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Abstract

Atomic scale phenomena concurring to atomic bond ruptures at a crack tip determine
the chemomechanical properties of oxide materials, thus a better understanding of them
is instrumental in addressing engineering issues related to the brittleness of oxides. In
a fracturing material, the macroscopic stress field couples with the chemical reactions
occurring at the crack tip in a bidirectional interplay requiring a concurrent multiscale
(QM/MM) computational approach. Due to long range electrostatic interactions, the dynam-
ics of chemically accurate description of the neighbourhood of a breaking bond requires
ab initio calculations on several hundred atoms on a timescale of picoseconds. First, to
make these prohibitively demanding calculations tractable I developed an ensemble par-
allel QM/MM computational strategy comprising a novel graph partitioning method for
optimal load balancing that is able to efficiently parallellise the workload over hundreds
of thousands of cores on supercomputing facilities. Secondly, I present a computational
study of crack propagation in two–dimensional silica systems that have recently been
experimentally synthesized, which provide ideal and physically observed structures that
are key to the understanding of atomic scale phenomena in fracture events in oxides. The
atomic structure, either crystalline or amorphous, and the emerging set of free energy
barriers to crack advance are the basis to understand the fundamental difference in the crack
dynamics observed at a larger scale. Finally, I explored different pathways to make efficient
use of the information produced by ab initio calculations by studying machine learning
methods capable of predicting local physical observables as a function of the local atomic
environment. This includes a machine learning–augmented method to obtain free energy
barriers of hybrid accuracy that only require DFT calculations on just a small fraction of
the sampled atomic configurations.
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Chapter 1

Introduction

Information is perhaps the single most defining feature of this era. Whether we consider
producing information by means of human creation or computer–generated data, storing it
in ever growing databases, or building knowledge from it, everything around information
seems to share the same attribute of exponential growth. This inflationary evolution is
arguably the effect of two concurrent phenomena. On one hand, the network of worldwide
computing resources is an entity which grows in power because of technology innovations,
in size because of the technology adoption of an ever growing human population, and more
connected thanks to the internet. On the other hand, machine learning – which will be
briefly overviewed in Chapter 2 – makes it possible to distil meaning from the otherwise
overwhelming amount of information produced by the actions and interactions within such
entity. It is then only natural for this revolution to trickle in every field it can be in contact
with, including computational physics.

It is in this context that we ask ourselves questions such as ‘how does glass break?’.
Of the several interpretations this question can have, in this thesis we will concentrate
on understanding the atomic scale phenomena that give rise to specific chemomechanical
properties of oxide materials. Atomistic simulations is an essential tool to address this
problem, and will be the topic of the background Chapter 3. Quantum mechanics is widely
accepted to be the fundamental theory needed to describe reality at the atomic scale, but
it must be approximated by numerical methods for any practical applications. Density
functional theory (DFT) is a way of rephrasing Schrödinger equation in terms of the
groundstate electron density explicitly. Approximate solutions to this approach are very
popular and are widely considered to be sufficiently accurate to quantitatively describe
atomic interactions arising in systems such as breaking oxide materials. Accuracy, though,
comes at a computational cost, and simulations using this theory can only deal with up
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to about a thousand atoms and a timescale of a few picoseconds. Interatomic potentials,
instead, are simple interaction models designed to qualitatively capture the physics of a
system within certain boundaries of applicability, and can be used to study millions of
atoms and up to nanoseconds. Simulating processes such as the advance of a crack is a
problem that at the same time requires the accuracy of DFT at the crack tip and systems
large enough (≥105 atoms) to accommodate stress fields compatible with the linear elastic
solution of a macroscopic system, and the two length scales are inextricably interconnected.

In this scenario a multiscale approach with hybrid accuracy is necessary, but the long–
range nature of interactions in oxides inflates the computational cost of every accurate
DFT calculation by a few orders of magnitude with respect to those performed in simpler
systems such as silicon. To address this kind of problem it is thus necessary to leverage
some of today’s most powerful computing resources available, and Chapter 4 will describe
the conception of a parallel computing framework to perform multiscale simulations on
supercomputing facilities.

Despite the need for accuracy and computing power, there exist cases where a uniform
precision interatomic potential can be a useful first step for understanding the qualitative
behaviour of a material undergoing fracture. Benchmarking results show that one such
example is two–dimensional silica, the subject of Chapter 5: here, a study on the dynamic
crack propagation and on the crack advance reaction kinetics will be carried out on both
crystalline and amorphous systems.

In the persistent endeavour to compute as little as possible, the attention will then turn
to machine learning models capable of making better use of the accurate but expensive
DFT calculations. Chapter 6 will present three such attempts, culminating in the last where
all three main motifs of this work – oxide chemomechanics, machine learning and hybrid
atomistic simulations – come together to create a method to evaluate free energy profiles
of crack advance in two–dimensional silica at an accuracy approaching DFT.

Finally, Chapter 7 will link back to the Introduction, and expand it by summarising the
insights gained along the journey and delineating future research directions.



Chapter 2

Machine Learning

A common task in experimental sciences is to generate a model that is able to discern the
mapping between input and output of a measurement given a finite dataset. In a traditional
interpolation framework, the design of a model is based upon prior beliefs – mathematical
derivation, physical intuition or both – about the underlying process generating the data.
The functional form of the model transforming an input data point to an output observable
is thus once and for all fixed, and data is fed into the fitting procedure to find the set
of parameters that best describes it, for example via ordinary least squares fitting. The
fitted model can then be used to infer the outcome of a measurement on not yet observed
data points, and its optimal parameters will have an interpretation in accordance with the
derivation of the model. The procedure outlined falls within the definition of parametric
regression and can be viewed as the simplest example among machine learning (ML)
methods. More powerful machine learning algorithms differ from a conventional fitting
procedure inasmuch as they provide a set of rules with which the model itself is generated
from the data. By eliminating the separation between design of the model and parameter
optimisation, this different approach extends the scope of fitting methods so that it becomes
possible to treat problems in which the design of an explicit model is not possible.

The two main categories of machine learning problems are supervised learning and
unsupervised learning [1]. Supervised learning is the task of learning the function describing
a labelled dataset, where for each input data point an output value is provided in the form
of a categorical label, a scalar value or an array. Supervised learning itself comprises
two subcategories: regression and classification. Regression methods are used when the
output data is one or more continuous variables, as for example in the case of traditional
curve fitting. Classification methods are instead used when the output data is one or more
discrete labels, where the task involves drawing decision boundaries among different classes.
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Unsupervised learning, on the contrary, deals with finding structure in datasets without
any preassigned label as in the case of clustering methods. In the following sections we will
review some of the machine learning tools that have been used throughout the work of
this thesis: the graph partitioning method of Chapter 4 will make use of various clustering
(unsupervised learning) techniques, GAP potentials will be Gaussian process regression
models trained on data points sparsified by k–means clustering, and the the ML–augmented
thermodynamic integration method will use Gaussian process regression for Bayesian
hyperparameter optimisation, k–means clustering for training data selection and boosted
trees regression as a ML model.

2.1 Supervised Learning for Regression

Gaussian Process Regression

Gaussian process regression (GP regression or GPR) [2–4] is a nonparametric regression
method for supervised learning. A GP is a stochastic process for which any finite linear
combination of samples follows a multivariate Gaussian distribution. Formally, any dataset
can be expressed in terms of a GP: given a set of N observations y = {y1, . . . , yN} ∈ YN

measured at pointsX = {x1, . . . ,xN} ∈ XN , one can think of it as a finite sample of the
infinite–dimensional vector representing an unknown function y, where y is a Gaussian
process

y ∼ GP (m, k) (2.1)

governed by its mean functionm and its covariance function k. For a finite dataset, then,
the sample will follow a multivariate Gaussian distribution

y ∼ N (m(X), k(X,X)) . (2.2)

Without loss of generality, the mean function can be set to be identically zero [4]. A GP
then becomes entirely defined by its covariance function k, also known as kernel function
or correlation function,

k : X × X → R . (2.3)

The kernel function k determines the correlation between each pair of data points, which
in a Bayesian perspective is equivalent to imposing a prior over the fitting function (i.e., its
smoothness and periodicity). Its choice is crucial to successfully model a dataset by means
of a GP, and its only constraint is to produce a symmetric positive semidefinite kernel
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matrix k(X,X) i.e.,

vT k(X,X)v ≥ 0 ∀v ∈ RN ∀X ∈ XN . (2.4)

In a regression scheme, the aim is to predict the value of an observation ŷt at a point in
input space xt. If we denote k(xt,X) = [k(xt,x1), . . . , k(xt,xN)]

T , we see that the vector�
yT , ŷt

�T must too follow a joint Gaussian distribution
"

y

ŷt

#
∼ N

 
0,

"
k(X,X) k(xt,X)T

k(xt,X) k(xt,xt)

#!
, (2.5)

and the posterior (conditional) probability distribution for ŷt

P (ŷt|(X,y),xt) (2.6)

can be evaluated analytically and is itself a Gaussian distribution:

ŷt ∼ N
�
m(xt), s

2(xt)
�
. (2.7)

The variablesm and s2 in Eq. 2.7 are respectively the mean and variance of the posterior
probability distribution at test point xt. The posterior mean

m(xt) = k (xt,X)T k (X,X)−1 y (2.8)

is the most likely value of the function at x∗ and will be the prediction of our model, whereas
the posterior variance

s2(xt) = k (xt,xt)− k (xt,X) k (X,X)−1 k (xt,X)T (2.9)

is a measure of the uncertainty in our prediction (we must stress here that this derivation
does not depend on the choice of kernel, as the Gaussian distribution properties apply to
all GPs).

A very common choice is the Gaussian kernel (commonly referred as squared exponen-
tial kernel) used in the majority of the GPR applications in this thesis

k(xi,xj) = exp

�
− |xi − xj|2

2σ2
c

�
, (2.10)
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which produces an infinitely differentiable fitting function and sets a decaying correlation
between data points with a correlation length σc. If we now allow the data points to be
corrupted with a zero mean Gaussian noise N (0, σ2

n), our covariance function will become

k(xi,xj) = exp

�
− |xi − xj|2

2σ2
c

�
+ σ2

nδij . (2.11)

The parameters θ = {σc, σn}, also known as hyperparameters, have a fundamental
role in determining the accuracy of GPR predictions. They can be determined a priori in
cases when the noise level on the data and the typical length scale over which the function
is expected to vary significantly. Alternatively, they can be inferred from the data by
maximising the posterior probability of the hyperparameters P (y|X, θ), also known as
likelihood, by applying Bayes’ theorem:

P (y|X, θ) ∝ P (θ|(X,y))P (θ) . (2.12)

Assuming no prior knowledge over the hyperparameters, maximising the log–likelihood
function

logP (y|X, θ) = −1

2
yTk (X,X)−1 y − 1

2
log det k (X,X) + constant (2.13)

will, in principle, give the best estimate for the hyperparameters that can be inferred from
the provided information.
It is interesting to note that the same mathematical result for the posterior mean of a GPR
can be obtained by kernel ridge regression, which requires the same problem to be viewed
from a regularisation perspective [5, 6]. In this view, the fitting function f is assumed to
belong to a reproducing kernel Hilbert space (RKHS)Hk determined by the kernel function,
which is just another way of saying that f will be a linear combination of kernel functions
of different parameters. With this hypothesis, one wishes to minimise the objective function

L(f) = 1

N

NX

i=1

(f(xi)− yi)
2 + σ2

n|f |2k , (2.14)

where the first term is the mean squared error and the second is a Tikhonov regularisation
term [7] whose purpose is to prevent overfitting. The space of functions Hk can be defined
by its reproducing kernel k of Eq. 2.3, and the requirement for a symmetric and positive
definite covariance matrix is translated into the ability to define a proper scalar product
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h·, ·ik, so that the function k

f(x) = hf, k(x, ·)ik , ∀x ∈ X , ∀f ∈ Hk . (2.15)

is unique. Calculating the kernel value between two data points k(xi,xj) corresponds to
evaluating the inner product hφ(xi),φ(xj)i in feature space Hk. Thanks to the kernel trick,
this inner product in a high dimensional space can be performed without ever evaluating
the mapping of the pair of points in feature space, and φ and Hk do not need to be known
explicitly.
The fitting function f(x) is written as a linear combination of kernel functions centred
around each data point

f(x) =
NX

i=1

cik(x,xi) (2.16)

and the regularisation term in Eq. 2.14 will be

|f |2k = h
X

i

ciφ(xi),
X

j

cjφ(xj)i =
NX

i=1

NX

j=1

cicjk(xi,xj) . (2.17)

The minimisation of Eq. 2.14 can then be performed analytically, with the regression
coefficients vector c = (c1, . . . , cN)

T being determined by

c =
�
k(X,X) + σ2

n1
�−1

y , (2.18)

reproducing exactly the solution obtained in Eq. 2.8. In other words, we can see that fitting
a GPR model is equivalent to finding the best linear combination of kernel functions centred
around each data point.

A GPR algorithm is a transparent ML method, where the tuneable hyperparameters can
be interpreted directly from their effect on the covariance between data points, and even
the priors on the model itself (i.e., the functional forms of the kernel) can be tested one
against another by means of Bayesian hypothesis testing. Another reason why it should
be preferred over other ML methods is that the mathematical framework of a covariance
matrix gives access to the analytical derivative of the fitting function, and that a model can
be constructed from a dataset of function values and derivatives – for a detailed treatment
of this topic see Ref. [8]. The main downside of this algorithm is its scalability, as it formally
requires the inversion of a dense covariance matrix of size N ×N , which has a worst–case
scenario scaling of O(N3).
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Regularised Boosted Regression Trees

Gradient boosting regression trees (GBRTs) [9] is a versatile, high performance and scalable
technique that can be used for ML problems of classification, regression and ranking. Its
currently most popular implementation is the XGBoost open source package [10], on which
the overview of this section is based.

The GBRT technique belongs to the class of boosting methods, in which an ensemble of
weak learners {fk}, each of which would have a poor predictive power, is bundled together
to create one strong learner that can achieve an arbitrary high accuracy [11–13]. For an
ensemble model M , the prediction ŷt at point xt is simply the sum of the predictions of
each learner:

ŷt = M(xt) =
KX

k=1

fk(xt) , (2.19)

where in this case the weak learners {fk} are shallow regression trees, also commonly
denoted as CART (Classification and Regression Tree) [14].
Starting from a given a dataset {(x1, y1), (x2, y2), . . . , (xN , yN)}, the target of the training
procedure is to progressively minimise a predefined objective function by adding one new
tree at each fitting iteration. Given a modelM , the objective function L(M) is the sum of
a loss term L(M), which measures the accuracy of the model on the given dataset, and a
regularisation term Ω(M), that prevents overfitting by restraining the model complexity.
The loss function L is the sum of losses on each training set point l(yi, ŷi): a typical choice
of loss function for a regression problem is the sum of squared errors

L(M) =
NX

i=1

l(yi, ŷi) =
NX

i=1

|yi − ŷi|2 . (2.20)

The regularisation term is the sum of complexities of each tree fk. A tree is a function f(x)

f(x) = wq(x) (2.21)

that assigns a score wq(x) to each of its T leaves by means of a set of bisection rules q for a
given input point x. In the XGBoost library, the complexity of a tree f is defined as

Ω(f) = γT +
1

2
λ

TX

j=1

w2
j , (2.22)



2.1 Supervised Learning for Regression 17

where γ and λ are coefficients regulating the cost of the number of leaves of a tree and
their scores respectively; the complexity of a set of trees is trivially the sum of complexities
of each tree. Starting from one tree, at each iteration t of the additive training procedure
the aim is to minimise the objective function

L(t) = L
�
M (t)

�
+ Ω

�
M (t)

�

=
NX

i=1

l(yi, ŷi) +
tX

j=1

Ω(fj)

=
NX

i=1

l

 
yi,

tX

j=1

fj(xi)

!
+

tX

j=1

Ω(fj) .

(2.23)

The variation ∆L(t) of the objective function upon addition of a new tree at step t is then
given by

∆L(t) =
NX

i=1

l
�
yi, ŷ

(t−1)
i + ft(xi)

�
+ γT (t) +

1

2
λ

T (t)X

j=1

�
w

(t)
j

�2

. (2.24)

Let us now expand the loss function in Taylor series around ŷ
(t−1)
i and truncating at the

second order in ft(xi). Denoting its gradient and Hessian as

gi =
∂l (yi, ŷi)

∂ŷi

���
ŷi=ŷ

(t−1)
i

hi =
∂2l (yi, ŷi)

∂ŷ2i

���
ŷi=ŷ

(t−1)
i

(2.25)

we can write

l
�
yi, ŷ

(t−1)
i + ft(xi)

�
' l

�
yi, ŷ

(t−1)
i

�
+ gift(xi) +

1

2
hift(xi)

2 . (2.26)
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Dropping the superscript (t− 1) and (t) for clarity, the objective function variation can be
approximated with

∆L '
NX

i=1

�
gift(xi) +

1

2
hift(xi)

2

�
+ γT +

1

2
λ

TX

j=1

w2
j

=
TX

j=1


wj


X

i∈Ij
gi


+

1

2
w2

j


λ+

X

i∈Ij
hi




+ γT

=
TX

j=1

�
wjGj +

1

2
w2

j (λ+Hj)

�
+ γT ,

(2.27)

where we denote as Ij = {i | q(xi) = j} the instance set of node j – that is, the set of data
points indices that get assigned to the leaf j of the tree – added at the current step; {Gj}
and {Hj} are the summations of gradients and Hessians on each leaf. For a given new tree
structure q(x), minimising Eq. 2.27 yields the optimal leaves scores

w∗
j = −Gj/(λ+Hj) (2.28)

and the corresponding gain in objective function

L∗ = −1

2

TX

j=1

G2
j/ (λ+Hj) + γT (2.29)

The construction of a tree is performed in a greedy bottom–up approach one level at a time,
where each leaf node belonging to the current level produces two new leaves so that the
binary split produces the highest gain in objective function. Specifically, given one leaf
node of instance set I splitting into left (L) and right (R) nodes of instance sets IR and IL

(IR ∪ IL = I), the objective function gain is

∆Lsplit =
1

2

" �P
i∈IL gi

�2

λ+
P

i∈IL hi

+

�P
i∈IR gi

�2

λ+
P

i∈IL hi

−
�P

i∈I gi
�2

λ+
P

i∈I hi

#
− γ . (2.30)

Equation 2.30 gives a way to evaluate the training gain for some given split points of the
new tree structure while it is built.
Engineering the algorithm that produces the candidate split points that best suits the dataset
and computing architecture available is a field of open research; for a thorough overview
of the available methods we refer to Ref. [15].
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To further prevent overfitting, the XGBoost library implements two more crucial measures.
The first is shrinkage, first proposed by Friedman [16], which consists of rescaling the
weights of a newly added tree at each step by a factor η. The second is feature subsampling,
which consists of restricting the search of the optimal leaf split during the tree building
routine to a random subset of data features.

The resulting method is very stable against overfitting and is able to discern complex
patterns in data with an effectiveness that in some applications is comparable to deep neural
networks, while also scaling linearly with the number of training data points [17, 18]. A
drawback of this kind of models is the large number of hyperparameters that need to be
tuned to obtain an optimal accuracy. Another possible disadvantage of GBRTs in some
applications is that the time complexity of the prediction operation scales linearly with
the complexity of the model, since in ensemble learning paradigm the prediction on a test
point involves gathering the predictions of each of the trees it is composed of.
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2.2 Unsupervised Learning

The goal of unsupervised learning is, in broad terms, to build a representation for an unla-
belled datasetX = {x1,x2, . . . ,xN} by finding structure and patterns within it. Clustering
methods belong to this class. In a clustering problem, one wishes to divide a datasetX into
a (possibly not predefined) number k of subsets (also named clusters)

{S1, . . . ,Sk} ,
[

i

Si = X ,
\

i

Si = ∅ (2.31)

so that, upon a definition of similarity measure, all elements belonging to a subset are most
similar to each other than to any other element of another subset. This statement can be
expressed in terms of a multi–objective optimisation problem, where one wants to minimise
the inter–cluster distance and maximise the intra–cluster distance for all clusters.

K-Means Clustering

Of the variety of algorithms that have been devised to address the clustering problem, one
of the simplest, fastest and thus most widely used is the so called k–means method [19].
The method requires the desired number of clusters K as input and utilises an iterative
algorithm that minimises the inertia of the clusters defined as

KX

i=1

X

xj∈Si

|xj − µi|2 , (2.32)

where µi is the centre of cluster Si:

µi =
1

|Si|
X

xj∈Si

xj . (2.33)

In the k–medoid variant of the method, the centre of the cluster is substituted with the
data point closest to it. The most basic implementation of k–means is known as Lloyd’s
algorithm [20].
The starting point is an initial random guess for the cluster centres, and each data point is
assigned to its closest centre. At each iteration, then, the centres are evaluated again and the
data points labels are updated accordingly until convergence: the algorithm is guaranteed
to converge to a local minimum in a finite number of steps, but is typically terminated
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within a predefined maximum number of steps. A more advanced algorithm [21] allows a
much faster convergence by carefully seeding the initial guesses for the cluster centres.

Regardless of the specific implementation, k–means is typically used when data points
are proper vectors x ∈ RM that lie in an Euclidean space, and provides quick solutions
for large data sets and a medium number (tens) of clusters. Since the algorithm minimises
inertia, the resulting clusters are bound to be convex and of relatively similar size by
construction.

Spectral Clustering

Another popular method is the spectral partitioning algorithm, which is instead based on
graph theory concepts. Let G(V,E) be an undirected simple graph constituted by a set of
N nodes or vertices V interconnected by a set of pairwise links named edges E determined
by the weight matrix W:

W = (wij)i,j=1,...,N , wij = wji ≥ 0. (2.34)

The matrix W determines the connectivity of the graph as it has nonzero entries when an
edge connect two nodes; in another perspective, it can be viewed as a measure of similarity
between pairs of nodes. The simplest form of weight matrix is the adjacency matrix, whose
entries are either 0 or 1 depending on whether two nodes are first neighbours and thus
form an edge:

wij =




1 if i and j are neighbours

0 otherwise
(2.35)

When the nodes in a graph have Cartesian coordinates, a popular choice of weight matrix
definition is to use a Gaussian kernel distance between points

wij = exp

�
− |xi − xj|2

2σ2

�
; (2.36)

in this case the weight matrix is equivalent to the covariance matrix encountered in
Gaussian process regression. Let us now define the degree matrix as a diagonal matrix
D = (dij)i,j=1...,N where

dii =
NX

j=1

wij . (2.37)
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The unnormalised Laplacian matrix, the discrete analogue of the Laplacian operator in
physics, is defined as

L = D−W , (2.38)

is symmetric and positive semi–definite, and has N real non–negative eigenvalues. It can
be shown that the lowest eigenvalue is always 0 and its multiplicity is equal to the number
of connected components of the graph. In a connected graph the zero eigenvalue corre-
sponds to the constant vector (1, . . . , 1)T ∈ RN ; in a disconnected graph of k connected
components {S1, . . . ,Sk}, the eigenvectors of the eigenvalue 0 correspond to the indicator
vectors of each connected component {vS1 , . . . ,vSk

} defined as

vSi,j =




1 if j ∈ Si

0 otherwise .
(2.39)

The main concepts of spectral clustering are based around two main papers, both dated 1973:
Donath and Hoffman [22] proposed partitioning a graph based on the eigenvectors of its
adjacencymatrix; simultaneously, Fiedler [23, 24] proved that the eigenvector corresponding
to the smallest nonzero eigenvalue of the Laplacian matrix (from then on named Fiedler’s
vector) can be used to bisect a connected graph. From these initial ideas a variety of
algorithms have been devised, and with them several definitions of Laplacian matrix – for
a detailed overview of the different implementations see Ref. [25].

Perhaps the simplest algorithm is the unnormalised spectral clustering algorithm, which
works as following:

• Given a unnormalised LaplacianmatrixL, compute its lowest k eigenvectors {v1, . . . ,vk}

• DefineV = (v1, . . . ,vk) ∈ RN×k, and yi ∈ Rk as the i–th row ofV

• Apply a clustering algorithm such as k–means to the transformed data points {y1, . . . ,yN}
and obtain the k subgraphs {S1, . . . ,Sk}.

The main peculiarity of spectral clustering is the freedom to pick any similarity measure
for the data points to construct the Laplacian matrix. Because of this flexibility, this method
can be advantageous when the geometry of the graph is non-compact and when data points
do not lie in an Euclidean space. Since the method requires the evaluation of the whole
weight matrix (which can be confused with a covariance matrix) and the evaluation of the
lowest k eigenvectors, it is comparatively more expensive than the k–means algorithm and
it can only be applied to relatively small datasets and small number of clusters.



Chapter 3

Atomistic Simulations

3.1 Electronic Structure Calculations

Quantum Mechanics (QM) is the most accurate theory to describe matter at the atomic
level. It postulates that any physical system is entirely described by the wavefunction Ψ

of its fundamental particles. The wavefunction must obey the many–body Schrödinger
equation, which in its time–independent form states that

Ĥ|Ψi = E|Ψi (3.1)

where Ĥ is the Hamiltonian operator of the system and E is the groundstate eigenvalue of
the total energy. If the multi–body equation describes a system of N interacting electrons
with positions {ri}i=1,...,N and M nuclei at positions {Rα}α=1,...,M of , the non–relativistic
Hamiltonian operator is

Ĥ = T̂e + T̂n + V̂ee + V̂nn + V̂en

= −1

2

NX

i=1

~2

me

∇2
i −

1

2

MX

α=1

~2

mα

∇2
α+

+
NX

i<j

e2

|ri − rj|
+

MX

α<β

ZαZβ
e2

|Rα −Rβ|
−

NX

i=1

MX

α=1

Zα
e2

|Rα − ri|

(3.2)

where me and e are the electron rest mass and charge, mα and Zα are the atomic mass and
number of the αth nucleus. The first two terms of Eq. 3.2 represent the kinetic energy of
electrons and nuclei, the second two terms are the electron-electron and nucleus-nucleus
electrostatic repulsion terms, and the last one is the electrostatic attraction between nuclei
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and electrons. Solving Eq. 3.1 provides the wavefunction Ψ from which any observable can
be computed, but for any practical case it does not have an analytic solution. Its solution
can then be found numerically by considering that the groundstate energy must satisfy the
variational principle

E = min
Ψ

hΨ|Ĥ|Ψi . (3.3)

In order for the method to be computationally viable, several approximations and methods
have been developed.

Born–Oppenheimer Approximation

The first simplification, ubiquitous in most quantum mechanical computer simulations, is
known as the Born–Oppenheimer approximation or adiabatic approximation [26]. As the
latter name suggest, one assumes that nuclear and electronic motions are decoupled and do
not exchange energy. This is because the mass ratio between nuclei and electrons is such
that their motion is on two different time scales, with the electrons moving as if the nuclei
were fixed and thus always falling into their lowest energy eigenstate.

From the point of view of nuclei, for each nuclear configuration electrons generate a
charge distribution given by the groundstate of the electron wavefunction. In other words,
the Born-Oppenheimer approximation states that the total wavefunction can be factorised
in two parts, a functionΦ of the electron coordinates at fixed nuclei positions and a function
Ψ of the nuclei positions

Ψ(R, r) = Φ(r|R)× χ(R) . (3.4)

Leaving Ψ out, the electronic Schrödinger equation becomes

(T̂e + V̂ee + V̂en)Φ(r|R) = ε(R)Φ(r|R) . (3.5)

Here, V̂en acts as a one-body external potential on the electrons moving around fixed
nuclei. The decoupled motion of the nuclei, instead, is governed by the potential energy
surface ε(R). Very often, in atomistic simulations nuclei are considered as classical particles
obeying Newton’s equations of motion, so the problem becomes solving the electronic
Schrödinger equation in Eq. 3.5.
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Density functional Theory

Density Functional Theory (DFT) is a theory proposed by Hohenberg, Kohn and Sham
[27, 28] which allows any ground state physical variable of a system of interacting electrons
to be unambiguously expressed in terms of electron density. This greatly reduces the
dimensionality of the many-body problem expressed in Eq. 3.5 to a problem of one effective
particle, the electron density, defined as

n(r) =

Z
|Φ(r, r2, . . . , rN)|2 dr2dr3 . . . drN . (3.6)

The first Hohenberg-Kohn theorem states that, given a system of N interacting electrons
immersed in an external potential, the ground state electron densityn0(r) uniquely identifies
its Hamiltonian, therefore every observable of the system can be expressed as a functional
of n0(r).
The second Hohenberg–Kohn theorem states that the global minimum of the total energy,
here E0, must be the ground state of the system, so the problem can be expressed as a
minimisation of the energy functional with respect to the electron density

E0 = min
{n}

E[n(r)] (3.7)

subject to the physical constraints

n(r) ≥ 0 ∀ r ∈ RN

Z
drn(r) = N .

(3.8)

From the electronic Schrödinger equation in Eq. 3.5 we see that the total energy func-
tional, called Kohn-Sham energy functional, is

E[n] = Te[n] + Eext[n] + Eee[n] . (3.9)

It is composed of a kinetic term Te, an interaction with the external potential Eext, and
an electron–electron interaction Eee. While the external potential contribution is trivially
expressed as

Eext[n] =

Z
drVext(r)n(r) , (3.10)

the two other contributions are unknown. To make the method usable, Kohn and Sham
proposed to consider a fictitious system of N non–interacting electrons sharing the same
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groundstate density n0 of the real system. If we expand the wavefunction of the non-
–interacting system on an orthonormal and antisymmetric basis set {|φii}i=1,...,N , the
electron density is

n(r) =
NX

i=1

|φi(r)|2 , (3.11)

and its kinetic energy, which is an approximation of the one of the real interacting system,
can be expressed exactly:

T ni[n] = −1

2

NX

i=1

hφi|∇2
i |φii . (3.12)

The electron–electron interaction Eee, on the other hand, can be further expanded into
two parts. The first and often dominant contribution is the classical Coulomb energy, also
known as Hartree energy

EH [n(r)] =
1

2

Z
dr1dr2

n(r1)n(r2)

|r1 − r2|
; (3.13)

the second contribution is the exchange–correlation energy EXC , which contains all multi-
–body interactions and the error arising from approximating the kinetic energy term.
Rewriting the total energy functional we obtain

E = T ni + Eext + EH + EXC = T ni + EKS , (3.14)

where EKS is the so called Kohn–Sham energy functional.
By applying the variational principle in Eq. 3.7 to the Eq. 3.14 and considering a charge
density arising from a wavefunction projected onto the basis set {|φii}, the electronic
groundstate can be found by solving the system of N Kohn–Sham equations

�
−1

2
∇2

i + VKS

�
φi = εiφi , (3.15)

where VKS is the functional derivative of the energy functional:

VKS(r) =
δEKS

δn(r)
. (3.16)

Solving the Schrödinger equation for N interacting electrons has been simplified into the
problem of minimising the Kohn-Sham energy functional of N non-interacting electrons
with respect to each single particle wavefunction.
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The solution of the system is performed in an iterative way: starting from an initial
guess for the density, one calculates the corresponding Kohn–Sham potential arising from
the charge distribution. The charge density is then updated and the algorithm loops until
self–consistence is achieved, i.e., until the charge density is consistent with the field.

In DFT, the exchange–correlation term in the equations remains the only unknown
functional of n, and, over the years, several approximations have been implemented to
estimate it and minimise the approximation errors. The simplest and still widely used
approximation is the so called Local Density Approximation (LDA), in which the exchange
and correlation energies are approximated with those calculated with highly accurate
Quantum Monte Carlo methods for a uniform electron gas at different densities. Being
parametrised on constant densities only, LDA is expected to be accurate enough when
the electronic density varies slowly, e.g., in solid state systems. Situations when density
gradients are large (e.g., in the case of molecular systems), instead require the use of
a more complex family of functionals known as Generalized Gradient Approximation
(GGA) functionals which are parametrised as a function of both the electronic density and
its gradient. Among the latter category, the Perdew–Burke–Ernzerhof (PBE) exchange-
–correlation functionals [29] are often considered the most appropriate choice for the
electronic structure calculation of solids.

Hellmann–Feynman Theorem

Let us consider a system with a Hamiltonian H(λ) that depends on a parameter λ. The
Hellmann–Feynman theorem [30] states that the derivative of the total energy with respect
to the parameter is simply the expectation value of the derivative of the Hamiltonian with
respect to that same parameter. Namely:

dEλ

dλ
= hΨλ|

dĤ

dλ
|Ψλi . (3.17)

In atomistic simulations, this theorem allows us to directly compute the quantummechanical
forces acting on nuclei without resorting to finite differences approximate methods. Using
the position Rj of a nucleus j as parameter and differentiating the total energy expressed
in Eq. 3.14 calculated for the groundstate wavefunction solution of Eq. 3.15, the force fj
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acting on j is:

fj = − ∂E

∂Rj

= −∂EKS

∂Rj

= −hΦ|∂ĤKS

∂Rj

|Φi

= −
NX

i=1

hφi|
∂ĤKS

∂Rj

|φii .

(3.18)

3.2 Classical Interatomic Potentials

Despite the simplifications introduced by DFT and other ab initio methods, calculating
observables at quantum mechanical accuracy is in many cases still too computationally
expensive. If the aim of a simulation is observing the qualitative behaviour of a system or if
no exotic phenomena are expected to occur (for instance, the evaluation of bulk properties
of a material), being able to evaluate forces and energies at the highest achievable accuracy
for any atomic configuration in the phase space of the system is probably not necessary.
It is then conceivable to approximate the ‘correct’ Born—Oppenheimer potential energy
surface given by electronic structure calculations by making assumptions regarding the
interaction between atoms and restricting it to an analytical function. Such functions are
known as Interatomic Potentials (IPs).

An interatomic potential consists of an analytic and differentiable function of the atomic
coordinates, whose form is often designed according to physical considerations and intuition.
Its parameters are fitted to reproduce some target observables (e.g., lattice constants, elastic
constants, etc.) as accurately as possible, the targets being experimental data or precise
quantum mechanical simulations.
Simplification, though, comes at the cost of transferability: an IP should only be used to
evaluate the material and the type of configurations for which it has been designed and
fitted. This lack of transferability is the fundamental driving force for the proliferation
of a wide range of IPs, all of which share some basic building blocks which we will now
describe.

The total energy of a system Etot can be expressed as the sum of a short–range compo-
nent ESR associated with covalent interaction and a long–range component ELR associated
with electrostatic and van der Waals interaction:

Etot = ESR + ELR . (3.19)
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The short–range part is an expansion of a multi–body interaction truncated at the nth

term: n = 2 if only pair interactions are included, n = 3 when also comprising bonding
angle terms and n = 4 when dihedral angles terms are added as well. Because this type
of interaction can be mainly attributed to Pauli electron repulsion at small distances and
Coulomb attraction between neighbouring screened nuclei, it quickly decays with the
distance and hence the name.
The long–range part, instead, is the electrostatic energy of the multipole configuration in
the system, and inherently decays much more slowly with the distance. Purely covalent
crystals (such as silicon) and metals can be appropriately modelled by considering short–
range contributions only, although for different reasons. Covalent crystals are characterised
by very localised electrons and charge neutral atomic environments, thus no electrostatic
effects are expected. Conversely, in metallic systems the electrostatic interaction between
ions is completely screened by the conduction electrons. In oxide materials, instead, the
concurrence of local charge unbalance and localised electrons results in interactions for
which the electrostatic component is crucial.

Tangney–Scandolo Potential

The Tangney–Scandolo iteratomic potential (TS) has been first proposed in 2002 [31] for the
simulation of silica, and it has been optimised and extended for its use on different oxides
since then [32, 33]. In oxide systems, a perturbation of the positions induces a deformation
of the electron density around oxygen ions. This is an essential phenomenological feature
to understand the atomic interactions and can be effectively modelled by dipoles placed at
each oxygen site. Upon this consideration, the TS potential is composed of a short–range
pair potential and a long–range electrostatic interaction between all charges and oxygen
dipoles:

Etot = USR + U el . (3.20)

The short–range interaction is described by a Morse–Stretch two–body potential, which
for each pair of atoms i and j has the form

USR
ij = Dij

�
exp

�
γij

r0ij − rij

r0ij

�
− 2 exp

�
γij

r0ij − rij

2r0ij

��
. (3.21)

Here, r0ij , Dij and γij are parameters of the model that depend on the species of atoms i
and j, and control the equilibrium bondlength, the dissociation energy and the width of
the potential well respectively. All pairs of atoms whose distance is larger than a threshold
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rMS
cutoff (18 a.u.' 9.5 Å in parametrisations for SiO2) are considered as non–interacting, thus
yielding a sparse interaction matrix.
If we truncate the electric multipole expansion at dipole order, the energy contribution
given by electrostatic interaction is, according to the superposition principle, the sum of all
pairwise interactions (charge–charge, charge–dipole and dipole–dipole) plus an additional
term representing the energy necessary to polarise a dipole:

U el = U el
pair + Upol

Upol =
X

i

|pi|2
2αi

U el
pair =

1

2

X

i

X

j 6=i

�
qiqj
rij

+
1

r3ij
(qi pi · rij − qj pj · rij)+

+
1

r3ij

�
pi · pj −

3

r2ij
(pi · rij) (pj · rij)

��
.

(3.22)

The charges qi and polarisabilities αi of each atomic species i are the parameters of this
model, where αO is nonzero in all parametrisations.
According to Madden et al. [34], the dipole moments pi appearing in the above equations
are induced not only by the point values of electric field and its gradient due to the charges
and dipoles of the other ions, but also by the confining effect on the electrons around the
oxygen ions of the neighbouring ions that varies according to the local distortion of the
crystal structure. This short–range correction is given by

pSR
i = αi

X

j 6=i

qi
rij
r3ij

gij(rij) , (3.23)

where

gij(rij) = cij e
−bijrij

4X

k

(bijrij)
k

k!
. (3.24)

The coefficients cij and bij are the species–dependent parameters of the model, and for an
adequate parametrisation it can be shown that the summation of Eq. 3.23 can be truncated
after the second neighbours.

The dipolemoments {pi} of the oxygen ions are obtained by solving until self–consistency
the system of equations

p
(n)
i = αiE(ri; {p(n−1)

j }j 6=i, {rj}j 6=i) + pSR
i , (3.25)
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where for each ion i the dipole moment at iteration n depends on the electric field E(ri),
which in turn is determined by the charges and dipoles of all other ions at iteration n− 1.
In periodic systems, the typical method to obtain the full electrostatic energy U el is to
evaluate the sum of all pairwise contributions by means of the Ewald summation scheme,
which is computationally expensive and poses scalability issues for large systems.
A recent advance [35] has instead proposed a method to make the electrostatic interaction
short–ranged as well, thus achieving linear scaling. Namely, the electrostatic interaction
between each couple of ions i and j summing up to U el

pair in Eq. 3.22 is multiplied by a
Yukawa screening function

fY (rij) = e−βrijfc(rij) , (3.26)

where β is the inverse of the typical length scale and fc is a simple cutoff function whose
requirements are to be smooth, to be zero beyond a certain cutoff length rc and to have zero
derivative at rc. This modification effectively switches off interactions beyond a distance
rc ∼ 20 a.u. ' 10.5 Å, and is physically justified by noticing that, contrary to a completely
arbitrary charge distribution, in solid state materials the electrostatic interaction between
ions is largely screened by the electron density in between them, and very long–range
contributions only play a negligible role.

3.3 Machine Learning Potentials

Over the last decade, a new class of atomic interaction models built upon machine learning
methods has been introduced. The common idea shared by all potentials of this class is the
following: instead of restricting the functional form of the atomic interaction a priori and
fitting its parameters to best reproduce a dataset of accurate QM calculations, leading to the
already mentioned transferability issue of classical IPs, we now wish to lift this constraint
and let the physical data itself choose the generating model that best describes it. With
a more open choice of fitting model, the aim is to extend its range of applicability and to
reproduce quantum mechanical data more accurately.
As extensively argued in Bartók et al. [36], the dominant factor that determines the quality
of a model is the representation of the chemical environment rather than the specific
machine learning method deployed. In other words, transforming a raw input data point
representing an atomic configuration (e.g., Cartesian coordinates, charges, dipoles) into
features that unequivocally and efficiently describe it is the key step to make a ML algorithm
able to accurately fit it.
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The range of proposed methods and applications is wide: notable examples are Gaussian
process regression to fit a locally–defined atomic energy as a function of the bispectrum
or similarly derived symmetry–invariant properties of the Cartesian coordinates [36, 37],
neural networks to fit a locally–defined atomic energy as a function of some symmetry
functions of the local atomic environment [38], direct Gaussian process regression fitting
of the three dimensional atomic force acting on an atom from a set of internally defined
vectors [39], kernel ridge regression fitting of atomisation energies and other molecular
properties of small organic molecules as a function of the (sorted) eigenvalues of their
Coulomb matrix [40]. We will now revise a method that is relevant for this thesis.

Gaussian Approximation Potentials

The aim of a Gaussian Approximation Potential (GAP) [37] is to automatically generate an
interatomic potential by fitting a data set of ab initio configurations with a machine learning
model. The functional form is not restricted as in the case of standard force fields, and
only some properties such as smoothness and periodicity are defined by the kernel choice.
Therefore, one could in principle achieve an arbitrary precision provided that the learning
set contains enough information. By constraining ourselves to model the short–range
component of the complete interaction, the basic assumption is to express the potential
energy of a system as a sum of atomic energies

USR =
atomsX

i

ε (qi) =
atomsX

i

εi , (3.27)

where each qi is some feature vector describing the local environment around atom i. The
atomic energies εi are an abstraction rather than physical quantities, and are obtained
by processing total energies and atomic forces from a dataset of ab initio calculations: a
detailed derivation of how to use these data sources in a GPR scheme, here omitted because
it is beyond the scope of this thesis, can be found in Ref. [41] and in the supplemental
material of Ref. [37].

This data is then fitted by a Gaussian Process model, which for any given system
configuration {q∗

i } will predict the expected value of each atomic energy ε (q∗
i ) summing

up to the predicted total energy USR ({q∗
i }) using the standard formalism of kernel methods

ε(q∗
i ) =

MX

j=1

αjk(q
∗
i ,qj) , (3.28)
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where the index j runs over the number of training set configurations M , αj and qj are
respectively the regression coefficient and the descriptor for the training set configuration
j, and k is a Gaussian kernel function.

The fundamental components that determine the success or failure of any machine
learning method is designing an appropriate descriptor and defining a suitable metric. All
variants of the GAP algorithm share the same key idea: building a representation of an
atomic neighbourhood that is meaningful to model εi involves creating a descriptor that is
intrinsically invariant with respect to the same symmetry operations of an energy quantity:
rigid translation, rotation and permutation of same–species atoms. An energy quantity is
also invariant with respect to reflection operations, but will be omitted in this section as
the method described does not imply it by design. We will now sketch the construction
of a descriptor, or rather a kernel function directly, for the latest development of GAP
descriptors named Smooth Overlap of Atomic Positions (SOAP). Let us first express a local
environment around an atom i as a sum of Gaussian functions of some width σblur centred
on atomic positions

ρi(r) =
X

j ∈ atoms

exp

� |r− rij|2
2σ2

blur

�
fcut(rij) , (3.29)

where the sum is truncated by the cutoff function fcut at a given length scale rcut specific
of the system type. The exact form of this cutoff function is rather arbitrary, as its only
constraint is not to introduce artificial discontinuities in the interaction. Desirable properties
are then to smoothly decrease as the cutoff distance is approached and to be 0 and have 0
derivative at rcut. In the latest version of GAP its definition is

fcut(r) =





1 if r ≤ rcut − d

1
2
(1 + cos (π(r − rcut + d)/d)) if rcut − d < r < rcut

0 if r ≥ rcut

, (3.30)

where d is a transition width typically set to 1Å. If we expand the angular part of the
atomic density function ρ in Eq. 3.29 onto a basis set of spherical harmonics Ylm truncated
at some angular momentum index lmax, we obtain

ρ(r) =
X

j ∈ atoms

lmaxX

l=0

lX

m=−l

cjlm(r)Ylm(Ω) (3.31)



3.3 Machine Learning Potentials 34

where the factors cjlm(r) are rotationally invariant and only depend on the radial coordi-
nate and Ω is a solid angle. The radial part of the atomic density, encoded in the coeffi-
cients cjlm(r), is itself projected onto an orthonormal basis set of nmax Gaussian functions
{g1(r), . . . , gnmax(r)}

X

j ∈ atoms

cjlm(r) =
X

j ∈ atoms

nmaxX

n=1

cjnlmgn(r) =
nmaxX

n=1

cnlmgn(r) , (3.32)

so that the summation over the atom index in Eq. 3.31 remains manageable for neighbour-
hoods with a large number of atoms:

ρ(r) =
nmaxX

n=1

lmaxX

l=0

lX

m=−l

cnlmgn(r)Ylm(Ω) . (3.33)

In the SOAP method, the evaluation of feature vectors is bypassed completely by
designing a similarity measure between pairs of local environments which directly acts as
a kernel function over the raw density functions. Given two densities ρ1 and ρ2, we first
define a similarity between them that satisfies permutation invariance:

S12 = S(ρ1, ρ2) =

Z
dr ρ1(r)ρ2(r) . (3.34)

If we now integrate the above term over the space of rigid rotations, we can obtain a
rotationally invariant similarity kernel:

k(ρ1, ρ2) =

Z
dR̂ |S(ρ1, ρ2)|n

=

Z
dR̂

����
Z

dr ρ1(r)ρ2(R̂r)

����
n

,

(3.35)

where n is a tuneable integer exponent. The integral in Eq. 3.34 can be expressed as a
function of the rotation matrix as following:

S12(R̂) =

Z
dr ρ∗1(r)ρ2(R̂r) =

Z
dr ρ∗1(r)R̂ρ2(r) . (3.36)
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A spherical harmonic Ylm(Ω) = |lmi transforms under rotation as

R̂(Ω)|lmi =
X

l0m0

|l0m0i hl0m0|R̂(Ω)|lmi

=
X

m0

Dl
m0m |lm0i ,

(3.37)

whereDl
m0m is a member of theWigner D-matrices which form an irreducible representation

of the solid body rigid rotations group SO(3). Remembering the orthogonality properties of
the basis sets used, S12(R̂) can be evaluated analytically

S12(R̂) =

=

Z
dr dΩ

" X
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(3.38)

having defined
I lmm0(ρ1, ρ2) =

X

n

c
(1) ∗
nlm c

(2)
nl0m0 . (3.39)
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For a typical choice of SOAP exponent n = 2, thanks to the orthonormality of the Wigner
D–matrices the expression in Eq. 3.35 has the analytic form

k(ρ1, ρ2) =

Z
dR̂

�
S12(R̂)

�∗
S12(R̂)

=

Z
dR̂

X

lmm0λµµ0

�
I lmm0(ρ1, ρ2)D

l
mm0(R̂)

�∗
Iλµµ0(ρ1, ρ2)D

λ
µµ0(R̂)

=
X

lmm0λµµ0

�
I lmm0(ρ1, ρ2)

�∗
Iλµµ0(ρ1, ρ2)

Z
dR̂Dl

mm0(R̂)Dλ
µµ0(R̂)

=
X

lmm0λµµ0

�
I lmm0(ρ1, ρ2)

�∗
Iλµµ0(ρ1, ρ2)δlλδmµδm0µ0

=
X

lmm0

�
I lmm0(ρ1, ρ2)

�∗
I lmm0(ρ1, ρ2) .

(3.40)

and the ‘SOAP kernel’ is defined as

K(ρ1, ρ2) =

 
k(ρ1, ρ2)p

k(ρ1, ρ1) k(ρ2, ρ2)

!ζ

, ζ ∈ N+ , (3.41)

where ζ is an additional degree of freedom of the model that, since 0 ≤ K(ρ1, ρ2) ≤
1 ∀(ρ1, ρ2), allows the covariance matrix elements to be sharpened and thus increase the
dissimilarity measure between configurations – it can be thought of having a similar effect
of the (reciprocal of) σblur parameter on whole configurations rather than single atoms.
The function K of Eq. 3.41 is the kernel choice in a Gaussian Process regression scheme,
being a valid kernel function and satisfying all the properties that are desirable to measure
differences in local atomic environments [36]:

• It is invariant over rigid rotations and permutations.

• The extension to multi–species systems is straightforward: in a system with more
than one type of atoms, one ρ is defined for each species, with the precaution of then
applying the rotational integral in Equation 3.35 to all at the same time.

• It is differentiable – necessary condition of a potential whose purpose is to evaluate
forces and stresses.

• It is complete, which means that two distinct configurations always have a nonzero
distance.

• It is smooth with respect to a variation of the Cartesian coordinates.
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With the addition of a long–range interaction, GAP potentials using SOAP kernels are used
in this thesis to evaluate bulk properties of the two main polymorphs of TiO2.

3.4 Molecular Dynamics

Molecular dynamics (MD) is the general term describing a set of methods for evolving in
time a system of atoms in a computer simulation. In these techniques nuclei are treated as
classical particles obeying Newton’s laws of motion, and move according to forces generated
by a given interaction model such as the ones described in the previous section. The time
integration of the second law of dynamics is performed through numerical methods by
discretising time in intervals – ‘timesteps’ – of length∆t. The dynamics starts from an initial
set of positions and velocities and is propagated in time by finite differences algorithms;
the so called Velocity Verlet algorithm [42] is among the most commonly used, providing a
precision of order o(∆t4) for both atomic positions and velocities:

r(t+∆t) = r(t) + ṙ(t)∆t+
1

2
r̈(t)∆t2

ṙ(t+∆t/2) = ṙ(t) +
1

2
r̈(t)∆t

r̈(t+∆t) = −f [r(t+∆t)]

m

ṙ(t+∆t) = ṙ(t+∆t/2) +
1

2
r̈(t+∆t)∆t .

(3.42)

An isolated system evolving according to a fixed Hamiltonian is a microcanonical ensemble,
and as such is required to conserve its total energy: this gives a rationale for choosing the
timestep, which has to be small enough to guarantee the conservation of energy. Often, MD
simulations have to be performed in a canonical ensemble to study properties of a system
at a fixed temperature T . To do so, the effect of an external thermal bath is simulated by
the presence of a thermostat.

Nosé–Hoover Thermostat

The Nosé–Hoover thermostat [43, 44] is designed to simulate a canonical distribution, in
which the heat bath is simulated by adding one fictitious degree of freedom of mass Q to
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the system. The net effect is a viscous damping of the atomic motion

mir̈i = fi − ξmiṙi , (3.43)

where the friction coefficient ξ evolves in time according to

ξ̇ =
1

Q

 
NX

i=1

1

2
miṙ

2
i −

3N + 1

2
kBT

!
. (3.44)

The choice of the parameter Q is critical as it controls the typical oscillation period of
temperature, whose fluctuations can be difficult to suppress. A limitation of this thermostat
is that it is not ergodic for small or stiff systems, for which the solution is to create a chain
of thermostats [45].

Langevin Thermostat

The Langevin thermostat is a popular choice for canonical ensemble simulations and has
been used in all of the constant–temperature simulations presented in this thesis. It simulates
the heat exchange of the atomistic system with a thermal bath by means of additional
atomic forces, one mimicking a viscous dissipation in a heat bath and the other a random
force representing collisions with fictitious particles [46]. The total force experienced by a
particle is then

fi = −∇iU − γṙi + f
(r)
i , (3.45)

where γ is a viscosity coefficient controlling the damping of atomic motion and f
(r)
i is a

random force drawn from a Gaussian distribution

f
(r)
i ∼ N

�
0,

2miγkBT

∆t

�
. (3.46)

The parameter γ controls the typical timescale τ = 1/γ at which the thermostat operates.
Too small values give vanishing thermostat forces that produce a deterministic thermostat
that is non–ergodic; for too large values, instead, the thermostat forces are predominant
and trajectories become Brownian–like that are not informative of the time evolution of
the system.
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3.5 Structural Optimisation

Given an atomistic system, one of the most common tasks to perform is to find its equilib-
rium structure, possibly subject to a set of constraints, corresponding to the configuration
of minimum energy. Structural optimisation can be limited to finding the optimal Cartesian
coordinates of atoms and is commonly known as geometry optimisation, or to finding the
optimal unit cell parameters of a periodic system, in which case it is called cell optimi-
sation, or a combination of the two. In the case of geometry optimisation (e.g., isolated
molecules and aperiodic structures, or periodic structures with predefined unit cell shape
and dimensions), the target function to minimise is the potential energy as a function of
the coordinates; in the case of cell optimisation (e.g., for crystalline structures of given
geometry), instead, the potential energy is minimised as a function of the lattice parameters
by monitoring stresses acting on the unit cell. In all cases, the task is finding the local
minimum of the potential function as a function of the considered variables. Of the several
algorithms that have been proposed to approach this ubiquitous problem, we will now
review the most relevant for this thesis.

Conjugate Gradients

A commonly used technique in all minimisation problems is the conjugate gradients (CG)
method. It is an iterative method that makes use of the gradient of the target variable, here
the potential energy, by at each step displacing the atomic positionsR along a direction
conjugate to the gradient vector with respect to the previous move. The update step of the
coordinates is thus given by

Rn+1 = Rn − αn (∇U(Rn))⊥ , (3.47)

where the ⊥ symbol represents the conjugation operation followed by normalisation, and
αn is the step size at step n. The convergence of the iterative algorithm is typically achieved
when the maximum force component acting on an atom is smaller than a threshold. This
method is suitable for finding the global minimum of PES that do not present local minima,
and is stable and applicable to large systems as it only requires the evaluation of first
derivatives of the potential energy.
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Fast Inertial Relaxation Engine

The Fast Inertial Relaxation Engine (FIRE) algorithm [47] is an extension of a damped
molecular dynamics method with an adaptive timestep. The system is modelled as a
fictitious particle of massm in 3N dimensions following the equation of motion

V̇(t) =
F(t)

m
− γ(t) |V(t)|

�
V̂(t)− F̂(t)

�
, (3.48)

where the second term is a friction term that makes the particle accelerate in the downhill
direction with an inertial component in the direction of the current velocity. Velocities are
zeroed whenever an uphill motion is detected, and the timestep of the MD integration is
automatically adapted within a range to speed up the convergence. The FIRE method has
been proven to be very effective in efficiently optimising atomistic structures, and often
requires far fewer steps than CG optimisation while still not requiring computationally
demanding Hessian evaluations.

Broyden–Fletcher–Goldfarb–Shanno

The Broyden–Fletcher–Goldfarb–Shanno algorithm [48], commonly referred as BFGS, is a
rather popular iterative minimisation method. Let us take an objective function f at the
current iteration point xk – here, the potential energy of an atomic system for a given
arrangement of atoms – and take its quadratic approximation

f(xk +∆x) ' mk(∆x) = f(xk) + gT
k∆x+

1

2
∆xTHk∆x , (3.49)

where gk = ∇f(xk) andHk = ∇2f(xk) are the gradient and Hessian of f at point xk. The
minimum of the quadratic function above is found for a displacement

pk = −H−1
k gk , (3.50)

therefore we can use pk as a direction along which to move to find the next iteration point
xk+1

xk+1 = xk + αkpk . (3.51)

Calculating and inverting the Hessian matrix, though, is too expensive in most practical
applications, so it is approximated by a different Bk that behaves as an approximation of
the correct Hk: the peculiarity of the BFGS method is in how the inverse (approximate)
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Hessian B−1
k is computed and updated at each step. Let us define for convenience

sk = xk+1 − xk = αkpk

yk = gk+1 − gk .
(3.52)

There are two properties that Bk must satisfy to be a valid approximation of the true
Hessian:

• the secant condition, imposing that the gradient of the quadratic approximation of f
matches the actual gradient g at least at the iteration points xk and xk+1

B−1
k+1sk = yk (3.53)

• Bk must be positive semidefinite.

Under these conditions, it is required to make the smallest update possible on the approxi-
mate Hessian:

B−1
k+1 = argmin

A
|A−B−1

k | , (3.54)

where | · | indicates the Frobenius norm. By denoting ρk = yT
k sk, the solution of Eq. 3.54 is

B−1
k+1 =

�
I− ρksky

T
k

�
B−1

k

�
I− ρksky

T
k

�
+ ρksks

T
k . (3.55)

A common modification of the above algorithm is the so–called limited memory BFGS,
or L–BFGS: instead of constructing the inverse Hessian from all of the previous iterations,
L–BFGS builds theB−1

k+1 matrix only from the entries of sk and yk of the latest few iterations.
The initialisation of the inverse Hessian matrix B−1

0 , usually referred as preconditioning, is
key to determine the convergence speed of the algorithm. Recent advances have pointed
out an optimal preconditioner for condensed phase materials, which greatly reduces the
number of convergence steps and makes it possible to efficiently optimise the geometry of
large atomic systems [49].

3.6 Transition State Theory

One of the main applications of atomistic simulations is the study of chemical reactions. In
the simplest case, a structure transitions between two known states A and B along a reaction
path that can be described by a single reaction coordinate; in more complex situations, a
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system can transition to unknown different structures, in which case the aim is to find
saddle points between local minima of the (free) energy landscape expressed in terms of
a collection of reaction coordinates commonly known as collective variables. The aim of
these simulations is to identify relative stabilities between structures A and B (i.e., energy
differences between local minima) and to evaluate reaction rate constants for the transition
between states according to Arrhenius equation

kA→B = ν exp

�
−∆GA→B

kBT

�
. (3.56)

Upon knowledge of the attempt frequency ν, one can evaluate the reaction rate by calculat-
ing the free energy barrier ∆GA→B separating the two states.

Thermodynamic Integration

When the entropic effects are assumed to be negligible with respect to the enthalpic contri-
bution, the free energy barrier in the Arrhenius equation 3.56 can be approximated with a
potential energy barrier and methods such as the Nudged Elastic Band (NEB) method [50]
can be used. When the evaluation of a free energy barrier is desired because entropic
effects may play an important role (e.g., for calculations of biological molecules properties
where the conformational space is very large and the interactions are relatively weak), one
can choose among a wide set of possible techniques that fall under the broad categories
of molecular dynamics (MD) or Monte Carlo simulations [51], or somewhere in between
the two [52]. An account for some of the most well–known methods can be found in the
vividly titled review ‘Transition path sampling: Throwing ropes over rough mountain passes,
in the dark’ by Bolhuis et al. [53]: in summary, the core difference among methods is how
the phase space is sampled. The thermodynamic integration method (TI) [54] is used to
evaluate the free energy change of a system when a parameter is slowly changed from
the initial to the final state. Given a parameter λ ∈ [0, 1], commonly named the collective
variable or reaction coordinate, that can be varied continuously to transform the system
from an initial state A (at λ = 0) to a final state B (at λ = 1), the partition function Z of the
system will be a function of λ and so will be the free energy F :

F (λ) = − 1

β
logZ(λ) = − 1

β
log

Z
dq e−βH(q,λ) . (3.57)
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By evaluating the expression for ∂λF (λ)

∂F (λ)

∂λ
= − 1

βZ(λ)

∂Z(λ)

∂λ

= − 1

βZ(λ)

Z
dq (−β)e−βH(q,λ) ∂H(q,λ)

∂λ

=
1

Z(λ)

Z
dq e−βH(q,λ) ∂H(q,λ)

∂λ

=

�
∂H(λ)

∂λ

�

λ

,

(3.58)

we note that it corresponds to the canonical ensemble average at a fixed value of λ of the
derivative of the Hamiltonian with respect to the parameter λ. The free energy difference
between A and B can then be found by integrating this quantity:

∆FA→B =

Z 1

0

dλ
∂F (λ)

∂λ

=

Z 1

0

dλ

�
∂H(λ)

∂λ

�

λ

.

(3.59)

At a practical level, the evaluation of this integral can be performed numerically by evaluat-
ing the integrand at a given set of intermediate points λi, each of which can be obtained
through a MD simulation at constant temperature. Another possibility is given by the slow
growth method [55] (SGTI), where a single thermostatted MD simulation is performed by
gradually varying λ by a small increment ∆λ at each timestep so that the system remains
approximately in equilibrium at all times. In the slow growth algorithm the integrand in
Eq. 3.59 is replaced by the instantaneous value of the derivative, and the integral simply
becomes the summation of all of the observed values:

∆FA→B =
X

i

∂H(λ)

∂λ

���
λ=λi

∆λ . (3.60)

3.7 QM/MMMultiscale Simulations

Many natural processes are the result of atomic level phenomena occurring at different time
and length scales. In some cases the different scales can be simulated independently, so that
accurate properties obtained through smaller scale simulations (e.g., diffusion coefficients,
reaction barriers for chemical reactions, densities) can be used to parametrise a cheaper
model apt to treat the larger scale system. In the cases of interest for this thesis, instead, a
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property of a system is the result of the intertwined interaction of phenomena that interact
bidirectionally, and thus cannot be studied separately. In a naive approach, treating the
complete system with the model appropriate for the most critical subsystem would be
enough to guarantee the veracity of a simulation; however, it is ubiquitously true that
more accurate tools are more computationally expensive, thus using a uniform precision
approach is often unfeasible in real life.

Multiscale atomistic methods address this problem by providing a framework to blend
together two different models of atomic interaction, focussing the use of the more computa-
tionally demanding only in regions where its accuracy is required. One class of multiscale
simulations are the Quantum Mechanics / Molecular Mechanics (QM/MM) methods, which
have been first proposed by Warshel and Levitt in 1976 [56]. The archetypal example
here is the study of crack advance in a fracturing material: the localised events of bond
breaking at the crack tip, which requires chemical accuracy often achievable only by means
of electronic structure calculations (e.g. DFT), are determined by atomic bond deformations
due to the concentration of a macroscopic elastic stress field; meanwhile, the larger scale
atomic configuration, for which an appropriate potential for the material under study is
sufficient, is dynamically rearranged as a result of the breaking bonds. The technical goal of
a QM/MM calculation is to treat QM labelled atoms as if they were immersed in a completely
QM system at all times. More ambitiously, when forces calculated by the MM model on
the MM region atoms are a good approximation of the ‘correct’ QM ones, the ideal goal
would be to reproduce the same physical observables that would be obtained by a fully QM
simulation.

There are two key issues that have to be tackled to reach these goals: (i) how to properly
define a QM region and (ii) how to blend QM and MM at their interface. The first issue,
called QM region identification, can be recast into asking how much of the complete system
is necessary to include in a DFT calculation and how to carve it so that the forces in the
QM region are converged with respect to a full ab initio treatment. The second issue,
the QM/MM coupling, deals with the stratagems put in place so that two mismatching
interaction models are harmoniously linked into one coherent composite model that does
not show any boundary artefact.

QM region identification

Let us assume that, according to our knowledge about the system and the processes under
study, a set of neighbouring atoms is deemed to be treated quantum mechanically because,
for instance, a chemical reaction taking place there cannot be treated properly with an
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interatomic potential. We will define this set as the core QM region C; here we will only
consider C as one connected set of atoms, but our treatment can be naturally extended to
more than one core QM region without additional obstacles.

The total energy of the system in quantummechanics is a quantity that can be expressed
as a sum of single–atom contributions only by means of somewhat arbitrary partitioning
methods [57], whereas forces are inherently local properties of each atom. Energy–based
QM/MMmethods exist and have successfully been used for the study of a range of different
systems [58–60], but for our applications we will concentrate on force–based methods that
allow for greater flexibility. In most applications, we can prove that our QM calculations are
near–sighted [61], i.e., the force acting on an atom is not affected by displacements of far
away atoms. Under this assumption, we can perform QM calculations on a subset of atoms
carved out of the whole system to obtain QM–accurate forces on C. The set of extra atoms
to be added in the calculation is commonly called buffer region and will be denoted as B.

How much of the surrounding environment is necessary to include to have correct QM
forces on C heavily depends on the system under study, and is usually set by a parameter
that can be a buffer radius rB or a number of first neighbours bond hops nB: B will be
the union of all atoms not in C that are within rB Ångstroms or nB bond hops from any
atom in C. Since the computational cost of an ab initio calculation is several orders of
magnitude higher than the one of a classical potential, the overall cluster C ∪ B composing
the QM region should be the smallest possible that still guarantees adequate accuracy. The
carving of a cluster out of the bulk system results in a number of non–physical unsaturated
chemical bonds, which give rise to surface electronic states that hinder the convergence of
forces in the QM core region as a function of buffer size.

Several stratagems have been proposed to reduce the size of the buffer region |B|: in
non–metallic systems it is common practice to terminate the surfaces with passivating
atoms by placing H atoms or specifically tailored pseudo–atoms along the broken bonds.
In conjunction with terminating atoms, when the QM and MM region are expected to
present a strong electrostatic coupling it is also possible to perform calculations on the QM
cluster embedded in a system of external charges that is supposed to mimic the electric
field produced by the excluded system [60, 62, 63].

In some circumstances, as in a moving crack tip position [64], an adaptive QM region is
necessary so that it can be updated during a simulation. To reduce instabilities over the
identification of the core QM atoms, it is possible to define the QM region in a hysteretic
fashion, so that the criterion of inclusion of an atom in C is less restrictive than the exclusion
criterion [65]. It must be pointed out that an evolving QM region precludes the possibility
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of strictly conserving the total energy, but this is not necessarily a negative feature when
dealingwith constant–temperature calculations, as the presence of a thermostat unavoidably
precludes energy conservation.

QM/MM coupling

Once a cluster carving and buffering recipe allows us to calculate QM forces, this must
be coupled with a method to use such information in a way that the mismatch at the
interface between regions treated with different theories is minimised. A coupling method
should first restore the lost action–reaction principle (resulting in conservation of total
momentum): if two atoms are treated with different interaction models, it is no longer true
that the forces induced by one on the other are equal and opposite. Conservation of total
energy, although not strictly required in canonical ensemble simulations, is nevertheless a
good indicator of the stability of the dynamical system; smaller energy drifts require gentler
thermostats with a smaller footprint on the system trajectory.

Aside from conservation laws, it is also important that bulk quantities are matched
between QM and MM regions. Matching lattice constants – or equilibrium bond lengths
when dealingwith non–crystallinematerials – is necessary to avoid an artificially introduced
hydrostatic pressure on the QM cluster: to do that, one can very simply rescale the QM
cluster by a factor equal to the ratio between lattice constants (or equilibrium lengths)
calculated by the QM and MM models. Matching elastic constants and Einstein oscillator
frequencies (related to the energy change to a small displacement of a single atom) are also
desirable to guarantee continuity.

Among the many coupling methods available, as thoroughly reviewed in Ref. [65], force
mixing methods are simple and effective solutions. The simplest version is the abrupt force
mixing method, where QM forces are used in C (and discarded in B), and MM forces are
used elsewhere as depicted in Fig. 3.1. Clearly, this does not guarantee any conservation
of energy or momentum, while the matching of bulk properties is left to the QM cluster
rescaling and the appropriateness of the interatomic potential. To guarantee momentum
conservation, a very simple modification of the method is to correct each QM force with
a small corrective force that guarantees that the total momentum is constant at all times
during the simulation. More refined implementations are the hop–ramp and distance–ramp
force mixing methods, where atoms in a shell within a prescribed bond hop or Euclidean
distance are subject to a linear combination of the QM and MM forces

Fmix = λFQM + (1− λ)FMM , (3.61)
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where the parameter λ is set to decrease from 1 to 0 when moving away from C.

C

MM

−→

(a) Full system

C

B
H termination

−→

(b) QM region
identification

FQM

FMM

(c) QM/MM coupling

Fig. 3.1 Abrupt force mixing QM/MM scheme

Learn On The Fly

The ‘Learn On The Fly’ (LOTF) method [66, 67] is an extension of the abrupt force mixing
QM/MM scheme. The computed forces, rather than being used directly in their pertinent
regions to propagate the dynamics, are instead used to fit a global IP VLOTF composed of
the original MM potential VMM and a simple adjustable potential Vadj

VLOTF(θ
∗) = VMM + Vadj(θ

∗) , (3.62)

where the optimal parameters θ∗ are obtained by least squares fit

θ∗ = argmin
θ

X

i∈C

�����Fi,QM +
∂VLOTF(θ)

∂ri

�����

2

. (3.63)

The form of the adjustable potential is arbitrary; among the different definitions that have
been proposed and benchmarked over time, a linear pairwise potential of the form

Vadj =
X

ij

αijrij (3.64)

allows a fast linear algebra solution of the optimisation problem in Eq. 3.63 without any
loss of accuracy with respect to more complex definitions [65, 68].

The LOTF method guarantees momentum conservation since the system is at all times
subject to forces derived from a single model; as the model itself changes at every fit-
ting procedure, instead, energy conservation is not recovered. A major advantage of the
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algorithm is that the fitting parameters θ∗ follow a smooth time evolution and can be
interpolated between QM calculations taking place every so often (for example, every 10 fs
for Si fracturing at room temperature) instead of being calculated at every timestep, offering
a speedup factor equal to the number of interpolation steps with respect to alternative
QM/MM schemes. The full LOTF algorithm is implemented as a predictor–corrector method
following these steps:

QM selection: Select C and optimise the LOTF parameters according to Eq. 3.63, obtain
θpred

Predictor : Propagate with VLOTF(θ
pred) the dynamics for a given number of timesteps

QM Calculation: Perform QM calculations on the cluster as in Fig. 3.1

Fitting: Refit the LOTF parameters according to Eq. 3.63, obtain θcorr

Corrector : Revert the system back to prior the predictor step and rerun the dynamics
linearly interpolating the potential parameters between θpred and θcorr.



Chapter 4

Ensemble QM/MM Simulations

QM/MM calculations reduce to the bare minimum the amount of QM–accurate information
to be computed, but this bare minimum can still be startlingly expensive to compute in
some physical systems and types of simulation. Let us take the case of fracture simulations
of oxide materials, an example relevant for this thesis: one typical MD run may span a
timescale of 10 ps and, because of the long–range electrostatic interactions, QM clusters
tend to have very large buffers [69], with the result that each QM calculation has to be
performed on several hundreds of atoms. To better grasp the issue, the same kind of QM/MM
simulations on covalent crystals (e.g., silicon) require QM cluster sizes of approximately
one order of magnitude smaller: if we were to perform the same calculation on the same
computer with a commonly available planewave DFT code (thus assuming a cubic scaling
with respect to the number of valence electrons), the time to solution would be roughly
one thousand times longer – 10 timesteps a day instead of a timestep every 10 seconds.
Using linear scaling DFT codes (e.g., ONETEP [70] or SIESTA [71]) is not a better choice
for these systems either, as they are mostly tailored to be used on very large systems (up to
millions of atoms) for one–off energy evaluations or geometry optimisations. The linear
scaling behaviour is counterbalanced by a very large prefactor, so that the performance of
these codes becomes advantageous at about, if not beyond, our typical QM size of less than
1000 atoms. For our intermediate problem size, an intermediate–scaling code such as the
hybrid mixed planewave/Gaussian basis set CP2K is the best choice.

A naive thought would be to simply use the largest computer available to run the best
available DFT code for that given computing architecture, physical system and simulation
type. As we will discuss in this chapter, the proportions of the challenge and the subtleties
arising with the use of vast computing resources require a more thoughtful approach, which
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led to the development of a novel parallel computing architecture where a purpose–designed
graph partitioning method optimally balances the load across simultaneous calculations.

4.1 Computational Framework

Computing architecture

The largest computer available during most of my studies is the IBM BlueGene/Q Mira
supercomputer at the Argonne National Laboratories, thanks to the computing resources
awarded to the INCITE project related to the topics of this dissertation. It is useful at this
point to give a general overview of the machine, pinpointing some aspects that acted as
both constraints and driving force for the development of novel algorithms and code scaling
strategies. In a nutshell, the BlueGene/Q (BG/Q) architecture is the following:

• The basic component of a BG/Q machine is the BlueGene/Q compute chip, also
referred as compute node. A compute node (CN) is a 16–cores 64 bit PowerPC
A2 processor, and each core can run up to 4-way simultaneously multithreaded
instructions at a clock speed of 1.6 GHz. Each compute node can access a DRAM
memory of 16 GB.

• The networking follows a 5D torus connectivity: amidplane is a rack of 512 electrically
connected compute nodes, and more midplanes are bundled together to form a single
machine by means of optical interconnections.

• The compute nodes communicate by means of I/O nodes in a ratio 128:1;

• Both compute and I/O nodes run a very basic IBM CNK (compute node kernel) based
on the Linux kernel, and do not allow user access. Notably, the kernel does not allow
fork and exec commands to be executed: new processes cannot thus be spawned
by an already running process.

• The user can access a BG/Q machine resources through the login nodes, also known
as the front end nodes (FEN). These nodes run a standard Linux kernel, and are used
to submit the job scripts.

Mira comprises 96 midplanes, or 49152 compute nodes, or 786432 compute cores. A job can
be submitted to a partition of at least 512 nodes (1 midplane), and the available partition
sizes are typically 2N . Ensemble jobs are allowed: a single job can run multiple concurrent
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tasks on smaller and independent subpartitions (also called ‘blocks’) within the allocated
partition; ‘subblock’ jobs are allowed as well, meaning that an executable can run on a
subpartition of size 2N < 512.

Ensemble QM/MM

Fig. 4.1 Crack tip in α–quartz. Darker atoms represent the core QM region

Let us consider the problem of fracture in silica: here, the number of atoms around a
crack front that require an accurate force calculation is typically well above 100, and the
buffer size to guarantee the force evaluation to be converged is at least another 500 atoms.
For a problem size of 600 to 1000 atoms, the most modern and performant DFT codes may
still work in optimal scaling conditions on a minimum size partition (about 8000 cores);
given that the good scaling properties of such codes is obtained by methods of the likes of
domain decomposition (e.g., sparsification of the Hamiltonian matrix thanks to localised
electronic basis sets [72]), we cannot expect them to scale beyond a point where the number
of computing cores is of the same order of magnitude of the number of basis functions. It is
clear that we need a paradigm shift if we wish to utilise larger computer resources to cut
the simulation time of a QM/MM simulation.

The fundamental idea presented here can be thought of as a reformulation of domain
decomposition that can be used whenever the only quantities needed in a QM/MM calcula-
tion are the forces, such as in force mixing schemes like the LOTF method. Let us define
the time to solution (TTS) of a DFT calculation as the wall clock time elapsed to reach a full
electronic structure minimisation and compute the Hellman–Feynman forces on all atoms
in a core QM region, and the computational cost of a DFT calculation as the total resources
used, typically measured in CPU–hours, calculated as

NCPU · TTS .
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Given a core QM region C, we wish to reduce the time to solution and, if possible, the
computational cost of QM force evaluations by splitting it into k parts {C1, . . . , Ck} that are

• non–overlapping: Ci ∩ Cj = ∅ ∀i 6= j,

• complete:
Sk

i=1 Ci = C,

• connected: ∃ a bond–hopping path connecting all atoms within each part Ci
Let the computational cost of a DFT calculation scale with the number of atoms as O(Np),
where p is between 1 (ideal linear scaling code) and 3 (standard planewave code). If we
were to perform one single QM force evaluation on the whole QM cluster including buffer
C ∩ B, the TTS would be

TTS(whole) = α (|C|+ |B|)p , (4.1)

for some constant α, where we denoted the number of atoms with the cardinality symbol
| · |. If we instead ideally split the core QM region in k parts of equal size |C|/k, the TTS is
reduced to

TTS(split) = α (|C|/k +max(|Bi|))p . (4.2)

Without stating specific assumptions on the relationship between the sizes of a core and its
corresponding buffer region, it is clear that a larger core requires a larger buffer size, so
the TTS will always be smaller in a QM splitting strategy – albeit we must point out that
the overall computational cost may increase. Given the architectural constraint that no
new processes can be spawned by the currently running ones once a calculation is started,
we are bound to a rigid configuration where k QM calculators and one MM calculator will
be running at the same time on separate subpartitions of the same job. Since DFT force
evaluation is always the bottleneck of QM/MM simulations, we wish to assign the largest
portion of computational power to the QM calculators. We decide for simplicity to divide
the total partition size Ntot into Nblocks subpartitions of the same size NCN = Ntot/Nsub:
the classical dynamics operations can then be carried out on one subpartition, while all
the remaining k = 2N − 1 blocks can be assigned to the execution of independent DFT
programs. With this strategy, the number of clusters k and the computing power per cluster
NCN are free parameters to be tuned so to always using the adopted QM calculator at its
optimal computational power NCN and typical problem size |Ci ∩ Bi|, where ‘optimal’ is
meant as the desired balance between computational cost and TTS.

As a further advantage of using the described distributed method in a BlueGene architec-
ture, the job partition is fully tiled and no computing power is left idle. In fact, in a QM/MM
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job where the QM calculator(s) is used as a plugin black box rather than being merged into
one monolithic QM/MM executable, the MM operations require to be allocated on one of
the 2N subpartitions, leaving the remaining processing power of 2N − 1 subpartitions for
the QM operations: these can only be completely used when more than one QM task is run
simultaneously. This is exemplified if Fig. 4.2.

Additionally, if the QM region moves and varies its size during a simulation as in the
case of crack propagation, techniques to allow an automatic identification and update of
the QM region are necessary: in this context, MM codes able to interface to QM black boxes
are the most versatile and used solution, but recent developments allow adaptive QM/MM
simulations in a single executable [73]. The implementation of the ensemble QM/MM
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Fig. 4.2 Tiling options of a BlueGene/Q 16-block job partition for running the executables
of a QM/MM calculation. One small square corresponds to one block, and an executable
can only run on 2N blocks. (a) The allocation is only partially occupied; (b) The allocation
is fully occupied, but the MD partition is unnecessarily large; (c) Several simultaneous QM
calculations allow for an optimal tiling of the available partition

architecture is based on the QUIP multi–purpose MD package, that is connected with the
separate DFT runs by means of a socket–based communication protocol mediated via a
lightweight Python script running on the front–end node (FEN) [74]. In brief, the structure
is the following:

• The client MD code reads in the QM forces from the server, performs the LOTF
dynamics between each predictor/corrector stage, and outputs to the server the
atomic positions after each LOTF iteration;

• The client QM codes read in from the server the positions of the carved clusters and
output the QM forces to the server;

• The server process running on the FEN handles the communication of the MD
(positions) and QM (forces) executables, and performs the operations of QM region
identification, partitioning, and cluster carving.



4.1 Computational Framework 54

Fig. 4.3 shows a visual representation of the scheme.

QUIP 

proxy

QUIPk clusters

LOTF MD 

N ~103 QM atoms, ~106 atomsN forces 

{F(1)
i}, {F(2)

i}, …, {F(k)
i} 

QM black box 1
Cluster 1

Forces {F(1)
i} QM calculation on Cluster 1

QM black box 2
Cluster 2

Forces {F(2)
i} QM calculation on Cluster 2

QM black box k
Cluster k

QM calculation on Cluster k

...

Compute NodesFront End Node

Forces {F(k)
i}

Fig. 4.3 Structure of the QM/MM ensemble parallel calculation architecture: the server
process, on the left, is executed as part of the job submission script and remains alive to
serve as communication beacon between the independent executables running on different
partitions of the assigned compute nodes, along with performing the operations related to
the creation and update of the QM clusters. Scheme adapted from Kermode Ref. [74]
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‘Digestive Ripening’ Partitioning Algorithm

The performance of the ensemble parallel QM/MM scheme is largely determined by how
well the computational load is balanced across the simultaneous DFT processes. Since QM
forces need to be evaluated synchronously at every QM step of the LOTF algorithm (or
at every timestep of a standard QM/MM scheme), the slowest calculation sets the pace
for all others: therefore, ensuring that all DFT calculations reach convergence within the
narrowest wallclock time window is of key importance. The current section will provide a
thorough description of the partitioning method designed to reach this goal.

As a rough assumption, we can estimate that the time to solution for a DFT calculation
in a system of uniform chemical composition is an increasing function of its number of
atoms. The time to solution of our ensemble QM calculation is then determined by the
size of the largest QM cluster, measured as the sum of the number of atoms in its core and
buffer regions: the recipe for an optimal balance would then be to split our QM region so
that all of the resulting clusters are of the same size. But while we have full control on
the sizes and shapes of the core QM regions {Ci}, the sizes of their corresponding buffer
regions {Bi} are not easily predictable. The standard approach to growing a buffer around
a core region Ci is to set its thickness in either Ångstroms or number of bond hops to tag
the atoms that need to be in Bi; after that, a set of empirical rules (specific for the material)
will include further atoms from the system into Bi and complete the unsaturated bonds
with artificial terminating hydrogens, all to make the resulting cluster a physically sound
one – in silica, the main required feature is to preserve full SiO4 tetrahedra.

We postulate that a QM region partitioning strategy should generate a set of core QM
regions {Ci} that are:

• of equal size, so that that no cluster is bigger than any other already at the level we are
in control of; also, intuitively we can expect a larger core to have a correspondingly
larger ‘skin’ around it for a given skin thickness;

• as convex as possible to minimise the size of each buffer, which increases commen-
surately with the aspect ratio of the core for a given core size: the optimal cluster
shape is the sphere (or the circle in 2D geometries).

To implement these ideas into an algorithm, let us first translate an atomic environment
into an object for which the partitioning problem has long been studied: a graph. For
simplicity, we will now consider the QM region as a single connected set of atoms – the
extension of the algorithm to a set of disconnected QM regions is straightforward if each
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connected component is treated independently. The mapping from a system of atoms C to
its undirected graph G(V,E) is rather natural when considering atoms as vertices V and
chemical bonds between them as edges E: the splitting of C is now transformed into the
problem of partitioning the graph into k subgraphs {S1, S2, . . . , Sk} of the same size and
as convex as possible for a given definition of convexity. Let us define the convexity ξ of a
graph G(V,E) with a given number of vertices |V | to be the sum of shortest path distances
between all pair of vertices, i.e.:

ξ(G) =

|V |X

i=1

|V |X

j>i

d(Vi, Vj) . (4.3)

Such a definition mimics the concept of convexity of the original atomic system, so that a
maximally convex graph corresponds to a round atomic cluster.

The list of different k–way graph partitioning algorithms available to date is endless [75],
and each one of them has been developed to optimise one or a few performance indicators:
scalability, speed, size balance, number of edge cuts. Our specific use case – small graphs
of 102–103 vertices, very strict subgraph size distribution, maximal convexity – demand a
specific solution, which I propose as a two–step algorithm.

The first step consists of making a first guess for the subgraphs: this can be performed
by means of any available k–way graph partitioning algorithm. The current implementation
allows for k–means partitioning [19], spectral clustering [22] and the multi–step METIS
algorithm [76]: all of these are known to be among the methods that produce subgraphs of
good size balance. The output of this step is a set of k subgraphs {S1, S2, . . . , Sk} and a set
of cut edges Ecut whose union is the original graph:

 
k[

i=1

Si

!
∪ Ecut = G . (4.4)

The second step consists of a refinement procedure by means of an algorithm I named
digestive ripening, so called after a thermodynamic process, also known as inverse Ostwald
ripening, in which the free energy of a set of nanoparticles is minimised by the exchange
of atoms until a monodisperse set of round elements is obtained [77].
If we are to consider the just obtained subgraphs as nanoparticles evolving towards a
monodisperse configuration, we must define a free energy–like quantity for a graph. Let
us first calculate the shortest path edge–hopping distance matrix of the whole graph
D(G) ∈ N|V | × N|V | by means of a breadth–first search algorithm; the distance matrix of
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each subgraph Si is obtained by slicing the matrix D(G) by only including the columns
and rows of the vertices of Si. If we now take the sum of squares of all elements of the
restricted distance matrix D(Si) as a cost function of the subgraph Si

F (Si) =
X

a,b

(Da,b (Si))
2 , (4.5)

we can observe that:

• It will increase commensurately with the aspect ratio of the corresponding atomic
cluster for a given number of vertices, as the atoms are, on average, farther apart for
elongated systems than for round ones

• It will increase together with the number of vertices for a given aspect ratio, as we
sum over more elements.

This arbitrarily defined function F is then a sound definition of a quantity associable to a
‘free energy’ of a graph, and the system of subgraphs {Si} will find its groundstate – i.e.,
the closest–to–monodispersed atomic cluster configuration – at the minimum of the global
cost function

F (G) =
kX

i=1

F (Si) . (4.6)

To obtain the set of optimal subgraphs {S∗
1 , S

∗
2 , . . . , S

∗
k}, an iterative algorithm swaps nodes

at the boundaries between different subgraphs at each iteration with the aim of lowering
the value of the global cost function. To guarantee that the corresponding atomic clusters
are formed of contiguous atoms and thus physically sound, we must require all subgraphs
{S∗

1 , S
∗
2 , . . . , S

∗
k} to be connected: in practice, this is ensured by the stricter requirement

that at all steps all subgraphs are connected.
Given an initial guess {S1(V1, E1), . . . , Sk(Vk, Ek)} for the k–way partitioning of the con-
nected graph G(V,E), two such algorithms have been built and tested:

Greedy

1. Calculate the cost function of all subgraphs {F (Si)}, then sort them in decreas-
ing order of absolute difference from the average value. Store indices of sorting
order I and pick the first entry i∗ ∈ I

2. Find all of the edgesEneigh
i∗ ⊆ E connecting Si∗ with its neighbouring subgraphs
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3. For every edge in E
neigh
i∗ , try to assign both end vertices a, b to the subgraph

with the lowest cost function and calculate the variation in cost function

∆ = F (Snew
i∗ ) + F (Snew

j )− F (Sold
i∗ )− F (Sold

j ) ; (4.7)

store the move if ∆ < 0 and if the ‘donor’ subgraph remains connected

4. If it exists, apply the highest gain move (lowest ∆) and go to (1), otherwise
choose next i∗ ∈ I and go to (2)

5. Exit if no further favourable move is found.

Random

1. Calculate the cost function of all subgraphs {F (Si)} and create E∗, a copy of
the list of all directed edges of the whole graph G(V,E)

(i → j) ∈ E∗, (j → i) ∈ E∗ ∀(i, j) ∈ E (4.8)

2. Pick randomly one edge v = (a → b) ∈ E∗

– If both nodes a and b belong to different subgraphs, calculate the gain in
cost function ∆ for the operation of assigning a to the same subgraph of b:
if ∆ < 0 accept move and go to (1)

– if ∆ ≥ 0 or if both nodes a and b belong to the same subgraph, remove v
from E∗ and go to (2)

3. If E∗ becomes empty, we ran out of subgraph swaps possibilities and the algo-
rithm has converged. Quit.

An obvious improvement of the random algorithm would be to allow escaping from
local minima of the cost function: this has been tested by modifying step (2) with
an acceptance criterion borrowed from the Metropolis–Hastings algorithm [78]. As
long as the initial partitioning guess is obtained from a reliable partitioning method as
the ones presented, this additional complexity does not appear to yield any benefits.
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QM Region Update

Once the QM core region is partitioned into k parts {C1, C2, . . . , Ck}, the corresponding
clusters are carved out of the original system by including buffer atoms and terminating
hydrogens so that the Hellman–Feynman forces of the core atoms are ‘correct’, i.e., con-
verged with respect to the buffer size. Since the buffering routine is exactly the same in the
case of a single QM region or k parts of it, we can conclude that the buffer parameters that
guarantee force accuracy in the former case will be appropriate for the latter as well.

The set of k atomic clusters Ci ∪ Bi are then simultaneously sent to the compute nodes
QM executables for calculation. As the MD simulation advances, the QM core region C
is automatically tracked and selected according to a set of heuristic rules to follow the
region(s) of the systems where higher accuracy is desired, such as the moving crack tip of
a propagating crack. In these simulations, C does not change abruptly from one timestep
to the next, and only every once in a while the difference between the QM regions of two
subsequent timesteps (‘old’ and ‘new’) is large enough to justify a new partitioning and
buffering operation. This should happen as infrequently as possible for two reasons: (i) if
the atoms in a cluster have not changed from one timestep to the next, the QM executable
does not need to be restarted and the ’old’ wavefunctions and electron densities loaded in
memory can be reused as a starting guess to speed up the DFT calculation; (ii) the operation
itself can be time consuming and the CNs should be left idle as little as possible.

To decide whether or not to update the partitioning of C, the first check is on the system
as a whole: if the set of atoms in C and the list of atomic bonds in C ∪ B has remained
unchanged, a new partitioning and buffering is avoided because its result would be the
same as the already present clusters, so the old Ci may be reused. if that is true, the atomic
positions of the old QM clusters are simply updated in place with the new values; at this
point, each new cluster Ci ∪ Bi is compared with its old instance for compatibility:

1. the set of atoms in Ci ∪ Bi has not changed,

2. if the lattice vectors have not changed,

3. the RMS displacement of the atomic positions between the new and the old cluster is
less than a given threshold (its value depends on the DFT executable in use).

If a given cluster meets all three of the above requirements, the setup already present in
memory can be used – and is an appropriate guess – for a continuation of the previous QM
calculation; otherwise, the DFT executable is restarted.
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4.2 Results

QM Region Partitioning Benchmark

To first grasp the effectiveness of the digestive ripening (DR) partitioning method described
above, we will compare it against some standard partitioning methods on a system that
allows for very simple and informative visualisations. The artificially–generated atomic
system is a two layers thick disc of Si atoms at equilibrium positions in the crystalline
diamond structure, with a diameter of about 100Å and containing 2097 atoms; the number
of clusters is set to K = 7. The tested partitioning methods are the following:

• k–means partitioning, Euclidean distancemetrics based on atomic positions (scikit–
learn implementation [79])

• spectral clustering, Euclidean distance metrics based on atomic positions (scikit–
learn implementation [79])

• METIS partitioning, distance metrics based on bond hop shortest path lengths [76]

• digestive ripening partitioning, greedy algorithm, k–means initial guess, distance
metrics based on bond hop shortest path lengths

• digestive ripening partitioning, random algorithm, k–means initial guess, distance
metrics based on bond hop shortest path lengths

The results shown in Table 4.1 and Fig. 4.4 reveal that, among the standard partitioning
algorithms, the spectral clustering method is completely inadequate for the task, the METIS
method does guarantee a narrow cluster size distribution but not their roundness, whereas
the k–means method is the best choice as it guarantees a good partitioning quality while
at the same time being extremely fast. The DR partitioning produces maximally convex
clusters comparable to the ones obtained with k–means but with a narrower size distribution
than any other tested method.

Contrary to the other algorithms tested, the DR approach has only been implemented
in a non–compiled and not heavily optimised Python library, so it is comparatively 2 orders
of magnitude slower: this can limit the adoption of the algorithm at the current stage, but
in our actual applications it is more than compensated by the reduction in size of the QM
clusters. Interestingly, the random algorithm is at the same time faster to converge and
produces slightly better clusters than the greedy algorithm, therefore it will be the choice
adopted for the rest of the chapter.
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Let us now briefly analyse the scaling of the DR–random algorithm as a function of the
graph size Natoms and of the number of clustersK (the graph size is selected by keeping
the disc shape of the system constant and varying its diameter). From the results presented
in Fig. 4.5, we can see that the partitioning time does not show a clear correlation with the
number of partitions K for a given graph size Natoms: it increases with K for small Natoms,
but the correlation is progressively lost as Natoms grows. On the other hand, the time
rapidly increases as Natoms increases for a given number of partitionsK , clearly pointing
out that the algorithm can only be effectively applied to small graphs of at most ∼ 103

nodes: fortunately, this is larger than the typical size of a core QM region, so the method
can be deployed in the ensemble QM/MM scheme. In summary, the digestive ripening
(random) algorithm can be effectively used to partition small graphs with extremely high
quality in terms of size variance and roundness.
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Table 4.1 Comparison between partitioning algorithms

Algorithm Partitioning time1 [s] Cluster size st. dev. Round clusters
spectral clustering 4.9 68.0 no
METIS 0.18 3.2 no
k–means 0.27 7.2 yes
DR greedy 89 3.0 yes
DR random2 25 2.6 yes

(a) (b) (c) (d) (e)

Fig. 4.4 Visual comparison between partitioning algorithms: (a) spectral clustering, (b)
METIS, (c) k–means, (d) DR greedy, (e) DR random
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Fig. 4.5 Scaling of the random algorithm implementation of the digestive ripening parti-
tioning1,2. Left: partitioning time vs. number of partitions K for a given graph size Natoms.
Right: partitioning time vs. graph size Natoms for a given number of partitions K

1Results obtained using a single core of a 2.4 GHz Intel Core i5 CPU (I5-4258U)
2Since the method is random, the results have been averaged over 3 runs
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Fig. 4.6 Partitioned core QM region of a notched SiO2 specimen. The colours identify the
7 different clusters obtained by a DR partitioning. The system is periodic along the crack
front direction (direction orthogonal to the page). Only one unit cell is shown here

Let us now move on to the task of profiling the effectiveness of the DR method when
compared with a standard k–means in a much more complex real case scenario: the
partitioning of a core QM region of a notched crack tip in an amorphous SiO2 specimen.
The system, shown in Fig. 4.6, contains 218 core QM atoms and is periodic along the
crack front direction (z): periodic boundary conditions (PBC) are applied along z with a
periodicity of 30Å, and to increase the system size we replicate the system along z; the
ratio Natoms/K is kept approximately constant for a direct comparison of cluster sizes
across different system sizes. We benchmarked the method for Natoms = 218, 436, 872 and a
number of clusters K = 7, 15, 31 respectively. The task is particularly hard because of a set
of concurrent factors. Firstly, the amorphous silica structure is very open and the density
of bonds is very low: in a digestive ripening setting, this means that the number of allowed
ripening moves at each step is rather small and the algorithm may fall into a local minimum
more easily given an unfortunate initial guess. Secondly, the geometry is inhomogeneous:
the presence of a crack tip means that the buffering procedure may or may not find vacuum
in some growth directions, thus leading to some unavoidable cluster size imbalance.

In Fig. 4.7 we measure the time elapsed in the two steps of partitioning and buffering
that would be performed on a front end node. The k–means algorithm is again very fast
and its time to solution is negligible. The DR partitioning, instead, converges in a time that
is smaller but comparable to the buffering operations. The DR partitioning method has
been devised to optimise size and shape of the core QM regions, and in this context there is
very little control over the corresponding sizes of the buffered clusters. Since our target is
to equalise the time to solution for each QM force calculation, perhaps the most relevant
simple metrics to quantify the computational cost of a cluster is its number of valence
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electrons. To understand the usefulness of pursuing a QM load balance by optimising the
partitioning method of just the core regions, we must prove that the two quantities are
correlated. The data presented in Fig. 4.8 shows that, to a certain degree, this is true and so
the approach is valid. We can also observe that the ripening procedure does compress the
range of core QM sizes: this is often, but not always, accompanied by a reduction in the
number of outliers in the vertical direction.
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Fig. 4.7 Timing of partitioning and clustering operations. We compare the time necessary
to partition the full core QM region C and the time to generate the corresponding set of
QM clusters {C1 ∪ B1, C2 ∪ B2, . . . , CK ∪ BK} without (green) or with (orange) DR
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Fig. 4.8 Number of core QM atoms vs. total number of valence electrons in a QM cluster.
Estimating the computational cost of a QM cluster with its total number of valence electrons,
we correlate it against the sizes of the corresponding cores. Results are shown for 3 different
system sizes before (green) and after (orange) the digestive ripening step.

Finally, Fig. 4.9 summarises the distributions of computational cost of the QM clus-
ters before and after the ripening step. As hoped, the distributions are narrower when
the DR algorithm is applied to improve the k–means guess, thus confirming that the de-
veloped method does indeed help balancing the computational load across independent
QM calculations. The real figure of merit of the plot, though, is the maximum number of
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valence electrons: the whole ensemble QM calculation is paced by its slowest calculation,
which usually happens to be a cluster of abnormally large size. In all observed cases, the
DR refinement does reduce the maximum values but only by a marginal amount: this is
probably due to the limitations imposed by the atomic structure at hand: both the very
open structure of SiO2 and the presence of crack surfaces conjure up to not allowing for
sufficient rearrangement of the subgraphs. Additionally, the buffer region sizes are bound to
be extremely variable, since clusters with more surface atoms unavoidably contain far fewer
buffer atoms than more ‘bulk–like’ clusters. Nevertheless, it is quite a positive indication
that the DR algorithm never worsens the cluster size distributions; it is also worth noticing
that even a small reduction in problem size can lead to a sizeable reduction in computing
time, as the scaling of a DFT code is above–linear and up to O(N3).
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Fig. 4.9 Computational cost vs. partitioning algorithm. Here the computational cost of a
QM cluster is estimated as its total number of valence electrons. Results are shown for 3
different system sizes before (green) and after (orange) the digestive ripening step.
In the boxplot, the box identifies the first and third quartile and the median, and the
‘whiskers’ represent the maximum and minimum values.

Ensemble QM/MM Scaling

The goal of this section is to analyse the effectiveness of the ensemble QM/MM framework.
Since the QM calculation step is by far the most time consuming part of these simulations,
we focussed on comparing the computational cost and time to solution of a complete DFT
force evaluation of the ensemble QM approach against the standard single QM cluster
approach. The calculations have been performed on the Mira IBM BG/Q machine located
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at the Argonne Leadership Computing Facility. Most of the calculations have been per-
formed with the planewave DFT package VASP 5.3 [80] using the PBE functional to treat
the electronic exchange and correlation; the parallelisation of this code is limited to MPI,
so on a BG/Q machine an executable can run on up to 16 processes per compute node
(one per compute core, no hyper–threading). The largest single QM region calculations,
explicitly flagged, have instead been carried out using the DFT package CP2K 2.4 [81] using
a Goedecker–Teter–Hutter pseudopotential with PBE exchange–correlation functional with
parameters producing a similar accuracy to the VASP calculations; CP2K is both MPI and
OpenMP parallel, so it can make use of up to 64 processes per BG/Q compute node.
A free parameter of the ensemble scheme is the number of CNs assigned to each DFT
executable NCN: some preliminary benchmarks show that the VASP code can scale sat-
isfactorily on up to 64 compute nodes (1024 MPI processes), so all of the ensemble QM
calculations of the presented results have been performed at a fixed NCN = 64.

Weak scaling The first benchmark is on weak scaling: the problem size per unit of
processing power is kept constant, and the time to solution is monitored as problem size
and allocated computing power are increased simultaneously. The problem size in our
calculations is the number of forces to be evaluated on the core QM atoms of C, which is the
same as its number of atoms |C|. The physical system is the crack tip of amorphous silica
of Fig. 4.6 described earlier, where the problem size is a multiple of 218 atoms depending
on how many times the periodic unit cell is replicated along the crack direction. From a
physics perspective, replicating the system along the crack front direction can be necessary
when studying local effects on the crack tip, such as kink formation and migration and
chemical reactions [82]. In the figure, the coloured atoms make up the core QM region C,
which comprises the smallest set of atoms that needs to be treated at DFT accuracy that
guarantees a trustworthy description of crack propagation. The buffer radius, controlling
the accuracy of the calculated QM forces, is set to 7Å: according to Ref. [69], we can
estimate that this introduces a mean absolute error of at least 0.2 eVÅ−1 on the computed
forces. While being barely acceptable for a MD simulation, this value can nevertheless be
accepted for our scaling benchmarking aims; a larger buffer size results in QM clusters too
large to be evaluated by a VASP calculator, thus needing to extend the support from the
current ensemble QM infrastructure to more modern DFT calculators such as CP2K.

Given the constraints of the BG/Q ensemble jobs tiling, the number of DFT executables
– hence the number of parts K in which to divide C – has been set to 7, 15 and 31 (2N

- 1), for the total computational power NDFT = K · NCN = 448, 960 and 1984 CNs; the
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corresponding problem sizes |C| are 218, 436 and 872 atoms. The timings have been taken
from 4 subsequent QM steps of a LOTF MD, where all the calculations are continuations of
the previous as they satisfied all of the QM region update requirements previously described.
The TTS for each QM step is the maximum walltime among all cluster calculations.

A direct comparison with the equivalent calculations with a single VASP instance is
not possible, as the smallest QM calculation for |C| = 218 producing a cluster of |C| +
|B| ∼ 1300 atoms performed on 512 CNs is both too large a problem size and too large
a computational power allocation for that DFT engine. Instead, these monolithic DFT
calculations are possible when using the CP2K code, therefore we performed a small
number of QM calculations (3 for |C| = 218 on 512 CNs, 1 for |C| = 436 on 1024 CNs) to
compare our ensemble method with one of the most performant and scalable DFT codes
available.
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Fig. 4.10 Ensemble QM – weak scaling. The DFT forces of an increasingly large core QM
region are evaluated as the computing power increases commensurately, and the time to
obtain all |C| forces is measured. Perfect linear scaling corresponds to a horizontal line. The
vertical bars represent 2 standard deviations of the timings among the set of QM steps

The results, shown in Fig. 4.10, highlight that the TTS remains approximately constant
with our ensemble method, which can therefore be considered as perfectly linear scaling.
The slight decrease in TTS at higher |C| should not be considered as a ‘better than perfect’
linear scaling, but rather as a variability due to the outlier cluster size of a given partitioning.
On the contrary, a single QM calculation is far from being linear scaling: at |C| = 218, the
better efficiency of CP2K against VASP still guarantees a slightly lower TTS, but it increases
dramatically for double the problem size, and the third data point for CP2K in Fig. 4.10 is
missing because the calculations did not terminate within a walltime of 2 hours. We can
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easily explain the good scaling of the ensemble QM calculation by observing that, sinceK
increases with |C|, the clusters are of approximately the same size for all problem sizes |C|.
Furthermore, our ensemble framework is tied to the VASP DFT code only in the current
implementation; a better performing code would lower the TTS of each parallel calculation
while at the same time maintaining the perfect linear scaling.

Finally, it is important to point out that the low number of data points is due to their
abnormal cost that can hardly be justified for the sole purpose of benchmarking: from
looking at the numbers, we can assume that each force evaluation took about 0.5 hours with
computing resources of up to 32768 cores, for a single timestep cost of up to 16000 CPUh.

Strong scaling The second benchmark is on strong scaling, which measures the speedup
obtained by allocating increasing computing resources to a problem of fixed size. The
physical system can no longer be the amorphous SiO2 crack front as before because, as
we already pointed out, it is too large to be evaluated by a single VASP DFT executable.
We chose instead a two unit cells wide periodic crack front in crystalline Si (110)[11̄0]
comprising |C| = 111 atoms: the covalent nature of its chemical bonds makes the interactions
predominantly short–ranged, thus allowing for smaller buffer regions that reduce the CPU–
hours burden of such tests [65, 69].

The results of Fig. 4.11 show that in the single executable approach the calculations
cannot be sped up by simply increasing the number of cores allocated – in fact, the value
NCN = 64 of our ensemble calculations has been set exactly because scaling tests showed
that that was the scaling limit of the VASP code on a BG/Q machine.
As the computational resources increase, in an ensemble QM approach C is divided into
a progressively larger number K of parts, while the resources per cluster NCN remains
constant. Effectively, by varying NDFT and consequently K , the ensemble method gives a
tuneable degree of freedom for the calculation, so that one can select the typical cluster
size that maximised the efficiency of the DFT code in use. In the results of Fig. 4.11, we see
that by increasing K from 1 to 3 and then 7 the computational cost of the complete DFT
force evaluation progressively decreases to find a minimum because the atomic clusters get
smaller and smaller and more manageable by the VASP code; atK = 15, the trend is inverted
because the cluster sizes become dominated by the buffer and most of the information
computed is discarded.

On a side note, let us turn our attention to the bare numbers of the computational cost,
measured in CPUh, of one QM force evaluation in the two systems. For a combination of
increased buffer size (necessary because of long–range interactions) and larger crack front
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Fig. 4.11 Ensemble QM – strong scaling. We measure the total computational cost of a force
evaluation on a QM core region of fixed size (of a Si crack tip specimen) against the total
number of compute nodes assigned to DFT calculations NDFT. Ensemble QM calculations
are carried out forK = 1, 3 , 7, 15 parts corresponding to overall computational resources
NDFT = 64 ·K CNs. Single DFT calculations are carried out with NDFT = 64, 256, and 512
compute nodes. Ideal scaling would correspond to constant computational cost

length (necessary to mimic an amorphous material), we can estimate that a simulation in
amorphous SiO2 use 103 times more resources than the same simulation in crystalline Si.
If we aim at performing QM/MM MD simulations in amorphous oxide systems as they
are currently routinely being performed on covalent materials, it is clear that believing
in Moore’s law and waiting for its effects to happen is not enough. Instead, there must
be incisive advances in the computational methods used: in such context, the frontier of
machine learning methods for atomistic systems such as the ones presented in Chapter 6
must be explored.

4.3 Summary

In this chapter we introduced a whole QM/MM computational framework tailored at
enabling QM/MM calculations of systems that require extreme computational effort, as in
the case of fracture of amorphous silica. We built the method around the idea of splitting
the QM region into several subparts and perform independent calculations on them by
a swarm of concurrent QM engines that communicate back and forth to the MM engine
that propagates the system dynamics by means of a master process. We also devised a new
algorithm to generate the best possible partitioning of said QM region so to maximise the
load balance across the different calculations. The new framework allows to optimally tile
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the computing resources on BlueGene machines while still treating the QM calculators as
‘black boxes’; it shows perfect weak scaling, and also allows to overcome the strong scaling
limitations of performant but not well scalable DFT codes.



Chapter 5

Fracture in Two–Dimensional Silica

5.1 Fracture Mechanics in Brittle Materials

Fracture is a physical phenomenon consisting of a cascade of ruptures of chemical bonds
propagating along a crack front in a specimen subject to mechanical stress, resulting in the
formation of two separated surfaces from a bulk specimen. Brittle materials, of which silicate
glasses represent the archetypes, are characterised by the absence of plastic deformation as
the crack advances. In the continuum mechanics approach first proposed by Griffith [83], a
crack is favoured to advance by a distance dl and creating a new surface dA = h dl if the
process lowers the energy of the system. During a crack advance, the stored elastic energy
is released through the formation of surfaces and dispersed as heat (plastic deformation is
assumed not to exist in brittle fracture). If we define the energy release rate as the amount
of elastic energy released per unit surface created

G = −∂Uel

∂A
= −1

h

∂Uel

∂l
, (5.1)

and the surface energy in terms of surface energy density γ, the condition for crack advance
is

G > 2γ . (5.2)

The value Gc = 2γ is known as the critical energy release rate, and defines the elastic load
beyond which fracture propagation is thermodynamically favoured. The fracture toughness,
that is the resistance of a material to the advance of a crack, is measured by the stress
intensity factor. The quantity of interest for structural design is the critical stress intensity
factor KIc, the ‘I’ standing for mode I fracture – tensile loading. In two dimensional
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problems, KIc is related to Gc by the equation

Gc =
K2

Ic

E 0 , (5.3)

where E 0 is the apparent elastic modulus that is determined by the loading geometry, e.g.,
plane stress or plane strain. As the mechanical load is greater than Gc, continuum elastic
theory [84] predicts that the steady–state crack speed v is given by

v = cR

�
1− Gc

G

�
, G > Gc , (5.4)

where the asymptotic limit cR is the speed of acoustic surface waves, known as the Rayleigh
speed.

Eq. 5.2, though, does not contemplate that matter is made of atoms whose chemical
bonds only break after overcoming an energy barrier that is higher than simply the surface
energy per atom. This discrepancy is known as lattice trapping, whose net effect is to
increase the measured fracture toughness (term related to the quantity Gc) of a material: a
crack will only advance when the mechanical load will correspond to an energy release rate

G > G∗ > Gc , (5.5)

whereG∗ is the apparent critical energy release rate. The atomic nature of matter also gives
rise to the so called velocity gap: because of dynamical effects arising from a cascade of
bond ruptures at the crack tip combined with the overabundant elastic energy consequence
of lattice trapping, cracks do not propagate at a speed below a certain threshold, drastically
revising the ideal solution of Eq. 5.4 [85].

From a reaction kinetic perspective, then, we can picture the phenomenon of fracture as
the subsequent overcoming of one free energy barrier at a time, each barrier corresponding
to one bond breaking event: the energy of the final state is tuned by the elastic stress applied
to the specimen which in turn varies the barrier height (see Fig. 5.1). The kinetic barrier
vanishes when the stress is large enough, resulting in catastrophic fracture propagation –
that is, unobstructed crack advance; Assuming that the loading method ensures a constant
energy release rate, the crack advance will proceed at constant speed. For a smaller stress,
instead, fracture propagation is a collection of stochastic events of bond breaking.
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Fig. 5.1 Pictorial view of the reaction kinetics of bond breaking

5.2 Silica Structure

Silicates are the most abundant constituents of the Earth’s crust and they are significant
materials for technological fields ranging from mining to construction and semiconductor
industries. Chemically pure silicon dioxide is a model oxide material, and exists in natural
conditions in both crystalline and amorphous forms. In most of its forms the atoms are
arranged to form a continuous network of tetrahedra, where each tetrahedron contains
one Si atom at its centre and four O atoms at its corners, and each O is shared with a
neighbouring tetrahedron as shown in Fig. 5.2a. Each pair of Si atoms belonging to adjacent
tetrahedra is chemically bound to exactly one common O atom, with the O atom positioned
as to form a Si–O–Si bridge: two Si atoms are said to be neighbours if they are bound to
the same O atom or, equivalently, if they belong to neighbouring tetrahedra.

Crystalline structures of silica can be readily studied via standard diffraction techniques:
SiO2 most commonly exists as quartz, of which the α–quartz polymorph is stable at room
temperature and pressure and is commonly referred as quartz. The characterisation of the
atomic structure of amorphous silica is inherently a much more challenging task: over the
years, experimental measurements [86, 87] and mathematical models [88–90] have helped
understanding it in terms of quantities such as density, radial distribution function and
O–Si–O angle distribution. Amorphous silica is considered as the prototypical example
of a network glass, a mathematical abstraction that is subject to research in graph theory.
The short–range structure is very ordered, with atoms typically positioned very close
to the regular tetrahedron sites; on the contrary, the long–range structure is completely
random. The middle–range structure offers instead a great amount of information about
the mathematical and physical properties of the network, which are correlated to the so
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called ring statistics [91]. A ring in a silica random network is a shortest path closed loop,
and its length is defined as the number of Si atoms composing the loop: for example, in
Fig. 5.2b we see one 7–membered ring, one 6–membered and one 5–membered.

(a) Short–range ordered tetrahedral structure

7

6

5

Si

O

(b) Medium–range ring structure: numbers
indicate ring size

Fig. 5.2 SiO2 network glass short– and medium–range structure

From an atomistic modelling perspective, a typical procedure for constructing a unit cell
of pseudo–amorphous silica is to (i) melt a large supercell of SiO2 crystal (often cristobalite,
as its density is the closest to glass) (ii) equilibrate its liquid state and then (iii) quench it
to room temperature. If the experimental values of a set of observables are matched, the
so obtained structure is considered to be a valid amorphous structure that can be used in
atomistic simulations [92, 93]. Nonetheless, a picture of an atomic–resolved 3D atomic
structure is yet practically unattainable, leaving a gap between experimentally observed
properties of real structures and the proposed atomistic models.

5.3 2D Silica Structure

A wealth of recent experiments have proved the possibility of growing 2–dimensional silica
in both crystalline and amorphous forms, allowing to visualise the glass structure atom by
atom using standard surface imaging techniques [94–97]. The atomic structure, seen in
Fig. 5.5, is composed of a mirror–symmetric bilayer of Si atoms coordinated with 3 in–plane
O atoms, with an intermediate layer of O atoms creating the remaining Si–O–Si bridge
between the top and bottom layer. Rings orthogonal to the plane are always 4–membered;
in–plane rings are 6–membered in the crystalline system resembling Tridymite SiO2, and
show a distribution peaked around 6 in the amorphous material.
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(a) Top view (b) Front view

Fig. 5.3 Detail of a 2D SiO2 amorphous structure

(a) Top view (b) Front view

Fig. 5.4 Unit cell of crystalline 2D SiO2 structure. The cell dimension on the (001) plane is
5.30Å× 9.18Å according to the TS IP.

Due to its mirror symmetry, the bilayer structure does not tend to warp, contrary to
monolayer structures such as graphene; interestingly, it appears to interact very weakly
with the substrate on which it is grown, thus allowing the technical advantage of assuming
a free standing surface surrounded in vacuum in simulations. Crystalline and amorphous
structures can coexist in the same specimen and a transition can occur at their interface by
atomic–scale rearrangements between ring pairs [98].
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Fig. 5.5 Amorphous 2D SiO2 structure. Atomistic model from STM image in Ref. [99]
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Fig. 5.6 Si random network and its dual ring structure in vitreous 2D SiO2
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In Fig. 5.5 we show the atomic structure of a silica bilayer reproduced from the STM
image of a vitreous patch grown on Ru(0001) by Lichtenstein et al. [99]. From the exper-
imentally observed positions of the surface Si atoms, the structure has been derived by
placing a bridging O in between each pair of Si; a second layer has been replicated 4Å
below (roughly double the equilibrium Si–O bond length), and bridging O have been placed
in the middle to bridge the two layers. The structure has then been optimised by means
of FIRE relaxation using the short–ranged TS potential of Ref. [35] (despite the potential
being fitted on bulk silica data, tests presented in this chapter will show it is an adequate
potential for the bilayer structure as well). The final structure comprises 3833 atoms and its
size is 123Å× 67Å, and has been used as the model amorphous structure for this chapter.
The visualisation in Fig. 5.6 superimposes the random network of Si atoms (in black) and
the dual random network of rings: each circle represents one ring, its colour encoding the
size, and neighbouring rings are linked by a dotted line.

According to the model for atomic arrangement in glass of Zachariasen [88], the random
structure can be obtained from the ordered honeycomb structure after a series of bond–
switching mechanisms that transform two neighbouring rings of sizes (N,M) into (N −
1,M + 1) [100]. As a result, the ring size distribution should be peaked around 6, and large
rings should be more likely to be found next to small rings and vice versa. This is confirmed
by the ring statistics analysis of the experimental structure: the skewed histogram in
Fig. 5.7a, replicating the data analysis of Ref. [99], shows a predominance of 6–rings; the
second prediction is supported by Fig. 5.7b representing the likelihood that a ring of size N
is neighbour to a ring of sizeM , which suggests a trending line N +M = 12.
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(a) Distribution of ring sizes (b) Frequency of neighbouring ring size for each
‘centre’ ring size. Rows are normalised

Fig. 5.7 Ring statistics of amorphous 2D SiO2
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To further characterise the vitreous specimen, a Si–O–Si bond angle analysis has been
performed. Thanks to the mirror–symmetry of the structure we can immediately make
some considerations:

• The bond angles of Si–O–Si bridges between the two layers is constrained to be about
180◦, and their distributionwill be separate from the other angles and unrepresentative
of the ring structure.

• The two bond angles corresponding to atoms in equivalent positions in the upper
and lower layer should be the same.

Thus, the bond angle analysis has been limited to the upper layer of the structure, where
each Si atom is linked to 3 oxygens ‘bulging’ out of the surface at an angle to be determined.
The bond angle analysis has been performed on the non–boundary rings to exclude possible
distortions caused by surface effects. Each Si–O–Si bridge is shared by two neighbouring
rings, and the measured angles have been filtered by the ring sizes to which they correspond.
In Fig. 5.8, which expands the analysis of Ref. [99], we can observe a skewed distribution
peaked at around 147◦, corresponding to the angle observed in the crystalline structure
of Fig. 5.4 – and, notably, very close to the 144◦ of bulk α–quartz. The angle distribution
appears to be independent of the ring size to which it belongs, and is quite different from
the broader and symmetric angle distribution observed in 3D vitreous specimens. Table 5.1
analyses the data more in detail, and shows that the smaller are the rings sharing the Si–O–
Si bridge, the wider on average is the angle. The explanation is straightforward: smaller
rings must accommodate more atoms per unit surface, thus the smaller distance separating
neighbouring Si atoms results in a more protruding O atom. Nevertheless, the angle ranges
are highly overlapping, hinting that the short–range distortion of the tetrahedral structure
is only slightly perturbed by the middle–range disorder.
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Fig. 5.8 Si–O–Si bond angle distribution on the surface of amorphous 2D SiO2. Ring sizes 4
and 9 are omitted for scarcity of data. Each Si–O–Si bridge belongs to two rings

Table 5.1 Si–O–Si bond angle mean and standard deviation for different combinations of
ring sizes

Ring size 5 6 7 8
5 146.8 ± 3.1 145.2 ± 3.7 144.2 ± 3.4 143.7 ± 2.8
6 145.2 ± 3.7 145.6 ± 2.1 145.3 ± 2.0 144.1 ± 2.5
7 144.2 ± 3.4 145.3 ± 2.0 144.9 ± 1.4 144.2 ± 1.9
8 143.7 ± 2.8 144.1 ± 2.5 144.2 ± 1.9 143.7 ± 0.9
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5.4 Computational Methods

Force Evaluation

In this chapter, the candidate IP for describing 2D silica is the short–ranged TS potential,
which has already been used to study quartz in a QM/MM scheme [69] and in the first
simulations on silica bilayers [100]. The potential has been parametrised to best reproduce
forces, energies and stresses of bulk quartz obtained through LDA DFT calculations [35].

As our ‘gold standard’ we have chosen DFT calculations carried out through the mixed
Gaussian and planewave QuickStep code [101] contained in the CP2K package [81],
using a Goedecker–Teter–Hutter (GTH) pseudopotential with PBE exchange–correlation
functional. The formally correct choice of solver for the (electrostatic) Poisson equation
for atomic clusters in vacuum is by means of spatially–confined wavelets: after careful
evaluations showing no loss of accuracy, a periodic solver using the much faster Fast Fourier
Transform libraries has been used. The procedure to calculate DFT forces on a set of core
QM atoms C of a larger system is the following:

1. Grow a buffer region B containing the set of atoms within 12 bond hops from any of
the core atoms and those that complete the silica tetrahedra of the set.
The number of bond hops has been set after force convergence tests at increasing
buffer size to a RMS error of 0.05 eVÅ−1 with respect to a full bulk calculation.

2. Carve a cluster and H–terminate the unsaturated O atoms, then add 20Å of vacuum
in each direction.
The amount of vacuum has been verified to converge atomic forces on surface slab
calculations within a RMS error of 0.02 eVÅ−1, where the reference value is the same
calculation with 50Å vacuum.

3. If the configuration comes from a TS simulation or if the TS and DFT forces must be
compared, uniformly rescale the atomic positions by a factor 1.01244.
The factor has been evaluated by comparing the unit cell dimensions of crystalline
2D silica at equilibrium using the two interaction models.

Loading geometry

We have used a customised thin–strip geometry to study fracture propagation. In a standard
thin–strip loading depicted in Fig. 5.9, a rectangular slab of material is clamped at two
opposite edges that have been displaced by a constant amount δ, and a notch is generated
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at half height for crack initiation – see the matscipy code implementation [102]. Behind
(left of) the crack tip the surfaces are displaced by an amount 2δ, whereas ahead (right)
of the tip the system is loaded with an uniaxial vertical strain ε = δ/h. The initial notch
length is typically a = 1/3L, and the transition length b can be arbitrarily introduced for a
quicker elastic relaxation of the system to a more blunt crack tip.

�

��

(a) Unloaded specimen

��
��
�
δ�

� �

�δ

(b) Loaded and notched specimen

Fig. 5.9 Thin strip loading geometry

In a 2D specimen the vertical surfaces are free, so the stress component σz in the direction
orthogonal to these is zero: the system is then in a so called plane stress configuration, and
the strain energy release rate is

G =
∂Uel

∂A
=

Z 2h

0

1

2
Eε2 dh = Eε2h = E

δ2

h
. (5.6)

We must note that this is clearly an approximation, as it assumes that all the elastic energy
stored in a column of base dA of bulk material under tensile stress is converted into surface
energy of two surfaces of size dA part of infinitely long surfaces.

The combination of material properties of high brittleness (lowGc), stiff elastic constants
(high E) and appreciable long–range interactions found in 2D silica and other oxides (large
2δ), though, brings to the surface a limitation of the loading method. The separation 2δ

becomes large enough (∼10Å) to consider the two fractured halves to be non–interacting
in only two undesirable cases: (i) when the applied G is far beyond the critical value Gc,
excluding the possibility of near–Griffith velocity gap studies; (ii) when the height of the
system h is very large, making the simulations unnecessarily wasteful of resources.

To circumvent the issue, the thin strip loading scheme has been modified by replacing
the fixed atoms constraint at the boundaries with Hookean springs constraining the top
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and bottom layer atoms close to the vertical position of the now removed clamps. The
modified loading method is the following:

1. Given a geometry–optimised rectangular slab of height 2h, create the notched system
by applying a strain sufficient to obtain the desired surface separation 2δ

2. Add a Hookean spring constraint of spring constant k to each Si atom at the top
and bottom edges as illustrated in Fig. 5.10: given an edge Si atom i of y0i vertical
coordinate after step 1, the restoring vertical force of the constraint is given by

fi = k
�
y0i − yi

�
ŷ (5.7)

3. To mimic an infinitely long sample and prevent the bowing of the vertical edges, fix
the horizontal position of left and right edge atoms

4. Relax the system under the applied constraints by means of either the FIRE (more
versatile, not guaranteed to converge) or preconditioned L–BFGS (only allows some
constraints to be used, but is guaranteed to converge) with a convergence threshold
on the atomic forces of |fmax| < 0.01 eVÅ−1.
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Fig. 5.10 Hookean edge constraint depiction. The Si atoms clamped to fixed points by
springs are coloured in black. Here we show a detail of the top edge of a crystalline slab

The modified loading scheme allows to disjoin the crack surfaces separation and the
elastic energy stored in the system: at the left of the crack tip, the system is elastically
unloaded as in the standard thin strip setup but with a surface separation tuned by step 1;
ahead of the tip, the overall system behaves as three springs in parallel, where the elastic
energy is stored in both the material and the constraints and is tuneable by adjusting the
spring constant k.
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The edges of the specimen should be far away enough from the crack tip in order not to
create elastic field artefacts in its neighbourhood [103]. Therefore, if we wish to compare
how a crack advances in the amorphous material for different atomic arrangements of the
crack tip, we must maintain the dimensions of the specimen constant – a, L, h of Fig. 5.9.
To do so, the periodic strip system of Fig. 5.11 has been generated from the amorphous
patch of Fig. 5.5 by carefully adding and removing atoms so to obtain matching vertical
edges while retaining the correct stoichiometry and structural integrity. From this unit
cell, different crack tip configurations can be obtained by slicing a horizontally–replicated
supercell with a window of length L shifted by the desired amount.

Fig. 5.11 Amorphous 2D SiO2 structure periodic along the horizontal axis. The horizontal
bars represent the unit cell boundaries

In the modified thin strip geometry, G cannot be evaluated with the straightforward
Eq. 5.6 obtained for the unaltered geometry, but rather has to be estimated using the original
definition of Eq. 5.1, i.e., the elastic energy stored per unit surface normal to the crack
surface. For a fixed elastic constant value k and an applied strain ε, G is measured using
the following method:

1. Take an unstrained periodic strip of the relevant structure and perform constraint–
free geometry optimisation (the periodic strip is a 1×Ny×1 unit cell for the crystalline
material and the structure of Fig. 5.11 for a vitreous specimen). Measure the potential
energy U0

2. Strain the system by an amount ε, apply the Hookean spring constraints previously
described and relax it. Measure the potential energy Uε, adding up both the atomic
interaction and the spring constraints contributions.

3. Estimate the energy release rate as

G =
∂Uel

∂A
' Uε − U0

A
, (5.8)
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where A is the nominal area of the periodic strip in the plane orthogonal to the
direction of deformation.

Where in crystalline specimens this definition is the exact equivalent to Eq. 5.6 under the
modified constraints, in vitreous specimens it can be thought of as the mean energy release
rate averaged over the possible crack tip positions. Also, we can observe that the two limits
for k = 0 and k = +∞ correspond to the unstrained geometry and to the standard thin
strip geometry respectively.

Thermalisation approach

In all of the following MD simulations, the dynamics of the system is propagated at a
target temperature Tsim by means of Langevin dynamics approximating a NVT ensemble
as implemented in the molecular dynamics package ase [104]. We used a constant friction
coefficient γ = 0.002 atomic units. To guarantee the system to reach thermal equilibrium
and to avoid sloshing of momenta, the setup involves the following steps:

1. Start from the statically optimised specimen obtained as described in the loading
geometry section, and apply random momenta to the atoms according to a Maxwell–
Boltzmann distribution at a lower temperature than Tsim – a typical starting tempera-
ture is 100 K.

2. Perform a dynamics where momenta are rescaled every few timesteps, so to linearly
increase the target temperature to Tsim – the simulation time for this step is of the
order of 10 ps.

3. Let the system equilibrate in a standard NVT dynamics – the equilibration time is
about 10 ps, beyond which a visual inspection of the trajectory does not reveal any
residue of momenta sloshing.

This thermalisation strategy in step 2 is aimed at speeding up the thermalisation process
by curbing the sloshing of kinetic energy from one area to another of our relatively small
systems, and is obtained by letting the Langevin thermostat gradually add randommomenta
to the atoms. We must also note that, in order to prevent a premature crack propagation,
some bond lengths for atoms at the crack tip may need to be constrained.
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Dynamic fracture propagation setup

The study of dynamic propagation of the crack is used to (i) observe how atomic bonds
snap at the crack tip, (ii) measure the crack velocity and possibly (iii) analyse bond breaking
event statistics and time correlations. For these kinds of simulations, the constraints are the
springs at the top and bottom layers of the slab and the constraints forcing the atoms at the
vertical edges to move in the vertical direction only. The loading method can either be static
if the applied mechanical load is known to be sufficient to enable crack propagation during
the simulation time, or increasing when, for instance, one is searching for the minimum
loading that causes the crack to move (i.e., the apparent critical energy release rate G∗). In
the latter case, the strain on the slab ε is increased at each timestep at a rate ε̇ ∼ 10−5 fs−1

(a 1% strain increase every ps of MD) until the first bond at the crack tip is broken, after
which the strain is kept constant at the last value. To measure such event, we build an
adjacency matrix for the atoms in the proximity of the crack tip, where a Si and O atom are
considered to be bonded if their distance is lower than rcut = 2Å.

It is worthwhile to point out in advance that MD simulations can only probe crack
speeds compatible with the simulated time: this will be in the order of 101 ps, so if we wish
to observe an average of at least 2 crack advance events every 10 ps and one such event
moves the crack tip forward by about 5Å, the minimum observable crack speed is roughly
100m s−1.

By solving Arrhenius equation Eq. 3.56 at a temperature of 300 K for an estimated
speed of sound c = 5× 103 m s−1 (such is the order of magnitude of c in quartz) and a
maximum wavenumber k = 0.3 Å−1 (using a maximum lattice vector of 5Å) corresponding
to a maximum acoustic phonon frequency, i.e., attempt rate, ω = ck = 1013 s−1, we can also
find out that the height of the free energy barrier to the crack advance must be no higher
than about 0.12 eV to observe any crack propagation at all in a non–accelerated dynamics
setup.

Thermodynamic integration setup

We wish to study the free energy barrier for advancing a crack by one atomic bond. To
do so, we will perform MD simulations constrained to the slow growth thermodynamic
integration method (SGTI). Common to the other phase space sampling methods, the TI
method is highly sensitive to the choice of reaction coordinate, which determines the
constraint force to be monitored. The most robust choice tested so far is the following:
take the distance vector d0

AB between two Si atoms A and B belonging to layer 1 and 2
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respectively and situated at the opposite sides of the Si–O–Si bridges split by the crack
advance, and set to zero its z component to obtain the new vector

dAB = d0
AB − d0

AB · ẑ (5.9)

lying on the (x, y) plane as depicted in Fig. 5.12. The collective variable is then the in–plane
distance dAB = |dAB|: constraining it to a fixed value effectively results in constraining
the average length between the two Si–O–Si bridges at the crack tip, which ensures that
the phase space compatible to the double bond opening event is properly sampled, i.e., no
one bond can snap rapidly and unconstrained while the other is constrained.

Fig. 5.12 Thermodynamic integration constraint. Atoms A and B lie on two different layers,
and the distance is measured on the plane of the page.

The holonomic constraint on the distance dAB is imposed during a MD by applying a
constraint force on the atoms of equal magnitude and opposite direction. Given the forces
fA and fB and the in–plane distance vector dAB , the constraint force is

fcnst =
1

2
(fB − fA) · d̂AB d̂AB , (5.10)

which alters the atomic forces as following:

fA → fA + fcnst

fB → fB − fcnst .
(5.11)

In the slow growth method, the reaction coordinate must typically increase by a constant
tiny amount ∆d at each MD timestep: this has been implemented by adjusting the atomic
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positions of atoms A and B as following:

rA → rA − 0.5∆d d̂AB

rB → rB + 0.5∆d d̂AB .
(5.12)

Cumulatively integrating the irreversible work done by the constraint forces in this suc-
cession of these constrained displacements one obtains the full free energy profile for the
bond opening process.

We must note that the inverse process of ‘closing back’ the bonds is not taken into
account in the free energy calculations. Since each bond rupture event is an irreversible
process and so is the inverse process of bonding, both are hysteretic: if the double bond
opens at do it will then only close at dc = do − δ < do, and the phase space region where
both bonds are broken and the distance is in the range [dc, do] is not spanned by the crack
advance processes that will be the focus of our calculations.

5.5 Tangney–Scandolo Interatomic Potential Benchmark

Fracture simulations require accuracy in three key quantities:

• Elastic constants, defining the elastic behaviour of the material;

• Surface energy, defining the energetic cost of creation of new surfaces as a result of
crack advance;

• Atomic forces at the crack tip, determining the reaction path of bond rupture events.

The aim of this section is to assess the validity of the TS IP in dealing with fracture
simulations on two–dimensional silica: each one of the three quantities are evaluated in an
independent test, and their results are assessed together in a final commentary.

Elastic modulus

In regards to the elastic constants, the benchmarking has been limited to measuring the
effective Young’s modulus E, which is the one elastic quantity determining the fracture
toughness in a thin strip geometry. As a further limitation, E has only been evaluated in
the crystalline system, as a full DFT treatment of the entire vitreous specimen is out of
question and a measurement on a small subpart of it would inevitably be biased by surface
effects. The elastic modulus has been calculated by progressively elongating the unit cell
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along the [010] ‘armchair’ direction (using the graphene terminology given the structural
analogy), and relaxing the atomic positions at each step. According to

U =

Z

V

1

2
Eε2dV , (5.13)

the curvature of the parabola fitting the strain–energy curve is equal to 0.5EV . V is the
unit cell volume, where the nominal thickness along the [001] direction has been set to 4Å,
roughly equal to the separation between layers.

The result is shown in Fig. 5.13: the elastic modulus measured by DFT is 463GPa, and
the result obtained using the TS IP is 523GPa.
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Fig. 5.13 Energy–strain curves for elongation along [010] of 2D SiO2 – PBE vs. TS

Surface energy

The surface energy evaluation has been performed on the crystalline system first. From
the vitreous patch of Fig. 5.11, we can see that the average orientation of the silica rings in
a mid–height horizontal crack would favour the creation of zigzag rather than armchair
surfaces. Therefore, we will concentrate on zigzag crystalline surfaces.

The standard computational approach for measuring the (010) surface energy (let (010)
be the ŷ direction) consists of (i) generating aNx×Ny×1 supercell from the fully optimised
unit cell, (ii) increase the cell dimension along [010] to add vacuum and obtain a slab with
two surfaces and (iii) relax the geometry of the slab. According to Fig. 5.4a, the creation
of two (010) ‘zigzag’ surfaces involves breaking two Si–O bonds per unit cell, resulting in
two dangling O atoms each of which can end up on either surface. Each unsaturated Si–O
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protrusion can be thought of as an electrostatic dipole, thus the surface energy will strongly
depend on the specific configuration of dipoles lying on the top and bottom surfaces. A set
of calculations has been performed using the TS IP for all possible combinations of surface
termination for systems up to Nx = 4 unit cells long; after convergence tests, the vertical
supercell size has been set to Ny = 5 and the vacuum size to 20Å.

As expected for a system of dipoles of roughly the same direction, the minimum energy
system corresponds to the alternate two–unit cell configuration depicted in Fig. 5.14 that
maximises their distance.

Given the energy Ebulk of a bulk unit cell containing Nbulk atoms and the energy of
the surface slab Esurface containing Nsurf atoms, the surface energy γ is calculated by the
formula

γ =
Esurf − Ebulk Nsurf/Nbulk

2A
, (5.14)

where A is the nominal surface area of the slab, here obtained assuming a nominal bilayer
thickness of 4Å.

According to the TS IP, the surface energy per unit cell per surface ranges between
4.8 eV (minimum energy configuration of Fig. 5.14) and 6.8 eV (all oxygens lying on one of
the two surfaces). The minimum surface energy density of the (010) surface is then 3.6 Jm−2.
We hypothesise that the hierarchy of energy as a function of surface oxygen arrangement
is determined by dipole–dipole interactions: since electrostatic interaction is accurately
described by the TS IP, we can expect the hierarchy not to change in DFT calculations. Thus,
we evaluated the minimum energy configuration of Fig. 5.14 by means of DFT, obtaining a
value of 5.2 eV per unit cell per surface, corresponding to a surface energy of 3.9 Jm−2.

Fig. 5.14 Minimum energy (010) surface of crystalline 2D SiO2. Grey shades represent
coordinate along the [001] axis.

To obtain an estimate for the surface energy density of vitreous SiO2, the semi–periodic
system of Fig. 5.11 has been cut in half horizontally, preserving whole rings and placing the
surface oxygens according to the staggered minimum energy ordering as shown in Fig. 5.15.
The nominal surface energy density of the vitreous specimen calculated with the TS IP is



5.5 Tangney–Scandolo Interatomic Potential Benchmark 90

3.8 Jm−2 (or 0.95 eVÅ−1 if expressed per unit length of the surface), just slightly higher than
the value obtained in the crystalline system. Due to the large system size, in this case a
direct comparison with DFT results is not possible. A summary of these surface energy
calculations results is presented in Table 5.2

Table 5.2 Summary of surface energy density calculations. The convergence criterion is
|fmax| < 0.01 eVÅ−1

System Model γ [Jm−2]
Crystal (010) IP TS 3.6
Crystal (010) DFT 3.9
Glass IP TS 3.8

Fig. 5.15 Surface of vitreous 2D SiO2, after geometry relaxation. The atoms of top and bottom
edge rings are kept fixed to avoid unwanted surface reconstructions on the preexistent
surfaces during structural optimisation.
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Forces at the crack tip

In order to evaluate the effectiveness of the TS IP to estimate atomic forces during crack
advance, we concentrated our benchmark on the constraint force fcnst of Eq. 5.10. The
dataset consists of two SGTI trajectories of crack advance in which a single 6–membered
ring opens in vitreous 2D glass at 300 K at high G = 2.36 Gc and near–Griffith G = 0.96 Gc

loads. The trajectories have been obtained by evolving the system according to the TSmodel,
and the MD has been stopped after the integrated TS free energy barrier was overcome – i.e.,
when the Si–O–Si bridges of both layers are completely broken. At this point, we calculated
the DFT constraint forces on an evenly time–spaced subset of the MD configurations.

Remembering that in a cluster calculation the DFT constraint force itself is converged to
an RMS error of 0.05 eVÅ−1, we can observe from Fig. 5.16 that the TS potential is generally
able to follow the force trend but with significant error bars. The relevant figure of merit
for Fig. 5.16 is presented in Table 5.3, where we measure the accuracy of the TS constraint
force fTS

cnst, expressed in terms of RMS deviation with respect to the reference fDFT
cnst values.

Table 5.3 Benchmark of SGTI constraint force

k G/Gc N. DFT forces fDFT
cnst RMS mean fTS

cnst RMS error
[eVÅ−2] [eVÅ−1] [eVÅ−1]
+∞ 2.36 286 0.63 0.23
0.7 0.96 644 1.38 0.30
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(a) Scatter plot of fcnst
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(b) Histogram plot of absolute errors in fcnst

Fig. 5.16 Comparison between TS and DFT constraint forces in SGTI. The colour highlights
the dataset: green G = 0.96 Gc, blue G = 2.36 Gc
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To better understand what is the effect of such errors in the actual measurement of
a free energy barrier ∆F , I compared the integrated TS barrier with a hybrid accuracy
TS–DFT barrier (phase space sampling according to the TS potential, integrated force from
the DFT model). Such hybrid method is by no means intended to replace a fully accurate
DFT free energy barrier calculation, but rather as the best estimate of ∆F profile that does
not require QM/MM MDs that are unmanageable for the typical QM cluster sizes of about
650 atoms and a simulation time of around 10 ps.

The QM constraint force evaluation has been limited to the part of the SGTI trajectory
around the peak of the free energy profile, since it is the only one relevant to the calculation
of the barrier. These free energy profiles are shown in Fig. 5.17.

Despite the small discrepancies of ∆F evaluated by the TS or the hybrid TS–DFT
models, it is worth noticing that the free energy barrier height enters in the calculation of
Arrhenius rate constant as exp (−β∆F ), thus amplifying small differences. For this reason,
both the free energy barrier heights and their relative rate constants at 300 K are reported
in Table 5.4.

Table 5.4 Benchmark of SGTI free energy barrier height

G/Gc Model ∆F barrier [eV] Rate constant
0.96 TS 0.69 2.4× 10−12
0.96 TS–DFT hybrid 0.76 1.5× 10−13
2.36 TS 0.11 1.5× 10−2
2.36 TS–DFT hybrid 0.08 4.2× 10−2

Summary

The results from this section show that the TS interatomic potential, while clearly not being
accurate to the highest degree, is nevertheless reproducing target DFT properties within
an acceptable level of confidence. We must highlight that our classical potential has been
fitted on neither surface configurations nor two–dimensional systems, therefore its positive
performance is as welcome as it is unexpected. In regards to the specific task of evaluating
free energy barriers for crack opening, our benchmark hints that the discrepancy between
the two interaction models is moderate, and that the results are qualitatively comparable.
We can then conclude that a meaningful computational investigation on the mechanisms
of crack advance can be performed in a purely classical framework.
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(a) Free energy barrier for G = 0.96 Gc
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(b) Free energy barrier for G = 2.36 Gc

Fig. 5.17 Comparison between TS and DFT free energy barriers in SGTI. The colour high-
lights the model: red TS, grey DFT
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5.6 Results: Dynamic Crack Propagation

The aim of this study is to visualise how cracks propagate dynamically and relate the
differences in observed behaviour to their atomic structures. For the task we prepared two
specimens, one crystalline and one vitreous, of a sufficient length along the crack direction
to evaluate a steady state crack velocity. In both cases, the strain ramp loading method
has been used to be able to observe fracture propagation at relatively low elastic loads; the
target temperature of all calculations is 300 K.

Crystalline specimen

Fig. 5.18 Crystalline specimen for crack MD study, 369Å× 106Å
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Fig. 5.19 Energy release rate vs. strain curves of crystalline 2D–SiO2, 70 × 11 supercell
slab, strained along [010], clamped to Hookean constraints of spring constant k. Gc =
2γ = 7.28 Jm−2

The crystalline specimen, shown in Fig. 5.18 is a 70 × 11 supercell containing 18286
atoms and of in–plane size of 369Å× 106Å; the fracture system is [100](010) to obtain the
minimum energy zigzag surface. A set of calculations have been carried out at different
initial strains so to obtain different starting configurations for the crack propagation. All
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runs have been carried out at room temperature, and using Hookean constraints of spring
constant k = 1.9 eVÅ−2 at top and bottom edges (this choice is arbitrary); atoms at the left
and right edges are constrained to move along the vertical direction only to prevent edge
warping.

Prior to MD calculations, we evaluated the energy release rate G as a function of the
vertical strain ε and of the constraints spring constant k consistently with our definition
of Eq. 5.8 by measuring the potential energy per unit length of the strained system. In
Fig. 5.19, we can observe that Gc = 2γ for k = 1.9 eVÅ−2 is reached for a strain ε ' 0.06.

The measurement of the crack tip position is automated in a very basic implementation:
it is defined as the x–coordinate of the Si atom of the highest momentum in the y direction.
The rationale for this choice is that the rupture of a Si–O–Si bridge at the crack tip causes
a rapid separation of its two Si atoms, which will travel in opposite directions in roughly
the y direction. Furthermore, the observed crack speeds are so high that as the crack tip
atoms of a rupturing bond reach their relative surfaces distance, the Si–O–Si bridge ahead
is already in the process of breaking. To reduce the noise in the position measurement,
the raw data points are postprocessed by a median filter with a window size of 180 fs (i.e.,
approximately the time necessary for a Si–O–Si bridge to change its state from closed to
open).

In a simulation starting with an initial strain of 0.055 below the critical value, the crack
did not advance until a strain ε = 0.103 was reached, corresponding toG ' 2.8Gc: once the
first bond is broken, the crack quickly reaches a steady state of constant speed of 2400m s−1

as can be seen in Fig. 5.20a. In a different simulation with a higher initial strain of 0.074, the
crack propagated at a strain ε = 0.096 (G ' 2.5 Gc) and at an average speed of 2200m s−1.
The coordinate of the crack tip for this simulation can be observed in Fig. 5.20b.

The frequency of bond breaking events appears to be paced by the time the system
takes to transfer the elastic load from the last broken Si–O–Si bridge to the next intact
bridge ahead: the rupture of a double Si–O–Si bridge at the tip causes a sudden acceleration
in opposite directions of rings just above and below, so that the Si–O–Si double bridge at
the new crack tip position experiences a temporary and localised strain increase. Granted
that the energy release rate is sufficient for crack propagation – as it will always be for
G > G∗ sufficient to start crack propagation – this ‘surf effect’ guarantees that the fracture
will propagate at a high speed in a barrier–free catastrophic mode. To help visualising the
process of crack propagation in the crystalline structure, Fig. 5.21 presents snapshots of a
bond breaking event.
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Fig. 5.20 Crack tip position in crystalline 2D SiO2 fracture MD

Concurrently, another dynamical phenomenon takes place to instead limit the speed
of crack propagation. After an initial acceleration of the crack tip in which the bonds
break to form ordered surfaces, the conspicuous heat generation near the crack tip gives
enough kinetic energy to the tip atoms so that less ordered and more energetic structures
are formed: the creation of a disordered crack tip can momentarily slow down the crack
propagation, which results in an alternate acceleration/halting pattern of the crack tip
motion. In line with this physical intuition, it has been observed that simulations at higher
G are more prone to an intermittent crack motion. This phenomenon is not specific to the
atomic structure under investigation but rather to the excess elastic load, as qualitatively
similar behaviours have been observed in different materials such as silicon [105].

Overall, we can then expect this material to have a narrow range of possible crack
propagation speeds and a very clear velocity gap. To verify the presence of a velocity gap
we modified the original setup by reducing the spring constant k of the edge constraints
for all springs whose x–coordinate is 100Å or more ahead of the initial crack tip position.
By doing so, in the first 100Å the fracture will propagate subjected to a load G1 > G∗ to
then slow down when entering a region of lower energy release rate G2 < G1: if the crack
stops, we then deduce that it cannot propagate at the load G2; if instead it propagates at
a lower speed, we will deduce that cracks can propagate at G2 but the event of breaking
the first bond is not likely enough to be observed in a standard simulation timescale. It
must be reminded that, because of the time limits inherent to our MD simulations, a crack
advancing at a speed lower than about 100m s−1 is indistinguishable from a still crack.
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(a) ∆t = 0 fs (b) ∆t = 80 fs (c) ∆t = 160 fs (d) ∆t = 240 fs

Fig. 5.21 Crack advance snapshots in crystalline 2D silica fracture MD. Atoms are coloured
by their kinetic energy, from low/black to high/white. Here we show one bond opening:
(a) mechanical load is transferred to the Si–O–Si bridge at the crack tip, (b) the chemical
bonds break and the bridge atoms start separating, (c) the tip atoms gain large amounts of
kinetic energy during the bond opening, (d) the crack has advanced by one step

Table 5.5 Observed crack speeds in crystalline 2D SiO2. The load G is estimated by linearly
interpolating the data points from Fig. 5.19. The crack speed is estimated by the slope of
the linear interpolation of the crack tip position vs. time graph

Setup ε k [eVÅ−2] G [Jm−2] G/Gc speed [m s−1]
uniform k 0.096 1.9 18.5 2.5 2200
uniform k 0.103 1.9 21.5 2.8 2500
k drop 0.105 0.95 19.5 2.6 2200
k drop 0.105 0.5 15.8 2.2 0
k drop 0.103 0.7 17.2 2.4 0

The results of Table 5.5 confirm our hypothesis: if there exists a range of elastic loads
allowing a crack speed between 100m s−1 and 2200m s−1, it must be within a narrowwindow
between 17.2 Jm−2 and 18.5 Jm−2. With the appropriate unit conversions, we can translate
this information to the energy gain G−2γ for a crack advance of one unit cell (5.3 Å) by
double Si–O–Si bridge breaking: a crack cannot propagate at a measurable speed if the
energy gain is lower than 13 eV per unit cell, and it will instead propagate unconstrained
when the energy gain is at least 15 eV per unit cell.

Such results can only be explained by the presence of a very high free energy barrier
to bond opening at Gc, which remains larger than the estimated ∼0.12 eV even when the
end state of the crack advance reaction is 13 eV below the initial state; when the elastic
load is high enough to finally lower the barrier enough, the energy gain per bond breaking
reaction is so high that the crack immediately propagates at the highest possible speed
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for the material while dissipating large amounts of energy. The prediction on the barrier
height as a function of the load will be tested by the thermodynamic integration results of
the next section.

Vitreous specimen

Fig. 5.22 Amorphous specimen for crack MD study, 490Å× 74Å

The vitreous specimen, shown in Fig. 5.22, has been built by replicating 4 times the
vitreous periodic strip; it contains 15608 atoms and its in–plane size is 490Å× 74Å. We
performed a series of simulations at a temperature of 300 K, and at different lengths of the
crack seed to study whether the ring structure at the crack tip affects how a crack begins to
propagate.

The MD trajectories show that fracture preferentially propagates by rupturing larger
rings, deviating its trajectory from a straight line when the tip encounters small rings; we
show an example of crack advance in Fig. 5.23. We can observe that:

• breaking of size 4 rings has never been observed,

• breaking of size 5 rings only occurred once in all simulations in a highly disordered
and almost ‘explosive’ crack propagation at high load,

• breaking of size 6 rings is common but only occurs when the ring is aligned exactly
in front of the crack tip,

• breaking of size 7 rings is preferred, even at the cost of deviating the direction of
crack propagation,

• breaking of size 8 and 9 rings can occur in the bulk of the material for the typical
strains necessary to observe crack advance, resulting in the formation of voids ahead
of the crack tip;

In summary, larger rings are weaker.
The data from our MD simulations shows that, at some point during its motion, the crack

tip will encounter a configuration of ring sizes that does not allow any further advance:
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at this point, the rings near the crack tip have enough time to rotate so to reconfigure the
atomic structure into a blunt tip that reduces the elastic stress. If at this point the elastic load
is increased to restart the crack propagation, or if throughout the simulation the elastic load
is high enough to avoid crack halting, the excess potential energy is released by formation
and growth of voids within the bulk of the material along fault lines that connect large
(hence weaker) rings far away from the original crack tip, as shown in Fig. 5.24. From this
observation, it is possible to hypothesise that fracture in vitreous two–dimensional silica
occurs by coalescence of voids.

Interestingly, the voids show a quasi–periodicity that follows that of the atomic system,
suggesting that the percolation of voids has a strong deterministic component, i.e. for a
given ring configuration, the path of neighbouring ring edges along which fracture occurs
is unique. Assuming that the crack advances following a minimum energy path, we can
picture the fracture of the vitreous system as the stepwise motion of a fictitious particle (the
crack tip) being pulled along the crack propagation direction, encountering a set of possible
moves choices at each step (which ring to break next); the probability of a move is related
to the free energy barrier height to breaking the ring, which is in turn related to the ring
size. For the path to be deterministic, the barrier heights must be substantially different
so that only the event of lowest energy barrier occurs at each step of crack propagation.
From these considerations, we can assume that the fracture path is predetermined by the
topology of the ring structure and by the direction and intensity of the applied stress.

The aim of the SGTI calculations of the following section will be to give a more quan-
titative tool to help explaining the crack advance mechanisms in these MD simulations.

(a) ∆t = 0 ps (b) ∆t = 0.45 ps (c) ∆t = 0.93 ps (d) ∆t = 1.43 ps

Fig. 5.23 Crack advance snapshots in vitreous 2D silica fracture MD. Atoms are coloured by
their kinetic energy, from low/black to high/white. (a) the 6–ring at the crack tip is about
to break, (b) the crack does an upwards step to break a 7–ring rather than a straight 5–ring,
(c) the crack does one downwards step to break another 7–ring instead of a straight 6–ring,
(d) the crack advances straight by breaking more 6–rings
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Fig. 5.24 Void formations in MD fracture simulation of amorphous 2D SiO2. After the crack
front on the left stopped for a strain ε = 0.096, the load was smoothly increased. Rather
than restarting, at a strain of ε = 0.109 a void forms and grows at a Si–O–Si edge shared
between a 8–ring and a 7–ring forming a new crack front; further increasing the strain,
away from both crack fronts more 7/8 and 6/8–ring edges break to form new voids that
grow and coalesce
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5.7 Results: Free Energy Barrier for Crack Advance

In the previous section a connection between atomic structure around the crack tip andmode
of propagation of a crack was hypothesised: fracture in the crystalline system propagates
on a straight line at a steady pace due to the structural order; the disorder of the vitreous
system, instead, results in irregular crack motion and uneven fracture surfaces. In this
section we will perform a set of SGTI calculations for a quantitative analysis of the free
energy barriers to the crack advance that are responsible for the emergence of the dynamical
behaviour of a crack.

As the final free energy of the system after bond breaking will certainly be lower
than the value before breaking for the process to be thermodynamically favourable, the
key quantity of interest will be the barrier height for each mechanism at each load. The
simulations have been performed on specimens of similar dimensions, and the strain ε = 0.10
has been kept constant across all simulations so to have a separation between the cracked
surfaces of about 8Å, thus minimising the measurement errors due to different intensities
of surface–surface interactions. The energy release rate is tuned by the spring constant k of
the edge constraints, and the ring opening mechanism is selected by defining the collective
variable of the SGTI simulation.

For our slow growth thermodynamical integrations to be slow enough to properly
sample the phase space corresponding to a given range of values of the collective variable,
we fixed its speed to 0.5 Å ps−1, which corresponds to at least 8 ps of simulation time for the
observation of one event that draws the the opposite tip Si atoms from an initial distance
(projected along the crack front direction) of about 3.2 Å to a final value of 7Å to 8Å.

Crystalline specimen

Fig. 5.25 Crystalline specimen for crack advance SGTI study, 245Å× 78Å

The foremost aim of this investigation is to gain detailed understanding about how the
shape and height of the barriers as a function of the energy release rate G are responsible
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for such large lattice trapping and velocity gap. The specimen used in this set of simulations
is shown in Fig. 5.25: according to the data in Fig. 5.26, the critical release rateGc is reached
for a spring constant of the edge constraints of 0.35 eVÅ−2. The crack advance mechanism
has been simulated at increasing loads beyond Gc.
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Fig. 5.26 Energy release rate vs. spring constant curve of crystalline 2D SiO2, measured on
a 64 × 8 supercell strained ε = 0.10 along [010], clamped to Hookean constraints of spring
constant k. Gc = 2γ = 7.28 Jm−2

The results are condensed in Fig. 5.27. The studied mechanism involves the asyn-
chronous rupture of two bonds holding together the Si–O–Si bridges at the crack tip, which
is reflected by the presence of two ‘cusps’ in the free energy profile (we here use the term
‘cusp’ loosely to indicate a sudden change in first derivative over a short interval of values
of the collective variable). Dividing the bond breaking process in three parts delimited
by the cusps positions, from left to right we can see the elastic response of both Si–O–Si
bridges when still intact, the the elastic response of the one remaining Si–O–Si bridge and
the elastic relaxation after the crack has advanced by one step. The equilibrium length of a
Si–O–Si bridge, corresponding to the first minimum is about 3.2 Å and slightly increases
with the elastic load; the second minimum, not shown in the plots, corresponds to the
equilibrium distance of the two fractured surfaces at the crack tip, and will be smaller than
the 8Å separation between surfaces far away from the tip. All three parts of the profile can
be approximated by a quadratic curve, in agreement with a linear elastic behaviour. The
smoothness of the change of the first derivative around the cusps signals that the failing
chemical bond is hopping between the bound and unbound states over a transition interval.
Interestingly, the intermediate ‘half open’ state appears to be metastable in only a narrow
range around G/Gc = 1.16: only there there exists a local minimum between the two bond
breaking events – yet a shallow one of no more than 0.15 eV – that would allow the crack
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to remain half open for a finite amount of time, thus decorrelating the two bond breaking
events. The curve for G/Gc = 2.10 appears as an outlier because of an instability of the tip
ring after the rupture of both bonds causing an artificially induced reconstruction beyond a
reaction coordinate of 4.25Å.
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Fig. 5.27 Free energy barriers to crack advance in crystalline 2D SiO2 for a set of energy
release rates G. The minimum of the closed configuration sets the zero for each curve. The
plot is cropped to highlight the free energy profiles around the peaks

By further distilling the SGTIs data, we obtain the plots of Fig. 5.28 showing the value
of collective variable and free energy of each peak. The residuals of the linear fits for the
heights of both peaks are almost negligible, following the standard behaviour of activated
processes, so the peak height ∆F can be written as a function of the energy release rate G
as

∆F (G) = ∆F (Gc)− αG , α > 0 ; (5.15)

the reaction coordinate position of the peaks, instead, appear to decrease and get closer.
Increasing the energy release rate effectively ‘tilts’ the free energy curves by lowering the
free energy of the final state, along with a shift to the left and a compression of the half open
region interval in collective variable coordinate. Since there is no metastable intermediate
state at G = 1.01 Gc, the height of the free energy barrier is the one of the right peak at
1.78 eV: such a large barrier slowly decreases as the elastic load increases, and its value is
still 0.17 eV for more than twice the critical energy release rate. Overall, these calculations
explain the origin of the abnormally large lattice trapping and velocity gap observed in
the dynamical crack propagation simulations, confirming that they originate from large
and persistent free energy barriers to crack advance. According to the linear fit of Fig. 5.28
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for the first peak height, the limit for lattice trapping should be at a vanishing barrier
height for approximately G∗ = 2.2 Gc, whereas the MD simulations implied a larger lattice
trapping G∗ ≥ 2.4 Gc. It is possible that such discrepancy is due to the particular loading
method used to decelerate the crack in the dynamical simulations, and that a uniform and
time–independent energy release rate larger than 2.2 Gc would allow crack propagation.
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Fig. 5.28 Location and height of the two free energy peaks for crack advance in crystalline
2D SiO2. The measured points are represented with dots, the solid lines are their linear
interpolation, and the solid shade represents the 95% confidence interval of the interpolation

Vitreous specimen

Fig. 5.29 Example of vitreous specimen for crack advance SGTI study, 249 × 74 Å2

Let us picture the path taken by the crack advance in the amorphous system as a chain
of events where each of which consists of a multiple choice among ring ruptures of different
free energy barriers determined by the local ring structure: the aim here is to perform a
set of SGTI calculations on different crack tip configurations to better understand why the
observed fracture mechanism of the amorphous specimen is so different from its crystalline
counterpart. The atomic structure of the specimen used for this set of calculations is shown
in Fig. 5.29. In the loading geometry used, the energy release rate is controlled by the spring
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constant of the edge constraint, and is parametrised according to the calibration results of
Fig. 5.30. The calculations here presented are constrained to one energy release rate equal
to 0.98 Gc = 7.6 Jm−2, so to obtain a set of free energy barriers for the selected subset of
crack tip configurations as a function of the path taken for the crack advance.

0.0 0.5 1.0 1.5 2.0

k [eV/Å2]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
/G

c

k [eVÅ−2] G [Jm−2] G/Gc

0.2 4.2 0.54
0.4 5.8 0.74
0.6 6.9 0.88
0.8 7.6 0.98
1.0 8.2 1.05
1.2 8.5 1.09
1.6 9.1 1.17
2.0 9.5 1.22

Fig. 5.30 Energy release rate vs. strain curve of vitreous 2D SiO2, strained ε = 0.10 and
clamped to Hookean constraints of spring constant k. Gc = 2γ = 7.8 Jm−2

From considerations about the ring structure, if the last broken ring is of sizeN , we can
estimate the number of possible paths to be taken by a crack in the next step asN/2. Given
that N is most likely to be 6 or 7, to identify the ring structure of a crack tip we will use
the notation N1–N2–N3 where Ni are the three ring sizes in clockwise order that are most
likely to be broken in an actual fracture propagation. The results are presented by putting
the atomic structure of the crack tip and the corresponding free energy barriers side by
side; the strain is always in the vertical direction, and the letters in the left side structures
label the double Si–O–Si that is being broken in a certain fracture path; the letter labels
and the colours of the free energy profiles are in order of probability of the event to take
place, from highest/a/green to lower/b/orange to lowest/c/blue.

Firstly, we can observe in Fig. 5.31 and 5.32 that the free energy profiles for the straight
(label a) crack advance of the crystal–like 6–6–6 tip ring structures are identical in the
two configurations that only differ in surface reconstructions and in ring sizes of atoms
farther away from the tip; in addition, their shape is the same as the ones obtained in the
crystalline calculations; the free energy barrier height, defined by the first bond breaking
event, is 0.70 eV to 0.75 eV. Crack advances in directions other than orthogonally to the
applied stress are severely hindered, and asymmetries in the corresponding free energy
profiles (labels b and c in Fig. 5.31) are likely to be due to the stress conditions caused by
the different neighbouring ring structures.
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In the second group of structures, comprising Fig. 5.33 and 5.34, the ‘straight’ direction of
crack propagation involves the rupture of a 5–membered ring, an unlikely event according to
theMD simulations earlier presented. This observation is confirmed in the SGTI calculations:
the barrier height for breaking a straight 5–ring is about 1 eV (right peak), against the 0.7 eV
to overcome to break an off–plane 7–ring. Since glassy structures of 2D–SiO2 are generated
by a set of bond switching mechanisms from a honeycomb crystal, it is likely for a 5–ring to
be next to a 7–ring, so crack tip configurations like the two structures presented are rather
common. Notably, we also gain more evidence that the ring size is not the only feature
determining the barrier to crack advance: both rings corresponding to mechanisms a and c

in Fig. 5.34 are 7–membered but c is the least likely to happen because their shape is very
different.

Fig. 5.35 presents us with a different problem: the previous bond breaking caused
the crack to deflect from a straight line, so that the new ‘straight’ crack advance is not
orthogonal to the applied stress direction (vertical) and none of the Si–O–Si bridges at
the new crack tip are vertically aligned. Perhaps counterintuitively, the rupture of the
7–membered ring b is unfavourable with respect to the equally misaligned 6–membered
ring b – 1.05 eV against 0.65 eV. To explain that, we must note that in this particular atomic
arrangement the opening of ring b is hindered by the 5–membered ring protruding out
of the surface as seen on the snapshot superimposed to the plot: its presence effectively
reduces the mobility of the atoms constituting the opening ring, thus reducing its breadth
of elastic relaxation.

Another insightful crack tip configuration is the one presented in Fig. 5.36. Any bond
opening is very unfavourable in this atomic arrangement: every free energy barrier is much
higher than any other encountered so far at the same load, and only one (label a) presents
a local minimum for the open state. This is the most disordered crack tip structure among
the investigated ones, as it presents 4 to 8–membered rings and an uneven crack surface; in
our MD simulation, similar configurations cause a sudden arrest of a moving crack, unless
a much higher energy release rate is applied to lower the 3.2 eV barrier – a mechanical load
for which larger rings within the bulk break apart and create voids.

The crack tip configuration with the most similar peak heights is the one in Fig. 5.34,
where the barrier height of mechanism a is 0.27 eV lower than the one of mechanism b.
From a reaction kinetic perspective, we can calculate the ratio between the rate constants
of two mechanisms of crack advance by ruptures of different rings from Eq. 3.56 at 300 K,
finding that ring a is more likely to break by a factor of about 3× 105. Such large value is
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the smallest probability ratio observed, and supports the hypothesis that the path for the
crack advance is nearly deterministic in this amorphous material.
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Fig. 5.31 6–6–6 amorphous crack tip and corresponding free energy barriers to crack advance.
Barrier a height: 0.76 eV
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Fig. 5.32 6–6–6 amorphous crack tip and corresponding free energy barrier to a straight crack
advance. Barriers for off–plane advancements are omitted given the structural similarity to
Fig. 5.31. Barrier a height: 0.70 eV
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Fig. 5.33 7–5–6 amorphous crack tip and corresponding free energy barriers to crack advance.
Barrier heights: a 0.69 eV, b 0.97 eV (right peak)
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Fig. 5.34 7–5–7 amorphous crack tip and corresponding free energy barriers to crack advance.
Barrier heights: a 0.73 eV, b 1.00 eV (right peak)
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Fig. 5.35 5–6–7 amorphous crack tip and corresponding free energy barriers to crack advance.
The rupture of the 5–membered ring is omitted, as it would be very unfavourable. Barrier
heights: a 0.63 eV, b 1.04 eV (right peak)
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Fig. 5.36 7–4–8 amorphous crack tip and corresponding free energy barriers to crack advance.
Barrier a height: 3.26 eV
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5.8 Summary

In this chapter we presented the problem of fracture in oxide materials and learnt about two–
dimensional silica, a newly synthesised material that in its simplicity can be the starting
point to the understanding of the mechanisms involved in fracture propagation in this class
of materials. 2D silica exists in both crystalline and amorphous forms and can be visualised
atom by atom by experiments, solving the problem of inferring the atomic arrangement in
glassy systems. We first overviewed some topological properties of an amorphous 2D silica
network and confirmed that the amorphous material may be obtained by a cascade of bond
switching mechanisms from the perfect honeycomb–like crystal. We then defined the set of
computational experiments to perform on this material: the observation of dynamical crack
propagations and the detailed calculation of free energy barriers to single crack advance
events. To do so, we built a set of tools to, among other things, apply the desired stress
energy release rate for a system of a fixed size and the definition of a thermodynamic
integration setup suitable to the study of crack propagation. Thanks to the results of tests
benchmarking the accuracy of classical potentials against ‘ground truth’ ab initio data, we
discovered that the Tangney–Scandolo potential is sufficiently accurate to describe the
properties of interest in fracture (elastic constants, surface energies, atomic forces at the
crack tip), therefore we chose to treat our system in a purely classical framework for the
rest of the chapter.

Dynamical crack propagation simulations showed a stark contrast between the be-
haviour of the crystalline and the amorphous material. Crystalline specimens appear to
be excellent examples of a brittle material, showing a very prominent lattice trapping
and velocity gap, where a crack either does not move or moves on a straight direction at
extremely high speed and a steady pace while releasing large amounts of energy during
each bond breaking event. On the contrary, the disordered nature of the amorphous ma-
terial makes the crack direction change according to the local atomic structure, typically
preferring to break large than small rings; perhaps unavoidably, a highly disordered crack
tip configuration will halt the crack advance, so that some rings within the bulk of the
material will be weaker than the crack tip, and any further mechanical load increase would
result in a formation and coalescence of new crack fronts in different points inside the
material.

To give a quantitative explanation of such results, we studied in detail the thermody-
namic process of the double bond opening necessary to propagate a crack by one step. In the
crystal, a very large free energy barrier to crack advance at the critical energy release rate –
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and its persistence at rates more than twice such value – gives a rationale for explaining
the extent of the observed lattice trapping. Because of its very structure, studying the
amorphous material free energy barriers can only be partial. The computed barriers give a
quantitative reading key to what is visualised during a fracture propagation: rings of size 4
or 5 are never the most energetically favourable to break, whereas a crack deviation from the
main propagation direction can be the most favourable path if that involves breaking larger
rings. From the limited results of the analysed crack tip configurations, we observe that the
separation in free energy barrier height between different crack propagation mechanisms is
large enough to suppose that the path to crack advance is determined by the ring structure.



Chapter 6

Machine Learning Applications in
Atomistic Simulations

6.1 Titania Elastic Constants with SOAP–kernel GAP

Introduction

From a purely theoretical perspective, the recently proposed SOAP kernel [36] is a promising
similarity measure for atomic configurations in kernel–based ML potentials thanks to its set
of desirable properties. As with other ML–based interatomic potentials, though, a potential
making use of it would inherently be short–ranged because it would rely on a representation
of the local neighbourhood around an atom, which is truncated after the first few nearest
neighbours. Simplistic solutions revolving around the idea of increasing the radial cutoff of
the descriptor should be discarded: as the physical size of the represented system increases,
so does the configurational space a descriptor must span, effectively making the definition
of a similarity measure impossible. Long–range effects such as electrostatic interactions,
especially important in oxide materials, cannot thus be directly included in these schemes
but rather need to be treated with an additional model. To extend GAP potentials to oxides,
the approach proposed consists of learning the force acting on an atom at the net of the one
calculated by a classical interatomic potential that is able to appropriately treat the long–
range interactions. This is equivalent to learning the conformation–dependent short–range
correction to an IP that best fits a reference DFT dataset.

Parametrisations of the Tangney–Scandolo class of potentials outperform other IPs in
silica structures where silicon atoms are 4–coordinated [106]; its standard parametrisation
for titania, though, is not completely satisfactory as it was only fitted to DFT data for
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the rutile polymorph [33]. If the source of errors lies in the short–range interaction, the
modelling of titania can then be a case where a GAP potential may be key to creating a
reliable interaction model that can overcome the limitations imposed by a fixed functional
form IP.

Database

The database used for training consists of ∼1500 snapshots of first–principle MDs at 300 K,
500 K and 1000 K of both rutile and anatase phases – each snapshot contributing to a
number of training set entries equal to its number of atoms. The breakdown of the content
of the database can be inspected in Table 6.1. The database has been generated by Silvia
Cereda at King’s College London using the DFT package CASTEP [107] with ultrasoft
pseudopotentials and the the LDA approximation to the exchange correlation functional, a
planewave basis set with a cutoff energy of 1500 eV and a Monkhorst–Pack mesh with a
maximum k–point spacing of 0.4 Å−1. The choice of such a high cutoff energy was motivated
by the sensitivity of the stress tensor to this parameter.

The teaching procedure is constrained by the available computational resources, partly
in terms of raw computational power (to calculate and invert the full covariance matrix
of a GP model) but mostly because of the vast memory requirements for the construction
of the SOAP descriptors and sparsification procedure. Because of these reasons, in the
version of the code used in this thesis the fitting procedure of a GAP model typically makes
use of around 1000–2000 of the 104 available configurations chosen by a k–means based
sparsification algorithm [8, 108].

Methods

The first question to be asked is whether such an approach can provide sufficient accuracy
in some simple benchmarks. The first observables that we wish to reproduce are bulk
properties such as the elastic constants, which define the linear elastic response of a
material and are crucial in any MD simulation where the mechanical properties of the
material are of key importance. In continuum mechanics, stress and strain field tensors
can be expressed by the matrices (σij)ij, (εij)ij ∈ R3×3 when projected on a Cartesian
coordinate system [109]. When the elastic response is in a linear regime, the two can be
related through a stiffness tensor (Cijkl)ijkl by the relation

σij = Cijklεkl , (6.1)
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Table 6.1 Composition of the DFT database used for GAP training

Configuration type N. Atoms N. Configurations N. Atomic Environments
Rutile
Unit cell 6 719 4314
2× 2× 2 supercell 48 30 1440
2× 2× 3 supercell 72 17 1224
(110) surface 48 11 528
Anatase
Unit cell 6 15 2400
2× 2× 2 supercell 96 14 1400
2× 3× 1 supercell 72 24 1728
2× 2× 1 supercell 48 21 1008
3× 3× 1 supercell 108 30 3240
(101) and (001) surfaces 60 11 660

here expressed in the Einstein notation of summing over repeated indices used throughout
the current section. In a reversible process the strain energy density is equal to the work
done per unit volume

du = σijdεij = Cijklεkldεij . (6.2)

Manipulating Eq. 6.2, we obtain that the elastic constants are proportional to the second
derivatives of the elastic energy density, known as virial stress components

Cijkl =
∂2u

∂εij∂εkl
. (6.3)

Symmetries of the stress and strain tensors imply that only 6 out of their 9 components are
independent. The stress tensor (σij)ij can then be written as a vector σ ∈ R6 composed of
3 tensile stresses along the orthogonal Cartesian directions and 3 shear stresses acting on
the orthogonal planes defined by the same directions; likewise, the strain vector ε ∈ R6

will be composed of 3 elongation strains and 3 shear strains. The relationship between
these two vectors will then be defined by a stiffness matrix C = (Cij)ij ∈ R6×6

σi = Cijεj , (6.4)

whose number of linearly independent entries depend on the lattice symmetries of the
crystalline material under study. Both rutile and anatase have a tetragonal lattice as shown
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Fig. 6.1 (a) Tetragonal lattice defined by lattice constants a and c; (b,c) Unit cells of anatase
and rutile phases of TiO2 – large Ti atoms, small O atoms

in Fig. 6.1, which has 6 independent elastic constants:
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In both structures the atoms are arranged as octahedra with one Ti atom at the centre and
6 O atoms at the corners, sharing 4 edges in anatase and 2 in rutile [110].

In order to calculate the elastic constants, one possible method is to apply a set of strain
patterns to the equilibrium unit cell and measuring the corresponding energies. Recalling
the formula for the elastic energy density (i.e., elastic energy per unit volume), the variation
of energy density upon a deformation ε with respect to the equilibrium configuration is

∆u =
1

2
Cijεiεj . (6.6)

If, for instance, we now apply a strain pattern ε = (0, 0, ε, 0, 0, 0) for different values of
ε, the curvature of the energy–strain parabola as shown in Fig. 6.2 (i.e., the virial stress
component) is proportional to an elastic constant:

C33 =
2

V

∂2U

∂ε2
. (6.7)
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When the strain pattern is composite, instead, the virial will be a linear combination of
elastic constants: for example, a strain pattern ε = (ε, ε, 0, 0, 0, 0) results in a virial stress
component

1

V

∂2u

∂ε2
=

1

2
(C11 + C22) + C12 (6.8)

Fig. 6.2 Energy–strain curve for unidirectional elongation of anatase structure calculated
with TS IP.

Results

We present in Table 6.3 some results achieved so far by different SOAP–kernel GAP models.
The hyperparameters used in the two GAP potentials are presented in Table 6.2. The only
hyperparameter that can be set based on physical considerations is the cutoff radius rcut: we
are interested in modelling the short–range interaction of the twoTiO2 phases with a single
potential, and since both phases are formed of octahedra whose arrangement determines
the crystalline structure, its value must be set so to exactly include the first neighbouring
octhahedron of an atom. With this choice, the two phases will be indistinguishable for the
ML model, which will then be able to learn data from both phases interchangeably. The
database labels are R = 1250 bulk rutile snapshots, A = 1000 anatase bulk, S = 200 surface
rutile and anatase snapshots.

We must stress that experimental data or computational data from literature, which
show quite a wide range of values, does not play any role at this stage of benchmarking.
Each interaction model has to be compared solely with results from the model it has been
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Table 6.2 GAP parameters of the tested models. The symbols are defined in Section 3.3

Model lmax nmax σblur [Å] ζ rcut [Å] d [Å] database
GAP1 10 8 0.5 4 4.5 1.0 R
GAP2 4 8 0.5 4 4.5 1.0 R+A+S
GAP3 12 10 0.5 4 4.5 1.0 R+A

Table 6.3 Elastic constants comparison between different models. Units are GPa

Method B C11 C33 C44 C66 C12 C13

Rutile

DFT 251 294 527 125 245 223 174
TS 246 319 429 104 214 193 186
GAP1 258 250 560 117 220 235 179
GAP2 278 278 570 139 239 247 194
GAP3 257 253 488 107 237 282 202

Anatase

DFT 216 391 202 47 61 162 160
TS 171 398 186 51 59 136 139
GAP1 221 369 233 56 51 168 139
GAP2 245 365 271 34 42 171 192
GAP3 239 377 225 64 67 169 135

fitted upon, here ab initio calculations with the same parameters as the DFT data used in
the training set. Firstly, we can see that the plain TS potential [33], whose parameters have
been fitted to reproduce bulk properties of both phases, already performs quite well for
most elastic constants, especially in the case of rutile.

GAP1, that has only been trained on rutile configurations, is able to enhance or at
least not worsen the predictions of TS; perhaps surprisingly, errors in anatase are within
acceptable limits despite the training set not containing, at least in principle, any specific
information about such environments. Since both phases are made of the same octahedral
building blocks, though, it is expected that GAP can model the short–range energy variation
resulting from structural distortions of the octahedra in one phase given a database from
the other phase. The very small torsional elastic constants C44 and C66 of anatase, instead,
are not well reproduced.

In the case of GAP2, instead, the descriptor is poorer but the model contains information
about bulk and surface configurations of both phases. As one can expect, the accuracy in
rutile does decrease slightly with respect to GAP1; meanwhile, the additional training set
does not result in any improvement of the elastic constants of anatase. Quite counterin-
tuitively, then, using more data to fit the ML potential does not result in a better model.
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This can be partly attributed to using fewer features to describe atomic environments, and
partly to the fact that data from bulk and surface configurations may be harder to fit than
in the previous case.

To test this hypothesis, we trained a GAP3 model with bulk rutile and anatase data and
an even higher basis set resolution of the descriptor but only including bulk configurations.
We found that the potential does not offer tangible advantages with respect to either of
the previous, often having an acceptable behaviour in between GAP1 and GAP2 when not
overshooting the constants estimates in either direction. Having used a high dimensional
descriptor and considering the interwoven nature of descriptor and ML hyperparameters
of the SOAP method, the results may hint to a case of overfitting.

The models used to produce the presented results are representative of a much wider
set, and the emerging trend appears to be that lmax and nmax, the hyperparameters deter-
mining the basis set size of the descriptor, should be large enough to allow for an accurate
description of an atom neighbourhood but not too large as to introduce irrelevant features
that are damaging the ML model in use; the other hyperparameters, such as ζ and σblur, are
disconnected from physical considerations and can either be kept fixed at values chosen by
experience or optimised ad–hoc given the choice of the remaining hyperparameters.

Summary

GAP models can be used to fine tune the short–range part of a given interaction model. In
oxide materials, where electrostatic interactions play a fundamental role, a GAP model may
be able to improve the accuracy of an interatomic potential by adding a richer description
of the short–range interaction while leaving the long–range part untouched. We tested
GAP models built on top of TS IP for bulk TiO2 systems. The results show some accuracy
improvements with respect to the already well–behaved TS potential, but as of now they
appear to reach an accuracy threshold that prevents the achievement of a completely
satisfactory matching of DFT results.
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6.2 Direct Force Learning with SOAP

Introduction

When the only quantities of interest in an atomistic simulation are accurate forces, as in
the case of several types of MD simulations, the construction of a full IP from which to
derive them may be altogether unnecessary: an alternative approach is to directly learn
forces. A force learning approach requires learning the mapping between a representation
of an atomic neighbourhood around a ‘central’ atom and its corresponding force. Contrary
to energy learning schemes where the target variable is a simple scalar, a force is a 3–
dimensional vector that is covariant with respect to the input space vectors (e.g., positions,
forces, dipoles) under the operations of rotation and point and plane inversion. To visualise
this statement, we can picture a force on an atom and the atomic positions around it to
rotate rigidly when using the first atom as a pivot point. Since the input and output spaces
are tied together by a set of symmetry operations, there are multiple viable representation
strategies. These include:

• Instead of learning the target forces directly, build aMLmodel for their (scalar–valued)
projections onto a set of k vectorial features of the input space, and reconstruct the
real force in Cartesian space from its k > 3 projections in a least square approach.
This method can be found in Ref. [39], whose development has been part of my
studies, and a very similar method was simultaneously developed by an external
research group in the work of Ref. [111].

• Represent both input and output space as 3–dimensional vectorial features and build a
covariant ML model. According to Refs. [112–114], in a GPR approach this translates
into building a covariance matrix whose entries are 3× 3 matrices instead of scalar
values. Given two atomic configurations ρi and ρj , the corresponding kernel is

K(ρi, ρj) =
LX

l=1

Dl(ρi, ρj)|vl(ρi)ihvl(ρj)| : (6.9)

{|vli}l=1,··· ,L is a set of any vectorial features calculated from a local atomic configu-
ration that are invariant under permutation and covariant under rotation, whereas
{Dl}l=1,··· ,L, instead, are L (possibly, but not necessarily) different real–valued and
rotationally invariant covariance functions
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• Use an input space representation that is invariant with respect to said symmetries
and then align the corresponding force to some frame of reference, which may itself
be inferred from the input space

The aim of this section is to explore the viability of the third option.

Method

The task is to find a way to rationally orientate the forces learnt from our dataset of
configurations, and then use this rotation in the prediction step. Namely, the standard GPR
prediction of Eq. 2.8 must be adapted to predict the force yt

yt = k(X,xt)
T k(X,X)−1 Y , (6.10)

where
Y = (y1,y2, · · · ,yN)

T (6.11)

is a vector of teaching set forces, where each force yi has been rotated according to the
rotation that results in the maximal alignment R̃i between the ith configuration and the
test configuration t:

yi = R̃iy
0
i (6.12)

If we take two atomistic environments centred around a central atom, we can think of
placing the two central atoms at the origin and rotate one of the two configurations using
its central atom as the pivoting point. The ‘maximum alignment’ rotation is the rotation
matrix that, when applied to the configuration free to rotate, maximises a similarity measure
between the two environments: in the general framework of GAP–related descriptors, this
is for example the overlap integral of the atom–centred Gaussians. Since knowledge about
orientation is lost as soon as we define a rotationally invariant kernel, we must develop a
method to consistently map the information of a force acting in an atomic environment to
the new environment t.

Without a fixed reference frame, one can think of computing a weighted average of the
force over the whole space of rigid rotations, where the weight of each rotation is measured
by the corresponding SOAP overlap Sit(R̂) defined in Eq. 3.36. This approach may work,
for the resulting force aligned with respect to t mostly contains contributions from high
overlap configurations; on the other hand, it may strongly suffer from symmetry related
problems – e.g., two different rotations producing a roughly equal but high overlap may
cancel out their contribution to the total force.
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The idea we are going to test is to evaluate the ‘best alignment’ in a SOAP–like fashion
as

yi =

R
dR̂Sit(R̂)R(R̂)R

dR̂Sit(R̂)
y0
i , (6.13)

where the denominator is a normalisation term. Following the SOAP derivation and notation,
let us denote the test configuration as i0. We find that the rotation–dependent overlap can
be expressed analytically

Sii0(R̂) =
X

lmm0

 
Dl

mm0

X

n

c
(i) ∗
nlm c

(i0)
nlm0

!
. (6.14)

From Equation 6.13, the task is now to express the integral

J =

Z
dR̂ Sii0(R̂)R(R̂) . (6.15)

The Wigner D-matrices {D1
mm0} are a complete basis set for 3-D rotation matricesR(R̂),

so no matter how finely we represent ρ in terms of l expansion, only the l = 1 terms will
have a non-zero contribution in this integral. Making use of the orthogonality properties
of the D-matrices Z

dΩD1
mm0(Ω)D1

µµ0(Ω) =
8

3
π δmµδm0µ0 , (6.16)

for each component of J we must evaluate a formula of the kind

Jab(ii
0) =

Z
dR̂ Sii0(R̂)Rab({D1

mm0(R̂)}mm0)

=

Z
dR̂

 X

lmm0

I lmm0(ii0)Dl
mm0(R̂)

!
cab

X

{µµ0}ab

D1
µµ0(R̂)




= cab
X

lmm0µµ0

I lmm0(ii0)

Z
dR̂Dl

mm0(R̂)D1
µµ0(R̂)

=
8

3
π2cab

X

{µµ0}ab

I1µµ0(ii0) ,

(6.17)

where the summation
P

{µµ0}ab can contain negative signs and it is performed over the
correct indices for the component Rab. By explicitly expressing Eq. 6.17 in terms of its
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radial basis functions expansion, we get the following final expression:

Jab(ii
0) =

8

3
π2cab

X

n

X

{µµ0}ab

c
(i)
n1µc

(i0)
n1µ0 (6.18)

For example, R31 is written as:

J31(ii
0) = −8π2i

3
√
2

�
I1−10 + I110

�

= −8π2i

3
√
2

X

n

�
c
(i) ∗
n1−1c

(i0)
n10 + c

(i) ∗
n11 c

(i0)
n10

� (6.19)

Results

Firstly, from a purely theoretical point of view we must notice that a matrix defined by
Eq. 6.15 does not necessarily represent a simple ‘alignment’, because the set of rotation
matrices is not a group under the operation of summation. Arguably, though, in the limit of
vanishing Gaussian blur of the atomic positions only one rotation would have a non–zero
contribution to the integral, and the resulting matrix would actually represent a rotation. We
thus tested this definition by using very small blurring (up to 3 orders of magnitude smaller
than the ones used in the SOAP kernel itself), so to add as little ‘spurious’ contributions as
possible into the integral J.

To test the proposed scheme, we calculated the matrix J for different configurations of
bulk silicon atoms sampled from a MD at a constant temperature of 330 K, and we checked
to what degree J satisfies the properties of a rotation matrix, namely:

• The norm of every column and row must be 1. Since the normalisation constant in
Eq. 6.13 has not been explicitly derived, we can loosen this requirement and demand
the same norm for every row and column.

• Jab = −Jba ∀ a 6= b

These tests showed that the resulting matrices never resemble a rotation matrix. For a
visually understandable example, Fig. 6.3 shows the effect of applying a normalised Jmatrix
to the atomic positions of a silicon tetrahedron (quite similar configuration to the actual
ones used to obtain it): the structure becomes squeezed in two dimensions, and distances
are not preserved. Reducing the atomic blurring parameter any further is not an option
either, as it rapidly results in reaching machine precision and overflow errors.
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Fig. 6.3 Alignment matrix J applied on a tetrahedral arrangement of atoms. Left: before,
right: after. This matrix has been obtained by computing the overlap between two equivalent
configurations with the same orientation. Ideally, the resulting alignment would be the
identity operator

Summary

In the present form, the proposed scheme is not a viable way to build a ML method to learn
forces directly. A different way of reducing the contribution of low overlap configurations
in the alignment would be to raise the power of Sij in Eq. 6.15 in order to integrate a
more ‘peaked’ function, but the analytic expressions of J for S2

ii0 and S3
ii0 degenerate into

meaningless formulae; the evaluation of higher order expressions has not been attempted.
The direct force learning problem should therefore be addressed with different solutions,
such as the two other general principles laid out in the introduction.
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6.3 Machine Learning–augmented
Thermodynamic Integration

Introduction

Performing atomistic simulations to evaluate free energy barriers is a task that inherently
requires long and repetitive calculations because any algorithm used to reconstruct a free
energy surface must be able to sample the volume of phase space corresponding to a range
of values of one or more collective variables describing the state of the system during some
thermodynamic process. It only then seems natural that free energy calculations are a
very promising ground for the application of machine learning techniques, with the aim of
making the simulation faster or more accurate by using the computed information more
efficiently.

The first steps in this direction have been taken by Stecher et al. [115], where a GPR
model has been used for the on–the–fly reconstruction of a 2D free energy surface from
data points obtained by umbrella sampling calculations. The GPR model has been used
here to choose where to calculate the next data point to minimise the number of function
evaluations and, concurrently, to estimate the error bars of the reconstructed free energy
landscape, resulting in roughly a twofold computational efficiency gain.

The method proposed in this section, the machine learning–augmented thermodynamic
integration (or MLTI), is aimed at enhancing the accuracy of free energy barriers calculated
via thermodynamic integration to an intermediate level between a fully classical treatment
and a prohibitive fully QM treatment by means of an ML model that makes the best possible
use of the limited amount of QM–accurate information computed. We will apply the method
to a physical problem encountered in the previous chapter, the SGTI calculation of free
energy barriers to crack advance in two–dimensional silica.

Method

Let us have a system that undergoes a thermodynamic process whose state can be sum-
marised by a single reaction coordinate (also known as collective variable), so that it can be
studied by means of TI. Let us assume that there exists a computationally inexpensive MM
model, such as a classical IP, that is sufficiently accurate to produce trustworthy trajectories
in TI simulations, i.e., where the explored phase space is similar to the one that would be
spanned by a ‘ground truth’ fully QM simulation – by some criterion to be defined. Let
us also assume that a fully QM TI simulation, or even simply a full QM/MM TI simulation
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where the QM region comprises the neighbourhood of the atoms constrained by the TI
algorithm, cannot be performed because it is too computationally demanding.

The key idea is then to use a classical SGTI trajectory and compute the QM–accurate
constraint force on only a subset of its configurations: given an appropriate choice of input
features that are able to describe an atomic environment and correlate to its constraint
force, we can train a ML model to predict the constraint forces on all configurations in
the trajectory. In principle, this postprocessing approach would make optimal use of
the available computational resources to only perform QM calculations where it is most
necessary, and instead use a ‘ML interpolation’ to fill out the missing information. When
integrating the ML constraint forces on the trajectory configurations sampled from the
phase space of the system treated by the classical model, the calculated free energy profile
will have a hybrid accuracy whose upper bound is the QM one.

Limitations The method as stated above has one evident limitation: the more accurate
the MM model is, the better it will span the phase space of the atomic system and the
better the MLTI scheme will perform, but at the same time the MLTI method will gradually
lose its own reason for existence because of the shrinking accuracy gain. Conversely, the
opposite extreme of an inadequate choice of MM model will nullify the validity of the
method, as the phase space will be incorrectly sampled. These considerations point to the
specific use case of the MLTI method, namely when the MM method is accurate enough
to produce reliable TI trajectories but not quite accurate enough to guarantee chemical
accuracy (where a common definition of chemical accuracy is a RMS error of a database of
MM forces of 0.05 eVÅ−1 with respect to the corresponding QM ones).

Furthermore, it is necessary to point out that a quantitative metrics to verify how well
the MM model is able to provide a correct sampling of the ‘correct’ QM phase space of
the system does not exist: if it did, it would require a database of configurations sampling
the QM phase space, which at the same time would make it possible to compute a fully
QM free energy profile by means of TI – exactly what has been assumed to be impossible
and motivated the development of the method. Unless we remain in a purely benchmark
setting, where an ab initio trajectory may be used as reference, we must therefore rely on
some qualitative metrics of the MM model instead. Firstly, by a simple visual inspection
of a MD trajectory there cannot be unphysical reconstructions or artefacts. Secondly, at
a semi–quantitative level, there must be a satisfactory match of the physical quantities
of interest for the thermodynamic process being studied, and a sufficiently small RMS



6.3 Machine Learning–augmented Thermodynamic Integration 126

error on atomic forces so that the integrated system trajectories are not expected to differ
significantly from the ideal QM ones.

Descriptor and Machine Learning model The main aspect determining the success
or failure of a ML scheme is the creation of a set of features of the input space (also known
as descriptor) that can be processed by the ML model to learn its correlation with respect to
the corresponding output feature(s). If our rationale is to build an atomic neighbourhood
descriptor that best correlates with the constraint force of a SGTI simulation, arguably the
quantity that best correlates to a target force is another force that approximates it. Our
choice of input features is therefore a set of constraint forces evaluated by an equal number
of different TS IP, where we obtain different results from one class of potentials by tweaking
the Morse–Stretch short–range parameters around their default values (see definition in
Eq. 3.21); to curb the computational effort in feature evaluation, the force evaluation is
performed on the same atomic clusters centred around the constrained atoms as the DFT
calculations instead of the full slab of ∼104 atoms. As an additional feature, the standard
TS IP constraint force of the original MD simulation has been included, for it may provide
some additional information and comes at no extra cost as it has already been evaluated.
Such definition has several desirable features:

• As already mentioned, all input features have a high correlation with respect to the
output feature

• Contrary to most other definitions of descriptor in solid state physics literature, it is
not necessary to set a predefined and arbitrary cutoff radius beyond which atoms
are considered to be irrelevant (a cutoff is still implicitly set by the IP, and for the
short–ranged TS is about 10Å [35])

• The number of input features does not depend on the number of atoms of the system

• The input features are as smooth and well–behaved as the unadulterated TS IP, since
the variable parameter only influences the short–range interactions and not the
electrostatics calculations.

The foreseeable downside of such feature selection is that they are expected to have a
fairly high correlation not only with the output variable but also among themselves, which
potentially restricts the range of choices of machine learning models and the amount of
information carried.
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The problem at hand is the regression of a single output variable (the scalar–valued
QM–accurate constraint force of Eq. 5.10) given a set number of continuous input features
(classical constraint forces), which is one of the most straightforward problems in machine
learning. The target variable is related to the physical process of bond breaking: since for
the atomic structure considered there is no smooth transition between the unbroken and
broken states, we can expect the constraint force to present at least one discontinuity. It is
therefore advisable to use a model that produces discontinuous outputs, such as a GP with
a discontinuous kernel function, such as the absolute exponential kernel, or an inherently
discontinuous model such as a regression tree.
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Fig. 6.4 Mean absolute error (MAE) on the constraint force vs. database size for different
ML models, tested on the amorphous database. To each line corresponds a type of ML
model: XGBoost: ‘gbt’, Gaussian process with Gaussian kernel: ‘gpg’, Gaussian process
with absolute exponential kernel: ‘gpa’, least square linear regression: ‘lm’, TS potential (no
model): ‘TS’. Each data point is averaged over 10 trainings on randomly chosen data points.

These conjectures have been tested in a preliminary set of tests. A subset of these is
shown in Fig. 6.4, where we can observe a few interesting facts:

• A GP with squared exponential kernel shows a rather clear indication that the kernel
choice is inadequate for the task, as it can be worse than not having any ML model at
all and the error metric does not decrease with the training set size

• A GP with absolute exponential kernel shows instead a correct learning behaviour,
but the error does not reach the asymptote as fast as other models

• A simple ordinary least squares linear regression is surprisingly good at modelling
the constraint force for training set sizes larger than about 20–30 samples, but is
completely inappropriate below this threshold.
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• A boosted regression trees model shows instead the best behaviour of all, by always
beating the ‘no model’ baseline and reaching the error asymptote faster than all other
ML approaches.

The model that best combines accuracy, speed and scalability is then a boosted regression
trees model, of which I used the XGBoost implementation.

Dataset

The proof of concept tests have been carried out using a database containing QM–accurate
forces computed for two system trajectories. Both have been obtained via classical SGTI
MD simulations at 300 K to observe a single crack advance step. One trajectory is of the
crystalline system as in Fig. 5.25 loaded at G = 1.01 Gc = 7.3 Jm−2 (its free energy profile is
the green curve of the plot in Fig. 5.27), containing 840 configurations sampled every 10 fs
of the dynamics; the second trajectory corresponds to the crack advance in an amorphous
system for an arrangement of the atoms at the crack tip as of Fig. 5.32 and loaded at G =
0.98 Gc = 7.6 Jm−2 containing 592 configurations sampled every 10 fs. Fig. 6.5 shows some
of the main features of these two datasets: for each trajectory we can identify two peaks
corresponding to the two bond breaking events necessary to separate the Si–O–Si bridge at
the crack tip, and we can see that the magnitude of the constraint force spans a range of
more than 5 eVÅ−1.

The reasons for choosing a dataset from two trajectories of different systems are:

• firstly, we can rate the learnability of a property as a function of the system complexity.
Since the amorphous structure is geometrically more complex than its crystalline
counterpart, it is important to know if this also translates into a harder learning
problem

• secondly, we can obtain some insights about the transferability of the ML model from
one system to another, i.e., whether, and to what extent, the model fitted to the data
of one structure can be used to predict the property of a different structure

• thirdly, and strictly linked to the previous point, to measure the compatibility of
the data sources, so to understand if merging datasets from different structures and
simulations is a viable strategy.

On all frames of these trajectories, the QM–accurate constraint forces have been calculated
by means of DFT calculations carried out with the CP2K package; since the core QM
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region is composed of the two Si atoms that are subject to the TI constraint, the force
evaluations can be performed on clusters built around these two atoms using the same
approach described earlier in Section 5.4 – Force evaluation, with a typical cluster size of
about 680 atoms.

Since the QM forces are computed as a postprocessing step of the classical MD trajec-
tory, all calculations are independent and can run at the highest resource efficiency in an
embarrassingly parallel calculation: we used the ‘farming’ mode of CP2K, in which the
main executable internally splits the computing resources into several partitions where
concurrent instances of the DFT code are executed for different input files. Despite the
achieved efficiency, me must point out that the force evaluation on the two trajectories
made use of approximately 3 million CPUh: with an average cost per data point of roughly
2000 CPUh, the conceivable size of a dataset is in the 103 to 104 magnitude range, thus
keeping the applications of machine learning methods to QM/MM calculations in oxide
systems a few orders of magnitude short of the ‘big data’ realm.
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Fig. 6.5 DFT Constraint force vs. reaction coordinate for both trajectories of the dataset

Model parametrisation

The parameters that have to be set in our approach can be divided into two categories:
those defining the features and those defining the ML model. To explore the accuracy across
the vast parameter space, we measured the mean RMS error on the force in 3–fold cross
validation trainings using the full dataset.

As already mentioned, the input features are constraint forces calculated by means of
different TS potentials with a modified short–range interaction. With a fixed choice of the
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ML model parameters to some standard values (learning rate = 0.01, maximum tree depth =
6, subsample = 0.6, number of learners = 300), we tried to build features by modifying Dij ,
γij and r0ij and found that the best performing descriptors are obtained when rescaling the
γij parameters alone. We then obtained 16 features by setting an equal number of rescaling
constants ci ∈ [0.5, 2] that act at the same time on all three parameters γOO, γSiO and γSiSi

determining the short–range interaction strength, plus the original TS constraint force as
the additional 17th feature. The choice of {ci} has not been thoroughly checked to be the
one producing the highest cross-validation accuracy because the amount of information
enclosed in such features is already sufficient to produce valuable results in the upcoming
sections.
In most data science applications it is customary to preprocess the input features, so we
additionally tested the effectiveness of (i) applying a standard scaler, so that each feature
is rescaled to have zero mean and unit variance, (ii) applying a standard scaler followed
by decomposition into principal components retaining all of the initial 17 features, or (iii)
creation of quadratic features. None of these approaches, either on their own or combined,
provided any improvement and have thus been left out of the pipeline for the feature
evaluation.

Having settled on a definition of input features, we then proceeded to finding the
best set of hyperparameters for the XGBoost model. In order to efficiently explore the
parameter space, we used the Bayesian constrained optimisation method implemented
in the BayesianOptimization package [116]. In this algorithm, the performance of
a ML model is seen as a sample of a Gaussian process: using this overlay GP to model
some accuracy metric as a function of the XGBoost model hyperparameters, we can use
the GP to steer the parameter exploration towards the areas where the expected variance
is the highest or to focus the sampling around the areas where the expected mean is the
lowest, or more interestingly a combination of the two. As accuracy metric we used the
average over 5 mean absolute errors on the test set of 5 trainings of the same model, where
each training set comprised 10% of the whole dataset and the corresponding test set the
remaining 90% – a rather unusual ratio that is in line with the aspirations of our resource–
constrained application. The result of the exploration and optimisation process is the set of
hyperparameters in Table 6.4.

When deploying our ML model either in a benchmark or in a real application, we
must devise a method to select which subset of the Ntraj available configurations obtained
by the classical SGTI MD should be evaluated by the DFT calculator for a finite amount
of computational resources. If we can only afford Neval DFT calculations, the simplest
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approach would be to simply evaluate one configuration every Ninterp = Ntraj/Neval, but
doing so does not necessarily maximise the amount of useful information computed. This
problem can be recast in terms of finding structure within the Ntraj data points so to
identify Neval maximally separated clusters, and to perform a DFT calculation on the most
representative configuration of each cluster. To do so, we performed a k–means clustering
on the normalised input features of the data set – the scaling being necessary to have a
meaningful Euclidean distance in input space coordinates – and the configurations to be
sent for QM calculations are defined as the centroids of each of the Neval identified clusters.
We must point out that this approach may be confused with active learning, but is currently
something simpler because all of the training examples are chosen at the same time during
the postprocessing of the classical trajectory: querying a QM calculator for an additional
training data point at a time until some confidence measure is met would in principle
be possible, but such a serial approach would be considerably slower than a batch QM
evaluation.

Table 6.4 XGBoost hyperparameters selected

Keyword Value Description
objective reg:linear Linear regression learning task in each leaf
eta 0.05 Learning rate (step size shrinkage of the boosting step)
n_estimators 500 Number of boosting iterations
max_depth 5 Maximum depth of a tree
subsample 0.6 Subsample ratio of training set
colsample_bytree 1 Subsample ratio of columns
min_child_weight 1 Minimum sum of instance weight needed to split a leaf
gamma 0.01 Minimum loss reduction needed to split a leaf
lambda 1 L2 regularisation term in the tree weights

Results

The computed datasets produce the two free energy profiles in Fig. 6.6, where the dashed
lines represent the fully classical calculations and the solid lines are obtained by integrating
the DFT constraint forces on the classical trajectory. In both cases, the TS IP is able to
correctly guess the shape of the barrier but it overestimates its height.

The most intuitive metrics to evaluate the efficacy of the presented method is the
mean absolute error (MAE) on the predicted constraint force when compared against the
target DFT one: given a ML modelM and a test set

�
(x1,x2, . . . ,xN)

T , (y1, y2, . . . , yN)
T
�
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Fig. 6.6 Free energy profiles comparison between full TS IP modelling and hybrid QM
constraint force / MM trajectory approach for the two datasets

containing ground truth DFT forces {yi}, this is equal to

MAEy(M) =
1

N

NX

i=1

|M(xi)− yi| . (6.20)

To get a first grasp on the capabilities of the presented ML model, let us first compare
the ML predictions and the TS force evaluations to the corresponding DFT values in both
of the available datasets separately. According to the learning curves of Fig. 6.7, our ML
model is able to beat the baseline TS potential already with very modest training sets
containing a few tens of configurations, and the error monotonically decreases as more
data points are added to the training set. The curves appear to have an asymptotic error
of roughly 0.10 eVÅ−1 in the crystal dataset and 0.15 eVÅ−1 in the glass dataset, in line
with the intuition that learning properties gets harder as the atomic structure becomes less
ordered. The emergence of these hard limits is a manifestation of the incompleteness of a
system representation by the defined input features.

By instead considering how the predicted constraint forces are used, the most relevant
way in which a ML model should be evaluated is by comparing how closely the profile
of the free energy barriers gets to the target DFT one, both in terms of shape and overall
height. The free energy of a system at a value of reaction coordinate si is, up to an additive
constant, the sum (approximation of the cumulative integral) of the constraint forces along
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Fig. 6.7 Mean absolute error on the predicted constraint force vs. size of training set. Here a
model trained with a training set of crystal configurations is only used to predict forces on
crystal configurations, and vice versa for the amorphous configurations. Given a dataset of
sizeN and a training set sizeNtrain ∈ [10, 0.8N ], the force predictions have been performed
on all otherN −Ntrain configurations. The baseline MAE of the TS potential is shown with
a dashed line

the SGTI trajectory up to the ith element

Fi =
iX

j=1

yj∆sj , (6.21)

and for a meaningful comparison we chose to align every curve by setting the free energy
at its minimum to zero before the first bond opening.

To understand whether a ML approach is really of any use at all, we must think of
what would be the best way to use a given number of QM calculations Ntrain without
using any method requiring an advanced treatment of information: arguably, this would be
to perform the DFT calculations on equally time–spaced configurations, interpolate the
so obtained constraint forces within each interval and integrate these over the reaction
coordinate – clearly, in this setting it would be inconceivable to reuse any QM constraint
force computed for different trajectories. Let us choose a linear interpolation, as there is no
rationale to justifying a more complex interpolation (e.g., cubic). The effectiveness of such
interpolation method in turn depends on how sensitive the thermodynamic integration is
to the sampling rate of a SGTI trajectory, i.e., how quickly the free energy profile calculated
using Eq. 6.21 gets corrupted as the integration is performed over progressively longer
reaction coordinate intervals {∆sj}. As we can see from the profiles of Fig. 6.8, evaluating
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Fig. 6.8 DFT free energy profiles vs. linear interpolation interval. The DFT constraint force
is calculated every N/Ntrain interpolation steps and is linearly interpolated in between

one DFT configuration every 5 does not result in any detectable loss in accuracy, whereas
an interpolation step of 25 will certainly produce unreliable profiles; for interpolation steps
in between the two extremes, the quality of the free energy profile is not very predictable
as it heavily depends on which are the QM–calculated configurations. Let us now explore
the performance of the proposed ML method.

The first tests involve the learnability of the property, and is restricted to learning data
from one SGTI trajectory to predict the full free energy profile of the same trajectory: in this
framework, one can think of the ML model as a ‘smart’ interpolator between training points.
The results presented in Fig. 6.9 and Fig. 6.10 show the outcomes of the ML approach as a
function of the decreasing computational resources available, starting from N/Ntrain = 10
(59 training points for the amorphous, 84 for the crystal) to an extreme of N/Ntrain = 50
(11 training points for the amorphous, 16 for the crystal). For both structures, the ML–
reconstructed free energy profile is, for any practical application, indistinguishable from
the target DFT one up to at least N/Ntrain = 20, and begins showing a small but noticeable
discrepancy above N/Ntrain = 30. For N/Ntrain = 50, corresponding to performing just a
handful of DFT calculations, the ML model is no longer accurate enough for the crystal but,
surprisingly, remains usable in the amorphous system, where the barrier height and shape
are still very accurately reproduced. We can then confirm that the ML model, together
with the specific definition of descriptor, are able to learn the constraint force in a SGTI
simulation, and can maintain the desired accuracy for a computational cost Ntrain that is at
least 3 times smaller than an optimal non–ML approach.



6.3 Machine Learning–augmented Thermodynamic Integration 135

The second test consists of verifying the compatibility between data sources: by merging
the databases of the two trajectories into one inhomogeneous database, we now wish to
perform a single training of the ML model and predict both free energy profiles. The
results in Fig. 6.11 are presented as a function of N/Ntrain: for a given value of N/Ntrain,
the difference between the profiles in Fig. 6.9 and 6.10 and the ones in Fig. 6.11 is that on
top of the same number of training points referred to the relevant trajectory there is a
similar number of training points of the other trajectory. We can imagine three possible
outcomes: (i) the ML model becomes ‘confused’ and the predictions become less accurate
because the input features are not able to effectively distinguish the two structures, (ii) the
predictions remain the same because the input features manage to separate the knowledge
of the two structures, or (iii) the predictions improve because the ML model can make use
of the additional information coming from a separate data source.

Perhaps understandably, the results fall in the first category but the profiles are still
reproduced quite accurately. In particular, the predictions on crystalline configurations
seem to suffer more from non–relevant training set data than their counterparts for the
amorphous structure, whose free energy profile remains close to the target one even for
a small number of data points. In summary, at best the predictions do not get worse: at
least in the limit of small datasets of at most a hundred configurations of our tests, with the
current choice of descriptor and of hyperparameters of the ML model it is not advisable
to predict a free energy profile by also reusing QM data previously computed on different
simulations.

The most stringent and final test is the transferability test: a ML model is trained using
data points of one trajectory and used to predict the free energy profile corresponding to
the other trajectory. This would be the ultimate goal of an all–encompassing ML model
that has managed to learn the relationship between input features and output constraint
force in all of the phase space that can be sampled by a thermodynamic integration of
the given process and material. With the very small and certainly not complete database
available, and considering the compatibility test results, this test is bound to fail, but it can
be nevertheless very informative to observe how our ML models behave in such situation.
The two free energy profiles of Fig. 6.12 help us better understand what the ML model
does and does not learn. The shapes of the curves are guessed correctly, but their scaling
is wrong and they tend to shift towards the wrong target curve: this behaviour indicates
that the ML model is indeed able to learn the sign and intensity of the output variable, but
only in relation to its value in some neighbouring configurations of the training set. We
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can thus argue that the observed discrepancy is due to the different distributions of target
values in the two datasets as of Fig. 6.5.

In conclusion, the proposed method is very effective at evaluating DFT free energy
barriers with minimal computational resources, although by always bearing in mind that
the classical system trajectory must represent a valid sampling of the phase space. The
current tests do not show that QM data of one or more simulations can be used in a new TI
simulation to improve, if not altogether define, the force predictions used to integrate its
free energy profile: this, though, may well be an apparent limitation arising from the small
dataset used and from the simplistic (yet justified) choice of descriptor.
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(a) N/Ntrain = 10

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Reaction coordinate [Å]

1.0

0.5

0.0

0.5

1.0

1.5

F
re

e 
en

er
gy

 [e
V

]

DFT

DFT interpolation

ML

(b) N/Ntrain = 20
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(c) N/Ntrain = 30
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(d) N/Ntrain = 50

Fig. 6.9 Free energy profiles vs. training set size for the crystalline system. The DFT
constraint force is learnt every N/Ntrain SGTI steps, where the total dataset contains N
= 840 configurations. The training set points are indicated by ticks on the horizontal
axis. The target solution represented by the DFT curve (teal), the linear interpolation of
DFT constraint forces (best non–ML guess for a given number N/Ntrain) (orange), and the
proposed ML model prediction (blue) are shown together
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(b) N/Ntrain = 20
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(c) N/Ntrain = 30
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(d) N/Ntrain = 50

Fig. 6.10 Free energy profiles vs. training set size for the amorphous system. The DFT
constraint force is learnt every N/Ntrain SGTI steps, where the total dataset contains N
= 592 configurations. The training set points are indicated by ticks on the horizontal
axis. The target solution represented by the DFT curve (teal), the linear interpolation of
DFT constraint forces (best non–ML guess for a given number N/Ntrain) (orange), and the
proposed ML model prediction (blue) are shown together
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(b) N/Ntrain = 20

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Reaction coordinate [Å]

3

2

1

0

1

2

F
re

e 
en

er
gy

 [e
V

]

DFT c

ML c

DFT a

ML a

(c) N/Ntrain = 30
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(d) N/Ntrain = 50

Fig. 6.11 Free energy profiles vs. training set size using a mixed training set. The DFT
constraint force is learnt every N/Ntrain SGTI steps from the merged dataset of size 1432
containing both crystalline and amorphous configurations. The target solution is labelled
as DFT and the proposed ML model as ML; ‘a’ and ‘c’ stand for amorphous and crystalline
respectively



6.3 Machine Learning–augmented Thermodynamic Integration 140

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Reaction coordinate [Å]

3

2

1

0

1

2

F
re

e 
en

er
gy

 [e
V

]

DFT c

ML c

DFT a

ML a

Fig. 6.12 ML Free energy profiles of crystalline and amorphous systems trajectories using a
ML model trained on the data of the other trajectory. Here all data points have been used
for training (N = Ntrain) to best approximate the ideal use case condition – i.e., a large
database of different trajectories

Summary

When a chemical reaction is studied in the (slow growth) thermodynamic integration
approach, one constructs its free energy profile by integrating the scalar valued constraint
force that is required to progressively drag a single reaction coordinate from a value corre-
sponding to the initial state to that corresponding to a final state. By using an inexpensive
IP that is able to generate the system trajectory to a certain degree of trustworthiness
and so appropriately sampling the phase space, one could at a later stage compute the
QM–accurate constraint forces on that trajectory to improve the accuracy of the free energy
profile. Since TI simulations involve long MD runs producing repetitive system trajectories,
we observe that the QM constraint force is a quantity that can be learnt by a ML model,
so that the computational cost of improving free energy profiles with ab initio data would
ideally be reduced to a bare minimum. At the basis of the approach is the definition of
a descriptor of an atomic environment, which we defined as a set of constraint forces
evaluated by an equal number of interatomic potentials. The proposed method has been
applied to the study of free energy profiles calculations for the crack advance in 2D SiO2.
The results shown prove that it is possible to obtain the same free energy curves whether
the ab initio forces are computed on every frame of the trajectory or if they are computed
in just a few tens of configurations and interpolated elsewhere by a ML model.



6.4 Summary 141

6.4 Summary

The pivot idea of this chapter is to introduce a new level of accuracy in between classical
potentials and ab initio calculations in the form of machine learning models. These can,
in theory, make the best use of computationally expensive QM–accurate physical data
by radically changing how such data is used: rather than imposing a rigid functional
form to the atomic interaction model, the power of a ML model is to let the data itself
determine it. This research field is only a few years old, and out of the endless possible
paths to explore we went in depth into analysing three attempts of this kind: (i) a GAP
model to improve the accuracy of an interatomic potential by correcting the short–range
interaction in TiO2, (ii) a definition of descriptor for a direct force learning approach, and
(iii) a method to bring free energy barriers calculations towards a quantum accuracy. Path
(i) does indeed show some positive results, but it is questionable whether the additional
effort is worth the marginal improvement in accuracy; instead, we came to the valuable
conclusion that path (ii) is a dead end and should not be pursued any further. Path (iii), the
machine learning–augmented thermodynamic integration framework (MLTI), is instead
one application in which machine learning can become a valuable tool to not only speed
up, but to altogether make possible, the evaluation of free energy barriers at an accuracy
that, in the best conditions, may approach the DFT one.



Chapter 7

Conclusions

In this thesis I explored different routes at the vanguard of multiscale simulations, with
the common final aim of making the quantum mechanically–accurate study of fracture
– and more widely chemomechanics – in oxide materials possible. Multiscale fracture
propagation simulations and stress corrosion simulations only in the recent years became
routine for relatively simple systems such as crystalline silicon: these achievements are due
to a combination of advances in the computational tools and in reaching the availability
of a sufficient computing power. Repeating the same kind of studies in oxide materials is
more computationally demanding, and the study of amorphous structures adds one further
layer of complexity to the problem. The answers to questions such as ‘how does silica glass
break’ thus lie beyond the development of new computational tools.

The first issue is computational cost: electrostatics plays a fundamental role to determine
the atomic interactions in oxides, therefore ab initio calculations necessary to evaluate QM–
accurate forces on the atoms at the crack tip require the inclusion of several hundreds of
neighbouring atoms. Using the most recent supercomputing architectures is thus necessary
but not sufficient: using them effectively requires profound changes in the software deployed.
With this in mind, a novel ensemble parallel framework has been proposed in Chapter 4, in
which the QM calculation workload is split across different executables. The efficiency of
the method depends on the load balance across QM calculators, which in turn is related
to the size balance of the atomic clusters to be evaluated. Following this consideration,
I created a new partitioning algorithm and showed that it outperforms the load balance
otherwise obtained by standardmethods considered to be optimal for the task. The ensemble
parallel scheme making use of this partitioning method showed weak linear scaling and
can effectively be used on 105 cores.
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When simulating an amorphous material, another issue is to define its atomic structure.
Recent experiments produced two dimensional silica structures, in which the crystalline and
amorphous phases coexist and can be imaged at atomic resolution. Since these structures are
the simplest existing examples of polymorphic silica, they represent an ideal candidate for
an initial study of fracture propagation in silicate materials. Having shown that a reasonable
accuracy can be achieved using the TS potential only, I created the computational setup and
performed a set of calculations in both crystalline and amorphous systems to understand
(i) the dynamics of a propagating crack, using MD simulations, and (ii) the reaction kinetic
details of bond breaking events when a crack advances, by means of the thermodynamic
integration method.

The results of part (i) show that the crystalline material has an exceptionally large
lattice trapping and velocity gap, as a crack does not advance until the elastic load is beyond
more than twice the critical energy release rate, and when it propagates it does so at a
speed exceeding 2000m s−1. The MD results for the amorphous material, instead, draw a
completely different picture: a moving crack follows a well defined path determined by the
random ring structure of the glass, and it appears to halt at some unfavourable crack tip
arrangements; these simulations hint that fracture propagation at a macroscopic scale is the
result of the creation of voids in weak regions of the material followed by their coalescence.

Step (ii) helps interpreting these results by observing the free energy profile of each
crack advance event. In the crystalline system, the lattice trapping and velocity gap observed
can be explained by the presence of very energetically unfavored intermediate states that
produce a free energy barrier of almost 1.8 eV that only vanishes at around 2.2 Gc. In
amorphous systems, instead, these simulations validate the hypothesis that a crack is
favoured to advance in preferential directions determined by the silica ring structure near
the crack tip, favouring the rupture of large rings and finding insurmountable hurdles for
some very disordered crack tip configurations.

The investigation carried out in Chapter 5 is inevitably incomplete, and many avenues
of further research can branch out from the current results: more simulations are needed
to explore the stress and temperature dependence of the free energy barriers; a new set of
simulations is needed to explore the existence of a velocity gap in crystalline 2D–SiO2 in the
narrow energy release rate range where slow crack advance may be observed (17.2 Jm−2 to
18.5 Jm−2 at 300 K); an advisable step would be to validate the results with higher accuracy
QM/MM simulations, which would also make possible the study of stress corrosion, e.g.,
the effects of dissociation of water molecules at the crack tip in a setup similar to Ref. [117];
as the research on the simplified 2D–SiO2 systems progresses, the long term goal is to use
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the so obtained tools and insights as the starting point for understanding the physics of
more technologically relevant 3D materials as soon as the computational methods and the
available computing power will allow that.

With an ideal goal of building an interaction model as accurate as DFT and as computa-
tionally inexpensive as an IP, in Chapter 6 we explored three entirely different routes in
using ML for atomistic simulations of oxides.

We laid out the first steps in the development of a GAP potential for the polymorphs of
TiO2 to overcome the limitations of the TS potential parametrisation for this material. The
results, involving the calculation of elastic constants in anatase and rutile bulk crystals, are
encouraging but the improvements from the TS IP baseline are not consistent at the current
stage. The natural evolution of the research on this topic is to investigate the source(s)
of errors of a GAP model, which begins with understanding whether the errors in the
original TS potential arise from short– or long–range interactions: only in the former case
a short–range GAP model can be justified. Current results from force locality tests in bulk
anatase similar to those in Ref. [69] show that an ideal GAP model – i.e., one that would
perfectly model the atomic interactions for a range up to its cutoff radius – would be able
to reach chemical accuracy (0.05 eVÅ−1) for a cutoff of at least 6 Å: more tests are needed
to understand how this value changes in surface calculations and in the rutile structure.

In Section 6.2 we hypothesised a strategy for the direct learning of an atomic force given
a local environment, and the investigation of its mathematical implications produced a
negative result. The approach of learning 3D force vectors would be an elegant and general
solution to generate force fields without the explicit definition of a potential, and this result
can help to better focus the efforts of further developments.

All of the topics covered in this work come together in the final Section 6.3, where I
propose a general method for theML reconstruction of one–dimensional free energy profiles
of chemical reactions. The key concept is that a classical TI trajectory is postprocessed by a
ML method that learns QM–accurate data on a subset of its configurations. The method has
successfully been applied to the study of crack advance of a single atomic step in 2D-SiO2.
Here, the results show that the devised ML model allows to evaluate by DFT – and learn –
only a very small number of trajectory frames (15 to 40) while still reproducing the same
free energy profiles that would be obtained by performing a DFT calculation on every frame
of the trajectory. The next natural steps in this direction are:

• perform a thorough search to find the descriptor most suitable for the problem (e.g.,
by using LASSO techniques as in Ref. [118])
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• extend the database of DFT configurations to include TI trajectories of crack advance
for different crack tip arrangements and loads, to test the feasibility of building a
single ML model for the 2D SiO2 material as a whole that can predict QM–accurate
TI constraint forces in all crack tip arrangements.

Additionally, the proposed method is not tied to one particular material or chemical re-
action and can be applied to the study of any system whose state can be described by a
single collective variable. The proposed approach is instrumental in bringing free energy
calculations of large atomic systems from the accuracy currently achievable by classical
potentials towards the accuracy of higher ab initio methods.
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