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The recent measurement by ATLAS of light-by-light scattering in LHC Pb-Pb collisions is the first direct
evidence for this basic process. We find that it excludes a range of the mass scale of a nonlinear Born-Infeld
extension of QED that is ≲100 GeV, a much stronger constraint than those derived previously. In the case
of a Born-Infeld extension of the standard model in which the Uð1ÞY hypercharge gauge symmetry is
realized nonlinearly, the limit on the corresponding mass reach is ∼90 GeV, which, in turn, imposes a
lower limit of ≳11 TeV on the magnetic monopole mass in such a Uð1ÞY Born-Infeld theory.
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Over 80 yr ago, soon after Dirac proposed his
relativistic theory of the electron [1] and his interpretation
of “hole” states as positrons [2], Halpern [3] in 1933 and
Heisenberg [4] in 1934 realized that quantum effects
would induce light-by-light scattering, which was first
calculated in the low-frequency limit by Euler and
Kockel [5] in 1935. Subsequently, Heisenberg and
Euler [6] derived in 1936 a more general expression
for the quantum nonlinearities in the Lagrangian of
quantum electrodynamics (QED), and a complete calcu-
lation of light-by-light scattering in QED was published
by Karplus and Neuman [7] in 1951. However, meas-
urement of light-by-light scattering has remained elusive
until very recently. In 2013 d’Enterria and da Silveira [8]
proposed looking for light-by-light scattering in ultra-
peripheral heavy-ion collisions at the LHC, and evidence
for this process was recently presented by the ATLAS
Collaboration [9], at a level consistent with the QED
predictions in Refs. [8,10].
In parallel with the early work on light-by-light scatter-

ing in QED, and motivated by a “unitarian” idea that there
should be an upper limit on the strength of the electro-
magnetic field, Born and Infeld [11] proposed in 1934 a

conceptually distinct nonlinear modification of the
Lagrangian of QED:

LQED ¼ −
1

4
FμνFμν →

LBI ¼ β2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2β2
FμνFμν −

1

16β4
ðFμν

~FμνÞ2
s !

;

ð1Þ
where β is an a priori unknown parameter with the
dimension of ½mass�2 that we write as β≡M2, and ~Fμν

is the dual of the field strength tensor Fμν. Interest in Born-
Infeld theory was revived in 1985 when Fradkin and
Tseytlin [12] discovered that it appears when an Abelian
vector field in four dimensions is coupled to an open string,
as occurs in models inspired byM theory in which particles
are localized on lower-dimensional “branes” separated
by a distance ≃1=

ffiffiffi
β

p ¼ 1=M in some extra dimension.
(Remarkably, the maximum field strength is related to the
fact that the brane velocity is limited by the velocity of light
[13], confirming the insight of Born and Infeld [11].)
Depending on the specific brane scenario considered, M
might have any value between a few hundred GeV and the
Planck scale ∼1019 GeV. For the purposes of this Letter,
we consider only the relevant terms of fourth order in the
gauge field strengths in Eq. (1).
To date, there has been no strong lower limit on the

Born-Infeld scale β or, equivalently, the brane mass scaleM
and the brane separation 1=M. A constraint corresponding
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to M ≳ 100 MeV was derived in Ref. [14] from electronic
and muonic atom spectra, though the derivation was
questioned in Ref. [15]. Measurements of photon splitting
in atomic fields [16] were considered in Ref. [17], where it
was concluded that they provided no limit on the Born-
Infeld scale and it was suggested that measurements of
the surface magnetic field of neutron stars [18] might be
sensitive to M ¼ ffiffiffi

β
p

∼ 1.4 × 10−5 GeV. More recently,
measurements of nonlinearities in light by the PVLAS
Collaboration [19] were somewhat more sensitive to the
individual nonlinear terms in Eq. (1), but they were not
sensitive to the particular combination appearing in the
Born-Infeld theory, as discussed in Ref. [20], where more
references can be found.
Here, we show that the agreement of the recent ATLAS

measurement of light-by-light scattering with the standard
QED prediction provides the first limit on M in the multi-
GeV range, excluding a significant range extending to

M ≳ 100 GeV; ð2Þ
entering the range of interest to brane theories. This limit is
obtained under quite conservative assumptions, and plau-
sible stronger assumptions would strengthen our lower
bound to M ≳ 200 GeV.
One may also consider a Born-Infeld extension of the

standard model in which the hypercharge Uð1ÞY gauge
symmetry is realized nonlinearly, in which case the limit (2)
is relaxed to

MY ¼ cos θWM ≳ 90 GeV; ð3Þ
where we have used Bμ

Y ¼ cos θWA
μ
EM − sin θWZμ and

sin2 θW ≃ 0.23, with θW being the weak mixing angle.
As a corollary of this lower limit on the Uð1ÞY brane scale,
we recall that Arunasalam and Kobakhidze recently pointed
out [21] that the standard model modified by a Born-Infeld
Uð1ÞY theory has a finite-energy electroweak monopole
[22,23] solution M, whose mass they estimated as
MM ≃ 4 TeVþ 72.8MY . Such a monopole is less con-
strained by Higgs measurements than electroweak monop-
oles in other extensions of the standard model [24], and
hence of interest for potential detection by the ATLAS [25],
CMS, and MoEDAL experiments at the LHC [26].
However, our lower limit MY ≳ 90 GeV (2) corresponds
to a 95% C.L. lower limit on the mass of this monopole
MM ≳ 11 TeV, excluding its production at the LHC.
Following the suggestion of Ref. [8], we consider

ultraperipheral heavy-ion collisions in which the nuclei
scatter quasielastically via photon exchange: Pbþ Pb
ðγγÞ → Pbð�Þ þ Pbð�Þ þ X, as depicted in Fig. 1, effectively
acting via the equivalent photon approximation (EPA) [27]
as a photon-photon collider. (The authors of Ref. [8] also
considered the observability of light-by-light scattering in
pp collisions at the LHC but concluded that they were less
promising than Pb-Pb collisions.) The EPA allows the
electromagnetic field surrounding a highly relativistic

charged particle to be treated as equivalent to a flux of
on-shell photons. Since the photon flux is proportional to
Z2 for each nucleus, the coherent enhancement in the
exclusive γγ cross section scales as Z4, where Z ¼ 82 for
the lead (Pb) ions used at the LHC. This is why heavy-ion
collisions have an advantage over proton-proton or proton-
lead collisions for probing physics in electromagnetic
processes [8]. Photon fusion in ultraperipheral heavy-ion
collisions has been suggested as a way of detecting the
Higgs boson [28,29], and, more recently, the possibility of
constraining new physics beyond the standard model
(BSM) in this process was studied in Refs. [30,31].
As was already mentioned, the possibility of directly

observing light-by-light scattering at the LHC was proposed
in Ref. [8], and this long-standing prediction of QED was
finally measured earlier this year with 4.4σ significance by
the ATLAS Collaboration [9] at a level in good agreement
with calculations in Refs. [8,10]. The compatibility with the
standard model constrains any possible contributions from
BSM physics. Born-Infeld theory is particularly interesting
in this regard, as constraints from low-energy optical and
atomic experiments have yet to reach the sensitivity of
interest for measuring light-by-light scattering [19,20].
The leading-order cross section for unpolarized light-by-

light scattering in Born-Infeld theory in the γγ center-of-
mass frame is given by [17,32]

σBIðγγ → γγÞ ¼ 1

2

Z
dΩ

dσBI
dΩ

¼ 7

1280π

m6
γγ

β4
; ð4Þ

where mγγ is the diphoton invariant mass and the differ-
ential cross section is

dσBI
dΩ

¼ 1

4096π2
m6

γγ

β4
ð3þ cos θÞ2: ð5Þ

We recall that the parameter β ¼ M2 enters as a dimen-
sionful parameter in the Born-Infeld theory of nonlinear
QED defined by the Lagrangian (1). If this originates from
a Born-Infeld theory of hypercharge, then the correspond-
ing mass scale is MY ¼ cos θWM.
We plot in Fig. 2 the angular distributions as functions of

cos θ in the center-of-mass frame (where θ is the polar
angle) for the leading-order differential cross sections in
both Born-Infeld theory and QED (with arbitrary

FIG. 1. Sketch of light-by-light scattering through photon-
photon collisions in ultraperipheral Pb-Pb collisions.
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normalizations), as solid blue and dashed red lines,
respectively. We see that the Born-Infeld distribution is
less forward peaked than that for QED. For the latter, we
used the leading-order amplitudes for the quark and lepton
box loops in the ultrarelativistic limit from Ref. [33],
omitting the percent-level effects of higher-order QCD
and QED corrections, as well the W� contribution that is
negligible for typical diphoton center-of-mass masses at
the LHC.
The total exclusive diphoton cross section from Pbþ Pb

collisions is obtained by convoluting the γγ → γγ cross
section with a luminosity function dL=dτ [34],

σexcl ¼
Z

1

τ0

dτ
dL
dτ

σγγ→γγðτÞ: ð6Þ

We have introduced here a dimensionless measure of the
diphoton invariant mass, τ≡m2

γγ=sNN , where
ffiffiffiffiffiffiffiffi
sNN

p ¼
5.02 TeV is the center-of-mass energy per nucleon pair
in the ATLAS measurement. The luminosity function,
derived, for example, in Ref. [34], can be written as an
integral over the number distribution of photons carrying a
fraction x of the total Pb momentum:

dL
dτ

¼
Z

1

τ
dx1dx2fðx1Þfðx2Þδðτ − x1x2Þ; ð7Þ

where the distribution function fðxÞ depends on a nuclear
form factor. We follow Ref. [34] in adopting the form factor
proposed in Ref. [29], while noting that variations in the
choice leads to ∼20% uncertainties in the final cross
sections [8]. A contribution with a nonfactorizable distri-
bution function should also be subtracted to account for the
exclusion of nuclear overlaps, but this is not a significant
effect for the relevant kinematic range, causing a difference
within the 20% uncertainty [31] from the photon luminos-
ity evaluated numerically using the STARLIGHT code [35].
For

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.5 TeV and mγγ > 5 GeV, we obtain a QED

cross section of σQEDexcl ¼ 385� 77 nb, in good agreement

with Ref. [8]. The ATLAS measurement is performed atffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV and for mγγ > 6 GeV, for which we

find σQEDexcl ¼ 220� 44 nb.
This total γγ → γγ cross section is reduced by the

fiducial cuts of the ATLAS analysis, which restrict the
phase space to a photon pseudorapidity region jηj < 2.4
and require photon transverse energies ET > 3 GeV
and the diphoton system to have an invariant mass
mγγ > 6 GeV, with a transverse momentum pγγ

T <
2 GeV and an acoplanarity Aco ¼ 1 − Δϕ=π < 0.01. We
simulate the event selection using Monte Carlo sampling,
implementing the cuts with a 15%Gaussian smearing in the
photon transverse energy resolution at low energies and
0.7% at higher energies [9,36] above 100 GeV. Since the
differential cross section does not depend on ϕ, we
implement the acoplanarity cut as a fixed 85% efficiency
in the number of signal events after the pγγ

T selection,
following the ATLAS analysis [9]. The total reduction
in yield for the QED case is a factor ϵ ∼ 0.30, which
results in a fiducial cross section σQEDfid ¼ 53� 11 nb forffiffiffi
s

p
NN ¼ 5.02 TeV, in good agreement with the two

predictions of 45 and 49 nb quoted by ATLAS [9].
Following this validation for the QED case, we repeat the

procedure for the Born-Infeld cross section. Since the Born-
Infeld γγ → γγ cross section grows with energy, the dom-
inant contribution to the cross section comes from the τ ≲ 0.2
part of the integral, compared with τ ≲ 10−4 for the QED
case. We show in Fig. 3 the distributions of the σðγγ → γγÞ
cross section multiplied by the photon flux luminosity
factor—normalized by the total exclusive cross section—
as functions of the invariant diphoton mass distribution,
for theQEDcase in the upper panel and inBorn-Infeld theory
with M ¼ ffiffiffi

β
p ¼ 200 GeV in the lower panel.

We see that the invariant-mass distribution in the Born-
Infeld case extends to mγγ > M, where the validity of the
tree-level Born-Infeld Lagrangian may be questioned
because the Taylor expansion of the square root in the
nonpolynomial Born-Infeld Lagrangian (1) could break
down. With this in mind, we use two approaches to place
plausible limits on M ¼ ffiffiffi

β
p

. In the first and most
conservative method, we consider γγ scattering only for
mγγ ≤ M, while in the second approach we integrate the γγ
cross section (4) up to the diphoton invariant mass where
the unitarity limit σBI ∼ 1=m2

γγ is saturated, beyond which
we assume that the cross section saturates the unitarity limit
and falls as ∼1=m2

γγ .
We find fiducial efficiencies for the cutoff and unitariza-

tion approaches to be ϵ ∼ 0.39 and 0.14, respectively.
While the ET and η cuts have much less effect than for
QED, as expected from the difference in the angular
distributions visible in Fig. 2, the larger invariant masses
appearing in the Born-Infeld case are much more affected
by the pγγ

T requirement.
Our calculations of the corresponding Uð1ÞEM Born-

Infeld fiducial cross sections are plotted in the upper

FIG. 2. Comparison between the angular distributions (with
arbitrary normalizations) as functions of cos θ in the center-of-
mass frame (where θ is the polar angle) for the leading-order
differential cross sections in Uð1ÞEM Born-Infeld theory and
QED, plotted as solid blue and dashed red lines, respectively.
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panel of Fig. 4 as a function of M ¼ ffiffiffi
β

p
: the green curve

is for the more conservative cutoff approach, and the blue
curve assumes that unitarity is saturated. These calcu-
lations are confronted with the ATLAS measurement of
σfid ¼ 70� 24ðstatÞ � 17ðsystÞ nb [9], assuming that
these errors are Gaussian and adding them in quadrature
with a theory uncertainty of �10 nb. We perform a χ2 fit
to obtain the 95% C.L. upper limit on a Born-Infeld signal
additional to the 49 nb standard model prediction. (We
neglect possible interference effects that are expected to
be small due to the different invariant-mass and angular
distributions involved.) This corresponds to the excluded
range shaded in pink above σ95%C:L:

fid ∼ 65 nb in the upper
panel of Fig. 4, which translates to the limit M ¼ ffiffiffi

β
p ≳

100ð190Þ GeV in the cutoff (unitarized) approach, as
indicated by the green (blue) vertical dashed line in
Fig. 4.
These limits could be strengthened further by consider-

ing the mγγ distribution shown in Fig. 3(b) of Ref. [9],
where we see that all of the observed events had
mγγ < 25 GeV, in line with expectations in QED, whereas,
in the Born-Infeld theory, most events would have
mγγ > 25 GeV. Calculating a ratio of the total exclusive
cross section of QED for mγγ > 6 GeV and > 25 GeV as

σ
mγγ>25 GeV
excl =σ

mγγ>6 GeV
excl ∼ 0.02, we estimate a 95% C.L.

upper limit of ∼2 nb formγγ > 25 GeV. The corresponding
exclusion plot is shown in the lower panel of Fig. 4, where
we see a stronger limit M ¼ ffiffiffi

β
p ≳ 210ð330Þ GeV in the

cutoff (unitarized) approach, with the same color coding
used previously.
Our lower limit on the QED Born-Infeld scale M ¼ffiffiffi
β

p ≳ 100 GeV is at least 3 orders of magnitude stronger
than the lower limits on M ¼ ffiffiffi

β
p

obtained from previous
measurements of nonlinearities in light [14–17,19,20].
Because of the kinematic cuts made in the ATLAS analysis,
our limit does not apply to a range of values of M ≲
10 GeV for which the nonlinearities in Eq. (1) should be
taken into account. However, our limit is the first to
approach the range of potential interest for string or M
theory constructions since models with (stacks of) branes

FIG. 3. The distributions in the scaled diphoton invariant mass
τ≡m2

γγ=sNN , normalized by the total γγ → γγ cross section, for
the QED case in the upper panel and for Uð1ÞEM Born-Infeld
theory with M ¼ ffiffiffi

β
p ¼ 200 GeV in the lower panel.

FIG. 4. The fiducial cross section for light-by-light scattering in
relativistic heavy-ion collisions, σ(Pbþ PbðγγÞ → Pbð�Þ þ
Pbð�Þγγ) as a function of M ¼ ffiffiffi

β
p

in the Uð1ÞEM Born-Infeld
theory is shown as a solid green (blue) line for a hard cutoff
(unitarized) approach, as discussed in the text. The lower
diphoton invariant mass cutoff is set at 6 GeV (25 GeV) on
the upper (lower) plot. This is compared with the 95% C.L. upper
limit obtained from the ATLAS measurement [9] by combining
the statistical and systematic errors in quadrature, as well as a
10 nb theoretical uncertainty in the cross section predicted in
QED [8,10] (the horizontal dashed line), which excludes the
higher range shaded pink. The corresponding 95% C.L. lower
limits M ≳ 100ð190Þ GeV for mγγ > 6 GeV and M ≳
210ð330Þ GeV for mγγ > 25 GeV are shown as vertical dashed
lines in green (blue).
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separated by distances 1=M∶M ¼ Oð1Þ TeV have been
proposed in that context [37]. Our analysis could clearly be
refined with more sophisticated detector simulations and
the uncertainties reduced. However, in view of the strong
power-law dependence of the Born-Infeld cross section
on M ¼ ffiffiffi

β
p

visible in Eq. (4), the scope for significant
improvement in our constraint is limited unless experi-
ments can probe substantially larger mγγ ranges. In this
regard, it would be interesting to explore the sensitivities of
high-energy eþe− machines considered as γγ colliders.
As mentioned in the introduction, Arunasalam and

Kobakhidze recently pointed out [21] that the standard
model modified by a Born-Infeld theory of the hypercharge
Uð1ÞY contains a finite-energy monopole solution with mass
MM ¼ E0 þ E1, where E0 is the contribution associated
with the Born-Infeld Uð1ÞY hypercharge, and E1 is asso-
ciatedwith the remainder of the Lagrangian.Arunasalamand
Kobakhidze estimated [21] that E0 ≃ 72.8MY , where
MY ¼ cos θWM, and Cho et al. had previously estimated
[23] that E1 ≃ 4 TeV. (Both of these estimates are at the
classical level, and quantum corrections have yet to be
explored.) Combining these calculations and using our lower
limit M ≳ 100 GeV (2), we obtain a lower limit MM ≳
11 TeV on the Uð1ÞY Born-Infeld monopole mass. (For
completeness, we recall that it was argued in Ref. [21] that
nucleosynthesis constraints on the abundance of relic
monopoles require MM ≲ 23 TeV.) Unfortunately, this is
beyond the reach of MoEDAL [26] or any other experiment
at the LHC [25], but it could lie within reach of a similar
experiment at any future 100-TeV pp collider [38], or of a
cosmic ray experiment.
In this Letter we have restricted our attention to possible

Born-Infeld modifications of Uð1Þ gauge factors and their
constraints in light-by-light scattering only. We plan to
examine in the future the experimental constraints from
measurements at the LHC on possible Born-Infeld exten-
sions of the SUð3ÞC and SUð2ÞL gauge symmetries of the
standard model.
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