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 Multi-parametric MR-guided PET image reconstruction 

Abolfazl Mehranian† and Andrew J. Reader 

1Abstract– In this study, we investigated the utilization of multi-

contrast MRI as well as PET information to guide PET image 

reconstruction with the aim of addressing the pitfalls of conven-

tional MR-guided PET image reconstruction methods. We stud-

ied the conventional Tikhonov and total variation (TV) priors, 

and the anatomical priors such as Kaipio, non-local Tikhonov 

with Gaussian and Bowsher similarity kernels and a local joint 

Burg entropy together with their extended multi-parametric 

versions. Our simulation results showed that joint Burg entropy 

far outperforms the conventional anatomical priors in the 

preservation of PET unique lesions and in the reconstruction of 

functional boundaries with matched MR anatomical boundaries. 

It was found that the multi-parametric extension of the priors 

leads to enhanced preservation of edge and PET unique features. 

The clinical reconstructions showed that the Gaussian similarity 

kernels with voxel-based feature vectors, the Bowsher method 

and the Burg prior are the best performing priors and their 

multi-parametric extensions led to the improved recovery of the 

PET unique features.  

 

Index Terms – PET-MRI,  Bowsher, Total variation, joint entropy 

I. INTRODUCTION 

Simultaneous PET-MR systems provide complementary multi-

parametric MRI information for PET imaging which can be exploited 

during PET image reconstruction to reduce noise and partial volume 

effect (PVE). The Bayesian maximum a posteriori (MAP) image 

reconstruction has been mainly explored to exploit the a priori 

knowledge of the unknown image obtained from the anatomical 

images. Over the last two decades, various anatomical priors have 

been designed to improve upon the conventional quadratic prior 

using edge preserving potential functions that assign a lower penalty 

to large local differences on the assumption that they are probably 

associated with valid boundaries. Bowsher et al [1] proposed to 

perform smoothing between the PET image voxels that their corre-

sponding MR image voxels are anatomically similar, according to 

their absolute intensity differences. This anatomically guided quad-

ratic prior essentially weights the local differences using zero-one 

weighting factors, thereby disabling the smoothing across boundaries, 

but encouraging it within anatomical regions. The main concern with 

such anatomical priors is the mismatched between PET and MR 

images, which can lead to suppression of true PET features or intro-

duction of false ones. Inspired by non-local means filtering, Chen et 

al [2] proposed the calculation of similarity weighting factors from 

the current PET images estimate using patch-based Gaussian kernels. 

To improve the performance of the Bowsher prior in the case of the 

anato-functional inconsistencies, Kazantsev et al [3] investigated the 

combination of the Bowsher and Chen methods. Another approach is 

to improve MRF priors using the normalized gradient vector fields 

(normal vectors) obtained from anatomical side information. More 

recently, Ehrhardt et al [4] derived a prior based on the structural 

similarity of the PET and MR images measured by the alignment of 

the PET and MR gradients. In fact, this prior generalizes the prior 
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proposed by Kaipio et al [5] for improving the quadratic prior by 

weighting the magnitude of PET image gradients (i.e. local differ-

ences) with the sin-squared angle between the PET gradients and MR 

normal vectors. The Shannon joint entropy (JE) has also been studied 

as an anato-functional prior able to cope with PET-MR mismatches 

as it relies on their joint probability distribution; however, it also 

ignores the spatial correlation between neighbouring voxels, which is 

an important feature for PET tracers that are confined in anatomical 

regions. Vunckx et al [6] showed that the Bowsher prior overall 

outperforms this JE prior as it has less hyper-parameters and it does 

not converge to an undesirable local maximum. 

The availability of multi-parametric images in simultaneous PET-

MR systems can provide a unique opportunity for improving PET 

image quality. These parametric maps are mutually complementary 

and informative, for instance, an early-stage lesion might not have 

any morphological manifestations in T1- or T2-weighted MR images 

but might appear metabolically active in PET images. The aim of this 

study is to explore this promising aspect of simultaneous PET-MR 

imaging. Specifically, we a) elaborate different priors included the 

Tikhonov (quadratic) and total variations (TV) priors (as local regu-

larization methods), the non-local Tikhonov and Bowsher priors (as 

non-local anatomically guided regularization methods), the Kaipio 

prior and a local Burg joint entropy prior modified to include the 

spatial correlation between neighbouring voxels. Further, we b) test 

their performance using realistic 3D simulations and clinical datasets, 

and finally c) generalize the amenable priors to multi-parametric MR-

guided PET image reconstruction, where the complementary MR 

images as well as the PET image itself are used to improve the PET 

image quality data. 

II. MATERIAL AND METHODS 

A. Maximum a posteriori PET image reconstruction  

Let 𝒚 ∈ ℤ+
𝑀 the PET data scan of an object with the activity distribu-

tion represented by 𝒖 ∈ ℝ𝑁. The MAP reconstruction consists of 

maximizing the posterior probability of 𝒖 given 𝒚, that is: 

𝒖̂ = argmax
𝒖

{∑[𝑮𝒖]𝑖 + 𝑟̅𝑖

𝑀

𝑖=1

− 𝑦𝑖𝑙𝑜𝑔𝑒([𝑮𝒖]𝑖 + 𝑟̅𝑖) − 𝛽𝑅(𝒖)} (1) 

where 𝑔𝑖𝑗  is the geometric probability detection of annihilation 

events emitted from the 𝑗th voxel in the 𝑖th PET detector and 𝑟̅𝑖 is the 

expected number of scatter and random events in the 𝑖th detector. In 

this study, we considered the following prior, which generalizes most 

of the included MRF priors: 

𝑅(𝒖) = ∑ 𝜙 ( ∑ 𝜉𝑗𝑏𝜔𝑗𝑏
 𝜓(𝑢𝑗 − 𝑢𝑏)

𝑏∈𝒩𝑗

)
𝑁

𝑗
 (2) 

𝜓 and 𝜙 are potential functions, where 𝜓 operates on the intensity 

differences between the 𝑗th voxel and its neighbouring voxels, and 𝜙 

operates on the neighbourhood 𝒩𝑗  sum of those local differences. 𝜉𝑏𝑗 

and 𝜔𝑏𝑗
  are coefficients that weight the intensity differences between 

voxels 𝑗 and 𝑏 based on their proximity (e.g. the inverse of their 

Euclidean distance) and based on their similarity, respectively. The 

Tikhonov prior is defined by setting 𝜓(𝑠) = 𝑠2 and 𝜙(𝑡) = 𝑡, while 

the smoothed isotropic TV prior is defined for 𝜓(𝑠) = 𝑠2 and 𝜙(𝑡) =

√𝑡 + 𝛿2, where 𝛿 > 0 is a smoothing factor. 

The similarity weighting coefficients (kernels) encourage the 

smoothness along boundaries but discourage it across them. General-
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ly, there are three approaches in the calculation of these coefficients, 

based on: i) the PET image reconstructed from a previous iteration 

[2] ii) the MRI or CT side anatomical information as in the Bowsher 

method and iii) both the PET and side anatomical information [3, 7]. 

In this study, we extend the latter to multi-parametric MRI and PET, 

where the similarity kernels are calculated based on all available MRI 

data as well as the PET image.  

1) Bowsher and Gaussian similarity kernels 

In Bowsher method, the top B most similar neighbours in the MR 

image is declared similar in their corresponding PET images based on 

their absolute differences. The similarity weights can also be calcu-

lated based on Gaussian kernels as a function of a reference image 𝒙: 

𝜔𝑗𝑏
𝑉𝑜𝑥𝑒𝑙(𝒙) = exp (−

(𝑥𝑗 − 𝑥𝑏)
2

2𝜎2 ),   𝜔𝑗𝑏
𝑃𝑎𝑡𝑐ℎ(𝒙) = exp (−

‖𝒇𝑗(𝒙) − 𝒇𝑏(𝒙)‖
2

2

2𝜎2 )  (3) 

where 𝜔𝑏𝑗
𝑉𝑜𝑥𝑒𝑙  and 𝜔𝑏𝑗

𝑃𝑎𝑡𝑐ℎ are the kernels with voxel-based and patch-

based feature vectors, 𝒇𝑙(𝒙) ∈ ℝ𝐿 is a vector of 𝐿 voxel values on a 

patch centred on the 𝑙th voxel, known as a feature vector, 𝜎 is the 

shape parameter (standard deviation) of the Gaussian function. The 

inclusion of patch-based feature vectors 𝜔𝑗𝑏
𝑃𝑎𝑡𝑐ℎ makes the similarity 

kernels robust to noise and random fluctuations. In this study, we 

defined a non-local multi-parametric similarity kernel as the geomet-

ric mean of the kernels calculated from the PET image, 𝒖, and those 

calculated from the MR images, {𝒗(𝑖)}, as follows: 

𝜔𝑗𝑏
 =

1

Z
(𝜔𝑗𝑏

𝑃𝑎𝑡𝑐ℎ(𝒖) ∏ 𝜔̃𝑗𝑏(𝒗(𝑖))

𝑃

𝑖=1

)

1/(𝑃+1)

 (4) 

, let {𝒗(𝑖) ∈ ℝ𝑁}
𝑖=1

𝑃
 be a set of 𝑃 multi-parametric MR images where 

𝜔𝑗𝑏
𝑃𝑎𝑡𝑐ℎ(𝒗) is a self-similarity Gaussian kernel with patch-based 

feature vectors, as in (3), and 𝜔̃𝑗𝑏 is side-similarity Bowsher kernel or 

Gaussian kernel voxel-based feature vectors. The derivative of the 

weighted quadratic prior is given by: 
𝜕𝑅(𝒖)

𝜕𝑢𝑗
= 2 ∑ 𝜉𝑗𝑏𝜔𝑗𝑏

 (𝑢𝑗 − 𝑢𝑏)

𝑏∈𝒩𝑗

 (5) 

2) Kaipio prior 

Based on the formulations in [4], the Kaipio prior is defined as: 

𝑅(𝒖) = ∑ ∑ 𝜉𝑗𝑏(𝑢𝑗 − 𝑢𝑏)
2

𝑏∈𝒩𝑗

− ( ∑ 𝑛𝑗𝑏√𝜉𝑗𝑏(𝑢𝑗 − 𝑢𝑏)

𝑏∈𝒩𝑗

)

2
𝑁

𝑗
 (6) 

𝑛𝑗𝑏 =
𝑣𝑗 − 𝑣𝑏

√∑ (𝑣𝑗 − 𝑣𝑏)
2

𝑏∈𝒩𝑗

 

a quadratic prior improved by inclusion of the squared inner product 

of the PET image gradient and MR normal vectors 𝒏𝑗. The derivative 

of the Kaipio prior is the same as in (5) with the weights given by: 

𝜔𝑗𝑏
 = 1 −

𝑛𝑗𝑏

√𝜉𝑗𝑏

∑ 𝑛𝑗𝑏√𝜉𝑗𝑏

𝑏∈𝒩𝑗

 (7) 

3) Local joint Burg entropy 

In this study, a multi-parametric joint entropy (JE) prior was defined 

based on the negative of the Burg entropy [8]: 

𝐻(𝑼, 𝑽(1), … , 𝑽(𝑃)) ≈ − ∑ log 𝑝 (𝑢𝑗 , 𝑣𝑗
(1)

, … , 𝑣𝑗
(𝑃)

)

𝑁

𝑗

 

where the variables 𝒖, 𝒗(1), … , 𝒗(𝑃) are parametric PET and MRI 

images and 𝑝(𝑥, 𝑦, … , 𝑧) is the joint probability distribution (PDF) of 

the variables estimated using a multivariate Gaussian window func-

tion with a diagonal covariance matrix 𝚺 = diag{𝜎𝑢
2, 𝜎

𝑣(1)
2 , … , 𝜎

𝑣(𝑃)
2 }: 

𝑝(𝑥, 𝑦, … , 𝑧)

=
1

𝑁
∑ 𝒢(𝑥 , 𝑢𝑏 , 𝜎𝑢)𝒢 (𝑦, 𝑣𝑏

(1)
, 𝜎𝑣(1)) … 𝒢 (𝑧, 𝑣𝑏

(𝑃)
, 𝜎𝑣(𝑃))

𝑁

𝑏

 

𝒢(𝑞, 𝑟, 𝜎) =
1

√2𝜋𝜎
exp (−

(𝑞 − 𝑟)2

2𝜎2
) 

(8) 

where 𝑁 is the number of samples used to calculate the PDF, which 

similar to [9] was set equal to the number of voxels in the images. 

The derivative of joint entropy evaluated at 𝑗th bin (or voxel) de-

pends on all voxel intensities simultaneously, which leads to discard-

ing regional information. As suggested in [9], the derivative can be 

approximated by evaluating the summation for the voxels that are in 

the neighbourhood of the 𝑗th voxel, that is: 
𝜕𝐻

𝜕𝑢𝑗
= 2 ∑ 𝜉𝑢𝜔̂𝑗𝑏(𝑢𝑗 − 𝑢𝑏)

 

𝑏∈𝒩𝑗

, 𝜉𝑢 =
1

2𝑁𝜎𝑢
2  (9) 

where 𝜔̂𝑗𝑏  act as similarity weighting coefficients given by: 

𝜔̂𝑗𝑏 =  

exp (−
(𝑢𝑗 − 𝑢𝑏)

2

2𝜎2 ) ∏ exp (−
(𝑣𝑗

(𝑖)
, 𝑣𝑏

(𝑖)
)

2

2𝜎𝑣(𝑖)
2 )𝑃

𝑖=1

𝑝 (𝑢𝑗 , 𝑣𝑗
(1)

, … , 𝑣𝑗
(𝑃)

)
 

(10) 

To further improve this prior in spatial neighbourhoods, we replaced 

𝜉𝑢 in (9) with the proximity coefficients 𝜉𝑗𝑏 in (2). 

B. Optimization and parameter selection 

The MAP problem in (1) was optimized using the Green’s one-step-

late (OSL) MAP-EM algorithm, as follows: 

𝑢𝑗
𝑛+1 =

𝑢𝑗
𝑛

∑ 𝑔𝑖𝑗𝑛𝑖𝑎𝑖
𝑀
𝑖=1 + 𝛽

𝜕𝑅(𝒖𝑛)
𝜕𝑢𝑗

∑ 𝑔𝑖𝑗𝑛𝑖𝑎𝑖

𝑀

𝑖=1

𝑦𝑖

𝑛𝑖𝑎𝑖 ∑ 𝑔𝑖𝑏𝑏 𝑢𝑏
𝑛 + 𝑟𝑖

 (11) 

The priors included in the present work have a number of user-

defined parameters that determine their performance. Table 1 sum-

marizes these key parameters, along with those with pre-defined 

values commonly used in our simulation and clinical data reconstruc-

tions.  

 
TABLE 1 LIST OF THE PARAMETERS OF THE REGULARIZATION METHODS INCLUDED IN THIS 

STUDY. THE PRE-DEFINED VALUES OF SOME OF THE PARAMETERS COMMONLY USED IN THIS 

STUDY ARE ALSO PRESENTED.  

PRIORS PARAMETERS 

Local Tikhonov |𝒩3| = 6, 𝛽 

Local TV |𝒩3| = 6, 𝛿 = 1 × 10−3, 𝛽 

Kaipio |𝒩7| = 342, 𝛽 
†Gaussian-V |𝒩7| = 342, 𝜎𝑢, 𝛽 

*Gaussian-P |𝒩7| = 342, |ℱ3| = 26, 𝜎𝑢, 𝛽 

Bowsher |𝒩7| = 70, 𝛽 

Joint Burg entropy |𝒩7| = 342, 𝜎𝑢, 𝜎𝑣, 𝛽 
†,*Gaussian similarity kernels with voxel (V) and patch (P) based feature vectors. 
|𝒩𝑛|, |ℱ𝑛|:  number of included neighbors in a 𝑛 × 𝑛 × 𝑛 neighborhood (𝒩) or feature vector (ℱ) 

𝛽: Prior’s weighting factor (regularization parameter) 

𝛿: TV smoothness parameter 

𝜎𝑢, 𝜎𝑣: Standard deviation of Gaussian kernels used for PET and MR images 

𝐵: number of most similar neighboring voxels 

C. Numerical PET-MR simulations and clinical datasets 

The BrainWeb phantom [10] was utilized to simulate a 10 million 

counts 18F-FDG scan in the brain for Siemens mMR scanner together 

with T1- and T2-weighted MR images and attenuation maps, all with 

a matrix size of 344×344×127 and voxel of size 2×2×2 mm3. A few 

regions of the T1 and T2-MR images were uniquely and commonly 

removed in such a way that the anatomical inconsistencies were 

simulated. An [18F]FDG PET scan was included with about 650 

million prompts. 

III. RESULTS 

A. Simulations 

Fig. 1 compares the reconstruction results of the brain phantom using 

the studied algorithms including: the MLEM algorithm with 4 mm 

Gaussian filtering, local Tikhonov and TV priors and T1-MR ana-

tomical priors, i.e. the Kaipio, non-local Tikhonov with patch- and 

voxel-based Gaussian similarity kernels (Gaussian-P/V), Bowsher 

and the joint Burg entropy. As can be seen, the MAP reconstruction 

methods have substantially reduced noise and preserved matched 

PET-MR edges. 



 

 

 
Fig. 1. The results of the MAP image reconstructions of the brain phantom using the 

conventional local and non-local anatomical priors, compared to the MLEM reconstruc-

tion followed by Gaussian filtering with kernel width of 4 mm.  

 

 
Fig. 2. The results of the MAP image reconstructions of the brain phantom using the T1-

MR and multi-parametric (MP) MR guided anatomical priors. All PET images are shown 

with the same displaying window. 

 

The results show that the Gaussian-V, Bowsher and Burg methods 

achieve the best performance for the region where the PET and MR 

image have common boundaries. However, as shown, it is noticeable 

that the Gaussian-P/V and Bowsher priors tend to completely sup-

press the PET-unique lesion compared to the Kaipio and JE priors. 

For PET regions that do not have corresponding MRI regions, the 

Kaipio degenerates to the Tikhonov prior, therefore for this simulated 

lesion, they perform similarly. On the other hand, the Burg prior in 

essence relies of both MRI and PET information, therefore it is able 

to preserve PET unique feature. The results show that by proper 

selection of the 𝜎𝑢 parameter, the Gaussian-V method can approach 

the Bowsher method with a given B number.  

 
TABLE 2. THE NRMSE RESULTS OF THE RECONSTRUCTION METHODS IN THE 

BRAIN PHANTOM CONVENTIONAL T1-MR GUIDED ANATOMICAL PRIORS AND 

THE MULTI-PARAMETRIC (MP) GUIDED ANATOMICAL PRIORS (GM: GREY 

MATTER, WM: WHITE MATTER). 

Methods 
 

GM  WM  Tumours 

MLEM 
 

33.63  63.57  25.52 
Local Tikhonov 

 
27.49  55.98  26.93 

Local TV 
 

31.68  60.31  23.43 

Kaipio 
 

22.21  45.72  26.73 
Gaussian-P 

 
21.08  44.95  33.14 

Gaussian-V 
 

16.48  38.15  33.67 

Bowsher 
 

13.17  30.73  35.04 
Burg JE 

 
16.30  29.89  24.72 

Gaussian-P: MP  20.77  43.57  30.42 

Gaussian-V: MP  13.75  32.41  28.99 
Bowsher: MP  11.59  24.18  28.70 

Burg JE: MP  16.81  24.60  24.70 

 

Table 1 presents the NRMSE results of the reconstruction methods 

calculated over GM, WM and tumours of the brain phantom. The 

results shows that in GM, the Bowsher gives rise to the lowest errors 

especially with its multi-parametric (MP) extension which compen-

sates for the mismatches between PET and T1-MR images. In the 

WM of the simulated FDG phantom, where there is less uptake, both 

MP Bowsher and Burg JE prior outperform the other methods, 

whereas in the tumours, the TV and JE priors achieve the lowest 

errors. As can be seen, the Bowsher and Gaussian priors lead to the 

highest NRMSE in the tumours, which is consistent with findings in 

Fig. 1. The ability of the TV prior in preservation of the active tu-

mours should be ascribed to the fact that for the voxels that the mag-

nitude of their local differences is large, the prior assigns lower 

weights on those differences. 

Fig. 2 show the results of MP guided PET image reconstructions 

in the brain phantom dataset for the Gaussian-P/V, Bowsher and 

Burg JE priors in comparison with T1-MR guided reconstructions. As 

shown, there are a missing tumour and a mismatched anatomical 

region that is partly complemented by the T2-MR image. In the T2-

MR image however there are two lesions of which the smaller one 

matches the PET lesion. The results showed that the inclusion of T2-

MR and as well as PET information can lead improved recovery of 

the lesion in the PET images. As can be seen, the large lesion in T2-

MR image has not significantly induced false edges in the MP-guided 

PET images, however, in all reconstructions there are a faint trace of 

the inferior edge of the lesion especially in the JE prior, where noise 

has been sparely preserved. The NRMSE results in Table 3 also 

confirms the improved performance of the multi-parametric priors 

compared to the conventional anatomical priors 

B. In-vivo evaluation 

Fig. 3 compares the reconstruction results of the FDG brain dataset 

using MLEM, conventional MAP and anatomical MAP reconstruc-

tions using the T1-MPRAGE MR image and also shows the fused 

T1-MR and the PET images reconstructed by MLEM and Burg 

methods. The results demonstrate that the overall resolution and 

quality of PET images have been improved by inclusion of anatomi-

cal information, especially using the Gaussian-V, Bowsher and JE 

priors. As a result, the spill-over and partial volume averaging effects 

visible in the MLEM and Tikhonov and TV reconstructions have 

been considerably reduced by the anatomical priors.  

 

 

Fig. 3. The reconstruction results of the clinical FDG dataset. The activity profiles of the 

reconstruction methods has been shown for three different regions along the indicated 

dash lines. 
 

 



 

 

 

Fig. 4 The reconstruction results of the clinical FDG dataset using the proposed approxi-

mate joint entropy prior employing FLAIR, T1 MRI data and multi-parametric T1-

FLAIR-PET (MP) data during reconstruction.  

Fig. 4 compares the reconstruction results of the joint Burg entropy 

prior guided by FLAIR-MR, T1-MR image as well as all parametric 

images. The quality of the anatomically-guided PET image recon-

structions highly depends on the quality and the amount of infor-

mation provided by the MR images. The visual comparison of the 

reconstructions reveals there are subtle differences between the re-

construction, however, the activity profiles drawn along the head of 

caudate shows the FLAIR-guided JE method slightly underestimates 

the activity whereas its MP extension recovers the activity profile 

toward that of the MLEM method. 

IV. CONCLUSION 

In this work, several state-of the-art anatomical priors were studied 

and presented in a common framework as a non-local Tikhonov prior 

with different similarity weighing coefficients. In addition, we pro-

posed the extension of the prior to multi-parametric MR-guided PET 

image reconstruction in which available complementary MRI and 

PET are exploited to improve the PET image quality and to address 

the pitfalls of the conventional MR-guided anatomical priors. The 

results showed that the Tikhonov prior with Gaussian similarity 

kernels, calculated using voxel-based feature vectors, the Bowsher 

similarity kernels and the local joint Burg entropy prior results in the 

most accurate recovery of PET details. It was also found that the 

Burg prior is more robust in preserving PET unique features, as by 

definition it relies on both PET and MRI information. In both our 

simulation and clinical results, the conventional anatomical prior 

resulted in the suppression of PET unique features, which was nota-

bly reduced by the multi-parametric extension of these priors. 
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