 

Sodium Chloride 

Sodium Phosphate 

Ammonium Acetate 

Ammonium sulphate 

Potassium Chloride  

Sodium Hydroxide 

D(+) Glucose  

Glycerol 

Glycine 

Magnesium Chloride 

 

Table 2.3 Laboratory reagents suppliers 

 

2.1.2 Bacterial Expression Plasmids  

 

The pET-32a(+)-STAT3βTC expression vector containing the nucleotides sequence coding 

for the 127–722 amino acid residues of murine STAT3βTC (identical to the human STAT3 on 

the protein level) was a gift from Professor C.W. Müller (EMBL Grenoble, France). The sub-

cloning to produce His-STAT3βTC was performed by Jonathan Palmer (Kings College 

London). 

The pET-28c(+) plasmid DNA vector was purchased from Novagen (Sutton, UK).  

 



 Materials and methods 

 
59 

2.1.3 Escherichia coli Cells (E. coli) 

XL1-Blue
TM 

E. coli competent cells -Genotype: recAI, endAI, gyrA96, thi-I, hsdR17, 

supE44, relAI, lac [F′ proABlacI
q

ZΔM15 Tn10 (Tet
r

)]. XLI-Blue E.coli cells were used for 

molecular cloning and optimal plasmid DNA amplification. This strain was purchased from 

Stratagene (Agilent Technologies, UK). 

DH5α™ E.coli competent cells – Genotype: Fˉ ɸ80lacZΔ15 Δ (lacZYA-argF) U169 

deoRrecA1 endA1 hsdR17 (rk
- 

, mk
+

) phoAsupE44 thi-1 gyrA96 relA1 λ
-

. DH5α was employed 

for routine sub cloning application and high-quality DNA plasmid preparations. This strain 

was purchased from Invitrogen Ltd (Paisley, UK).  

 

BL21 (DE3) TKB1™ E.coli competent cells – Genotype: E.coli B F
- 

DCM, ompT, hsdS (rB
- 

mB), gal λ (DE3) [pTK Tet
r

]. TKB1 strain carries the gene for T7 polymerase and also 

contains a plasmid encoded, inducible tyrosine kinase gene (pTK). It was used for the 

controlled expression and phosphorylation of recombinant proteins placed downstream of 

the T7 polymerase binding site. This strain was purchased from Stratagene (Agilent 

Technologies, UK).  

 

BL21 (DE3) Rosetta™ competent cells – Genotype: F- ompT, hsdSB(rB
- 

mB) gal, dcm, 

pRARE
2 

(Cam
R

). This Rosetta™ strain enhances the expression of genes that encode six 

rare E. coli codons. It was used to overcome translational limitations by the codon usage of 

E. coli. It was used to express recombinant proteins with no post-translational modifications. 

This strain was purchased from Novagen (Merck bioscience, UK). 
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2.1.4 Buffers  

All buffers were either autoclaved before use or passed through a 0.22 µm sterilizing filter in 

small volume. 

 

2.1.4.1  Kinasing Medium 

 

5X Modified M9 (1 L): 128 g Na2HPO4.7H2O, 30 g KH2PO4, 5 g NaCl and 10 g NH4Cl. 

Compound Preparation Volume for 2L 

5X Modified M9 Autoclaved 400 ml 

1M MgSO4 Autoclaved 2 ml 

20% (w/v) D+ Glucose Sterile filtered 20 ml 

20% Casamino acids Sterile filtered 10 ml 

0.5% Thiamine HCl Sterile filtered 2 ml 

2.5 mg/ml Indole-3-acetic acid (IAA) Sterile filtered 8 ml 

50 mg/ml Ampicillin Sterile filtered 2 ml 

12.5 mg/ml Tetracycline Sterile filtered 2 ml  

DDW Autoclaved 1554 ml 

 

Table 2.4 Composition of TKB-1 kinase induction media 
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2.1.4.2  SDS PAGE Gels 

 

Resolving gels composition 

 7% 10% 12% 15% 18% 

DDW 5.25 ml 3.75 ml 2.75 ml 1.148ml 0 

1M TrisHCl (pH 8.8 at 4°C) 6 ml 6.0 ml 6.0 ml 6.0 ml 6.0 ml 

Protogel 3.5 ml 5.0 ml 6.0 ml 7.5 ml 9.0 ml 

10%, w/v, SDS 120 µl 120 µl 120 µl 120 µl 120 µl 

10%, w/v, Ammonium 

persulphate 

120 µl 120 µl 120 µl 120 µl 120 µl 

TEMED 12 µl 12 µl 12 µl 12 µl 12 µl 

 

Table 2.5: Resolving gel acrylamide percentage recipes 

Stacking gel composition 

Reagent Volume 

DDW 3.551 ml 

1M TrisHCl (pH 6.8 at 

4°C) 

676 µl 

Protogel 867 µl 

10%, w/v, SDS 52 µl 

10%, w/v, Ammonium 

persulphate 

52 µl 

TEMED 5.2 µl 

 

Table 2.6: 5% stacking gel recipe 
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2.1.5 Antibiotics 

Antibiotic stock concentrations and solvents (dilute 1/1000 for working concentration): 

Antibiotic Stock concentration (1000x) 

and solvent 

Ampicillin 100 mg/ml in DDW 

Tetracycline 12.5 mg/ml in 80% Ethanol 

Kanamycin 30 mg/ml in DDW 

Chloramphenicol 20 mg/ml in 80% Ethanol 

Streptomycin 50 mg/ml in DDW 

 

Table 2.7 Stock antibiotic preparations 

 

2.1.6 Antibodies 

STAT3 K-15 rabbit polyclonal IgG antibody raised against peptide region (626-640) of 

STAT3 of mouse origin was purchased from Santa Cruz Biotechnology (Wiltshire, UK). 

STAT3 (Phospho pY705) rabbit monoclonal IgG antibody raised against a synthetic 

phosphor-peptide corresponding to the residues surrounding the tyrosine 705 region of 

human STAT3 was purchased from AbCam (Cambridge, UK).  

The phosphotyrosine mouse IgG monoclonal antibody (pY20) raised against phosphorylated 

tyrosine residues was purchased from BD Transduction laboratories (Oxford, U.K).  

Anti-polyhistidine mouse IgG monoclonal antibody raised against synthetic polyhistidine tags 

was purchased from Sigma-Aldrich® (Dorset, UK).  
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ECL™ Peroxidase labelled Anti-Rabbit IgG horseradish peroxidase–linked whole antibody 

and ECL™ Peroxidase labelled Anti-Mouse IgG horseradish peroxidase–linked whole 

antibody were purchased from GE Healthcare (Buckinghamshire, UK).  

 

2.1.7 Tissue Culture Reagents 

 

MDA-MB-231 cells were grown in Dulbecco’s modified Eagles medium (DMEM), GlutaMAX 

media supplemented with 5% foetal bovine serum (FBS), 5% minimum essential medium 

(MEM), non-essential amino acids (NEAAs), and 50 U/ml penicillin/streptomycin, all from 

Gibco by Life Technologies (Thermo Fisher). 

A4 cells were grown in McCoy’s 5A media (+NaHCO3, -Glutamate)(Sigma) supplemented 

with 5% foetal bovine serum (FBS), 1% minimum essential medium (MEM), non-essential 

amino acids (NEAAs), 2mM L-glutamate (200mM), and 50 U/ml penicillin/streptomycin (5000 

U/ml) all from Gibco by Life Technologies (Thermo Fisher). 

NCI-H1975 cells were grown in RPMI 1640 media supplemented with 5% foetal bovine 

serum (FBS), 2mM L-glutamate (200 mM) and 50 U/ml penicillin/streptomycin (5000 U/ml) 

all from Gibco by Life Technologies (Thermo Fisher). 

TrypLE express (1X) trypsin substitute was from Gibco by Life Technologies (Thermo 

Fisher), and Trypan blue solution (0.4%) and Thiazolyl Blue tetrazolium bromide came from 

Sigma-Aldrich (Poole, UK). Bambanker cell storage reagent was from Lymphotec Inc. 

(Tokyo, Japan).  

Nunclon delta sterile tissue culture flasks (T25, T75 and T125ml) were from Nunc (Fisher 

Scientific Leicestershire UK), as were the Nunclon Delta surface 96-well sterile flat-bottomed 

assay plates. Fifty ml sterile reagent reservoirs came from VWR International Ltd (Dorset, 

UK) and 6-well sterile assay plates were from SPL life sciences (Pocheon, South Korea). 



 Materials and methods 

 
64 

2.1.8 Assay Reagents 

 

Eu3+ Cryptate-conjugated mouse monoclonal antibody (anti-6 Histidine) and d2-conjugated 

streptavidin were both purchased from Cisbio Bioassays 

 

2.1.9 Equipment 

 

A Dyad DNA engine was programmed for PCR, restriction digestion and general incubation.  

A New Brunswick InnovaTM 4300 Innova™  rotatory incubator was used for bacterial 

culturing at 37°C; a Biochrom libra S22 spectrophotometer was used to estimate protein and 

DNA concentration; a Leec incubator, programmed at 37°C for overnight incubation; an 

Electrolab P300 fermenter, used for growing up to 10 L cultures; a Beckman Coulter Avanti 

J-26 XP centrifuge was used to harvest bacterial cell cultures; a MSE Soniprep 150 

sonicator was used to lyse E.coli; a UVP GelDoc It2 Imager was used to view and analyse 

stained DNA agarose and SDS protein gels, as well as taking images of Western blots; a 

Stuart gyro rocker SSL3 was used for incubation with shaking at either 4°C or at room 

temperature; An Ohaus pioneer and a Fisher Scientific SG2001 were used as basic 

balances, for routine weighing operations; Hanna HI 208 pH meter; Beckman Coulter 

centrifuge (XL90 Ultrafuge) for separating bacterial lysate into soluble and insoluble fractions 

at RCF greater than 20,000 (rotor used JA 25.5 rotor); Bibby B212 hot plate and stirrer, for 

heating or stirring buffer filtrations; Eppendorf table top centrifuge 5702R was used for low 

speed applications and protein concentration with the aid of Millipore Amicon and microcon 

concentration spin columns; Bio-Rad’s Sub-Cell™ GT system was used for agarose gel 

electrophoresis; Bio- Rad Mini-Protean™ Tetra system used for SDS-PAGE and analysis; 

Bio-Rad’s Mini-Protean II™ system used for Western Blots; AKTA purifier chromatographic 

system used for gel filtration chromatography; PerkinElmer Multilabel plate reader (Wallac 
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EnVision 2101) and Tecan i-control units were used to read 96 and 384-well assay plates at 

different excitation and emission wave lengths. Bench top vortexing was performed using an 

IKA MS3 basic, and static heating operations utilised a Grant-bio PCH-2 dry block heater. 

Double distilled water and molecular biology grade water were provided by ELGA purelab 

option and Ultra polisher units. 

 

The tissue culture room consisted of a class II Envair Bio 2+ hood with aspiration provided 

by a Buchi V-700 vacuum pump; cells were incubated at 37°C in a Binder C150 at 5% CO2 

concentration. Cells were viewed using a Nikon eclipse TS100 microscope and reagents 

were brought to temperature with a Grant JB aqua 12 plus water bath and a Stuart Orbital 

SI50. 

 

2.1.10 Peptides 

 

The GP130 derived H-pYLPQTV-NH2 and H-GpYLPQTV peptides and SH2 derived 

peptides H-pYLKTKF-NH2, H-pYLKTKFI-NH2, and H-GpYLKTKFI used in the HTRF assay, 

along with scrambled variants, were either purchased from Cambridge Research 

Biochemicals Ltd. (Bellingham, UK) or Peptide Synthetic Protein Research Ltd. (Fareham, 

UK). 

 

2.1.11 Consumables 

 

Falcon polypropylene conical bottom tubes were purchased from BD Bioscience; 5, 10 and 

25 ml serological pipettes, as well as Pasteur pipettes, were purchased from Greiner Bio-

One; 20, 200, and 1000 μl micro pipette tips and gel-loading pipette tips were TipOne from 

Star Labs. 
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Hybond C and Hybond N+ nitrocellulose membranes were purchased from GE Healthcare 

(Buckinghamshire, UK).  

Millex
®

GP syringe driven filter units (0.22 and 0.45 μM) were purchased from Millipore (Cork, 

Ireland). Syringes of various volumes were from Terumo (Surrey, UK). Parafilm was 

purchased from Pechiney plastic packaging. (Slough, Berkshire) 

Superpose
TM 

12, agarose chromatography column, HiTrap
TM 

QFF anion exchange columns 

and HISTrap FF and HP columns were purchased from GE Healthcare (Buckinghamshire, 

UK).  

 

The TR-FRET assay was carried out in white, 384 well, small volume assay plates from 

Greiner bio-one.  

 

2.1.12 Primers and Oligonucleotides  

 

5’-BIOTINhexyl-TGCATTTCCCGTAAATCT-3’ 

5’-AAGATTTACGGGAAATGC-3’ 

The biotin labelled and unlabelled high affinity (dsM67) oligos used in the TR-FRET assays 

were synthesized by atdbio (Southampton, UK).  

  



 Materials and methods 

 
67 

2.2 Biological Methods 

 

All solutions were sterilized either using 0.22 μM syringe filters or autoclaved at 121°C for 25 

mins prior to use.  

 

2.2.1 Escherichia coli (E. coli) Stock Preparation and Transformation  

Methods for E. coli cell competency preparation, transformation, storage and DNA 

extraction. 

2.2.1.1  Preparation of Chemically Competent E. coli Cells. 

A glycerol stock of E.coli was thawed on ice and, using a sterile loop, a streak of cells was 

transferred onto a Luria Bertani Broth (LB) 2.5% (w/v), agar 1.5% (w/v) plate supplemented 

with the appropriate antibiotics. The plate was inverted and incubated overnight (~16 hrs) at 

37°C.  A seed culture was then generated by adding a single colony from the plate to 10 ml 

LB broth (For 1 L): 10 g tryptone, 10 g NaCl, 5 g yeast extract (plus antibiotics) and 

incubated at 37°C for 4 to 6 hrs in a shaking incubator. One ml of this seed culture was then 

used to inoculate 500 ml sterile LB with antibiotics. The culture was incubated at 37°C while 

shaking at 150 rpm until an optical density (OD) λ=600 = 0.6 was achieved. At an OD of 0.6 the 

cells were in late-log phase of growth and still metabolically active. The culture was 

transferred to a pre-chilled 1 L centrifuge pot and cooled on ice for 10 mins. The culture was 

then centrifuged at 3600 rpm for 20 mins at 4°C. The supernatant was discarded and the 

pellet re-suspended in 50 ml ice-cold sterile 100 mM CaCl2. Maintaining the solution on ice, 

the re-suspended cell suspension was diluted further to 250 ml with ice-cold 100 mM CaCl2 

and cooled for 20 mins. The culture was then centrifuged again at 3600 rpm for 25 mins at 

4°C.  The supernatant was once again discarded and the pellet re-suspended in 5 ml ice-

cold CaCl2 storage solution (20% (w/v) glycerol, 100 mM CaCl2). The cell suspension was 
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immediately aliquoted into ~25 x 200 μl fractions, snap frozen in liquid nitrogen and stored at 

–80°C until use.  

2.2.1.2 E. coli Competent Cell Transformation  

 

Competent E. coli was used for vector amplification and antibiotic resistance selection. An 

aliquot of frozen competent E.coli cells was thawed on ice and ~0.50 μg (1 µl) of plasmid 

DNA added. The sample was then gently mixed and incubated on ice for 45 mins. The cell-

plasmid mixture was then transferred to a heating block to perform the heat shock stage 

(42°C for 90 secs). The cells were then immediately returned to the ice for a further 2 mins 

to recover. A further 400 μl of sterile LB broth was then added to the sample and the cells 

were grown with agitation (150 rpm for 45 mins at 37°C). After incubation, 100 μl of the 

culture media was spread on the appropriate antibiotic selective plate under sterile 

conditions. The plates were inverted and incubated at 37°C for 16 hrs. Bacterial colonies 

were either selected for further studies or the plates were wrapped in parafilm and stored at 

4°C for future use.  

 

2.2.1.3 Glycerol Stock of Transformed E. coli Cells  

 

Freshly prepared sterile LB broth (5 ml) supplemented with the appropriate antibiotics was 

inoculated with a single colony from a plate of transformed E. coli cells. The culture was 

grown at 37°C with agitation (150 rpm) until an ODλ600 of 0.6 was reached. Glycerol 50% 

(w/v) stocks of the culture media were prepared by diluting 500 μl culture with 500 μl sterile 

glycerol. The mixture was thoroughly mixed by inversion and stored at -20°C until use.  
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2.2.1.4 Mini Preparation of Plasmid DNA  

 

Five ml of freshly prepared sterile LB broth was transferred into a 50 ml Falcon tube and 

then inoculated with a single colony of transformed E. coli picked from a selected plate using 

a sterile loop. The 5 ml culture was supplemented with the appropriate antibiotics, as 

indicated in table 2.7. The culture was grown at 37°C with shaking at 150 rpm overnight. 1.5 

ml of the overnight culture was transferred into a sterile 1.5 ml Eppendorf tube and then 

centrifuged at 7000 RCF for 2 mins at 4°C. The resulting supernatant was discarded and the 

cell pellet was re-suspended in 200 µl of re-suspension buffer {50 mM TrisHCl (pH 8.0 at 

4°C), 10 mM EDTA, 100 μg/ml RNase A) followed by 200 µl of lysis buffer {200 mM NaOH, 

1% (w/v) SDS}. The mixture was then inverted gently 6 times. The lysate was then 

immediately neutralised with 200 µl of neutralization buffer (3M potassium acetate, pH 4.8), 

and mixed gently again by inverting the tube 6 times until a white precipitate developed. The 

tubes were then incubated at -20°C for 10 mins and the precipitate pelleted by centrifugation 

at 13,000 RCF for 10 mins at 4°C. The resulting supernatant was transferred into a fresh 1.5 

ml Eppendorf tube with 400 μl of ice-cold isopropanol and mixed by inversion, followed by a 

further centrifugation at 13000 RCF for 10 mins at 4°C. The supernatant was discarded, 200 

μl of ice-cold 70% ethanol (w/v) was added and mixed to wash the near colourless DNA 

pellet. The tubes were once more centrifuged at 13,000 RCF for 5 mins at 4°C and the 

supernatant discarded.  The plasmid DNA pellet was air-dried for 10 mins prior to 

suspension in 50 μl of sterilized ddH20. The sample was stored at -20°C for future use.  

 

2.2.1.5 Maxi Preparation of Plasmid DNA  

 

The Qiagen Plasmid Maxiprep kit was employed for large scale plasmid DNA extraction and 

purification. A single colony of a transformed E. coli cell picked from an antibiotic selective 

plate was used to inoculate 5 ml of freshly prepared sterile LB broth supplemented with the 
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appropriate selective antibiotics (see Table 2.7). The culture was grown overnight at 37°C 

shaking at 150 rpm. The 5 ml culture was used to inoculate 500 ml of freshly prepared sterile 

LB broth supplemented with antibiotics. The culture was further incubated overnight at 37°C 

with shaking at 150 rpm, followed by centrifugation at 3600 rpm for 20 mins at 4°C. 

Using the Qiagen Maxi prep protocol, the cell pellet was re-suspended in 10 ml of re-

suspension buffer (P1) by gentle pipetting. Ten ml of lysis buffer (P2) was added and mixed 

gently by inversion 6 times and then incubated for 4 mins at room temperature. Ten ml of ice 

cold neutralization buffer (P3) was added to stop lysis. The mixture was thoroughly mixed by 

inversion until a white precipitate was formed and the resulting mixture centrifuged at 20,000 

relative centrifugal force (RCF) for 30 mins at 4°C.  

The supernatant was then passed through the equilibrated (equilibration buffer; buffer QBT) 

Qiagen-tip column by gravity flow. The column was washed twice with 30 ml buffer QC and 

then eluted with 15 ml buffer QF. The eluted fraction containing the plasmid DNA was 

subsequently precipitated with 10.5 ml of isopropanol and immediately centrifuged at 20,000 

RCF for 30 mins at 4°C. The resulting precipitated DNA pellet was washed twice with 70% 

ethanol to remove salts, as well as to substitute isopropanol with more volatile ethanol as 

this increases the DNA’s solubility. The ethanol-DNA suspension was centrifuged at 20,000 

RCF for 30 mins at 4°C and the plasmid DNA pellet air-dried for 10 mins before re-dissolving 

in 500 μl of sterilized double distilled H2O.  

The concentration of the purified plasmid DNA was estimated by reading the ODλ = 260nm. 

Where an ODλ = 260nm of 1.0 is equivalent to a DNA concentration of 50 μg/ml. The 

plasmid DNA preparation was evaluated by agarose gel electrophoresis after restriction 

endonuclease digestion to ensure that the correct plasmid had been amplified and purified. 

The sample was stored at -20°C.  
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2.2.2 Unphosphorylated HIS-STAT3βTC Production and Purification 

Methodologies for expression, extraction and purification of recombinant proteins. 

2.2.2.1 Expression of Unphosphorylated HIS-STAT3βTC 

 

Five hundred ml of LB broth was prepared (12.5 g Luria Base broth with 500 ml DDW), 

added to a 2 L shake flask and sterilized at 121°C for 20 mins. Ten ml of sterile LB in a 

sterile 20 ml container containing the required antibiotics was inoculated with 10 µl of master 

cells. This seed culture was then incubated overnight in a shaking incubator at 37°C. The 

following day the 2 L shake flask was pre-warmed to 37°C. Tetracycline and kanamycin 

were added to the flask to give the working final concentrations (see appendices). The flask 

was inoculated with 10 ml of the overnight seed culture and incubated in the shaker at 37°C 

and >150 rpm. Once the OD600 nm reached 0.6AU (late logarithmic growth phase) the 

culture was induced with 500 µl of 1M IPTG to give a final concentration of 1 mM IPTG, the 

incubator was then reduced to 21°C and left shaking overnight. IPTG acts as a molecular 

mimic of allolactose, a metabolite that initiates transcription of the lac operon by releasing a 

tetrameric repressor from the lac operator. It is used to induce protein expression where the 

gene of interest is under the control of the lac operator, as in the pET expression vector 

system. 

The culture was harvested into pre-weighed 1 L centrifuge pots and centrifuged at 3600 x g 

for 20 mins at 4°C. The pellet was re-suspended in 30 ml/g of supernatant and then re-

centrifuged at 3600 x g for 20 mins at 4°C in 50 ml centrifuge tubes resulting in 

approximately 1 g cell pellets. The supernatant was discarded and the pellets frozen until 

required. 

  

https://en.wikipedia.org/wiki/Allolactose
https://en.wikipedia.org/wiki/Metabolite
https://en.wikipedia.org/wiki/Transcription_(genetics)
https://en.wikipedia.org/wiki/Lac_operon
https://en.wikipedia.org/wiki/Lac_operon
https://en.wikipedia.org/wiki/Lac_operator
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2.2.2.2 Extraction of Unphosphorylated HIS-STAT3βTC 

 

One hundred ml of STAT3 extraction buffer (20 mM HEPES-KCL pH 7.6, 10% glycerol w/v, 

1 mM EDTA, 10 mM MnCl2, 20 mM DTT, 0.5 mM PMSF and 1 x SigmaFast protease 

inhibitor tablet) was freshly prepared. HIS-STAT3 cell pellets were removed from -20°C 

storage and left to defrost on ice. The pellets were re-suspended in 30 ml/g of extraction 

buffer using either a potter homogenizer or serological pipette. The re-suspended cell pellet 

was placed on ice (to minimize temperature variations) and sonicated on a 15 secs on and 

15 secs off cycle for 5 mins with an amplitude of 15 microns. The resulting post sonication 

lysate was then centrifuged at 27,000 x g for 1 hr at 4°C.  The supernatant containing HIS-

STAT3 was decanted into a 100 ml beaker and stirred at 4°C whilst 7.5 g (1.9 M final 

concentration) of ammonium sulphate was gradually added to facilitate the precipitation of 

the protein. Ammonium sulphate is used to ‘Salt-Out’ protein by increasing the ionic 

concentration of the solution to the point where the HIS-STAT3 precipitates. Once all the 

ammonium sulphate was added the solution was left to stir for 20 mins at 4°C.  Following the 

incubation, the material was centrifuged at 30,000 x g for 1 hr at 4°C. The resulting protein 

pellet containing HIS-STAT3 was retained for further anion exchange chromatographic 

purification.  

 

2.2.2.3 Purification of HIS-STAT3βTC 

 

Further purification of HIS-STAT3β was conducted by anion exchange chromatography, in 

which the HIS-STAT3β and contaminant proteins carry a net negative charge at pH 7.6 (as 

this pH is more basic than the isoelectric point of HIS-STAT3β pI = 7.58) and, therefore, 

binds to the positively charged column media. This bound protein mixture is then eluted by 

the addition of a sodium chloride gradient which then fractionates the proteins based on their 
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affinity for the column. This is because different proteins have differing isoelectric points and 

thus have slightly different affinities for the column, which, when a salt gradient is applied, 

results in the fractionation of the sample, and the purification of STAT3. 

The QFF column was first washed with 2 CV (10 ml) of salt free buffer at a flow rate of 

≤1ml/min to remove the 20% w/v ethanol storage solution from the column. Then the column 

was cleaned with 1M NaCl in ion exchange buffer for 4 CV at ≤1ml/min, to remove any 

bound contaminants. Lastly, the column was re-equilibrated in salt free ion exchange buffer 

(100 mM TrisHCl (pH 8.5 at 4°C), 1 mM EDTA, 2 mM DTT), and was ready for loading. 

The STAT3 extracted salt pellet was thoroughly re-suspended in 5 ml of salt free ion 

exchange buffer. This was then passed through a 0.22 µm filter, and then further diluted to 

20 ml using DDW. This material was then ready for loading onto the QFF column, and is 

now referred to as the starting material.  

 

2.2.2.4 Ion Exchange Chromatography 

 

Five ml of the STAT3 starting material was applied to the prewashed QFF column at a low 

flow rate of ≤0.5 ml/min to allow the protein to bind. The flow through was collected and the 

last drop to leave the column was added to 1 ml of Bio-Rad protein reagent in an Eppendorf 

tube and compared with a reference standard (1 ml Bio-Rad +1 drop of salt free ion 

exchange buffer). This was checked by eye to see if a significant amount of protein was not 

binding to the column. If little or no protein was detected in the flow through then another 5 

ml was loaded onto the column and checked as before using the Bio-Rad protein reagent. 

Once protein was no longer binding to the column, as seen in the flow through, the column 

could be washed. The column was washed with 2 CV of salt free ion exchange buffer, which 

was collected. Elution was carried out by flowing 0.1M NaCl in ion exchange elution buffer 

{100 mM TrisHCl (pH. 8.5)} at 4°C, 1 mM EDTA, 2 mM DTT, 0.1 M NaCl – 1M NaCl) through 
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the column at ≤0.5ml/min, and collecting 1 ml fractions; this is predominantly when STAT3 

elutes. Then, 2 CV of 0.2 M NaCl in ion exchange buffer was flowed through the column and 

was collected in a 10 ml tube. This was then repeated using 0.3 M NaCl and 0.4 M NaCl.  

This whole procedure was repeated until all the STAT3 starting material passed through the 

column and was eluted. A Bio-Rad protein assay was then performed on all the fractions 

collected. SDS-PAGE and Western blot analysis was performed on the 0.1 M elution 

samples and some other representative samples, as required. 

 

2.2.2.5 Affinity Chromatography 

 

A 5 ml HIS-Trap FF was washed with four column volumes of DDW in order to remove the 

ethanol storage solution and then equilibrated with four column volumes of equilibration 

buffer (20 mM sodium phosphate, 0.5 M NaCl, 20 mM imidazole, pH 7.4). The protein 

solution was diluted to 20 ml and passed through a 0.45 µm syringe filter and then slowly 

(<1ml/min) passed through the HIS-Trap column whilst collecting the flow through. The flow 

through was again passed through the column to ensure maximum binding efficiency; again 

the flow through was retained to run on SDS gel. 

The column was then washed with 20 column volumes (100 ml) of equilibration buffer at 2 

ml/min in order to remove any impurities. The bound protein was eluted by the slow addition 

(0.5 ml/min) of 10 ml of elution buffer (20 mM sodium phosphate, 0.5 M NaCl, 500 mM 

imidazole, pH 7.4) and the eluate was collected in 1 ml fractions and analysed by SDS-

PAGE and dialysed into the desired buffer. 
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2.2.3 Production of Phosphorylated HIS-STAT3βTC. 

Methodologies for expression, extraction and purification of recombinant proteins. 

2.2.3.1 Transformation into BL21 (DE3) TK Cells 

 

Two hundred µl of TKB1 competent cells were thawed on ice and mixed by pipette.  One 

hundred μl of cells were aliquoted into two pre-chilled 14 ml BD Falcon polypropylene round-

bottom tubes. A diluted final concentration of 25 mM β-mercaptoethanol was added to the 

100 μl of competent cells, in order to increase transformation efficiency. The contents of the 

tube were swirled gently and incubated on ice for 10 mins, swirling the tube gently every 2 

mins. Two µl of HIS-STAT3β-TC DNA (~50 ng/µl) was added to the polypropylene tube and 

swirled gently. As an optional transformation efficiency control, 1 μl of pUC18 control 

plasmid was added to the other 100 μl aliquot of TKB1 cells and swirled gently.  The two 

polypropylene tubes were incubated on ice for 30 mins, while sterile LB media was pre-

warmed in a 42°C water bath. The tubes were then placed in the 42°C water bath for 45 

secs and subsequently plunged back on ice for 2 mins. The pre-warmed LB broth (0.9 ml) 

was added to each of the tubes, which were then placed in a shaking incubator for 1 hr 

(37°C, 225-250 rpm). One hundred µl of HIS-STAT3β-TC transformed TKB1 cells were 

plated on LB-tetracycline-kanamycin plates (LB-tetracycline-ampicillin plates for the pUC18 

transformed control cells) using a sterile spreader and grown at 37°C overnight. 

 

2.2.3.2 Expression of Phosphorylated HIS-STAT3βTC 

 

Six L of LB broth was prepared (150 g Luria Base broth with 6000 ml DDW), added to a 10L 

fermenter, and sterilized at 121°C for 20 mins. Ten ml of sterile LB in 20 ml sterelin 

containing the required antibiotics was inoculated with 10 µL of glycerol stock master cells. 

This seed culture was then incubated overnight in a shaking incubator at 37°C. The following 
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day the fermenter was pre-warmed to 37°C. Tetracycline and kanamycin were added to give 

the working final concentrations (see appendices). The fermenter was inoculated with 10 ml 

of the overnight seed culture, set to incubate at 37°C and stirred at 150 rpm. If excess 

foaming occurred, then a single drop of antifoam was added (Sigma Cat No. A-6426). Once 

the OD600 nm reached 0.6 AU the culture was induced with 6 ml of 1M IPTG to give a final 

concentration of 1 mM IPTG, the temperature was reduced to 21°C, and left overnight. 

The cells were harvested the following morning by peristaltic pump and centrifuged at 3600 x 

g for 25 mins at 4°C to obtain a cell pellet that was subsequently re-suspended in a small 

amount of kinasing medium. The indoleacrylic acid present in the media induces the 

expression of the Elk receptor protein-tyrosine kinase domain under the control of the trp 

promoter (170). The remaining kinasing medium was added to the rinsed fermenter, along 

with the re-suspended pellet, which was heated to 37°C and left mixing for 2.5 hrs.  

The culture was harvested into pre-weighed 1 L centrifuge pots and centrifuged at 3300 x g 

for 25 mins at 4°C. The pellet was re-suspended in 30 ml/g of supernatant and then re-

centrifuged at 3600 x g for 20 mins at 4°C in 15 ml falcon tubes, resulting in approximately 1 

g cell pellets. The supernatant was discarded and the pellets frozen at -20°C until required. 

 

2.2.3.3 Extraction of Phosphorylated HIS-STAT3βTC 

 

pHIS-STAT3βTC was extracted using the same method for unphosphorylated HIS-

STAT3βTC, as described in section 2.2.2.2; however, the post sonication lysate was 

progressed to purification, as described in 2.2.4, without ammonium sulphate precipitation. 
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2.2.3.4 Purification of Phosphorylated HIS-STAT3βTC 
 

HIS-P-STAT3βTC was purified primarily by ion exchange chromatography; the STAT protein 

carries a net negative charge and therefore binds to the positively charged column. The 

bound protein is then eluted by raising the sodium chloride concentration through a gradient. 

Our protein of interest is eluted when the isoelectric point is reached and therefore we 

achieve fractionation and purification of the proteins.  

The QFF anion exchange column was prepared by washing it with 2 column volumes (10 ml) 

of salt free buffer at a slow and steady rate (<1 ml/min) in order to fully remove the 20% 

ethanol column storage solution. The column was then flushed with four column volumes of 

1M NaCl ion exchange buffer to ensure that the column was cleaned of all contaminants. 

Finally, the column was re-equilibrated with four column volumes of salt-free ion exchange 

buffer ready for sample loading. 

Extracted pHIS STAT3βTC was filtered through a 0.45 µm particulate filter and diluted to 20 

ml with salt-free ion exchange buffer. The diluted protein solution was then applied to the 

equilibrated QFF column at a low flow rate of ≤ 0.5 ml/min to maximise protein binding. Flow 

through was collected and re-applied to the column; the flow through was collected for SDS-

PAGE analysis. The column was then washed with two column volumes of salt free ion 

exchange buffer, which was collected for SDS-PAGE. Elution of the protein was carried out 

by adding 0.1M NaCl in ion exchange buffer through the column at ≤0.5 ml/min, and 

collecting 1 ml fractions (most P-HIS-STAT3βTC is eluted at this concentration). Then 2 CV of 

0.2M NaCl in ion exchange buffer was flowed through the column and collected in a 10 ml 

tube. This was then repeated using 0.3 M NaCl and 0.4 M NaCl. A Bio-Rad protein assay 

was then performed on all collected fractions and SDS-PAGE/Western blot analysis, as 

required. 
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2.2.4 Homogenous Time-Resolved FRET STAT3βTC Assay 

Reagent preparation and addition priority methodologies. 

2.2.4.1  Annealing of Oligonucleotide DNA Primers 

 

An annealing mixture was prepared by mixing equimolar amounts of complementary DNA in 

a sterile 1.5 ml tube (e.g. 20 μl forward and reverse primers of 100 µM each). The reaction 

mixture was supplemented with 100 mM NaCl, and then diluted to 100 μl with sterile ddH2O. 

The lid of the 1.5 ml tube was wrapped in parafilm and then supported in a water-bath. The 

water-bath was heated until boiling (100°C) for 5 mins and subsequently allowed to cool 

slowly to room temperature. The tube was centrifuged for 30 secs and the oligonucleotide 

DNA stored at -20°C for future use. 

 

2.2.4.2 Preparation of Fluorescent Conjugates 

 

The Streptavidin-d2 and Anti-6HIS-Cryptate reagents (Cisbio Bioassays) were supplied as 

lyophilised 250 µg samples. These were reconstituted with 250 µl of sterile DDW to give a 1 

mg/ml stock. This stock was aliquoted into 25 x 10 µl samples, which were frozen at -20°C 

until use. A 10 µl aliquot was thawed on ice when required and diluted with 990 µl of TR-

FRET binding buffer {100 mM TrisHCl (pH. 7.4) at 4°C, 10 mM sodium phosphate, 0.1% 

(w/v) BSA, 0.1% (w/v) Tween 20, 0.5% (w/v) glycerol}.  Five µl was used per test well (50 

ng/well) and once prepared the conjugates were kept either on ice or at 4°C and disposed of 

after two weeks. 
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2.2.4.3 HTRF Assay Setup 

 

The concentration of purified HIS-STAT3βTC was determined by Bradford assay (as in 

section 2.2.10.5). This concentration in mg/ml was converted to Moles by dividing the 

concentration by the proteins molecular weight (HIS-USTAT3βTC = 70392Da, HIS-

PSTAT3βTC = 70487Da). The protein was then diluted with TR-FRET buffer to the working 

concentration. 

The diluted protein was incubated with the DNA as a stock at 4°C for 4 hrs (in order for an 

equilibration between protein and DNA to be established) prior to aliquoting 10 µl per well 

into the required number of plate wells. One µl of inhibitor prepared in DMSO was then 

added to the test wells and gently pipette mixed. The inhibitors/controls were incubated on a 

plate shaker (300 rpm) at 4°C for 1 hr and then 10 µl of the 1:1 Streptavidin-d2 and Anti-

6HIS-Cryptate fluorophores mixture was added, pipette mixed and again incubated on the 

plate shaker at 4°C for 1 hr. One µl of 10M KF was added and pipette mixed in all wells prior 

to reading the plate.  

The Envision plate reader was set up to excite at a wavelength of 320nm and emission 

readings were recorded at 615 nm and 665 nm after a 60 µs delay with 100 flashes. 

 

2.2.5 Cell Culture 

Methodologies for cell passage and counting, culture maintenance and assays. 

2.2.5.1 General Procedure for Cell Culture Passage 

 

Cultures were expanded as required. Cell cultures were split (passaged) every 2–4 days, 

when they reached 70–80% confluence.  



 Materials and methods 

 
80 

The following passage protocol is described for the standard T75 flask. Media was aspirated 

off and the cells washed once with 10 ml pre-warmed sterile PBS (containing no Ca2+ or 

Mg2+). Two ml of trypsin-EDTA solution was added and incubated for 5 mins in the 

incubator until the cells had detached. To cease trypsinisation, 10 ml of growth medium was 

added and the resulting cell mixture transferred to a sterile falcon tube and centrifuged for 5 

mins at 1200 rpm in a pre-cooled (4°C) centrifuge. The cell pellet was then re-suspended in 

5 ml of media and the cells counted (as in Section 2.2.6.2). A newly labelled T75 had 14 ml 

of fresh media added and 1 x 106 cells diluted to 1 ml. The flask was gently moved to evenly 

distribute the cells on the surface. 

 

2.2.5.2 Cell Counting by Haemocytometer 

Ten µl of cell suspension was added to 90 µl of Trypan blue solution and well pipette mixed. 

Ten µl of this mixture was added to the clean haemocytometer utilizing capillary action to 

draw the fluid beneath the cover slip. The four corner cells (each containing 16 squares) 

were counted (using a hand tally counter) under a 10X objective microscope. Only healthy 

unstained cells were counted and only cells within the square and any positioned on the right 

hand or bottom boundary line were included. The haemocytometer is designed so that the 

number of cells in one set of 16 corner squares is equivalent to the number of cells x 104 /ml 

Therefore, to obtain the count: 

The total count from 4 sets of 16 corner = (cells / ml x104) x 4 squares from one 

haemocytometer grid 

1. Divide the count by 4 

2. Then multiply by 10 to adjust for the 1:10 dilution in Trypan blue 
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2.2.5.3 General Procedure for Cell Frozen Stock Preparation 

 

The cells were first trypsinised from the desired number of flasks and the cell suspensions 

pooled together whilst the cells were in the logarithmic growth phase. The cells were 

counted, and total viable cell number calculated. The cells were centrifuged at 125 x g for 10 

mins and the supernatant aspirated. 

The pellet was re-suspended at a density of 2 x 106 cells/ml in Bambanker freezing medium. 

One ml aliquots were dispensed into sterile cryovials, then frozen at -80°C without 

preliminary freezing. Two or more weeks later, the viability of the frozen stocks was 

confirmed by starting a fresh culture. 

 

2.2.5.4 General Procedure for Cell Culture from Frozen Stock 

 

Frozen stocks of cells were thawed rapidly by briefly immersing the vial in a 37°C water bath 

(e.g. 2–3 mins with constant agitation). Once thawed, the outside of the vial was immediately 

wiped with 70% EtOH and the contents of the vial transferred to a T25 flask. 

An additional 4 ml of appropriate pre-warmed medium was then added to the flask. The flask 

was gently mixed to distribute the cells evenly over the growth surface. The culture was then 

placed in a 37°C, 5% CO2, humidified incubator. 

The next day, the cells were examined under a microscope to check for adhesion to the 

plate and normal morphology. Medium was aspirated and replaced with fresh.  

  



 Materials and methods 

 
82 

2.2.5.5 General Procedure for the MTT Assay 

 

10,000-20,000 cells in 100 µl media were plated into a Nunc Nunclon flat bottomed clear 96-

well plate, and incubated for 24/48 hrs at 37°C in a 5% CO2 incubator. One µl of compound 

dissolved in DMSO was added in triplicate along with a DMSO only control and the cells 

incubated for a further 24/48 hrs. After the required incubation the media was removed using 

a multichannel pipette and each well washed with 200 µL DMEM (Phenol red free), which 

was again removed with a multichannel pipette. A stock 5 mg/ml Thiazolyl Blue Tetrazolium 

Blue (MTT) (Sigma M5655) solution in DMEM (phenol red free) was prepared and 100 µl of 

a subsequent 0.5 mg/ml MTT stock was added to each well and left in the incubator for 4 hrs 

for the formazan crystals to develop. The reagent was then carefully removed, so as not to 

disturb the crystals, which were dissolved in 200 µl of DMSO (Sorenson’s glycine buffer) and 

incubated to ensure that no air-bubbles remain. 

Absorbance readings were taken at 570 nm (Envision plate reader) and assumed to be 

directly proportional to the number of living cells. Absorbance values for cells treated with 

either vehicle or media alone were used as controls. The MTT data (calculated as 

percentage of control values) were calculated from triplicate measurements to allow 

standard deviations to be calculated. 

 

2 x 105 HeLa cells were plated onto 96-well plates with 100 µl DMEM media and left 

overnight. Media was removed and replaced the following morning and left for 8 hrs after 

which the media was replaced and inhibitors added with a serial 1:10 dilution to achieve 

titration along with media only and DMSO only controls. The cells were left at 37°C for 24 

hrs. 
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2.2.5.6 General Procedure for Trypan Blue Assay 

 

MDA-MB-231 cells were plated into 24-well plates and allowed to incubate overnight to 

achieve 80% confluency. Inhibitors were then added, and the cells incubated for a further 24 

hrs. After addition of Trypan Blue, unstained (viable) and stained (non-viable) cells were 

counted and calculated as a percentage of total cells using a haemocytometer (as described 

in section 2.2.5.2). 

 

 

2.2.6 In Silico Modelling 
 

All modelling studies were carried out with the expertise of Dr Paul Jackson. 

 

2.2.6.1 Receptor Preparation 
 

The STAT3 homodimer structure was downloaded from the Protein Data Band (PDB ID: 

1BG1) and missing residues and loop structures were generated using the Swiss Model 

online tool (http://swissmodel.expasy.org/interactive). 

The STAT3 homodimer was then subjected to a number of steps of preparation in Chimera. 

Firstly, the receptor was assigned partial charges (AMBER ff98SB), after removal of 

hydrogens, using the DockPrep module of AMBER, followed by writing to mol2 and pdb files. 

A molecular surface of the receptor was generated using write dms. This process rolls a 

water molecule-sized ball over the surface of the receptor and it represents the van der 

Waal’s surface of the molecule. Advantages of this step are that it helps to include deep 

crevices inaccessible to solvent molecules in later docking calculations and concurrently 

removes tiny pockets from the analysis which would be inaccessible to ligands.  
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2.2.6.2 Ligand Preparation 

 

All ligands were constructed and energy minimised using ChemBioOffice and exported in 

pdb format. All files were then converted into the Sybyl format mol2 using Chimera (171). 

The DockPrep module in Chimera was then used to assign partial charges of each molecule 

(AM1-BCC charges in this instance). As part of the DockPrep procedure, atom types were 

subsequently assigned via the AMBER GAFF force-field using ANTECHAMBER. 

 

2.2.6.3 Docking 

 

All docking experiments were undertaken by Dr Paul Jackson using the DOCK6 software 

suite. The STAT3 monomeric crystal structure (PDB ID: 1BG1) was used in every 

experiment. In each case, homodimer A was used as the receptor and the PYLKTKFI 

peptide motif of homodimer B (created through unit cell generation in Chimera) was 

considered the ligand.  

The receptor was prepared (outlined above), and a number of steps were undertaken in 

DOCK6 to isolate the binding pocket of interest. Firstly, spheres were generated around the 

surface of the molecule using sphgen, which produces sets of overlapping spheres to 

describe the surface of the receptor.    

Sphere_selector was then used to filter results from sphgen, and only spheres within 10Å of 

the PYLKTKFI peptide were selected for further analysis. This resulted in the assessment of 

the full SH2 domain of the STAT3 molecule (residues 582 – 688) for potential binding of the 

KSN series of molecules. 

A further identical study was conducted on the DNA binding domain (residues 321 – 465) 

using spheres within 10Å of residues 324–328 (VERQP) in order to ascertain the potential of 

the KSN series of molecules to bind to the DNA binding domain of STAT3. 
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Finally, the KSN series of molecules was automatically positioned into the spheres with 

maximum number of conformations set at a high level (500) to explore a large amount of 

conformational space, thus producing a library of docked ligand: protein structures. 

 

2.2.6.4 Evaluation of Ligand Binding 
 

Ligands were evaluated based on two DOCK scoring functions, MMGBSA and GRID 

scoring. During the docking process, a grid was created around the receptor. The grid was 

then used to allow rapid score evaluation in DOCK. Prior to scoring, orientations of the 

ligand which exhibited significant steric interactions with the receptor molecule were 

discarded using the bump filter.  

The grid-based scoring term is based on non-bonded parameters within the force-field (i.e. 

van der Waal’s forces, electrostatic forces). The Hawkins MMGBSA method (172) is an 

adaptation of the original MMGBSA method and uses the pairwise solvation method and the 

interaction between ligand and receptor are represented by Lennard Jones and Coulombic 

potentials, coupled with the change in solvation (ΔGBSA), which in turn is represented by 

the following equation: 

  ΔGBSA = GBSAcomplex – (GBSAreceptor + GBSAligand)     

In evaluating ligand-protein interactions, two factors were considered crucial; shape-fit of the 

molecule to the protein receptor, and prevention of the interaction of the STAT3 homodimer 

B (particularly residues PYLKTKFI) with an octapeptide binding site. The latter was 

considered particularly relevant as modulation of either Y705 (which is phosphorylated 

before dimerisation) or P704 (i.e. P and Y of PYLKTKFI) is known to disrupt dimerisation of 

the protein.(173) 
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  The former was considered relevant as shape-fit is crucially important to the binding of 

other STAT3 binding molecules that target the SH2 domain of the protein (for example BP-1-

102) (139). 

2.2.7 Polymerase Chain Reaction 

Methodologies for RNA isolation, reverse transcription PCR and endpoint PCR. 

 

2.2.7.1 Cell Stimulation and RNA Isolation 

 

The cancer cell line to be investigated was split and counted in the normal manner and a 6-

well plate seeded with 100,000 cells in a 2 ml total volume of media. The cells were left 

overnight to establish themselves and the next day were stimulated with either 

lipopolysaccharide (LPS) or interleukin-6 (IL6). LPS (300 µg) was added to each well to give 

150 µg/ml final concentration, or 8 µl per well of a 10 µg/ml IL6 stock was added to give a 40 

ng/ml final concentration. These stimulants of the STAT pathway were left for 24 hrs before 

the introduction of either test compounds or control DMSO. The inhibitors were left 

overnight. 

A cell pellet was prepared by carefully aspirating the media of the wells then washing the 

wells with 3 ml of PBS (8 g/l sodium chloride, 137 mM), 0.2 g/l potassium chloride (2.7 mM), 

1.15 g/l di-sodium hydrogen phosphate (4.3 mM), 0.2 g/l potassium dihydrogen phosphate 

(1.47 mM, adjusted to pH 7.4). Trypsin-EDTA (0.2 ml) was added and, after ensuring an 

even covering, incubated at 37°C for 2 mins. After trypsinising the cells 2 ml of media was 

added and the cells transferred to a 15 ml Falcon tube, where a further 8 ml of media was 

added before centrifuging at 1500 rpm at 4°C for 5 mins. The media was carefully aspirated 

and the pellet re-suspended with 10 ml of PBS. The mixture was again centrifuged at 1500 

rpm at 4°C for 5 mins and the PBS carefully aspirated. The cell pellet was snap frozen using 

liquid nitrogen and stored at -80°C until further use. 
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2.2.7.2 RNA Isolation 

 

The Qiagen RNeasy plus mini kit was used to purify total RNA from the pelleted E-coli cells. 

Before use, the ethanol wash buffer (RPE) was prepared by diluting with 4 volumes of 

ethanol (96-100%) to working concentration and 350 µl added to the pre-thawed, on ice, cell 

pellet. The pellet was well homogenized using a pipette and vortex mixed. The lysate was 

then centrifuged in a minifuge for 3 mins and the supernatant carefully pipetted off and 

added to the genomic DNA eliminating spin column. The column was centrifuged at 15,000 

rpm for 30 secs, and the flow-through retained. To the flow-through, 350 µl of 70% ethanol 

was added, mixed well with a pipette, and immediately transferred to the RNeasy spin 

column and centrifuged at 15,000 rpm for 15 secs; the flow-through was discarded. RNA 

wash buffer (RW1) (700 µl) was added to the spin column and centrifuged at 15,000 rpm for 

15 secs; the wash buffer flow-through was discarded. 

Then, 500 µl of ethanol wash buffer (RPE) was added to the spin column and centrifuged at 

15,000 rpm for 15 secs before adding a second 500 µl to the column and centrifuging for 2 

mins at 15,000 rpm and discarding the flow through. The column was centrifuged at full 

speed for 1 min more to ensure that the membrane was dry. A new collection tube was fitted 

and 50 µl of RNase free water carefully added to the centre of the spin column membrane. 

The column was centrifuged at 15,000 rpm for 1 min in order to elute the RNA. 

 

2.2.7.3 Reverse Transcription Polymerase Chain Reaction (RT-PCR) 

 

This step produces a cDNA version of the RNA present so it is important that these steps 

are carried out under sterile conditions and without RNase contamination. 
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PCR tubes were prepared containing 10 µl of reverse transcription buffer, 1 µl of reverse 

transcriptase enzyme mix and 9 µl of RNA sample. A negative control was prepared with 

PCR grade H2O in place of the enzyme mix, giving all samples 20 µl total volume. The 

samples were well mixed by pipetting up and down and vortexing for 5 secs, followed by a 

short spin to ensure that all the sample was at the bottom of the tube. 

A simple PCR program of 37°C for 1 hr., followed by 95°C for 5 mins, then held at 4°C was 

run on all samples. Samples could be stored at -20°C before endpoint PCR was carried out. 

 

2.2.7.4 Endpoint PCR 

A reaction master mix was prepared as in table 2.8 

Components Volume required (µl) for one reaction 

PCR reaction buffer (10X) 2.5 

dNTP mix (10 mM) 0.5 

MgCl2 (50 mM) 0.75 

Forward primer (1:10) 0.625 

Reverse primer (1:10) 0.625 

Taq polymerase 0.1 

PCR grade water 18.9 

Table 2.8 Endpoint PCR master mix 

All components were thawed on ice and vortex mixed before use (although the Taq 

polymerase was not vortexed). Autoclaved PCR tubes were used to prepare the master mix, 

and samples prepared straight away with 1 µl of cDNA sample, followed by 24 µl of master 

mix, and pipette mixed; a control sample containing water instead of Taq polymerase was 

also prepared. 

The samples were placed in the PCR thermo cycler and a program run as follows 
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Stage 1 94°C for 5 mins 

Stage 2 94°C for 30 secs 

  55°C for 30 secs 

  72°C for 90 secs 

Stage 3 Repeat stage 2 for 30 cycles 

Stage 4 72°C for 5 mins 

All samples were subsequently run on an agarose gel. 

 

2.2.8 Cell Based Western Blot 

 

1 x 106 cells were plated into 2% FCS media in 6-well plates and incubated overnight to 

initiate attachment and differentiation. The medium was then changed to a serum-free type, 

and either IL-6 (20 ng/ml) or lipopolysaccharide (500 µg/ml) was added at the same time as 

the inhibitor. Whole cell extracts were then prepared using RIPA buffer (Thermo Scientific) 

with protease and phosphatase inhibitors (1.6 mg/ml benzamidine HCl, 1.0 mg/ml 

phenanthroline, 1.0 mg/ml aprotonin, 1.0 mg/ml leupeptin, 1.0 mg/ml pepstatin A dissolved in 

99% ethanol). Extracts were dissolved in SDS buffer and run on a 10% PAGE gel for 1 hr at 

100 V (4°C). Blots were probed with antibodies for P-STAT3, STAT1, Cyclin D1, Survivin 

and GAPDH (Cell Signalling Inc.). 

 

Once treated the cell culture dish was placed on ice, carefully aspirated and each well 

washed with 2 ml ice-cold PBS. (8 g/l sodium chloride (137 mM), 0.2 g/l potassium chloride 

(2.7 mM), 1.15 g/l di-sodium hydrogen phosphate (4.3 mM), 0.2 g/l potassium dihydrogen 

phosphate (1.47 mM), adjusted to pH 7.4). This wash was aspirated and replaced with 2 ml 
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ice-cold lysis buffer {10 mM TrisHCl (pH 8.0 at 4°C)}, 130 mM NaCl, 1% Triton X-100, 10 

mM NaF, 10 mM sodium phosphate, 10 mM sodium pyrophosphate). The adherent cells 

were scraped off using a sterile plastic cell scraper and gently transferred to a pre-cooled 

falcon tube. The tube was constantly agitated on a tube spinner at 4°C for 30 mins to allow 

full lysis to occur. The cell suspension was then centrifuged at 4°C, 15000 x g for 20 mins in 

a pre-chilled rotor. The supernatant was then transferred to a fresh tube on ice and the pellet 

was discarded. 

The protein concentration of each cell lysate was determined by Bradford assay and the rest 

of each lysate was diluted with 10 µl 2X SDS sample buffer {120 mM TrisHCl (pH 6.8 at 

4°C), 20 mM EDTA, 4% SDS, 0.06% Bromophenol Blue, 20% glycerol and 0.4% β-

mercaptoethanol}. The cell lysate was then boiled at 100°C for 5 mins in order to denature 

and using the protein concentrations determined by Bradford assay, 30 µg of protein was 

loaded onto a SDS-PAGE gel and run as described in section 2.2.10.1. 

The membrane was left overnight at 4°C in BSA blocking solution and then the membrane 

was incubated in primary antibody. The membrane was washed and treated with secondary 

antibody as described in section 2.2.10.2.  Signal development was achieved by enhanced 

chemiluminiscence. 

 

2.2.9 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis Analysis (SDS-
PAGE) 

 

SDS-PAGE in Tris-glycine buffer is a technique for separating complex protein mixtures 

under reducing conditions. This technique was used to separate proteins within cell fractions 

and protein fractions generated at various stages and to estimate protein size through 

comparison with known protein size markers. Samples were prepared by taking 42 µl of 

protein fraction, adding 6 µl of 6x SDS loading buffer {360 mM TrisHCl (pH 6.8) at 4°C, 12% 

SDS, 60% (w/v) glycerol, 0.06% Bromophenol Blue} and 2 μl of 1M DTT. The samples along 
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with a 10 µl per gel aliquot of NEB broad range pre-stained protein marker were then 

denatured for 10 mins at 95°C and micro-centrifuged at 13000 rpm for 90 secs to separate 

any particulates. The supernatant (12 μl) was loaded into the pre-prepared SDS-PAGE gel 

wells. The gel was prepared using the component quantities described in Tables 2.5 and 

2.6. The gel was submerged in 1X Tris-glycine tank buffer {5X =Tris 7.55 g, Glycine 47 g, 

and 10% SDS 25 ml (for 0.5 L)} 

Polyacrylamide gel electrophoresis (SDS-PAGE) was used to analyse the following samples; 

pre-induction, post-induction obtained during protein expression, fusion protein distribution 

during extraction and fusion protein purity. The presence of SDS in the sample and running 

buffers was to ensure that proteins in the sample have the same charge: mass ratio so that 

the migration rate of the individual proteins in the sample will be proportional to their size. 

The gel was run at 30mA/70V until it passed the junction between the stacking and resolving 

gel. The voltage was then increased to 35mA/100V to accelerate separation. At the end of 

the gel run, the gel was carefully peeled off the glass plate and placed into a square Petri 

dish containing Coomassie InstantBlue (Expedeon). The protein bands were stained for 20 

mins, the Instant Blue was discarded, and the gel washed with destaining buffer (300 ml 

methanol, 100 ml glacial acetic acid, 60 ml DDW), before being transferred to 2% glycerol 

and dried. 
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2.2.10 Western Blot/ Immunoblotting Analysis 
 

This technique is used to identify the presence of and to quantify fusion-tagged protein. 

Native or SDS gel electrophoresis was used to separate protein samples. The separated 

proteins were then transferred from the gel onto a nitrocellulose membrane (Hybond-C, 

Amersham Biosciences) by passing current through the gel/membrane sandwich (Electro 

blotting), which was composed of 2x sponge pads and 2x sheets of Whatman 3MM filter 

paper. The components were pre-soaked in transfer buffer (2.42 g Tris, 11.52 g glycine, 160 

ml methanol made up to 800 ml with DDW) before assembling the sandwich. The 

gel/membrane cassette was assembled in the following order; cathode, cassette, sponge, 

filter paper, polyacrylamide gel, nitrocellulose membrane, filter paper, sponge, cassette and 

anode. An ice block was added to the tank and an appropriate volume of transfer buffer to 

completely cover the cassette. Electro blotting was performed at 150 mA/100V for 90 mins. 

After transferring the protein onto the nitrocellulose membrane, the membrane was placed 

into a clean dish and blocked with BSA in Tris-saline (TS) buffer {10 mM TrisHCl (pH 7.0 at 

4°C), 150 mM NaCl and 10 mg/ml BSA} for 45 mins. The membrane was then probed 

overnight with the desired primary antibody (anti-His mouse, anti-FLAG rabbit) diluted 

1/2500 in blocking solution {TS buffer plus 10 mg/ml BSA plus 0.05% (w/v) Igepal}. The 

membrane was then washed with TS buffer for 10 mins then washed with 0.05% (w/v) Igepal 

in TS buffer, followed by TS buffer for 10 mins. After the washes, the membrane was 

subsequently probed with an anti-mouse IgG linked horseradish peroxidase, diluted1/2500 in 

fresh blocking solution plus 0.05% (w/v) Igepal for 2 hrs. The membrane was then washed 

as before. Immunodetection was performed by standard technique using chromogenic 

substrate chemiluminiscence. Protein bands on the membrane were highlighted by adding 

diaminobenzidine (DAB) prepared by dissolving one DAB tablet and one urea H2O2 tablet in 

20 ml ddH2O). Upon the appearance of the bands, the staining solution was discarded, the 

membrane washed 3 times with DDW and stored wrapped in cling film between filter paper 

once dry. 
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2.2.11 Native PAGE Analysis 
 

Native gel electrophoresis was used to observe the purity and migration of protein constructs 

in monomeric and dimeric isoforms. The samples were prepared in the same way as an 

SDS polyacrylamide gel, minus the SDS in the gel and loading buffer, boiling with the 

samples. The gel was run at pH 8.8 in order to aid the proteins migration towards the anode. 

Each sample (12 µl) was loaded with 4 µl of 3x native loading buffer and BSA (66 kDa) was 

run as a size marker. The gel was run at 30 mA (70V) until it passed the junction between 

the stacking and resolving gel. The voltage was then increased to 35 mA (100 V) to 

accelerate separation. The gel was then treated with Coomassie Instant Blue in the same 

manner as a SDS gel. 

 

2.2.12 Agarose Gel 
 

Agarose gel electrophoresis was used to identify quantity and quality of DNA preparations. 

To prepare the agarose gel, 0.48 g of agarose was added to 1.2 ml 50 x TAE {242 g Tris 

(base), 57.1 ml glacial acetic acid and 100 ml 0.5 M EDTA} and 58.8 ml DDW. If the DNA 

was to be extracted from the gel after separation then boric acid was used instead of acetic 

acid. The solution was heated by microwaves to boiling point and mixed until all agarose had 

dissolved. When the solution was cooled 6 µl of ethidium bromide was added and the gel 

poured into the gel holder (with taped ends) and allowed to set for 30 mins. Either 1-2 µl of 

DNA sample or 2 µl of 1kb DNA marker ladder was added to 2 µl of 6x agarose gel loading 

buffer (3 ml glycerol, 25 mg bromophenol blue, 7 ml sterile DDW) and made up to 12 µl with 

sterile DDW. The set agarose gel was placed in the gel running apparatus, which was filled 

with 1X TAE buffer until the gel was submerged and the wells flooded. The DNA samples 

were then loaded into the wells at the negative terminal as the DNA migrates towards the 

positive terminal when current is applied. The gel was run at 33 mA (60V) until the ladder 
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had migrated the length of the gel, at which point the gel was removed and viewed under UV 

light. 

2.2.13 Bradford Protein Assay 
 

The Bradford protein binding assay is based on the observation that the absorbance of an 

acidic solution of Coomassie blue shifts from 465nm to 595nm when bound to protein. By 

using a standard curve of known protein concentrations, unknown protein concentrations 

can be determined under standard conditions. 

The Bio-Rad dye reagent was supplied as a 5X concentrate and so it was first diluted to 1X 

with DDW and then 0.45 µm filtered. A 1.4 mg/ml bovine serum albumin (BSA) in double 

distilled water (DDW) solution was prepared and a serial dilution performed in preparation of 

the standards. 

Each standard (20 µl) and 20 µl of DDW (sample buffer blank) were added to cuvettes along 

with 1 ml of the diluted/filtered dye reagent and gently mixed by inversion with a parafilm 

cover. After 10 mins the OD595 versus reagent blank was read (Biochrom libra S22) and a 

line graph of OD595 versus standard concentration plotted. A trend line of best fit was 

obtained (with an R2 value greater than 0.95 as this ensures an accurate serial dilution has 

been performed) and the equation of the line used to determine unknown concentration y 

values (OD595). 
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3 Production and Purification of STAT3βTC Proteins. 
 

3.1 Introduction 

 

In order to develop in vitro assays targeting the STAT3 pathway, STAT3 first had to be 

expressed recombinantly and then purified. The cloning of STAT3βTC into a bacterial 

expression vector was carried out previously by our group and so this vector was re-

characterised and transformed into BL21 Rosetta and BL21 TKB1 E. coli strains. The results 

of this process will be shown and discussed in this chapter. After expression, the extracted 

protein was purified using a combination of affinity and ion exchange chromatography and 

the sample analysed using SDS PAGE gels and Western blots using poly-histidine and K15 

(anti-STAT) antibodies to confirm our protein of interest.  
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3.2 Results and Discussion 

 

3.2.1 Sequencing of the His-STAT3βTC Bacterial Expression Vector 
 

The sequencing was performed by Eurofins MWG using a T7 primer, and the results are 

summarized below in Figures 3.16 and 3.17 which show the forward and reverse cloning 

interfaces (See appendices for the full sequence). 

 

Figure 3.9 The T7 promoter 5’-3’ N-terminal interface between the pET expression 

vector and the HIS-STAT3βTC sequence. 

 

The translation initiating methionine codon is shown along with the N-terminal 6X histidine-

tag. The six-base Nde1 restriction site (CATATG) indicates where the STAT3βTC gene was 

cloned in, and G127 indicates the first glycine residue of the STAT3 construct.  

 

 

 

Figure 3.10 The T7 Terminator 3’-5’ C-terminal interface between the pET expression 

vector and the HIS-STAT3βTC sequence. 
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The C-terminal end of the STAT3βTC gene is shown ending with a lysine residue (K722). 

Translation is terminated by the two STOP codons and the EcoR1 site (GAATTC), which 

indicate where the STAT3βTC gene was cloned into the expression vector. 

 

The sequencing results indicate that the STAT3βTC gene insert was successfully cloned into 

the pET28 vector, with a 6X HIS tag on the N-terminus. The data also confirm that a single 

STAT3βTC gene copy is present in the correct orientation and reading frame. The  HIS-

STAT3βTC construct consists of 610 amino acids i.e.21 pET 28c vector bases, including the 

6X histidine tag, followed by 589 amino acids of STAT3β (127-722 inclusive), and has a 

theoretical molecular weight of 70.4 kDa and an isoelectric point of pH 7.58. 

 

3.2.2 Expression of Un-Phosphorylated HIS-STAT3βTC 

 

The HIS-STAT3βTC bacterial expression vector was transformed into competent BL21 DE3 

Rosetta E. coli cells. Expression was induced with 1 mM IPTG, as described in Section 

2.2.2.1, leading to over-expression of the un-phosphorylated form of the HIS-STAT3βTC 

protein. 

The HIS-STAT3βTC consistently appeared just below the 62kDA band of the pre-stained 

marker despite having a theoretical molecular weight of 70.4kDa. In addition, the mass 

calculated from mass spectrometry resulted in a mass of 68 kDa (fig 3.20) and it is this mass 

that is thought to be more accurate. The discrepancy could be due to inaccuracies in the 

pre-stained markers migration and also the protein may bind less SDS than expected due to 

incomplete unfolding and hence appear to have less mass. The protein was fully sequenced, 

as shown in appendix 9.1. 
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Figure 3.11 Pre and post (lanes 1 and 2 respectively) IPTG induction samples of un-

phosphorylated HIS-STAT3βTC production visualised with Coomassie blue stain for 

SDS gel and DAB solution for Western blots, as detailed in Sections 2.2.9/10. 

 

Figure 3.18 shows a 10% SDS-PAGE gel along with Anti-6XHIS and Anti-STAT3βTC (AA 

626-640) K15 Western blots. Lane 1 (left to right) is a broad range pre-stained protein 

marker (6-175kDa), lane 2 is a pre-IPTG induction sample, and lane 3 is a post-IPTG 

induction sample. The over-expressed HIS-STAT3βTC protein is indicated by an arrow. 

A large increase of HIS-STAT3βTC is seen at the correct approximate molecular weight 

(i.e.70 kDa) when pre-IPTG induction and post-IPTG induction are compared in the 10% 

SDS-PAGE gel. The Western blots confirm that the induced protein has a 6X HIS tag and 

that the expressed protein is of the STAT3 family, indicating a successful over-expression of 

HIS-STAT3βTC. 

1 1 1 2 2 2 
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3.2.3 Purification of Un-Phosphorylated HIS-STAT3βTC 

 

Extraction of HIS-STAT3βTC and subsequent purification was achieved through ion-

exchange chromatography, which resulted in pure HIS-STAT3β fractions when visualized by 

SDS-PAGE and confirmed with Anti-6XHIS Western blot (Figure 3.19). 

 

Figure 3.12  10% SDS PAGE gel showing ion exchange chromatography purification 

of un-phosphorylated HIS-STAT3βTC. Lane 1: Broad range pre-stained protein marker 

(6-175 kDa); Lane 2: F1 1 ml 0.1 M NaCl; Lane 3: F2 1 ml 0.1 M NaCl; Lane 4: F3 1 ml 

0.1 M NaCl; Lane 5: F4 1 ml 0.1 M NaCl; Lane 6: F5 1 ml 0.1 M NaCl; Lane 7: F6 1 ml 0.1 

M NaCl; Lane 8: 10 ml 0.2 M NaCl; Lane 9: 10 ml 0.3 M NaCl; Lane 10: 10 ml 0.4 M 

NaCl; Lane 11: 10 ml 0.5 M NaCl; Lane 12: 10 ml 1 M NaCl; visualised with Coomassie 

blue stain, as detailed in Section 2.2.9 
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The purified HIS-STAT3βTC was eluted by 0.1M NaCl in 1 ml fractions and fractions 4-6 

reserved for protein concentration determination.  

 

Figure 3.13  Anti-6XHIS Western showing ion exchange chromatography purification 

of un-phosphorylated HIS-STAT3βTC. Lane 1: Broad range pre-stained protein marker 

(6-175 kDa), Lane 2: F1 1 ml 0.1 M NaCl, Lane 3: F2 1 ml 0.1 M NaCl, Lane 4: F3 1 ml 0.1 

M NaCl, Lane 5: F4 1 ml 0.1 M NaCl, Lane 6: F5 1 ml 0.1 M NaCl, Lane 7: F6 1 ml 0.1 M 

NaCl, Lane 8: 10 ml 0.2 M NaCl, Lane 9: 10 ml 0.3 M NaCl, Lane 10: 10 ml 0.4 M NaCl, 

Lane 11: 10 ml 0.5 M NaCl, Lane 12: 10 ml 1 M NaCl, visualised with Coomassie blue 

stain, as described in Section 2.2.10. 
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The lower molecular weight bands seen in fractions 2 and 3 could be due to either protein 

degradation or nonspecific HIS antibody binding. Therefore, purer fractions (5-6) with less 

concentrated protein of interest were used to carry out subsequent assays. 

 

 

Figure 3.14 De-convoluted ESI mass spectrum of purified unphosphorylated 

STAT3βTC protein acquired using Q-TOF (Data provided by Dr Sibylle Heidelberger). 

ESI mass spectra usually contain same species molecules with different charge states. 

Deconvolution was carried out on this spectrum so that the multiple-charged species were 

recalculated into a singly charged form and grouped together according to their peak width. 

The spectrum obtained was consistent with the calculated molecular mass of 68,098 Da 

(error = 30 ppm) for unphosphorylated STAT3βTC. This information was used in conjunction 

with sequencing data shown in appendices 9.1 and 9.2 to confirm the identity of STAT3βTC. 
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3.2.4 Expression of Phosphorylated HIS-STAT3βTC 

 

The HIS-STAT3βTC pET 28c vector was transformed into competent TKB1 BL21-derived E. 

coli cells. Expression was induced with 1 mM IPTG (as described in Section 2.2.3.2).The 

bacteria were pelleted and kinasing media added resulting in the expressed kinase 

phosphorylating tyrosine residue 705 in the SH-2 domain of the over-expressed HIS-

STAT3βTC protein. This tyrosine residue is the region of the SH-2 domain implicated in the 

homodimerisation of STAT3βTC. 

 

Figure 3.15 10% SDS-PAGE gel (2.2.9) of the phosphorylated HIS-STAT3βTC (pSTAT) 

expression and extraction steps (2.2.2.2) Lane 1: Broad range pre-stained protein 

marker (6-175kDa), Lane 2: Empty, Lane 3: Pre-IPTG induction, Lane 4: Post-IPTG 

induction,  Lane 5: Post kinasing step, Lane 6: Post sonication, Lane 7: Empty, Lane 

8: Post sonication supernatant, Lane 9: Post sonication pellet, Lane 10: Empty, Lane 

11: Post ammonium sulphate precipitation supernatant, Lane 12: Redissolved 

ammonium sulphate pellet, visualised with Coomassie Blue stain. 
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The IPTG induced over-expression of HIS-STAT3βTC is clearly seen between Lanes 3 and 4. 

Lane 6 shows the significant release of material from the cells after sonication. Lanes 8 and 

9 show that although large amounts of HIS-STAT3βTC remain in the insoluble pellet, there is 

a significant quantity in the soluble supernatant, and this step acts as an initial purification 

step. Lanes 11 and 12 show that the ammonium sulphate precipitation worked efficiently 

with no visible protein left in the supernatant, and that the re-dissolved pellet had 

fractionated ready for further purification. 
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3.2.5 Ion Exchange Chromatography Purification of HIS-STAT3βTC 

 

Purification of phosphorylated HIS-STAT3βTC was achieved through ion-exchange, His-trap 

affinity and size exclusion chromatographic methods. 

Figure 3.23 shows a typical gel resulting from ion exchange purification which indicated 

relatively high purity. However, the recovery yield was relatively poor in relation to the 

starting material. 

 

Figure 3.16 10% SDS-PAGE gel of phosphorylated HIS-STAT3βTC (pSTAT) purification 

using ion exchange chromatography. Lane 1: Broad range pre-stained protein marker 

(6-175kDa), Lane 2: re-dissolved ammonium sulphate pellet, Lane 3: Dissolved HIS-

STAT3βTC column flow through, Lane 4: Column wash flow through, Lane 5: F1 1 ml 

0.1 M NaCl, Lane 6: F2 1 ml 0.1 M NaCl, Lane 7: F3 1 ml 0.1 M NaCl, Lane 8: F4 1 ml 0.1 

M NaCl, Lane 9: F5 1 ml 0.1 M NaCl, Lane 10: F6 1 ml 0.1M NaCl, Lane 11: F7 1 ml 0.1 M 

NaCl, Lane 12: F8 1 ml 0.1 M NaCl, Lane 13: 10 ml 0.2 M NaCl elution, Lane 14: 10 ml 

0.3 M NaCl elution, Lane 15: 10 ml 0.4 M NaCl elution, visualised with Coomassie Blue 

stain. 
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3.2.6 His-Trap Affinity Chromatography Purification of HIS-STAT3βTC 

 

His trap affinity chromatography followed by size exclusion purification was used as a 

purification strategy in an attempt to improve yield.

 

Figure 3.17 10% SDS-PAGE gel of phosphorylated HIS-STAT3βTC (pSTAT) extracted 

and purified by His-Trap affinity chromatography. Lane 1: Broad range pre-stained 

protein marker (6-175kDa), Lane 2: Post sonication lysate, Lane 3: Post sonication 

supernatant, Lane 4: Post sonication pellet, Lane 5: His Trap loading flow through, 

Lane 6: His Trap wash, Lane 7: HIS-STAT3βTC elution, visualised with Coomassie Blue 

stain, as described in Section 2.2.9. 
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The gel demonstrates that the extraction process leaves a large proportion of HIS-STAT3βTC 

in the cell pellet, and this could be due to the presence of excess protein forming hard-to-

solubilise inclusion bodies (174). However, by passing the supernatant through the His-Trap, 

the protein was concentrated and eluted in a small elution volume. The subsequent His-Trap 

wash showed that many non-specific impurities had been removed.

 

Figure 3.18 His-Trap affinity purification chromatogram of phosphorylated HIS-

STAT3βTC . 

In Figure 3.25, the X axis represents the volume (ml) of solvent to pass through the column, 

and the Y axis represents the UV absorbance wavelength with the absorption intensity 

indicating the amount of protein in the sample. Point 1 In the figure indicates where the HIS-

STAT3βTC sample was injected onto the column, with the absorbance rapidly rising from the 

buffer only baseline. Point 2 shows the sample continuing to be loaded, and reaches a 

plateau at the absorbance of the impurities eluting from the column. Point 3 represents the 

column wash during which non-bound proteins are washed off the column with equilibration 
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buffer until the UV absorbance decreases to a steady baseline. Finally point 4 represents the 

start of the protein elution using a solution of 500 µM imidazole. The protein was eluted 

rapidly  as one large peak, which was collected as fraction A1. Collection was stopped 

before the shoulder peak was eluted to maintain purity. 

 

3.2.7 Size Exclusion Purification of HIS-STAT3βTC   
 

Size exclusion chromatography (SEC) was carried out with a S12 column (See figure 2.26), 

as described in Section 2.2.2.3, to purify the protein further. 

 

Figure 3.19 Gel filtration (S12) chromatogram showing the further purification of 

phosphorylated HIS-STAT3βTC by size exclusion chromatography. 
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Figure 3.20 10% SDS-PAGE gel of phosphorylated HIS-STAT3βTC (pSTAT) further 

purified by size exclusion chromatography. Lane 1: Broad range pre-stained protein 

marker (6-175kDa), Lanes 2 through 11: 1 ml gel filtration fractions A4-A15, Lanes 12 

through 14: 1 ml gel filtration fractions B12 through B14, visualised with Coomassie 

Blue stain, as described in Section 2.2.9. 

 
Once the extracted protein was purified and analysed the protein fractions with estimated 

highest purity and yield were selected to determine protein concentration by Bradford assay. 

The following chapter describes this process and the validation of the homogenous time-

resolved FRET (HTRF) assay.  
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4 Development of Homogenous Time-Resolved FRET 

(HTRF) Assay 

4.1 Introduction 

 
This chapter describes the development and optimization of a homogenous time-resolved 

fluorescence (HTRF) assay the basis of which is represented in Figures 4.28 and 4.29. An 

HTRF assay was chosen as it is not reliant on washing and binding surfaces, and 

miniaturization choices are available increasing throughput as well as reducing the amounts 

of purified protein and costly reagents required. HTRF also limits the short-lived background 

fluorescence often associated with FRET experiments by introducing a time delay between 

the system excitation and the fluorescence measurement. Thus, the short-lived non-specific 

fluorescence is not measured and the stable fluorescence of the HTRF fluorophores is 

detected. In this way the quenching effect is also minimized. 

 

The determination of STAT3βTC concentration is described below, followed by a discussion 

of the initial set-up and validation of the Envision plate reader. Comparisons using 

biotinylated versus non-biotinylated and phosphorylated HIS-STAT3βTC versus 

unphosphorylated HIS-STAT3βTC are also described as examples of assay specificity. All 

recombinant STAT3 proteins were >95% purity, as estimated by gel filtration. Optimisation of 

the use of potassium fluoride and time-to-equilibrate are also included. Finally, evaluation of 

the selectivity of the assay using the positive control inhibitors STA-21 and SH-2 domain 

peptide mimics is also described. 
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Figure 4.21 Schematic diagram of the STAT3βTC HTRF assay.  

 

The HIS-tagged pSTAT3βTC homodimer is bound to its constitutive biotinylated DNA 

sequence and a streptavidin-d2 conjugate binds covalently to the biotin whereas an anti-HIS 

antibody conjugated with a Eu3+-cryptate fluorophore binds to the HIS tagged pSTAT 

monomer. The Europium-cryptate ligand is excited at 340 nm, and FRET then occurs 

between the fluorophores with the d2 fluorophore emitting fluorescence at 665 nm. 

Background emission from the europium is observed at 615 nm. 
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Figure 4.22 Components of the HTRF assay and sequence of addition.  

1) pSTAT homodimer bound to DNA (purple). The grey construct attached to the end of the 

oligo represents biotin; 2) Addition of the streptavidin-d2 conjugate leads to it binding 

covalently to the biotin; 3) Addition of anti-HIS antibody conjugated to the Eu3+-cryptate 

fluorophore leads to it binding to the N-terminal of each pSTAT monomer; 4) The europium 

cryptate ligand is excited at 320 nm; 5) FRET occurs between the fluorophores; 6) The d2 

fluorophore emits fluorescence at 665 nm. 
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4.2 Results and Discussion 

 
4.2.1 Concentration of STAT Protein Determined by Bradford Assay 
 

Accurate determination of recombinant protein concentrations was achieved using Bradford 

Assay, as described in Section 2.2.10.5.  The equation was rearranged to make “X” the 

subject and the unknown protein solution OD595 was swapped into the equation as the “Y” 

value to generate the unknown protein concentration in mg/ml. The mg/ml concentration was 

then converted to molar concentration by dividing by the molecular weight of the protein. 

4.2.2 Plate Reader Initial Set-up 
 

The Wallac EnVision 2101 plate reader was set-up as follows, with the assistance of Cisbio 

technical support to ensure optimal HTRF readout: Ideally a 340 nm excitation filter and 620 

nm emission filter would have been used for greatest optimisation.  

Condition Setting 

Top mirror LANCE/DELFIA 

Excitation filter UV2 (TRF) 320 nm 

Emission filter APC 665 nm 

2nd Emission filter Europium 615 nm 

Measurement height (mm) 6.5 

Excitation light (%) 100 

Delay (µs) 60 

Window time (µs) 100 

Time between flashes (µs) 400 

Number of flashes 100 

 

Table 4.9. Envision parameter set-up 
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4.2.3 Plate Reader Suitability Study 
 

A homogenous time-resolved fluorescence (HTRF) reader control kit (Cisbio Bioassays, 

France) was used to assess the suitability of the Perkin Elmer Multilabel plate reader (Wallac 

EnVision 2101) and associated filter set, to validate their ability to integrate with HTRF 

technology. This kit allows the set-up of overall performance as well as management of the 

lifetime of the excitation source and counting rate for the reader. The kit was run on a 96 well 

half-volume plate in the same way that the full assay was carried out.  

The test consisted of two steps, the first of which aimed to evaluate the signal/blank (S/B) 

ratio using a calibrated 620 nm control. If this initial test were passed then the second phase 

was to evaluate the equipment’s detection limits. 

The 620 nm control and blank buffer were added in triplicate to the plate and then read at 

615 and 665 nm. The S/B value was calculated using the following formula: 

 

 

The results are shown below in Table 4.12. The signal/blank ratio of 79 showed that there 

was a significant fluorescence background signal (i.e.> 40). This signal was a simple 

demonstration of excitation and emission detection. The second test, based on the 

background signal, investigated the signal’s ability to be transferred to another fluorophore 

(FRET) emitted and detected. 
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Table 4.10. Envision 620 nm signal/background ratio 

 

The control of the detection limit was tested on the same 96 well, low volume plate and 

introduced the two fluorophores (Eu-cryptate and d2) at calibrated levels. A standard blank 

(Eu-cryptate and d2 diluted in reconstitution buffer = No FRET) was compared with a low 

control (Eu-cryptate and d2 with low calibrator = low FRET) and a high control (Eu-cryptate 

and d2 with high calibrator = maximum FRET). The means and standard deviations for each 

sample set were calculated at both wavelengths (615 and 665 nm). The ratio (665 nm/615 

nm) was calculated as follows: 

𝑅𝑎𝑡𝑖𝑜 =
𝑐𝑝𝑠665 𝑛𝑚

𝑐𝑝𝑠615 𝑛𝑚
× 1000 

 

From this ratio, ΔR and ΔF for both the low and high controls are calculated. ΔR is given by 

the formula: 

∆𝑅 = 𝑅𝐶𝑎𝑙𝑥 − 𝑅𝑠𝑡𝑑0 

Where “Calx” is either the low or high calibrator. ΔF (which represents the S-B/B) was 

obtained with the formula: 

∆𝐹 =  
∆𝑅

𝑅𝑠𝑡𝑑0
× 100 

 

The ΔF for the low and high calibrators at 3 and 18 hour time points are shown below in 

Table 4.13 
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Table 4.11.ΔF values for low and high FRET calibrators 

 

The calibrators were all well within the normal ranges, except the 3 hrs high calibrator, which 

at 447% was 10% below the normal 500%. This difference was not deemed overly 

significant with time to equilibrate over 18 hrs. The signal became nearly 100% over the 

expected norm. Table 4.14 shows the control figures of the individual standards in isolation. 

These are a secondary check in case the low and high calibrators fall well beyond the 

norms. They are included here to show the large emission seen at 620 nm for the Eu-

cryptate when compared with the XL665 fluorophore. Also of note is the low XL665 emission 

signal at 665 nm demonstrating its lack of excitation at 320 nm and, therefore, its suitability 

as a FRET fluorophore with Europium cryptate. 

 

 

 

Table 4.12. Emission readings of individual components at 320 nm excitation 
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4.2.4 Non-Biotinylated DNA Negative Control Study 
 

The HTRF assay was run using two phosphorylated HIS-STAT3βTC concentrations (10 and 

100 nM and compared with M67 double stranded DNA that was biotinylated and also un-

biotinylated DNA (Figure 4.31).  

 

 

 

Figure 4.23. Line graph showing effect of biotinylated DNA in HTRF assay with >95% 

purity P-STAT3βTC.  (HTRF assay executed as described in 2.2.5. Means derived from 

N=3 +/- SD) 

 

The assay shows that over a range of DNA concentrations (20-250 nM) if the DNA used 

lacks biotinylation then no increase in FRET signal is seen compared with the fluorophores 

only control. This was the case at both pSTAT concentrations tested (10 and 100 nM). Biotin 

on the DNA is required for the streptavidin –d2 conjugate to bind to in order to tether the 
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fluorophore to the transcription complex and for significant FRET to occur between 

fluorophores. Significant FRET signals are seen when biotinylated DNA is used and this 

signal is proportional to the amount of pSTAT used, but the signal plateaus, so the signal is 

proportional to both the protein and DNA present and also suggesting that the FRET signal 

is due to the interaction between pSTAT and biotinylated M67 DNA and not a non-specific 

binding event.  

4.2.5 Phosphorylated STAT3βTC is Required for Assay Activity 
 

Recombinant phosphorylated HIS-STAT3βTC was compared with recombinant 

unphosphorylated HIS-STAT3βTC at four concentration points (0.1 to 100 nM). Biotinylated 

DNA was kept standard at two different concentrations (20 and 40 nM) (Figure 4.32) 

 

 

Figure 4.24 Line graph comparing phosphorylated and unphosphorylated HIS-

STAT3βTC use in HTRF assay with consistent biotinylated DNA. (HTRF assay executed 

as described in 2.2.5. Means derived from N=3 +/- SD) 
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The FRET signal remains consistently low when using unphosphorylated HIS-STAT3βTC, 

with a marginal increase in ΔF between 10 and 100 nM uSTAT of 15 and 13 for 20 and 40 

nM DNA sample. In contrast, the increase in ΔF between 10 and 100 nM with pSTAT was 43 

and 136 for 20 and 40 nM DNA respectively. This increase in signal is hypothesized as the 

binding ratio of 2:1 protein:DNA is achieved. The signal is dependent on a homodimer 

forming between two pSTAT monomers and subsequent binding to DNA and, therefore, use 

of uSTAT was not pursued further. 

4.2.6 Reagent Time Study 
 

The effect of allowing the assay components to equilibrate over time was observed. 

Components were added in the normal way and concentration (i.e. 100 nM pSTAT, 50 nM 

biotinylated DNA). Samples were read immediately and then every hour over a six hour 

period. 0.4M Potassium fluoride was added as standard just before FRET reading (Figure 

4.33). 

 

 

Figure 4.25 pSTAT3βTC HTRF assay time course study (HTRF assay executed as 

described in 2.2.5. Means derived from N=3 +/- SD) 
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The normalized FRET signal (ΔF) decreased by approximately half after 1 hour equilibration 

and the signal continued to decrease over the six hour period. Components were added in 

the standard order (i.e. Protein, DNA fluorophores then KF) and the plate read immediately 

in order to limit signal degradation. 

 

4.2.7 Determination of HTRF Assay Z Prime (Z’) 
 

Z prime (Z’) is a statistical measure used for high-throughput screening assays to assess 

whether the difference between a positive and negative signal is large enough and 

reproducible enough. Z’ requires four parameters in order to be calculated, these being the 

means (µ) and standard deviations (δ) of both the positive (p) and negative (n) controls (µp, 

δp, µn and δn). Z’ is therefore defined as: 

𝑍′ = 1 − 
3(δp + δn)

(µp − µn)
 

A sample of 20 positive {biotinylated DNA and 20 negative (non-biotinylated DNA)} wells 

was set up, and the resulting Z’ calculation is shown 
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Parameter Value 

µ𝐩 558.8917 

𝛅𝐩 22.04244 

µ𝐧 361.2222 

𝛅𝐧 9.420832 

 

Table 4.13 Means (µ) and standard deviations (δ) of both the positive (p = biotinylated 

DNA) and negative (n = non-biotinylated DNA) controls (µp, δp, µn and δn) for Z’ data 

 

0.52 = 1 −
3(22.04 + 9.42)

(558.89 − 361.22
 

 

A Z’ of less than 0 is deemed unacceptable for assay screening, a Z’ between 0 and 0.5 is 

seen as acceptable and a Z’ between 0.5 and 1 is seen as being excellent for high 

throughput screening. The Z’ of 0.52 was good and the assay was further validated with the 

introduction of known STAT3 inhibitors. 

 

4.2.8 Introduction of STA-21 STAT3 Inhibition 
 

STA-21 was used as a known STAT3 inhibitor, but its mechanism of action is not fully 

understood, although it has been shown to inhibit STAT3 dimerisation formation and STAT3 
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DNA binding in separate studies (146). STA-21 was, therefore, a suitable positive control for 

inhibition of the HTRF assay signal, as shown in figure 4.32. 

 

 

Figure 4.26 STA-21 inhibition titration P-STAT3βTC HTRF assay. (HTRF assay executed 

as described in 2.2.5. Means derived from N=3 +/- SD) 

The inhibition was normalized against the standard DMSO only control (cps665 nm/615nm)-

mean cps DMSO)/cps DMSO) x100).  A clear inhibition titration of signal is seen as the STA-

21 concentration rises to its maximum of 25 µM. This acts as a proof of principle for the 

mode of action of the assay and also for its ability to be used to screen for STAT3-DNA 

binding inhibitors. This also suggests that STA-21’s mechanism of inhibition of the STAT3 

pathway in cancer cells is due to a local mechanism of action, through direct binding to 

either the STAT3 monomer or preventing dimer formation or through binding directly to the 

DNA sequence and preventing STAT3 binding. 
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4.2.9 Inhibition Study Utilising SH-2 Domain Mimic Peptides 
 

Short sequence peptides that mimic the phosphorylated SH-2 domain of STAT3 (in and 

around phosphorylated tyrosine residue 705) were used as positive control inhibitors. These 

peptides have been regularly used to study STAT3 homodimerisation inhibition as they 

mimic the specific protein-protein interaction SH-2 domain of STAT3 (97, 135, 175). When 

present at high concentration the peptides bind to the SH-2 domains of STAT3 monomers 

rendering those proteins inert to dimer formation and subsequent DNA binding. Figure 4.33 

displays the inhibition seen with 40 nM peptides in the 2:1 HTRF assay format (100 nM 

pSTAT, 50 nM DNA) 

 

Figure 4.27 Inhibition using SH-2 domain mimic peptides at 40 nM. HTRF assay 

executed as described in 2.2.5. Means derived from N=3 +/- SD 

 

All these phosphorylated peptides have been shown to inhibit STAT3 homodimerisation and 

this activity has been confirmed in this HTRF assay. LPQTV peptides were first shown to 

have an IC50 of 8 µM in a STAT3 mouse model (133). The level of inhibition (~50%) is in line 

with the ratio of peptide to protein (40 nM/100 nM) confirming that the mechanism of 

inhibition is as hypothesized.
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5 Biological Screen of Compound Library 

5.1 Introduction 

 

As discussed in the chapter 1 Introduction, the STAT3 signalling pathway plays an important 

role in cell growth regulation, proliferation and apoptosis. The deregulation of this pathway in 

many human cancers however leads to increased malignancy and survival. STAT3 is 

therefore a greatly attractive target for cancer therapy. 

The compound library described in this work resulted from the previously published RH06 

(fig.5.36) (159). This was shown to have activity in a fluorescence polarisation assay, as well 

as specific cytotoxicity to MDA-MB-231 breast carcinoma cells when compared with A4 

(STAT null) cells. 

STAT3’s protective effect in cancer cells is due to the overexpression of STAT3 target genes 

as the constitutively active STAT3 homodimerise and binds to promoter sequences of DNA. 

This in turn leads to expression of mRNA for survival proteins. It is this complex of STAT3 

homodimer bound to DNA consensus sequence that we are looking to disrupt with a drug-

like small molecule. 

High throughput screening assays are an efficient way to narrow down libraries of inhibitors 

and spot links between important scaffolds and chemical groups. Assays of this type 

traditionally used a radioactive isotope as its signal, but recently fluorescence and 

luminescence signals have been preferred due to their safety and ease of use. The HTRF 

assay developed utilises the FRET phenomenon and reduces the quenching of signal effect. 

This assay is novel in the way it utilises a fluorophore on the DNA consensus sequence and 

fluorophores on the STAT3 homodimer. Therefore, the assay identifies inhibitors of the 

complete transcription complex, be they inhibitors of either STAT3 dimerization or STAT3- 

DNA interaction.  
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The basic structure scaffold for the compound library is seen in figure 5.36 

 

Figure 5.28 Basic scaffold of compound library alongside original RH-06 structure. 

In the first generation of compounds R2 represents a bromine residue and the R1 groups of 

the 1st generation intermediates are shown in table 5.16.  

 

Table 5.14 19 1st generation intermediates with working and published nomenclature. 

(Only R1 side chains shown, R2 group was bromine.) 
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Table 5.15 2nd generation final compounds, R1 groups shown on Y axis, R2 groups 

shown on X axis, compounds published names in bold and laboratory names in small 

type. 

 

The second generation of inhibitors take promising first generation intermediate R1 and add 

novel R2 in order to improve binding affinity to the SH-2 association region. Modelling 

simulations suggest that the R2 moiety is essential for stable binding to residue P704 of the 

SH-2 domain.  
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5.2 Results and Discussion 

5.2.1 Activity Study of Four 1st Generation Intermediates 

 

Four 1st generation intermediates from the HTRF study were selected for cytotoxicity assay 

screen and endpoint PCR in order to link activity in the HTRF assay and cytotoxic effects to 

the compounds effects to downstream regulated gene profiles through PCR; this in turn 

would be linked to in silico modelling studies for the compounds. 

The structures of compounds 1p, 1q, 1r and 1s are given in figure 5.37. The basic structure 

scaffold is followed by the side chain differences at the R’1 position. 

 

 

Figure 5.29 Basic intermediate structure with R’1 side chain differences 
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The compounds activity in the HTRF assay is summarised in figure 5.36. All compounds 

showed good inhibition with ≥ 50% inhibition at 40 µM except 1q, which showed no 

significant inhibition compared with the DMSO control. 

 

 

 

Figure 5.30 pSTAT3βTC HTRF (2.2.5.3) data summary for 1p, 1q, 1r and 1s (Means 

derived from N=3 +/- SD) 

 

1p showed an inhibition of 48%, 1r of 55% and 1s of 74% compared with the DMSO control. 

1s showed a consistent inhibition with low variation in standard deviation and was 

considered the molecule of most interest for going into the cytotoxicity study. 

  



 Biological screen of compound library 

 
128 

The cytotoxic activity of the four compounds in MDA-MB-231 and A4 was compared at a 

concentration range between 1 and 100 µM. 

 

 

 

Figure 5.31 MDA-MB-231 and A4 MTT comparison (as described in section 2.2.6.5) (1p, 

1q, 1r and 1s). Means derived from N=3 +/- SD. 

 

Only 1s showed any cytotoxicity with an IC50 of 25.9 µM in MDA-MB-231 breast carcinoma 

cells. This cytotoxic effect was STAT3 specific. However, no cytotoxic effect was seen in the 

STAT3 null A4 cell line (166). 1s’ activity from the HTRF assay was supported by a specific 

cytotoxic effect in MDA-MB-231 cells prior to studying the molecules activity on the 

downstream target genes expression of STAT3. Cytotoxicity data did not always correlate 

with the hypothesised activity from HTRF and endpoint PCR results, as can be seen with 1p 

and 1r. This was due to the compounds precipitating out in the MTT well conditions, often 
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seen as coloured crystals at the bottom of the test plate wells. Therefore the expected levels 

of drug concentrations could not have been achieved. However, the data are still presented 

here for comparison and completeness.  

The downstream effects of the four compounds on the transcriptosome were assessed by 

PCR; the cell lysate of exposed MDA-MB-231 breast carcinoma cells was extracted and the 

mRNA isolated. The mRNA was then transcribed to cDNA by reverse transcriptase. Select 

genes were then multiplied using specific primers and polymerase chain reaction. The 

Endpoint PCR study was carried out in conjunction with Ms Julia Mantaj as per the protocol 

in section 2.2.7. 

Figure 5.39 represents an endpoint PCR study using primers for STAT3, Cyclin D1, Bcl-2, 

and nicotinamide N-methyltransferase (NNMT), all genes that have been shown to be 

overexpressed in MDA-MB-231 cells (176). Glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) was used as a housekeeping control gene to check that downregulation of genes 

was STAT3 specific and not due to less specific downregulation. MDA-MB-231 cell lysate 

with and without lipopolysaccharide (LPS) were given as controls along with 1p, 1q, 1r and 

1s as the test compounds. 
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Figure 5.32 Endpoint PCR using primers for STAT3, Cyclin D1, NNMT, Bcl-2 and 

GAPDH. Lane 1 = 1Kb DNA ladder (NEB), Lane 2 = MDA-MB-231 cell lysate, Lane 3 = 

Lane 2 negative control, Lane 4 = MDA-MB-231 cell lysate and lipopolysaccharide 

(LPS),  Lane 5 = Lane 4 negative control, Lane 6 = MDA-MB-231 cell lysate with LPS 

and 1p (100 µM), Lane 7 = Lane 6 negative control, Lane 8 = MDA-MB-231 cell lysate 

with LPS and 1q (100 µM), Lane 9 = Lane 8 negative control, Lane 10 = MDA-MB-231 

cell lysate with LPS and 1r  (100 µM), Lane 11 = Lane 10 negative control, Lane 12 = 

MDA-MB-231 cell lysate with LPS and 1s (100 µM), Lane 13 = Lane 12 negative control. 

 

Lipopolysaccharide was active in its role of upscaling the STAT3 signaling pathway, as can 

be seen in the STAT3 PCR agarose gel (lanes 2 and 4), as it is known that active STAT3 

upregulates its own transcription. 1s (lane 12) was the most effective of the inhibitory 

compounds, which is consistent with the HTRF and cytotoxicity study. It knocked out the 

mRNA presence of all the genes except the GAPDH “housekeeping” gene. In fact, all 

compounds were specific enough to not affect the GAPDH level.  Bcl-2 was knocked out by 

all compounds, but the background level was very low in LPS only. 1p and 1q (lanes 6 and 8 

respectively) caused a total reduction in Cyclin D1, NNMT and Bcl-2 levels and greatly 

reduced the mRNA STAT3 level. 1r (lane 10) was the least effective of the compounds, but 
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still caused a reduction in NNMT, Cyclin D1 and STAT3 levels. The high compound 

concentration (100 µM) makes comparison between the activity of compounds difficult, but a 

general proof of principle of mechanism of action can be deduced as to the ability of these 

compounds to inhibit the transcription profile within cancer cells. 

The negative control lanes in the gel refer to the prior sample without the presence of Taq 

polymerase and were included in order to show efficacy of the enzyme. 
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5.2.2 Molecule Modelling Study on 1p, 1q, 1r and 1s 
 

A docking study was undertaken on an average conformation of the STAT3 protein derived 

through a 10 ns explicit solvent molecular dynamics simulation, as described in section 

2.2.6. In this study, 1p, 1q, 1r and 1s were docked in the SH2 binding domain and the GRID 

and GBSA binding scores were derived; each molecule was evaluated for its ability to 

prevent the interaction of Y705 and P704 of PYLKTKFI of homodimer B with the STAT3 

monomer.  

 

Molecule GRID Score 

Protein 

(kcal/mol) 

Interfere 

with P704 

and Y705? 

GBSA Score 

Protein 

(kcal/mol) 

Interfere 

with Y705? 

1p -54.51 Y -56.80 N 

1q -56.27 N -61.69 Y 

1r -48.23 Y -55.60 Y 

1s -54.31 N -62.10 N 

 

Table 5.33 GRID and GBSA score comparison for 1p, 1q, 1r and 1s 

 

In biological experiments, 1s was observed to produce cytotoxic activity in the STAT3-

dependent cell line and was not cytotoxic in the STAT3-null cell-line (A4) indicating selective 

STAT3 inhibition. Although the molecule was not observed to interfere with binding of either 

Y705 or P704 in docking studies, it was seen to block binding of the central amino acids 

(LKT) of the PYLKTKFI amino acid chain to the octapeptide pocket. This interaction is 

characterised by the highly favourable GBSA score of -62.10 kcal/mol and GRID score of -
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54.31 kcal/mol, and the binding is stabilised through the formation of a hydrogen bond 

between the sulphur of the thiophene group and nitrogen of Glu 639, and a second between 

the carbonyl of the sulfoxyl group of 1s and a carbonyl of Thr 715. It is also evident that 1s is 

tightly bound to the protein as the phenolic moiety of the molecule is buried deep within the 

protein architecture, surrounded on all sides by Ile 586, Leu 608, Phe 651, Pro 679 and Lys 

680. Non-covalent interaction plays a prominent role in this interaction, indicated by the large 

(-56.05 kcal/mol) van der Waal’s component of the GBSA score. It is likely that the affinity of 

1s for the protein, and thus its cytotoxicity, occurs as a result of the phenolic moiety of the 

molecule ‘anchoring’ the compound in the protein.  

 

Figure 5.34 Modelling representation of 1s 

 

Interestingly, 1q produces a similarly high GBSA score, presumably affected by the 

formation of a hydrogen bond between the sulphur of Cys 713 and ring nitrogen of indole. In 

this respect, a high GRID score (-56.37 kcal/mol) also indicates snug accommodation of the 

compound in the SH2 domain. However, 1q blocks PYLK from binding to its binding pocket, 

but does not embed in the protein in a similar manner to 1s, and it is this difference that may 
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account for the lack of STAT3 binding disruption observed for 1q relative to 1s. Similarly, 1p 

and 1r also block interaction of PYLKTKFI with homodimer A (residues blocked are LKT and 

PYLKT, respectively), but do not embed in the protein in a similar manner to 1s, reflecting 

the differences in protein cytotoxicity observed.  

It is also interesting to note that the unsaturated fragments (for example indole and phenyl) 

of 1p, 1q and 1r are less favourable in activity than the unsaturated pyrrolodine. This may 

occur due to the kinked pyrrolodine fitting the protein cavity to a greater extent than the 

extended phenyl/benzofused building blocks. 
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5.2.3 Single Point Inhibitor Screen (100µM) 
 

Employing the HTRF assay developed in Chapter 3, a screen of 19 compounds (15 1st 

generation and 4 2nd generation) was performed. These compounds were synthesized by 

our group and based on the structure of the pre-published inhibitor RH-06 (159). FRET 

signal was normalized against the background signal (the two fluorophore constructs) and 

ΔF calculated. Percentage inhibition compared with the DMSO control is shown in triplicate 

with the mean and standard deviation shown. 

 

 

Figure 5.35  pSTAT3βTC HTRF (as described in 2.2.5.3) compound percentage 

inhibition at 100 µM (Means derived from N=3 +/- SD) 

 

When compared with the DMSO only negative control, 10 of the 20 compounds tested 

showed an inhibition at 100 µM. Of the compounds that showed no inhibition compared with 

DMSO, this may be due to the compounds precipitating out of solution. 
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5.2.4 Front Runner Single Point Inhibitor Screen (10 µM) 
 

The six compounds that showed greater than 50% compared with DMSO were screened 

again at a compound concentration of 10 µM. STATTIC is included as a positive control of 

known STAT3 inhibition. 

 

 

Figure 5.36  pSTAT3βTC HTRF (as described in 2.2.5.3) percentage inhibition 

comparison at 10 µM (Means derived from N=3 +/- SD)  

 

There was a proportional inhibition shift, with all compounds showing a greater percentage 

inhibition at 100 µM than at 10 µM, as seen in table 5.20. 
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Compound structure Inhibition (%) ranked at 10 
µM 

Inhibition (%) ranked 
at 100 µM 

 

27 52 

 

33 68 

 

37 63 

 

39 58 

 

40 73 

 

43 55 

 

Table 5.16 Point inhibition (%) rankings at 10 µM and 100 µM 

1n 

1a 

1j 

1k 

1c 

2c 
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Table 5.20 shows the compound structures and ranks them according to their percentage 

inhibition compared with the DMSO only control at 10 and 100 µM point inhibitions. Five of 

the six molecules are intermediate 1st generation compounds with a bromine residue in the 

R’2 position. 2c, however, is the first of the final compounds to show potential. These 

compounds have tolyl groups in the R’2 position and show greater binding affinity in 

molecular modelling studies. 

The ranking of the compounds at 10 µM shows that 1n is much more active at 10 µM than at 

100 µM; this makes it a more attractive molecule for further study and the lead molecule 

from the initial screen. 

 

5.2.5 Three Point Titration of the Initial Front Runners 
 

 

A three point titration (25, 2.5 and 0.25 µM) was performed with the six lead molecules in 

order to investigate further the inhibitor concentration limits (Figure 5.44). 

All compounds levelled off to their maximum inhibition levels, except 1k, which showed a 

decrease up to 0.25 µM. A subsequent titration of 1k showed that a maximum inhibition level 

of 5% was reached at 50 nM (data not shown). 

These compounds were taken through to the cell culture assays to determine their 

availability and cytotoxicity within the cancer cell environment. 
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Figure 5.33 Three point titration of front runners (% inhibition vs compound 

concentration [µM]) 
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5.2.6 Single Point Screen of Second Inhibitor Set 
 

A second set of 10 compounds was tested in a 40 µM single point screen. 1p, 1q, 1r and 1s 

were additional 1st generation intermediates (with a bromine residue in the R’2 position). 

Compounds 2e, 2f, 2g, 2h and 2i were derived from the 1g intermediate and 2k from the 1o 

intermediate (see appendices). 

 

 

 

Figure 5.34 pSTAT3βTC HTRF (as described in 2.2.5.3) point inhibition results at 40 µM 

(Means derived from N=3 +/- SD) 

 

Of the ten compounds, six showed a decrease in ΔF compared with the DMSO only control. 

These six compounds’ inhibition profiles are summarised in Figure 5.45 and Table 5.21. 

2i is the lead compound of the final compounds with an 81% inhibition of ΔF signal 

compared with the DMSO only control.  
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Figure 5.45 shows the six compounds that inhibited at 40 µM as a percentage inhibition 

compared with the DMSO only control. 

Twelve of the original 29 compounds in the library showed potential in the HTRF screening 

assay. The next step (detailed in Chapter 6) was to screen the library for their cytotoxic 

effect in cancer cell lines. By correlating these results, along with the molecular modelling 

data, further a more accurate picture of the inhibitory nature of these compounds will come 

into focus. 
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Compound structure Inhibition (%) Ranked 

 

80.9 

 

74.9 

 

56.1 

 
 

54.7 

 

52.4 

 

47.1 

 

Table 5.17 Point inhibition rankings (40 µM) 

2i 

1s 

2g 

1r 

2h 

1p 
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6 Effects on STAT3 Mediated Cellular Functions 

6.1 Introduction 

Chapter 5 detailed the screening of a targeted library of 29 compounds in a validated HTRF 

assay. In this chapter the same library of compounds plus some additionally developed final 

compounds were tested for their intercellular cytotoxicity using a MTT assay in four cancer 

cell lines. Results are shown for cell viability in HeLa, MDA-MB-231 and NCI-H1975 cancer 

cell lines. A STAT3 null cell line (A4) was used as a negative control to ensure that 

cytotoxicity was specific to STAT3 inhibition, as hypothesised. 

Control inhibitors (Stattic and STA-21) are shown in MDA-MB-231 and A4 cells to validate 

assay specificity. The 1st generation intermediate front runners were then studied for 

cytotoxicity in HeLa and MDA-MB-231 cells. Second generation final compounds are then 

shown in MDA-MB-231 cells before moving on to a study of four targeted 1st generation 

compounds (1p, 1q, 1r and 1s). These compounds are shown through HTRF pSTAT3βTC 

inhibition, MTT cancer cell cytotoxicity and finally an endpoint PCR study of the effect of the 

compounds on downstream gene targets (STAT3, Cyclin D1, NNMT, Bcl-2) simulating 

therapeutic efficacy. Second generation front runners from HTRF pSTAT3βTC inhibition 

assay are then progressed to MDA-MB-231 and A4 cells for cytotoxicity study, before a 

study of the three compounds of interest that were not active in HTRF, but had interesting 

cytotoxicity profiles (2e, 2f and 2k). 

Both generation front runners are then tested in NCI-H1975 non-small cell lung carcinoma 

cells, before a summary of all cytotoxicity profiles. In silico modelling results are then 

discussed and analysed. NCI-H1975 cells have constitutively active STAT3 activation due to 

a mutation in the epidermal growth factor receptor (EGFR) (177). 
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6.2 Results and Discussion 

 

6.2.1 Analysis of MTT Data 
 

As discussed in section 2.2.6.5., a transparent 96 well plate was seeded with cells in all 

wells except A1-6. The plate was then set-up as seen in figure 6.46 with triplicates of 

compound condition. 

 

Figure 6.35 96 well template of MTT assay set-up. Row B compound concentration = 

100 µM, C = 50 µM, D = 30 µM, E = 10 µM, F = 5 µM, G = 3 µM and H = 1 µM. 
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Once the experimental procedure was completed and the absorbance at 570 nm for each 

well obtained, an average of wells A1-6 and A7-12 was calculated (No cell background, 0Back, 

and DMSO only control, 0DMSO, respectively). Each well was then normalised using the 

following equation, where "a" is the pre-normalised absorbance at 570 nm. 

 

𝑋 =
(𝑎 − 0𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)

(0𝐷𝑀𝑆𝑂 − 0𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)
× 100 

 

A mean and standard deviation of the normalised triplicates were then plotted on scatter 

charts using the origin to calculate IC50s.  

 

6.2.2 Positive Control Inhibitor STATTIC and STA-21 
 

The cytotoxicity of known STAT3 inhibitor, STATTIC was tested in both the STAT3 

dependent breast cancer cell line (MDA-MB-231) and the STAT3 null cell line (A4) as a 

positive control and an indication of the survival difference between the two cell lines within 

the concentration range 1-100 µM (figure 6.47). 
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Figure 6.36 MDA-MB-231 vs A4, MTT cytotoxicity (as described in 2.2.6.5) in the 

presence of STATTIC (Means derived from N=3 +/- SD) 

 

IC50 in MDA-MB-231 cells was ~2.5 µM, compared with ~5.7 µM in A4 cells. This decrease 

of over 55% in the STAT3 dependent cells represented a good bench mark to base 

subsequent decreases in survival with test compounds. 

The apoptotic potential of the known STAT3 inhibitor, STA-21 (146) was tested for 

cytotoxicity using the STAT3 dependent and null cell lines. 
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Figure 6.37 MDA-MB-231 vs A4, MTT cytotoxicity (as described in 2.2.6.5) in presence 

of STA-21 (Means derived from N=3 +/- SD) 

 

The level of cell metabolic activity in MDA-MB-231 breast cancer cells was in line with the 

previously published data (Song, 2005). A 30% increase in cellular metabolic activity was 

found at 20 and 30 µM STA-21, and at those concentrations we see a comparable decrease 

in survival (20-30%). 

Although active on STAT3, STA-21 clearly affects other key survival pathways. The IC50 in 

MDA-MB-231 cells was ~49 µM, compared with ~32 µM in A4 cells. STA-21 was more 

potent in the STAT3-null cell line displaying the additional mechanisms of action of STA-21, 

such as inhibition of TNF-α, IL-6 production and mRNA regulation of many factors (NF-κB, 

p65, JAK1, STAT3 and others)(147). Interestingly, this decrease was more than matched in 

the A4 cell line suggesting that the cytotoxic effect may not be STAT3 dependent. 
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6.2.3 Cytotoxicity Study on Lead 1st Generation Compounds 
 

The five front running first generation compounds from the HTRF screen were tested for 

their cell cytotoxicity. An initial screen in STAT3 dependent cell line HeLa was performed 

with an inhibitor range of 1 µM to 100 µM. 

 

 

Figure 6.38 HeLa MTT cytotoxicity screen (as described in 2.2.6.5) of 1st generation 

front runners (Means derived from N=3 +/- SD). 

 

1n was by far the most cytotoxic compound killing 100% of HeLa cells at 100 µM. A 

correlation between the HTRF assay and this screen is seen with 1n, 1a and 1j coming first, 

second and third, respectively, in both the HTRF screen and this MTT screen. 1k data not 

shown as a data curve was not seen. 
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The 1st generation front runners were then tested for cytotoxicity in MDA-MB-231 breast 

carcinoma cells with results compared with HeLa cells. 

 

1n was the most cytotoxic compound in both cell lines and killed over 90% of MDA-MB-231 

breast cancer cells at 20 µM. The compounds were more active at low concentrations in the 

breast cancer cells, which was encouraging due to MDA-MB-231 high STAT3 dependency. 

  

Figure 6.39 MDA-MB-231 

MTT cytotoxicity screen 

(as described in 2.2.6.5) of 

1st generation front 

runners (Means derived 

from N=3 +/- SD). 
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1n was tested in MDA-MB-231 breast carcinoma cells, as well as in STAT null A4 cells, in 

order to test the specificity of the toxic effect and provide evidence for it being due to STAT3 

inhibition. 

 

 

Figure 6.40 MDA-MB-231 vs A4 in MTT cytotoxicity screen (as described in 2.2.6.5) in 

the presence of 1n (Means derived from N=3 +/- SD) 

 

An IC50 of 4.7 µM was seen in MDA-MB-231 compared with 28.2 µM for A4 cells, a specific 

decrease of 83%. When this result is considered alongside the HTRF data, 1n was 

considered as the lead inhibitor of the first generation screen. An extrapolation of the MDA-

MB-231 curve to the baseline of 100% survival would show a preferable sigmoidal curve. 

There may not have been the number of viable attached cells expected in the well, but the 

percentage cell death of those cells present is still significant. 
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6.2.4 Cytotoxicity Study with 2nd Generation Final Compounds 
 

The four front runners from the HTRF 2nd generation screen were tested for their cytotoxicity 

in both MDA-MB-231 and STAT3 null A4 cells 

 

 

Figure 6.41 MDA-MB-231 vs A4 MTT cytotoxicity screen (as described in 2.2.6.5) in the 

presence of four 2nd generation front runners (Means derived from N=3 +/- SD) 

 

2i was the most potent compound with an IC50 of 14.8 µM in MDA-MB-231 breast carcinoma 

and 41.4 µM in A4 cells showing a nice selectivity for the STAT3 dependent cell line over the 

STAT null one.  

1o also showed potency and specificity (MDA-MB-231 = 32.7 µM, A4 = 70.1 µM) with an 

IC50 of less than 50% in MDA-MB-231 compared with A4. 

2g showed very little increase in metabolic activity as the concentration was increased 

across both cell lines and a look at its effect in the modelling simulation is required to 
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determine whether the HTRF result is an anomaly. The best fit curve is included for clarity, 

but no IC50s were calculated. 

Similarly, 2h showed an increase in metabolic activity with concentration, but the specificity 

is lacking. The compound was more active in A4 cells than MDA-MB-231 and, therefore, no 

IC50s were calculated. 

 

6.2.5 Cytotoxic Hit Compounds Un-Flagged by HTRF 
 

 

Three compounds showed interesting preliminary cytotoxicity in the screens with MDA-MB-

231 and A4 cell lines. These results are presented as they are to be carried forward into 

model screening studies. 

 

Figure 6.42 MDA-MB-231 vs A4 MTT cytotoxicity screen (as described in 2.2.6.5) in 

presence of 2e. (Means derived from N=3 +/- SD) 
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2e has a smooth titration with an IC50 in MDA-MB-231 cells of 2.6 µM. The IC50 achieved 

with this compound is the most potent seen in MDA-MB-231 cells and the consistency and 

reproducibility seen in the titration makes this compound a strong candidate for further 

investigation, despite a poor showing in the HTRF assay. This inhibition is also specific as 

there is no titration of metabolic activity with A4, 100 µM maintaining 50% cell survival. 

 

 

 

 

 

Figure 6.43 MDA-MB-231 vs A4 MTT cytotoxicity screen (as described in 2.2.6.5) in the 

presence of 2k. (Means derived from N=3 +/- SD) 

 

2k had an IC50 of 4.3 µM in MDA-MB-231 cells compared with an IC50 of 27 µM in the 

STAT3 null A4 cell line.  2k has the greatest differential between MDA-MB-231 and A4 IC50, 

of all the compounds tested, with the A4 value being over six times greater than the MDA-

MB-231 IC50. This marks 2k as a top hit compound despite its poor showing in the HTRF 

assay. Further in cell testing is required to elucidate the mechanism, although this compound 

was in the top ten in silico modelling ranking. 
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Figure 6.44 MDA-MB-231 vs A4 MTT cytotoxicity screen (as described in 2.2.6.5) in the 

presence of 2f. (Means derived from N=3 +/- SD) 

 

2f showed a consistent titration of metabolic activity, although this is not STAT3 specific as 

the titration was seen in both the MDA-MB-231 cells and A4 cells, indicating that 2f 

efficiently causes altered metabolic activity through another mechanism of action to STAT3 

SH-2 or DNA binding domain inhibition. 
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6.2.6 NCI-H1975 Non-Small Lung Carcinoma Study on Lead 2nd Generation 
Compounds  

 

The six front running second generation compounds from the HTRF screen were tested for 

their cell cytotoxicity. An initial screen in the STAT3 dependent NCI-H1975 non-small lung 

carcinoma cell line was performed with an inhibitor range of 1 µM to 100 µM. 

 



 Conclusion and future work 
 

 
156 

 

 

Figure 6.45 NCI-H1975 MTT cytotoxicity screen (as described in 2.2.6.5) in the 

presence of 2nd generation front runners. (Means derived from N=3 +/- SD) 

 

Of the seven 2nd generation front runners 2f, 2g and 2h did not achieve full cell death at 50 

µM. The more targeted nature of the 2nd generation inhibitors ensures greater cell death at 

lower concentrations. A possible mechanism for the selective cytotoxicity for these 

compounds towards cancer cells could be due to the enhanced requirement for STAT3 

activity in cancer cells, leading to a greater reduction in cell proliferation upon inhibition of 

STAT3 signaling by these compounds. 
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Modelling Studies 

 

In silico modelling studies were conducted, as detailed in chapter 2, using STAT3 

homodimer (PDB ID: 1BG1) and the 1st and 2nd generation of molecules. Modelling studies 

were carried out with the expertise of Dr Paul Jackson. 

Table 6.22 shows the likelihood of binding to either the SH2 domain using the GRID and the 

GBSA score. An indication of whether that interaction is centrally based around the 

phosphorylated tyrosine residue (705) is also given. DNA-binding domain GRID and GBSA 

scores are indicated with an overall summary of whether the compound favours protein-

protein or protein-DNA inhibition (P or D). The control STAT3 inhibitors Sta-21 and STATTIC 

were not modelled for reference as they are much smaller in terms of molecular weight 

(~200Da) than the test compounds. Binding energies would be incomparable as energies 

are always proportional to molecular weight. Small molecules will always have less 

favourable energies than larger molecules. The top sixteen most active molecules were 

ranked from the entire series and their position is shown here, if they featured. The greater 

the negativity of the GRID and GBSA scores, the stronger the binding affinity. The full 

prediction table can be seen in the appendices. Table 6.22 shows an abridged version of just 

the front running compounds from the HTRF and cytotoxicity assays. 

+ 
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Compound GRID 

Score 

Protein 
(kcal/mol) 

Y705 
Binding 

Based 
on 
GRID 
score 

GBSA 

Score 

Protein 
(kcal/mol) 

Y705 
Binding 

Based 
on 
GBSA 
score 

Rank GRID 

Score 

DNA  
(kcal/mol) 

GBSA 

Score 

DNA 
(kcal/mol) 

Preferentially 

binding 

Protein (P) or 

DNA (D)? 

1a -46.57 N -51.96 N (Not 

SH-2) 

 -48.50 -50.25 P 

2c -53.40 N -60.68 N  -49.44 -55.56 P 

1c -57.07 Y -61.52 Y 16 Failed Failed P 

1j -58.18 Y -62.50 Y 14 -31.95 -32.03 P 

1k -69.54 Y -73.98 Y 2 -21.59 Failed P 

1n -62.15 Y -71.22 Y 10 -37.57 -53.68 P 

1o -65.74 Y -63.04 Y 12 -27.31 -50.40 P 

1r -53.96 N -57.33 N  -61.14 -68.20 D 

1s -59.78 N -66.21 N  -52.55 -40.80 P 

2e -70.37 Y (and 

P704) 

-70.47 Y (and 

P704) 

5 -60.16 -70.56 P 

2f -62.78 Y (and 

P704) 

-68.27 Y (and 

P704) 

11 -71.10 -79.50 D 

2g -70.77 Y (and 

P704) 

-76.39 Y(and 

P704) 

1 -71.83 -80.30 P 

2h -71.78 Y(and 

P704) 

-41.71 Y  -59.72 -64.97 P 

2i -70.26 Y(and 

P704) 

-70.57 Y (and 

P704) 

4 -61.59 -13.66 P 

2k -66.99 Y (and 

P704) 

-67.14 Y (and 

P704) 

8 -59.60 -67.45 P 

 

Table 6.18 Docking scores of cytotoxically active front running compounds (both 

GRID and GBSA scoring in kcal/mol) in both the SH2 and DNA binding domains.  

 

The front running compound (2f) was shown to bind preferentially to the DNA binding 

domain rather than the SH-2 domain and this was supported by this compounds 

performance in the cytotoxicity assays as 2f showed no specificity for either the MDA-MB-
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231 or A4 cell lines. All the other front running compounds had a preference for the SH2 

domain. The best compounds from cytotoxicity studies also featured in the top ten ranking of 

compounds (out of 45 original compounds) indicating a good correlation between 

experimental results and modelling predictions. The top 16 ranking table is shown in table 

6.23 based on consistent binding affinity between GRID and GBSA scores. 

Compound Ranking 

2g 1* 

1k 2 

2j 3 

2i 4* 

2e 5* 

1h 6 

1t 7 

2k 8* 

2d 9 

1n 10* 

2f 11* 

1o 12 

1f 13 

1j 14 

1m 15 

1c 16 

 

Table 6.19 Ranking of top 16 molecules according to a combined GRID and GBSA 

score (*compound interferes with binding of both Y705 and P704) 

 

When both GRID and GBSA scoring factors are combined and ranked, the three most active 

STAT3 inhibitors from HTRF and MTT cytotoxicity assays (2e, 2i and 2k) all appear in the 

top eight most interactive molecules based on docking calculations out of nearly fifty in the 



 Conclusion and future work 
 

 
160 

series (Table 6.23). Furthermore, these molecules were all accommodated in a similar 

binding pocket, characterised by a number of hydrophobic (blue Figure 6.57), polar (red in 

Figure 6.57) and charged residues (green in Figure 6.57). 

The STAT3 SH2 domain possesses three binding "hot spots": Firstly, the pTyr705-binding 

pocket with polar residues and contributing the largest binding enthalpy (two-thirds); 

secondly, the Leu706 subsite which is the most dynamic and hardest to target; and finally, a 

hydrophobic side pocket which is unique to STAT3 and very targetable (173). Many of the 

compounds in the series were seen to inhibit the binding of phosphorylated tyrosine residue 

705 of homodimer B to the heptapeptide pocket (PYLKTKFI) of homodimer A (i.e. 2a, 1b, 

2d, 1c, 1e, 1f, 1h, 1j, 1k, 1m, 1n, 1o, 2j), and these results generally correlate well with 

observed HTRF and MTT assay results; these compounds are predominantly from the 1st 

generation series. What we observe with some of the 2nd generation compounds is an 

association of the molecule with proline 704 (P704), as well as Y705, and it is this greater 

stability that tends to correspond to greater potency in the HTRF assay and also greater 

specificity in the MTT cytotoxicity assay (2i, 2k and 2e)., Therefore inhibition of both P704 

and Y705 is seen to be crucial to higher specificity activity of STAT3 SH2 domain inhibitors. 

This is exemplified in models of 2e (Figure 6.58), which show the molecule snugly 

accommodated in a hydrophobic pocket (Val 637, Gly 618, Pro 639 and Pro 704), coupled 

with the formation of a single hydrogen bond between the carbonyl of the thiophene 

grouping and Ser 613. Furthermore, the shape-fit of the molecule is ideal for interaction in 

the PYLKTKFI binding pocket, evidenced by the high (>70 kcal/mol) GRID binding energy 

observed for the molecule. 
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6.2.6.1  Molecular Modelling of 2i 
 

2i had a GRID score of -70.26 kcal/mol and a GBSA of -70.57 kcal/mol placing it 4th in the 

overall ranking. It was seen to interact with both P704 and Y705 and this result, along with 

its strong activity in HTRF (19% remaining activity at 40 µM) and a MDA-MB-231/A4 

specificity ratio of 2.79, make this compound one of the most consistent and specific. Figure 

6.57 shows the molecule (cyan) interacting with polar (red) residues of the STAT3 SH2 

domain. Residues P704 and Y705 (magenta) of the second homodimer are seen to be 

inhibited from interacting with the same polar region. 

 

Figure 6.46 Molecular model of 2i (cyan) docked in the SH2 domain of the crystal 

structure of the STAT3 homodimer (PDB: 1BG1) showing the molecule inhibiting 

binding of P704 and Y705 (magenta) of homodimer B, along with much of the rest of 

the LKTKFI peptide of homodimer B (white). Prepared by Dr Paul Jackson 
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6.2.6.2 Molecular Modelling of 2e 
 

2e had a GRID score of -70.37 kcal/mol and a GBSA of -70.47 kcal/mol placing it 5th in the 

overall ranking. It too has a strong affinity for both P704 and Y705. It was inactive in the 

HTRF assay which may be due to some inherent fluorescence properties of the R’1 

morpholine group. The activity of the molecule in the cytotoxicity assays was positive with an 

IC50 of 2.6 µM in MDA-MB-231 cells and no titration of inhibition in A4 cells, making 2e an 

interesting molecule for further study and a front runner of this study (Figure 6.58). 

 

Figure 6.47 Molecular model of 2e (cyan) docked in the SH2 domain of the crystal 

structure of the STAT3 homodimer (PDB: 1BG1) showing the molecule inhibiting 

binding of P704 and Y705 (magenta) of homodimer B. The remainder of the 

octapeptide portion (LKTKFI) of homodimer B is shown in white. A single stabilising 

H-bond (black broken line) occurs between Ser 613 and the carbonyl group of the 

thiophene fragment. Prepared by Dr Paul Jackson 
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6.2.6.3 Molecular Modelling of 2k 
 

2k had a GRID score of -66.99 kcal/mol and a GBSA of -67.14 kcal/mol placing it 8th in the 

overall ranking and characteristically with a strong affinity for both P704 and Y705. 2k also 

had a HTRF activity of >100 and like 2e this may be due to a non-specific reaction of the 

compound with the fluorophores. However, 2k’s activity in the cytotoxicity assays was 

excellent, with an IC50 of 4.3 µM in MDA-MB-231 cells and of 27 µM in A4, giving 2k a 

differential value of 6.18, which was the largest observed. 2k therefore belongs in the lead 

molecule definition of this study (Figure 6.59). 

 

Figure 6.48 Molecular model of 2k (cyan) docked in the SH2 domain of the crystal 

structure of the STAT3 homodimer (PDB: 1BG1) showing the molecule inhibiting 

binding of P704 and Y705 (magenta) of homodimer B. The remainder of the 

octapeptide portion (LKTKFI) of homodimer B is shown in white. A single stabilising 

H-bond (black broken line) occurs between Ser 613 and the carbonyl group of the 

thiophene fragment, in a similar manner to 2e. Prepared by Dr Paul Jackson 
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6.2.6.4  Molecular Modelling of 2f 
 

 

Figure 6.49 Molecular model of 2f (cyan) docked in the DNA binding domain of the 

crystal structure of the STAT3 homodimer (PDB: 1BG1) Prepared by Dr Paul Jackson. 

 

Interestingly, a number of compounds designed for interaction with the SH2 domain were 

observed to possess a greater affinity for the DNA binding domain over the SH2 domain 

(Table 6.22). Examples of such compounds include 2a, 1b, 1r, and 2f. Of these molecules, 

2f exhibits potent cytotoxic activity against MDA-MB-231 cells (2.8 μM after 48 hrs 

incubation), suggesting a strong inhibitory effect on DNA-protein binding. This is reflected in 

docking results, where the molecule was observed to bind to the DNA-binding domain, 

potentially inhibiting the interaction of the STAT3 dimer with its consensus sequence (figure 

6.60). The morpholine moiety is positioned ideally on the polar residues Glu 344 and His 410 

to prevent interaction of the protein with its DNA consensus sequence. 

Docking results correlate well with assay results (i.e. MTT and FRET binding assays) and 

support 2f, 2g, 1n, 2e, 2k and 2i as the most potent inhibitors of STAT3. This inhibition 
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occurs through a combination of amino acid-specific hydrogen bonding interactions, ideal 

shape-fit to the protein and inhibition of binding of P704 and Y705 of PYLKTKFI of 

homodimer B of the protein to its octapeptide binding pocket in homodimer A.  
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7 Conclusion and Future Work 
 

The aim of this project was to initially develop an in vitro homogeneous time resolved FRET 

assay that could be used in low-, medium- and high-throughput modes for the discovery of 

novel STAT3 inhibitors. STAT3 is up-regulated and promotes the expression of several 

genes important in survival and metastasis, in many cancer types. There are currently no 

small-molecule STAT3 inhibitors in clinical use, and so there is a great need for the 

development of assays that can be used to screen molecules to identify lead compounds. 

In order to develop an in vitro assay a reliable production and purification protocol of pure 

HIS-STAT3βTC had to be developed.  This was challenging and time-consuming as initial 

solubility and stability issues were encountered. However, experimental conditions were 

eventually established that allowed useful quantities (10 mg batches) of purified and stable 

protein to be obtained.  Unphosphorylated and phosphorylated HIS-STAT3βTC proteins were 

purified by initial ion exchange chromatography followed by Ni2+ affinity chromatography.  

The purified recombinant proteins were filtered and concentration was determined by 

Bradford assay prior to their use in the developed homogenous time-resolved FRET (HTRF) 

assay. Development of this assay began with the optimisation of the Envision plate reader 

setup and calculation of the ΔF values of the buffer blanks and the two fluorophores blanks. 

A high and low calibration limit was established for the assay’s boundaries. 

A study of the variation between biotinylated and non-biotinylated M67 oligo was used to 

establish assay specificity, as no signal was seen when non-biotinylated DNA was used. The 

streptavidin-d2 fluorophore was unable to bind to the DNA consensus sequence and no 

FRET pair complex was formed. This assay also showed a correlation between the protein 

and DNA ratios. Similarly the difference between phosphorylated and un-phosphorylated 

STAT3 was equally pronounced; un-phosphorylated STAT3 had a very minimal signal up to 

100 nM in the presence of both 20 and 40 nM biotinylated consensus DNA. The signal 

however went up proportionately when phosphorylated STAT3 was used. This was more 
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evidence of the need to form the whole complex (i.e. STAT3βTC homodimer + anti-his 

europium and biotinylated M67 DNA + streptavidin-d2) as a base line of FRET signal that 

could then be disrupted with potential inhibitors. 

STA-21 (an established inhibitor of STAT3 homodimerisation (148)) was used as a positive 

control to ensure that the inhibition of assay signal was proportionate to STA-21 

concentration. SH-2 domain mimic peptides were also used to compete with native SH-2 

domains to prevent homodimerisation of STAT3 and, therefore, HTRF assay signal. 

The HTRF assay was then used to screen a library of 29 in-house produced potential 

inhibitors. This library was based on an initial hit compound RH-06 (159). The assay was 

used on inhibitor intermediates (i.e. scaffolds with a bromine residue in the R2 position) and 

full compounds with unique R1 and R2 groups. 

 

 

Figure 7.50 Basic scaffold of compound library 

 

Point inhibition assays at 100 µM were carried out with all library compounds, and those 

compounds that showed a decrease in ΔF of greater than 50% compared with the DMSO 

control, were taken into a 10 µM point inhibition assay and titrated through a range of 250 

nM to 25 µM. 
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The developed HTRF assay certainly has limitations in the consistency of data produced. 

For example, the DMSO only baseline signal would vary from run to run, and this made 

wider comparisons between individual experiments non-statistically valid. This may have 

been due to challenging experimental issues such as freeze/thaw reagent stability of both 

the fluorophores and protein. Compromises were also made regarding the plate reading 

equipment, such as the excitation and emission wavelengths, which were not theoretically 

optimal due to the available filters. However, when comparing inhibitors with each other 

within single experiments (in conjunction with the supporting cytotoxicity and modelling 

data), a clearer picture of the active functional R1 and R2 groups emerged. 

The compound library was then tested against four cancer cell lines (HeLa, MDA-MB-231 

breast cancer cells, NCI-H1975 lung cancer cells and A4 STAT3 null lung cancer cells) in 

order to deduce the compounds intercellular cytotoxicity using an MTT assay. STA-21 and 

STATTIC were tested in the cell lines as a positive control of cytotoxicity, and compared with 

results from the STAT3 dependent and null cell lines. Of the lead intermediate compounds 

from the HTRF assay, compound 1n was the most cytotoxic in both HeLa and MDA-MB-231 

cells. This cytotoxicity was STAT3 dependent as 1n was more than five times as potent in 

STAT3 dependent cell lines. 

 

Figure 7.51 Structure of 1n 
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Four front running final compounds from the HTRF assay were tested for STAT3 dependent 

cytotoxicity. 2i was the most potent and specific with an IC50 of 14.9 µM, which was nearly 

three times less than in the STAT3 null cell line. 

 

Figure 7.52 Structure of 2i 

 

There were solubility limitations to the cytotoxicity assay as some compounds precipitated 

out of solution, even at low concentrations. Leading to the expected concentration of 

compound not being exposed to the cells, this could be seen in the well as precipitated 

crystals. These low solubility compounds may require a surfactant, such as Tween, in order 

to increase solubility and in future work a study of those otherwise promising compounds 

would be carried out. In further studies a MTS assay should be carried as an alternative and 

comparison to the MTT assay as the formazan formed from MTS is water-soluble and less 

toxic. Another cytotoxicity assay should also be carried out, such as a lactate 

dehydrogenase leakage (LDH) assay or a ATP-based method which is highly sensitive, in 

evaluating cell viability and proliferation. It is based on the quantitation of cellular ATP using 

the luciferin-luciferase reaction to produce bioluminescence. ATP degrades rapidly in dead 

cells and declines in injured cells. Therefore, the amount of ATP present in the cells is 

proportional to the number of viable cells in culture. This would allow a cytotoxic comparison 
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with MTT, (which has been shown to underestimate cytotoxicity(169)) and minimise false 

negative results. 

Modelling studies were used to predict the likelihood of compounds binding to the Y705 area 

of the SH-2 domain and also the likelihood of binding to the DNA binding domain of STAT3. 

The strength of binding affinities were ranked and compared with the assay data,  and there 

was a good correlation between predicted and observed activity, with three compounds (2e, 

2i and 2k) being the most active in HTRF and MTT cytotoxicity assay and also appearing in 

the top eight (out of 48) in docking calculations. In particular, the final scaffold structure 

containing three domains was seen to fit well into the Y705-P704 residue region of the SH-2 

domain. 

Summary table 7.56 combines the MDA-MB-231 and A4 IC50s and looks at the differential 

ratio between the two. The table also collates the normalized ΔF percentage inhibition in 

HTRF assay compared with DMSO control and the ranking of the compound in-silico 

modelling studies. This list collates the 10 compounds of most interest for further future 

investigation. The criteria for selection in  this table, out of the 42 compounds initially tested, 

was that they either were in the top 10 of the in-silico modelling study, they showed 50% 

inhibition in the HTRF assay or had a positive differential of 6 times for STAT3 vs STAT3 null 

cytotoxicity in the MTT assay. 2f has been included in this table due to its interesting 

inhibition at the DNA binding domain of STAT3 as discussed in Section 6.2.6.4. 
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Compound structure MDA-MB-
231 IC50 
(µM) 

A4 IC50 
(µM) 

A4, MDA-
MB-231 
differential 

HTRF 
Inhibition 
(%) 

Modelling 
Rank 

 

4.7  28.2  6.0 74 10 

 

32.7  70.1  2.1 47 12 

 

25.9  >100 3.8 75 16 

 

2.6  >100 38.2 0 5 

 

11.1  3.1  0.3 0 11 

 

15 >100 6.7 56 1 

 

40 2 0.1 53 >16 

1n 

1o 

 

1s 

2e 

2f 

2g 

2h 
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14.8  41.5  2.8 81 4 

 

10 >100 10 0 3 

 

4.4 27 6.2 0 8 

 

Figure 7.53 Summary table of lead compound activity 

 

Six of these molecules (2e, 2f, 2g, 2h, 2i and 2j) had an identical R1 group, as shown in 

figure 7.61. This morpholine pharmacophore group is vital in forming a three pronged 

structure and it is this three pronged nature that allows the molecule to sit in the tyrosine 705 

hot spot pocket as seen in the modelling projections. Earlier compounds (1a-1J, see page 

124) had shorter, straighter R1 which had neither the shape or molecule size to fit the SH-2 

tyrosine 705 indentation. A key feature of the morpholine group is its ability to flexibly rotate 

around the carbon bridge which I propose allows rotation of the group whilst it is locating into 

its binding postion. Further analysis of this chemical feature is required in order to optimise 

binding. Further modelling is required in order to elucidate the morpholine’s optimal rotation 

with the protein. This information could also suggest possible chemical enhancements that 

may be made to in the R2 group position to further binding affinity. 

Compound 2g was the stand out molecule across the three measures, having the strongest 

binding affinity for the tyrosine 705 pocket out of all compounds. 2g had a normalised ΔF 

inhibition of 56% in the HTRF assay, making it the fourth best compound overall in that 

2i 

2j 

2k 
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assay. 2g also had a good IC50 in MDA-MB-231 cells of 15µM, however, it showed no 

cytotoxicity at all in the A4 cell line 

 The in silico modelling data consistently highlighted the molecules that performed well in 

HTRF and cytotoxicity assays, with all but one of the 10 most active compounds being 

predicted in the top 16 out of 42 compounds modelled. This suggests that the modelling 

screen is an effective method of testing for potential new R1 and R2 groups, prior to making 

the compound and testing it in the assays. 

 

In conclusion, structure-based virtual screening has been utilised to research potential 

inhibitors of STAT3. Compounds of interest  were able to inhibit STAT3 DNA-binding activity 

in a cell-free system and STAT3-driven cell viability in cancer cells,. Additionally, compound 

1 antagonized STAT3 dimerization. Our molecular modeling analysis suggested that 

compound 1 might putatively function as an inhibitor of STAT3 dimerization. This study also 

validates the use of structure-based molecular docking to discover novel inhibitors of 

protein–protein interactions, which are typically considered difficult to target with small 

molecules. We envisage that these compound 1 may be employed as a useful scaffold for 

the development of more potent STAT3 dimerization inhibitors. 
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9 Appendices 

9.1 HIS-STAT3βTC sequencing data 
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Figure 9.54 Forward T7 primer sequencing data for HIS-STAT3βTC pet 28C vector 

 

 
Figure 9.55 Reverse T7-term primer sequencing data for HIS-STAT3βTC pet 28C vector 
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9.2 His-STAT3βTC amino acid sequence 

M G S S HHHHHH S S G L L P R G S H 

M GQAN HPTAAVVTEK QQMLEQHLQD VRKRVQDLEQ KMKVVENLQD DFDFNYKTLK  

 

SQGDMQDLNG NNQSVTRQKM QQLEQMLTAL DQMRRSIVSE LAGLLSAMEY VQKTLTDEEL  

 

ADWKRRQQIA CIGGPPNICL DRLENWITSL AESQLQTRQQ IKKLEELQQK VSYKGDPIVQ  

 

HRPMLEERIV ELFRNLMKSA FVVERQPCMP MHPDRPLVIK TGVQFTTKVR LLVKFPELNY  

 

QLKIKVCIDK DSGDVAALRG SRKFNILGTN TKVMNMEESN NGSLSAEFKH LTLREQRCGN  

 

GGRANCDASL IVTEELHLIT FETEVYHQGL KIDLETHSLP VVVISNICQM PNAWASILWY  

 

NMLTNNPKNV NFFTKPPIGT WDQVAEVLSW QFSSTTKRGL SIEQLTTLAE KLLGPGVNYS  

 

GCQITWAKFC KENMAGKGFS FWVWLDNIID LVKKYILALW NEGYIMGFIS KERERAILST  

 

KPPGTFLLRF SESSKEGGVT FTWVEKDISG KTQIQSVEPY TKQQLNNMSF AEIIMGYKIM  

 

DATNILVSPL VYLYPDIPKE EAFGKYCRPE SQEHPEADPG SAAPYLKTKF ICVTP  

F I D A V W K STOP 

AA = 617 

Figure 9.56 Expressed HIS-STAT3βTC amino acid sequence  
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9.3  Protparam protein characterisation data (HIS-STAT3βTC) 

 

Number of amino acids: 617 

 

Molecular weight: 70406.9 

 

Theoretical pI: 7.58 

 

Amino acid composition: 
Submit

 

Ala (A)  30   4.9% 

Arg (R)  26   4.2% 

Asn (N)  31   5.0% 

Asp (D)  26   4.2% 

Cys (C)  11   1.8% 

Gln (Q)  41   6.6% 

Glu (E)  44   7.1% 

Gly (G)  35   5.7% 

His (H)  16   2.6% 

Ile (I)  36   5.8% 

Leu (L)  61   9.9% 

Lys (K)  45   7.3% 

Met (M)  22   3.6% 

Phe (F)  23   3.7% 

Pro (P)  28   4.5% 

Ser (S)  40   6.5% 

Thr (T)  36   5.8% 

Trp (W)  12   1.9% 

Tyr (Y)  15   2.4% 

Val (V)  39   6.3% 

Pyl (O)   0   0.0% 

Sec (U)   0   0.0% 

 

 (B)   0   0.0% 

 (Z)   0   0.0% 

 (X)   0   0.0% 

 

 

Total number of negatively charged residues (Asp + Glu): 70 

Total number of positively charged residues (Arg + Lys): 71 

 

Atomic composition: 

 

Carbon      C       3133 

Hydrogen    H       4954 

Nitrogen    N        856 

Oxygen      O        921 

Sulphur      S         33 

 

Formula: C3133H4954N856O921S33 

Total number of atoms: 9897 

 

Extinction coefficients: 

 

Extinction coefficients are in units of M-1 cm-1, at 280 nm measured in 

water. 
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Ext. coefficient    88975 

Abs 0.1% (=1 g/l)   1.264, assuming all pairs of Cys residues form cystines 

 

 

Ext. coefficient    88350 

Abs 0.1% (=1 g/l)   1.255, assuming all Cys residues are reduced 

 

Estimated half-life: 

 

The N-terminal of the sequence considered is M (Met). 

 

The estimated half-life is: 30 hours (mammalian reticulocytes, in vitro). 

                            >20 hours (yeast, in vivo). 

                            >10 hours (Escherichia coli, in vivo). 

 

 

Instability index: 

 

The instability index (II) is computed to be 42.21 

This classifies the protein as unstable. 

 

 

 

Aliphatic index: 84.51 

 

Grand average of hydropathicity (GRAVY): -0.392 

 

 

 

 

9.4  Compound library nomenclature and R’ groups 

 

R1                R2 
          

 

 

57-06 
1a 

57-04, 
SS-04 

2a 

57-05 
2b 

57-13 
2c AG-04 AG-07 AG-08  

SS-05 
AG 

SS-
08 

SS-
07 

 

57-07 
1b 

57-10 
2d         

 

 57-09          
 

 

57-16 
1c          

 

 

57-17 
1d          
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57-18 
1e          

 

 

57-21 
1f          

 

 

57-22 
1g 

57-39, 
SS-06 

2e 
  

65-04 
2f 

65-05 
2g 

65-08 
2h 

65-09 
2i 

65-10 
2j 

 
SS 
11 

 

57-23 
1h          

 

 

57-24 
1i          

 

 

57-25 
1j          

 

 

57-26 
1k           

 

57-27 
1l          

 

 

57-28 
1m          

 

57-29 
1n          
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57-30 
1o 65-12   

65-11 
2k 

65-14 65-13 65-15 SS-09 65-16 
SS-
10 

 

57-31 
1p          

 

 

57-32 
1q          

 

 

57-33 
1r          

 

 

57-34 
1s          

 

 

Table 9.20 Compound nomenclature with R1 and R2 groups 
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9.5 Molecular modelling summary table 

 

Molecule GRID 
Score 
Protein 
(kcal/mol) 

Interfere 
with 
Y705? 

GBSA 
Score 
Protein 
(kcal/mol) 

Interfere 
with 
Y705? 

Ranking GRID Score 
DNA   
(kcal/mol) 

GBSA 
Score 
DNA 
(kcal/mol) 

Protein 
(P)/DN
A (D)? 

KSN-57-3 -46.10 N -51.54 N  -44.98 -51.07 P 

KSN-57-4 -53.46 Y -54.63 Y   -63.01 -70.18 D 

KSN-57-5 -55.50 N -62.65 N  -54.01 -60.81 P 

KSN-57-6 -46.57 N -51.96 N (binds 
to back 
of 
protein) 

 -48.50 -50.25 P 

KSN-57-7 -58.76 Y -27.33 Y   -61.59 -69.09 D 

KSN-57-9 -58.91 N -66.81 N  -56.28 -64.55 P 

KSN-57-
10 

-70.05 Y -64.42 Y 9 -58.67 -65.25 P 

KSN-57-
13 

-53.40 N -60.68 N  -49.44 -55.56 P 

KSN-57-
16 

-57.07  Y -61.52 Y  16 Failed Failed P 

KSN-57-
17 

-58.56 Y -43.80  N   Failed Failed P 

KSN-57-
18 

-59.55 Y -56.13 Y   Failed Failed P 

KSN-57-
21 

-58.18  Y -65.99 Y 13 -55.62 -17.24 P 

KSN-57-
22 

-62.80 Y -68.65 N  Failed Failed P 

KSN-57-
23 

-67.34 Y -70.49 Y 6 -53.68 -61.21 P 

KSN-57-
25 

-58.18 Y -62.50 Y 14 -31.95 -32.03 P 

KSN-57-
26 

-69.54 Y -73.98 Y 2 -21.59 Failed P 

KSN-57-
27 

-59.14 Y -64.79 N   -49.08 -56.44 P 

KSN-57-
28 

-61.29 Y -59.11 Y 15 -33.89 -45.90 P 

KSN-57-
29 

-62.15 Y -71.22 Y 10 -37.57 -53.68 P 

KSN-57-
30 

-65.74 Y -63.04 Y 12 -27.31 -50.40 P 

KSN-57-
31 

-61.16 Y -66.73 N   Failed -49.63 P 

KSN-57-
32 

-66.29 N -72.33 N  -43.35 -70.84 P 



 Appendices 

 
192 

KSN-57-
33 

-53.96 N -57.33 N  -61.14 -68.20 D 

KSN-57-
34 

-59.78 N -66.21 N  -52.55 -40.80 P 

KSN-57-
36 

-65.41 Y -73.26 Y  7 Failed Failed P 

KSN-57-
37 

-65.55 Y -47.09 N  -55.80 -33.50 D 

KSN-57-
38 

-69.19 Y -23.76 N   -63.67 -73.21 P 

KSN-57-
39 

-70.37 Y 
(interfere
s with P 
and Y) 

-70.47 Y 
(interfere
s with P 
and Y) 

5 -60.16 -70.56 P 

KSN-57-
40 

-65.44 N -60.19 N  -55.06 -62.59 P 

KSN-57-
41 (AG) 

-57.44 N -64.99 N  -55.19 -63.34 P 

KSN-57-
42 (AG) 

-59.84 N -67.87 N  -57.94 -66.10 P 

KSN-57-
43 (AG) 

-57.12 N -64.63 N  -50.20 -52.69 P 

KSN-57-
44 (AG) 

-59.94 N -67.29 N  -55.31 -63.85 P 

KSN-57-
45 (AG) 

-53.95 N -59.78 N   -62.68 -63.57 D 

KSN-65-
01 (AG) 

-57.30 N -66.06 N  -53.77 -61.68 P 

KSN-65-
02 (AG) 

-57.20 N -64.41 N  -51.60 -56.67 P 

KSN-65-
03 (AG) 

-58.72 N -66.13 N  -60.34 -65.63 P 

KSN-65-
04 

-62.78 Y 
(interfere
s with P 
and Y) 

-68.27 Y 
(interfere
s with P 
and Y) 

11 -71.10 -79.50 D 

KSN-65-
05 

-70.77 Y 
(interfere
s with P 
and Y) 

-76.39  Y 
(interfere
s with P 
and Y) 

1 -71.83 -80.30 P 

KSN-65-
06 

-52.47 N -59.44 N  -47.22 -53.06 P 

KSN-65-
07 

-59.77 N -68.51 N  -51.87 -58.56 P 

KSN-65-
08 

-71.78  Y 
(interfere
s with P 
and Y) 

-41.71 Y   -59.72 -64.97 P 

KSN-65-
09 

-70.26 Y 
(interfere

-70.57 Y 
(interfere

4 -61.59 -13.66 P 
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s with P 
and Y) 

s with P 
and Y) 

KSN-65-
10 

-71.43 Y -70.72 Y 3 -68.89 -67.42 P 

KSN-65-
11 

-66.99 Y 
(interfere
s with P 
and Y) 

-67.14 Y 
(interfere
s with P 
and Y) 

8 -59.60 -67.45 P 

         

SS-04 -52.50 N -60.13 N  -58.20 (N)   

SS-05 -54.34 N -56.41 N  -51.05 (N)   

SS-06 
(57-39) 

-76.11 Y 
(interfere
s with P 
and Y) 

-74.61 Y 
(interfere
s with P 
and Y) 

 -72.99 (Y) -80.93 (N)  

SS-07 -54.34 N -52.51 N  -46.42 (N)   

SS-08 -53.88 N -64.05 N  -52.21 (N)   

SS-09 -65.81 Y 
(interfere
s with P 
and Y) 

-9.80 Y 
(interfere
s with P 
and Y) 

 -74.65 (Y) -36.88 (Y)  

SS-10 -62.52 Y 
(interfere
s with P 
and Y) 

-23.84 Y 
(interfere
s with P 
and Y) 

 -63.42 (N) -59.33 (N)  

SS-11 -69.86 Y 
(interfere
s with P 
and Y) 

-68.08 Y 
(interfere
s with P 
and Y) 

 -56.48 (N) -67.25 (N)  

SS-12 -71.29 Y 
(interfere
s with P 
and Y) 

+19.74 Repulsive 
contacts 

 -64.20 (N) -75.11 (N)  

 

Table 9.21 Docking scores of KSN-57- and KSN-65- series of molecules (both GRID 

and GBSA scoring in kcal/mol) in both the SH2 and DNA binding domains.   

 


