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Excess body mass index in childhood: a modifiable risk factor for type 1 diabetes 
development? 
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Objective: The rising incidence of type 1 diabetes parallels an increased prevalence of 
obesity, yet the causal association remains inconclusive. Analyses often examine BMI 
at a single time point without emphasis on duration of BMI elevation. We aimed to 
determine the cumulative effect of elevated BMI over time on the progression to type 1 
diabetes in youth, and to study the impact of age and sex on this relationship. 
Research Design and Methods: We studied 1,117 pediatric participants in the TrialNet 
Pathway to Prevention cohort, i.e. autoantibody-positive relatives of patients with type 1 
diabetes. Longitudinally accumulated BMI above the 85th age- and sex-adjusted 
percentile was calculated to generate a cumulative excess BMI (ceBMI) for each 
subject. Recursive partitioning analysis and multivariate modeling yielded sex and age- 
specific thresholds for ceBMI that confer the greatest risk for type 1 diabetes 
progression.  
Results: ceBMI ranged from -10 to +15.1 kg/m2 (median -1.86), with 0 corresponding to 
the CDC definition of elevated BMI (>85th BMI percentile). Higher ceBMI corresponded 
to significantly greater risk of progressing to type 1 diabetes (p=0.0006). The increased 
risk of diabetes occurred at lower ceBMI values in children <12 years compared to older 
subjects, and in females versus males.  
Conclusions: Elevated BMI is associated with increased risk of diabetes progression in 
pediatric autoantibody positive relatives, but the effect varies by sex and age. These 
data suggest that lifestyle modifications to lower BMI may delay the onset of type 1 
diabetes and offers specific BMI thresholds for implementing these changes.  
  



The global rise in incidence of type 1 diabetes has intensified efforts to identify 
modifiable risk factors in order to prevent or delay onset of clinical diabetes(1; 2). 
Although there are several genetic loci for type 1 diabetes susceptibility, heritability does 
not completely predict disease development, highlighting the role of other factors such 
as environmental influences(3). The parallel rise in obesity (4; 5) and type 1 diabetes 
incidence suggests a potential link between elevated body weight and type 1 diabetes 
progression(6-9). The “accelerator hypothesis” proposes that obesity-induced insulin 
resistance exacerbates the autoimmune-mediated beta cell destruction that 
characterizes type 1 diabetes (10). Obesity-induced insulin resistance may also 
accelerate clinical onset of type 1 diabetes by increasing insulin needs in those with 
already compromised insulin secretory capacity(11).  

Data from the Diabetes Prevention Trial (DPT-1) indicate that insulin resistance 
is an independent risk factor for type 1 diabetes development(12). Moreover, the 
Diabetes Prevention Trial-Type 1 Risk Score (DPTRS), a predictive tool of diabetes 
progression in the DPT-1 at-risk population, incorporates BMI as a critical 
component(13). More recently, however, BMI percentile was found to be only a minor 
risk factor for diabetes progression in antibody positive relatives of people with type 1 
diabetes participating in the TrialNet Pathway to Prevention (PTP) cohort(14), although 
this study included both children and adults. Other prospective(15-17) and cross-
sectional(11; 18; 19) studies report conflicting data for the role for body weight and 
obesity on type 1 diabetes progression, further highlighting the controversial nature of 
the accelerator hypothesis. The majority of prospective observational studies, however, 
limit their analysis to BMI at a single time point prior to disease diagnosis, and the 
impact of sustained BMI elevation measured longitudinally over time on risk of 
progression to type 1 diabetes remains unknown. In addition, the influence of sex and 
age on the relationship of BMI and progression to type 1 diabetes has yet to be 
explored.  

Our overall objective was to determine the effect of sustained BMI elevation over 
time on the progression to type 1 diabetes in children at risk, and to study the impact of 
age and sex on this relationship. Here, we evaluated the longitudinal influence of 
cumulative excess BMI (ceBMI), a calculated aggregate measure of elevated BMI over 
time, on progression to type 1 diabetes in children participating in the TrialNet PTP 
cohort. Our evaluation focusing on the pediatric subjects of the PTP cohort allowed for 
unique investigation into sex- and age- specific influences on ceBMI and risk of type 1 
diabetes progression.  
  
Research Design and Methods: 
Subjects: The TrialNet PTP cohort was established in 2001 and has been described 
previously(20). Briefly, nondiabetic first-degree relatives (ages 1–45 years) and second- 
or third- degree relatives (ages 1–20 years) of individuals with type 1 diabetes were 
enrolled and screened for presence of pancreatic islet antibodies. Antibody status was 
assessed according to the Diabetes Antibody Standardization Program(21). Participants 
were tested first for the presence of glutamic acid decarboxylase 65 (GAD65), insulin 
(IAA), or islet-antigen 2 (IA-2/ICA512) antibodies, and if positive, they were tested for 
islet cell antibodies (ICA) antibodies(22). Measurement of zinc transporter 8 (ZnT8) 
antibodies was initiated in 2004(23), and was consistently measured in the PTP cohort 



starting in 2012. Confirmed autoantibody positive individuals were observed 
longitudinally with either semi-annual or annual monitoring, which included 
measurement of height and weight, and oral glucose tolerance testing (OGTT)(24).  

A total of 3,285 eligible individuals were screened from March 2004 through June 
2014, and were monitored for progression to diabetes through November 2015. To 
facilitate consistent and valid calculations of BMI percentiles and use of CDC criteria 
and guidelines to define overweight and obesity, we restricted our analysis cohort to 
only include participants age 2 to 18 years at their first BMI evaluation and who had at 
least two BMI measurements at monitoring visits before 20 years of age. Our resulting 
cohort consisted of a total of 1,117 subjects (Figure S1). One subject with severe 
morbid obesity and no other known conditions was excluded from final analysis to 
prevent limitation of generalizability of the results. All analyses were run with and 
without this subject to ensure that exclusion did not introduce bias, but data presented 
are without this subject. Baseline assessment for metabolic and anthropometric 
measurements is defined as the first visit with a BMI evaluation. Participants who later 
entered prevention trials were censored at the time of initial enrolment into the 
prevention trial.  
 
Laboratory and anthropometric measurements: At each study visit, a standard protocol 
OGTT was performed and HbA1c was obtained. Glucose was measured using the 
glucose oxidase method(25). Diabetes was diagnosed according to American Diabetes 
Association criteria (fasting glucose ≥126mg/dl, random glucose ≥200mg/dl, 2 hour 
OGTT >200 mg/dl)(26), which must have been met on two occasions.  A HbA1C >6.5% 
could be used as part of confirmatory testing(20). 

BMI was calculated as weight (kg)/height(m2). The CDC 2000 growth charts 
(www.cdc.gov/nccdphp/dnpao/growthcharts/resources/sas.htm) were used to obtain the 
value for 85th percentile for age- and sex- adjusted BMI for each subject at the time of 
each study visit. Cumulative excess BMI, hereby referred to as ceBMI, has been used 
previously as a measure of persistent elevation of BMI beyond the overweight 
threshold(27; 28). The weighted sums of the differences between the actual BMI and 
corresponding 85th BMI percentile for the sex and age at that evaluation were calculated 
using the method described by Lee et al (27) and Bouchard et al (28). Briefly, a ceBMI 
score was calculated by summing the difference calculated at each BMI assessment 
while accounting for the irregular timing between evaluations (equation 1): 

where ceBMIyrsj = ceBMI-years for subject j in units kg/m2*years, and m = the number 
of BMI evaluations for subject j. We further annualized ceBMIyrs to accommodate the 
irregular timing of BMI assessment in relation to time type 1 diabetes outcome or 
censoring in some subjects of our cohort (equation 2).  

 

𝑐𝑒𝐵𝑀𝐼𝑦𝑟𝑠𝑗 = ∑
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where ceBMIj is a value representing the annual average ceBMI in kg/m2 for subject j 
over the number of years subject j had m BMI evaluations, tm is time in days at the last 
BMI measurement, and t0 is the time of first BMI evaluation.  

To avoid confounding by weight loss that frequently precedes diagnosis of type 1 
diabetes, for individuals who progressed to diabetes, the last BMI used was >6 months 
prior to the date of diagnosis  
 
Statistical Considerations: Categorical variables were compared among groups by 
Pearson’s X2 tests or Fisher Exact tests when cell sizes were insufficient. The majority 
of continuous variables summarized had skewed distributions and were compared 
between groups using nonparametric tests (Wilcoxon rank sum tests or Kruskal-Wallis 
tests, depending on the number of groups). Nonparametric Spearman rank correlation 
tests were used to assess correlation between continuous measures at baseline. 
Analyses of BMI were based on age- and sex-adjusted BMI percentiles. As such, 
baseline underweight status was defined as less than the 5th percentile, normal weight 
between the 5th and 85th percentile, overweight status at the 85th percentile or above, 
and obesity at the 95th percentile or above. Cumulative excess BMI was analyzed both 
as continuous measure as well as a dichotomized measure. Cumulative excess BMI >0 
indicated a subject’s BMI on average greater than or equal to the 85th percentile for their 
sex and age during the observation period.  

The main clinical outcome for analysis was time to development of type 1 
diabetes, defined as the time from the first BMI evaluation to the date of diagnosis. 
Those not diagnosed with type 1 diabetes were censored at their last date of follow up. 
In addition, those who during the course of their follow up enrolled in an interventional 
trial for the prevention of type 1 diabetes were censored on the date of their enrollment. 
Kaplan-Meier methods were used to assess differences in the time to type 1 diabetes 
distributions between groups of interest, and Cox proportional hazards models were 
used to assess the influence and significance of continuous and categorical variables. 
Assumptions for proportionality of hazards were tested for in these models. Given the 
known existence of risk factors and their potentially confounding effects, all time-to-
event analyses were adjusted for age, sex, and whether or not subjects were single 
confirmed autoantibody positive versus multiple autoantibody positive at screening. To 
assess possible cut-points for ceBMI and age at first BMI evaluation in terms of their 
influence and stratification of risk on time to type 1 diabetes, we utilized recursive 
partitioning analyses(29) (rpart package in R). A model-based and iterative approach, 
specifically recursive partitioning analyses, was used to identify the “optimal” cut-point of 
the marker that best discriminated the outcome of interest, i.e. time to progression to 
type 1 diabetes.  

We further evaluated each of the multivariable models with additional adjustment 
for high-risk HLA status (i.e. carrying the highest risk HLA DR3-DQ2/DR4-DQ8 
genotype). HLA data were only available for a portion of the subjects and thus the main 
results presented without this adjustment. However, as a sensitivity analysis restricted 
to those with HLA data, we assessed the retention of results, both in terms of 
significance and impact when adjusted for HLA.  

Overall, inferential tests were two-sided, with p-values <0.05 considered to be 
statistically significant. For interaction terms, p-values <0.1 were considered sufficient 



for further exploration and evaluation of relationships given the sample size and number 
of events. All analyses were conducted in the statistical program R (version 3.1.2 for 
Windows).  
 
Results 
Demographics: A total of 1,117 pediatric subjects between the ages of 2 and 18 years 
at the first BMI evaluation from the TrialNet PTP study were included in these analyses 
(Table 1). Of these, 220 subjects (20%) developed diabetes during the observation 
time. The median age at the first visit with BMI data available was 10.1 years (IQR: 6.7 
to 13.3), and the median BMI percentile at their first evaluation was 63.8%(IQR: 36.6 to 
84.8). Fourteen percent of individuals were overweight (BMI >85th-<95th percentile) and 
11% were obese (>95th percentile).  

There was a spectrum of ceBMI from -10 kg/m2 to +15.1 kg/m2 (median ceBMI -
1.86 kg/m2; IQR: -3.6 to -0.03 m2/kg). Nearly 25% of subjects (273/1117) had ceBMI 
values >0 kg/m2 representing sustained excess BMI above the CDC threshold defining 
elevated BMI (overweight or obesity). There were no significant differences in age at 
first visit between those who were persistently overweight or obese compared to those 
of normal ceBMI (median ages 10.2 vs. 10.1 years, respectively, p=0.10). Similarly, no 
significant differences in distribution of males to females based on ceBMI >0 kg/m2 

versus <0 kg/m2 (p=0.67). Further, the continuous measure of ceBMI was not 
significantly different between males and females (p=0.54).  
 
Cumulative excess BMI influences progression to type 1 diabetes. In this pediatric 
cohort, we found that higher ceBMI was associated with significantly greater risk of 
progression to type 1 diabetes, which persisted after adjusting for age at first BMI 
evaluation, single versus multiple autoantibody status, and sex. For each 1 kg/m2 
increase in ceBMI, there was a 6.3% increased relative risk of type 1 diabetes 
progression (HR=1.063, 95% CI 1.03- 1.10, p=0.0006) (Table 2).  

To evaluate the influence of having an elevated BMI compared to remaining 
normal weight over time, ceBMI was dichotomized at the threshold for overweight status 
for sex and age (ceBMI >0 kg/m2 vs. <0 kg/m2). Again we found that individuals who on 
average were persistently overweight or obese during the observation time had 
significantly greater risk of progressing to type 1 diabetes than those who on average 
kept below the 85th percentile for BMI, even after adjusting for age, sex, and single 
versus multiple antibody (HR=1.63, 95% CI: 1.22-2.18, p=0.0009, Table 2).  
 
Age- and sex-specific ceBMI diabetes risk thresholds   

Age at baseline was a significant independent risk factor for type 1 diabetes 
progression (HR=0.94, p=0.0006), adjusted for ceBMI, sex, and antibody status. 
Interestingly, there was an interaction between age and sex together with ceBMI in 
relation to time to diabetes that achieved significance necessary to investigate age and 
sex specific strata(p=0.072). Using recursive partitioning algorithms, we first identified 
the age cut-point defining greatest risk for type 1 diabetes progression. In both the 
combined cohort and in females alone, the cut-point for age that best differentiated 
subjects in terms of risk of progression to type 1 diabetes was just below 12 years at 
first BMI evaluation (all: 11.68 years; F: 11.77 years). In males, the optimal age cut-



point was similarly just under 12 years old (11.68 years) for subjects not in extremes of 
the ceBMI range (i.e. ceBMI -5.4 and 6.1). Furthermore, within each age group of <12 
and >12 years, age was no longer a significant factor for males or females (p-value 
range 0.34-0.80). Therefore, it was determined that the influence of age on time to type 
1 diabetes was well captured by this cut-point, and age dichotomized as >12 versus <12 
years old at first BMI was used for subsequent analyses.  

We again used recursive partitioning analysis as well as multivariable model-
based diagnostics to identify cut-points for ceBMI that best differentiate risk for 
progression to diabetes, hereafter referred to as “ceBMI diabetes risk threshold”.  We 
found that age modified the effect of ceBMI on diabetes risk. The ceBMI diabetes risk 
threshold was lower in children younger than 12 years of age than in individuals over 12 
years of age, regardless of sex (ceBMI diabetes risk threshold of -1.4 kg/m2 for <12 
years old, vs. ceBMI diabetes risk threshold of 4.6 kg/m2 for >12yo, Table 3). That is, 
the increase in type 1 diabetes risk occurs at lower levels of sustained excess BMI in 
younger than older children. On the contrary, older children needed to have a sustained 
excess BMI that was well over the overweight/obese threshold to significantly increase 
their risk of progression to diabetes.  

We did observe an interaction between sex and ceBMI as a continuous variable 
(p=0.087), leading to an investigation of sex-specific ceBMI diabetes risk thresholds 
(Figure 1, Table 3). Males overall had a higher ceBMI diabetes risk threshold to 
increase risk of type 1 diabetes than females, suggesting an increased sensitivity to BMI 
in female subjects. Within age subsets, males who were ≥12 years at the time of their 
first BMI evaluation were detrimentally affected by excess body mass at a ceBMI 
diabetes risk threshold of 5 kg/m2 (Figure 1B), much higher than the ceBMI defining an 
overweight/obese state (Figure 1A). Similarly, in males who were <12 years old at their 
first BMI evaluation, a ceBMI diabetes risk threshold of 2.5 kg/m2 (Figure 1D), again 
above the overweight threshold (Figure 1C), best differentiated risk of type 1 diabetes. 
In contrast, females who were >12 years old at their first BMI evaluation had a ceBMI 
diabetes risk threshold of 0 kg/m2 that differentiated their risk (Figure 1F), consistent 
with the CDC definition of overweight/obese status (Figure 1E). Females <12 years old 
at their first evaluation had a lower ceBMI diabetes risk threshold compared to males of 
the same age, with a ceBMI diabetes risk threshold of -1.35 kg/m2 (Figure 1H) 
suggesting that BMI percentiles below the overweight/obese threshold (Figure 1G) still 
increase type 1 diabetes risk in this subgroup.   
 Additional adjustment for the presence of the highest risk HLA genotype, i.e. 
DR3-DQ2/DR4-DQ8, demonstrated that age- and sex- group specific cutoffs were still 
significant within the models, and hazard ratios were consistent with models without this 
adjustment.  
 
Conclusion 

The increasing incidence of type 1 diabetes over the last several decades 
underscores the urgent need to identify risk factors for disease progression(1; 2). 
Obesity is a known risk factor for type 2 diabetes, and the concept that obesity also 
accelerates progression to type 1 diabetes has gained interest(10; 30). Our data 
indicate that ceBMI, i.e. sustained elevation of BMI, is an important risk factor for type 1 
diabetes progression, but that the effect varies by sex and age. In our cohort, 



partitioning analyses identified an age cutoff of 12 years that stratified the effects of 
sustained elevation of BMI on risk of type 1 diabetes progression, and was used to 
define group-specific ceBMI diabetes risk thresholds. Older age diluted the effect of 
elevated BMI as demonstrated by the increased risk of type 1 diabetes in individuals 
<12 years of age at a ceBMI diabetes risk threshold of -1.4 kg/m2, lower than the ceBMI 
diabetes risk threshold of 4.6 kg/m2 in subjects older than 12 years of age (Table 3).  

This age-dependent effect of sustained excess BMI on type 1 diabetes 
progression is present in both male and female sex strata, but ceBMI diabetes risk 
thresholds are additionally modified by sex (Table 3, Figure 1). Male subjects had 
higher ceBMI diabetes risk threshold defining increased risk for diabetes progression 
than females of the same age. A more severe degree of ceBMI (i.e. ceBMI diabetes risk 
threshold >5 kg/m2) determined increased risk of type 1 diabetes in males >12 years 
old, where in females >12 years old, any elevation above a ceBMI 0 kg/m2 (defining 
overweight or obese according to the CDC 85th percentile) enhanced risk. Similarly, in 
younger subjects <12 years of age, males required a higher ceBMI to increase risk of 
type 1 diabetes compared to females (ceBMI diabetes risk threshold > 2.5 kg/m2 vs. 
ceBMI diabetes risk threshold > -1.35 kg/m2, respectively). Therefore, our data suggest 
that the detrimental effect of elevated BMI on progression to diabetes occurs at a lower 
BMI in girls than in boys, and BMI values below the threshold defining overweight can 
adversely affect progression to diabetes in girls under age 12 years old.  
 Past studies of the effects of BMI on type 1 diabetes have not yielded consistent 
results. In a case-control investigation, Kuchlubaer et al found that while birth weight 
was a risk factor for type 1 diabetes, BMI measured 5 years before diagnosis did not 
impact the age of disease onset(18). A study of the population participating in the 
SEARCH study demonstrated an association with earlier age of type 1 diabetes onset 
with higher BMI at diagnosis, but this was only seen in patients with lower fasting C-
peptide levels indicative of baseline compromised beta-cell function(11). The Pittsburgh 
cross-sectional study similarly found no relationship between BMI at the time of type 1 
diabetes diagnosis and age of disease onset(19)  

Prospective studies of at-risk individuals have also failed to show a consistent 
impact of BMI on type 1 diabetes. The US Diabetes Autoimmunity Study in the Young 
(DAISY) found no association of progression to diabetes with BMI or weight(16). A 
study of the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) Study found that 
BMI standard deviation was a main independent predictor for diabetes, however after 
excluding obese subjects, this was no longer the case(17). A recent exploration of The 
Environmental Determinants of Diabetes in the Young (TEDDY) Study reported weight 
Z-score to be a risk factor for antibody seroconversion, but failed to show an effect on 
type 1 diabetes progression(15). Other prospective cohort studies of antibody-positive 
at risk subjects indicate that baseline insulin resistance, as assessed by HOMA, may 
increase risk of type 1 diabetes (8; 12; 31; 32). In fact, BMI at enrollment was found to 
be an independent risk factor for type 1 diabetes progression in DPT-1 participants, and 
is a component of the diabetes risk score which has been validated in other cohorts(13). 
However, a study of the both adult and pediatric participants of the TrialNet PTP cohort 
demonstrates only a minor effect of increased baseline BMI percentile on risk to disease 
progression, and no influence on antibody seroconversion(14).  



Many of these prior prospective studies limited analyses to one measurement of 
BMI (e.g. birth weight, weight at cohort enrollment) without considering the interval 
values. Childhood is a dynamic time of rapid growth and pubertal development, and our 
analysis restricted to pediatric participants of the PTP permitted unique exploration of 
this time period. Growth hormone and sex hormones are not only known to alter insulin 
secretion and sensitivity, but are in turn altered by adipose tissue (33; 34). Our 
evaluation of ceBMI on type 1 diabetes progression uses an aggregate measure of 
elevated BMI over time among pediatric subjects in the PTP at risk cohort, thus taking 
advantage of longitudinal data. This model has been used in previous studies assessing 
persistent obesity on type 2 diabetes incidence and was demonstrated to be more 
accurate than using a single BMI measurement(27; 28). Our study is the first to apply 
this methodology to type 1 diabetes and revealed that ceBMI increased the risk of type 
1 diabetes (HR=1.063, p=0.0006, Table 2). Beyond incorporation of longitudinal data, 
ceBMI measurement offers the additional advantage of an unrestricted upper limit 
compared to BMI percentile, and may offer greater resolution than a standard deviation 
or BMI Z-score.  

A potential explanation for the differential effect of ceBMI on type 1 diabetes risk 
by sex, i.e.: different ceBMI diabetes risk thresholds, could be related to the discrepant 
correlation between BMI and adiposity in males and females(35; 36). This divergence 
may be more apparent during puberty as studies show that the correlation between BMI 
and percent body fat is nonlinear during this time, especially in non-obese 
individuals(37; 38). Lean body accrual in puberty is more apparent in males, further 
skewing the relationship of BMI to percent body fat compared to females. This is 
demonstrated by an increase in percentage body fat with each pubertal stage in 
females, yet in males the early peak in body fat is followed by a decline between Tanner 
stages 2-3(39). Our data reveal age- and sex-specific ceBMI diabetes risk thresholds, 
consistent with published literature where BMI captures adiposity and obesity 
differentially in males versus females throughout development. More sensitive 
anthropometric measures such as percent body fat or waist circumference (40) may be 
needed to supplement BMI measurements in deciphering sex-specific risk of obesity on 
type 1 diabetes.  

The overall objective was to determine whether persistently elevated BMI is 
associated with progression to type 1 diabetes, rather than to determine whether 
fluctuations in BMI increase risk. While this study shows that sustained BMI excess is a 
type 1 diabetes risk factor, it cannot specifically address the effects of acute changes in 
BMI on disease onset. We did assess the intra-subject variability of BMI percentiles as 
well as the differences in visit-specific BMI excess above sex- and age-adjusted 
overweight/obese reference BMIs. A large majority of subjects (84%) remained 
classified as persistently above the overweight/obese threshold or persistently below 
this level for all BMI evaluations included in this analysis.  

Our data suggest that puberty plays a significant role in defining ceBMI diabetes 
risk thresholds for type 1 diabetes progression. Limitations of this study include the lack 
of Tanner staging and sex hormone measurements which could elucidate mechanism of 
the identified age- and sex-specific ceBMI diabetes risk thresholds. An additional 
limitation of the dataset is a small number of diabetes events in some age and sex 
strata that may affect the precision of our estimates. Finally, it should be noted that our 



study investigated an at-risk cohort of autoantibody-positive relatives of subjects of type 
1 diabetes, and while heterogeneous, may not be broadly generalizable to the general 
population.   

In summary, our results indicate that sustained elevation of BMI accelerates 
progression to type 1 diabetes in an at-risk pediatric population. Moreover, we 
demonstrate that CDC BMI cut-points at the 85th percentile may not appropriately define 
“excess BMI” in all pediatric subjects as it relates to type 1 diabetes development. 
Obesity is postulated to hasten progression to type 1 diabetes either by accelerated 
beta-cell loss or through mismatched insulin production and insulin demand. Future 
analysis to characterize the mechanisms underlying the effect of elevated BMI on type 1 
diabetes risk, and the influence of age and sex are warranted. Our data imply that 
lifestyle and behavioral modifications may delay onset of disease, and importantly 
suggests age- and sex-specific ceBMI diabetes risk thresholds in which to implement 
such changes. 
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Figure Legends 
Figure 1. Age and sex-specific ceBMI diabetes risk thresholds compared to 
traditional overweight/obese thresholds. Proportion type 1 diabetes free among 
pediatric subjects of the PTP cohort, comparing overweight/obese threshold, i.e. ceBMI 
>0 (based on 85th percentile for age and sex-adjusted BMI) (left panels) versus ceBMI 
diabetes risk thresholds identified by recursive partitioning algorithms (right panels). 
Male >12 years (A-B), male <12 years (C-D), females >12 years (E-F), females <12 
years (G-H). All models adjusted for antibody number (single versus multiple).  
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Table 1. Demographics and baseline characteristics of PTP subjects.  
Characteristic Overall cohort  Females Males  p 

value*  (n=1117) (n=534) (n=583) 

Age at 1st BMI evaluation (years)      
Median (IQR) 10.1 (6.7; 13.3) 9.6 (6.4; 13.3) 10.5 (7.1; 13.2) 0.24 
Range 2.0 to 17.96 2.0 to 17.94 2.0 to 17.96  

Progressed to type 1 diabetes       
No 897 437 460  
Yes 220 97 123  

# of BMI evaluations/subject     
Median (IQR) 4 (3; 6) 4 (3; 6.75) 4 (3; 6) 0.84 
Range 2 to 21 2 to 21 2 to 21  

Total follow-up time in study 
(years) 

    

Median (IQR) 2.51 2.52 2.49 0.13 
Range 0.49 to 10.5 0.49 to 10.5 0.50 to 10.2  

Follow up time for BMI eval 
(years) 

    

Median 2.0 2.0 2.0 0.30 
Range 0.39 to 10.2 0.39 to 9.99 0.49 to 10.2  

Race      
Caucasian 954 446 508 0.55 
African American 27 13 14  
Asian 13 7 6  
American Indian/AK native 3 1 2  
Native HI/Pac.Islander 3 3 0  
Missing/unknown 117 65 53  

Ethnicity      
Non-Hispanic 914 436 478 0.15 
Hispanic 161 87 74  
Missing/unknown 42 11 31  

BMI Percentile at 1st BMI eval      
Median (IQR) 63.8 (36.6; 84.6) 63.9 (38.8; 84.6) 63.5 (34.2; 84.8) 0.76 
Range   0.0 to 99.9 0.2 to 99.7 0.0 to 99.9  

BMI Category at 1st BMI eval     
Underweight 47 25 22 0.84 
Normal Weight 795 378 417  
Overweight 151 74 77  
Obese 124 57 67  

Cumulative excess BMI (ceBMI)     
Median (IQR) -1.88(-3.6; -0.04) -1.95 (-3.5;-0.2) -1.8 (-3.7; 0.032) 0.54 
Range   -10.0 to 15.1 -9.2 to 15.1 -10.0 to 14.7  
<0 844 407 437 0.67 
>0 273 127 146  

HLA DR3/4 status       
Neither 161 80 81 0.74 
DR3 and/or DR4 787 377 410  
Missing 169 77 92  

Antibody status at 1st BMI eval     
Single Ab+ 367 193 174 0.03 
Multiple Ab+ 750 341 409  

OGTT result at 1st BMI eval     
Normal 769 371 398 0.34 
Abnormal†     250 111 139  
Missing 98 52 46  



 
* p-values reflect differences by sex. †Abnormal OGTT defined as fasting blood glucose 
100-125mg/dl and/or 2-hour glucose 140-199mg/dl.   



Table 2. ceBMI increases risk of progression to type 1 diabetes 
 
 

All subjects Male Female 

HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value 

ceBMI 1.063(1.03- 1.10) 0.0006 1.09 (1.04 -1.15) 0.0005 1.04(0.99-1.09) 0.11 

ceBMI > 0* 1.63 (1.22-2.18) 0.0009 1.60(1.08-2.36) 0.018 1.74(1.12-2.69) 0.013 

Hazard ratios corresponding 95% confidence intervals, and p-values for various 
multivariable models for time to type 1 diabetes by age- and sex-based groups. All 
models adjusted for age at first BMI evaluation, sex, and whether or not they were 
single versus multiple Ab+ at their first BMI evaluation, except for models that are 
specific to one of those groups. * ceBMI>0 represents CDC sex and age specific BMI 
threshold for the 85th percentile. 
 
 
 
  



Table 3. Age- and sex-specific ceBMI diabetes risk thresholds  
  OVERWEIGHT/OBESE THRESHOLD* DIABETES RISK THRESHOLD† 

 Age ceBMI HR  (95% CI) p value ceBMI HR  (95% CI) p value 

Overall >12 0 1.64(0.92-2.92) 0.095 4.6 2.92  (1.41-6.04) 0.004 

 <12 0 1.68(1.2-2.35) 0.03 -1.4 1.78 (1.30-2.44) 0.0003 

Male >12 0 1.11 (0.50-2.45) 0.79 5 3.62 (1.38-9.52) 0.009 

 <12 0 1.85 (1.17-2.90) 0.008 2.5 2.83 (1.58-5.08) 0.0005 

Female >12 0 2.91 (1.15-7.39) 0.024 0 2.91 (1.15-7.39) 0.024 

 <12 0 1.54 (0.93-2.57) 0.095 -1.35 1.70 (1.09-2.66) 0.02 

Hazard ratios corresponding 95% confidence intervals, and p-values for various 
multivariable models for time to type 1 diabetes by age- and sex-based group using 
age- and sex-specific ceBMI cut-points. All models adjusted for age at first BMI 
evaluation, sex, and whether or not they were single versus multiple Ab+ at their first 
BMI evaluation, except for models that are specific to one of those groups.  * ceBMI>0 
represents CDC sex and age specific BMI threshold for the 85th percentile. † ceBMI > 
values identified by recursive partitioning within particular strata to give group-specific 
diabetes risk thresholds 
 


