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Abstract 

 

-1,4-Galactosyltransferases (-1,4-GalTs) catalyse the transfer of D-galactose from a uridine 

diphosphate galactose (UDP-Gal) donor to an N-acetylglucosamine (N-GlcNAc) or glucose 

(Glc) acceptor, forming a -1,4-glycosidic linkage. -1,4-GalTs are required for the 

formation of important glycan epitopes, such as terminal tetrasaccharide Sialyl Lewis X 

(sLex), which is present in P-selectin glycoprotein ligand 1 (PSGL-1) and other cell adhesion 

molecules. Therefore, small molecular -1,4-GalT inhibitors are of great interest as chemical 

tool compounds to study sLex- and PSGL-1-dependent processes. A UDP-Gal derivative, 5-

(5-formylthien-2-yl) UDP-galactose (5-FT UDP-Gal), has previously been described as a 

potent, broad-spectrum GalT inhibitor; however, the application of 5-FT UDP-Gal in cell 

assays is compromised by its limited stability and membrane permeability, due to the 

presence of pyrophosphate and sugar moieties. Therefore, the main aim of this thesis was to 

develop uncharged -1,4-GalT inhibitors based on 5-FT UDP-Gal, but with more suitable 

properties for cellular applications. 

Several approaches were explored to achieve this goal. In chapter 2, attempts to apply the 

pro-drug concept using phosphate esters of 5-FT UDP-Gal are described. A series of 5-

substituted nucleoside derivatives derived from 5-FT UDP-Gal was also prepared. The 

inhibitory activities of these derivatives against -1,4-GalT were assessed in biochemical 

assays. Direct comparison with the corresponding complete UDP-sugar derivatives allowed 

the identification of structural factors that determine activity. The effects of the most active 

nucleoside derivative and its ester prodrug were also investigated in a PSGL-1 expression 

assay. 
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Attempts to overcome the relative loss of activity from the absence of pyrophosphate and 

sugar moieties in nucleoside inhibitors using dynamic combinatorial chemistry are described 

in Chapter 3. A hydrazone dynamic combinatorial library (DCL) was generated from the 

most potent nucleoside fragment and a series of hydrazides to identify mimics of 

pyrophosphate and sugar moieties to develop potent inhibitors. A suitable hydrazide was 

identified from the library and the corresponding nucleoside derivatives were generated and 

evaluated in the biochemical assay as well as the PSGL-1 expression assay. 

A known, substrate-based -1,4-GalT inhibitor was prepared as a positive control in the DCL 

experiments. However, this N-GlcNAc derivative unexpectedly behaved as an acceptor 

substrate rather than an inhibitor in our phosphatase-coupled assay. These unexpected finding, 

including attempts to rationalise the discrepancy between these results and reported in 

previous literature describing this compound as a -1,4-GalT inhibitor, are described in 

Chapter 4. 
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1.1. Glycosyltransferases 

 

Glycosyltransferases (GTs) are a large family of enzymes which are involved in the 

biosynthesis of glycoconjugates and glycans.2 GTs catalyse the transfer of a sugar moiety 

from a glycosyl donor to acceptor molecules forming glycosidic bonds. Typical acceptors 

may contain saccharides, lipids, proteins and glycoconjugates.1   

 

1.1.1. Mechanism of GTs 

 

GTs elongate the glycan chains by transferring sugar moieties to acceptors, forming the 

glycosidic linkage. In principle, two stereochemical results are possible for sugar transferred 

reactions. The configuration of anomeric center in the product is either retained or inverted 

with respect to the sugar nucleotide donor.3 (Figure 1).  

 

 

Figure 1 Retaining and inverting glycosylated reactions catalysed by GTs 
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The mechanism for inverting GTs is well established.1 The inverting glycosyltransferases 

utilise a SN-2 like direct-displacement reaction and lead to an inverted anomeric configuration. 

An amino side chain at the active site of enzyme serves as a base catalyst to de-protonate the 

hydroxyl group of the acceptor, facilitating its nucleophile attack towards the donor. The 

reaction proceeds via the formation of an oxocarbenium ion transition-state, which was 

followed by the departure of the nucleotide leaving group. (Figure 2). 

 

 

Figure 2 Mechanism of inverting enzyme catalysed transfer reaction (modified from reference2) 

 

Compared to the inverting GTs, the mechanism of retaining enzyme-catalysed reaction is still 

unclear. It is proposed that the retaining transfer processes a double displacement involving a 

covalently bound glycosyl-enzyme intermediate species (Figure 3). The double displacement 

mechanism was supported by the identification of intermediates with the glycosyl donor 

covalently linked to the enzyme.4, 5 A divalent cation, like Mn2+, or a suitably positioned 

positively charged side chain or a helix dipole acts as a Lewis acid for the donor phosphate. 

The leaving nucleotide group acts as a base catalyst to activate the hydroxyl group of the 

acceptor for nucleophilic attack.  
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Figure 3 Proposed mechanism of retaining enzyme catalysed transfer reaction. (modified from reference2) 

 

A SNi-like mechanism was also proposed for the retaining GTs reaction, in which the 

acceptor is thought to attack the donor on the same face as the nucleotide leaving group, 

leading to retain the anomeric configuration of the glycosidic linkage.5 (Figure 4) 

 

 

Figure 4 SNi-like mechanism of retaining enzyme catalysed reaction. (modified from reference6) 

 

1.1.2. Classification of GTs 

 

Traditionally, GTs are classified according to their amino acid sequence similarities, the 

stereochemical outcomes of the reactions and their three-dimensional structures.1 Until now, 

94 GT families are classified in the Carbohydrate Active Enzymes Database (CAZy) based 

on the amino acid sequence similarities.7 Structurally, a majority of the GTs can be classified 

into two classes, GT-A and GT-B folds, based on their three-dimension crystal structures.1 

GT-A fold is made of a single Rossman fold consisting of an open twisted -sheets 

surrounded by -helices. (Figure 5a) The GT-A fold was first identified when the crystal 
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structure of SpsA from B. subtilis, a member of the Leloir pathway enzyme, was described.8 

Most GT-A folded GTs have Asp-x-Asp (DXD) motif in the centre of active sites that 

coordinate with pyrophosphate moiety of nucleotide donor via metal cations, like Mn2+ and 

Mg2+. The acceptor binding sites are generally made of two flexible loops that undergo 

conformational changes following binding of the donor.9 

GT-B fold enzyme contains a two-domain structure with a Rossmann-like fold in either 

domain. (Figure 5b) The predicted active sites of GT-B folded enzymes are located between 

the two Rossmann folds. Compared with GT-A fold enzymes, the joined helices of the 

subdomain of Rossman folds create binding sites for acceptors. The GT-B folds GTs include 

most prokaryotic enzymes that produce secondary metabolites and important bacterial cell 

wall precursors.10  

 

Figure 5 (a) Three-dimensional crystal structure of the enzyme SpsA from Bacillus subtilus, illustrating GT-A 

folds. (b) Bacteriophage T4 -glucosyltransferase, pdb 1jg7 illustrating GT-B fold. (-sheets are in blue, -

helices in red, strands in grey) (Figures taken from reference1)  

 

A GT-C fold enzyme family has been proposed and it exhibits many similarities with GT-A 

fold but utilizes lipid-linked donors. Only two crystal structures have been reported.11, 12  
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1.1.3. Donor and acceptor specificity of GTs 

 

Many GTs are Leloir enzymes that utilise sugar nucleotides as their glycosyl donors. 13 These 

compounds are made of a nucleoside and a sugar moiety linked via a pyrophosphate bond. 

The highly energetic bond between pyrophosphate moiety and the anomeric centre of sugar 

ring activate the sugar for the transfer reaction. Until now, there are only nine sugar 

nucleotides reported as natural donors, including UDP-Glc, UDP-Gal, UDP-GlcNAc, UDP-

Xyl, UDP-GlcA, GDP-Man, GDP-Fuc and CMP-Sialic acid. The amount of sugar nucleotide 

donors is more than in non-mammalian organisms, which offer an opportunity to target GTs 

to treat diseases, like bacterial infection, with little effects on human.  

GTs exhibit high specificity towards both donor and acceptor substrates. However, some GTs 

also can tolerate different donor and acceptor substrates.14-16 They have been utilised as tools 

for the enzymatic production of synthetically challenging oligosaccharides.17 GTs also can 

exhibit donor flexibility as some enzymes accept various non-natural sugar nucleotide 

donors.18, 19 

 

1.1.4. GTs in biological systems 

 

Products of GTs catalysed reactions, glycans and glycoconjugates, mediate many 

fundamental biological processes. They can serve as energy sources20, locate on the cell wall 

where they act as receptors in recognition processes, like cell signalling and cellular 

adhesion21, as well as provide receptors for bacteria, hormones and virus22. GTs are important 

for the biosynthesis of N-/O-linked glycoproteins and glycolipids in both prokaryotic and 

eukaryotic organisms.23, 24  Eukaryotic GTs are primarily located in the endoplasmic 

reticulum (ER) and Golgi apparatus and products, glycolipids as well as glycoproteins, are 
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mainly on cell surfaces.25 These type II transmembrane proteins can serve as receptors for 

cell adhesion. In prokaryotic cells, GTs catalysed reactions occurs in the cytoplasm and 

periplasm.26 Glycans in prokaryotic cells are essential as some cellular roles. 

Lipopolysaccharides (LPS) can act as attachment receptor for cellular interactions and are 

involved in processes of modulation of immune system, as well as acting as virulence factor 

for the infection of the host.27 Peptidoglycans, which is formed of linear glycan strands cross-

linked by short peptide, are determinant of the cell wall and essential for cell shape and 

protects the bacteria from turgidity.28  

The saccharides transferred reactions are involved in diseases. Changes in glycosylation will 

cause under- or over expression of glycans. For example, cancer cells usually display glycans 

at different levels or with fundamentally different structures from the normal cells. The 

increasing activity of N-acetylglucosaminyltransferase V (GnT-V, the enzyme that leads to 

1,6GlcNAc branching) leads to an increase in the size and branching of N-linked glycans. 

These extensively 1,6GlcNAc branched glycans creat additional sites for terminal sialic acid 

residues on the cell surface, leading to an increasing activity of sialytransferases in cancerous 

cells.29 Increased expression of Lewis antigen is a common feature of many epithelian 

cancers.30 Fucosyltransferase FucT I-VIII, which transfer fucose in -1,2,3,4, or 6-linkage to 

galactose or GlcNAc residues, are involved in the formation of sialyl Lewis A. The activities 

of these enzymes were observed upregulation in colorectal cancers. The increasing activity of 

FucT I-VIII leads to the over formation of terminal glycans, sialyl Lewis X and Lewis Y.31  
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1.2. -1,4-galactosyltransferases 

 

1.2.1. Mechanism of -1,4-GalTs 

 

Amongst the most extensively studied and best characterized GTs are -1,4-

galactosyltransferase (-1,4-GalTs).32 -1,4-GalTs are involved in transferring galactose 

from uridine diphosphate galactose (UDP-Gal) to the 4-OH of terminal N-acetylglucosamine 

(GlcNAc), Glucose (Glc) or Xylose (Xyl) residues, forming-1,4 glycosidic linkage (Figure 

6). When as a single protein, -1,4-GalTs catalyse the transfer of galactose from UDP-Gal to 

N-acetylglucosamine (GlcNAc) based acceptors to form N-Acetyllactosamine. Nevertheless, 

when it interacts with the calcium binding protein -lactalbumin (LA), -1,4-GalTs form a 

lactose synthease complex and the binding of LA changes the acceptor specificity of -1,4-

GalTs. This complex catalyses the transfer of galactose to glucose to form lactose.33   

 

 

Figure 6 Generalized -1,4-galactosyltrasnferase reactions 

 

The resolution of three-dimensional crystal structures of -1,4-GalTs has facilitated 

investigations into the mechanism of the transfer reaction catalysed by -1,4-GalTs.34, 35 The 

catalytic pocket is located between the two domains, which contains two flexible loops. The 
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two flexible loops, a long one (residues 345-365) and a short one (residues 313-316), play 

crucial roles in catalytic cycle. (Figure 7)  

 

Figure 7 The long flexible loop, residue IIe345-His365, and the short flexible loop, residue Gly313-Gly316, in 

the open (green) and closed (purple) conformations. Residue Trp314 is facing away from the open conformation 

and moves to coordinate the metal ion, UDP-Gal and acceptor in the closed conformation. (Figure taken from 

reference36) 

 

In the substrate-free state, the pocket is in an open conformation and loops are both oriented 

such that important residues participating in catalysis are distant from the pocket. In the 

catalytic cycle, the metal ion Mn2+ binds with the enzyme, which is followed by the binding 

of donor UDP-Gal. Upon these binding, the flexible loops in catalytic domain undergo a 

marked conformational change, from an open conformation to a closed conformation, 

creating the acceptor binding site. Tryptophan 314 on the short loop plays a crucial role in the 

catalytic cycle, interacting with both UDP-Gal and acceptor during the closed 

conformation.37 After completion of the transfer of Gal to acceptor, the glycosylated product 

is ejected. Then the enzyme reverts to the original conformation, releases the left nucleotides 

and metal ion and repeats the catalytic cycle. (Figure 8) 
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Figure 8 Mechanism of -1,4-GalTs catalysed transfer reaction. (Figure taken from reference34) 

 

1.2.2. -1,4-GalTs in biological systems 

 

The first galactosyltransferase to be cloned was the -1,4-GalT-I and it was the most 

thoroughly characterized.38 4GalT1 is a trans-Golgi resident, type II membrane-bound 

glycoprotein, which consists of catalytic domain, stem region, a single membrane-spanning 

region as well as a short cytoplasmic N-terminus. (Figure 9) To date, seven -1,4 GalTs have 

been described. These proteins share an extensive homology, which can be used for clone the 

gene to encode six-members of the family. According to their percentage sequence identity at 

amino acid level relative to 4-GalT-I, which was the first identified -1,4 GalT, they are 

named from GalT-II toGalT-VII.351,4-GalT-I to -VI have several conserved 

regions.39, 40 These conserved regions may provide the binding site of sugar donor or acceptor, 

which means they may share similar enzymatic activity. Seven GalTs can use UDP-Gal as 

sugar donor and Glc, GlcNAc or Xyl as acceptor. 4GalT-I, II, III, IV, V, VI have the similar 

characteristic of enzyme kinetics. 
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Figure 9 Schematic diagram of protein domains of β4Gal-T1. (Figure taken from reference35) 

 

It is known that GalTs are involved in the biosynthesis of different glycoconjugates and 

glycans. For example, like 4GalT-I, GalT-II, III, IV, V also have lactose synthase activity, 

transferring galactose from UDP-Gal to Glucose, forming lactose.40 4Gal-I can participate 

the biosynthesis of sialyl Lewix (sLex), a crucial carbohydrate determinant on PSGL-1, and 

blood group antigen.41 4Gal-I also can elongate O-fucose glycans found on several 

epidermal growth factor (EGF)-like protein domain.42 4GalT IV can prefer GlcNAc 6-O-

sulfate (6SGN) as acceptor and involved in the biosynthesis of glycoproteins carrying a 6-O-

sulfated N-acetyllactosamine moiety.43 4GalT-VII is involved in the biosynthesis of 

proteoglycans by catalysing transfer of Gal to glycosaminoglycan core.44  

-1,4-GalTs are expressed in all mammalian tissues and involved in many fundamental 

biological processes. For example, the glycosylated products of -1,4-GalTs act as receptors 

on the eukaryotic cell surface and are involved in cellular interactions by binding to particular 

extracellular glycoside substrates. Thus, -1,4-GalTs are involved in the neurite extension, 

sperm-egg interaction, cell adhesion and migration.45-47 -1,4-GalTs are also expressed in 

bacteria and involved in the relating biological processes. For example, lipopolysaccharide 

(LPS) structures contain O-polysaccharide (O-antigenic) side chains linked to a core 
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polysaccharide and lipid A.48 LPS are located in the outer membrane of bacterial cell surface 

and are crucial for the interaction between bacteria and their environment.48 Shigella is a 

Gram-negative human pathogen which causes diarrhoea in humans and -1,4-GalTs are 

involved in the biosynthesis of the repeating oligosaccharide units of LPSs of Shigella.48 

Deletion of -1,4-GalTs producing in mice leads to decreasing activity of -1,4-GalTs in 

most tissues, decreasing of fertility and differentiation of epithelial cells retardation.49 -1,4-

GalTs are involved in embryo implantation and the growth and adhesion of cancer cells.50 51 

Moreover, increase and decrease of 1,4-GalTs activity are associated with disease states. 

The level of cell surface -1,4-GalTs is increased in a variety of metastatic murine and 

human cell lines. Decreasing surface -1,4-GalT expression on highly metastatic cells to the 

level characteristic of low metastatic cells could reduce their invasive behaviour in vitro and 

metastatic activity in vivo.52  

 

1.2. P-selectin glycoprotein ligand-1 (PSGL-1) 

 

Leukocyte recruitment is an important immunological process which recruits free leukocytes 

from intravascular compartment to transfer into sites of inflammation. It predominantly 

occurs in inflamed microvessels and in high endothelial venules of secondary lymphoid 

organs.41 It proceeds along capture of free flowing leukocytes and rolling of leukocytes steps. 

The rolling step, which is considered as an important step for the successful recruitment of 

leukocytes into tissues, is mediated by a family of glycoproteins, selectins.  In the process, 

these selectins recognize and bind with the crucial carbohydrate determinants with selectin 

ligands (Figure 10). Among these ligands, P-selectin glycoprotein ligand-1 (PSGL-1) is the 
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dominant P-selectin ligand during inflammation. In in-vivo experiments, PSGL-1 deficient 

mice were used for intravital microscopy experiments in postcapillary venules of the 

cremaster muscle. It was shown that leucocyte rolling was significantly decreased 30 min 

after trauma.53  Likewise, PSGL-1 also can mediate rolling of leukocytes on E-selectin under 

flow as well as act as the ligand towards L-selectin. This was supported by the experiment 

that in PSGL-1 deficient mice, L-seletin dependent leukocytes rolling was completely absent 

in acute inflammation and the fluid-phase E-selectin bound to nearly 70% fewer sites than on 

the normal mice with PSGL-1.54  

 

Figure 10 P-selectin mediated cell interactions with the vascular endothelium during inflammation. (Figure 

taken from reference55)  

 

PSGL-1 belongs to a growing number of glycoproteins and its function requires proper post-

translational glycosylation, which is catalysed by relating glycosyltransferases. The synthesis 

of core decorated O-glycans carrying sialyl Lewix epitope is illustrated in Figure 11. Several 

glycosyltransferases have been identified to participate in the biosynthesis pathway, such as 

core 2 -1,6-GlcNAc transferase, --GalT-I and-IV, Fucosyltransferase-VII and -IV 

-sialyltransferase-IV, etc. These glycosyltransferases are all type-II 

transmembrane proteins situated in the Golgi apparatus. They transfer monosaccharides from 
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activated sugar donors such as UDP-GlcNAc, UDP-Gal, UDP-fucose and CMP-sialic acid to 

their respective glycoconjugate acceptor.  

 

Figure 11 Biosynthesis pathway for the synthesis of core decorated O-glycans carrying the sLex determinant. 

(Figure taken from reference41)  

 

It is known that -1, 4-GalT-I and -1, 4-Gal-IV are involved in the synthesis of functional 

selectin ligand PSGL-1, catalysing the addition of UDP-Gal to GlcNAc in the process of 

forming sLex. Therefore -1, 4-GalTs play key roles in the processes of inflammation 

mediated by PSGL-1. A -1,4-GalT-deficient mice model was used to investigate the 

contribution of the enzyme for selectin ligand function.56 The result showed that more than 

80% of the core 2 O-glycans on the leukocyte membrane glycoproteins of these mice lacked 

-1,4-linkage galactose residues. The soluble P-selectin binding to neutrophils and 

monocytes was strongly reduced. The biosynthesis of selectin ligand was significantly 

impaired. As for the aspects of acute and chronic inflammatory responses, zymosan-induced 

inflammation is a model in which acute inflammation is mainly mediated by E-and P-

selectins. Zymosan-induced neutrophil recruitment was fully reduced and ear swelling was 

significantly suppressed in -4-GalT-I deficient mice.56 Contact hypersensitivity (CHS) and 

delayed-type hypersensitivity (DTH) responses are used as a model of chronic inflammatory 
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diseases. The experiment result showed that the CHS and DTH responses were partially 

suppressed in enzyme deficient mice. Due to the amount of P-selectin ligands deficiency in 

mice lacking -1,4-GalT, neutrophil trafficking to sites of inflammation was impaired. 56 

 

1.3. Inhibitors of -1,4-galactosyltransferases 

 

-1,4-GalTs are involved in the biosynthesis of complex glycans and their glycoconjugates 

that participate in many fundamental biological processes, as illustrated in the previous 

chapter. Since many of these biological products are essential for living organisms, inhibitors 

of -1,4-GalTs are of great interest as chemical tools, not only for mechanistic and structural 

studies with recombinant enzymes, but also to investigate the role of -1,4-GalTs in glycan 

biosynthesis. For example, a UDP-Gal derivative with a substituent in 6-OH of sugar ring 

was developed on the basis of 3D docking simulation to investigate the functional role of 

Trp310 residue of the small loop in the enzyme active site.57 Therefore, the development of 

enzyme inhibitors attracts considerable interest and are considered to become potential lead 

compounds for drug discovery. 

In the transfer reaction catalysed by1,4-GalTs, the reaction is proposed via a transition-

state illustrated in Figure 12. The pyrophosphate moiety in UDP-Gal is suggested to form a 

six-member ring in its complex with an essential di-valent manganese ion. The side chain in 

enzyme active site serves as base to deprotonate the hydroxyl group of acceptor sugar, 

facilitating its attack ability towards the sugar moiety of donor.  
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Figure 12 A possible transition-state structure of the -1,4-galactosyl- transferase reaction. (Figure taken from 

reference58) 

 

Different strategies have been used to design potent -1,4-GalTs inhibitors. To date, different 

types of -1,4-GalTs inhibitors have been developed based on this proposed transition-state, 

including donor analogues, acceptor analogues and transition state analogues.  

 

1.3.1.  Donor analogues  

 

The natural donor of -1,4-GalTs, UDP-Gal, is composed of three moieties, galactosyl, 

pyrophosphate and uridine (Figure 13). Different approaches based on modifying sugar and 

phosphate moieties respectively have been used to design inhibitors of -1,4-GalTs.  

 

Figure 13 Design strategies for GalT inhibitors based on the UDP-Gal donor 
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1.3.1.1. Sugar analogues  

 

Generally, the modifications of sugar analogues are made at the hydroxyl groups or the 

oxygen atom of the six-membered cyclic acetal. Hindsgaul and co-workers reported the 

chemical synthesis of uridine 5’-(5a-carba--D-galacopyranosyl) diphosphate, in which the 

ring oxygen of galatose residue was replaced by a methylene group.59 (Figure 14) As the 

carbocyclic analogue of UDP-Gal, it acted as a competitive inhibitor towards -1,4-GalTs 

with a Ki value of 58 M, similar to the Km value (25 M) of UDP-Gal.  

 

Figure 14 Carbocyclic analogue of UDP-Gal as the inhibitor against -1,4-GalTs. 

 

Wong and co-workers reported the preparation of uridine 5’-diphospho-(2-deoxy-2-fluoro) 

galactose (UDP-2F-Gal).60 It was found to be a competitive inhibitor of -1,4-GalTs with a 

Ki value of 149 M. (Figure 15) Similarly, Hashimoto and co-workers also reported the 

sugar analogues, a series of mono-O-methyl analogues of UDP-Gal. Among these analogues, 

the 2-O-methyl analogues could inhibit -1,4-GalTs. (Figure 15) 
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Figure 15 Sugar analogues with modifications on OH groups of galactose ring 

 

Nishimura and co-workers reported the synthesis of uridine 5’-(6-amino-[2-(7-bromomethyl-

2-naphthyl) methoxy]carbonyl)methoxy] acetyl-6-deoxy--D-galactopyranosyl) diphosphate 

according to 3D docking simulation.61 (Figure 16) By investigating the interaction between 

compound and enzyme, it was suggested the Trp310 of -1,4-GalTs can be selectively 

modified with the naphthylmethyl group of this compound. According to this results, a series 

of analogues were synthesized, among which compound containing naphthyl group was the 

strongest competitive inhibitor (Ki = 1.86M) against UDP-Gal (Km = 4.91 M).  

 

Figure 16 Inhibitors of -1,4-GalTs with modification on 6’-OH via 3D docking simulation 
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1.3.1.2.  Pyrophosphate analogues 

 

The pyrophosphate group in UDP-Gal makes an important contribution to donor binding by 

coordinating to a di-valent manganese ion in the GalT active site. However, the 

pyrophosphate is quite unstable and due to its inherent negative charge, compounds 

containing pyrophosphate exhibit poor membrane permeability. Thus, pyrophosphate 

analogues were designed and synthesized by varying the diphosphate moiety.  

Malonic, tartaric acid and monosaccharide linkages were utilized as pyrophosphate mimics to 

synthesis a series of compounds by Wong and his co-workers.62 (Figure 17) It was 

hypothesised that the malonic and tartaric esters could form the six-member rings with Mn2+ 

which was similar as the Mn-pyrophosphate complex. The mono-sugar, like glucose and 

galactose, also could mimic this complex. The compound, in which glucose was used as 

pyrophosphate mimic, showed the inhibitory activity towards -1,4-GalTs with a Ki of 119.6 

M.  

 

Figure 17 -1,4-GalTs inhibitor containing monosaccharide as mimic of pyrophosphate 

 

Matsuda and co-workers reported a series UDP-Gal analogues, in which pyrophosphate was 

replaced by alkene or alkane.63 These compounds had the same number of atoms between the 

5’-position of uridine and the anomeric position of galactose. With the introduction of an 

olefin and a hydroxyl group, a systematic structure-activity relationship could be conducted 
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in terms of the distance between the uridine and Gal and the relative orientation toward each 

other. (Figure 18). Yuasa and co-workers reported that the amino sugar moiety could serve 

as pyrophosphate due to chelation with manganese ion through the hinge motion.64 Among 

the series of compounds, -xylo-1-Uridine conjugate showed a moderate inhibition (45%). 

(Figure 18)  

 

Figure 18 Acceptor mimics: alkane and alkene mimic pyrophosphate and -xylo-1-U 

 

1.3.2.  Acceptor analogues 

 

The modification of donor UDP-Gal has been used as a strategy to develop potential -1,4-

inhibitors. However, these inhibitors are likely to inhibit more than one GalT, since other 

GalTs also use UDP-Gal as donor substrate. This selectivity problem is common in the 

development of glycosyltransferase inhibitors. The 4GalT family consists of enzyme 

proteins that share sequence similarity, but they differ in tissue expression and possibly in 

acceptor substrate specificity. Therefore, consideration of the specificity of GalTs substrate, 

the acceptor, GlcNAc and glucose, analogues also can be developed as inhibitors of -1, 4-

GalT (Figure 19).  
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Figure 19 Design of GlcNAc derivatives as inhibitors towards -1, 4-GalTs 

 

A series analogues of GlcNAc was designed and synthesized by Brockhausen and co-

workers.65 Modifications were made at the 3-, 4- and 6-positions of the sugar ring of the 

acceptor, in the nature of the glycosidic linkage, in the aglycone moiety and in the acetamido 

group. Derivatives containing a 2-naphthyl aglycone were found to inhibit the transfer of Gal 

to substrate (Figure 20).  

 

Figure 20 GlcNAc-(2-naphthyl), acceptor analogue with 2-naphthyl aglycone 

 

A sugar analogue of GlcNAc,2-naphthyl 2-butanamido-2-deoxy-1--D-glucopyranoside 

(Figure 21) was found to a be a specific inhibitor of -1,4-GalTs in cell homogenates (human 

airway cells; H292, human colonic cancer cells, CaCo-2 and mouse lymphocytic cells 

(MOPC)). Brown and co-workers reported an acceptor analogue, per-O-acetylated GlcNAc-

1,3-Gal--O-naphthalenemethanol, could inhibit sLex formation in U937 monocytic 

leukemia cells, suggesting its inhibitory activity in vivo.66 (Figure 21) 
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Figure 21 A: GlcNAc analogue 2-naphthyl 2-butanamido-2-deoxy-1--D-glucopyranoside; B: Acceptor 

analogue per-O-acetylated GlcNAc1-3Gal-O-naphthalenemethanol.  

 

1.3.3.  Transition state analogues 

 

Kajihara and co-workers reported the design of tricomponent bisubstrate analogues based on 

the model of SN2-like transition-state.67 (Figure 22) This compound showed remarkable 

inhibitory activity with a Ki of 1.35 M towards -1,4-GalTs against UDP-Gal with a Ki of 

3.3 M.  

 

Figure 22 Tricomponent bisubstrate analogues towards -1,4-GalTs 

 

1.4. Strategies to improve cell membrane penetration of enzyme 

inhibitors 

 

GTs play key roles in many biological processes and are potential drug targets. GT inhibitors 

are therefore sought after not only as chemical tools-, but also as potential lead compounds 

for drug discovery. Some GTs inhibitors are active in pharmacological assays. For example, a 

steroid-based sialyltransferase (STs) inhibitor AL10 is membrane-permeant and can 

effectively decrease total sialylation on the cell surface. Compound AL10 inhibits adhesion, 
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migration, actin polymerization and invasion of human lung cells which overexpress -2,3-

ST.68 However, conventional donor and substrate analogues are frequently less suitable for 

drug development and, more generally, for cellular applications due to their limited 

membrane permeability and chemical stability. Therefore, strategies are required to improve 

membrane penetration of GT inhibitors for their application in cell assays. 

Cell membrane surrounds the cytoplasm of the cell and in eukaryote cells, physically 

separating the intracellular organelles from the extracellular environment. Cell membrane is 

composed of a mix of proteins and phospholipids. Phospholipids form a lipid bilayer in 

which their electrically charged and hydrophilic head areas spontaneously arrange to face the 

aqueous cytosol and the extracellular fluid, while the hydrophobic tail area face towards each 

other, away from the cytosol. (Figure 23) Cell membranes are selectively permeable, 

allowing some substances to pass through while restricting the transport of others, which is 

essential for providing nutrients, eliminating waste as well as preventing unwanted molecules 

into cells. Due to the structure of the phospholipid bilayer, cell membranes are permeable 

through passive diffusion for uncharged and non-polar molecules, such as steroids, but less to 

for charged, polar molecules, such as sugar-nucleotides. 

 

Figure 23 Structure of phospholipids bilayer. (Figure taken from reference69) 
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Various strategies have been developed to improve the membrane permeability of polar 

compounds.70 One of the most common approaches is to mask or modify the polar moiety 

itself by generating suitable pro-drugs. It has been demonstrated that protection of polar 

groups, like amides, phosphate and sulfones by lipophilic substituents leads to membrane-

permeant compounds.71-73 For example, modification of amide NH groups by N-methylation 

is assumed to contribute to cell membrane permeability. The cyclo-[Leu4-Pro-Tyr] 

hexapeptide (Figure 24) displayed poor membrane permeability due to the polar amide 

groups. As expected, the permethylated cyclic peptide has much higher permeability than the 

non-methylated compound in RRCK cells.74 Esterification is carried out to protect the polar 

hydroxyl groups and the protecting groups can removed by intercellular esterases after up-

taken into cells. As the di-ester prodrug of nucleoside PSI-6130, compound RG7128 (Figure 

24) was modified by esterification of hydroxyl groups which can be removed after up-taken 

into cells. Compared with the parent compound, it exhibited better membrane permeability 

and bioavailability.75 The removal or replacement of polar functional groups can also 

improve the ability of compounds to cross lipid bilayers. For example, the benzamidine 

structure exhibits anti thrombotic activity. The amidine group in this structure influences the 

effective absorption due to its strong basicity. Thus, the compound PRO 3112, in which the 

amidine group is replaced by an isoquinoline group, exhibits reduced basicity, leading to 

increasing absorption.76 (Figure 24) 
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Figure 24 Cyclic hexapeptide and its permethylated analogue (left side); Nucleoside PSI-6130 as well as its 

ester prodrug. (right side); benzamidine structure and the analogue PRO-3112 containing isoquinoline structure. 

(bottom) 

 

A number of studies have investigated how the formation of intermolecular hydrogen bond 

(IMHB) influences physicochemical properties and cell permeability.  For example, in the 

study of the hexapeptide model system, the compound, cyclo-[D-Leu-D-Leu-Leu-D-Leu-Pro-

Tyr], was found being the most permeable across a parallel artificial membrane (PAMPA), in 

which four hydrogen bonds were formed between amide NH and carbonyl O atom.77 The 

influence of IMHB on compound properties was also demonstrated by stereoisomeric 

Trypanosoma cruzi growth inhibitors.78 Computational chemistry and NMR spectroscopy 

results were used to identify the formation of the intramolecular NH-NR3 bond in the 

compounds displaying higher cell permeability. (Figure 25) 
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Figure 25 Structure of Trypanosoma cruzi growth inhibitors and the intramolecular NH-NR3 bond in the 

compounds leads to higher cell permeability. 

 

Macrocyclization has also been investigated as an alternative approach for improving the 

membrane penetration of drug molecules.79 Improved permeability across membranes has 

been observed for macrocyclic model compounds compared to acyclic ones. The 

improvement is assumed to be due to changes of properties, like reducing flexibility of 

macrocyclic compounds.80 Shielding of polar groups by adjacent bulky lipophilic substituents 

has been designed to improve membrane permeability. Investigations showed that polar 

moieties, like amide bonds, can be shielded from the surrounding environment by lipophilic 

side chains to improve permeability.81 The cyclic hexaleucine showed higher permeability 

and higher oral bioavailability in rat than the corresponding pentaleucine. The X-ray 

crystallography data demonstrated that the side chain in pentaleucine positioned outward 

from cyclic centre and exposed that the polar amide groups to hydrogen bonding with the 

solvent. On the contrary, the side chains of hexaleucine were towards the cycle center, 

shielding the amide protons and exhibiting cell permeability. In order to identify uncharged 

-1,4-GalT inhibitors exhibiting good application in cell assays, strategies were investigated 

in our project for improving membrane permeability of inhibitors.  
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1.5. Project Objectives 

 

-1,4-GalTs are involved in many fundamental biological processes and -1,4-GalT 

inhibitors are therefore sought after as tool compounds for chemical biology, drug discovery 

and biotechnology. Cellular applications of many existing -1,4-GalTs inhibitors have been 

compromised by their limited stability and membrane permeability due to the presence of 

polar functional groups such as the charged pyrophosphate moiety. The main goal of this 

project was to develop uncharged -1,4-GalT inhibitors with suitable properties for 

applications in cells. 

In previous studies, 5-(5-formylthien-2-yl) UDP-galactose (5-FT UDP-Gal) has been reported 

as a potent -1,4-GalT inhibitor, which acts by blocking the movement of a flexible loop in 

the active site during the catalytic cycle. The 5-substituent of 5-FT UDP-Gal is essential for 

this mode of action. In this project, several strategies were explored to develop novel, 

uncharged -1,4-GalT inhibitors derived from 5-FT UDP-Gal (Figure 26). 

In order to improve membrane penetration, a pro-drug concept using phosphate esters of 5-

FT UDP-Gal was investigated. The aim was to mask the negatively charged pyrophosphate 

by conversion into esters that could be readily removed by intracellular carboxylesterases. In 

a related approach, nucleoside derivatives were developed, which contain an optimised 5-

substituent, but lack the pyrophosphate and galactose moieties. It was reasoned that the 

membrane permeability of these nucleosides would be enhanced due to the absence of polar 

moieties, while the introduction of an optimised substituent at the 5-position could help to 

overcome the loss of binding affinity resulting from removal of the pyrophosphate and 

galactose moieties. These strategies are described in Chapter 2. 

In order to overcome the potential loss of inhibitory activity in the nucleoside series resulting 

from the absence of the pyrophosphate and galactose moieties, a dynamic combinatorial 
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chemistry (DCC) strategy was investigated to identify suitable replacements of 

pyrophosphate and sugar moieties. Results from this approach are described in Chapter 3. 

To facilitate the identification of active fragments in the DCC experiments, a positive control 

compound was required. A known acceptor substrate-based GalT inhibitor, GlcNAc-(2-

naphthyl), was selected for these experiments. Unexpectedly, results from biochemical assays 

suggested that in contrast to published results, this compound behaved not an inhibitor but a 

substrate. This behaviour had not previously been reported, and a series of experiments was 

carried out to understand this discrepancy. These results are presented in Chapter 4. 

 

 

Figure 26 Illustration of project objectives: different strategies for the development of uncharged -1,4-GalT 

inhibitors. 
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CHAPTER 2 

 

Uncharged nucleoside inhibitors of -1,4-galactosyltransferase 

with activity in cells 

 

 

 

 

 

 

 



 

59 

 

2.1. Introduction 

 

In this chapter, a brief introduction will be given to the pro-drug concept and Suzuki cross-

coupling reactions. The latter was the main strategy for generating nucleoside-based GalT 

inhibitors. The main part of the chapter describes attempts to apply a pyrophosphate 

esterification strategy to 5-FT UDP-Gal, and the development of nucleoside derivatives of 5-

FT UDP-Gal.  

 

2.1.1. Ester pro-drugs of phosphate containing molecules 

 

A pro-drug is an inactive precursor of an active compound, that can undergo a chemical or 

enzymatic conversion in vivo to release the active compound. Pro-drug approaches are 

applied to mask undesirable properties of active compounds, like low solubility in water or 

lipid membranes, low target selectivity, chemical instability, pre-systemic metabolism and 

toxicity.1, 2 This is achieved by temporarily modifying the structure of the active drug with 

protecting groups and the prodrug is converted to the parent drug when it reaches the targets 

and the remnants of the protecting moieties are eliminated.  

Phosphate esters are essential for all organisms.3, 4 For example, Phosphates esters are central 

to information storage, serve as the currency for energy exchange, involve in intracellular 

signalling, and contribute to membrane fluidity. They are important intermediates in 

carbohydrate metabolism, in formation of nucleotides and their assembly into RNA and DNA, 

and in steroid fabrication and protein lipidation through the isoprenoid biosynthesis pathways. 

Due to its nature of negative charges, the phosphate ester containing compounds exhibit poor 
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membrane permeability, which prevent their intracellular application. Because of the high 

polarity, these compounds tend to be subject to efficient renal clearance and biliary excretion. 

Phosphates are substrates for many phosphatase, exhibiting enzymatic lability.5 Therefore, 

effective prodrug approaches are developed towards phosphate containing compounds, which 

help to remove charge to enable them to transit biological membranes and then release as the 

active forms once inside the target cells.  

To date, a wide variety of protecting groups for phosphates have been developed and they can 

be classified into two categories, esters6, 7 and amides8, 9. Esterification is the most widely 

used prodrug design approach to mask charges or to increase the lipophilicity of poorly 

absorbed compounds. Ester prodrugs of phosphate are chemically stable and their synthesis 

are usually straightforward in the presence of a hydroxyl moiety. Besides the simplicity of 

chemical manipulation, the wide distribution as well as broad and overlapping substrate 

selectivity of esterases has contributed to the widespread use of phosphate ester prodrugs. 

(Figure 27) 

 

 

Figure 27 A suitable prodrug concept for phosphate esters: masking groups (MG) that allow diffusion across the 

plasma membrane are introduced by chemical synthesis. Inside cells the groups are removed and the phosphate 

ester may accumulate. (modified from reference3) 
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The prodrug strategy was applied for the development of nucleotides for the treatment of 

HCV infection, the major cause of hepatocellular carcinoma.10, 11 Some nucleoside 

derivatives were discovered to exhibit inhibition towards the HCV polymerase, which are 

essential enzyme for viral replication. The nucleosides are converted into the 5’-triphosphates 

to be active as inhibitors towards the enzyme, which undergo a series of phosphorylation 

steps catalysed by three kinases. (Figure 28A) However, the first phosphorylation of the 

antiviral nucleosides to the nucleoside 5’-monophosphates is the rate limiting step in human 

cells as the first kinase in the phosphorylation cascade is the most substrate selective. To 

avoid the problematic first phosphorylation step, the antiviral nucleosides usually are 

converted to its 5’-monophosphate form. The nucleoside monophosphate are poor drug 

candidates due to its poor membrane permeability. In addition, the monophosphates are 

susceptible to degradation by phosphatases. In order to deliver the antiviral nucleoside 

monophosphate, the ester prodrug strategies were carried out. For example, the bis(S-acyl-2-

thioethyl) phosphate strategy (SATE) has been applied widely for the development of 

nucleoside 5’-phosphate prodrugs. The structure of nucleotide SATE prodrug consists of a 

nucleoside monophosphate where the phosphate group is masked by two S-acyl-2-thiothyl 

groups. The phosphate group is ultimately revealed by a sequence of enzymatic steps which 

requires esterase to cleave the thioesters and intramolecular attachment of the phosphate. 

(Figure 28B)  
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Figure 28 (A) Nucleoside kinase activation pathway resulting in nucleoside triphosphate which is the active 

substrate for a polymerase allowing incorporation of the nucleoside analogue into the growing RNA chain to 

exhibit inhibitory activity of virus replication. (B) The SATE prodrug of nucleotide decomposition pathway 

which produce the active compound nucleoside 5’-monophosphate. 

   

2.1.2. Synthesis of nucleoside derivatives via Suzuki cross-coupling 

 

Nucleosides are compounds containing a nucleobase attached to a ribose or deoxyribose 

sugar ring by a glycosidic bond, such as adenosine, cytosine. Nucleoside derivatives are 

widespread in nature and various of the derivatives proves to exhibit different biological 

activities, like antiviral12, antibacterial13 and anticancer14, and are explored as 

pharmaceutically active compounds.15, 16 The applications of modified nucleosides are also 

universal. For example, 6-arylpurines are used as unnatural nucleobase in artificial base 

pairs.17 C-8 modified nucleosides have shown potent antiviral and anticancer activity and 

have been studies as model compounds for DNA modification by carcinogenic compounds.18 

Fluorescently-labelled nucleosides are invaluable tools for the study of enzyme biological 

function.19 Due to the broad biological activities and the innumerable application of 



 

63 

 

nucleosides, the development of a convenient synthetic protocol for the synthesis of 

nucleoside derivatives attracts increasing interest. 

 

2.1.2.1. Suzuki cross-coupling chemistry 

 

Cross-coupling reactions between organometallics and organic electrophiles, like halides, are 

versatile methods for carbon-carbon bond formation, such as Negashi cross-coupling20, Heck 

reaction21, Sonogashira cross-coupling22. Amongst these cross-coupling reactions, Suzuki-

coupling reaction is one of the most widely characterized and developed reaction, which is 

carried out between organoboron reagents and organic electrophiles, like halides or triflates,  

mediated by palladium species under basic activation, forming carbon-carbon bond (Scheme 

1).23 The most commonly used organoboron reagents are boronic acids. The first example of 

Suzuki reaction was introduced by A. Suzuki and N. Miyaura.24 Compared with other cross-

coupling methodologies, Suzuki reaction offers several advantages, including the wide 

availability of organoboron and halide reagents, mild reaction conditions; compatibility with 

a wide variety of functional groups; water stability, less toxic etc.  

 

 

Scheme 1 Typical Suzuki-Miyaura cross-coupling reaction 
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A general catalytic cycle for the Suzuki-Miyaura cross-coupling reaction encompasses four 

key steps, oxidative addition, ligand exchange, transmetallation and reductive elimination. 

The mechanism for the cross-coupling reaction is depicted in Figure 29.25  

(a) The oxidative addition of an organic halide with the Palladium(0) species forms 

Palladium(II) species. The reactivity of palladium catalyst can be modulated by the 

ligands by donating or withdrawing electronic effect. The base present in the reaction 

serves a dual role in the catalytic cycle. The boron atom can be quarternised to form the 

reactive anion. 

(b) The anion attached to the Pd(II) species is displaced by the anion of the base.  

(c) The following step is the transmetallation between the Palladium species and the 

organoboron species. Pd(II) acts as an electrophile to react with nucleophiles and the 

organoboron speices are activated by the base to facilitate their nucleophilicity. 

(d) Cross-coupling product is released from the palladium species via reductive elimination 

and the Pd(0) is regenerated as well for re-entering the catalytic cycle.  

 

 

Figure 29 General catalytic cycle of the Suzuki-Miyaura cross-coupling reaction 
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The rate-determining step of Suzuki cross-coupling is usually believed to be the oxidative 

addition of organic halides towards palladium catalyst. The reactivity of compounds with 

different leaving groups decreases in the order Ar-I > Ar-Br > > Ar-Cl, which is determined 

by the stability of the leaving group that is being released. Moreover, other parameters of the 

cross-coupling also can influence the reaction, such as ligands, solvent, base, and palladium 

catalysts. Suzuki cross-coupling offers some disadvantages. For example, aryl halides 

generally react sluggishly; by-product such as self-coupling products are commonly formed; 

coupling products of phosphine-bound aryls are often formed.26  

With the development of Suzuki cross-coupling reaction, it has risen in popularity for 

synthesis of natural products27-29 and many libraries of compounds with biological 

activities30-32. As the inorganic-by-products are easily removed from the reaction mixture and 

the boronic acids are environmentally safer, the advantages have made the reaction scalable 

and cost-effective, suitable for industrial processes for drug synthesis.33  

 

2.1.2.2. Synthesis of nucleoside derivatives via Suzuki cross-coupling 

 

Suzuki cross-coupling chemistry is a versatile methodology applied to the modification of 

nucleobases in nucleoside derivatives.34, 35 Suzuki reaction catalyses C-C bond formation 

between a boronic acid and an activated halide mediated by palladium species. Thus, in 

principle there are two strategies for the synthesis of nucleoside derivatives.36 (Figure 30) 

The first one employs the cross-coupling between a halogenated nucleobase and an 

arylboronic acid. The second one involves the cross-coupling between a nucleoside boronic 

acid and a halogenoaryl species. Because nucleoside boronic acids are not commercially 

available and needed to be synthesized via the boronation of halogenated nucleosides, the 
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first strategy is more commonly carried out. Halogenated nucleoside derivatives can be 

prepared by standard electrophilic aromatic halogenation reactions.  

 

 

Figure 30 Two strategies of Suzuki cross-coupling for synthesis of nucleoside derivatives, NB = nucleobase 

 

Although Suzuki cross-coupling reactions are well precedented for a wide range of substrates, 

their application to the synthesis of nucleoside derivatives still presents many challenges. 

When components containing functional groups which can coordinate to metal catalysts and 

deactive them are used in reaction, the yields are significantly reduced. A common approach 

is to protect the functional groups to prevent the coordination. Yet the introduction of extra 

two steps can result in low yield and poor atom economy.37 The polar nature of nucleoside 

derivatives usually result in poor solubility in typical organic solvents. In order to solve these 

problems that lead to ineffective synthesis of nucleoside analogues, an approach by utilizing 

unprotected nucleosides for Suzuki reaction in aqueous media was developed.34, 35 The 

aqueous solution, only water or water/organic co-solvent, can dissolve components well, 

leading to increasing conversion to desired products. Also, the direct structural modification 

of unprotected nucleosides affords an efficient approach.38-40  

The electronic characteristics of components used for synthesis of nucleoside derivatives 

influence the cross-coupling. For example, electron-rich halogenated heterocycles, like furans, 

pyrroles, undergo slow oxidative addition to metal complexes. The boronic acid containing 

electron-deficient groups exhibit poor nucleophilic ability toward Pd species in the 
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transmetallation step. New ligands and solvent/base systems have been developed to facilitate 

the cross-coupling reaction.34  

The microwave-assisted Suzuki cross-coupling approach was also applied to the synthesis of 

nucleoside analogues. Microwave-assisted synthesis has attracted much interest because of 

the possibility of drastically reducing the reaction time and improvement of reaction yields in 

comparison to conventional reaction methods. The application of microwave heating to 

palladium catalysed Suzuki reactions exert a similarly accelerating effect on the catalytic 

reaction, resulting in a completion in a short time. It has been shown that microwave 

irradiation can significantly promote the Suzuki-miyaura cross-coupling reaction. For 

example, Suzuki cross-coupling was applied for the substituted 2’-deoxyuridine and the 

reaction involved unprotected 5-iodo-2’-deoxyuridine and boronic acids.41  The best 

conditions was utilized in the presence of Na2CO3 (1 equiv.), Pd(OAc)2 (3 mol %), and PPh3 

(5.4 mol%) in water at 80 oC for several hour. Microwave irradiation at 120 oC for 10 min 

was applied in the presence of the reagents described above. The change of heating mode 

affords a significant reduce in the reaction time (from hours to 10 min) while keeping the 

same efficiency. (Figure 31)  

 

 

Figure 31 Suzuki cross-coupling for synthesis of substituted 2’-deoxyuridine via conventional heating or 

microwave condition. 
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2.2. Objectives:  

 

A new class of GalT inhibitors, UDP-Gal derivatives with an additional substituent at uracil 

base, has been identified recently.42, 43 The prototype inhibitor of this series, 5-formylthien-2-

yl UDP-Gal (5-FT UDP-Gal, Figure 32) exhibits potent inhibitory activity towards several 

GalTs with Ki values in the low micromolar range. It is suggested that the 5-position 

substituent is essential for inhibitory activity, since it interferes with the movement of a 

flexible loop of enzyme active site from the open to the closed conformation.43, 44 This closed 

conformation is required for the full catalytic activity during the catalytic cycle, therefore, 5-

FT UDP-Gal is a promising inhibitor against GalTs. However, the pyrophosphate linkage is 

unstable and its membrane permeability is limited so that the application of 5-FT UDP-Gal is 

compromised due to the inherent negative charge of the pyrophosphate linkage. Several 

strategies were explored based on 5-FT UDP-Gal in order to develop -1,4-GalT inhibitors 

with promising activity in cells by facilitating membrane permeability. (Figure 32) 

A pro-drug concept was investigated in the first approach using a pyrophosphate ester of 5-

FT UDP-Gal. Its membrane permeability could increase remarkably if the negative charge of 

sugar nucleotide was removed and maintaining the pyrophosphate moiety, which was 

essential for binding the enzymes, would facilitate potent binding affinity between enzymes 

and compounds. Then, the ester group could be readily removed by the related intracellular 

enzyme. The second approach entailed developing nucleoside-based derivatives as-1,4-

GalTs inhibitors by removing pyrophosphate and sugar moieties and introducing substituents 

in the 5-position of uracil. The membrane permeability of derivatives could be facilitated due 

to the absence of polar moieties. It was speculated that the introduction of the 5-position 
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substituent could play an important role for binding with the enzymes to overcome the loss of 

binding affinity from the pyrophosphate and galactose moieties.  

 

Figure 32 Design of potent inhibitors with promising membrane permeability towards -1,4-GalTs 

 

2.3. Esterification of sugar-nucleotides 

 

In order to start the esterifcation of 5-FT UDP-Gal, the synthesis of 5-FT UDP-Gal was 

carried out firstly. (Scheme 2) Initiating from the iodination of uridine monophosphate (UMP) 

1 under a harsh reaction condition by using 2M HNO3 at 80 oC for 12h, 5-iodo uridine 

monophosphate (UMP) 2 was obtained with a yield of 75 %. The subsequent 

phosphormopholidation was performed under the Mukaiyama condition. After stirred at room 

temperature for 1.5h, the desired phosphoro mopholidate 3 was precipitated as a white 

powder by the addition of a solution of NaI in acetone. Then compound 3 was coupled with 

galactose--phosphate with the catalyst of N-methylimidazole hydrochloride (NMICl), 
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forming 5-iodo UDP-Gal 4 in 48 % yield. The 5-formylthien-2-yl substituent was introduced 

by Suzuki coupling reaction, with an isolated yield of 45 %. 

 

Scheme 2 Synthesis of 5-FT UDP-Gal. Conditions and reagents: (i) I2, HNO3 (2 M), CHCl3, 80 oC, 12h, 75 %. 

(ii) Morpholine, 2,2’-dipyridyldisulfide, PPh3, DMSO, rt, 1.5h, 67 %. (iii). Gal--monophosphate, N-

methylimidazole hydrochloride (NMICl), MeCN, DMF, rt, 9h, 48 %. (iv) Boronic acid, Cs2CO3, Tris(3-

sulfophenyl)phosphine trisodium salt (TPPTs), PdNa2Cl4, degassed water, 50 oC, 1.5h, 45 %. 

 

With compound 5 in hand, the esterified reaction was employed. (Table 1) Initial attempt for 

esterification of sugar nucleotide was tested under the condition by using 20 equiv. N, N-

Diisopropylethylamine (DIPEA), 5 equiv. bromo-methylacetate in anhydrous DMF solution 

at rt for 1d. (entry 1) TLC monitored that the starting material consumed and new spots 

appeared. (Mobile phase: ammonia/isopropanol/water = 1/3/6) After reverse phase 

chromatography purification, only pyrophosphate cleavage product 6 was obtained and sugar 

phosphate part was not collected from the eluent due to its UV inactivity. The obtained 

product 6 supported the decomposition of 5-FT UDP-Gal. Considering that the basic 

condition may interfere with the stability of pyrophosphate moiety, less excess equivalent of 

DIPEA was utilized in the reaction. (entry 2) When 5 equiv. base was utilized in the 

esterification, the starting material was still decomposed. It was speculated that the 

pyrophosphate could not survive for such a long reaction time due to its instability. Thus, the 

esterification of 5-FT UDP-Gal was carried out at rt for only 1h. The use of shorter reaction 

time also did not result in any product as it was shown on the TLC that the decomposition 
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took place but no esterified product was formed. (entry 3) The use of anhydrous MeCN as 

the replacement solvent of DMF also did not result in any product. (entry 4). 

Table 1 Attempts for esterification of 5-FT UDP-Gal 

 

Entry R Solvent Base Time Result 

1 5-formylthien-2-yl Dry DMF 20 equiv DIPEA 1d Decomposition 

2 5-formylthien-2-yl Dry DMF 5 equiv DIPEA 1d Decomposition 

3 5-formylthien-2-yl Dry DMF 5 equiv DIPEA 1h Decomposition 

4 5-formylthien-2-yl Dry MeCN 5 equiv DIPEA 1h Decomposition 

5 5-formylthien-2-yl Dry DMF 5 equiv TEA 1h Decomposition 

6 I Dry DMF 5 equiv DIPEA 1h Decomposition 

7 H Dry DMF 5 equiv DIPEA 1h Decomposition 

 

In order to investigate the effect of base towards esterification, a different base, triethylamine 

(TEA), was employed for the reaction. The condition used to carry out the esterification 

involved 5 equiv. bromo methylacetate, 5 equiv. TEA as the base in DMF for 1h, as shown in 

entry 5. Under this condition, the formation of desired product similarly did not succeed. It 

was speculated that the 5-subtituent of uracil moiety might influence the reactivity of 5-FT 

UDP-Gal. To verify it, the intermediate, 5-iodo UDP-Gal was then utilized, whereas this 

attempt under condition of 5 equiv. DIPEA as base in DMF solution for 1h still failed. (entry 

6) The unsubstituted compound, commercial UDP-Gal was used as starting material. (entry 7) 
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Before utilized in the reaction, the commercial material was pre-treated via an ion-exchange 

column to exchange the sodium ion into triethylamine salt. It is thought that the strong 

electrostatic interaction between sodium ion and phosphate bond might interfere with the 

esterification. However, only decomposed product UMP was obtained.  

As the starting materials used in the reaction were all triethylamine salt, which were obtained 

via reverse phase chromatography with triethylammonium bicarbonate buffer (TEAB) and 

methanol as mobile phase, it was hypothesised that the interaction between 

triethylammonium cation and phosphate still prevent the formation of esterified product. The 

compound 7 containing pyrophosphate free acid would exhibit better reactivity. Therefore, 

the commercial UDP-Gal material, disodium UDP-Gal, was applied as a model reaction. 

Dowex 50WX2 hydrogen form resin was utilized for proton exchanging, leading to free acid 

of UDP-Gal. (Figure 33) Before utilised for ion exchange, the resin was pre-treated. This 

commercial resin was washed by methanol and deionized water separately for the removal of 

impurities. Then 1 M HCl solution was used to wash and saturate the resin, which was 

monitored by pH paper. The excess acid was removed by washing with deionized water. 

Disodium UDP-Gal was employed for proton exchange with the pre-treated resin and the free 

acid material was collected. With 7 in hand, it was used for the esterification under the 

condition of 5 equiv. DIPEA in anhydrous DMF solution for 1h. To our disappointment, the 

reaction still failed.  

 

 

Figure 33 Proton exchange of UDP-Gal by cation Dowex resin 
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It was reported that the pyrophosphate linkage of UDP-GlcNAc could be mono-esterified.45 

The difference of structures between UDP-GlcNAc and UDP-Gal is the 2-position substituent 

of galactose. It was proposed that the unprotected hydroxyl group was more active comparing 

with acetylated NH group. It could take place the nucleophilic attack toward pyrophosphate 

bond, facilitating the cleavage of pyrophosphate moiety. (Figure 34) Due to the high 

reactivity of 2’-OH group, it was difficult to carry out the esterification of galactose-

nucleotides directly. Because of these practical difficulties in obtaining the desired phosphate 

esters, it was decided to turn our attention to alternative strategies for the development of 

membrane-permeant inhibitors. 

 

 

Figure 34 Proposed mechanism of pyrophosphate cleavage 

 

 

2.4. Synthesis of nucleoside derivatives: 

 

It is known that the substituent in 5-position is crucial for GalT inhibitory activity as it blocks 

the movement of flexible loop in the enzyme active site.46 Therefore, in our initial attempt to 

obtain an uncharged inhibitor of -1,4-GalTs, we retained the 5-substituted uridine fragment 

of 5-FT-UDP-Gal, and removed the pyrophosphate and sugar moieties (Figure 35).  
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Figure 35 Design of 5-FT uridine modelled from the structure of 5-FT UDP-Gal 

 

For the synthesis of the initial target compound 5-formylthien-2-yl uridine (5-FT uridine, 8), 

previously established Suzuki cross-coupling conditions using conventional heating were 

employed. (Scheme 3) 5-iodo uridine was used as starting material. Despite a reaction time 

of up to 2 days, 8 was obtained in only 26% yield. 

 

Scheme 3 Synthesis of 5-FT uridine. Reagents and conditions: boronic acid, Cs2CO3, PdNa2Cl4, 

TPPTs, degassed water, 2d, rt, 26 %. 

 

Considering that the free hydroxyl groups of unprotected nucleoside may interfere with the 

catalyst reactivity, the 5-iodo uridine was acetylated prior to utilized in Suzuki reaction 

(Scheme 4). When acetylated 5-iodo uridine 9 was utilized in the Suzuki cross-coupling, the 

yield was even lower. It was speculated that the poor water solubility of starting material lead 

to the drop of yield.  
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Scheme 4 Synthesis of acetylated 5-iodo uridine. Reagents and conditions: Ac2O, triethylamine, 4-

dimethylaminopyridine, MeCN, rt, 3h, 89%. 

 

It is known that due to the rapid heating technology of microwave irradiation, the reaction 

time for synthesis of desired product could be reduced drastically to a few minutes and the 

palladium catalysed processes could be facilitated compared with conventional heating. 

Therefore, the microwave Suzuki cross-coupling was carried out for the synthesis of 5-

substitute nucleoside analogues (Scheme 5). For 5-formylthien-2-yl boronic acid, microwave 

condition led to markedly improved yield, from 26 % to 54 %, and significantly reduced 

reaction time, from 2 days to 0.5h, compared to conventional heating.  

 

 

Scheme 5 Synthesis of 5-FT uridine. Reagents and condition: boronic acid, Cs2CO3, PdNa2Cl4, TPPTs, degassed 

water, MW 120 oC, 30min, 54%. 

 

With this product 8 in hand, its inhibitory activity was assessed in a phosphatase-coupled 

glycosyltransferase assay (for details of this assay see Chapter 4). However, while the 5-FT 

UDP-Gal inhibits -1,4-GalTs with an IC50 value of around 12 M, the corresponding 

nucleoside derivative 8 was inactive at concentration up to 1 mM. In order to overcome this 
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dramatic drop in inhibitory activity resulting from removal of the pyrophosphate linkage and 

sugar moieties, the optimization of the substituent in the 5-position was carried out. A series 

of uridine derivatives with different heteroaromatic substituent on position 5 was designed 

and synthesis (Figure 36). 

 

 

Figure 36 Uridine derivatives with substituents in 5-position 

 

According to their structures, these target molecules also can be obtained by Suzuki-Miyaura 

cross-coupling of 5-iodo uridine with different aryl and heteroaryl boronic acids. By analysis 

of the Suzuki coupling mechanism, in the transmetallation step, Pd(II) acts as electrophiles to 

react with nucleophiles. (Figure 29) As the organoboron reagent tends to be the nucleophilic 

component in the catalytic cycle, electron-deficient (hetero)aryl boronic acids will react 

sluggishly under traditional conditions. In order to facilitate the cross-coupling of such less 

reactive boronic acids, microwave conditions for Suzuki-miyaura conditions between 5-iodo 

uridine and boronic acids were explored.  

Initial trial of the Suzuki cross-coupling reaction for synthesis of 5-pyridinyl-3-yl uridine 10 

was tested under the same experimental condition used for 8. The reaction was carried out by 

using boronic acid (1.5 equiv.), Cs2CO3 (2 equiv.), TPPTs (0.0625 equiv.), PdNa2Cl4 (0.025 
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equiv.) in degassed water at MW 120 oC (Table 2, entry 1). After 30min, only a mixture of 

starting material and the deiodinated compound obtained. The use of microwave irradiation 

for longer time (entry 2) also did not result in any product. The formation of deiodinated 

product suggested that the oxidative addition step of Suzuki reaction took place, yet due to 

the poor nucleophilicity of electron-deficient pyridine-3-boronic acid, the transmetalation 

between boronic acid and palladium species failed. We then investigated the Suzuki cross-

coupling reaction condition with different palladium species. The condition used to carry out 

the cross-coupling reaction involved tetrakis (triphenylphosphine palladium(0)) (5 mol%) as 

catalyst, potassium carbonate (3 equiv.) as the base, and boronic acid (1.5 equiv.) in dimethyl 

ether (DME)-ethanol (9:1), as shown in entry 3. Under this condition, the formation of 

desired product similarly did not success. The use of microwave irradiation at 150 oC and 

toluene-ethanol (2:1) as solvent also did not result in any product. (entry 4) It is known that 

cesium base is generally effective base for Suzuki cross-coupling.47 According to the 

mechanism, in the case of strong base with large size cation, the nucleophilicity of the 

boronate anion will be increased and more reactive towards the palladium species, which can 

accelerate the rate of transmetalation step. To verify this effect, pyridine-3-boronic acid 

underwent the Suzuki coupling in the presence of Cs2CO3 (2 equiv.), teterakis (5 mol%), 1,2-

dimethoxyethane-water (5;1) as solvent, whereas no desired product was obtained (entry 5). 

It is known that the addition of fluoride ion could facilitate the cross-coupling process via the 

possible formation of a stable fluoroborate intermediate in the transmetalation step.48  

However, attempts to cross-couple pyridine-3-boronic acid under conditions, Pd(OAc)2, KF 

(2 equiv.) and MeOH as solvent, completely failed (entry 6). Reaction was carried out at 

MW 130 oC for 30 min using a mixture of pyridine-3-boronic acid (1.5 equiv.), 

PdCl2(dppf)CH2Cl2 (5 mol%), NaHCO3(3 equiv.), DME/H2O (3;1) (entry 7). A 20% yield to 

the cross-coupling product was observed. It was speculated that in the palladium species, the 
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1,1’-Bis(diphenylphosphino)ferrocene (dppf) ligand can enhance the reactivity towards 

boronate intermediate and dramatically improve the efficiency of cross-coupling reaction. 

 

Table 2 Suzuki-Miyaura coupling of 5-iodo uridine with pyridine-3-boronic acid 

 

Entry Reagents Microwave Results 

1 PdNa2Cl4, TPPTs, Cs2CO3, H2O MW 120 oC, 0.5h deiodination 

2 PdNa2Cl4, TPPTs, Cs2CO3, H2O MW 120 oC, 1h deiodination 

3 Pd(PPh3)4, K2CO3, DME/EtOH = 9/1 MW 120 oC, 0.5h deiodination 

4 Pd(PPh3)4, K2CO3, Toluene/EtOH = 2/1 MW 150 oC, 0.5h deiodination 

5 Pd(PPh3)4, Cs2CO3, DME/H2O = 5/1 MW 120 oC, 1h deiodination 

6 Pd(OAc)2, KF, MeOH MW 120 oC, 0.5h deiodination 

7 PdCl2(dppf)DCM, NaHCO3, DME/H2O = 3/1 MW 130 oC, 0.5h 20 % 

 

 

After obtaining compound 10 successfully, a second derivative 11, 5-pyridinyl-4-yl uridine, 

was prepared in the same way starting from 5-iodo uridine and pyridine-4-boronic acid (1.5 

equiv.). After purification of the crude product, the compound 11 was obtained in 27 % yield 

(Table 3, entry 1).  Since the difference between compound 14 and 10 is only the additional 

substituent in the 2’-position of the pyridine ring, the Suzuki cross-coupling was performed 
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with 2-(4-methylpiperazin-1-yl)-pyridine-4-boronic acid (1.5 equiv.) using the same 

previously described condition (PdCl2(dppf)CH2Cl2 (5 mol%), NaHCO3 (3 equiv.), 

DME/H2O (3;1), MW 130 oC, 30 min. The analogue 14 was obtained in 35 % yield (entry 4). 

Then the synthesis of compound 12 and 13 were started from 5-iodo uridine and 

isoquinoline-4-boronic acid and indole-4-boronic acid separately using TPPTs (0.0625 

equiv.), PdNa2Cl4 (0.025 equiv.) as ligand and catalyst, Cs2CO3 (2 equiv.) as the base in 

degassed water at MW 120 oC for 30 min. The derivatives 12 and 13 were obtained in 25% 

and 43% yield separately (entry 2 and 3) 

 

Table 3 Suzuki-Miyaura coupling of 5-iodo uridine with different heteroarylbornic acids R-B(OH)2 

Entry R Cmpd Reagents Microwave Yield (%) 

1 5-pyridinyl-4-yl- 11 PdCl2(dppf)DCM, NaHCO3, 

DME/H2O (3:1) 

 

MW 130 oC, 0.5h 27 

2 5-isoquinoline-4-yl- 12 PdNa2Cl4, TPPTs, Cs2CO3, H2O 

 

MW 120 oC, 0.5h 25 

3 5-indole-4-yl- 13 PdNa2Cl4, TPPTs, Cs2CO3, H2O 

 

MW 120 oC, 0.5h 43 

4 5-(2-(4-methylpiperazin-1-

yl)-pyridine-4-yl- 
14 PdCl2(dppf)DCM, NaHCO3, 

DME/H2O (3:1) 

MW 130 oC, 0.5h 35 

 

 

2.5. Synthesis of amino derivatives of 5-FT uridine via reductive 

amination 

 

In order to generate additional structure diversity, compound 8 was used for reductive 

amination with a range of amino acids (Scheme 6). It was speculated that through the 

extension of the 5-substituent, these derivatives might be able to engage in additional 

interactions with the target enzyme -1,4-GalTs as more functional groups would be included. 
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For the modifications, natural amino acids with different side chain functionalities were 

chosen, including L-glutamic acid, L-lysine, L-tryptophan, L-glycine and L-valine. 

 

 

Scheme 6 Synthesis of reductive aminated derivatives. Reagents and conditions: amino acids, 

NaBH3CN, MeOH, rt, 24h. 

 

The initial trial of reductive aminated reaction was tested between 8 and Lysine (3 equiv.). 

The reaction was carried out by using NaBH3CN (5 mol %) in methanol at room temperature. 

After 1d, a mixture of the reductive aminated product 15 was obtained with a yield of 68 % 

(Table 4, entry 1) because there are two free amino groups in lysine. According to the 1H-

NMR spectra (Figure 37), the ratio between these two compounds is 5:1. Since these two 

compounds are structurally similar, their Rf values on TLC plate are also similar and it is 

difficult to separate them through flash chromatography. Separation was ultimately achieved 

by semi-preparative HPLC, and the compounds were identified unambiguously through the 

heteronuclear correlations between Ca and H1/H2 in their HMBC NMR spectra.  
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Figure 37 NMR spectra of the mixture of two lysine aminated products 15 and 15-2 

 

A second reductive aminated nucleoside derivative 16 was prepared in a similar way starting 

from 8 and Glycine (3 equiv.). After purification of the crude, the 5-FT-Gly uridine 16 was 

obtained in 27% yield (entry 2). Then using the similar condition, the reductive amination of 

5-FT uridine with L-valine, L-glutamic acid and L-tryptophan separately were carried out as 

well, affording the desired uridine analogue 17, 18 and 19, respectively (entry 3, 4 and 5).  

The synthesis of compound 16, 17, 18, 19 were all with a relative low yield, from 20 to 30 %. 

It is thought that during the C-18 reverse phase chromatography purification, the starting 

material and amination product could not be separated completely. Therefore, the 

chromatography purification needed to be carried out more than once, which led to the loss of 

the products.  
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Table 4 Reductive amination of 5-FT uridine 8 with different natural amino acids 

Entry Amino acids Products Reagents Yield (%) 

1 Lysine 15 NaBH3CN, methanol 68 

2 Glycine 16 NaBH3CN, methanol 27 

3 Valine 17 NaBH3CN, methanol 22 

4 Glutamic acid 18 NaBH3CN, methanol 30 

5 Tryptophan 19 NaBH3CN, methanol 18 

 

 

2.6. Inhibition assessment of uridine derivatives 

   

In order to assess the inhibition activity of these derivatives, a phosphatase-coupled 

glycosyltransferase assay was used.49 This assay uses a calf intestinal alkaline phosphatase 

(CIP) to cleave inorganic phosphate quantitatively from the nucleoside diphosphate that is 

formed as a secondary product of the glycosylation reaction. The phosphate concentration is 

then quantified by a colormetric assay at 620nm. In the presence of inhibitor, the absorbance 

signal is reduced. The assay can therefore be used to assess the potency of inhibitors by 

determining their relative IC50 values at enzyme turnover rates between 20-50% of UDP-Gal 

donor. The adapted protocol with this turnover window range could give reproducible and 

comparable results.  

Bovine -1,4-GalTs, was expressed and purified as previously reported50 and the protocol 

used for renaturation of inclusion bodies and refolding of -1,4-GalTs was adapted from the 

previous literature.50 LgtC was expressed and purified as reported.51 The inhibition assays 

were carried out as previously reported.49  
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In the first round of screening, uridine derivatives 8, 10-19 were tested against -1,4-GalTs 

under the reported conditions. The maximum concentration of the inhibitor candidates used 

in the assays was up to 100 M, while all these derivatives were inactive at all towards -1,4-

GalTs. Then the maximum concentrations of inhibitor candidates were increased to 1 mM. 

Most of the compounds still showed no activity towards enzyme (Table 5), yet compound 13 

and 19 exhibited promising activities (Figure 38).  

 

Table 5 Inhibitory activities of 5-substituent uridine derivatives 8 and 10 to 19 towards -1, 4-GalTs 

Entry Cmpd IC50 (M) Turnover% 

1 8 NO inhibition 25 % 

2 10 NO inhibition 20 % 

3 11 NO inhibition 28 % 

4 12 NO inhibition 23 % 

5 13 207 ± 37 21 % 

6 14 NO inhibition 29 % 

11 15 NO inhibition 20 % 

12 16 NO inhibition 23 % 

13 17 NO inhibition 26 % 

14 18 NO inhibition 22 % 

15 19 290 ± 48 28 % 

 

 

 

 

 

 

 



 

84 

 

Figure 38 IC50 value assessments of compound 13 and 19 against -1,4-GalTs. Conditions: 13 or 19 (0 to 1mM) 

-1,4-GalTs (diluted to the required concentrations), acceptor (GlcNAc, 5 mM), UDP-Gal donor (28 M), 

MnCl2 (5 mM), Chicken egg-white lysozyme (CEL, 1 mg/mL), calf-intestinal alkaline phosphate (CIP, 10 

U/mL), DMSO (10%) buffer (13 mM HEPES, pH = 7.0, 50 mM KCl) were incubated on a 96-well plate at 30 
oC with shaking for 20 min. The reaction was stopped by the addition of malachite green reagents, and the 

absorbance was recorded at 620 nm after 30 min. All concentrations are final concentrations. Bars indicate mean 

values ± S.D. of triplicate experiments 

 

Analysis of the structures of the two active analogues shows that the 5-substituents in both 

cases contain an indole motif (Figure 39). This suggested that the indole substituent in 

position 5 might provide good affinity towards enzyme active site. 

 

 

Figure 39 Active nucleoside derivatives 13 and 19 which both contain indole moiety in 5-substituent, with IC50 

value between 200 to 300 M. 

 

In order to further investigate this possibility, another four derivatives containing an indole or 

indazole moiety were designed and synthesized (Table 6). It was speculated that the 

Compound 13 against -1,4-GalTs (IC50) Compound 19 against -1,4-GalTs (IC50) 
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reactivity of these boronic acids might be similar as the indole-4-boronic acid, therefore the 

Suzuki-cross coupling reaction was tested under the previous experimental conditions. The 

reaction of 5-iodo uridine and indazole-4-boronic acid in the present of PdNa2Cl4 (5 mol%), 

Cs2CO3 (2 equiv.) and TPPTs (0.0625 equiv.) at MW 120 oC over 30min resulted to the target 

compound 20 in a 10 % yield (Table 6, entry1).  The yield obtained using this reaction 

condition was lower than the one obtained for compound 13. It was thought that the reactivity 

was dependant on the nature of the boronic acid. In the case of compound 21, the cross-

coupling reaction was conduct between 1-methyl-indole-4-boronic acid and 5-iodo uridine in 

the same condition. In contrast to the result of synthesis compound 13, little product was 

observed with a 4% yield (entry 2). In order to improve the yield, other condition was 

attempted. The mixture of 5-iodo uridine and boronic acid (1.5 equiv.) in the presence of 

(PdCl2(dppf)CH2Cl2 (5 mol%) and NaHCO3 (3 equiv.) in DME/H2O (3;1) at MW 130 oC for 

30 min afforded the product 22 in 58 % yield (entry 3). Then the cross-couplings were 

performed between 5-iodo uridine and indole-5-boronic acid and indole-6-boronic acid 

respectively, giving the corresponding product 23 and 24 in 70% and 64 % yield separately.  
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Table 6 Suzuki-Miyaura coupling for synthesis of uridine derivatives with indole or indazole moieties 

 

Entry R Cmpd Reagents MW  Yield (%) 

1 5-(1H-

indazole)-4-yl 

20 PdCl2(dppf)DCM, NaHCO3, 

DME/H2O (3:1) 

 

MW 120 oC, 0.5h 10 

2 5-(1-methyl-

indole)-4-yl 

21 PdNa2Cl4, TPPTs, Cs2CO3, H2O 

 

MW 120 oC, 0.5h 4 

3 5-(1-methyl-

indole)-4-yl 

21 PdCl2(dppf)DCM, NaHCO3, 

DME/H2O (3:1) 

 

MW 130 oC, 0.5h 58 

4 5-indole-5-yl 22 PdNa2Cl4, TPPTs, Cs2CO3, H2O 

 

MW 120 oC, 0.5h 70 

5 5-indole-6-yl       23 PdNa2Cl4, TPPTs, Cs2CO3, H2O 

 

MW 120 oC, 0.5h 64 

 

 

With sufficient quantities of these derivatives in hand, the phosphatase-coupled 

glycosyltransferase assay was carried out to assess their inhibitory activities and the results 

were illustrated in Table 7.  

 

Table 7 Inhibitory activity of 5-substituent uridine derivatives 20 to 23 towards -1, 4-GalTs 

Entry Cmpd  IC50 (M) Turnover% 

1 20 NO inhibition 42% 

2 21 163 ± 30 32% 

3 22 NO inhibition 47% 

4 23 250 ± 24 34% 
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Compound 21 against -1,4-GalTs (IC50) Compound 23 against -1,4-GalTs (IC50) 

  

 

Figure 40 Inhibition assay of indole containing uridine derivatives 21 and 23 towards -1,4-GalTs. Conditions: 

2.19 or 2.21(0 to 1mM) -1,4-GalTs (diluted to the required concentrations), acceptor (GlcNAc, 5 mM), UDP-

Gal donor (28 M), MnCl2 (5 mM), Chicken egg-white lysozyme (CEL, 1 mg/mL), calf-intestinal alkaline 

phosphate (CIP, 10 U/mL), DMSO (10%) buffer (13 mM HEPES, pH = 7.0, 50 mM KCl) were incubated on a 

96-well plate at 30 oC with shaking for 20 min. The reaction was stopped by the addition of malachite reagents, 

and the absorbance was recorded at 620 nm after 30 min. All concentrations are final concentrations. Bars 

indicate mean values ± S.D. of triplicate experiments 

 

Encouragingly, compounds 21 and 23 show comparable or a little better activity than 

compounds 13 and 19, with IC50 values of 163 M and 250 M respectively (Figure 40). 

This result could support the hypothesis that the indole substituent in position 5 of uridine is 

indeed advantageous for inhibitory activity in this series.  

The used colorimetric assay detects the formation of the secondary product of -1,4-GalTs 

reaction, uridine diphosphate (UDP). The active nucleoside derivatives may also interfere 

with the phosphatase or chemically react with other assay reagents to confound the assay 

readout by producing apparent inhibitory activity, leading to false positive results. Therefore, 

the control experiments were carried out to eliminate this possibility. The control assay 

excluding -1,4-GalTs was carried out in a separate plate to identify this possible interference.  
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Compound 13 against phosphatase Compound 19 against phosphatase 

 
 

Compound 21 against phosphatase Compound 23 against phosphatase 

 
 

 

Figure 41 Control experiment of active nucleoside derivatives towards phosphatase Conditions: compound 13, 

19, 21 or 23 (0 to 1mM), acceptor (GlcNAc, 5 mM), UDP-Gal donor (28 M), MnCl2 (5 mM), Chicken egg-

white lysozyme (CEL, 1 mg/mL), calf-intestinal alkaline phosphate (CIP, 10 U/mL), DMSO (10%), buffer (13 

mM HEPES, pH = 7.0, 50 mM KCl) were incubated on a 96-well plate at 30 oC with shaking for 20 min. The 

reaction was stopped by the addition of malachite reagents, and the absorbance was recorded at 620 nm after 30 

min. All concentrations are final concentrations. Bars indicate mean values ± S.D. of triplicate experiments 

 

The active derivatives, 13, 19, 21 and 23, did not interfere with the colorimetric readout of 

the assay, as evidenced by the lack of signal drop in the control experiment, carried out with 

increasing concentration of derivatives but without -1,4-GalTs (Figure 41).  Based on the 

previous obtained results, it was confirmed that nucleoside derivatives 13, 19, 21 and 23 

could show inhibitory activity towards -1,4-GalTs.  



 

89 

 

2.7. Synthesis of sugar nucleotide derivatives. 

 

From the previous experimental results, it was suggested that the indole substituent in 5 

position of nucleoside was indeed advantageous for inhibitory activity towards enzyme. 

Given the excellent inhibitory activities that uridine derivatives with 5-substituent containing 

indole moiety exhibited, there is a good reason to expect the high affinities that 

corresponding full UDP-nucleotide derivatives would show because of the additional binding 

activities from 5-position substituents (Figure 42). And also, in order to better understand the 

respective contribution of the 5-substituent, pyrophosphate bond and sugar groups towards 

enzyme inhibition, the UDP-Gal derivatives corresponding to nucleoside derivatives, 5-

indole UDP-Gal and 5-formylthien-tryptophan UDP-Gal (5-FT-Typ UDP-Gal), were 

prepared.  

 

Figure 42 Design of 5-substituted sugar nucleotides corresponding to the most active uridine-based inhibitors 

  

According to the previous synthetic experiments, harsh reaction conditions were required for 

introduction of substituents in 5-position, yet the pyrophosphate bond is unstable. In addition, 
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it required 24 hours for reductive reaction to accomplish, which was also impossible for 

pyrophosphate bond. Therefore, it was planned to introduce 5-position substituent prior to the 

coupling with sugar moiety, which was different from the previous synthetic route developed 

by our group. (Scheme 7) 

 

Scheme 7 Synthesis of UDP-sugar derivatives. Reagents & conditions: (i) I2, 2M HNO3, CHCl3, 18h, 90 oC, 

75 %; (ii) Morpholine, dipyridyldisulfide, PPh3, DMSO, rt, 1.5h 78 %; (iii) Indole-4-boronic acid (for indole 

UDP-Gal) or 5-formylthien-2-yl-boronic acid (for 5-FT-Typ UDP-Gal), Cs2CO3, TPPTs, Na2PdCl4, degassed 

H2O, MW 120 oC, 30 min, 44 % (26) or 47 % (intermediate of 5-FT-Typ UMP morpholidate); (iv) L-

Tryptophan, NaBH3CN, degassed methanol, rt, overnight, 40 % (24); (v) -D-galactose-1-phosphate, 2-

methylisothiazolone hydrochloride, dry DMF, rt, 9h / 38 % (27) or 15h / 35 % (25).  

 

Firstly, the iodination of uridine mono-phosphate was carried out under relatively harsh 

conditions (80 oC, 2M HNO3) and 5-iodo UMP 2 hate was obtained after 12 h in 75 % yield. 

The subsequent phosphormorpholidation was performed under Mukaiyama conditions. After 

stirring at rt for 2h, the sodium iodide solution in acetone was added to precipitate the desired 

product. Both indole and 5-formylthien-2-yl groups were introduced at the 5-position of 

uracil respectively via microwave Suzuki cross-coupling and the reductive amination was 
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carried out with 5- formylthien-2-yl uridine phosphormorpholidate. With the catalysis of 

NMICl, the phosphormorpholidate product 26 was coupled with -D-galactose-1-phosphate, 

reacting at rt for 9h with a yield of 38%. As for the reaction between 24 and -D-galactose-1-

phosphate, longer reaction time, 15h, was used. It was speculated that the steric hindrance 

from the bulky substitutent in 5-position may slow down coupling reaction with -D-

galactose-1-phosphate.  

 

2.8.  Assessment of inhibitory activities of UDP-nucleotides 

 

After obtaining the desired UDP-sugar derivatives, the phosphatase-coupled 

glycosyltransferase assay was utilized for assessing the potency of their inhibition and the 

results were illustrated in Table 8. As anticipated, compared to corresponding uridine 

derivatives, the full UDP-sugars were 5-fold more active and the IC50 values towards-1,4-

GalTs were improved obviously, from around 200-300 M to 40-60M. However, the rank 

order within the UDP-Gal series was not as expected. The inhibitory activities of compounds 

25 and 27 were even slightly weaker than the previous prototype inhibitor 5-FT UDP-Gal, 

even though the corresponding uridine derivatives were more active than 5-FT uridine.  

 

 

 

 

 

 

 



 

92 

 

Table 8 Inhibitory activities of 5-substituent uridine derivatives and corresponding 5-substitue UDP-nucleotides 

towards -1,4-GalTs. 

 

  

R IC50 (M) IC50 (M) 

Indole-4-yl 41 ± 12 207 ± 37 

FT-Typ- 60 ± 3 290 ± 48 

FT- 12 ± 3 NO inhibition 

 

 

In order to assess their target selectivity, the active nucleosides, 13 and 19, and corresponding 

UDP-nucleotides derivatives, 27 and 25, were evaluated against other GalTs, LgtC from N. 

meningitides. The results were shown in Table 9. All the active uridine derivatives towards 

-1,4-GalTs were all inactive against LgtC. In contrast to the nucleosides, the corresponding 

UDP-nucleotides exhibited similar inhibitory activities against LgtC.  

 

Table 9 Inhibitory activity of 5-substituent uridine derivatives and corresponding5-substitue UDP-nucleotides 

towards LgtC. 

 

  

R IC50 (M) IC50 (M) 

Indole-4-yl 54 ± 13 NO inhibition 

FT-Typ- 42 ± 8 NO inhibition 

FT- Not tested NO inhibition 

 

. 
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The donor analogues, compound 25 and 27, acted as inhibitors towards both two GalTs. In 

order to assess their substrate activity towards both -1,4-GalTs and LgtC, the phosphatase-

coupled glycosyltransferase assays were carried out with these derivatives respectively 

instead of the natural donor UDP-Gal as donor. (Figure 43) 

 

Compound 27 substrate against -1,4-GalTs Compound 27 substrate against LgtC 

  

Compound 25 substrate against -1,4-GalTs Compound 25 substrate against LgtC 

  

Figure 43 Substrate assay of compound 25 and 27 towards -1,4-GalTs and LgtC. Conditions: 25 or 27 (0 to 

1mM), enzyme (-1,4-GalTs or LgtC, diluted into the required concentration), acceptor (GlcNAc, 5 mM), 

MnCl2 (5 mM), Chicken egg-white lysozyme (CEL, 1 mg/mL), calf-intestinal alkaline phosphate (CIP, 10 

U/mL), DMSO (10%) buffer (13 mM HEPES, pH = 7.0, 50 mM KCl) were incubated on a 96-well plate at 30 
oC with shaking for 20 min. The reaction was stopped by the addition of malachite reagents, and the absorbance 

was recorded at 620 nm after 30 min. All concentrations are final concentrations. Bars indicate mean values ± 

S.D. of triplicate experiments 

 

Based on these results, it was speculated that the contribution towards -1,4-GalTs inhibition 

of the substituent in 5-position and the pyrophosphate bond and-D-galactose groups was 
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not additive. In contrast, it appeared to be a direct interplay for GalTs inhibition between 

different moieties. In the presence of the complete UDP-nucleotide structure, the 

pyrophosphate group appears to be the dominant factor for enzyme inhibition and enables 

strong inhibition, even if the nature of the 5-substituent is sub-optimal (Figure 44). On the 

other side, the binding between pyrophosphate bond and manganese ion is quite strong that 

leads to the potent binding affinity between enzyme and derivatives. Despite significant 

structural differences between these GalTs, all of them have flexible active site loops folding 

once binding with the sugar-nucleotides. The 5-substituent could interfere with the movement 

of the loop once derivatives binding with enzyme, showing inhibition activities. Thus, the 

selectivity of these derivatives was limited, as evidenced by the indiscriminate activity of 

UDP-nucleotides against both -1,4-GalTs and LgtC. 

 

 

Figure 44 Hypothetical model for the relative contribution of the 5-substituent and the pyrophosphate and -D-

galactose moieties towards enzyme inhibition 

 

In contrast, in the absence of the pyrophosphate bond and galactose groups, the nature of the 

5-position substituent becomes essential not only for this mode of inhibition in general, but 

also for inhibitory potency. In the case of -1,4-GalTs, indole-containing 5-position 

substituents appear to be favourable, probably due to some specific interaction with the target 

enzyme. For other GalTs, like LgtC, the nature of these interactions may well be different, 
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due to the different architecture of the flexible loop and C-terminal region in different 

enzymes. This model therefore suggests that 5-substitued uridine inhibitors provide an 

opportunity for the design of target selective GalT inhibitors. 

 

2.9. Cell assay of uridine derivatives 

 

As described above, -1,4-GalTs catalyse the transfer of galactose from UDP-Gal donor to a 

terminal GlcNAc/Glucose residue on the acceptor. -1,4-GalTs are involved in the 

biosynthesis of PSGL-1, not only of the saccharide epitope sLex on PSGL-1, but also the 

LacNAc linker, the linkage between sLex and protein backbone.49 PSGL-1 acts as a key 

mediator in the process of inflammatory cell recruitment. As 5-indole uridine 13 exhibited 

inhibitory activity towards -1,4-GalTs in the enzyme assay, it was then utilized in the cell 

assay. The effects of the -1,4-GalTs inhibitor 5-indole uridine 13 and its acetylated 28 on 

the cell surface levels of PSGL-1 on human peripheral blood mononuclear cells (hPBMCs) 

were investigated. These experiments were carried out by Dr Varsha Kanabar in the Sackler 

Institute of Pulmonary Pharmacology at King’s College London. PSGL-1 levels were studies 

both under basal conditions and upon stimulation of hPBMCs with interleukin-1 via an 

established FACS-based assay.52 The average cell surface levels of PSGL-1 per cell, which 

was indicated by mean fluorescence intensity, MFI, was used to quantified the variation of 

PSGL-1 levels on cell surface.  

The concentration of 13 was used from 1 to 100 M in the assay and the results are shown in 

Figure 45. Even up to the maximum concentration 100M, compound 13 still did not affect 

the cell surface levels on both the 1L-1-stimulated and basal levels of cell surface PSGL-1. 
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It was speculated that the membrane permeability of 13 was still poor even in the absence of 

the pyrophosphate linkage and sugar moiety. As the nucleoside still contained several free 

hydroxyl groups, this relative polar compound was difficult to penetrate cell membrane. The 

acetylation reaction of 13 was carried out for the synthesis of pro-drug 28 (Scheme 8). Thus, 

this fully acetylated product was utilized in the cell assay directly as the protecting groups 

could be readily removed by intracellular carboxylesterases once taken up into the cells.  

 

 

Scheme 8 Synthesis of acetylated 5-indole uridine. Reagents and conditions: acetic anhydride, 4-

Dimethylaminopyridine (DMAP), pyridine, rt, 4h, 77%.  

 

At the concentration of 100 M, 28 could selectively decrease the cell surface PSGL-1 

expression on the condition with stimulation of IL-1but showed inactive towards PSGL-1 

expression level on the basal condition. (Figure 45) These results demonstrated that this 

compound was taken up into the cells and converted into the parent compound which was 

catalysed by intracellular carboxylesterases. The inhibitory activity may come from this 

active nucleoside. In the cell assay profile, it was hypothesized that inhibitors reduce the cell 

surface PSGL-1 levels not by altering the structure of sLex on PSGL-1 but by affecting 

glycan-dependant trafficking of PGSL-1 to the cell surface. Thus, inhibitors can discriminate 

between 1L-1-induced and basal levels of cell surface PSGL-1.  
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Figure 45 Effects of 13 and its acetylated product 28 on cell surface levels of PSGL-1 on both basal condition 

and on the stimulation of IL-1 

 

2.10.  Summary and conclusion 

 

In conclusion, nucleoside-based inhibitors towards -1,4-GalTs were developed. Amongst 

these analogues, compounds containing indole moiety in 5-position substituents showed 

potent activities. The comparison of the corresponding complete UDP-sugar derivatives 

allowed the identification of structural factors that contributed to inhibitory activity. The 

effects of the most active nucleoside derivative 13 and its ester prodrug 28 in a PSGL-1 

expression assay were also investigated. Compound 28 could selectively decrease the cell 

surface PSGL-1 expression on the IL-1-stimulated cells. 
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2.11.   Experimental section. 

 

General. All chemical reagents were obtained commercially and used as received, unless 

stated otherwise. Microwave-assisted reactions were carried out on a Monowave 300 

microwave synthesis reactor from Anton Paar. Thin layer chromatography (TLC) was 

performed on pre-coated plates of Silica Gel 60 F254 (Merck), with i-PA:H2O:NH3 = 6:3:1 as 

the mobile phase, unless otherwise stated. Spots were visualised under UV light (254/365nm). 

NMR spectra were recorded at 300 K on a Bruker BioSpin machine at, respectively, 400.13 

MHz (1H-NMR), 100.62 MHz (13C-NMR) and 161 MHz (31P-NMR). Prior to the recording 

of 31P-NMR spectra, a drop of triethylamine was added to each sample to suppress line 

broadening and enhance resolution. Chemicals shifts () are reported in ppm (parts per 

million) and coupling constants (J) in Hz. Mass spectra were recorded at the EPSRC National 

Mass Spectrometry Facility in Swansea. All yields (%) are isolated yields. 

Column chromatography. Preparative reverse-phase chromatography was performed on a 

Biologic LP chromatography system equipped with a peristaltic pump and a 254 nm UV 

Optics Module under the following conditions: Ion-pair chromatography was performed 

using Lichroprep RP-18 resin equilibrated with 0.05 M TEAB (triethylammonium 

bicarbonate, pH 7.3). Gradient: 0 – 30% MeOH against 0.05 M TEAB over a total volume of 

400 mL. Flow rate: 2 mL/min. Product-containing fractions were combined and repeatedly 

co-evaporated with methanol to remove residual TEAB. 

Suzuki cross-coupling reaction 

General method A: 5-iodouridine (1 equiv.), boronic acid (1.5 equiv.) and Cs2CO3 (2 equiv.) 

in degassed water were combined in a sealable microwave tube under nitrogen atmosphere. 
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Na2PdCl4 (0.025 equiv.) and TPPTs (0.0625 equiv.) were added. The vessel was sealed and 

the mixture was heated in the microwave reactor at 120oC for 30min. After cooling to room 

temperature, the solvent was evaporated and the reaction purified by column chromatography. 

 

General method B. 5-iodouridine (1 equiv.) and boronic acid (1.5 equiv.) in degassed 

DME/water (3:1) were combined in a sealable microwave tube under nitrogen atmosphere. 

PdCl2(dppf)DCM (0.05 equiv.) and NaHCO3 (3 equiv.) were added. The vessel was sealed 

and the mixture was heated in the microwave reactor at 130oC for 30min. After cooling to 

room temperature, the solvent was evaporated and the reaction purified by column 

chromatography. 

 

General method C. 5-iodouridine (1 equiv.) and boronic acid (1.5 equiv.) in degassed 

dioxane/water (3:1) were combined in a sealable microwave tube under nitrogen atmosphere. 

PdCl2(dppf)DCM (0.05 equiv.) and NaHCO3 (3 equiv.) were added. The vessel was sealed 

and the mixture was heated in the microwave reactor at 130oC for 30min. After cooling to 

room temperature, the solvent was evaporated and the reaction purified by column 

chromatography. 

 

General method D: 5-iodouridine (1 equiv.) and boronic acid (1.5 equiv.) were combined in 

degassed DME in a sealable microwave tube under nitrogen atmosphere. PdCl2(dppf)DCM 

(0.05 equiv.) and K2CO3 (2 equiv.) were added. The vessel was sealed and the mixture was 

heated in the microwave reactor at 130oC for 30min. After cooling to room temperature, the 

solvent was evaporated and the reaction purified by column chromatography. 
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5-(1,2,3,4-tetrahydro-1-((2R,3S,4R,5R)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl) 

furan-2-yl)-2,4-dioxopyrimidin-5-yl)thiophene-2-carbaldehyde (8). Compound 8 was 

synthesised from 5-iodo uridine (50 mg, 0.135 mmol) and 5-formyl-2-thiophene-boronic acid 

via general method A, and obtained as a white powder in a yield of 54% (25.5 mg). 1H-NMR 

(400 MHz, MeOD) 3.85 (1H, dd, J = 2, 12 Hz), 4.03 (1H, dd, J = 2.4, 12 Hz), 4.11 (1H, m), 

4.27 (2H, m), 6.00 (1H, d, J = 3.2 Hz), 7.63 (1H, d, J = 4 Hz), 7.84 (1H, d, J = 4 Hz), 9.12 

(1H, s), 9.86 (1H, s). 13C-NMR (100 MHz, d6-DMSO) 59.5 (C-5’), 68.6 (C-3’), 74.4 (C-2’), 

84.3 (C-4’), 89.4 (C-1’), 106.7 (C-5), 122.7, 137.1, 138.5, 141.4, 149.2 (C-6 + C-Thiophene), 

144.2 (C-2), 161.2 (C-4), 184.1 (CHO). m/z (ESI) 355.0627 [M+H]+, C14H15N2O7S requires 

355.0600. 

 

 

1-((2R,3S,4R,5R)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl)furan-2-yl)-5-(pyridin-3-

yl) pyrimidine-2,4(1H,3H)-dione (10). Compound 10 was synthesised from 5-iodo uridine 

(20 mg, 0.054 mmol) and 3-pyridineboronic acid via general method B, and obtained as a 

white powder in a yield of 20% (4.1 mg). 1H-NMR (400 MHz, MeOD) 3.80 (1H, dd, J = 2.4, 

12 Hz), 3.92 (1H, dd, J = 2.8, 12 Hz), 4.07 (1H, m), 4.27 (2H, m), 5.99 (1H, d, J = 3.2 Hz), 
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7.47 (1H, dd, J = 5.2, 8 Hz), 8.08 (1H, dt, J = 2, 8 Hz), 8.48 (1H, dd, J = 1.6, 5.2 Hz), 8.59 

(1H, s), 8.78 (1H, d, J = 2.4 Hz). 13C-NMR (100 MHz, MeOD) 62.0 (C-5’), 70.8 (C-3’), 76.3 

(C-2’), 86.2 (C-4’), 91.2 (C-1’), 112.2 (C-5), 124.9, 131.4, 137.8, 140.8, 140.9, 148.7 (C-6 + 

C-Pyridine), 149.3 (C-2), 152.0 (C-4). m/z (ESI) 322.2961 [M+H]+, C14H16N3O6 requires 

322.1039. 

 

 

1-((2R,3S,4R,5R)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl)furan-2-yl)-5-(pyridin-4-

yl)pyrimidine-2,4(1H,3H)-dione (11). Compound 11 was synthesised from 5-iodo uridine 

(20 mg, 0.054 mmol) and 4-pyridineboronic acid via general method B, and obtained as a 

light yellow powder in a yield of 27% (5 mg). 1H-NMR (400 MHz, D2O) 3.66 (1H, dd, J = 

5.6, 12.8 Hz), 3.78 (1H, dd, J = 2.8, 12.8 Hz), 3.99 (1H, m), 4.28 (1H, t, J = 6 Hz), 4.38 (1H, 

m), 5.75 (1H, d, J = 3.2 Hz), 6.49 (2H, d, J = 7.6 Hz), 7.80 (1H, d, J = 6.8 Hz), 7.94 (1H, s). 

13C-NMR (100 MHz, d6-DMSO) 60.1 (C-5’), 69.3 (C-3’), 73.9 (C-2’), 84.7 (C-4’), 91.3 (C-

1’), 112.5 (C-5), 128.0, 128.6 (m-Py, m-Py), 145.1 (C-6), 146.0 (p-Py), 148.1 (C-2), 150.1, 

150.3 (o-Py, o-Py), 160.5 (C-4). m/z (ESI) 322.2951 [M+H]+, C14H16N3O6 requires 322.1039. 
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1-((2R,3S,4R,5R)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl)furan-2-yl)-5-(isoquinoli 

n-4-yl)pyrimidine-2,4(1H,3H)-dione (12). Compound 12 was synthesised from 5-iodo 

uridine (20 mg, 0.054 mmol) and 4-isoquinolineboronic acid via general method A, and 

obtained as a light yellow powder in a yield of 25% (4.7 mg). 1H-NMR (400 MHz, MeOD), 

3.67 (1H, dd, J = 2.8, 12Hz), 3.79 (1H, dd, J = 2.8, 12 Hz), 4.05 (1H, m), 4.22 (1H, t, J = 5.2 

Hz), 4.32 (1H, t, J = 4.8 Hz),  6.04 (1H, d, J = 4.4 Hz), 7.73 (1H, dt, J = 1.2, 6.8 Hz), 7.81 

(1H, dt, J = 1.2, 7.6 Hz), 7.87 (1H, m), 8.17 (1H, dd, J = 1.2, 8.4 Hz), 8.37 (1H, s), 8.39 (1H, 

s), 9.26 (1H, s). 13C-NMR (100 MHz, MeOD) 61.8 (C-5’), 71.1 (C-3’), 76.1 (C-2’), 86.4 (C-

4’), 91.0 (C-1’), 111.9 (C-5), 126.1, 127.0, 127.1, 129.1, 129.3, 129.9, 132.4, 136.8, 142.5, 

143.8 (C-6 + isoquinoline), 152.7 (C-2), 153.8 (C-4). m/z (ESI) 372.1290 [M+H]+, 

C18H18N3O6 requires 372.1196. 

 

 

1-((2R,3S,4R,5R)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl)furan-2-yl)-5-(1H-indol-

4-yl) pyrimidine-2,4(1H,3H)-dione (13). Compound 13 was synthesised from 5-iodo uridine 

(60 mg, 0.162 mmol) and indole-4-boronic acid via general method A, and obtained as a 

white powder in a yield of 43% (18 mg). 1H-NMR (400 MHz, MeOD) 3.67 (1H, dd, J = 3.6, 

12 Hz), 3.77 (1H, dd, J = 4, 12 Hz), 4.04 (1H, m), 4.18 (1H, t, J = 5.6Hz), 4.32 (1H, t, J = 5.2 

Hz), 6.06 (1H, d, J = 5.2 Hz), 6.42 (1H, d, J = 3.2 Hz), 7.08 (1H, d, J = 1.2, 7.2 Hz), 7.17 (1H, 

t, J = 7.6 Hz), 7.27 (1H, d , J = 3.2 Hz), 7.40 (1H, d, J = 8 Hz), 8.23 (1H, s). 13C-NMR (100 

MHz, MeOD) 62.4 (C-5’), 71.2 (C-3’), 75.8 (C-2’), 86.5 (C-4’), 90.6 (C-1’), 101.8 (C-indole-
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3), 112.2 (C-5), 116.5, 121.4, 122.1, 125.7, 125.9, 128.5, 137.9, 140.6 (C-6 + C-indole), 

152.5 (C-2), 164.9 (C-4). m/z (ESI) 360.1193 [M+H]+, C17H18N3O6 requires 360.1196. 

 

 

1-((2R,3S,4R,5R)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl)furan-2-yl)-5-(2-(4-

methyl piperazin-1-yl)pyridin-4-yl)pyrimidine-2,4(1H,3H)-dione (14). Compound 14 was 

synthesised from 5-iodo uridine (20 mg, 0.054 mmol) and 2-(4-methylpiperzin-1-yl)pyridine-

4-boronic acid via general method B, and obtained as a white powder in a yield of 35% (8 

mg). 1H-NMR (400 MHz, MeOD) 2.36 (3H, s), 2.60 (4H, m), 3.57 (4H, m), 3.80 (1H, dd, J = 

2.4, 12 Hz), 3.93 (1H, dd, J = 2.4, 12 Hz), 4.08 (1H, m), 4.7 (1H, m), 5.99 (1H, d, J = 3.6 Hz), 

6.97 (1H, dd, J = 1.2, 5.6Hz), 7.19 (1H, s), 8.07 (1H, d, J = 1.2, 5.6Hz), 8.64 (1H, s). 13C-

NMR (100 MHz, MeOD) 45.6 (C-NMe), 46.1, 46.3 (C-piperazin-3, C-piperazin-5), 55.7, 

55.9 (C-piperazin-2, C-piperazin-6), 61.6 (C-5’), 70.9 (C-3’), 76.4 (C-2’), 86.3 (C-4’), 91.2 

(C-1’), 107.9 (C-pyridine), 113.3 (C-5), 113.8, 141.5, 144.4, 148.3, 151.8 (C-6 + C-pyridine), 

161.2 (C-2), 164.0 (C-4). m/z (ESI) 420.1911 [M+H]+, C19H26N5O6 requires 420.1883. 
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1-((2R,3S,4R,5R)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl)furan-2-yl)-5-(1H-

indazol-4-yl) pyrimidine-2,4(1H,3H)-dione (20). Compound 20 was synthesized from 5-

iodo uridine (60 mg, 0.152 mmol) and 1H-indazole-4-boronic acid via general method D, and 

obtained as a light grey powder in a yield of 10% (6 mg). 1H-NMR (400 MHz, MeOD) 3.70 

(1H, dd, J = 2.4, 12 Hz), 3.82 (1H, dd, J = 2.8, 12 Hz), 4.06 (1H, m), 4.22 (1H, t, J = 4.8 Hz), 

4.33 (1H, t, J = 4.4 Hz), 6.06 (1H, d, J = 4.8 Hz), 7.22 (1H, d, J = 8 Hz), 7.43 (1H, dd, J = 8.8, 

7.2 Hz), 7.54 (1H, d, J = 8.4 Hz), 8.01 (1H, s), 8.44 (1H, s). 13C-NMR (100 MHz, MeOD) 

62.1 (C-5’), 71.5 (C-3’), 76.1 (C-2’), 86.5 (C-4’), 90.7 (C-1’), 110.9 (C-5), 115.0 (C-

indazole-3), 122.6, 123.3, 127.5, 127.8, 127.9, 135.0, 141.2 (C-6 + C-indazole), 152.3 (C-2), 

164.5 (C-4). m/z (ESI) 361.1146 [M+H]+, C16H17N4O6 requires 361.1148. 

 

 

1-((2R,3S,4R,5R)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl)furan-2-yl)-5-(1-methyl-

1H-indol-4-yl)pyrimidine-2,4(1H,3H)-dione (21). Compound 21 was synthesized from 5-

iodo uridine (60 mg, 0.152 mmol) and 1-methyl-1H-indole-4-boronic acid pinacol ester via 

general method C, and obtained as a white powder in a yield of 58% (35 mg). 1H-NMR (400 

MHz, MeOD) 3.58 (1H, m), 3.69 (3H, s), 3.70 (1H, dd, J = 3.2, 12.4 Hz), 3.98 (1H, m), 4.08 

(1H, t, J = 5.6 Hz), 4.23 (1H, t, J = 4 Hz), 5.85 (1H, d, J = 4 Hz), 6.23 (1H, d, J =  4 Hz), 6.96 

(1H, d, J = 7.2 Hz), 7.16 (1H, d, J = 3.2 Hz), 7.18 (1H, d, J = 7.2 Hz), 7.38 (1H, d, J = 8.4 

Hz), 7.92 (1H, s). 13C-NMR (100 MHz, MeOD) 47.8 (C-NMe), 62.4 (C-5’), 71.8 (C-3’), 75.9 

(C-2’), 86.5 (C-4’), 90.5 (C-1’), 101.1 (C-indole-3), 110.9 (C-5), 116.1, 121.5, 122.2, 126.0, 
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129.0, 130.3, 138.5, 140.8 (C-6 + C-indole), 152.4 (C-2), 164.9 (C-4). m/z (ESI) 374.1350 

[M+H]+, C18H20N3O6 requires 374.1352. 

 

 

1-((2R,3S,4R,5R)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl)furan-2-yl)-5-(1H-indol-

5-yl)pyrimidine-2,4(1H,3H)-dione (22). Compound 22 was synthesized from 5-iodo uridine 

(60 mg, 0.152 mmol) and indole-5-boronic acid via general method A, and obtained as a light 

grey powder in a yield of 70% (45 mg). 1H-NMR (400 MHz, MeOD) 3.75 (1H, dd, J = 2.8, 

12 Hz), 3.86 (1H, dd, J = 2.8, 12 Hz), 4.06 (1H, m), 4.24 (1H, t, J = 4.8 Hz), 4.32 (1H, t, J = 

4.8 Hz), 6.04 (1H, d, J = 4.8 Hz), 6.47 (1H, s), 7.25 (1H, d, J = 2.8 Hz), 7.27 (1H, dd, J = 1.2, 

4.4 Hz), 7.40 (1H, d, J = 8.4 Hz), 7.75 (1H, s), 8.22 (1H, s ). 13C-NMR (100 MHz, MeOD) 

62.2 (C-5’), 71.4 (C-3’), 75.9 (C-2’), 86.2 (C-4’), 91.1 (C-1’), 102.7 (C-indole-3), 111.9 (C-

5), 118.3, 121.5, 123.4, 125.7, 126.1, 129.5, 137.2, 138.8 (C-6 + C-indole), 154.7 (C-2), 

168.5 (C-4). m/z (ESI) 360.1194 [M+H]+, C17H18N3O6 requires 360.1196. 
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1-((2R,3S,4R,5R)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl)furan-2-yl)-5-(1H-indol-

6-yl)pyrimidine-2,4(1H,3H)-dione (23). Compound 23 was synthesized from 5-iodo uridine 

(60 mg, 0.152 mmol) and indole-6-boronic acid via general method A, and obtained as a 

white powder in a yield of 64% (40 mg). 1H-NMR (400 MHz, MeOD) 3.76 (1H, dd, J = 2.8, 

12 Hz), 3.87 (1H, dd, J = 2.8, 12 Hz), 4.07 (1H, m), 4.24 (1H, t, J = 4.8 Hz), 4.31 (1H, t, J = 

4.8 Hz), 6.03 (1H, d, J = 4.4 Hz), 6.44 (1H, d, J = 4 Hz), 7.17 (1H, dd, J = 5.6, 8.4 Hz), 7.25 

(1H, d, J = 3.2 Hz), 7.55 (1H, dd, J = 8.4 Hz), 7.66 (1H, s), 7.28 (1H, s). 13C-NMR (100MHz, 

MeOD) 62.1 (C-5’), 71.4 (C-3’), 76.0 (C-2’), 86.3 (C-4’), 90.7 (C-1’), 102.3 (C-indole-3), 

112.5 (C-5), 117.5, 120.7, 121.0, 126.5, 126.9, 129.1, 137.6, 139.3 (C-6 + C-indole), 152.3 

(C-2), 165.2 (C-4). m/z (ESI) 360.1194 [M+H]+, C17H18N3O6 requires 360.1196. 

 

Reductive amination reactions: compounds 15-19 

General protocol. Under nitrogen, the respective amino acid (1 equiv.) was added to a 

stirred solution of 8 (1 equiv.) in degassed methanol. After stirring for 1h, NaBH3CN (0.1 

equiv.) in methanol was added through a syringe. After stirring for 24h, the solvent was 

removed under reduced pressure and the residue was purified by reverse phase column 

chromatography (0.05M TEAB against methanol, gradient: 0%-20%). 

 

2-((5-(1,2,3,4-tetrahydro-1-((2R,3S,4R,5R)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl) 

furan-2-yl)-2,4-dioxopyrimidin-5-yl)thiophen-2-yl)methylamino)-6-aminohexanoic acid 
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(2.13). Compound 15 was synthesized from 8 (10 mg, 0.028 mmol) and L-Lysine, and 

obtained as a light yellow powder in a yield of 68% (9.2 mg). 1H-NMR (400 MHz, D2O) 1.30 

(2H, m), 1.54 (2H, m), 1.68 (2H, m), 2.77 (2H, m), 3.75 (1H, dd, J = 3.2, 12.8 Hz), 3.9 (1H, 

dd, J = 2.4, 12.8 Hz), 4.03 (1H, m), 4.08 (1H, m), 4.18 (1H, t, J = 5.6 Hz), 4.25 (1H, dd, J = 

3.2, 5.2 Hz), 5.34 (1H, s), 5.85 (1H, d, J = 3.2 Hz), 6.98 (1H, d, J = 3.6 Hz), 8.21 (1H, s). 13C-

NMR (100 MHz, D2O) 22.1 (C-Lysine-4), 27.2 (C-Lysine-5), 30.2 (C-Lysine-3), 42.2 (C-

Lysine-6), 46.2 (C-NH-CH2-), 60.0 (C-Lysine-2), 67.7 (C-5’), 68.7 (C-3’), 74.2 (C-2’), 80.7 

(C-4’), 81.5 (C-1’), 112.4 (C-5), 118.6, 124.0, 130.4, 130.7, 131.9 (C-6 + C-thiophene), 150.5 

(C-2), 160.8 (C-4), 174.6 (C-COOH). m/z (ESI) 483.1697 [M-H]-, C20H27N4O8S requires 

483.1550. 

 

 

2-((5-(1,2,3,4-tetrahydro-1-((2R,3S,4R,5R)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl) 

furan-2-yl)-2,4-dioxopyrimidin-5-yl)thiophen-2-yl)methylamino) acetic acid (16). 

Compound 16 was synthesised from 8 (11 mg, 0.031 mmol) and L-Glycine, and obtained as a 

light yellow powder in a yield of 27% (3.5 mg). 1H-NMR (400 MHz, D2O) 3.26 (2H, s), 3.78 

(1H, dd, J = 4.4, 12.8 Hz), 3.90 (1H, dd, J = 4.4, 12 Hz), 4.07 (1H, m), 4.21  (1H, m), 4.27 

(1H, m), 4.40 (2H, s), 5.85 (1H, d, J = 2.8 Hz), 7.14 (1H, d, J = 4  Hz), 7.20 (1H, d, J = 3.6 

Hz), 8.40 (1H, s). 13C-NMR (100 MHz, D2O) 51.7 (C-NHCH2-), 57.8 (C-glycine-2), 61.7 (C-

5’), 71.0 (C-3’), 76.4 (C-2’), 86.3 (C-4’), 91.1 (C-1’), 110.1 (C-5), 124.2, 127.6, 136.0, 137.4, 

141.7 (C-6 + C-thiophene), 151.7 (C-2), 161.5 (C-4), 170.4 (C-COOH). m/z (ESI) 412.1789 

[M-H]-, C16H18N3O8S requires 412.0815. 
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2-((5-(1,2,3,4-tetrahydro-1-((2R,3S,4R,5R)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl) 

furan-2-yl)-2,4-dioxopyrimidin-5-yl)thiophen-2-yl)methylamino)-4-methylpentanoic 

acid (17). Compound 17 was synthesised from 8 (10 mg, 0.028 mmol) and L-Leucine, and 

obtained as a white powder in 22% yield (3 mg). 1H-NMR (400 MHz, MeOD) 0.90 (3H, d, J 

= 6.4 Hz), 0.96 (3H, d, J = 6.4 Hz), 1.45 (1H, m), 1.56 (1H, m), 1.80 (1H, m), 3.82 (1H, dd, J 

= 2, 8 Hz), 3.90 (1H, m), 3.96 (1H, dd, J = 2, 8 Hz), 4.28 (2H, m), 6.00 (1H, d, J = 3.6 Hz), 

6.97 (1H, d, J = 3.6 Hz), 7.34 (1H, d, J = 3.6 Hz), 8.59 (1H, s). 13C-NMR (100 MHz, MeOD) 

23.1 (C-Me), 23.2 (C-Me), 25.2 (C-CH), 47.6 (C-Leucine-3), 49.5 (C-NH-CH2), 66.8 (C-

Leucine-2), 69.5 (C-5’), 75.6 (C-3’), 77.2 (C-2’), 88.6 (C-4’), 98.7 (C-1’), 116.9 (C-5), 132.8, 

135.6, 139.2, 140.0, 144.5 (C-6 + C-thiophene), 155.9 (C-2), 168.2 (C-4), 177.9 (C-COOH). 

m/z (ESI) 468.1444 [M-H]-, C20H26N3O8S requires 468.1441. 

 

 

2-((5-(1,2,3,4-tetrahydro-1-((2R,3S,4R,5R)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl) 

furan-2-yl)-2,4-dioxopyrimidin-5-yl)thiophen-2-yl)methylamino)-3-(1H-indol-3-yl) 

propanoic acid (18). Compound 18 was synthesised from 8 (10 mg, 0.028 mmol) and L-

Glutamic acid, and obtained as a light yellow powder in 18% yield (2.5 mg). 1H-NMR (400 
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MHz, MeOD) 0.92 (2H, m), 1.23 (2H, m), 2.50 (1H, dd, J = 2, 12 Hz), 2.62 (1H, dd, J = 2, 

12 Hz),  2.67 (1H, m), 2.75 (1H, m), 2.93 (2H, m), 3.28 (2H, m), 4.66 (1H, d, J = 2.8 Hz), 

5.63 (1H, d, J = 3.6 Hz), 6.00 (1H, d, J = 3.6 Hz), 7.38 (1H, s). 13C-NMR (100 MHz, MeOD) 

38.7 (C-Glu-3), 48.6 (C-NHCH2), 61.5 (C-5’), 64.0 (C-Glu-2), 70.3 (C-3’), 73.5 (C-2’), 84.7 

(C-4’), 98.6 (C-1’), 111.2 (C-5), 122.7, 126.0, 134.4, 135.9, 140.2 (C-6 + C-thienphene), 

150.0 (C-2), 161.2 (C-4), 174.2 (C-COOH), 178.5 (C-COOH). m/z (ESI) 484.0966 [M-H]-, 

C19H22N3O10S requires 484.1026. 

 

 

2-((5-(1,2,3,4-tetrahydro-1-((2R,3S,4R,5R)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl) 

furan-2-yl)-2,4-dioxopyrimidin-5-yl)thiophen-2-yl)methylamino)-3-(1H-indol-3-

yl)propanoic acid (19). Compound 19 was synthesised from 8 (8 mg, 0.023 mol) and L-

Tryptophan, and obtained as a light yellow powder in 30% yield (3.7 mg). 1H-NMR (400 

MHz, D2O) 2.92 (1H, m), 3.42 (1H, t, J = 6.8 Hz), 3.74 (2H, m), 3.88 (2H, m), 4.06 (1H, dd, 

J = 2.8, 6.4 Hz), 4.19 (1H, dd, J = 5.2, 6 Hz), 4.27 (1H, dd, J = 5.2, 3.6 Hz), 5.87 (1H, d, J = 

3.6 Hz), 6.71 (1H, d, J = 3.6 Hz), 6.88 (1H, t, J = 8 Hz), 6.93 (1H, d, J = 8.4 Hz), 6.98 (1H, t, 

J = 8.4 Hz), 7.07 (1H, s), 7.28 (1H, d, J = 8 Hz), 7.39 (1H, d, J = 8 Hz), 8.08 (1H, s). 13C-

NMR (100 MHz, D2O) 32.3 (C-Trp-3), 47.3 (C-NHCH2), 64.7 (C-Trp-2), 63.2 (C-5’), 76.6 

(C-3’), 77.1 (C-2’), 85.9 (C-4’), 91.3 (C-1’), 108.7 (C-indole-3), 111.9 (C-5), 113.1, 115.8, 

119.0, 122.1, 122.9, 126.9, 127.5, 129.8, 131.4, 137.5, 139.2, 148.5 (C-6 + C-thiophene + C-
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indole), 155.9 (C-2), 169.1 (C-4), 177.9 (C-COOH). m/z (ESI) 541.1393 [M-H]-, 

C25H26N4O8S requires 541.1393. 

 

Synthesis of sugar-nucleotides. 5-iodo UMP 2 and its phosphoromorpholidate 3 were 

synthesized as previously reported. The 5-substituent derivatives 24 and 26 were obtained by 

Suzuki cross-coupling of 5-iodo UMP phosphoromorpholidate 3 with, respectively, 5-formyl-

2-thiopheneboronic acid or indole-4-boronic acid, followed in the case of 24 by reductive 

amination. Phosphoromorpholidates 24 and 26 were freeze-dried overnight and added 

separately to added with α-D-Galactose-1-phosphate and NMICl in the dry DMF. The 

reaction was stirred at room temperature for 9 h (27) or 15h (25). All solvents were removed 

under reduced pressure, and the crude product was purified by anion-exchange 

chromatography and reverse phase column. Product-containing fractions were combined and 

reduced to dryness. After repeated co-evaporation of the residue with methanol, extra TEAB 

was removed.  

 

Compound 27 was obtained in a yield of 38%, white powder. 1H-NMR (400 MHz, D2O) 1.12 

(9H, t, J = 7.8 Hz), 3.04 (6H, q, J = 7.2 Hz), 3.46 (1H, dd, J = 4.8, 12 Hz), 3.54 (1H, dd, J = 

7.6, 12 Hz), 3.56 (1H, m), 3.68 (1H, m), 3.77 (1H, d, J = 4.8 Hz), 3.92 (1H, dd, J = 4.8, 7.6 

Hz), 4.00 (2H, m), 4.14 (1H, m), 4.20 (1H, m), 4.31 (1H, m), 5.40 (1H, m), 5.91 (1H, d, J = 6 

Hz), 6.27 (1H, d, J = 2.8 Hz), 7.01 (1H, d, J =7.2 Hz), 7.15 (1H, t, J = 7.6 Hz), 7.28 (1H, d, J 

= 2.8 Hz), 7.43 (1H, d, J = 8.4 Hz), 7.73 (1H, s). 13C-NMR (100 MHz, D2O) 60.9 (C-6”), 
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65.0 (d, Jc,p = 10 Hz, C-5’), 69.1 (C-2”), 69.8 (C-3”), 70.0 (C-4”), 71.8 (C-4’), 73.0 (C-5”), 

75.0 (C-3’), 76.2 (C-2’), 76.8 (C-5”), 88.6 (C-4’), 95.6 (C-1’), 95.7 (d, Jc,p = 10 Hz, C-1”), 

100.1 (C-indole-3), 112.1 (C-5), 115.8, 120.6, 121.8, 123.5, 126.1, 126.4, 135.7, 139.1 (C-6 + 

C-indole), 151.6 (C-2), 164.5 (C-4). 31P-NMR (161 MHz, D2O) -11.2 (d, J = 21.2Hz), -13.6 

(d, J = 21.2 Hz).  m/z (ESI) 680.0885 [M-H]-, C23H29N3O17P2 requires 681.0972.  

 

 

Compound 2.25 was obtained in a yield of 35%, light yellow powder. 1H-NMR (400 MHz, 

D2O) 1.10 (9H, t, J = 7.2 Hz), 3.00 (6H, q, J = 7.2 Hz), 3.48 (2H, m), 3.55 (1H, dd, J = 3.2, 8 

Hz), 3.6 (1H, m), 3.72 (3H, m), 3.94 (1H, m), 3.96 (1H, m), 4.13 (2H, m), 4.17 (1H, m), 4.26 

(1H, t, J = 4 Hz), 4.32 (1H, t, J = 4 Hz), 5.49 (1H, dd, J = 4, 8 Hz), 5.93 (1H, d, J = 5.2 Hz), 

6.72 (1H, d, J = 4 Hz), 6.84 (1H, t, J = 8 Hz), 6.94 (1H, t, J = 8 Hz), 7.10 (1H, s), 7.25 (1H, d, 

J = 7.6 Hz), 7.37 (1H, d, J = 8 Hz), 7.76 (1H, s). 13C-NMR (100 MHz, D2O) 27.2 (C-Typ-3), 

60.4 (C-6”), 65.5 (d, Jc,p = 10 Hz, C-5’), 66.9 (C-Typ-2), 68.3 (C-3”), 69.1 (C-2”), 69.3 (C-

4”), 69.9 (C-5”), 71.9 (C-3’), 73.7 (C-2’), 83.7 (C-4’), 95.8 (C-1’), 100.9 (d, Jc,p = 10 Hz, C-

1”), 107.7 (C-indole-3), 111.8 (C-5), 118.3, 119.2, 121.6, 124.4, 124.9, 126.1, 130.0, 130.0, 

134.6, 135.8, 135.9, 136.5 (C-6 + C-thienphene + C-indole), 150.6 (C-2), 163.8 (C-4), 170.5 

(C-COOH). 31P-NMR (161 MHz, D2O) -11.3 (d, J = 19.3Hz), -12.8 (d, J = 19.3 Hz). m/z 

(ESI) 865.0885 [M-H]-, C23H29N3O17P2 requires 864.0972. 
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A solution of 5-indole uridine 8 (54 mg, 0.15 mmol) and DMAP (0.9 mg, 0.075 mmol) was 

dissolved in 0.5 mL pyridine and acetic anhydride (54 mg, 0.52 mmol) was added. The 

reaction was stirred for 4 h at rt before quenched with water. The solvent was removed by 

evaporation and co-evaporated three times with toluene. The light yellow crude compound 

was purified by flash chromatography (Hexane / EA = 2: 1 to 1 :1) to yield acetylated 

compound 28 as grey solid (58 mg, 77 %). 1HNMR (400 Hz, CDCl3) 1.79 (3H, s), 2.04 (3H, 

s), 2.07 (3H, s), 4.30 (3H, m), 5.30 (1H, dd, J = 4, 6 Hz), 5.39 (1H, t, J = 6 Hz), 6.14 (1H, d, J 

= 6 Hz), 6.43 (1 H, m), 7.03 (1H, dt, J = 1.2, 8 Hz), 7.09 (1H, m), 7.52 (1H, m), 7.58 (1H, s), 

8.51 (1H, s). 13C-NMR (100 MHz, CDCl3) 20.1 (C-Me), 20.5 (C-Me), 20.6 (C-Me), 63.3 (C-

5’), 70.4 (C-3’), 72.7 (C-2’), 80.1 (C-4’), 86.9 (C-1’), 102.3 (C-indole-3), 111.6 (C-5), 117.3, 

119.6, 120.7, 125.2, 125.5, 127.9, 135.8, 135.9 (C-6 + C-indole), 150.0 (C-2), 162.3 (C-4), 

169.8 (C-C=O), 170.4 (C-C=O), 171.0 (C-C=O). m/z (ESI) 486.1320 [M+H]-, C23H23N3O9 

requires 485.1434. 

 

GalT inhibition experiments. 

General. All reagents for the biochemical assays were obtained commercially and used as 

received, unless otherwise stated. Bovine -1, 4-GalTs was expressed, purified and refolded 

using an adaptation of a previously reported protocol.50 LgtC was expressed and purified as 
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previously reported.51 Inhibition assays were carried out as previously reported.49 Absorbance 

measurements were carried out on a BMG Labtech POLARstar Optima multiplate reader. 

 

Data collection and analysis protocol. Assays were carried out on 96-well plates. On each 

microplate, sample, control and background wells were included in triplicate. A calibration 

curve (0-12.5 M UDP, corresponding to 0-25 M Pi) was constructed for each microplate 

by linear regression. The calibration curve was used to convert absorbance measurements at 

620 nm in sample and control wells to [UDP] (M). For each sample and control well, a 

corresponding background well (containing identical components but no acceptor) was 

included, to account for non-specific hydrolysis of donor. Corrected absorbance values for 

each well were obtained by subtracting the corresponding background reading form the 

absorbance of the respective sample or control well. Inhibition (%) was calculated by 

dividing absorbance in the presence of inhibitor by maximum absorbance (negative control, 

no inhibitor). Percentage inhibition was plotted over log[inhibitor] and analysed with 

GraphPad Prism 6 software to obtain relative IC50 values. Averages and standard deviations 

were calculated in Microsoft Excel.  

 

PSGL-1 expression assay This cell assay was carried out as reported.52 Peripheral venous 

blood was collected from healthy donors (n =5). Mononuclear cells were separated by density 

after centrifugation step. The monocyte layers were then washed with media, which was 

followed by adding cells into each well of a 96-well plate. The compound 8 and ester prodrug 

28 at 1, 10, or 100 M were added for 1h, followed by either media or 10 ng/ mL 1L-1in 

the continued presence of compounds for 72 h at 37 oC and 5 % CO2. Cells were harvested 

and analysed by flow cytometry. 
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CHAPTER 3 

 

A dynamic combinatorial chemistry approach for the 

development of -1,4-galactosyltransferase inhibitors 
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3.1. Introduction 

 

In this chapter, a brief introduction will be given to the dynamic combinatorial chemistry 

(DCC) concept. The latter was the description of attempts to apply DCC strategy to the 

development of potent nucleoside-based inhibitors. This chapter mainly gave an introduction 

of the dynamic combinatorial library (DCL) generated via active nucleoside derivatives 

(which was described in chapter 2) and hydrazines/hydrazones. It was utilized for the 

screening the replacement of pyrophosphate and galactose moieties  

 

3.1.1.  General concept of dynamic combinatorial chemistry (DCC) 

 

Dynamic combinatorial chemistry (DCC) is a powerful strategy for the generation of new 

bioactive molecules formed by reversible reactions of simple building blocks under 

thermodynamic control. The interconversion of these building blocks involves covalent or 

non-covalent bonds.1, 2 The library of these reversibly interconverting building blocks affords 

dynamic combinatorial libraries (DCLs). All constituents in a DCL are in equilibrium and the 

distribution of library members is determined by their thermodynamic stability in the DCL.1 

DCC has been implemented in a variety of chemical systems and applied to different targets, 

including proteins3, peptides4, nucleic acids5, inorganic6 and organic ions7.  

Protein-directed dynamic combinatorial chemistry offers a strategy for efficient discovery of 

novel chemical structures for binding to target proteins (Figure 46).3 It requires a library of 

molecules that can react reversibly with each other under thermodynamic control to generate 

chemical diversity and these molecules are referred to as ‘building blocks’. The position of 
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the equilibrium of DCL is influenced by thermodynamic variables of the system. In the case 

of protein-directed DCC, the distribution of the library building blocks can be caused to re-

equilibrium by the addition of a target protein which is referred as ‘template’. In the process, 

the components with the strongest affinity for the target can be amplified and identified by 

biophysical techniques. These library components can act as a starting point to guide organic 

synthesis of stable analogues for further development of enzyme inhibitors. Protein-templated 

DCC was used for the first time in the late 1990’s, leading to the identification of inhibitors 

towards carbonic anhydrase (CA).8 With the development of analytical techniques, like 

HPLC, NMR etc., to date, there are plenty of examples for the successful application of 

protein-templated DCC to develop novel inhibitors for various enzymes, such as Glutathione 

S-Transferase9 and Aspartic Protease10.  

 

Figure 46 Fundamental concept of protein-templated DCC. Colourful triangles, squares and balls: different 

structures of building blocks; Black squares and diamonds: functional groups for reversible reactions with other 

components. (modified from reference11) 
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3.1.2.  Design of protein-directed DCC experiments 

 

In principle, successful execution of a protein-directed DCC experiment relies on four 

elements12: 

(a) A protein template; 

(b) A library of suitable building blocks; 

(c) A reversible reaction; 

(d) A suitable analytical method.  

Below, a brief general introduction will be given to these aspects of DCL as this will be 

essential for the understanding of the design of our experiments. 

 

3.1.2.1.  Protein template 

 

The protein in a protein-directed DCC enables to select the most amplified components from 

the DCL by influencing the equilibrium. It is crucial to ensure that the protein is stable and 

active under the DCC experimental conditions in a certain pH and temperature window. The 

harsh conditions, like high temperature and strong acidic or basic condition, may deactive the 

protein and lead to false negative results. In the case of harsh conditions, use of a catalyst 

might be required. For example, for a acyl hydrazone DCLs, equilibration between aldehydes 

and hydrazides requires acidic conditions which are incompatible with target enzyme, aniline 

was employed as a nucleophilic catalyst which enable DCL formation at biocompatible pH.13 

Also, the amount of enzyme used to re-equilibrate the generation of product needs to be 
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considered. For instance, a DCL was generated by using imine formation between amines 

and aldehydes to discover inhibitors of the metalloenzyme human carbonic anhydrase II 

(hCA II).14 The experiment was performed in the presence or absence of enzyme (80 M) 

and the results were analysed by HPLC. Also, DCC experiment was employed to investigate 

the active sites of -chymotrypsin via the reversible reaction between boronic acids and 

diols.15 The concentration of target enzyme, -chymotrypsin, was increased to 2 mM (ratio: 

enzyme/boronic acid = 1/1) as the employed detected technique 11B-NMR is relatively 

insensitive. 

 

3.1.2.2. Design of dynamic combinatorial library 

 

The design of dynamic combinatorial library is crucial for DCC experiments. In contrast to 

high throughput screening approaches which use large chemical libraries (typically > 106)16, 

DCLs require relatively small libraries. The design of DCLs is usually carried out according 

to the target enzyme structure information. In order to produce DCL efficiently, the building 

blocks need to fulfil several essential characteristics.3, 17 Firstly, they must contain functional 

groups for reversible reactions with other components in the library. Secondly, they are 

usually designed according to the structure information of target enzyme binding sites. 

Thirdly, the building blocks are designed to contain different structures to cover different 

geometrical and functional spaces for chemical diversity generation.  

Usually, the design of the building blocks can be based on an existing inhibitor of the target 

enzyme18, by analysis of the target enzyme structure19, or by molecular modelling20. For 

example, a dynamic combinatorial library was designed based on ketones and amines as 



 

123 

 

building blocks to discover potent inhibitors towards neuraminidase, a key enzyme in the 

influenza virus activity.18 Diamine was used as the scaffold for the dynamic library as it is 

structurally similar to known neuraminidase inhibitors, like zanamivir21. A series of ketones 

with different structures was used for the imines formation (Figure 47). The imines were 

then reduced to amine products because of their instability and the composition of DCL was 

monitored by LC/MS. The result illustrated that the distribution of imines library members 

altered due to the addition of enzyme. The amplified amines were then tested against target 

enzyme to verify their inhibitory activity. 

 

 

Figure 47 Design of imine DCL of ketones and amine building blocks (modified from reference18) 

 

It was reported that a DCL based on imine formation was generated for the development of 

inhibitors towards GaTs (including -1,3-Galactosyltransferase (-1,3-GalTs) and -1,4-

GalTs).22, 23 Uridine aldehyde, an analogue of uridine, was used as an anchor building block 

because the nucleoside moiety enables to locate DCL members towards active sites of 

GalTs.24 A series of amine was selected as surrogates of the pyrophosphate and galactose 

moieties, constructing imine DCL. The most amplified binder was identified in the presence 

of enzyme and the corresponding amide product of this amine library member was assessed 

to be an inhibitor towards enzyme, with IC50 of 0.4 mM. (Figure 48) This successful 

development of GalT inhibitors via a DCC approach directly inspired our own attempts to 
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identify suitable pyrophosphate and sugar replacements in our series of 5-substituted 

nucleoside GalT inhibitors via DCC experiments (see below). 

 

Figure 48 (A) Design of DCL of uridinal and amine building blocks. (B) Structures of corresponding amine 

product containing the best binder and its amide analogue. 

 

In another example, a protein-directed DCC experiment was applied to develop inhibitors for 

carbonic anhydrase (CA).25 X-ray crystallographic data of target enzyme has shown that a 

Zn(II) ion is situated in the active site, being coordinated by Histidine residues. 

Sulphonamides can act as recognition element to bind with CA by adding to the metal 

coordination sphere.26 According to this structure information, a benzhydrazide derivative 

containing ArNH2SO2 group was employed as building blocks. A series of aromatic 

aldehydes were selected as well to introduce ‘tails’ onto the benzhydrazide derivative which 

might complement the interaction between the sulphonamide moiety and enzyme (Figure 49). 

The effective building blocks in the DCL were then distinguished by using mass 

spectrometry.  
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Figure 49 Design of DCL of aromatic sulphonamide and aromatic aldehydes (modified from reference25) 

 

 

3.1.2.3. Reversible reactions and reaction conditions for protein-directed DCC 

 

To date, various dynamic reversible reactions have been used in protein-directed DCC. They 

can be classified into three main types (Table 10): 

(i) Addition-elimination reactions of carbonyl groups, such as imine formation14,18, 27   

and hydrazone formation19, 28. 

(ii) Thiol exchange reactions, such as thiol-disulphide exchange13, thiol-enone 

reaction19 and hemithioacetal reaction29, 30. 

(iii) Boronate ester formation15, 31. 

In addition to these reactions,, some organic-based reactions, like alkene cross metathesis32 

and oxime formation33 also have been employed in DCC experiments.  

The selection of an appropriate reversible reaction is crucial for the design of protein-directed 

DCC.  The reversible reactions need to fulfil several requirements.3, 17 The reversible reaction 

can be carried out in aqueous media, which makes them biocompatible. The reversible 

reaction chosen for DCL should equilibrate on a reasonable timescale, from minutes to days, 

under mild conditions, at a certain pH and temperature, where target proteins are active and 

molecule recognition would not be interfered. The reversible reactions can be carried out in 
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the presence or absence of enzyme. It needs to guarantee the solubility of all the library 

members at equilibrium that the DCL would not be biased due to precipitation of some 

library members. Also, the reversible reactions can be carried out chemoselective to avoid 

cross-reacting with functional groups of building blocks.  

Table 10 Reversible reactions used in protein-directed DCC 

 

 

Imine formation 

Imine formation was one of the first reversible reactions employed for protein-directed 

DCC.7 In DCL, imine libraries are generated by the condensation between aldehydes or 

ketones/amines at mildly acidic and room temperature conditions. Because of the instability 

of some imines, reducing reagents could be introduced to reduce instable imines into amine. 



 

127 

 

The kinetic information of these libraries was analysed by the detection of stable amine 

analogues.14, 22 (Figure 50) 

 

Figure 50 The imine library generated via ketone and amides and the imines were reduced for analysis 

 

A DCL was generated by using the imine interconversion for the identification of inhibitors 

of human carbonic anhydrase (hCA II).34 (Figure 51) Different aromatic aldehydes and 

amines were selected as building blocks for probing the active enzyme site. In this DCL, 20 

imines were produced in equilibrium and the reducing reagent NaBH3CN was applied to stop 

the reversible reaction, generating corresponding amines. The HPLC analysis results showed 

that the distribution of the mixtures was altered by addition of the target enzyme and the 

amplified members were identified. All possible amines were synthesized and inhibition 

constants (Ki) were determined against hCA II.  

 

 

Figure 51 Reversible formation of DCLs based on imine formation for the development of hCA II inhibitors 

(modified from reference34) 

 

Hydrazone formation 
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The reversible formation of hydrazones was first used by the Sanders group for DCL 

synthesis.35 The hydrazone exchange reaction is carried out between aldehydes/ketones and 

hydrazides. Compared with imine formations which react at neutral to acidic condition, 

hydrazones can be thermodynamically stable at lower pH condition, ranging from 2.5 to 6.0, 

as they are favoured by the protonation of the aldehyde and the nitrogen atom of the C=N 

bond of the hydrazone.1 Under acidic or high temperatures conditions, the exchange reactions 

become significant, which gets slower as pH increases. This reaction is chemoselective and 

thus compatible with various functional group, highly suitable for DCLs. DCLs based on 

hydrazone exchange have been reported by using nucleic acids, carbohydrate or peptides as 

building blocks.36, 37 

In 2003, the inhibitors of cyclin-dependant kinase (CDK2) which is involved in various 

human cancers was developed by generating DCL of hydrazones.38 A range of hydrazines 

and isatins were selected as building blocks and the hydrazone formations were carried out in 

neutral condition. (Figure 52) As they tend to be kinetically inert under neutral conditions, 

the reaction equilibrated in relative long timescale, 48h, at room temperature. The reactions 

were carried out in the presence of protein and the amplified hydrzones were identified. 

Biochemical evaluation of these hydrazones showed that all of them exhibited potential 

inhibitory activity, with IC50 values of around 30 nM. 

 

Figure 52 DCL of oxindole compounds synthesized by reaction of hydrazine and isatins for the development of 

CDK2 inhibitors. (modified from reference38) 
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Disulfide bond formation 

Disulfide bond formation requires deprotonating thiol, which is pH-dependent and it can be 

quenched by decreasing pH. Neutral condition (pH 7-9) is appropriate for the generation of 

disulfide formation. Due to the neutral reaction condition for disulfide exchange reaction, this 

reversible reaction is also one of most common reaction applied for protein-directed DCC. 

The first example of disulfide-based DCC was introduced by Lehn.13 Then the disulfide-

based DCC has been used for development of inhibitors towards biological targets.39, 40  

Disulfide-based DCC was employed for targeting adenosine-binding sites on Mycobacterium 

tuberculosis pantothenate synthetase, a potential virulence factor for M. tuberculosis that is 

required for pantothenate (vitamin B5) biosynthesis.41 5’-deoxy-5’-thioadenosine was chosen 

as an anchor to the adenosine binding site of enzyme and a set of thiols was selected as 

building blocks as well. (Figure 53) Upon addition of the protein, a benzyl disulfide 

derivative was amplified and identified on library analysis by HPLC. As predicted by a 

molecular docking study, the benzyl substituents can be accommodated in the hydrophobic 

substrate-binding pocket. This hypothesis was confirmed by solving the co-crystal structure 

of the target enzyme complex with the hit disulfide compound.41  

 

 

Figure 53 Generation of disulfide-based DCL for templating by M.tuberculosis pantothenate synthetase 
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As the disulfide library often requires long incubation time to reach equilibrium, from several 

days to two weeks,42, 43 improvements were developed to reduce the incubation time. For 

example, in the protein-directed DCC work based on the disulphide reversible reaction, the 

experiment was carried out by using glutathione redox buffer at pH 8.5 under inert 

atmosphere.41 Because the glutathione redox buffer could promote disulphide exchange, the 

DCL reached equilibrium in less than 24h.  

 

Thiol-enone exchange  

The thiol-enone exchange reaction is performed by nucleophillic attack of thiol towards 

enone (-unsaturated ketone). This reaction is suitable for protein-templated DCC because 

this exchange reaction can reach equilibrium fast (from hours to days) and take place in 

aqueous media.40, 44, 45 

The reversible reaction between thiols and enones was used in protein-directed DCC towards 

the target enzyme glutathione S-transferase (GST).45 GST and its analogues as the thiol 

building blocks and ethacrynic acid as the enone were chosen because it was a known 

inhibitor of enzyme (Figure 54). The thiol and the enone afforded thioesters, which reached 

equilibrium in 1h. Upon the addition of target enzyme, the reactions re-equilibrated, which 

indicated that the enzyme could facilitate the addition between thiols and enone. In order to 

confirm the binding affinity between enzyme and the amplified products, these compounds 

were synthesized and subjected to the standard GST assay for assessment. Inhibition results 

showed IC50 value of 0.32 M.  
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Figure 54 Generation of thiol-enone based DCL via GSH and ethacrynic acid for templating by GST 

 

Hemithioacetal reaction 

The hemithioacetal reaction is performed between thiol and aldehyde. The hemithioacetal 

formation can be thermodynamically stable at neutral pH condition and it can reach 

equilibrium in a short timescale. For example, the hemithioacetal formation was applied for 

protein-directed DCC and -galactosidase was selected as the target protein for the proof-of 

concept study.30 Based on the structures of known inhibitors of target enzyme, o-nitrophenyl-

-galactopyranoside and isopropyl-1-thio--D-galactopyranoside, a set of thiols and 

aldehydes were selected as building blocks, constructing hemithioacetal DCL (Figure 55). 

Because the formation and dissociation of hemithioacetal are fast compared with NMR 

relaxation time at pH = 7.2, Saturation-Transfer Difference NMR (STD-NMR) was applied 

to identify the binders of enzyme. It was shown that hemithioacetal products could be 

selected as binders by target enzyme, which was confirmed in the inhibition assay.30  

 

Figure 55 Generation of hemithioacetal-based dynamic combinatorial library of thiols and aldehydes for the 

proof-of-concept study 
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Boronate ester formation 

Boronate ester formation is performed between boronic acids and diols. The reversible 

reactions reach their most dymanic at the pH which is similar to the pKa of the boronic acid.3 

Typically, arylboronic acid’s pKa are around 8, which makes the reversible reaction suitable 

for neutral condition. The pKa value of alkylboronic acid are higher (10 -12) so that basic 

reaction condition is suitable for reversible reaction with alkylboronic acid. Therefore, it is 

essential to measure the pKa of the boronic acid and choose an appropriate pH which is 

suitable for both boronic acids as well as the target enzyme.15 

DCC experiments by using boronic ester reversible reaction were carried out by Leung to 

enhance the inhibition of serine protease -chymotrypsin.15 Based on known serine-protease 

inhibitors were selected as model boronic acid fragments, and fructose were selected as the 

alcohol fragments for use in DCC (Figure 56). 11B-NMR and 1H-water-ligand observed via 

gradient spectroscopy (1H-waterLOGSY) were used to monitor the ternary complexes of 

enzyme, boronic acids and sugars. Given that the pKa of most boronic acid is around 7-9, the 

DCC experiments were conducted at pH 5.8 to make sure that the free boronic acid is present 

in its sp2 hybridized form to react with diol in the following step.  In the presence of enzyme, 

the favourable combination of boronic acids and diols were identified by NMR analysis.15  

 

 

Figure 56 Generation of boronate ester based DCL via boronic acid fragment and fructose, templating by 

serine-protease 
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3.1.2.4. Analytical techniques 

 

Because of the increasing interest in DCC for the development of potent inhibitors and drug 

discovery, a lot of attention has been paid to the development of suitable analytical tools for 

the identification of binders from DCLs. The techniques need to be sensitive enough to detect 

changes in equilibrium and concentrations, and they need to be able to detect protein binders 

from a mixture of reversibly reacting products.3, 46 Until now, three main types of analytical 

techniques have been used, namely high pressure liquid chromatography (HPLC)18, 27, 47, 

mass spectrometry19, 48, 49 and NMR spectroscopy15, 29, 31, 41.  

HPLC is routinely used for the isolation and identification of small molecules. For DCLs, 

HPLC is particularly useful as it can screen the binders and quantification of the relative 

concentrations from the mixtures of DCLs. The comparison of HPLC chromatograms of the 

DCLs mixtures under different thermodynamic conditions can help for the identification of 

amplified binders.27, 50, 51 However, one of the disadvantages of HPLC for DCLs is that the 

unstable DCL members may dissociate when interacting with the mobile and the stationary 

phases of HPLC in the process of separation. In order to avoid this problem, the reversible 

reactions of DCC are often ‘quenched’ prior to HPLC analysis. For example, reductive 

reagents, like NaBH3CN, were used to imine exchange reaction to produce corresponding 

stable amine to frozen the reaction prior to HPLC analysis.14, 47  pH modulation is carried out 

for thiol disulphide exchange reaction before analysis because the deprotonation of thiols is 

pH-dependant and the decreasing pH could freeze the exchange reaction.40  Also, by 

increasing pH of a mixture of hydrazones could slow down the reversible reaction as they are 

much more stable at neutral or basic pH condition.37 The pH of exchange reactions can be 

adjusted by the mobile phase of HPLC. For example, a DCL based on the imine reversible 
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reaction was developed to identify inhibitors of egg white lysozyme.27 The sample of DCLs 

mixture was applied to the HPLC analysis in which mobile phase contained TFA (0.1%). It 

effectively decreased the pH of DCLs mixtures and ‘quenched’ the equilibrating mixture. In 

catalysed reversible reactions, the removal or inactivation of the catalyst will transform the 

DCLs into a stable library for subsequent analysis.52  

NMR spectroscopy is a non-destructive analytical technique, which can be performed directly 

in solution. The NMR technique can provide structural information of compounds and It can 

be employed for quantitative analysis as well. For DCLs, NMR tools permit the direct 

analysis of the complete mixture under equilibration conditions. For example, the 1H-NMR 

experiments are a useful tool for the quantitative measurement and for the optimization of 

DCLs applications.53 13C-NMR can also be applied for the analysis of DCL.54 It is possible 

that 1H and 13C-NMR signals of individual compound become overlap with the increasing 

number of DCLs, which interferes with the detection and quantitation of DCLs. In order to 

enhance the sensitivity of NMR tools for detecting, a common approach is the insertion of 

13C-isotopic labels at key positions of the molecular structure of DCLs.54, 55 The 13C-labeling 

of the imine carbon of DCL members provides a single characteristic resonance for each 

compounds in the 13C-NMR spectrum which could increase its sensitivity close to that of a 

1H-NMR spectrum, which permit the increasing complexity of DCLs.55 Also, the 13C-isotope 

would not affect the thermodynamic stability of exchange reaction. 19F-NMR is applied as an 

alternative approach for the determining the thiol-enone exchange equilibrium constant, 

where the DCLs members, thiol-enones, are appropriately labelled.56 In the boronate ester 

formation DCL for -chymotrypsin inhibitors development, 11B-NMR and 1H water LOGSY 

were used as tools to observer ternary complexes of boronic acids, diol and enzyme for 

analysis.15 Since the 11B-NMR is relatively insensitive, the concentration of target enzyme 

was increased to 2 mM (ratio: enzyme/boronic acid = 1/1). Also, the nuclear overhauser 
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effect (NOE)-based NMR techniques such as STD57 and water ligand-observed via gradient 

spectroscopy (waterLOGSY)15, 41 are applied to detect binders of target enzymes in DCLs. 

For example, a hemithioacetal formation was employed for the generation of DCL for -

galactosidase and the binding performances of DCL members were detected by STD NMR 

technique.30 As the hemithioacetal formation and dissociation processes are much faster than 

the normal NMR relaxation time scale under the enzyme-suitable condition, their resonances 

were broadened and difficult to be observed. The STD-NMR only focuses on the interaction 

between ligands and target protein. The magnetization, which is transferred from enzyme 

protein protons to those of bound ligands, can be detected after dissociation from the enzyme 

by STD-NMR. In another example, boronate ester formation DCL was applied for the 

development of -chymotrypsin inhibitors by using 11B-NMR and 1H water LOGSY as the 

analytical method of choice.15 A DCL containing 5’-deoxy-5’-thioadenosine and thiols as 

building blocks was developed, with an adenosine-binding enzyme as template.41 A 1H-NMR 

waterLOGSY experiment was employed for detecting the binding between protein and 

thioadenosine building blocks. The purine protons from thioadenosine, which were distinct 

from other signals on spectrum, can be detected strongly positive upon the protein-ligand 

binding.  

Mass spectrometry is also a commonly used technique to identify molecules because it can 

directly confirm the presence of a particular molecule. In DCLs, electrospray ionization mass 

spectrometry (ESI-MS) is often used to detect the produce of DCL members.58-60 The ESI-

MS screening has permitted concurrent identification of all ligands of enzymes through direct 

analysis. The approach distinguishes the effective combination of building blocks in the DCL 

by specific detection of the target protein-ligand complexes. For example, a thiol-based DCL 

was combined with a ESI-MS approach to identify inhibitors of the BcII metallo--lactamase 

(MBL).60 As the compound meso-2,3-dimercaptosuccinic acid was indicated to be able to 
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bind with the complex of MBL and Zn(II) ion and their peaks could be observed by ESI-MS, 

this compound, used as an anchor building block, and a set of thiols were applied to DCL in 

the presence of enzyme. After a short time of aerial exposure, peaks corresponding to BcII-

Zn-disulfide complexes could be observed by ESI-MS selectively. The selected disulfides 

were confirmed to act as a potent inhibitor towards MBL (Ki = 125 M). A disadvantage of 

this technique is that its use for quantification is not straightforward. In order to solve this 

problem, the combination of liquid chromatography and MS (LC/MS) has been applied as a 

very powerful approach for DCLs analysis, which allows the separation and identification of 

the DCL mixtures.61 The separation of the mixture by HPLC can give information about the 

relative amount of compounds present in the library and the following analysis of MS allows 

the identification of each species.  

Other biophysical techniques also have been developed for the screening of DCL binders. For 

example, X-ray crystallography has also been applied to DCL experiments. In 2003, X-ray 

was used to detect binders of cyclin-dependant kinase 2 (CDK-2) from a DCL by exposing 

protein crystals to the library.38 The building blocks, hydrazines and isatins, was exposed to 

CDK-2 crystals and one of the DCL members was observed to locate in the hydrophobic 

region of enzyme active site and it clearly indicated that X-ray crystallography could act as a 

useful tool to detect enzyme binders. It is obviously that small size DCLs are more easily to 

be employed as the complexity of mixtures of large size DCLs increases. The number of 

building blocks is increasing and it will result in the larger amount of equilibrating 

compounds. In this condition, false positive results might be produced. In order to solve the 

problem, a DNA-encoding technology was applied with protein-directed DCC to identify the 

amplified compounds and it allowed efficient screening of potentially large amount of 

compounds.62, 63 In the case that DCLs are composed of aromatic and heterocyclic 
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compounds, the use of NMR technique may lead to false positive results and other techniques, 

like UV spectroscopy, were applied to verify the results.29 

 

3.2. Objectives 

 

Based on the results of our previous experiment, uridine derivatives were generated by the 

removal of pyrophosphate and galactose moieties and the introduction of 5-position 

substituents. These 5-substitunt nucleoside derivatives were identified as nucleoside-based -

1,4-GalT inhibitors. The IC50 of the nucleoside derivatives were 200 to 300 M, twenty times 

weaker than the sugar nucleotide inhibitor, 5-FT UDP-Gal. It is speculated that the drastic 

reduction of activity was due to the absence of pyrophosphate and galactose moieties. A 

dynamic combinatorial chemistry strategy was applied to identify appropriate replacements 

of pyrophosphate and sugar moieties (Figure 57) in order to overcome the loss of activity 

and develop potent -1,4-GalT inhibitors. It was speculated that the pyrophosphate and 

galactose mimics that were screened from the DCL could exhibit binding affinity toward the 

enzyme, thus facilitating the inhibitory activity of corresponding nucleoside derivatives.  
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Figure 57 Generation of a hydrazone DCL from 5-indole uridine aldehyde and hydrazides/hydrazones 

 

3.3. Results and discussion 

The synthesis of the 5-indole uridine aldehyde is initially introduced in this section before 

describing the development of the DCC experiment and HPLC-based analytical method. This 

is followed by a synthesis and activity assessment of the active DCL members.  

 

3.3.1. Synthesis of building blocks (5-indole uridine aldehyde) 

 

In order to start the DCC experiment for inhibitors development, the synthesis of building 

block, 5-indole uridine aldehyde 29, was carried out. It was speculated that, since 5-indole 

uridine contains three unprotected hydroxyl groups, one primary hydroxyl group and two 
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secondary hydroxyl groups, the selective oxidation of the primary hydroxyl group might be 

achieved without protecting the secondary groups.  Although there was no precedent for the 

selective oxidation of nucleoside primary groups, it was decided to try it due to the simple, 

one-step synthesis. Therefore, the direct oxidation of the primary hydroxyl group was tested 

after obtaining 5-indole uridine 13 via iodination of uridine and subsequent Suzuki reaction 

under MW conditions. (Scheme 9) Since the solubility of starting material 13 was low in 

DCM, DMSO was used as the solvent to facilitate its dissolution. The reaction was carried 

out in DCC oxidation condition, and after stirred in room temperature for 3 hour, TLC was 

applied to monitor the reaction. Based on the TLC, apart from some starting material that was 

left behind, a new spot with a much higher Rf value appeared on the plate. Crude mixture was 

used for 1H-NMR. The 2’-, 3’-, 5’-position protons did not appear in the NMR spectrum. 

Based on the results of 1H-NMR and TLC, it was hypothesised that all the hydroxyl groups 

had been oxidized. 

 

Scheme 9 Synthesis of protected 5-indole uridine. Reagents and conditions: (i) I2, HNO3 (2M), 

CHCl3, reflux for 6h, 70%. (ii) 4-indole boronic acid, Cs2CO3, TPPTs, PdNa2Cl4, H2O, MW 120 oC, 30 

min, 45 %. (iii) Trifluoroacetic acid, DCC, pyridine, DMSO, 3h, product with all OH groups oxidized. 

 

Therefore, it was necessary to carry out the protection step of diol prior to the oxidation of 

primary hydroxyl group. It has been reported that commercial uridine reacted with p-

methoxybenzaldehyde to produce the 4-methoxylbenzyl ether (PMB)-protected compound in 
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high yield64 and the PMB protecting group can be easily cleaved off later under very mild 

conditions using 5% trifluoroacetic acid (TFA) in DCM. Therefore, compound 13 was 

applied to the protected reaction. (Scheme 10) 

 

Scheme 10 Synthesis of PMB protected 5-indole uridine. Reagents and conditions: (i) p-methoxybenzaldehyde, 

ZnCl2, dry THF, rt, 2 days.  

 

The reaction was carried out using p-methoxybenzaldehyde (2 equiv.), ZnCl2 (1 equiv.) in 

anhydrous THF at room temperature. However, only starting material was obtained after 48 

hours. The used batch of ZnCl2 was not powder but like large pieces. It was speculated that 

the ZnCl2 was not anhydrous due to its high hygroscopicity, which may have interfered with 

the protective reaction. Commercial uridine was subjected to this reaction in the presence of a 

new batch of ZnCl2 in order to verify this hypothesis, and a satisfactory 86 % yield of desired 

product was obtained. The compound 30 was prepared in the same way, but only a poor 

purified yield of 27% was obtained. The protocol employing p-methoxybenzaldehyde 

dimethyl acetal (2 equiv.), p-TSA (5 mol%) in dry DMF solution at 70 oC overnight was 

applied in an attempt to improve the efficiency of this protective reaction and this produced 

the desired compound 30 in a yield of 68 %. (Scheme 11)  
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Scheme 11 Synthesis of compound 30. Reagents and conditions: (i) p-methoxybenzaldehyde dimethyl acetal, p-

TSA, dry DMF, 70 oC, overnight, 68%.  

 

With the protected precursor 30 in hand, the synthesis of compound 31, PMB-protected 5-

indole uridine aldehyde, was started by the oxidation of the DCC. (Table 11, entry 1) The 

reaction was carried out using TFA, DCC, and pyridine in a DMSO solution at room 

temperature for 6 hours. The TLC results showed that the reaction mixtures were quite 

complex and no major spot was detected with strong UV absorbance. Then, the Dess-Martin 

oxidation was investigated using Dess-Martin reagent (3 equiv.) in DCM, as shown in entry 

2, the result was similar as entry 1.  

Table 11 Oxidation of PMB protected 5-indole uridine aldehyde 31 

 

Entry Reactions Results 

1 DCC, TFA, pyridine, DCM, rt, 6h NO product 

2 Dess-martin oxidation NO product 
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Since the oxidation step had failed, a new strategy was adopted by using a different protective 

group (Scheme 12). It has been reported that 2,2-dimethoxy propane (DMP) can be used to 

protect diols in the form of isopropylidene under acid catalysed conditions.65 Therefore, DMP 

protection was carried out by using DMP (3 equiv.), p-TSA (5 mol%) in a THF solution at 60 

oC for 3 h and the desired product 32 was obtained in a yield of 69% after purification. Dess-

martin oxidation was performed by subjecting compound 32 to the condition of Dess-Martin 

reagent in DCM solution at rt for 5h. The desired product 33 was obtained in a yield of 47%. 

Then the DMP protective group of compound 33 could be cleaved off later using 50% 

trifluoroacetic acid (TFA) in DCM for 30 min. Following the removal of the excess TFA 

solution by evaporation, the desired aldehyde 29 was obtained in 80 % yield without further 

purification. 

 

 

Scheme 12 Synthesis of 5-indole uridine aldehyde. Reagents and conditions: (i) 2,2-dimethylpropane, p-TSA, 

TFA, 60 oC, 3h, 69%. (ii) Dess-martin reagent, DCM, 5h, 47%. (iii) 50 % TFA, 30 min, rt, 80%.  

 

3.3.2. DCL screening experiment 

 

With the desired nucleoside building block 29 in hand, the DCC experiment was carried out. 

A DCL was generated based on a hydrazone formation using compound 29 and 
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hydrazines/hydrazides (H-1 to H-13) as building blocks. A series of hydrazines/hydrazides 

with different structures was selected to establish library diversity and they were all 

commercially available. (Figure 58) It has been reported that tunicamycin acts as GlcNAc 

phosphotransferase inhibitor by utilizing a monosaccharide to mimic the pyrophosphate-Mn2+ 

six-member ring complex of transition state. Glucose residues were also investigated as 

possible pyrophosphate-metal complex mimics for the GalT inhibitor development. Thus, H-

1 and H-4 containing six-member rings were chosen in order to mimic the six-member ring 

complex formed in the transition state. Aliphatic hydrazines/hydrazides containing functional 

groups, like H-3, H-11 and H-5, etc., were selected due to the possibility of binding between 

enzyme active site and their functional groups. The indole moiety could help the binding 

towards -1,4-GalTs, as was proven in the development of our nucleotide inhibitors; 

therefore, the hydrazide that contains indole moiety, H-13, was selected as the building block.  

 

 

Figure 58 Library of hydrazine/hydrazide building blocks 

 

Since the target enzyme, -1,4-GalTs, was the same as the ones in the literature, it was 

decided to start the experiment under the conditions as in the literature,22  according to which 
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the reversible reaction reached an equilibrium after 13 days at room temperature. Although a 

different reversible reaction was used in our DCC experiment, it was possible that it would 

still take a long time to achieve equilibrium. Therefore, in view of the potentially long 

incubation time, we decided to first test the activity of the enzyme under the conditions of the 

DCC experiment, in order to avoid false screening results.  The enzyme was incubated in the 

DCC experiment buffer (MOPS buffer, 50 mM, pH 7.4, MnCl2 20 mM) in a water bath at 25 

oC. The enzyme activity was monitored by measuring the percentage substrate UDP-Gal 

turnover in phosphatase-coupled glycosyltransferase assay every other day (14 days in total), 

(Figure 59). The turnover% of the natural donor UDP-Gal was plotted against the incubation 

time (days) and it was suggested that the enzyme activity decreased as the turnover% dropped. 

The turnover% was still around 17% after 14 days of incubation, which verified that the 

enzyme could have a catalytic effect on the reversible reaction during the incubation process.  

 

Figure 59 GTs activity assay by measuring the conversion of the UDP-Gal donor at different incubation time 

(with ‘’turnover’’ defined as the percentage of UDP-Gal that is consumed during the GT reaction, relative to the 

total amount of UDP-Gal in solution) 

 

Since the reversible reaction may take a long time to reach equilibrium, the library products 

formed may not be stable. Due to the instability of these hydrazone products, the reducing 

reagent NaBH3CN was introduced to reduce the hydrazone products into stable products, 
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which were irreversible. Then the distribution of reduced products could be analysed by 

HPLC.  

The concentration of components in the reaction was the key points of the DCC experiment. 

For example, the concentration of building blocks can influence the rate of reaction. It is 

crucial that the reversible reaction can reach equilibrium in a reasonable timescale. Also, a 

sufficient amount of enzyme is required to re-equilibrate the reversible reaction and the 

changes in the distribution of library members are detectable for the analytical technique. An 

excessive amount of reducing reagents was used to facilitate the reductive step, resulting in a 

stable product for analysis.66  It was reported in the literature that no products could be 

detected by HPLC-UV or HPLC-MS after 13 days incubation when the initial concentration 

of building block was 80 M.22 Thus, the concentration of building blocks was increased to 

300 M, in order to push the equilibrating mixture towards product formation for analysis. 

Therefore, our initial attempt of the DCC experiment was tested utilising compound 29 and 

piperidin-1-amine H-1 as building blocks with a concentration of 300 M in a MOPS buffer 

(50 mM, pH 7.4, MnCl2 20 mM) as a model reaction. The 5 mM of the reductive reagent 

NaBH3CN was much in excess of the building blocks, and the enzyme was introduced with a 

concentration of 0.69 mg/mL. The total volume was 300 L. A control experiment containing 

identical reagents except the enzyme was performed in order to compare the re-equilibrium 

effect from enzyme template. The reactions were incubated at 25 oC and monitored every day 

by HPLC. 

Since the aldehyde building block 29 and formed product are UV-active and their UV-

absorbance are both derived from the nucleoside and indole moieties, the absorbance 

spectrum of the aldehyde derivative 29 as well as 5-indole uridine was measured to select the 

wavelength of HPLC detection. 25 M aldehyde 29 and 5-indole uridine in methanol solution 
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were measured separately. (Figure 60) The maximum absorbance of the 5-indole uridine, as 

well as the aldehyde derivative, was around 262 nm and their UV absorbance at 254 nm was 

found to reach maximum intensity of 80%. Therefore, absorbance at 254 nm was selected for 

the HPLC analysis.  

 

Figure 60 UV absorbance measurement of 5-indole uridine and its aldehyde derivative 29. Maximum 

absorbance at 262 nm and 80% maximum absorbance intensity at 254 nm. 

 

A calibration curve was established to measure the relationship between the sample volume 

and UV absorbance intensity. Different volumes of aldehyde 29 solution (300 M) were 

applied to the HPLC equipment. The volume of 29 solution was plotted against the UV-

absorbance intensity to obtain the calibration curve. (Figure 61) According to the calibration 

result (the equation of calibration), the sample of which the volume was lower than 50 L 

was un-detectable for the HPLC. Thus, the injected amount of reaction mixture solution was 

raised to 100 L.  
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Figure 61 The calibration curve for the measurement of relationship between compound volume and UV-

absorbance intensity. Different volume of 29 solution (10, 40, 80, 100, 500, 1000 L) was injected in HPLC and 

detected on 254 nm.  

 

In the reversible reaction, the mixtures of 29 and hydrazines/hydrazides were equilibrated, 

forming hydrazone products, which were then reduced to stable compounds. The equilibrium 

of the reversible reaction in the presence of enzyme may induce a change in the distribution 

of the reduced products, which can be analysed by HPLC. Thus, a robust method was 

developed to separate the 29 and reduced products which were UV-active. An HPLC system 

with detection set at 254 nm coupled with a reverse phase column (150 × 4.6 mm) with a 

flow rate of 0.5 mL/min was initially selected. The mobile phase comprised a mixture of 

water (buffer A) and acetonitrile (buffer B) and the gradient utilised is illustrated in Table 12. 

 

Table 12 Gradient utilised for the separation of compound 29 and the product 

Gradient step Time (min) Buffer A (%) Buffer B (%) 

1 1 90 10 

2 12 90 to 40 10 to 60 

3 14 40 to 95 60 to 5 

4 16 95 5 
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The elution system was utilised each day to monitor the process of the reaction equilibrium. 

The results are illustrated Figure 62. 

 

Figure 62 DCC experiment results of compound 29 and H-1 in the presence or absence of enzyme. Series A: 

reversible reaction incubated in the absence of enzyme; Series B: reversible reaction incubated in the presence 

of enzyme. By comparing the ratio of product/starting material, the formation of hydrazone product was not 

amplified on the addition of enzyme 

 

An analysis of the result suggested that the aldehyde 29 had the peak with retention time (tR) 

of around 6.3 min and the tR of the reductive product was around 8.5 min. (Chromatograms 

are shown in Appendix section Figure A2) The formation of product could not be detected 

until the fourth day. It was speculated that the structure of the tertiary amine of H-1 might 

show steric hindrance and slowed down the reaction rate. In the process of reaction, some 

noisy peaks appeared during the range of tR from 1 to 3 min. Also, the baseline of the 

chromatograms was not flat. These noisy signals interfered with the analysis of the 

distribution of the DCL products. Some white precipitation was observed in the bottom of 

Eppendorf in the process of incubation and this was thought to be the inactive enzyme 

precipitated from the buffer. The reaction solution was used with the HPLC without being 

pre-treated in previous experiments. Thus, the inactive enzyme precipitation may also have 

been injected into the analytical instrument and led to the messy peak signal. Thus, the 
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reaction solution was pre-treated before being applied to the HPLC in order to avoid these 

undesirable peaks. Samples were removed from the Eppendorf, followed by the addition of 

methanol and these mixtures were centrifuged for 15 min at 1000 rpm. The supernatants were 

then used for an HPLC analysis, facilitating the removal of impurities, like the inactive 

enzyme. This approach was attempted for the HPLC analysis by utilizing the reaction 

solution containing 29, H-1 and enzyme. The noisy peaks from impurity were also greatly 

reduced. (Figure 63) 

 

Figure 63 Chromatograms of sample of reaction solution (including 29, H-1 and enzyme). Samples were 

removed from the solution in Eppendorf, followed by the addition of methanol. The mixtures were centrifuged 

for 15 min at 1000 rpm. The supernatants (100 L) were then used for the HPLC analysis. The impurity signal 

appeared between tR 1 to 3 min reduced greatly. 

 

The chromatograms showed that the compound 29 peak decreased after incubation for 14 

days and an extra broad peak appeared with tR around 4.0 min. Since an excess of the 

reductive reagent, NaBH3CN, was used to enable the reductive step, it was hypothesised that 

29 may be reduced to produce 5-indole uridine and the peak of reductive product 5-indole 

uridine may appear with tR (4.0 min). In order to test this hypothesis, a 5-indole uridine 

sample was utilised with the HPLC under the same analytical conditions and a peak with tR 

(4.0 min) appeared in the chromatogram, thus supporting the hypothesis. According to the 

results of the reversible reaction between compound 29 and H-1, the peak of the reductive 
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product, 5-indole uridine, did not appear until the tenth day of incubation, which suggested 

that the reductive reaction of the aldehyde started from the tenth day.  

Having developed a robust HPLC method for analysis DCC experiment of H-1 and aldehyde 

29 and with these optimised conditions in hand, all the other hydrazide/hydrazine candidates 

(H-2 to H-13, Figure 58) were employed in the reversible reaction to identify amplified 

library members. The distributions of most DCL members showed no change with the 

addition of the enzyme template. To our delight, the distribution of one library member 

formed by compound 29 and 4-(2-hydrazinylethyl)morpholine, H-9, was observed to be 

amplified due to the addition of enzyme. When analysing the chromatograms of reactions in 

the presence or absence of enzyme, the peak of the product formed increased with the 

addition of enzyme. It was observed that for, this reversible reaction, peak of the aldehyde 

building block 29 became broad and overlapped with the product peak. It was suggested that 

the pH of the reaction solution might change in the process of incubation, which might 

influence the HPLC results. Thus, the HPLC elution system was modified with a flow rate of 

0.6 mL/min. The mobile phase comprised a mixture of water (Buffer A) and acetonitrile 

(Buffer B) and a new gradient of elution system was developed (Table 13). An analysis via 

the optimised HPLC condition indicated the peaks of compound 29 and corresponding 

product had been separated. By using the optimised elution system, the peak of 29 had shifted 

from tR 6.4 min to 5.8 min and the peak of tR 7.5 min belonged to the product. 

(Chromatograms are included in the Appendix section as Figure A2)  

Table 13 Gradient utilised for separation of aldehyde 29 and the corresponding product 

Gradient step Time (min) Buffer A (%) Buffer B (%) 

1 1 90 10 

2 15 90 to 30 10 to 70 

3 16 30 to 95 70 to 5 
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The results of the reversible reaction between 29 and H-9 are shown in Figure 64. The 

product of reversible reaction was formed from the second incubation day. The rate of 

reversible reaction with H-9 was faster than that between 29 and H-1. It was suggested that 

the secondary amine of H-9 had a much less steric hindrance effect. When comparing the 

ratio of product/starting material, it was shown that the formation of the product was 

amplified in the presence of enzyme template from the fourth day and the amplification effect 

increased during the process of incubation. Therefore, it was suggested that this DCL 

member could exist binding affinity with target enzyme. 

 

Figure 64 DCC experiment results of compound 29 and H-9 in the presence or absence of enzyme. Series A: 

reversible reaction incubated in the absence of enzyme; Series B: reversible reaction incubated in the presence 

of enzyme. The ratio of product/stating material was calculated based on the corresponding peak areas. When 

comparing the ratio of product/starting material, the formation of the hydrazone product was amplified with the 

addition of enzyme 

 

3.3.3. Re-synthesis and activity measurement of active DCL member 
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Having identified a promising candidate H-9 from the hydrazide/hydrazine library, the target 

molecule 34 was synthesised on a larger scale for the measurement of inhibitory activity. 

(Scheme 13) The reaction was carried out using aldehyde 29 and H-9 in a MeOH solution at 

room temperature, followed by the addition of NaBH3CN. The desired product was obtained 

after twice reverse phase chromatography, with a yield of 14%.  

 

Scheme 13 Synthesis of 5-indole uridine hydrazine 34. Reagents and conditions: (i) NaBH3CN, MeOH, rt, 24h, 

14% 

 

Another strategy was employed due to the low yield, in which the coupling reaction with 

hydrazine H-9 was carried out prior to the deprotection step. It was hypothesised that the 

chromatography purification of 35 would be easier to carry out due to its better 

hydrophobicity, leading to less loss of material during the chromatography. No column 

purification was required in the deprotection step either. In order to test this hypothesis, the 

synthesis was initiated from compound 33. (Scheme 14) The coupling reaction was carried 

out by utilising 33 as the starting material, with the desired product 35 obtained after the 

reverse phase chromatography purification. Then deprotection was performed in 50% TFA 

solution at room temperature for 1h. The TLC results suggested that the compound 35 had 

been decomposed. Therefore, a TFA solution with a lower concentration (20%) was utilised 

in order to avoid the loss of this starting material, and product 34 was obtained without 

further purification after removing excess acid solution. 
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Scheme 14 Synthesis of 5-indole uridine hydrazine. Reagents and conditions: (i) hydrazine H-9, NaBH3CN, 

MeOH, rt, 24h. (ii) 20% TFA, 3h, rt. 25 % in two steps.  

 

With this product in hand, its inhibitory activity was assessed in the biochemical 

phosphatase-coupled glycosyltransferase assay. While the 5-indole nucleoside 13 inhibited -

1,4-GalTs with an IC50 value of around 207 M, the corresponding derivative 34, 5-indole 

nucleoside with hydrazine as a mimic of pyrophosphate and galactose moieties, was inactive 

at concentrations up to 1 mM. (Figure 65)  

 

Figure 65 Compound 34 was assessed in the phosphatase-coupled glycosyltransferase assay. No inhibitory 

activity was observed against -1,4-GalTs at concentration up to 1 mM. 

 

The distribution of library member 36 (Figure 66) was amplified in the presence of -1,4-

GalTs, which suggested that the amplification effects might have resulted from the specific 

interaction between the enzyme and 36. Compound 34 was the final stabilized library 

member which was reduced from 36, being converted from a hydrogen acceptor into a 
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hydrogen donor. It might not have maintained the enzyme binding properties of the 

hydrazone components. It was hypothesised that the hydrazine moiety in the 5’-position of 

nucleoside was highly flexible due to the reduction of the C=N bond and the hydrazine 

substituent might have provided steric hindrance which interfered with the enzyme 

attachment. This interference might have deactivated the inhibition of 34 towards enzyme. 

The synthesis of non-reduced compound 36 was carried out in order to testify this hypothesis. 

The related amide analogue 37 was also designed as it contained the C=O linkage, which 

might be less flexible than the C-N bond of 34, thereby facilitating the interaction towards 

enzyme.  (Figure 66) 

 

 

Figure 66 Design of hydrazone 36 and its amide analogue 37 

 

The attempt of the coupling reaction for the synthesis of compound 36 was made under the 

same experimental conditions as compound 34 except for the addition of NaBH3CN. After 

being stirred at room temperature for 24 h, the TLC monitoring indicated that new spots had 

appeared and there was some unreacted starting material left. Therefore, the mixture was 

applied to column chromatography for purification. However, no product was obtained after 

the purification. It was thought that this compound might be unstable in the stationary phase 

of column and was decomposed in the process of purification. Different chromatography 

conditions were utilised for 36 purification. For example, reverse phase chromatography with 
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short column was performed to reduce the purification time; Normal phase chromatographies 

were also performed with DCM/MeOH and Hexane/EA eluent system separately. However, 

these all failed and no product 36 was obtained. Thus, the synthesis work was switched to 

compound 37.  

The synthesis of amide 37 began by utilising protected 5-indole uridine 32 as the starting 

material. (Scheme 15) The condition used to carry out the oxidation involved (2,2,6,6-

Tetramethylpiperidine-1-yl)oxyl (TEMPO) (10 mol%), (Diacetoxyiodo)benzene (BAIB) (3 

equiv.) in MeCN/water co-solvents. Under this condition, the formation of compound 38 was 

achieved with a yield of 72%. Then, compound 38 was coupled with hydrazine H-9, but the 

use of HBTU, DIEA at room temperature and DMF as solvent did not result in a good yield. 

(Table 14, entry 1) Similarly, compound 38 was coupled with the H-9 in the presence of 

EDCI and DMAP in DMF solution, whereas the yield was still very low. (entry 2) The 

attempt to this reaction in the presence of HATU and DIEA in DMF produced a good result, 

with a satisfying yield of 67%. (entry 3) The amide analogue 37 was obtained after 

deprotection in TFA solution.  

 

Scheme 15 Synthesis of compound 37. Reagents and conditions: (i) TEMPO, BAIB, MeCN/Water = 1/1, rt, 6h, 

72%. (ii) HATU, DIEA, DMF, rt, 1d, 67 %. (iii) 20% TFA, 3h, rt. 47%. 
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Table 14 Attempts for synthesis of amide 39 

Entry Reagents Temp/Time Results 

1 HBTU, DIEA, DMF Room temperature, 1d < 10 % 

2 EDCI, DMAP, DMF Room temperature, o/n Low yield 

3 HATU, DIEA, DMF Room temperature, 1d 67% 

 

With compound 37 in hand, its inhibitory activity was assessed in the phosphatase-coupled 

glycosyltransferase assay, and the result is shown in Figure 67. The assay was carried out as 

previously used and the maximum concentration was up to 1 mM. In contrast to 34, the 

amide 37 showed promising activity towards -1,4-GalTs, with an IC50 value of 178 M. 

Compared with compound 13 (5-indole uridine) which showed inhibitory activity around 207 

M, there was a relative slightly improvement in the inhibitory activity of amide 37 and the 

IC50 value was still in the same order.  
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Figure 67 IC50 assessment of amide 37 against -1,4-GalTs. Conditions: 37 (0 to 1 mM) -1,4-GalTs (diluted to 

the required concentrations), acceptor (GlcNAc, 5 mM), UDP-Gal donor (28 M), MnCl2 (5 mM), Chicken egg-

white lysozyme (CEL, 1 mg/mL), calf-intestinal alkaline phosphate (CIP, 10 U/mL), DMSO (10%) buffer (13 

mM HEPES, pH = 7.0, 50 mM KCl) were incubated on a 96-well plate at 30 oC with shaking for 20 min. The 

reaction was stopped by the addition of malachite reagents, and the absorbance was recorded at 620 nm after 30 

min. All concentrations are final concentrations. Bars indicate mean values ± S.D. of triplicate experiments 

 

Since the activity of amide 37 was similar to that of the nucleotide 13, it was speculated that 

the main origin of the binding affinity between amide 37 and enzyme was still the nucleoside 
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moiety, especially from the indole motif. The addition of hydrazine, which was applied as the 

mimic of pyrophosphate and galactose, did not give extra binding affinity. One of the inactive 

hydrazine, H-11, was selected and utilised for the synthesis of compound 40 to test the 

contribution of the hydrazine substituent in the 5’-position of nucleoside to enzyme inhibition. 

We also prepare the amide derivative 41 without indole group in order to understand the 

contribution of the indole moiety of compound 37 to enzyme inhibition. (Scheme 16) 

 

Scheme 16 Synthesis of amide 40 and 41. Reagents and conditions: (i) HATU, DIEA, DMF, rt, 1d, 58%. (ii) 20 % 

TFA, 3h, rt, 43%. (iii) 2,2-dimethoxypropane, p-TSA, THF, 60 o C, 3h, 70%. (iv) TEMPO, BIAB, MeCN/Water 

= 1/1, rt, 6h, 88%. (v) H-11, HATU, DIEA, DMF, rt, 1d, 75%. (vi) 20% TFA, 3h, rt. 83%.  

 

As for the synthesis of compound 40, the acid 38 was coupled with the aliphatic hydrazine H-

11 and the product 40 was obtained after deprotection of diol. (Scheme 16, A) The synthesis 

of amide 41 began from the DMP protection of uridine and the DMP-protected uridine was 

obtained in a yield of 70% after purification. The following step was performed by subjecting 

the DMP-protected uridine to the condition of TEMPO oxidation, followed by a coupling 

reaction with hydrazine H-9. Then, the deprotected reaction was carried out in a 20 % TFA 

solution, thereby affording the desired amide product 41. (Scheme 16, B) 
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With these two products in hand, their inhibitory activities were assessed in the phosphatase-

coupled glycosyltransferase assay, and the results are shown in Figure 68. Compound 41 was 

inactive towards the -1,4-GalTs without the indole substituent. In contrast to compound 41, 

amide 40 showed an activity towards -1,4-GalTs, with an IC50 value of 213 M.  

 

Figure 68 Measurement of inhibitory activities of compound 40 (graph on left side) and 41 (graph on the right 

side) against -1,4-GalTs. Conditions: 40 or 41 (0 to 1 mM) -1,4-GalTs (diluted to the required 

concentrations), acceptor (GlcNAc, 5 mM), UDP-Gal donor (28 M), MnCl2 (5 mM), Chicken egg-white 

lysozyme (CEL, 1 mg/mL), calf-intestinal alkaline phosphate (CIP, 10 U/mL), DMSO (10%) buffer (13 mM 

HEPES, pH = 7.0, 50 mM KCl) were incubated on a 96-well plate at 30 oC with shaking for 20 min. The 

reaction was stopped by the addition of malachite reagents, and the absorbance was recorded at 620 nm after 30 

min. All concentrations are final concentrations. Bars indicate mean values ± S.D. of triplicate experiments 

  

According to previous result (chapter 2), it was suggested that the nucleoside derivative 13 

showed inhibitory activity, with IC50 of 207 M. When the hydrazine H-9 was introduced in 

5’-position of nucleoside with a C-N linkage, the corresponding compound 34 was seen to be 

inactive towards -1,4-GalT. When a C=O linkage was utilised as the replacement of the C-N 

linkage, the corresponding compound 37 was active against the enzyme. Compared with 13, 

there was a slightly improvement of inhibitory activity of compound 37 and their IC50 values 

were still of the same order of magnitude. The inhibitory activity of amide 41 completely 

disappeared due to the removal of indole moiety in 5-position of nucleoside. When the 

hydrazine H-9, which was selected as the amplified building block from DCC experiment, 
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was replaced by an inactive hydrazine H-11, the resulting product 40 likewise exhibited 

inhibitory activity towards -1,4-GalTs, with a similar IC50 value of 213 M. (Table 15) 

 

Table 15 Summary of inhibitory activities of nucleoside derivative, DCL members as well as the amide 

analogue (error means values ± S.D)  

Compound 13 34 37 40 41 

Structure 

    
 

IC50 (M) 207 ± 37 NO inhibition  178 ± 21 213 ± 16 NO inhibition 

 

The nucleoside building block was responsible for directing compounds towards enzyme 

active site and the 5-position indole moiety afforded dominant effect for binding affinity 

towards enzyme. When the hydrazine was introduced to 5’-position of nucleoside via C-N 

linkage as the mimic of pyrophosphate and galactose moieties, the hydrazine moiety could 

exhibit high flexibility due to the single bond of C-N. This hydrazine tail might provide steric 

hindrance, which interfered with the enzyme attachment of nucleoside moiety. This 

interference deactivated the inhibition of 34 towards enzyme. When the C=O was utilised as 

the linkage, the flexibility of hydrazine substituent in 5’-position reduced and the nucleoside 

moiety could bind towards enzyme again. Thus, the corresponding amide product 37 could 

inhibit -1,4-GalTs. Compared the IC50 value of compound 13, there was no obviously 

change of IC50 values of compound 37 and 40. It was speculated that the indole moiety of 

nucleoside still contributed dominant effect for enzyme inhibition while the hydrazines 

showed very weak binding affinity towards enzyme. This hypothesis was supported by the 

result that compound 41 was inactive due to the removal of indole moiety.  
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Cell assay of amide analogue 3.14 

 

As amide 37 exhibited inhibitory activity towards -1,4-GalTs in the enzyme assay, its pro-

drug 42 (Scheme 17) was utilized in the cell assay.  

 

 

Scheme 17 Synthesis of prodrug 42. Reagents and conditions: Ac2O, pyridine, DMAP, rt, 6h, 69%.  

 

The MTT cell viability assay was carried out and the data showed that cell viability was not 

affected by compound 42 up to concentration of 100 M. (Figure 69) The effect of the 

inhibitor on PSGL-1 levels has not yet been tested because of the time constraints. This assay 

would be the most important experiment in the next step.  

 

Figure 69 The data of MTT cell viability assay of compound 42. 
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3.4.  Summary and conclusion. 

 

In conclusion, a hydrazone dynamic combinatorial library (DCL) was designed via 

nucleoside analogue 29 and a collection of hydrazines/hydrazides to identify replacement of 

pyrophosphate and sugar moieties. The library member generated by hydrazine H-9 and 29 

was identified as the -1,4-GalTs binder from the library and the corresponding nucleoside 

derivatives, both reductive product 34 and amide analogue 37, were synthesized and 

evaluated in the phosphatase-coupled assay. Only amide 37 was active towards -1,4-GalTs. 

It was hypothesized that the linkage between hydrazine substituent and nucleoside could 

affect the attachment towards enzyme. Compared with the hydrazine substituent, the 5-

substituted indole motif of nucleoside contributed dominant effect for enzyme inhibition.  

 

 

3.5. Experimental section. 

  

General. All chemical reagents were obtained commercially and used as received, unless 

stated otherwise. Thin layer chromatography (TLC) was performed on pre-coated plates of 

Silica Gel 60 F254 (Merck), with DCM/MeOH as the mobile phase, unless otherwise stated. 

Spots were visualised under UV light (254/365nm). NMR spectra were recorded at 300 K on 

a Bruker BioSpin machine at, respectively, 400.13 MHz (1H-NMR) and 100.62 MHz (13C-

NMR). Chemicals shifts () are reported in ppm (parts per million) and coupling constants (J) 
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in Hz. Mass spectra were recorded at the EPSRC National Mass Spectrometry Facility in 

Swansea. All yields (%) are isolated yields. 

 

Column chromatography. Method A: Preparative reverse-phase chromatography was 

performed on a Biologic LP chromatography system equipped with a peristaltic pump and a 

254 nm UV Optics Module under the following conditions: Ion-pair chromatography was 

performed using Lichroprep RP-18 resin equilibrated with 0.05 M TEAB (triethylammonium 

bicarbonate, pH 7.3). Gradient: 0 – 30% MeOH against 0.05 M TEAB over a total volume of 

400 mL. Flow rate: 2 mL/min. Product-containing fractions were combined and repeatedly 

co-evaporated with methanol to remove residual TEAB. 

Method B: Preparative chromatography was carried out on silica gel 60 (pore size 60 Ǻ, 230-

400 mesh, Sigma-Aldrich) at normal pressure. DCM and methanol were utilized as mobile 

phase. Product-containing fractions were combined and evaporated to afford pure products. 

 

 

1-((3aR,4R,6R,6aR)-6-(hydroxymethyl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-

yl)-5-(1H-indol-4-yl)pyrimidine-2,4(1H,3H)-dione (32). To a solution of 5-indole uridine 

(1 equiv., 200 mg) in THF was added 2,2-dimethoxypropane (3 equiv., 1.2 mL) and p-TSA 

(0.05 equiv., 13.2 mg). The reaction mixture was stirred at 60 oC for 3h. Upon completion of 
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the reaction, the organic solvent was concentrated and the residue was purified by column 

chromatography (DCM/MeOH = 30/1), to yield 148 mg of a white form (69%). 1H-NMR 

(400 MHz, CDCl3) 7.67 (s, 1H), 7.33 (d, J = 12.8 Hz), 7.26 (dd, J = 5.6, 12.8 Hz, 1H) 7.15 

(dd, J = 0.8, 7.2 Hz, 1H), 7.10 (d, J = 3.2 Hz, 1H), 6.41 (dd, J = 0.8, 2.8 Hz, 1H0, 5.69 (d, J = 

3.2 Hz, 1H), 5.12 (dd, J = 3.2, 6.4 Hz, 1H), 4.98 (dd, J = 3.2, 6.4 Hz, 1H), 4.31 (m, 1H), 3.90 

(m, 1H), 3.78 (m, 1H), 1.59 (s, 3H), 1.38 (s, 3H). 13C-NMR (100 MHz, CDCl3): 168.0 (C-

4), 155.0 (C-2), 135.6, 131.2, 126.9, 125.9, 124.0, 123.3, 122.3, 112.3, 116.8 (C-6 + C-

indole), 113.0 (C-5), 102.4 (C-indole-3), 102.0 (C-1’), 88.2 (C-4’), 84.9 (C-2’), 82.3 (C-3’), 

63.9 (C-5’), 31.2 (C-Me), 31.0 (C-Me). m/z (ESI) 398.1352 [M-H]-, C20H20N3O6 require 

398.1357. 

 

 

(3aS,4S,6R,6aR)-6-(5-(1H-indol-4-yl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2,2-

dimethyltetrahydrofuro[3,4-d][1,3]dioxole-4-carbaldehyde (33). To a solution of 

protected 5-indole uridine (1 equiv., 50 mg) in DCM was added dess-martin reagent (3 equiv., 

167 mg). The reaction mixture was stirred at rt for 5h and the progress of the reaction was 

monitored by TLC (DCM/MeOH = 10/1). Upon completion of the reaction, the insoluble 

powder was removed after filtration, which was followed by the concentration. The residue 

was purified by column chromatography (DCM/MeOH = 40/1), to yield 22.8 mg of a white 

form (47%). 1H-NMR (400 MHz, CDCl3) 9.37 (s, 1H), 7.93 (s, 1H), 7.35 (d, J = 8 Hz), 
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7.24 (d, J = 3.2 Hz), 7.13 (t, J = 8 Hz, 1H), 7.08 (dd, J = 1.2, 7.2 Hz), 6.42 (dd, J = 0.8, 3.2 

Hz, 1s), 6.04 (d, J = 5.2 Hz, 1s), 5.36 (dd, J = 3.2, 6.4 Hz, 1H), 5.20 (dd, J = 3.2, 6.4 Hz, 1H). 

4.96 (m, 1H). 1.50 (s, 3H), 1.39 (s, 3H). 13C-NMR (100 MHz, CDCl3): 190.8 (C-CHO), 

166.9 (C-4), 155.8 (C-2), 139.0, 134.2, 127.6, 124.6, 124.0, 123.2, 122.9, 113.6, 112.6 (C-6 + 

C-indole), 110.9 (C-5), 103.4 (C-indole-3), 102.7 (C-1’), 87.3 (C-4’), 85.4 (C-2’), 76.5 (C-3’), 

31.0 (C-Me), 31.2 (C-Me). m/z (ESI) 396.1196 [M-H]- C20H18N3O6 requires 396.1207. 

 

 

(2S,3S,4R,5R)-5-(5-(1H-indol-4-yl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-

dihydroxytetrahydrofuran-2-carbaldehyde (29). Protected 5-indole uridine aldehyde (1 

equiv, 80 mg) was dissolved in 50 % TFA solution and the mixture was stirred at rt for 30 

min and the progress was monitored by TLC (DCM/MeOH = 10/1). The product was 

obtained after evaporation without further purification, to yield 60 mg of a white form (80%). 

1H-NMR (400 MHz, CDCl3) 9.56 (s, 1H), 7.97 (s, 1H), 7.45 (d, J = 8 Hz), 7.37 (d, J = 3.2 

Hz), 7.13 (t, J = 8 Hz, 1H), 7.10 (dd, J = 1.2, 7.6 Hz), 6.44 (dd, J = 0.8, 3.6 Hz, 1s), 5.99 (d, J 

= 5.2 Hz, 1s), 5.39 (dd, J = 3.2, 6.4 Hz, 1H), 5.27 (dd, J = 3.2, 6.4 Hz, 1H), 4.67 (m, 1H). 

13C-NMR (100 MHz, MeOD):  200.0 (C-COOH), 169.3 (C-4), 153.0 (C-2), 139.2, 132.9, 

129.4, 124.6, 127.6, 123.9, 119.7, 115.0 (C-6 + C-indole), 110.0 (C-5), 103.4 (C-indole-3), 

102.0 (C-1), 87.3 (C-4’), 87.4 (C-2’), 85.6 (C-3’). m/z (ESI) 356.0883 [M-H]- C17H14N3O6 

requires 356.0889. 
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1-((2R,3R,4S,5R)-3,4-dihydroxy-5-((2-(2-morpholinoethyl)hydrazinyl)methyl)tetrahy 

drofuran-2-yl)-5-(1H-indol-4-yl)pyrimidine-2,4(1H,3H)-dione (34). To the solution of 5-

indole uridine aldehyde (1 equiv., 22 mg) in MeOH was added 4-(2-hydrazinylethyl) 

morpholine (1 equiv., 6.7 mg). The reaction mixture was stirred at rt for 1d, which was 

followed by addition of NaBH3CN (10 mol%). Upon of completion of the reaction, the 

residue was concentrated and purified by reverse phase chromatography. The obtained pure 

product was dissolved in 20 % TFA solution at rt for 3h and the progress was monitored by 

TLC (DCM/MeOH = 4/1) The product was obtained after evaporation without further 

purification, to yield 4.7 mg of light yellow form (26%) in two steps. 1H-NMR (400 MHz, 

MeOD) .93 (s, 1H), 7.45 (d, J = 8 Hz, 1H), 7.35 (d, J = 3.6 Hz), 7.20 (t, J = 7.2 Hz, 1H), 

7.16 (dd, J = 1.2, 7.2 Hz, 1H), 6.52 (dd, J = 0.8, 7.2 Hz, 1H), 6.00 (d,  J = 5.2 Hz, 1H), 4.51 

(dd, J = 5.2, 8.8 Hz, 1H), 4.30 (dd, J = 5.2, 8.4 Hz, 1H), 4.06 (m, 1H), 3.82 (m, 2H), 3.70 (m, 

2H), 3.52 (m, 2H), 3.24 (m, 2H), 3.21 (dd, J = 2.8, 7.2 Hz, 1H), 3.15 (dd, J = 3.2, 7.2 Hz, 1H). 

13C-NMR (100 MHz, MeOD):  170.0 (C-4), 155.5 (C-2), 146.3, 137.2, 133.0, 125.4, 124.3, 

123.7, 116.7, 115.8 (C-6 + C-indole), 114.0 (C-5), 102.9 (C-indole-3), 100.2 (C-1’), 89.6 (C-

4’), 87.7 (C-2’), 86.0 (C- 2’), 79.0 (C-3’), 68.5 (C-morpholine), 68.0 (C-morpholine), 59.4 

(C-morpholine), 58.8 (C-morpholine), 56.3 (C-5’), 52.0 (C-4’’), 50.0 (C-3’’). m/z (ESI) 

485.2149 [M-H]- C23H29N6O6 requires 485.2133. 
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(3aS,4S,6R,6aR)-6-(5-(1H-indol-4-yl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2,2-

dimethyltetrahydrofuro[3,4-d][1,3]dioxole-4-carboxylic acid (38). To a solution of 

protected 5-indole uridine (1 equiv., 220 mg) in MeCN/Water = 1/1 was added TEMPO (10 

mol%, 24 mg), BIAB (2.2 equiv., 548 mg). The reaction mixture was stirred at rt for 6h and 

TLC was used to monitor the progress. Upon of the completion of the reaction, the reaction 

solution was diluted with Et2O, which was followed by filtration, to yield 144 mg product of 

light brown powder (65%). 1H-NMR (400 MHz, MeOD) .77 (s, 1H), 7.40 (d,  J = 8 Hz, 

1H), 7.39 (d, J = 4 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.12 (dd, J = 1.2, 6.8 Hz, 1H), 6.43 (dd, 

J = 1.2, 3.2 Hz, 1H), 5.71 (s, 1H), 5.37 (dd, J = 2, 6 Hz, 1H), 5.26 (dd, J = 2, 6.4 Hz, 1H), 

4.67 (d, J = 1.6 Hz, 1H), 1.56 (s, 3H), 1.40 (s, 3H).  13C-NMR (100 MHz, MeOD): 173.6 

(C-COOH), 166.5 (C-4), 152.6 (C-2), 146.8, 139.9, 134.9, 127.8, 127.2, 124.3, 114.3, 113.3 

(C-6 + C-indole), 111.1 (C-5), 102.5 (C-indole-3), 102.2 (C-1’), 89.2 (C-4’), 86.1 (C-2’), 

85.7 (C-3’), 27.0 (C-Me), 25.2 (C-Me). m/z (ESI) 412.1145 [M-H]- C20H18N3O7 requires 

412.1140.  
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(2S,3S,4R,5R)-5-(5-(1H-indol-4-yl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-

dihydroxy-N'-(2-morpholinoethyl)tetrahydrofuran-2-carbohydrazide (37). To a solution 

of protected 5-indole uridine (1 equiv., 50 mg) acid in DMF, 4-(2-

hydrazinylethyl)morpholine (1 equiv., 30 mg), HATU (2  equiv., 108 mg), DIEA (3 equiv., 

155 mg) was added. The reaction mixture was stirred at rt for 24 h and TLC was used to 

monitor the progress of reaction. Upon of completion of the reaction, the residue was purified 

by reverse phase chromatography. The obtained pure product was dissolved in 20% TFA 

solution and the mixture was stirred at rt for 3h. The de-protected product was obtained after 

concentration without further purification, to yield 16 mg of 24% in two steps. 1H-NMR (400 

MHz, MeOD) .87 (s, 1H), 7.46 (d,  J = 8 Hz, 1H), 7.35 (d, J = 3.6 Hz, 1H), 7.24 (t, J = 7.2 

Hz, 1H), 7.09 (dd, J = 1.2, 6.8 Hz, 1H), 6.43 (dd, J = 1.2, 3.2 Hz, 1H), 6.03 (d, J = 2 Hz, 1H), 

5.29 (m, 1H), 5.12 (dd, J = 1.6, 6 Hz), 4.97 (dd, J = 2, 6 Hz, 1H), 3.82 (m, 2H), 3.70 (m, 2H), 

3.52 (m, 2H), 3.24 (m, 2H). 13C-NMR (100 MHz, MeOD): 179.0 (C-CONH), 163.9 (C-4), 

159.8 (C-2), 149.9, 144.9, 138.6, 129.0, 127.8, 126.4, 117.1, 113.2 (C-6 + C-indole), 112.7 

(C-5), 105.0 (C-indole-3), 99.6 (C-1’), 83.1 (C-4’), 82.4 (C-2’), 75.8 (C-3’), 69.9 (C-

morpholine), 68.7 (C-morpholine), 60.8 (C-morpholine), 60.0 (C-morpholine), 59.3 (C-4”), 

53.2 (C-3”). m/z (ESI) 499.1941 [M-H]- C23H27N6O7 requires 499.1936.  

 

 

(2S,3S,4R,5R)-5-(5-(1H-indol-4-yl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-

dihydroxy-N'-(2-hydroxyethyl)tetrahydrofuran-2-carbohydrazide (41). To a solution of 
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protected 5-indole uridine (1 equiv., 50 mg) acid in DMF, 2-hydrazinylethanol (1 equiv., 11 

mg), HATU (2 equiv., 108 mg), DIEA (3 equiv., 155 mg) was added. The reaction mixture 

was stirred at rt for 24 h and TLC was used to monitor the progress of reaction. Upon of 

completion of the reaction, the residue was purified by reverse phase chromatography. The 

obtained pure product was dissolved in 20% TFA solution and the mixture was stirred at rt 

for 3h. The de-protected product was obtained after concentration without further purification, 

to yield 12 mg of 25% in two steps. 1H-NMR (400 MHz, MeOD) 7.87 (s, 1H), 7.46 (d,  J = 

8 Hz, 1H), 7.35 (d, J = 3.6 Hz, 1H), 7.24 (t, J = 7.2 Hz, 1H), 7.09 (dd, J = 1.2, 6.8 Hz, 1H), 

6.43 (dd, J = 1.2, 3.2 Hz, 1H), 5.81 (d, J = 2 Hz, 1H), 5.37 (m, 1H), 5.08 (dd, J = 1.6, 6 Hz), 

4.97 (dd, J = 2, 6 Hz, 1H), 3.65 (m, 2H), 3.58 (m, 1H), 3.50 (m, 1H). 13C-NMR (100 MHz, 

MeOD): 178.0 (C-CONH), 163.9 (C-4), 158.0 (C-2), 150.0, 147.3, 136.9, 129.6, 126.6, 

126.4, 118.6, 116.2 (C-6 + C-indole), 111.9 (C-5), 106.0 (C-indole-3), 100.6 (C-1’), 85.6 (C-

4’), 84.6 (C-2’), 74.3 (C-3’), 60.6 (C-4”), 53.2 (C-3”). m/z (ESI) 430.1363 [M-H]- 

C19H20N5O7 requires 430.1375.  

 

GalT Inhibition experiments. 

General. All reagents for the biochemical assays were obtained commercially and used as 

received, unless otherwise stated. 5-FT UDP-Gal was prepared as previously reported and 

used as a positive control. Bovine -1, 4-GalT was expressed, purified and refolded using an 

adaptation of a previously reported protocol. LgtC was expressed and purified as previously 

reported. Inhibition assays were carried out as previously reported and briefly described 

below. Absorbance measurements were carried out on a BMG Labtech POLARstar Optima 

multiplate reader. 
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Data collection and analysis protocol. Assays were carried out on 96-well plates. On each 

microplate, sample, control and background wells were included in triplicate. A calibration 

curve (0-12.5 M UDP, corresponding to 0-25 M Pi) was constructed for each microplate 

by linear regression. The calibration curve was used to convert absorbance measurements at 

620 nm in sample and control wells to [UDP] (M). For each sample and control well, a 

corresponding background well (containing identical components but no acceptor) was 

included, to account for non-specific hydrolysis of donor. Corrected absorbance values for 

each well were obtained by subtracting the corresponding background reading form the 

absorbance of the respective smaple or control well. Inhibition (%) was calculated by 

dividing absorbance in the presence of inhibitor by maximum absorbance (negative control, 

no inhibitor). Percentage inhibition was plotted over log[inhibitor] and analysed with 

GraphPad Prism 6 software to obtain relative IC50 values. Averages and standard deviations 

were calculated in Microsoft Excel. 

 

DCC experiment Solutions of hydrazines/hydrazides, indole-uridine aldehyde 29 and 

sodium cyanoborohydride were introduced into 0.5 mL eppendorf containing a solution of 

1,4GalTs in MOPS buffer. (Buffer: 50 mM MOPS, 20 MnCl2, pH 7.4) The final 

concentration of each reagents: hydrazines or hydrazides (300 L), 29 (300 L), NaBH3CN 

(5 mM), enzyme (0.69 mg/mL). Total volume of each eppendorf is 300 L. Then the reaction 

mixture was incubated in a water bath of 25 oC and monitored by HPLC of a JASCO MD-

2018 with the detection at 254 nm. 100 L samples solution were removed from the 

Eppendorf, followed by the addition of methanol. The mixture was centrifuged for 15 min at 

1000 rpm. The supernatant was then injected on a reverse phase column (Luna 5u C8(2) 

100A, new column 150 ×4.6 mm) and eluted at 0.5 mL/min (for gradient A method) or 0.6 
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mL/min (for gradient B method). The mobile phase comprised a mixture of water (buffer A) 

and acetonitrile (buffer B) and the gradient A (Table 12) or gradient B (Table 13) was 

utilized for the separation and detection.   

HPLC gradient A 

Table 12 Gradient utilised for separation of aldehyde 29 and the corresponding products 

Gradient step Time (min) Buffer A (%) Buffer B (%) 

1 1 90 10 

2 12 90 to 40 10 to 60 

3 14 40 to 95 60 to 5 

4 16 95 5 

 

HPLC gradient B 

Table 13 Gradient utilised for the separation aldehyde 29 and the corresponding products 

Gradient step Time (min) Buffer A (%) Buffer B (%) 

1 1 90 10 

2 15 90 to 30 10 to 70 

3 16 30 to 95 70 to 5 

 

 

 

 

 

 

 



 

171 

 

3.6. References 

 

1. Corbett, P. T.; Leclaire, J.; Vial, L.; West, K. R.; Wietor, J. L.; Sanders, J. K.; Otto, S., 

Dynamic combinatorial chemistry. Chem Rev 2006, 106, 3652-711. 

2. Mondal, M.; Hirsch, A. K., Dynamic combinatorial chemistry: a tool to facilitate the 

identification of inhibitors for protein targets. Chem Soc Rev 2015, 44, 2455-88. 

3. Huang, R. J.; Leung, I. K. H., Protein-Directed Dynamic Combinatorial Chemistry: A 

Guide to Protein Ligand and Inhibitor Discovery. Molecules 2016, 21. 

4. Hioki, H.; Still, W. C., Chemical evolution: A model system that selects and amplifies 

a receptor for the tripeptide (D)Pro(L)Val(D)Val. J Org Chem 1998, 63, 904-905. 

5. Karan, C.; Miller, B. L., RNA-selective coordination complexes identified via 

dynamic combinatorial chemistry. J Am Chem Soc 2001, 123, 7455-7456. 

6. Epstein, D. M.; Choudhary, S.; Churchill, M. R.; Keil, K. M.; Eliseev, A. V.; Morrow, 

J. R., Chloroform-soluble Schiff-base Zn(II) or Cd(II) complexes from a dynamic 

combinatorial library. Inorg Chem 2001, 40, 1591-1596. 

7. Eliseev, A. V.; Nelen, M. I., Use of molecular recognition to drive chemical evolution, 

Part 2. Mechanisms of an automated genetic algorithm implementation. Chem-Eur J 1998, 4, 

825-834. 

8. Huc, I.; Lehn, J. M., Virtual combinatorial libraries: dynamic generation of molecular 

and supramolecular diversity by self-assembly. Proc Natl Acad Sci U S A 1997, 94, 2106-10. 

9. Shi, B.; Stevenson, R.; Campopiano, D. J.; Greaney, M. F., Discovery of Glutathione 

S-Transferase Inhibitors Using Dynamic Combinatorial Chemistry. J Am Chem Soc 2006, 

128, 8459-8467. 

10. Mondal, M.; Radeva, N.; Köster, H.; Park, A.; Potamitis, C.; Zervou, M.; Klebe, G.; 

Hirsch, A. K. H., Structure-Based Design of Inhibitors of the Aspartic Protease 

Endothiapepsin by Exploiting Dynamic Combinatorial Chemistry. Angew Chem Int Edit 

2014, 53, 3259-3263. 

11. Huang, R.; Leung, I., Protein-Directed Dynamic Combinatorial Chemistry: A Guide 

to Protein Ligand and Inhibitor Discovery. Molecules 2016, 21, 910. 

12. Huang, R.; Leung, I. K., Protein-Directed Dynamic Combinatorial Chemistry: A 

Guide to Protein Ligand and Inhibitor Discovery. Molecules 2016, 21. 

13. Ramstrom, O.; Lehn, J. M., In situ generation and screening of a dynamic 



 

172 

 

combinatorial carbohydrate library against concanavalin A. Chembiochem 2000, 1, 41-8. 

14. Nasr, G.; Petit, E.; Supuran, C. T.; Winum, J. Y.; Barboiu, M., Carbonic anhydrase II-

induced selection of inhibitors from a dynamic combinatorial library of Schiff's bases. Bioorg 

Med Chem Lett 2009, 19, 6014-6017. 

15. Leung, I. K. H.; Brown, T.; Schofield, C. J.; Claridge, T. D. W., An approach to 

enzyme inhibition employing reversible boronate ester formation. Medchemcomm 2011, 2, 

390-395. 

16. Schmidt, M. F.; Rademann, J., Dynamic template-assisted strategies in fragment-

based drug discovery. Trends Biotechnol 2009, 27, 512-521. 

17. Mondal, M.; Hirsch, A. K. H., Dynamic combinatorial chemistry: a tool to facilitate 

the identification of inhibitors for protein targets. Chem Soc Rev 2015, 44, 2455-2488. 

18. Hochgurtel, M.; Biesinger, R.; Kroth, H.; Piecha, D.; Hofmann, M. W.; Krause, S.; 

Schaaf, O.; Nicolau, C.; Eliseev, A. V., Ketones as building blocks for dynamic combinatorial 

libraries: Highly active neuraminidase inhibitors generated via selection pressure of the 

biological target. J Med Chem 2003, 46, 356-358. 

19. Poulsen, S. A., Direct screening of a dynamic combinatorial library using mass 

spectrometry. J Am Soc Mass Spectr 2006, 17, 1074-1080. 

20. Mondal, M.; Radeva, N.; Koster, H.; Park, A.; Potamitis, C.; Zervou, M.; Klebe, G.; 

Hirsch, A. K. H., Structure-Based Design of Inhibitors of the Aspartic Protease 

Endothiapepsin by Exploiting Dynamic Combinatorial Chemistry. Angew Chem Int Edit 

2014, 53, 3259-3263. 

21. Lew, W.; Chen, X.; Kim, C. U., Discovery and development of GS 4104 

(oseltamivir): an orally active influenza neuraminidase inhibitor. Curr Med Chem 2000, 7, 

663-72. 

22. Valade, A.; Urban, D.; Beau, J. M., Two galactosyltransferases' selection of different 

binders from the same uridine-based dynamic combinatorial library. J Comb Chem 2007, 9, 

1-4. 

23. Valade, A.; Urban, D.; Beau, J. M., Target-assisted selection of galactosyltransferase 

binders from dynamic combinatorial libraries. An unexpected solution with restricted 

amounts of the enzyme. Chembiochem 2006, 7, 1023-1027. 

24. Biet, T.; Peters, T., Molecular recognition of UDP-Gal by beta-1,4-

galactosyltransferase T1. Angew Chem Int Edit 2001, 40, 4189-4192. 

25. Poulsen, S.-A., Direct Screening of a Dynamic Combinatorial Library Using Mass 

Spectrometry. J Am Soc Mass Spectr 2006, 17, 1074-1080. 



 

173 

 

26. Pastorekova, S.; Parkkila, S.; Pastorek, J.; Supuran, C. T., Carbonic anhydrases: 

Current state of the art, therapeutic applications and future prospects. J Enzym Inhib Med Ch 

2004, 19, 199-229. 

27. Zameo, S.; Vauzeilles, B.; Beau, J. M., Direct composition analysis of a dynamic 

library of imines in an aqueous medium. Eur J Org Chem 2006, 5441-5444. 

28. Sindelar, M.; Lutz, T. A.; Petrera, M.; Wanner, K. T., Focused pseudostatic hydrazone 

libraries screened by mass spectrometry binding assay: optimizing affinities toward gamma-

aminobutyric acid transporter 1. J Med Chem 2013, 56, 1323-40. 

29. Caraballo, R.; Sakulsombat, M.; Ramstrom, O., Towards Dynamic Drug Design: 

Identification and Optimization of beta-Galactosidase Inhibitors from a Dynamic 

Hemithioacetal System. Chembiochem 2010, 11, 1600-1606. 

30. Caraballo, R.; Dong, H.; Ribeiro, J. P.; Jimenez-Barbero, J.; Ramstrom, O., Direct 

STD NMR identification of beta-galactosidase inhibitors from a virtual dynamic 

hemithioacetal system. Angew Chem Int Ed Engl 2010, 49, 589-93. 

31. Leung, I. K. H.; Demetriades, M.; Hardy, A. P.; Lejeune, C.; Smart, T. J.; Szollossi, 

A.; Kawamura, A.; Schofield, C. J.; Claridge, T. D. W., Reporter Ligand NMR Screening 

Method for 2-Oxoglutarate Oxygenase Inhibitors. J Med Chem 2013, 56, 547-555. 

32. Poulsen, S. A.; Bornaghi, L. F., Fragment-based drug discovery of carbonic anhydrase 

II inhibitors by dynamic combinatorial chemistry utilizing alkene cross metathesis. Bioorgan 

Med Chem 2006, 14, 3275-3284. 

33. Kern, F. T.; Wanner, K. T., Generation and Screening of Oxime Libraries Addressing 

the Neuronal GABA Transporter GAT1. Chemmedchem 2015, 10, 396-410. 

34. Nasr, G.; Petit, E.; Supuran, C. T.; Winum, J. Y.; Barboiu, M., Carbonic anhydrase II-

induced selection of inhibitors from a dynamic combinatorial library of Schiff's bases. Bioorg 

Med Chem Lett 2009, 19, 6014-7. 

35. Berl, V.; Huc, I.; Lehn, J. M.; DeCian, A.; Fischer, J., Induced fit selection of a 

barbiturate receptor from a dynamic structural and conformational/configurational library. 

Eur J Org Chem 1999, 3089-3094. 

36. Bornaghi, L. F.; Wilkinson, B. L.; Kiefel, M. J.; Poulsen, S. A., Synthesis of cyclic 

oligomers of a modified sugar amino acid utilising dynamic combinatorial chemistry. 

Tetrahedron Lett 2004, 45, 9281-9284. 

37. Nguyen, R.; Huc, I., Optimizing the reversibility of hydrazone formation for dynamic 

combinatorial chemistry. Chem Commun 2003, 942-943. 

38. Congreve, M. S.; Davis, D. J.; Devine, L.; Granata, C.; O'Reilly, M.; Wyatt, P. G.; 



 

174 

 

Jhoti, H., Detection of ligands from a dynamic combinatorial library by X-ray 

crystallography. Angew Chem Int Ed Engl 2003, 42, 4479-82. 

39. Woon, E. C.; Demetriades, M.; Bagg, E. A.; Aik, W.; Krylova, S. M.; Ma, J. H.; Chan, 

M.; Walport, L. J.; Wegman, D. W.; Dack, K. N.; McDonough, M. A.; Krylov, S. N.; 

Schofield, C. J., Dynamic combinatorial mass spectrometry leads to inhibitors of a 2-

oxoglutarate-dependent nucleic acid demethylase. J Med Chem 2012, 55, 2173-84. 

40. Cancilla, M. T.; He, M. M.; Viswanathan, N.; Simmons, R. L.; Taylor, M.; Fung, A. 

D.; Cao, K.; Erlanson, D. A., Discovery of an Aurora kinase inhibitor through site-specific 

dynamic combinatorial chemistry. Bioorg Med Chem Lett 2008, 18, 3978-3981. 

41. Scott, D. E.; Dawes, G. J.; Ando, M.; Abell, C.; Ciulli, A., A Fragment-Based 

Approach to Probing Adenosine Recognition Sites by Using Dynamic Combinatorial 

Chemistry. Chembiochem 2009, 10, 2772-2779. 

42. Milanesi, L.; Hunter, C. A.; Sedelnikova, S. E.; Waltho, J. P., Amplification of 

bifunctional ligands for calmodulin from a dynamic combinatorial library. Chem-Eur J 2006, 

12, 1081-1087. 

43. Danieli, B.; Giardini, A.; Lesma, G.; Passarella, D.; Peretto, B.; Sacchetti, A.; Silvani, 

A.; Pratesi, G.; Zunino, F., Thiocolchicine-podophyllotoxin conjugates: Dynamic libraries 

based on disulfide exchange reaction. J Org Chem 2006, 71, 2848-2853. 

44. Shi, B. L.; Greaney, M. F., Reversible Michael addition of thiols as a new tool for 

dynamic combinatorial chemistry (pg 886, 2005). Chem Commun 2005, 2181-2181. 

45. Shi, B. L.; Stevenson, R.; Campopiano, D. J.; Greaney, M. F., Discovery of 

glutathione S-transferase inhibitors using dynamic combinatorial chemistry. J Am Chem Soc 

2006, 128, 8459-8467. 

46. Misuraca, M. C.; Moulin, E.; Ruff, Y.; Giuseppone, N., Experimental and theoretical 

methods for the analyses of dynamic combinatorial libraries. New J Chem 2014, 38, 3336-

3349. 

47. Valade, A.; Urban, D.; Beau, J. M., Target-assisted selection of galactosyltransferase 

binders from dynamic combinatorial libraries. An unexpected solution with restricted 

amounts of the enzyme. Chembiochem 2006, 7, 1023-7. 

48. Woon, E. C. Y.; Demetriades, M.; Bagg, E. A. L.; Aik, W.; Krylova, S. M.; Ma, J. H. 

Y.; Chan, M. C.; Walport, L. J.; Wegman, D. W.; Dack, K. N.; McDonough, M. A.; Krylov, S. 

N.; Schofield, C. J., Dynamic Combinatorial Mass Spectrometry Leads to Inhibitors of a 2-

Oxoglutarate-Dependent Nucleic Acid Demethylase. J Med Chem 2012, 55, 2173-2184. 

49. Rose, N. R.; Woon, E. C. Y.; Kingham, G. L.; King, O. N. F.; Mecinovic, J.; Clifton, I. 



 

175 

 

J.; Ng, S. S.; Talib-Hardy, J.; Oppermann, U.; McDonough, M. A.; Schofield, C. J., Selective 

Inhibitors of the JMJD2 Histone Demethylases: Combined Nondenaturing Mass 

Spectrometric Screening and Crystallographic Approaches. J Med Chem 2010, 53, 1810-

1818. 

50. Hochgurtel, M.; Kroth, H.; Piecha, D.; Hofmann, M. W.; Nicolau, C.; Krause, S.; 

Schaaf, O.; Sonnenmoser, G.; Eliseev, A. V., Target-induced formation of neuraminidase 

inhibitors from in vitro virtual combinatorial libraries. P Natl Acad Sci USA 2002, 99, 3382-

3387. 

51. Zameo, S.; Vauzeilles, B.; Beau, J. M., Dynamic combinatorial chemistry: Lysozyme 

selects an aromatic motif that mimics a carbohydrate residue. Angew Chem Int Edit 2005, 44, 

965-969. 

52. Poulsen, S. A.; Bornaghi, L. F., Fragment-based drug discovery of carbonic anhydrase 

II inhibitors by dynamic combinatorial chemistry utilizing alkene cross metathesis. Bioorg 

Med Chem 2006, 14, 3275-84. 

53. Ruff, Y.; Garavini, V.; Giuseppone, N., Reversible Native Chemical Ligation: A Facile 

Access to Dynamic Covalent Peptides. J Am Chem Soc 2014, 136, 6333-6339. 

54. Larson, K. K.; He, M.; Teichert, J. F.; Naganawa, A.; Bode, J. W., Chemical sensing 

with shapeshifting organic molecules. Chem Sci 2012, 3, 1825-1828. 

55. Dal Molin, M.; Gasparini, G.; Scrimin, P.; Rastrelli, F.; Prins, L. J., 13C-isotope 

labelling for the facilitated NMR analysis of a complex dynamic chemical system. Chem 

Commun (Camb) 2011, 47, 12476-8. 

56. Pomerantz, W. C.; Hadley, E. B.; Fry, C. G.; Gellman, S. H., In Situ Monitoring of 

Backbone Thioester Exchange by F-19 NMR. Chembiochem 2009, 10, 2177-2181. 

57. Caraballo, R.; Dong, H.; Ribeiro, J. P.; Jimenez-Barbero, J.; Ramstrom, O., Direct 

STD NMR Identification of beta-Galactosidase Inhibitors from a Virtual Dynamic 

Hemithioacetal System. Angew Chem Int Edit 2010, 49, 589-593. 

58. Lienard, B. M. R.; Hueting, R.; Lassaux, P.; Galleni, M.; Frere, J. M.; Schofield, C. J., 

Dynamic combinatorial mass spectrometry leads to metallo-beta-lactamase inhibitors. J Med 

Chem 2008, 51, 684-688. 

59. Lienard, B. M.; Selevsek, N.; Oldham, N. J.; Schofield, C. J., Combined mass 

spectrometry and dynamic chemistry approach to identify metalloenzyme inhibitors. 

Chemmedchem 2007, 2, 175-9. 

60. Lienard, B. M.; Huting, R.; Lassaux, P.; Galleni, M.; Frere, J. M.; Schofield, C. J., 

Dynamic combinatorial mass spectrometry leads to metallo-beta-lactamase inhibitors. J Med 



 

176 

 

Chem 2008, 51, 684-8. 

61. Ludlow, R. F.; Otto, S., Two-vial, LC-MS identification of ephedrine receptors from a 

solution-phase dynamic combinatorial library of over 9000 components. J Am Chem Soc 

2008, 130, 12218-+. 

62. Clark, M. A.; Acharya, R. A.; Arico-Muendel, C. C.; Belyanskaya, S. L.; Benjamin, 

D. R.; Carlson, N. R.; Centrella, P. A.; Chiu, C. H.; Creaser, S. P.; Cuozzo, J. W.; Davie, C. P.; 

Ding, Y.; Franklin, G. J.; Franzen, K. D.; Gefter, M. L.; Hale, S. P.; Hansen, N. J. V.; Israel, 

D. I.; Jiang, J. W.; Kavarana, M. J.; Kelley, M. S.; Kollmann, C. S.; Li, F.; Lind, K.; 

Mataruse, S.; Medeiros, P. F.; Messer, J. A.; Myers, P.; O'Keefe, H.; Oliff, M. C.; Rise, C. E.; 

Satz, A. L.; Skinner, S. R.; Svendsen, J. L.; Tang, L. J.; van Vloten, K.; Wagner, R. W.; Yao, 

G.; Zhao, B. G.; Morgan, B. A., Design, synthesis and selection of DNA-encoded small-

molecule libraries. Nat Chem Biol 2009, 5, 647-654. 

63. Melkko, S.; Scheuermann, J.; Dumelin, C. E.; Neri, D., Encoded self-assembling 

chemical libraries. Nat Biotechnol 2004, 22, 568-574. 

64. Brunschweiger, A.; Iqbal, J.; Umbach, F.; Scheiff, A. B.; Munkonda, M. N.; Sevigny, 

J.; Knowles, A. F.; Muller, C. E., Selective nucleoside triphosphate diphosphohydrolase-2 

(NTPDase2) inhibitors: nucleotide mimetics derived from uridine-5'-carboxamide. J Med 

Chem 2008, 51, 4518-28. 

65. Kogami, M.; Koketsu, M., An efficient method for the synthesis of selenium modified 

nucleosides: its application in the synthesis of Se-adenosyl-l-selenomethionine (SeAM). Org 

& Biomol Chem 2015, 13, 9405-9417. 

66. Zameo, S.; Vauzeilles, B.; Beau, J.-M., Direct Composition Analysis of a Dynamic 

Library of Imines in an Aqueous Medium. Eur J Org Chem 2006, 2006, 5441-5444. 

 

 

 

 

 

 



 

177 

 

 

 

 

 

 

 

CHAPTER 4 

 

The acceptor analogue GlcNAc-(2-naphthyl):  

substrate or inhibitor of -1,4-galactosyltransferase? 
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4.1.  Glycosyltransferase assays  

   

In order to explore the potential of GTs as molecular targets, a variety of bioassays have been 

developed.1, 2 These assays allow the monitoring of GT activity during and after enzyme 

purification and can be applied for mechanistic studies of glycosylated transfer reaction, 

inhibition evaluation and high throughput screening (HTS) of GT inhibitors.  

Functional GTs bioassays are employed with saturated substrate concentrations and depend 

on monitoring of depletion of substrate (both donor and substrate) or the formation of 

products (like glycosylated product or the secondary products from nucleotide diphosphates 

of reactions).  

 

4.1.1. GT assays monitoring the primary glycosylation product 

 

GT assays can be applied by monitoring the formation of primary glycosylation product. A 

variety of methods have been utilised to GT assays, like spectrophotometric methods and 

radiochemical methods, etc. Radiometric assay is one of the most extensively used GTs 

assays due to its high sensitivity and detection of low levels of enzyme. The design of the 

assay is based on the transfer of radio-labelled sugar nucleotide donor to an acceptor. The 

radio-labelled saccharide product can be quantified by scintillation counting method.3 The 

radio-labelled sugar nucleotides derivatives are commercially available. The radiometric 

assay involving with radio-labelled donors and acceptors usually is non-continuous assay and 

after quenching the reaction, a variety of methods have been employed to remove the un-
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turnover radio-labelled donors, such as electrophoresis, ion-exchange chromatography, TLC, 

size-exclusion chromatography for glycoproteins.3-6 As the separation and wash steps are 

required, radiometric assay is difficult for HTS application. In order to overcome the 

difficulty, scintillation proximity assays (SPAs) have been developed for GTs assay. For 

example, a miniaturized scintillation proximity assay was utilized for the HTS screening of 

drug-like glycosidic acceptor inhibitors towards human FucTVII.7 The used acceptor was 

modified with scintillat-impregnanted microspheres which could emit light when stimulated 

with radiolabelled molecules and the signal could be detected directly without separation or 

wash steps. 

The non-natural substrates, like labelled donors or acceptors, can be utilized in functional GT 

assays. The labelled products can be detected by spectrophotometric methods, like UV and 

fluorescence measurement, and radiochemical methods (scintillation counting). (Figure 70) 

For example, the fluorescent moiety containing substrate, C6-4-nitrobenzo-2-oxa-1,3-diazole 

(NBD)-ceramide, and C6-NBD-glucosylceramide, were utilised to determine GlcTs and 

GalTs activities and a normal-phase HPLC was applied for its measurement.8 The preparative 

synthesis is required for the fluorophore/chromophore labelled enzyme substrates and the 

substrate derivatives may hamper the glycosylated reactions. Thus, new methodology was 

developed to overcome these difficulties.1,3-galactosyltransferase activity was monitored 

by a fluorephore-assisted capillary electrophoresis (FACE) method.9 

 

Figure 70 Non-natural substrate, like labelled donor or substrate: the enzyme activity can be determined 

depending on the product formation by spectrophotometric or fluorescent methods. 
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Mass spectrometry (MS) has been applied for GTs assay. MS can be used to directly 

determine both the formation of glycosylated product and substrate depletion. It can be 

applied for GTs inhibitor screening10 and kinetic characteristic11 and it also can be adapted 

for HTS11. 

 

4.1.2.  GT assays monitoring the secondary glycosylation product 

 

GT assays can be applied depending on the formation of secondary products of reactions, 

nucleotide diphosphates. Due to the presence of uracil moieties, nucleoside diphosphates are 

UV-active and the HPLC, capillary electrophoresis (CE), ion-exchange chromatography 

methods can be employed for GT assays by monitoring the formation of relating nucleoside 

diphosphate. 9, 12-15  (Figure 71) 

 

 

Figure 71 Native GTs reactions, the enzyme activity can be determined depending on the formation of NDP by 

HPLC, CE, IE exchange, etc. 

 

Coupled enzyme assay are performed with natural GT substrates and they generally are 

performed in a multi-wells plate, making them amenable for high-throughput formats. As 

many GTs utilize sugar nucleotides as natural donors, producing UDP or UMP in GT 

reactions, these assay formats are universal and can be applied to many GTs. A continuous 

spectrophotometric assay was carried out for determining kinetic parameters for three GTs, 
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fucosyl-, sialyl-, N-acetylgucosaminyltransferases, by coupling enzyme product UDP to 

NADH oxidation via pyruvate kinase and lactate dehydrogenase. The reaction progress was 

monitored by absorbance at 340 nm.16 

A phosphatase-coupled glycosyltransferase assay takes advantage of specific phosphatases 

which can be utilized in GT reactions to quantitatively release inorganic phosphatase from 

the leaving nucleoside diphosphates of GT reactions. The released inorganic phosphate group 

can be quantified by colorimetric detection with Malachite Green.17, 18 (Figure 72) The 

amount of inorganic phosphate produced is proportional to the sugar transferred in GT 

reaction, hence the reactivity of GTs can be measured. This assay can be applied for high-

throughput screening for inhibitor development. As this method is based on monitoring the 

formation of secondary product from nucleoside diphosphate, it is essential to deduct the 

enzymatic or hydrolysis of the sugar donor under assay conditions which may cause positive 

results.17 Besides GTs, other enzyme, phosphatase, is utilized in this assay and the inhibitor 

candidates also might interfere the phosphatase or chemically react with other assay reagents 

to confound the assay readout by producing apparent inhibitory activities. Thus, the control 

assay is required to exclude the false positive results.  

 

Figure 72 Principle of the phosphatase-coupled glycosyltransferase assay used in this study 
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Recently, innovative GTs assays have been developed. For example, a label-free GTs assay 

was designed to monitor enzyme activity by using an artificial chemosensor.19 This 

chemosensor could selectively bind to pyrophosphate monoesters but not diester, leading to a 

significant increase of fluorescent signal. This approach was applied to two 

galactosyltransferases which can produce nucleotide diphosphate for identification of their 

inhibitors. Based on the principle, it can be broadly applied to many GTs that generate NDPs 

and can be adapted for HTS. 

These assays all provide essential information about the biological activity of the used GTs 

and can be used for inhibitor validation and substrate specificity studies. The GT assays 

monitoring the formation of secondary product, like enzyme coupled assay, could be 

performed in the multi-wells plates. Thus, these assays are applicable for HTS assays. On the 

contrary, these assays consume large quantities of valuable reagents and enzymes when 

applied to large compound library screening. Advantage of these assays is that they can be 

applied to the GT reactions that produce nucleoside diphosphate. As the separation and wash 

steps are required, the GT assays monitoring the formation of primary glycosylation product, 

like radiometric assay, are usually difficult for HTS application. These assays are sensitive to 

detect small concentration changes in GT-catalysed reactions for monitoring the enzyme 

activities.  

 

4.1.3.  Other GT assays 

 

Many other methods have been developed for GTs activity measurement. For example, an 

equivalent proton is released during the transfer of sugar moiety from sugar nucleotides to 
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acceptors. This change of pH in assay can be detected via using the standard pH indicator 

phenol red for monitoring enzyme activity and substrate specificity.20 Immunological assays, 

enzyme-linked immunosorbant assay (ELISA) also have been developed for GTs assays.21, 22  

With highly specific antibodies or lectins, immunological assays can be applied for HTS.23 

Fluorescence-based ligand displacement assays that monitor ligand binding are an attractive 

technique for large inhibitor candidate library screening.24-26 (Figure 73) The assays format 

focuses on monitoring the binding of donor towards enzyme, not the conversion. Thus, GTs 

acceptors are not required. The ligand displacement assays are suitable for HTS for 

identifying inhibitors due to its high sensitivity and simple manipulation.27  

 

 

Figure 73 Principle of fluorescence-based ligand displacement assay 

 

The  Fluorescence Resonance Energy Transfer-based (FRET-based) assay by taking advange 

of the enzymatic breaking of the glycosidic linkage was developed for GTs.28, 29 This assay is 

based on the distance dependent transfer of energy from a donor molecule to an acceptor 

molecule. The transfer of energy leads to a reduction in the donor’s fluorescence intensity 

and an increase in the emission intensity of acceptor. As the donor and acceptor moiety are 

different, in this case FRET can be detected by the appearance of fluorescence of the acceptor 

or by quenching of donor fluorescence. (Figure 74) 
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Figure 74 Principle of FRET-based assay 

 

4.2. Objectives 

 

For the discovery of new β-1,4-GalT inhibitor chemotypes via DCC experiment, a known β-

1,4-GalT inhibitor was required as a positive control. GlcNAc 2-naphthyl) 43 is a 

GlcNAc derivative with a naphthyl aglycone, which has been previously reported as an 

acceptor-based inhibitor of β-1,4-GalT.30 (Figure 75) In the absence of a commercially 

available β-1,4-GalT inhibitor, GlcNAc derivative 43 was selected as the positive control due 

to its simple, two-step synthesis and reasonable inhibitory potency (72 % inhibition at 0.4 

mM) It was reported that the hydrophobic properties of the naphthyl ring structure at the 

anomeric position may enable the substrate analogues to tightly bind to enzyme, forming 

potent inhibitors.31 

 

Figure 75 GlcNAc derivative GlcNAc 1-(2-naphthyl) 43 

 

In order to characterize the biological activity of compound 43, a number of biochemical 

experiments were carried out. The unexpected results of these experiments, which differed  
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from the previously reported literature30, are described in this chapter (Figure 76) In order to 

explain the observed discrepancies and unambiguously establish the activity of 43 towards β-

1,4-GalT,  a series of experiments was carried out, including the identification of the primary 

glycosylation product by LC/MS. 

 

Figure 76 Discrepant results in different glycosyltranferases assay 

 

 

4.3.  Results and discussion 

 

4.3.1.  Synthesis of GlcNAc -(2-naphthyl) 

 

The synthesis of GlcNAc2-naphthyl) was carried out according to the procedure 

reported32 (Scheme 18). The fully acetylated naphthyl glycoside 44 was prepared from 2-

acetamido-3,4,6-tri-O-acetyl-2-deoxy--D-glucopyranosyl chloride by nucleophilic 

substitution with 2-naphthol under phase-transfer catalytic conditions, in 75 % yield. Direct 
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de-protection of compound 44 using 0.05 M sodium methoxide afforded the desired product 

1-(2-naphthyl) 2-acetamido-2-deoxy--D-glucopyranoside 43.  

 

 

Scheme 18 Synthesis of GlcNAc -(2-naphthyl) 43. Reagents and conditions: (i) tetrabutylammonium 

bromide, 1N NaOH, CH2Cl2, rt, 2h, 75%. (ii) NaOMe, MeOH/Toluene = 1/1, rt, 0.5h, 88%.  

 

Results from the analytical characterisation of compound 43 by 1H, 13C and mass 

spectrometry were consistent with the data of previous literature.33 The coupling constant 

between H-1 and H-2 showed 8.4 Hz (Figure 77). This J value is indicative of the trans 

orientation of H-1 and H-2, and hence the -configuration of the aglycone at the anomeric 

position of 43.  

 

Figure 77 1H-NMR spectrum of compound 43 and the J value between H-1 and H-2 
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4.3.2.  Bioassay for substrate activity assessment 

 

With compound 43 in hand, the bioassay was carried out. It was reported to act as a potent 

inhibitor towards β-1,4-GalT.30 In principle, this monosaccharide was an analogue of the 

natural donor GlcNAc, containing an additional naphthyl group in the aglycone moiety. It 

was reported that the 2-acetamido and the 4-hydroxyl group of GlcNAc were essential for 

binding of GlcNAc towards enzyme.34 Therefore, compound 43 also may behave as a 

substrate towards the enzyme. Therefore, the assay was carried out for assessing the substrate 

activity of compound 43 towards bovine β-1,4-GalT. The biochemical phosphatase-coupled 

glycosyltransferase assay was used and the design of well map of assay was illustrated in 

Figure 78. For the substrate experiments, the standard natural acceptor substrate GlcNAc was 

replaced with derivative 43.  Experiments with either GlcNAc or the putative inhibitor 43 

were conducted in parallel in the same microplate (triplicate for each). The maximal 

concentrations of GlcNAc and its derivative were not identical, 5 mM for GlcNAc and 1 mM 

for compound 43. It was because that in the standard inhibition bioassay, GlcNAc was used 

as the natural substrate at the concentration of 5 mM towards β-1,4-GalT and inhibitor 

candidates were evaluated towards β-1,4-GalT at the concentration of 1 mM. As the donor 

substrate, UDP-galactose, contributes to the background of the assay by enzymatic and 

chemical hydrolysis to terminal inorganic phosphate, so the relevant control wells in each 

microplate (no acceptor, but otherwise identical conditions, carried out in duplicate) was 

included in the same microplate to account for non-specific hydrolysis.  
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Figure 78 Well map design of substrate assay 

 

In the presence of either GlcNAc or its GlcNAc derivative 43 as an acceptor substrate, 

significant β-1,4-GalT activity was observed, as measured by the formation of the secondary 

reaction product UDP. The observed β-1,4-GalT activity was dependent on the concentration 

of the respective acceptor (Figure 79). According to the graphs, in the case of GlcNAc 

derivative 43, maximal activity was observed at lower acceptor concentrations than in the 

case of GlcNAc, which suggested that 43 may actually be a better acceptor substrate than 

GlcNAc. This result that compound 43 acted as substrate towards β-1,4-GalT was unexpected 

as it was discrepancy against the literature result. In order to confirm this discrepant result, 

control assays were then carried out.  

 

 

    

Calibration  
curve 

Background GlcNAc as acceptor 
Conc. (0 to 5 mM) 

GlcNAc as acceptor 
Conc. (0 to 1 mM) 
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Figure 79 Acceptor substrate assays with recombinant β-1,4-GalT in the absence of BSA. 

(a) β-1,4-GalT-catalysed conversion of UDP-Gal donor at different concentrations of GlcNAc (left) or 

compound 43 (right) as the acceptor 
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(b) Control experiment with compound 43 (no β-

1,4-GalT) 

(c) Time-dependent, β-1,4-GalT catalysed 

conversion of UDP-Gal donor with GlcNAc or 

-(2-naphthyl) 43 as the acceptor   
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Conditions: -1,4-GalT, acceptor (GlcNAc, 0 to 5 mM/ 43 0 to 1 mM), UDP-Gal donor (28 M), MnCl2 (5 

mM), Chicken egg-white lysozyme (1 mg mL -1), calf-intestinal phosphatase (10 U mL -1), DMSO (10%) and 

buffer (13 mM HEPES, pH = 7.0, 50 mM KCl) were incubated on a 96-well plate at 30 oC with shaking for 

required time (5 to 40 min). The reaction was stopped by the addition of malachite reagents, and the absorbance 

was recorded at 620 nm after 30 min. All concentrations are final concentrations. Bars indicate mean values  ± 

S.D. of triplicate experiments.  

 

The tested derivative 43 may chemically react with assay reagents to confound the assay 

readout by producing apparent biological activity. Therefore, a separate control experiment 

was carried out to check this mode of assay interference of compound 43. For the control 
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assay, the assay condition was identical to the standard substrate assay except the addition of 

enzyme (Figure 80). As illustrated in Figure 79b, GlcNAc derivative 43 itself did not 

interfere with the colorimetric readout of the assay as evidenced by the lack of signal in the 

control experiment with increased concentration of 43. 

 

Figure 80 (A) Standard bioassay for assessing substrate activity of compound 43. (B) Control assay for 

checking the reaction between compound 43 and other reagents in the assay.  

 

In order to investigate the time dependency of the β-1,4-GalT reaction under these conditions, 

a single concentration of GlcNAc (5 mM) or its derivative 43 (1 mM) were utilized in the 

assay with 5 to 40 min incubation time at 30 oC. A clear time-dependency of turnover was 

observed with both compounds (Figure 79c). By increasing incubation time, the formation of 

secondary product UDP increased in the presence of both GlcNAc and 43, with a maximal 

turnover after 30 min. According to these results, it was strongly suggested that GlcNAc 

derivative 43, just like its parent compound GlcNAc, was recognized as an acceptor substrate 

towards β-1,4-GalT.  

In order to understand this discrepancy with previous literature reports, additional 

experiments were carried out. In the literature precedent, naphthyl-containing GlcNAc 



 

191 

 

derivative 3 and its analogues were evaluated in a radiochemical glycosyltranferase assay.30 

The phosphatase-coupled glycosyltransferase assay used in our present study is carried out by 

measuring the formation of secondary reaction product UDP. In this assay, the coupled 

phosphatase is utilized to hydrolyse inorganic phosphate quantitatively from UDP and the 

free phosphate can be quantified by phosphatase-coupled assay. (Figure 80A) In contrast, the 

radiochemical assay used in the original report is based on the transfer of radio-labelled sugar 

nucleotide donor to an acceptor. The radio-labelled saccharide product can be quantified by 

scintillation counting method. The enzyme used in the radiochemical assay of previous 

literature was obtained commercially from Sigma supplier, whereas our phosphatase-coupled 

assays were all carried out with a batch of bovine β-1,4-GalT recombinantly expressed in our 

own laboratory. Also, their radiochemical assay was carried out in the presence of 12.5 

mg/mL bovine serum albumin (BSA), which was the main different reagents used. To assess 

the effect of BSA on the recognition of GlcNAc derivative 43, the substrate activity bioassay 

was repeated in the presence of BSA (12.5 mg/mL). The microplate was incubated for 20 min 

and absorbance was recorded at 620 nm. When the formation of UDP was plotted against the 

concentration of acceptor (both GlcNAc and compound 43), very similar reaction profiles 

between the two acceptor substrates were observed once again (Figure 81). Compared with 

the assay in the absence of BSA, the turnover of transfer reaction in the presence of BSA was 

improved slightly, and maximum turnover was observed with the concentration of GlcNAc 

(1.25 mM) and 43 (0.25 mM) 
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Figure 81 Acceptor substrate assays with recombinant β-1,4-GalT in the presence of BSA with GlcNAc (left) or 

compound 43 (right) as the acceptor. 
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Conditions: -1,4-GalT, GlcNAc (0-5 mM) or 43 (0-1 mM), UDP-Gal donor (28 M), MnCl2 (5 mM), chicken 

egg-white lysozyme (1 mg/mL), calf-intestinal phosphatase (10 U/mL), bovine serum albumin (1.25 mg/mL), 

DMSO (10%) in buffer (13 mM HEPES, 50 mM KCl, pH 7.0) were incubated in a 96-well plate at 30 oC with 

shaking for 20 min. The reaction was stopped by the addition of malachite reagents, and the absorbance was 

recorded at 620 nm after 30 min. All experiments were carried out in triplicate. Bars indicate mean values ± S.D. 

 

In the previously reported literature, compound 43 was assessed with a commercially 

available batch of enzyme.30 As the information provided by the supplier about this β-1,4-

GalT batch was limited, it was uncertain whether it was identical to our own recombinant 

batch. Therefore, it was decided to repeat the experiments with a batch of commercial β-1,4-

GalT from the same supplier. Firstly, the activity of this batch of β-1,4-GalT was determined 

after it was obtained. The rate of transfer reaction was plotted against the dilution of enzyme 

stock, with an activity of 12.687 mU/mL (Figure 82).  
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Figure 82 Enzyme activity measurement assay for commercial enzyme 

 

Conditions:  -1,4-GalTs (diluted to the required concentrations), acceptor (GlcNAc, 5 mM), UDP-Gal donor 

(28 M), MnCl2 (5 mM), Chicken egg-white lysozyme (CEL, 1 mg/mL), calf-intestinal alkaline phosphate (CIP, 

10 U/mL), DMSO (10%) buffer (13 mM HEPES, pH = 7.0, 50 mM KCl) were incubated on a 96-well plate at 

30 oC with shaking for 20 min. The reaction was stopped by the addition of malachite reagents, and the 

absorbance was recorded at 620 nm after 30 min. All concentrations are final concentrations. Bars indicate mean 

values  ± S.D. of triplicate experiments.  

 

Next, the substrate assays with either GlcNAc or 43 as acceptor was repeated in the absence 

or presence of BSA and the results are shown in Figure 83. The results were nearly identical. 

Both GlcNAc and the derivative 43 acted as substrates towards β-1,4-GalT, both in the 

absence and presence of BSA. Compared with the assay of recombinantly expressed enzyme, 

the turnover of transfer reaction with GlcNAc derivative 43 was lower than that with GlcNAc 

and in the presence of BSA, enzyme activity was increased, with improved turnover, 

suggesting that BSA could facilitate the catalytic reaction.  
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Figure 83 Acceptor substrate assays with commercial β-1,4-GalT in the absence or presence of BSA. 

(a) β-1,4-GalT-catalysed conversion of UDP-Gal donor at different concentrations of GlcNAc (left) or 

compound 43 (right) as the acceptor, in the absence of BSA. 
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(b) β-1,4-GalT-catalysed conversion of UDP-Gal donor at different concentrations of GlcNAc (left) or 

compound 43 (right) as the acceptor, in the presence of BSA. 
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Conditions: (a) -1,4-GalT, GlcNAc (0-5 mM) or 43 (0-1 mM), UDP-Gal donor (28 M), MnCl2 (5 mM), 

chicken egg-white lysozyme (1 mg/mL), calf-intestinal phosphatase (10 U/mL), bovine serum albumin (1.25 

mg/mL), DMSO (10%) in buffer (13 mM HEPES, 50 mM KCl, pH 7.0) were incubated in a 96-well plate at 30 
oC with shaking for 20 min. The reaction was stopped by the addition of malachite reagents, and the absorbance 

was recorded at 620 nm after 30 min. (b) Conditions as in (a) but with addition of bovine serum albumin (1.25 

mg/mL). All experiments were carried out in triplicate. Bars indicate mean values ± S.D. 

 

4.3.3.  Analysis of phosphatase-coupled assays results 

GlcNAc derivative 43 has been reported to be inactive as a substrate, but active as an 

inhibitor towards bovine β-1,4-GalT.30, 36 However, in our phosphatase-coupled assays 

substrate assay, this compound behaved as an acceptor substrate of β-1,4-GalT with a similar 
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profile to the natural GlcNAc acceptor. The spectroscopic characterisation of GlcNAc 

derivative 43 confirmed that this compound was identical to the one used in the previous 

report, ruling out the possibility of mistaken identity of the compound. In the previous report, 

compound 43 was tested in the radiochemical glycosyltransferase assay. The activity of 

GlcNAc derivative 43 was evaluated according to the direct detection of production of 

galactosylated reaction product. Our phosphatase-coupled glycosyltransferase assay measures 

the formation of the secondary reaction product, UDP-galactose, of enzyme transfer reaction. 

Both the radiochemical GT assay and phosphatase-coupled assays are known to be amongst 

the most extensively utilized GT assays. In theory, there should be no significant deviation 

between the results of these two assays. Different from our protocol, the reagents BSA and 

commercial -1,4-GalTs were employed in the previous study. As the results of our assays 

with either recombinantly-expressed enzyme or commercially available enzyme in the 

absence or presence of BSA did not show significant difference, the difference of these data 

for compound 43 should not originate from the reagent BSA and commercial -1,4-GalTs. 

The presence of GlcNAc1-(2-naphthyl) 4.3 led to a significantly enhanced signal.  Also, 

relative control experiments were carried out either in the same or a different microplate to 

eliminate the possibility of false positive results. All the assays were repeated three times and 

the results were identical. These results of experiments suggested the behaviour of 43 as a 

substrate in the phosphatase-coupled glycosyltransferase assay. The assay which detecting 

the formation of primary glycosylation product was then carried out to support the result.  
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4.3.4.  Detection of the primary glycosylation product 

 

In our bioassay, the glycosylated product, Gal1-4-GlcNAc1-(2-naphthyl), was not 

observed directly and only the production of UDP could not give enough evidence to explain 

the discrepancy with the previous literature. Therefore, experiments were carried out to 

directly detect the putative product resulting from glycosylation of GlcNAc derivative. As the 

starting material of the transfer reaction, compound 43, UDP-Gal, as well as the target 

product Gal1-4-GlcNAc1-(2-naphthyl) 45 are all UV active molecules, LC/MS allows us 

to monitor the production of galactosylated saccharide product (Figure 84).  

 

 

Figure 84 Different reaction species occurring during galactosylation of GlcNAcβ1-(2-naphthyl) and their 

molecular weights 

 

Prior to the HPLC experiments, the UV absorbance of compound 43 was measured (Figure 

85). The maximum absorbance of compound 43 is located at 220 nm. Since the UV active 

moiety of 43 and its galacosylated product 45 were the same, it was reasoned that the 

maximum UV absorbance wavelength would be identical. This allowed us to monitor the 

chromatographic elution from LC/MS at, or close, to the maximum absorbance exerted by 

these two compounds. 
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Figure 85 UV absorbance measurement of compound 43 in different concentration 

 

The development of an LC/MS-based galactosyltransferase assay requires optimisation of 

both the enzymatic reactions and HPLC elution. It was anticipated that the highly polar 

compounds (UDP-Gal and by-product UDP) would be eluted quickly from the reverse-phase 

column. However, the separation of GlcNAc1-(2-naphthyl) 43 and the corresponding 

galactosylated product 45 would be more challenging because of their comparable polarity, 

which might require optimisation of separation conditions. A robust method was therefore 

needed to separate and identify the production of product 45. We initially selected the HPLC 

system with a detection set at 214 nm and coupled with XDB-C8 column (5 m, 4.6 × 150 

mm) with a flow rate of 0.5 mL/min. The mobile phase comprised a mixture of water with 

0.01 % formic acid (buffer A) and acetonitrile (buffer B) and the utilized gradient was 

illustrated in Table 16.  
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Table 16 Gradient utilised for separation of UDP-Gal and compound 43 

Gradient step Time Buffer A(%) Buffer B(%) 

1 1 90 10 

2 13 90 to 20 10 to 80 

3 14 20 80 

4 15 95 5 

 

 

This elution system was utilized for UDP-Gal and 43 respectively (Figure 86). The retention 

time (tR) were 3.01 min and 13.1 min respectively. After achieving satisfactory peak 

resolution, the transfer reaction with β-1,4-GalT was carried out and analysed by this method. 

In order to simplify the assay system, in the initial experiments a mixture of enzyme, natural 

donor UDP-Gal and GlcNAc1-(2-naphthyl) 43 were incubated for 1h at 30 oC and this 

mixture was utilized for the analysis of LC/MS. 

 

Figure 86 Chromatograms of UDP-Gal, compound 43 respectively. LC/MS performed on an Agilent 1200 

series using XDB-C8 column (5 m, 4.6 × 150 mm) with 0.5 mL/min flow rate with the detection at 214 nm. 

The mobile phase comprised a mixture of water (0.01% formic acid) and acetonitrile. 

(a)  Chromatogram of UDP-Gal (m/z 564.9, [M-H]-), retention time = 3.01 min 

 

(b)  Chromatogram of 43 (m/z 346.1 [M-H]-), retention time = 13.1 min 
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The initial assay was carried out with UDP-Gal (500)compound 43 (500 ) 

and1,4-GalT (20 L) in HEPES buffer (pH = 7.0). The mixture was incubated for 1h at 30 

oC. The inactive protein might be precipitated from the buffer in the process of incubation. It 

would cause HPLC system block if the reaction solution was directly utilized into the 

equipment. Thus, the reaction was quenched by the addition of the same volume of methanol. 

After thorough mixing, the mixture was centrifuged for 15 min at 1000 rpm. The supernatant 

was removed for LC/MS analysis. However, under these conditions, no product peak for 

galactosylated product 45 (m/z 508 [M-H]-) was detected (Figure 87). 
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Figure 87 Chromatogram of GalTs catalyzed reaction assay. 30 L of reaction mixture was injected. LC/MS 

performed on an Agilent 1200 series using XDB-C8 column (5 m, 4.6 × 150 mm) with 0.5 mL/min flow rate 

with the detection at 214 nm. The mobile phase comprised a mixture of water (0.01% formic acid) and 

acetonitrile. 

Chromatogram of transfer reaction.  Peak A: UDP-Gal (m/z 564.9, [M-H]-), retention time = 3.01 min; 

Peak B: compound 43 (m/z 346.2 [M-H]-), retention time = 13.1 min.  

 

 

 

Reviewing the conditions for the enzymatic reaction and the LC/MS experiment, it was 

hypothesized that several factors may have prevented the formation and/or detection of the 

galactosylated product. Firstly, the glycosylated product was too little to be detected because 

of the use of limited amount of GalT. Secondly, as discussed before, the separation of 

compound 43 and its corresponding galactosylated product 45 was difficult due to their 

similar polarity. Therefore, insufficient separation may have led to the overlap of their peaks 

under these LC/MS conditions. Also, the irregular baseline may influence the appearance of 
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product peaks. In order to prevent the occurrence of these interferences, both the assay and 

LC/MS conditions were optimised. The amount of enzyme in the assay was increased in 

order to promote the formation of glycosylated product. Then, the HPLC elution system was 

modified as well. The buffer B (acetonitrile) was replaced by MeOH and a new gradient was 

developed. (Table 17) 

Table 17 Gradient B utilised for separation of UDP-Gal and compound 43 

Entry 

Gradient step 

 

Time (min) Buffer A (%) Buffer B (%) 

 1 1 90 10 

2 10 90 to 70 10 to 30 

3 20 70 to 50 30 to 50 

4 30 50 to 30 50 to 70 

5 40 30 to 20  70 to 80 

6 70 20  80 

7 80 20 to 90 80 to 10 

8 85 90 10 

 

Next trial of the assay was tested by using 50 M enzyme. After 1h incubation, the mixture 

was used for LC/MS analysis. In addition to the peak for compound 43, a second small peak 

appeared at slightly shorter retention time (Figure 88). As expected, the use of β-1,4-GalT 

with 200 M resulted in increased formation of this peak (Figure 90, assay B). This pattern 

suggested that the transfer reaction did indeed occur, and that compound 43 acted as a 

substrate towards β-1,4-GalT. However, the peak a (m/z 529.7) did not fit the expected 

molecular mass of the glycosylated product, even though the correct molecular mass of the 

glycosylated product 45 had been obtained in previous experiments (m/z 508 [M-H]-, Figure 

89), which testified that the setup of our LC/MS experiment worked well. The experimental 

condition was identical to the previous experiments and the LC/MS experiment was repeated 

three times, ruling out the possibility of any technical errors. Compared with the 

chromatogram of previous experiment, peak a (m/z 529.7) exhibited identical retention time 
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(tR = 31.3 min). Also, the assay only contained 43, UDP-Gal and enzyme. These simple 

constituents could not possibly produce any other by-product. It was speculated that the assay 

mixture was stored in freezer for more than two week before utilized in LC/MS and the pH of 

the mixture solution might change, influencing the MS results. The mass of peak a was MW 

plus 20.5. It is conceivable that the pH change might influence the steric structure of 45, 

contributing to different ion adduct, while we have no definitive explanation now for which 

species giving this unexpected mass.  

Figure 88 LC/MS analysis showing the formation of a reaction product when compound 43 is used as the sole 

acceptor substrate for GalT. 

 

 

 

 

(A) 

(B) 

a 

b  

[M + Na]+ 
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Figure 89 Mass spectra of glycosylated product 45 with correct molecule mass 

 

Since phosphatase was utilized in the phosphatase-coupled assay protocol, we then 

investigated the assay condition with extra phosphatase added. In order to compare with the 

previous result, the assay with 50 M β-1,4-GalT, UDP-Gal and compound 43 were 

incubated in the presence of 20 M phosphatase. Compared with other assays, a significantly 

increased yield of product was obtained following the addition of phosphatase. (Figure 90, 

Assay 4). 

Figure 90 Effect of the -1,4-GalTs and phosphatase on the production of glycosylated product. (1) Assay 

conducted with compound 43 only. (2) Assay conducted with UDP-Gal, cmpd 43, -1,4-GalTs (50 L). (3) 

Assay conducted with UDP-Gal, cmpd 43, -1,4-GalTs (200 L). (4) Assay conducted with cmpd 43, -1,4-

GalTs (50 L), phosphatase (20 L). 
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The structure of compound 43 is similar to that of the natural acceptor GlcNAc. It is 

speculated to bind in the same binding site as the substrate. According to the glycosyl transfer 

reaction mechanism, upon binding a donor and metal ion to enzyme, the conformation of 

enzyme could change from open to close conformation, creating substrate binding site. Then 

43 binds with enzyme in the substrate site due to its better affinity towards enzyme. At some 

point, this reaction would reach the equilibrium. Thus, GlcNAc1-(2-naphthyl) 43 acts as an 

inhibitor towards enzyme in the radiometric assay which assesses molecule activity by 

detecting the formation of product. (Figure 91) However, the consumption of UDP was 

detected in our assay and β-1,4-GalT activity was dependent on the concentration of 43. In 

the phosphatase-coupled glycosyltransferase assay, it is hypothesised that the use of 

phosphatase in the assay facilitates glycosylated reaction, which leads to the discrepant result. 

Phosphatase is used to hydrolyse the secondary product of glycosyl transfer reaction, UDP, 

into inorganic phosphate which was quantified by the absorbance measurement. In the 

catalytic cycle, after the binding of substrate towards enzyme, the sugar will transfer to the 

substrate and then the product dissacharide as well as the by-product, uridine di-phosphate 

(UDP), are ejected. Due to the presence of phosphatase, UDP is hydrolysed by phosphatase 

into inorganic phosphate, which is irreversible. As UDP is also reported as a GalTs inhibitor, 

the hydrolysis of UDP can maintain the enzyme activity and facilitate the formation of 

glycosylated products. Therefore, the glycosylated reaction is facilitated towards the 

production of inorganic phosphate and disaccharide product by the phosphatase and 

compound 43 acted as a substrate towards the enzyme. In the LC/MS experiment, a 

significantly increased yield of product was obtained due to the addition of phosphatase. Thus, 

this experimental result supported our explanation.  
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Figure 91 Proposed explanation for the differential results for substrate and inhibitor activity of compound 43. 

A: GTs acceptors; D: GTs donors; E: GTs; A*: glycosylated acceptors; D*: nucleoside diphosphate (NDP).  

 

4.4.  Conclusion  

 

It was found that GlcNAc β1-(2-naphthyl) 43 could behave as an acceptor substrate towards 

β-1,4-GalTs from bovine milk. This finding is in contrast with previously reported results that 

compound 43 acts as an inhibitor, but not an acceptor substrate of this enzyme. This results. 

According to the assay results, a hypothesis may be the presence of phosphatase in 

phosphatase-coupled assay. The phosphatase facilitates GT reactions by the hydrolysis of 

UDP, leading to the differential result from that obtained via radio-chemical assay. This 

observation has important implications for the application of compound 43 as a tool 

compound in glycobiology and glycobiochemistry. The result also emphasized the reagents 

utilized in assays that might interfere the detection of molecules’ activities.  
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4.5.  Experimental section 

 

General. All reagents were obtained commercially and used as received unless stated 

otherwise. GlcNAc derivative 43 was synthesized as previously reported30 and characterised 

by 1H- and 13C-NMR spectroscopy and mass spectrometry. Thin-layer chromatography (TLC) 

was performed on pre-coated aluminium plates (Silica Gel 60 F254, Merck) and compounds 

were visualised by exposure to UV light (254 and 280nm). Preparative chromatography was 

carried out on silica gel 60 (pore size 60 Ǻ, 230-400 mesh, Sigma-Aldrich) at normal 

pressure. NMR spectra were recorded at 298K on a Bruker Avance DRX 400 spectrometer 

(400 MHz for 1H, 100 MHz for 13C). Chemical shifts () are reported in ppm (parts per 

million). Coupling constants (J) are reported in Hz. 

 

 

2-Naphthyl3,4,6-tri-O-acetyl 2-acetamido-2-deoxy--D-glucopyranoside (44) To an 

aqueous solution of sodium hydroxide (1M, 2 mL), a solution of 3,4,6-tri-O-acetyl-2-deoxy-

-D-glucopyranosyl chloride (400 mg, 1 equiv.), 2-naphthol (319 mg, 2 equiv.) and tetra-n-

butylammonium bromide (354 mg, 1 equiv.) in methylene chloride (2 mL) was added. The 

resulting two-phase system was stirred for 2h at rt. The mixture was diluted with ethyl acetate 

and the organic phase washed sequentially with an aqueous solution of 1M sodium hydroxide 

and water, then dried. The organic extract was then filtered, and the filtrate concentrated to 

yield a crude solid which was purified by chromatography (DCM/MeOH 20:1), to yield 389 
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mg of a white powder (75 %). 1H-NMR (400 MHz, CDCl3): 7.81 (d, 2H, J = 9.0 Hz, H-4 

and H-9 of naphthyl), 7.77 (d, 1H, J = 8.0 Hz, H-6 of naphthyl), 7.47 (m, 1H, H-7 of 

naphthyl), 7.44 (d, 1H, J = 2.5 Hz, H-1 of naphthyl), 7.38 (m, 2H, H-8, H-5 of naphthyl), 

7.22 (dd, 1H,  J = 2.5, 9.0 Hz, H-3 of naphthyl), 5.46 (d, 1H, J = 8.0 Hz, H-1), 5.39 (dd, 1H, J 

= 10.5, 10.5 Hz, H-3), 5.11 (dd, 1H, J = 10.5, 10.5 Hz, H-4), 4.36 (dd, 1H, J = 5.5, 12.5 Hz, 

H-6), 4.16 (M, 2H, H-2 and H-6), 4.11 (m, 1H, H-5), 2.07, 2.06, 2.04 (3×s, 9H, acetyl), 1.96 

(s, 3H, acetamido). 13C-NMR (100 MHz, CDCl3): δ 20.8 (C-Me), 20.9 (C-Me), 20.9 (C-Me), 

23.3 (C-Me), 59.0 (C-2), 61.9 (C-6), 71.0 (C-4), 74.6 (C-3), 78.0 (C-5), 106.7 (C-1), 121.0, 

126.1, 126.5, 127.9, 128.0, 130.3, 137.4, 128.5, 148.1, 156.9 (C-naphthyl), 170.4 (C-

Carbonyl), 171.4 (C-Carbonyl), 171.8 (C-Carbonyl), 172.5 (C-Carbonyl). 

 

 

1-(2-Naphthyl) 2-acetamido-2-deoxy--D-glucopyranoside (43). To a solution of 44 (200 

mg) in methanol-toluene (1:1) was added a catalytic amount of 0.5M sodium methoxide in 

methanol. The reaction mixture was stirred at room temperature for 0.5h and the progress of 

the reaction was monitored by TLC (DCM/MeOH 4:1). Upon completion of the reaction, the 

organic solution was concentrated, and the residue was purified by chromatography 

(DCM/MeOH 4:1), to yield 92 mg of a white powder (88%). 1H-NMR (400 MHz, MeOD): 

m, 3H, H-4, H-9, H-6 of naphthyl), 7.42 (m, 2H, H-7, H-1 of naphthyl), 7.34 (m, 1H, 

H-8 of naphthyl), 7.18 (dd, 1H, J = 2.4, 9.2 Hz, H-3 of naphthyl), 5.19 (d, 1H, J = 8.4 Hz, H-

1), 4.00 (dd, 1H, J = 8.4, 10.4Hz, H-2), 3.98 (dd, 1H, J = 2.4, 12Hz, H-6), 3.77 (1H, dd, J = 

5.6, 12Hz, H-6), 3.63 (dd, 1H, J = 8.4, 10Hz, H-3), 3.58 (m, 1H, H-5), 3.48 (dd, 1H, J = 8.8, 
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9.6Hz, H-4), 1.99 (s, 3H, NHCH3). 
13C-NMR (100 MHz, MeOD): δ 23.0 (C-Me), 57.4 (C-2), 

62.6 (C-6), 71.9 (C-4), 75.9 (C-3), 78.4 (C-5), 101.0 (C-1), 111.9, 119.8, 125.3, 127.4, 128.2, 

128.6, 130.4, 131.3, 135.9, 156.9 (C-naphthyl), 174.0 (C-Carbonyl). m/z (ESI) 371.1199 

[M+H+Na]2+, C18H22NNaO6 requires 371.1345. 



Enzymology. -1,4-Galactosyltransferase (β-GalT) from bovine milk was either expressed in 

our own laboratory or obtained commercially from Sigma. For the expression of recombinant 

β-1,4-GalT we used the construct pET29b_b4GalT1∆129 C342T, which was a generous gift 

from Dr Christelle Breton (Grenoble). The mutation C342T is known to improve stability and 

increase folding yield. Removal of the first 129 residues corresponds to the beginning of the 

catalytic domain. The protocol for renaturation of inclusion bodies and refolding was adapted 

from Qasba and co-workers.37 For the biochemical phosphatase-coupled glycosyltransferse 

assays, we used a recently reported colorimetric protocol.18 All assays were carried out in 

Nunc clear, flat-bottom 96-well polystyrene microplates. Assay wells typically contained 

MnCl2, calf-intestinal phosphatase (CIP), chicken egg-white lysozyme (CEL), UDP-Gal 

donor and either GlcNAc or 43 as acceptor. To quantify the concentration of inorganic 

phosphate (Pi), malachite green reagents were added, and the absorbance was recorded at 620 

nm on a BMG Labtech POLARstar Optima multiplate reader. 

 

Data collection and analysis. A calibration curve (0–12.5 M UDP, corresponding to 0-25 

M Pi) was constructed for each microplate by linear regression. The calibration curve was 

used to convert absorbance measurements at 620 nm in sample and control wells to [UDP] 

(M). For each sample and control well, a corresponding background well (containing 
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identical components but no acceptor) was included, to account for non-specific hydrolysis of 

donor. Corrected absorbance values for each well were obtained by subtracting the 

corresponding background reading from the absorbance of the respective sample or control 

well. The calculated concentration of UDP was plotted against concentration of acceptor (for 

substrate assay or control assay) or incubation time (for time-dependent assays). Averages 

and standard deviations were calculated in Microsoft Excel. 

 

LC/MS experiment. The standard assay mixtures contained UDP-Gal (500 

) 43 (), β-1,4-GalT (50 or 200 ), phosphatase (20 , in assay 4) 

in 13 mM HEPES buffer (pH = 7). Mixtures were incubated at 30 oC for 1h. Reactions were 

stopped by the addition of the same volume of methanol. Then mixtures were centrifuged for 

15min at 1000 rpm. The supernatants were used for LC/MS analysis directly. For LC/MS 

analysis: HPLC system with a detection set at 214 nm and coupled with column (Agilent 

Eclipse XDB-C8 4.6×150 mm) with a flow rate of 0.5 mL/min. The mobile phase comprised 

a mixture of water (0.1 % formic acid) and methanol.  The utilized gradient was illustrated in 

Table 4.2. A Advion Compact Mass Spectrometer (CMS) was coupled with HPLC for mass 

detecting.  
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5.   Summary and outlook 

 

During this project, different strategies for the development of uncharged inhibitors of -1,4-

GalT were explored. Based on the previously reported GalT inhibitor 5-FT UDP-Gal, the 

approach of pyrophosphate esterification of 5-FT UDP-Gal was attempted. This direct 

approach to mask the negative charge of the sugar nucleotide was unsuccessful due to 

synthetic challenges. It is hypothesised that the hydroxyl group in galactose ring could attack 

the pyrophosphate bond, facilitating the decomposition of the sugar nucleotide. 

Next, nucleoside-based derivatives of 5-FT UDP-Gal were developed by formally removing 

the pyrophosphate and galactose moieties and optimising the substituent in the 5-position of 

uracil. Different aryl and heterocyclic substituents were introduced via microwave Suzuki 

cross-coupling reaction. One of the target compounds, 5-FT uridine, was utilized to further 

extend structural diversity through subsequent reductive amination with different amino acids. 

Amongst this series of nucleoside derivatives, compounds containing an indole moiety 

exhibited inhibitory activity towards -1,4-GalTs. In order to investigate the respective 

contribution of the 5-substituent and the pyrophosphate and galactose group to enzyme 

inhibition, the corresponding sugar nucleotide derivatives were synthesized and assessed in 

biochemical assay. The target selectivity of active nucleosides and their corresponding sugar 

nucleotides was also investigated. One of the uncharged nucleoside inhibitors was used 

successfully in the cell assay to reduce the expression of the cell surface glycoprotein PSGL-

1 in human monocytes. This application illustrates the potential of these novel, nucleoside-

based -1,4-GalT inhibitors as tool compounds for chemical biology and drug discovery, for 

example to study PSGL-1 medaited cell adhesion. They may also be potential inhibitor 

candidates for the development of anti-inflammatory agents. 
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In order to overcome the loss of activity of nucleoside derivatives due to the removal of 

pyrophosphate and galactose moieties, a DCC strategy was employed to identify suitable 

mimics of the pyrophosphate and sugar groups. The reversible reaction between an aldehyde 

fragment based on one of the most active nucleoside derivatives and a collection of 

hydrazines/hydrazides was used. In the presence of -1,4-GalT, the amplification of an 

individual library member was observed by HPLC. The selected compound was synthesized 

and assessed in the biochemical assay. The synthesis of corresponding derivatives, the amide 

analogues and unsubstituted amine analogue, was carried out and their inhibitory activities 

were measured. Based on the SAR analysis of these compounds, it is suggested that the exact 

nature of the linkage between the nucleoside and hydrazide moieties has a critical effect on 

inhibition. Compared with the hydrazine substituents, nucleoside, especially the 5-position 

indole motif, appeared to be the dominant factor for inhibition. In future work, the effect of 

these new -1,4-GalT inhibitors on the cell surface levels of PSGL-1 on human monocytes 

will be investigated. 

A previously reported -1,4-GalT inhibitor based on the GlcNAc acceptor substrate was 

selected as the positive control for the DCC experiments. Unexpectedly, this compound was 

found to behave as an enzyme substrate in the colorimetric assay used in this study. This 

result differed from previously reported findings in a radiochemical assay. A series of 

experiments was carried out to explain this discrepancy, including the detection of the 

glycosylated product by LC/MS. The phosphatase-coupled assay and LC/MS experiments 

confirmed that the presence of phosphatase could facilitate the formation of glycosylated 

products by the hydrolysis of nucleoside diphosphate.  

After this study, it is unknown how the nucleoside derivatives bind to the catalytic site of 

GalTs, especially the interaction between the indole motif and enzyme. Thus, more 
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nucleoside derivatives with 5-substituent are required for SAR analysis in the future study. A 

crystal structure of the complex of enzyme and nucleoside analogue also would provide 

useful information about binding, which can help the further development of inhibitors 

towards GalTs. As the introduction of hydrazine as pyrophosphate and sugar moieties did not 

give additional activity, a detailed docking study is required for the investigation of binding 

between hydrazine moiety and enzyme active site. It will provide useful information for the 

modification of linkages for nucleoside and hydrazine, which is essential for the development 

of GalTs inhibitors. 
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6.  Appendix 

 

In this section, the chromatograms of HPLC results of chapter 3 was shown.  

In order to measure the relationship between the compound concentration and UV detection 

of HPLC (Figure A1), different volumes of aldehyde 29 solution (300 )was applied to 

the HPLC using a JASCO MD-2018 with the detection at 254 nm. The 29 solution (1, 20, 40, 

80, 100, 1000 L) were separately injected on a reverse phase column (Luna 5u C8(2) 100A, 

new column 150 ×4.6 mm) and eluted at 0.5 mL/min. The mobile phase comprised a mixture 

of water (buffer A) and acetonitrile (buffer B) and the gradient A (Table 12) was utilized. 

The volume of 3.1 solution was plotted against the UV-absorbance intensity.  

Figure A1 Chromatogram of the relation between amount of compound 29 and UV absorbance 

 

 

DCC experiment was carried out with aldehyde 29 and H-1. Solutions of H-1, indole-uridine 

aldehyde 29 and cyanoborohydride were introduced into 0.5 mL eppendorf containing a 

solution of 1,4GalT in MOPS buffer. (Buffer: 50 mM MOPS, 20 MnCl2, pH 7.4) The final 

conc. of each reagents: H-1 (300 L), 29 (300 L), NaBH3CN (5 mM), enzyme (0.69 
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mg/mL). Total volume of each eppendorf is 300 uL. Then incubated in 25 oC and monitored 

by HPLC of a JASCO MD-2018 with the detection at 254 nm. 100 L solution was injected 

on a reverse phase column (Luna 5u C8(2) 100A, new column 150 ×4.6 mm) and eluted at 

0.5 mL/min. The mobile phase comprised a mixture of water (buffer A) and acetonitrile 

(buffer B) and the gradient A (Table 12) was utilized.  

Figure A2 Chromatograms of reaction between 29 and H-1 analysis in 2d, 4d, 6d, 14d. Reversible reaction 

incubated in the absence of enzyme (blue curve); Reversible reaction incubated in the presence of enzyme (pink 

curve).  

 

 

 

DCC experiment was carried out with aldehyde 29 and H-9. Solutions of H-9, indole-uridine 

aldehyde 29 and cyanoborohydride were introduced into 0.5 mL eppendorf containing a 

solution of 1,4GalT in MOPS buffer. (Buffer: 50 mM MOPS, 20 MnCl2, pH 7.4) The final 

conc. of each reagents: H-1 (300 L), 29 (300 L), NaBH3CN (5 mM), enzyme (0.69 

mg/mL). Total volume of each eppendorf is 300 uL. Then incubated in 25 oC and monitored 
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by HPLC of a JASCO MD-2018 with the detection at 254 nm. 100 L solution was injected 

on a reverse phase column (Luna 5u C8(2) 100A, new column 150 ×4.6 mm) and eluted at 

0.5 mL/min. The mobile phase comprised a mixture of water (buffer A) and acetonitrile 

(buffer B) and the gradient B (Table 13) was utilized.  

Figure A3 Chromatograms of reaction between 29 and H-9 analysis in 2d, 4d, 8d; Reversible reaction incubated 

in the absence of enzyme (blue curve); Reversible reaction incubated in the presence of enzyme (pink curve).  

 

 

 

 

 

 

 

 


