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Abstract 

Positron emission tomography (PET) and single photon emission computed tomography 

(SPECT) are clinically established sensitive molecular imaging modalities. However, their 

use in clinical cardiology remains limited. Early or intermediate stages of vascular 

calcification are thought to enhance plaque vulnerability. Computed tomography (CT), 

the “gold standard” for clinical imaging of calcification, fails to detect the early stages of 

calcification. PET and SPECT imaging may be used to detect the early stages of 

calcification in vivo.  

 The aim of the project was to evaluate novel and clinically established bone seeking 

SPECT and PET agents for imaging vascular calcification using experimental animal 

models. Technetium-99m labelled methylene diphosphonate (99mTc-MDP), fluorine-18 

sodium fluoride  (18F-NaF) and the novel bone seeking agents technetium-99m labelled 

dipicolylamine alendronate (99mTc-DPA Ale) and nitrido bis(dithiocarbamatebisphospho 

nate) (99mTc-N (DTCBP)2) were tested in vitro and for imaging in vivo using rat models of 

medial vascular calcification. 

In the initial in vitro studies the bone seeking radiotracers described here demonstrated 

their potential for avid binding with different minerals, both of biological and synthetic 

origin, with 99mTc-DPA-Ale and 18F-NaF binding most efficient. Rat models for vascular 

calcification were established by diet modification and sub-cutaneous injections. For 

optimising the in vivo imaging protocol, a robust rat model with extensive calcification 

was established by feeding a special warfarin diet and sub-cutaneous administration of 

vitamin D3. Another model, with slow and progressive calcification, was achieved by 

feeding rats with warfarin diet only, and was found to be an ideal candidate for the 

longitudinal imaging study. In vivo imaging with animal models for vascular calcification 
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revealed that the radiotracers can detect vascular calcification earlier than computed 

tomography. Longitudinal studies with the calcified rat model showed that the 

radiotracers can also play a role in monitoring disease progression.  

However, the study also revealed several unexpected findings. SPECT and PET images 

showed radiotracer uptake in the abdominal aorta and mesenteric artery. Histological 

evidence of calcification was seen in the thoracic aorta which was not detected on 

SPECT and PET imaging. Histological sections also revealed that the calcified regions 

in the abdominal aorta are in proximity to the lumen whereas in the thoracic aorta they 

are deep seated, close to the adventitia which may account for the differential in uptake. 

The longitudinal imaging study showed that uptake of the radiotracers also reduced with 

maturity in calcification. These findings raise some intriguing questions, and answering 

them would help in a better understanding of the process of vascular calcification and 

developing strategies for in vivo imaging with SPECT-CT and PET-CT. 

In conclusion, bone seeking radiopharmaceuticals have the potential to be used as 

agents for early diagnosis of vascular calcification and further study needs to be done to 

address the interesting questions raised in this thesis. 
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Chapter 1: Pathobiology of vascular calcification.  

Vascular calcification is a complex process of biomineralisation in which bioapatite is 

deposited ectopically in the blood vessels.1 It is a common finding in patients with 

atherosclerosis, diabetes mellitus type II, hypertension, hyperparathyroidism and chronic 

kidney disease (CKD).2 Bioapatite is a form of calcium phosphate which closely 

resembles hydroxyapatite and is a major constituent of bone.  

 The presence of arterial calcification is a clinically significant predictor of cardiovascular 

events such as ischemic heart disease, myocardial infarction and cardiac arrest. 

Clinically it can be detected and quantified using computed tomography (CT).3-7 

Cardiovascular diseases (CVD’s) are the leading cause of deaths worldwide claiming 17 

million lives in 2008. Almost 3 million of these deaths were of individuals under the age 

of 60. CVD’s include diseases of the heart, vascular diseases of the brain and diseases 

of the blood vessels. The overall disease burden is measured in “disability-adjusted life 

year” (DALY), which is an expression of the number of years lost due to ill-health, 

disability or premature death. It has been observed that the percentage of premature 

deaths due to CVD’s is 4% in high-income countries and 42% in low-income countries.8, 

9 Studies show that patients with CKD have a several fold higher susceptibility to vascular 

calcification in comparison to normal individuals and often die due to cardiovascular 

complications.10, 11  

A recent study of the minerals found in calcified plaques by solid-state nuclear magnetic 

resonance (SSNMR) technique revealed that the constituents are similar to those of 

bone.12 Based on the layer of vessel wall where hydroxyapatite crystal is accumulated, 

vascular calcification can be classified into two categories i.e. intimal and medial 

calcification.  
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1.1 Atherosclerotic intimal calcification 

Atherosclerosis is one of the underlying causes of cardiovascular disease and arises due 

to immune-inflammatory response to endothelial injury and endothelial dysfunctions 

caused by various risk factors.13, 14 The risk factors include elevated and modified low 

density lipoprotein (LDL); free radicals caused by cigarette smoking, hypertension and 

diabetes mellitus; genetic alterations; elevated plasma homocysteine concentrations; 

and combinations of these or other factors.14 The process of atherosclerosis is complex 

(Figure 1.1) involving a sequence of events. The lesions of atherosclerosis occur 

principally in large and medium-sized elastic and muscular arteries. 

 Atherosclerotic plaque may develop at an early age and continue progressing with age. 

The rate of progression may vary from individual to individual.15 The probability of a 

 

 
Figure 1.1: A simplified illustration of the processes leading to development of atherosclerotic lesions, their 

classification based on American Heart Association (AHA) and possible clinical outcome. Adapted from 

Virmani et al. Arterioscler. Thromb. Vasc. Biol. 2000;20:1262-1275, 
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person with atherosclerosis having a cardiac event is dependent on the number of 

plaques present and their vulnerability to rupture. Intimal calcifications in the arteries are 

a result of cellular necrosis, inflammation and lipid dysfunction, which is a distinctive 

feature of atherosclerotic plaques. The calcifications observed in such plaques are 

patchy and discontinuous (Figure 1.2 A&C).16, 17 Cholesterylic lipids and carbonates are 

found to be embedded in the hydroxyapatite mineral present in intimal calcified plaques.18  

1.2 Medial Artery Calcification/ Mönckeberg’s sclerosis  

Medial calcification is morphologically as well as chemically distinct from intimal 

calcification.19 It is a common finding in patients with CKD, diabetes and aging. Unlike 

atherosclerotic calcification, medial calcification is characterised by uniform deposition of 

amorphous minerals around the medial layer of the blood vessel.20 This causes stiffening 

of the arteries which results in systolic hypertension and left ventricular hypertrophy 

(LVH).19 Medial arterial calcification is considered to be a strong predictor of 

cardiovascular events in patients with noninsulin-dependent diabetes mellitus 

(NIDDM).21 It has also emerged as a significant predictor of foot amputation in patient 

with diabetes mellitus type 2.22 Although hydroxyapatite is present in both intimal and 

medial plaques, solid state 13C NMR studies have confirmed that there are distinct 

differences in the spectrum of the mineral from the intimal calcification which shows 

signals from cholesterol-related compounds, fatty acids, and carbonate substituted into 

the hydroxyapatite matrix. On the other hand the spectrum obtained from the medial 

calcification shows signals from fatty acids only.18 

The process of vascular calcification was previously considered as an irreversible, 

passive process developed as a result of ageing, but with the advances in various fields 

of science like electron microscopy, physiology, molecular biology etc. the perception 

has now changed. Even though the process is not completely understood the process of 
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calcification is now considered to be a regulated and progressive process with similarities 

to bone formation.23-26 It has been established that in uremic conditions vascular smooth 

muscle cells (VSMC) actively take up calcium and phosphate to form bioapatite.27  

 

1.3 Theories of vascular calcification 

Several theories have been put forward to explain the molecular process that leads to 

vascular calcification. These are outlined in the following sections. 

1.3.1 Induction of bone formation/osteogenesis  

This hypothesis was advocated by Demer et al. According to them the formation of 

calcification is initiated by osteoblast-type cells. The process is complex and involves the 

participation of many molecular and cellular signalling processes underlying normal bone 

Figure 1.2 A&B: Diagrammatic representation of medial artery calcification and atherosclerotic intimal 

calcification; C: Von-Kossa staining of a peripheral artery with medial calcification.  D: Von Kossa staining 

of a section of aorta with atherosclerotic intimal calcification. Towler. IBMS BoneKEy. 2008; 5(2):41-58 
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formation.28, 29 The origin of the osteoblast cells is unclear but studies suggests that 

stimuli caused by factors such as oxidative stress, bone morphogenetic proteins (BMP) 

or changes in pyrophosphate levels induce VSMC to undergo phenotypic changes to 

form osteoblast cells. Demer et al. coined the term “calcifying vascular cells” (CVC’s) for 

an isolated population of smooth muscle cells that spontaneously express genes 

normally associated with osteoblast differentiation, form nodules and mineralise under 

long-term in vitro culture. During the phenotypic transition the VSMC loses its specific 

markers such as SM α-actin and SM22α, and gains osteogenic markers like osteopontin 

(OPN), Cbfa-1/Runx2, alkaline phosphatase (ALP), and osteocalcin.28-30 In vitro studies 

confirm that an increase in extracellular levels of Ca and P accelerates the process of 

calcification of VSMCs and the process is mediated by vesicle release.31 Pericytes, also 

called Rouget cells after their discoverer, Charles Rouget, are cells associated with 

capillaries, precapillary arterioles and post-capillary venules. Studies suggest that 

pericytes present in the vessel wall contribute to vascular calcification. Pericytes share 

several phenotypic resemblances with CVC’s, including α-SM-actin. In vitro studies 

demonstrate that pericytes form large multicellular nodules containing a mineralised 

matrix after ≈8 weeks in culture.32-34 The nodules strongly resemble the matrix found in 

calcified vessels and express bone-specific markers like osteopontin, matrix Gla protein 

and osteocalcin. In addition, the presence of hydroxyapatite crystals has also been 

reported within the nodules. 35, 36  

1.3.2 Loss of inhibition 

Most body fluids and organs contain inhibitors of calcium phosphate deposition, which 

prevent spontaneous mineralisation (Table 1.1). Several such calcification-inhibiting 

molecules have been identified using mouse mutational analyses. According to this 
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hypothesis an imbalance or inactivation of these calcification inhibitors would eventually 

lead to ectopic calcification. 

Matrix Gla protein (MGP) belongs to the family of N-terminal γ-carboxylated mineral 

binding proteins. It is a 10.6 kDa, vitamin K-dependent protein that binds calcium via its 

glutamic acid (Gla) residues. It acts as a chelator for calcium and inhibits the deposition 

of calcium phosphate.37, 38 MGP also regulates bone morphogenetic protein-2 (BMP-2) 

and helps mediate the clearance of calcium phosphate from the circulation.39 Studies 

suggest that MGP is also expressed in lipid-rich layers of human atherosclerotic 

plaques.40 Spontaneous calcification of the aorta and cartilage is reported in MGP-null 

mice.41 Price et al. demonstrated that by administration of warfarin, a vitamin-K 

antagonist, the γ-carboxylation of MGP can be inhibited. This leads to extensive 

calcification in vivo specific to the media in rats.42 Fetuin-A, also known as α2-Heremans-

Schmid Glycoprotein (Ahsg) is an important circulating inhibitor of calcification. It inhibits 

the formation of new hydroxyapatite but has no effect on previously formed crystals. 

Fetuin-A is primarily produced in the liver of adult individuals. It is believed that fetuin-A 

inhibits vascular calcification in different junctures: (i) It disrupts the death-signalling 

pathways, and inhibits VSMC apoptosis; (ii) VSMC loads fetuin-A into intracellular 

vesicles, and prevents nucleation of calcium and phosphate; (iii) It improves the 

clearance of apoptotic bodies (ABs) from the extracellular matrix by enhancing the 

binding of ABs to adjacent viable cells.  This in turn reduces the amount of free ABs to 

bind and nucleate calcium and phosphate in the extracellular matrix.43 Osteopontin 

(OPN) is an acidic RGD-containing phosphoprotein found only in mineralised tissues 

such as bones and teeth. OPN is absent in normal arteries, however it has been reported 

that OPN is abundant at sites of calcification in human atherosclerotic plaques and in 

calcified aortic valves.44, 45 OPN regulates calcification by two distinct mechanisms: (i) it 
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acts as a potent inhibitor of hydroxyapatite crystal formation; (ii) it protects endothelial 

cells by binding with α5γ3 thereby inhibiting apoptosis.46-48 Studies show that inactivation 

of OPN gene in MGP-null mice accelerates the process of calcification.47, 49 

Inorganic pyrophosphate (PPi) comprises of two phosphate Pi molecules bound by a 

high energy anhydride bond. Alkaline phosphatase (ALP), a hydrolase enzyme, 

dephosphorylates PPi to yield inorganic (Pi). The latter is one of the key constituent in 

hydroxyapatite formation. On the other hand, PPi acts as an inhibitor for vascular 

calcification because it is a small molecule that binds to nascent hydroxyapatite crystals 

and prevents further incorporation of inorganic phosphate (Pi) ions into these crystals.50 

It has been demonstrated that exogenous pyrophosphate inhibits aortic calcification in 

rats that are given large doses of vitamin D3.51 Furthermore, deficiency of pyrophosphate 

generator, ecto-nucleotide pyrophosphatase/ phosphodiesterase-1 (Enpp1) and the 

pyrophosphate transporter, ankylosis protein (Ank), results in reduced plasma 

Figure 1.3: VSMC mediated vascular calcification. Diagrammatic representation of various factors 

involved in the conversion of a VSMC into an osteogenic phenotype, thereby resulting in the deposition 

of bioapatite in the extracellular matrix.  Shanahan et al. Circ Res. 2011;109:697-711 
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pyrophosphate levels, which leads to extensive arterial calcification in humans52 and in 

mice53.  

PPi also prevents VSMC’s from undergoing phenotypic changes to osteoblast cells.54 

Lately the role of nucleoside-associated polyphosphates and the purinergic system in the 

inhibition of vascular calcification has been elucidated. It has been demonstrated that 

adenosine triphosphate (ATP), the substrate for the aforementioned Enpp1, can inhibit 

calcium phosphate deposition in two ways: firstly it acts as a source of PPi and secondly 

as a direct inhibitor when present in the extracellular matrix. 55, 56 The direct inhibition by 

ATP is elegantly illustrated by the use of a nonhydrolysable ATP species that also 

manages to completely inhibit calcium and phosphate deposition at the same 

concentration as hydrolysable ATP. 

Table 1.1: Inhibitors of vascular calcification, and their roles in inhibiting biomineralisation. 

Smad proteins are intracellular mediators of signalling initiated by Tgf-βs, activins and 

BMP. Structurally, Smad6 is different from the other Smad proteins. It inhibits the 

phosphorylation of Smad1 that is induced by BMP binding to its receptor.57, 58 Smad6-

Inhibitors Role of the inhibitor 

OPN Stimulates resorption of calcium phosphate crystals. Anchors osteoclasts to 

minerals and regulates the pH around the ectopic mineralisation sites. 

MGP Binds to calcium and phosphate through the vitamin-K dependent reaction. 

Binds to BMP-2. 

OPG Functions as a decoy receptor that neutralises the cell-bound and soluble 

forms of RANKL. 

BMP-7 Prevents CKD induced vascular calcifications. Preserves SMC phenotype 

and reverse the progression towards the osteoblastic phenotype in VSMCs. 

Fetuin-A Solubilises basic calcium phosphate as a colloid and forms calciprotein 

particles. Antagonises TGFs and BMPs. 

Pyrophosphate Directly blocks hydroxyapatite formation. 

Multiple-pass 

transmembrane protein 

(ANK) 

Acts as a transmembrane transporter that shuttles pyrophosphate between 

intracellular and extracellular compartments. 
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null (Madh6–/–) mice spontaneously develop calcification in the vessel wall demonstrating 

that it is an important calcification inhibitor.59 

1.3.3 Cell death/Apoptosis 

Apoptosis is a process of systematic and controlled cell death which is initiated by the 

activation of endogenous proteases.60 Cell death is considered to be the primary 

mechanism of calcification especially in atherosclerotic plaques with large areas of 

necrotic tissue. During apoptosis, the cell actively disassembles itself and reduces cell 

size by the formation of phosphatidylserine-containing vesicles, “apoptotic bodies” 

(ABs).61 ABs are released into the extracellular matrix in response to cell death. These 

are the structures that form the nidus for calcification in the vessel wall.26 It has also been 

observed that increased rate of apoptosis of VSMCs is one of the mechanisms of 

vascular calcification as dying cells become highly permeable to calcium and 

phosphate.62  

 In addition to the ABs matrix vesicles (MVs) are implicated in the pathogenesis of 

vascular calcification. Traditionally, based on their size and presumed biogenetic 

pathways, extracellular vesicles (EVs) are broadly classified into: (a) ABs, 800–5,000 nm 

diameter and released by cells undergoing programmed cell death; (b) MVs, also referred 

to as shedding MVs, are membranous vesicles (50–1,000 nm diameter) that are 

produced by budding from the plasma membrane; and (c) exosomes (EXOs), 40–100 

nm diameter vesicles considered to be of endocytic origin.63  

 The conventional definition of MVs is that they are small (20-200 nm) lipid bound 

spherical bodies, which have their origin in plasma membrane of chondrocytes and 

osteoblasts. Additionally they are associated with hydroxyapatite crystals and act as 

nucleation sites.63,64,31 To expound this mechanism further: MVs were found selectively 

located at sites of initial calcification in cartilage, bone, and predentin. The first crystals 

https://mail.google.com/mail/u/0/#14c112085cb25aed__ENREF_63
https://mail.google.com/mail/u/0/#14c112085cb25aed__ENREF_64
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of apatitic bone mineral are formed within MVs close to the inner surfaces of their 

investing membranes. In the osteogenic literature, matrix vesicle biogenesis occurs by 

polarised budding and pinching-off of vesicles from specific regions of the outer plasma 

membranes of differentiating growth plate chondrocytes, osteoblasts, and odontoblasts. 

Polarised release of MVs into specific zones of developing matrix determines the precise 

and planned distribution of calcification. Initiation of the first mineral crystals within MVs 

(phase 1) is facilitated by the activity of MV phosphatases (e.g. alkaline phosphatase, 

adenosine triphosphatase and pyrophosphatase) and this is augmented by calcium-

binding molecules (e.g. annexin I and phosphatidyl serine), all associated with the MV 

membrane. Phase 2 of biologic mineralisation begins with crystal release through the MV 

membrane, exposing preformed hydroxyapatite crystals to the extracellular fluid. The 

extracellular fluid is conducive to the crystal expansion, having sufficient Ca2+ and (PO4)3-

, with preformed crystals serving as the foundation for the formation of new crystals by a 

process of homologous nucleation. The precipitation of calcium-phosphate crystals, 

occur in the extracellular matrix of the vasculature (Figure 1.3).  

This knowledge from the field of osteology was translated and explored in the vascular 

paradigm. MVs released by VSMCs under quotidian conditions do not calcify, being 

armed with inhibitors like MGP and Fetuin A. On the other hand, MVs released under 

uremic stress behave akin to their counterparts discharged by bone and cartilage 

sources.31 Recent studies have questioned the origin of MVs as being the plasma 

membrane. The exosomal pathway with multivesicular bodies being intermediaries may 

more likely play a role in the formation, packaging and release of MVs.64 

1.4 Clinical importance of vascular calcification 

Diabetes is one of the leading causes of chronic kidney disease (CKD) and patients 

suffering from CKD have a high risk of fatal cardiovascular complications resulting from 
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vascular calcification.65, 66 In comparison with the general population, patients with CKD 

are at a 40 fold higher risk of death due to cardiovascular disease.67 Atherosclerotic 

plaques are a common finding in patients with CKD, diabetes and hypertension. They 

block the myocardial coronary artery reducing the blood supply to the myocardium and 

causing ischemic heart disease. Rupture of vulnerable atherosclerotic plaque causes 

fatal cardiac and cerebral infarction and thrombosis. The common cause of plaque 

rupture is an increase in biomechanical stress and disruption in the fibrous cap.68 

Although there is a correlation between the amount of calcification and the stage and 

extent of atherosclerosis, its role in plaque rupture is unclear and the views are divided.29, 

69 A study done by Ehara et al. using intravascular ultrasound (IVUS) in a population of 

178 patients (61 with acute myocardial infarction, 70 with unstable angina, and 47 with 

stable angina) concluded that presence of “spotty calcification” increases the probability 

of plaque rupture and plaque erosion.70 According to some studies, stress induced by 

microcalcification in thin fibrous cap promotes plaque rupture,68 whereas other studies 

show that calcification of atherosclerotic plaques has no impact on biomechanical stress, 

hence does not play any role in plaque rupture. It is rather believed that calcification 

provides structural stability to the plaque, thus they are less prone to rupture. 68, 71, 72  

Medial arterial calcification does not cause any obstruction in the blood circulation; 

however it affects the haemodynamics differently. It is a common finding in patients with 

diabetes mellitus, albuminuria and hypertension.73, 74 Often it is considered as an 

inconsequential finding but studies show that it is a predictive marker for cardiovascular 

events.22 Medial arterial calcification results in vascular stiffness. The speed of 

propagation of arterial pressure waves through the arterial tree is termed pulse wave 

velocity (PWV). Pulse wave analysis using Doppler US and MRI is used to measure 

aortic stiffness.75 This increased pulse wave velocity results in decreased diastolic blood-
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pressure and increased systolic blood pressure.76 These changes lead to left ventricular 

hypertrophy,47 which is highly associated with mortality in patients with cardiovascular 

disease. Medial arterial calcification also leads to cutaneous necrosis caused by calcific 

uremic arteriolopathy (calciphylaxis). 

Over the last decade the perspective that calcification is a passive process has evolved 

and now scientific community is in an agreement that it is an active and regulated 

process. Vascular calcification is a multifaceted disease which involves various tightly 

regulated processes contributing to the pathology.  
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Chapter 2: Application of medical imaging in detection 

of vascular calcification: a review. 

2.1 Introduction 

Medical imaging plays a crucial role in screening of patients and determining the type 

and extent of any disease. It is extremely important for patient management, observing 

disease progression and the outcome of treatment. Diagnostic clinical imaging provides 

physicians with the facility of evidence based treatment for diseases which in turn is 

helpful in improving the prognosis. Medical imaging modalities have also become an 

indispensable tool in drug research.1, 2 

The discovery of x-rays by W.C. Röntgen in 1895 gave birth to the field of in vivo medical 

imaging. However, the major developments in the field of medical imaging have taken 

place in the last 50 years with the invention of various imaging modalities including 

radionuclide imaging, ultrasonography, CT, MRI, digital radiography etc.  

2.2 Conventional X-ray imaging and fluoroscopy  

Plain X-ray imaging is the oldest and most widely available medical imaging tool. It is a 

transmission-based imaging technique wherein X-rays from a source are allowed to pass 

through a patient on to a film or a detector to create an image. Based on the density and 

attenuation of different organs, a 2-dimensional (2D) image of different intensities is 

obtained on a photographic film. It is a relatively inexpensive and simple procedure hence 

used in various clinical studies. Plain radiographs provide a qualitative assessment of 

vascular calcification. Plain X-ray has been successfully used to detect vascular 

calcification in vivo. (See Table- 2.1).  Kauppila et al. assessed the severity, location and 

progression of lumbar aortic calcification in a baseline X-ray image of 617 cardiac 

patients, with follow up after 25 years, to develop a severity score. They proposed a 



22 
 

grade for severity which was scaled from 0-24 depending on the number of foci and 

extent of calcification. They concluded that the score could successfully identify patients 

vulnerable to fatal cardiovascular events.3 Using the same severity scoring system 

Wilson et al. conducted a study on the lateral lumbar radiograms of a larger cohort of 

patients (1049 males and 1466 females; mean age 61 years). They concluded that X-

rays detect the presence of calcification in the abdominal aorta and are an independent 

predictor of vascular morbidity and mortality.4 In yet another study London et al. used 

radiograms of the pelvis and thighs of 202 end stage renal disease (ESRD) patients who 

had been on dialysis for more than a year to confirm the presence of medial and intimal 

calcification.5 A simple vascular calcification scoring system (SVCS) to predict the 

probability of cardiovascular event in patients with ESRD was devised by Adragão et al.6 

Using the same scoring system complimented with a Doppler device to measure pulse 

wave velocity (PWV), pulse pressure (PP) and ankle brachial index (ABI) Adragão et al. 

demonstrated that SVCS and ABI are associated with vascular calcification and mortality 

in ESRD patients undergoing haemodialysis. However, plain X-ray radiography does not 

provide a 3D view of organs, hence offers a restricted view of the affected organs.  

Fluoroscopic cardiac angiography is widely used for the diagnosis of obstructive coronary 

artery disease. It uses continuous X-rays which are passed through the patient into a 

fluorescent screen to obtain real time dynamic images of the heart. Based on how the x-

ray images are obtained, there are two types of fluoroscopy machines currently in use:  

2.1.1 Image intensifier: This was designed and developed in the 1950’s. X-rays pass 

through the patient and fall onto a fluorescent screen coupled to a television system 

which enables real time imaging of dynamic processes. 
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Table 2.1: Studies published by various research groups demonstrating the successful use of X-ray imaging 

in detecting vascular calcification. 

Study and year No. of patients Radiograms used 

Niskanen et al.19907 277 [133 diabetic (70M and 63F) + 144 non-

diabetic individuals (62M and 82F).] 

Chest, abdomen and legs 

Kauppila et al. 19973 617 (217M and 400F) Framingham Heart Study 

participants. 

Lumbar 

Wilson et al. 20014 2515 (1049M and 1466F) Framingham Heart 

Study participants. 

Lumbar 

London et al. 20035 202 ESRD patients on haemodialysis (HD) for at 

least 1 year. 

Pelvis and thigh 

Adragão et al. 20046 123 (75M and 48F) HD patients. Pelvis and hands 

Adragão et al. 20098 101 (71 M and 30F) HD patients Pelvis and hands 

Adragão et al. 20119 219 HD patients Abdomen, pelvis and hands 

 

An image intensifier consists of a large vacuum tube with an input phosphor layer 

followed by a photocathode layer, an array of focusing electrodes and an output 

phosphor layer. In the past 6 decades image intensifiers have gone through several 

technological modifications, including increase in the field of view, replaced camera tubes 

with charged coupled devices (CCD’s) and replacing television systems with liquid crystal 

display (LCD) monitors. Despite many improvements being incorporated it still has 

disadvantages which include its bulk and requirement for a high vacuum and voltage 

sensitivity.10  

2.1.2 Flat-panel-detector (FPD): FPD is a recent development and is currently favoured 

equipment in the cardiac catheterisation laboratory. In FPD machines the vacuum tube 

is replaced by an indirect solid state system which uses thallium (Tl) activated caesium 

iodide (CsI) crystals as detectors. It also lacks the requirement of a television camera to 

produce images on the monitor. Hence this equipment is much smaller and more 

compact compared to an image intensifier device providing it with flexibility in positioning 
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while imaging patients. The main drawback is the high cost, restricting its use for general 

purposes.10 

Several experimental studies have been conducted comparing the sensitivity and 

specificity of fluoroscopy in detecting coronary artery calcification. The method of 

calculating the sensitivity and specificity of a clinical study has been illustrated in Table 

2.2 and 2.3. Table 2.4 represents the findings by various groups, which suggest that 

fluoroscopy is sensitive in detecting coronary artery calcification.  

  Table 2.2: Possible outcomes of a clinical study. 
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(Normal) 

Test Total 

Positive 

(Number) 

True positive 

(A) 

False positive 

(B) 

Test positive 

(A+B) 

Negative 

(Number) 

False negative 

(C) 

True negative 

(D) 

Test negative 

(C+D) 

Total Total Diseased 

(A+C) 

Total Normal 

(B+D) 

 

 

Table 2.3: Formula used to calculate the sensitivity, specificity, positive and negative predictive values 

using the outcomes of a study. (As mentioned in Table 2.2) 11-13 

Parameter Formula 

Sensitivity: the ability of a test to correctly diagnose an individual as diseased.  A

A + C 
× 100 

Specificity: The ability of the test to correctly identify those patients without the 

disease. 

D

B + D 
× 100 

Positive predictive value: It is the % measure to determine how many of the test 

positives are true positives. 

A

A + B 
× 100 

Negative predictive value: Is the converse of positive predictive value. D

C + D 
× 100 

 

Agatston et al. reported a study conducting ultrafast CT on 584 subjects out of which 50 

patients with previous history of CAD underwent fluoroscopy too. They concluded that 

angiography demonstrated that only 52% of calcific deposits were detected by 
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fluoroscopy whereas the sensitivity of ultrafast CT was found to be 90%.14 Heussel et al. 

compared the findings from 40 patients that underwent coronary angiography, spiral CT 

and fluoroscopy. They concluded that spiral CT had a positive predictive value of 83% in 

detecting coronary artery calcification, whereas the positive predictive value of 

fluoroscopy was only 50%.15  

Table 2.4: Sensitivity and specificity of coronary angiography in detecting calcification as published by 

various groups. 

Reference Patients (n) Sensitivity (%) Specificity (%) 

Bartel et al. 16 360 56 95 

Hamby et al. 17 500 76 78 

Bierner et al. 18 436 57 92 

Aldrich et al. 19 181 66 52 

Margolis et al. 20 800 40 93 

Hung et al. 21 92 79 83 

Detrano et al. 22 301 67 81 

Uretsky et al. 23 600 65 85 

 

Fluoroscopic coronary angiography has several disadvantages, firstly it is user 

dependent and relies on the skill and experience of the operator, and secondly it cannot 

be used for quantification. Coronary angiography is an invasive procedure requiring 

contrast media to be injected into the coronary artery via a long catheter. The catheters 

are usually inserted through the right femoral artery. Occasionally brachial or radial 

arteries may be used as the site of insertion. There are several serious risks associated 

with the procedure of catheterisation and also from the dyes used. The minor ones 

include the risks of bleeding, infection, and pain at the site of catheter insertion. Although 

rare, serious and life threatening complications like allergic reaction from the dye, renal 

failure, embolism, stroke and serious injury to vasculature have also been reported.24, 25 
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2.3 Computed tomography (CT) 

CT is a commonly performed imaging modality. In the past three decades the use of CT 

in medical diagnostics has grown exponentially, with more than 70 million scans 

performed in the year 2007 in United States only. CT scans of the chest contribute to a 

majority of the CT scans performed as it has become a routine practice for the 

management of patients with cardiac diseases and pulmonary embolism.26 It is 

considered as the gold standard for non-invasive imaging and quantification of vascular 

calcifications.27 It is also used in assessing disease progression as well as monitoring 

response to therapy.  

The first CT machine, also known as the EMI (named after the company British EMI 

Corp.) device was invented by Godfrey Hounsfield in the early 1970’s. It was a dedicated 

head scanner, which used a water-filled box to rest the patient’s head and was presented 

at a British Radiological Society meeting in 1972.28 In 1974, the second generation CT 

machine with whole body scanning capability was developed and installed by Ledley et 

al. at Georgetown University.29 Rapid developments took place and by 1976 the third and 

fourth generations of CT were invented which had better scanning properties.28 

Hounsfield along with mathematician Allan Cormack won the Nobel Prize in 1979 for their 

pioneering work. The advantage of CT is that it provides high resolution images obtained 

as slices (tomography) which resolves the problem of superimposition of organs that is 

often encountered in other planar projection-based imaging modalities.    

2.3.1 Conventional CT or single slice computed tomography (SSCT):  

Computed tomography has significant advantages over fluoroscopy in imaging coronary 

artery calcification. It is a non-invasive imaging modality that is comparatively easy to 

perform and has no life-threatening risks associated with it. CT scans of the chest and 

coronary angiograms of 27 patients evaluated by Timins et al. showed that the sensitivity 
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of CT in detecting coronary artery calcification in patients with significant coronary artery 

disease (CAD) was 78%, 63% and 16% for the left anterior descending (LAD), left 

circumflex (LCX), and the right coronary artery (RCA) respectively. The specificities were 

78%, 80%, and 100%, and positive predictive values were 88%, 83%, and 100%.30 In 

another study 161 patients (135 male and 26 female) diagnosed with CAD by coronary 

angiography underwent CT scanning. Coronary calcium on CT was detected in 108 

patients out of which 90% had clinically significant coronary stenosis (>75%) on 

angiography. Out of 205 stenotic arteries, CT detected calcification in 133 vessels with 

an overall sensitivity of CT in detecting coronary calcium was 65%.13 Heussel et al. 

compared the sensitivity and specificity of spiral CT and fluoroscopy in detecting coronary 

artery calcification in a cohort of 40 patients (33 male and 7 female) out of which 19 

patients were suffering from a stenosis 75 %. The patients underwent spiral CT, 

coronary angiography, and fluoroscopy. They concluded that spiral CT was superior to 

fluoroscopy in detecting coronary calcium with a sensitivity of 100% and specificity of 

33%.15 Although conventional CT is more sensitive than fluoroscopy in detecting 

coronary artery calcification, it has serious limitations of slow scan time and motion 

artefacts.  

2.3.2 Electron beam computed tomography (EBCT):  

To image the heart with conventional CT is a challenge as it requires ultrafast scan time 

in order to overcome motion artefacts. EBCT was developed in the 1984 to overcome 

the drawbacks of conventional CT. Unlike a conventional CT machine that uses a rotating 

X-ray tube the EBCT has no moving parts. Instead it allows an electron beam to bombard 

a stationary tungsten target placed at 210° in the gantry to produce a rotating fan of X-

rays. It permits a very rapid scan time and serial transaxial images with a thickness of 3-

6 mm are obtained in 100 ms.31 To image the whole heart, 40-50 slices of images are 
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acquired with patient holding breath for 30-40 seconds. Originally known 

as cine or ultrafast CT, the term EBCT is now used to distinguish it from conventional CT 

scans because modern multi-detector scanners are also capable of ultrafast scanning. 

EBCT systems are equipped with quantitative software that enables the quantification of 

calcified regions.  

The first study that reported the use of EBCT in detecting coronary artery calcification 

was published by Tanenbaum et al. A cohort of 54 patients (36 male and 18 female) was 

used, out of which 43 patients were diagnosed with significant CAD by coronary 

angiography. They determined that the sensitivities for 1-, 2-, 3-vessel disease and left 

main artery disease were 82%, 89%, 92% and 100% respectively.32 In 1994, Agatston et 

al. formulated the first quantification system for coronary calcium using EBCT. A total of 

584 patients (out of which 409 were male and 175 female) were used in the study. 109 

patients had CAD established either by coronary angiography (>50% luminal narrowing) 

or a history of myocardial infarction and the remaining 475 test subjects had no history 

of CAD. They derived a calcium scoring system based on Hounsfield units (HU) and area 

of a calcific lesion. Hounsfield units are a unit measure that represents the different 

density levels of tissues.28 Calcium score of 1 was designated to any lesion with ≥1mm2 

in size and HU of 130-199 and similarly 2 = 200-299, 3 = 300-399 and 4 = 400-499. The 

sensitivity, specificity and predictive values for clinical CAD were calculated for calcium 

scores in each decade. A sensitivity of 71% and 74% and a specificity of 91% and 70%, 

respectively, were obtained in subjects of age groups 40 to 49 and 50 to 59 years, and 

total calcium score of 50. They also compared the findings of EBCT with fluoroscopy and 

concluded that EBCT was superior in detecting coronary calcium.14 A correlative study 

was conducted on 38 dissected coronary arteries by Rumberger et al. They concluded 

that the histologic findings had a strong correlation with calcium scoring.33 Similar 
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conclusions were reached by Denzel et al. from a study in which they compared calcium 

score generated by CT in comparison to sonography and histology in 92 carotid artery 

endarterectomy specimens.34  

2.3.3 Multi-slice computed tomography (MSCT) or Multi-detector 

computed tomography (MDCT):   

Although EBCT has proved to be a successful non-invasive imaging modality, it does 

have some limitations. EBCT is expensive equipment dedicated for cardiac imaging, 

hence found only in selected hospitals. MDCT employs an x-ray tube and a detector 

assembly which revolves around the patient to obtain images. One advantage of modern 

MDCT over conventional CT is scan speed. With a modern MDCT scanner up to 320 

simultaneous sections with a thickness of 1.5 – 0.6 mm can be obtained in every rotation, 

hence reducing the time of the procedure.35, 36 Due to its ability to obtain high resolution 

images in a relatively short time it has, has replaced EBCT and is currently in vivo imaging 

of vascular calcification. It is now considered as the gold standard for evaluating the 

degree of arterial stenosis and has a very high (95-100%) negative predictive value for 

CAD.36, 37 Oto et al. performed a comparative study between multi detector computed 

tomography (MDCT) and digital angiography for the assessment of lower extremity 

arterial occlusive disease. They concluded that the sensitivity, specificity and accuracy 

of MDCT in detecting mild calcifications are more than 99%.38 Coronary computed 

tomographic angiography (CCTA) using a 16-MDCT scanner can detect CAD in patients 

with high sensitivity and specificity without pharmacologic manipulation of patient heart 

rates.39 In comparison to 16 slice CCTA, 64-slice CCTA provides improved temporal 

resolution and spatial resolution which allows optimal three-dimensional visualisation of 

the variable and complex anatomy of coronary arteries.40 
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In a cohort of 230 individuals without CAD, Budoff et al. assessed the diagnostic accuracy 

of electrocardiographically-gated 64-multidetector row coronary computed tomographic 

angiography (CCTA). They concluded that the sensitivity, specificity, and positive and 

negative predictive values of 64 slice CT to detect ≥50% stenosis were 95%, 83%, 64%, 

and 99%, respectively.41 The use of 128 slice CT for CCTA instead of 64 slice CT reduces 

the acquisition time and radiation dose significantly.42, 43 More recently, 256 and 320 slice 

CT has been introduced and has been successfully used as a non-invasive diagnostic 

tool for CAD. The advantages of these machines over their predecessors are faster 

acquisition time, improved planar as well as 3-D image quality and more importantly 

significant reduction in radiation dose.44, 45 

2.4 Intravascular ultrasonography (IVUS) 

With the advances in catheter technology and ultrasound imaging, a new modality of 

imaging IVUS has been developed. IVUS utilises transducers mounted on the tips of 

catheters to obtain cross-sectional images of the coronary arteries during cardiac 

catheterization. It provides information about the lumen of the artery and the thickness 

and tissue characteristics of the arterial wall. There are two types of IVUS imaging 

catheter systems: (i) rotational and (ii) phased array. Rotational IVUS catheters are 

armed with a single transducer rotated at 1800 rotations per minute (RPM) operating at 

up to 9-45 MHz.  Phased array catheters on the other hand have no mechanical parts, 

instead they have an electronically-scanned 64 element array transducer operating in the 

20 MHz range.46  

The earliest studies to detect coronary artery calcification were published by Mintz et al. 

IVUS and fluoroscopy was performed on 110 patients (84 male, 26 female) undergoing 

transcatheter therapy for symptomatic CAD. They concluded that calcification was 

detected only in 48% of the patients whereas IVUS could detect calcification in 76% of 
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the test subjects.47 In another study by the same group, they investigated 1155 lesion in 

1117 test subjects with IVUS as well as angiography. Out of the 1155 lesions IVUS 

detected calcium in 841 (P<0.0001 versus angiography) as compared to 440 detected 

by angiography.48 Similar finding was reported by Tuzcu et al. who concluded that IVUS 

is more sensitive in detecting coronary artery calcification than angiography. Studies also 

show that IVUS can be used to identify fibrofatty plaque and positive remodelling.49 A 

recent development in this field has been the combination (IVUS) and intravascular 

photoacoustic (IVPA) imaging, which facilitates the assessment of plaque morphology 

and composition.50 As opposed to other imaging modalities like CT and MRI, IVUS finds 

a limited use in clinical practice because of its disadvantages. It is expensive and it 

visualises only a limited portion of the coronary tree and is an invasive modality 

performed only in conjunction with coronary angiography.  

Table 2.5: Advantages and drawbacks of various anatomic imaging tools. 

 

Imaging modality Advantages Drawbacks 

X-ray Inexpensive and easily 

available modality 

Does not provide 3D images 

Quantification is not possible 

Poor sensitivity 

Use of ionising radiation 

Does not provide molecular information 

Fluoroscopy Gold standard for diagnosing 

obstructive CAD 

Invasive 

Use of ionising radiation  

Does not provide molecular information 

CT Gold standard for in vivo 

quantification of calcification 

Allows high resolution 3D 

imaging of organ system 

Fails to detect micro-calcifications 

Does not provide molecular information 

IVUS Real time high resolution 

imaging 

Allows assessment of total 

vessel lumen 

Invasive 

Restricted FOV 

User dependent 

Risk of infection and plaque rupture 
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2.5 Molecular imaging 

Molecular imaging is an emerging field which utilises a multidisciplinary approach to 

visually depict and quantify biological/biochemical processes. The above mentioned 

imaging techniques CT, X-ray and ultra-sonography are modalities that screen the 

anatomical changes in an organ and do not provide any information of changes at the 

molecular, cellular and sub-cellular level. Anatomical changes are late manifestations of 

the molecular processes that truly underlie diseases. These changes are often 

irreversible damages occurred due to the progression of disease. The modern approach 

is to target the molecular processes that cause a disease to diagnose the disease early 

thereby greatly improving the prognosis.  

A range of molecular imaging probes that target cellular processes or markers of specific 

disease have been developed over the years. Most biomolecules present in tissues are 

in very low concentrations (in the picomolar [10−9 M] to nanomolar [10−12 M] range). This 

makes detecting them using molecular imaging agents extremely challenging. Hence, 

molecular imaging probes must be extremely sensitive in their interactions, home to their 

targets and be retained in adequate quantities for a suitable period for it to be detected. 

The probe should also bind specifically to the intended target and not elsewhere in order 

to get a high target to background ratio for better detectability. Therefore, an ideal 

molecular probe should have a high sensitivity and specificity (not to be confused with 

sensitivity and specificity of a clinical study).  

Utilising the advances in cell and molecular biology, molecular probes have been also 

developed for imaging modalities like radionuclide imaging and optical imaging. 

Molecular imaging can be considered as an extension of nuclear medicine where patients 

are imaged by injecting specific radioactive pharmaceuticals.51 Out of all molecular 
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imaging tools currently available, radionuclide imaging is the most well established and 

routinely used modality in clinical practice. 

2.6 Optical Imaging 

Optical imaging is an extension of well-established in vitro technique of fluorescence 

microscopy and bench top luminometry into an in vivo imaging modality.51 The advantage 

of optical imaging is that it is very sensitive imaging modality and does not use harmful 

ionising radiation.52 Zaheer et al. developed a fluorescent derivative (Pam78) to target 

the hydroxyapatite present in the calcified regions in transgenic mouse model 

(homozygous deletion of GLA protein Mgp-/-). Pam78 is a conjugate of a bisphosphonate, 

pamidronate, and a NIR fluorophore, IR Dye 78 (Figure 2.1).53, 54 The conjugation 

reaction was carried out in an aqueous solution with a yield of 18-21%.  

 A study by Kozoloff et al. demonstrated that a fluorescent bisphosphonate analogue, 

far-red fluorescent pamidronate (FRFP), is an accurate biomarker of bisphosphonate 

deposition and retention in vivo.55 Aikawa et al. used a derivative of Pam78 

(OsteoSense750/OS750, VisEn Medical Inc, Woburn, Mass) for in vivo imaging of ApoE 

deficient mouse fed with atherogenic diet. She concluded that NIRF imaging agent binds 

to nanocrystals of hydroxyapatite elaborated by vascular smooth muscle cells that 

undergo vesicle-mediated calcification.56 Macru et al. used Time-Resolved Laser 

Induced Fluorescence Spectroscopy (TR-LIFS) to detect macrophages, thin fibrous cap 

and other markers of vulnerable plaque.57 New optical imaging techniques like 

multiphoton laser scanning microscopy, optical coherence tomography (OCT) and 

photoacuostic imaging (PAI) are under development which may help to provide new 

insights in vascular calcification and atherosclerosis.  
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Figure 2.1: Synthesis of Pam78 by conjugating the primary amine of pamidronate tetrasodium with the 

sodium salt of the N-hydroxysuccinimide (NHS) ester of IRDye78. Zaheer et al. Nat Biotechnol. Dec 

2001;19(12):1148-1154 
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2.7 Radionuclide Imaging 

Radionuclide imaging is a quantitative molecular imaging tool that provides scans with 

high sensitivity (10-10-10-12 mol/L) and specificity with information on processes at 

molecular and cellular level. Unlike optical imaging, radionuclide imaging do not have the 

problem of penetration as it uses γ-radiation for the detection of the probe. Advances in 

understanding the molecular and cellular mechanisms of atherogenesis have been 

exploited in developing new radiopharmaceuticals for both PET and conventional gamma 

imaging.  Although numerous radiopharmaceuticals are being investigated for their 

potential in cardiovascular imaging especially in detecting atherosclerotic plaque and 

vascular calcification, clinical use in the field of cardiology is limited to perfusion studies 

with SPECT (201Tl, and 99mTc-labelled sestamibi & tetrofosmin) and PET (18F-FDG, 15N-

NH4+ and 82Rb)58, 59 

Figure 2.2: Different biological targets exploited for radionuclide imaging of atherosclerosis.  

Langer et al. Journal of the American College of Cardiology.2008; 52:1 – 12 
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2.7.1 Metabolic Factors:  

Atherosclerosis involves an ongoing inflammatory response and plays a crucial role from 

the initiation to progression of the lesion.60  Macrophages and other inflammatory cells 

present in the atherosclerotic plaques have a high metabolic activity.18F-FDG 

(fluorodeoxyglucose) is a FDA approved diagnostic pharmaceutical used for the 

evaluation of cases related to oncology, neurology and cardiology.61 It is a glucose 

analogue and is retained by cells in proportion to their metabolic activity.  The 

transportation of 18F-FDG into the cells is mediated by glucose transporters where it is 

phosphorylated by hexokinase to 18F-FDG-6- phosphate.  18F-FDG-6- phosphate is 

retained in the cells as it cannot be metabolised further in the glycolytic pathway. 18F-

FDG has been successfully used for in vivo imaging of atherosclerosis.62-64 Figure 2.2 

shows some of the high priority imaging targets exploited and the radiopharmaceuticals 

developed for imaging atherosclerosis.65 

2.7.2 Angiogenesis:  

Angiogenesis is defined as the process of de novo formation of microvessels from pre-

existing precursor cells.66 Angiogenesis predominantly occurs in response to biological 

stimuli like ischemia, hypoxia, inflammation, shear stress, and traumatic injury.67 It is a 

common finding in wound healing, inflammation and various cancers. Angiogenesis is a 

complex, multistep process involving a variety of cells, along with both stimulatory and 

inhibitory factors.68 Vascular endothelial growth factor (VEGF) is a key stimulator that 

regulates the process of angiogenesis.  VEGF ligands have four known isoforms, binding 

to specific VEGF receptors (VEGFR-1, VEGFR-2, and VEGFR-3).68 Gambhir et al. 

successfully radiolabeled VEGF-121 with 64Cu (64Cu-6DOTA-VEGF121) and used it for 

PET imaging of VEGFR-2 in a murine model of hind limb ischemia-induced 

angiogenesis.69 VEGF121 labelled with 111In has also been developed as a targeting 



37 
 

ligand for SPECT and was successfully used to image peripheral angiogenesis in a rabbit 

model of hind limb ischemia.70 Atherosclerotic lesions express high levels of the αVβ3 

integrin hence they can be used as molecular targets for imaging angiogenesis.  

It is a heterodimeric transmembrane glycoprotein that binds avidly with RGD (arginine-

glycine-aspartic acid)-containing components of the interstitial matrix such as vitronectin 

and fibronectin. 18F-galacto-RGD is taken up by αVβ3 in cancer cells. However, it 

demonstrates high non-specific uptake in the liver and intestine.71 Laitinen et al. used 

18F-galacto-RGD and 68Ga-DOTA-RGD to image vascular inflammation in 

hypercholesterolemic LDLR-/-ApoB100/100 mice. They demonstrated specific uptake of the 

radiopharmaceutical in atherosclerotic lesions of mouse aorta.72, 73 Recently, Beer et al. 

evaluated the feasibility of the use of 18F-galacto-RGD in imaging in human carotid 

plaque. The study was conducted on a cohort of 10 patients with high-grade carotid artery 

stenosis scheduled for carotid endarterectomy. They concluded that 18F-galacto-RGD 

had significantly higher uptake in the stenotic areas as compared with non-stenotic 

areas.74 99mTc-NC100692 (maraciclatide), a tracer that binds with αVβ3 & αVβ5, has 

been developed by GE Healthcare, in a kit based formulation which has been 

successfully used to image angiogenic endothelium in animal models.75, 76  

 

 

 

 

 

 



38 
 

 

Research group and 
year 

Underlying Plaque 
Biology 

Radionuclide Tracer Experimental Setting 

Lees at al. 1988 77 Inflammation 99mTc-LDL Human carotid/ ileofemoral 
artery 

Virgolini et al. 1991 78  
 
 
Lipoprotein 
accumulation 

123I-LDL Human carotid artery 

Virgolini et al. 1991 79 125I-LDL Rabbit aorta 

Tsimikas et al. 1999 80 123I-MDA2 (Ab to ox-LDL 
epitope) 

Rabbit arteries 

Shaw et al. 2001 81 125I-IK17 (Ab to ox-LDL 
epitope) 

Mouse aorta 

Hardoff et al.1993 82 123I-SP4 (apoliprotein B 
fragment) 

Rabbit aorta 

Lu et al. 1996 83 125I-SP4 Rabbit aorta 

Ohtsuki et al. 2001 84 Chemotaxis 125I-MCP-1 (chemotactic 
molecule) 

Rabbit aorta 

Lee et al. 2005 85  
 
Angiogenesis 

125I-c(RGD(I)yV) (peptide 
binding v 3) 

Murine ischemic hind 
limbs/HUVECs 

Hua et al.  2005 86 99mTc-(NC100692) (peptide 
binding v 3) 

Murine ischemic hind limbs 

Virgolini et al. 1990 87 Monocyte 
recruitment/ 

activity 

111In-monocytes Human arteries 

Lederman et al. 200188 18F-FDG (metabolic activity) Rabbit iliac artery 

Rudd et al. 2002 62 18F-FDG Human carotid artery 

Haim et al. 2004 89 18F-FDG Human arteries 

Matter et al. 2006 90 18F-FDG in comparison with 
18F-FCH 

Mouse aorta 

Kelly et al. 2005 91 VHSPNKK-modified 
magnetofluorescent 
nanoparticle 

Mouse carotid artery 

Kolodgie et al. 2003 92 Apoptosis 99mTc-annexin V  Rabbit aorta 

Kietselaer et al. 2004 93 99mTc-annexin V Human carotid artery 

Johnson et al. 2005 94 99mTc-annexin V Swine coronary artery 

Isobe et al. 2006 95 99mTc-annexin V Mouse aorta 

Schäfers et al. 2004 96 Proteolysis 123I-HO-CGS27023 A (MMP 
inhibitor) 

Mouse carotid artery 

Jaffer et al. 2007 56 GHPGGPQKC-NH2(cathepsin 

K substrate) - NIRFprobe. 

Mouse aortae and human 
carotid arteries 

Minar et al. 1989 97 Thrombogenicity 
and cell recruitment 

111In-platelets Human carotid artery 

Moriwaki et al. 1995 98 111In-platelets Human carotid artery 

Gawaz et al. 2005 98, 99 125I-GPVI/123I-GPVI (platelet 
collagen receptor) 

Mouse carotid artery 

Mitchel et al. 2000 100 99mTc-DMP-444 (GPIIb-IIIa 
inhibitor) 

Canine coronary artery 

Cerqueira et al. 1992 101 99mTc-T2G1s Fab (fibrinogen 
binding) 

Canine femoral/carotid 
artery 

Matter et al.  2004 90, 102 125I-L19 (fibronectin binding) Mouse aorta 

 

Table 2.6: Different radiopharmaceuticals developed to image atherosclerotic plaques and the underlying biology. 
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2.7.3 Apoptosis:   

Apoptosis is a distinctive feature of atherosclerotic plaques that can be imaged using 

radiolabeled annexin V. Annexin V is a natural human phosphatidylserine-binding protein 

which is exposed to the extracellular membrane during apoptosis. 99mTc-annexin has 

been widely used and studied to image apoptosis both in atherosclerotic plaque and 

tumours. Human annexin V is obtained by recombinant DNA technique, conjugated with 

hydrazinonicotinamide (HYNIC) and labelled with 99mTc.  

For PET imaging of apoptosis, annexin V has been radiolabeled with 18F using N-

succinimidyl-4-18F-fluorobenzoic acid (18F-SFB) chemistry to 18F-fluoroannexin (18F-

FAN).103 This method of labelling annexin V relies on nonspecific reaction of the 

prosthetic group (18F-SFB) with any available amine groups in this protein. Another 

method of radiolabeling involves targeting the free thiol groups that are present only in 

cysteine residues. In this approach a thiol-reactive reagent N-[4-[(4-18F 

fluorobenzylidene)aminooxy]butyl]maleimide (18F-FBABM) is allowed to react with 

annexin V-128, an engineered form of annexin V containing one cysteine.104  

 Synaptotagmin 1 is a membrane protein present in all synaptic vesicles and regulated 

secretory vesicles of neural and neuroendocrine cells. Synaptotagmin 1 is characterised 

by an intravesicular domain, a single transmembrane domain, and a large cytoplasmic 

region containing two C2 domains (C2A and C2B). The first C2 (C2A) domain of 

synaptotagmin 1 binds negatively charged phospholipids including phosphatidylserine.105 

Zhao et al. successfully radiolabeled the C2A domain of the Synaptotagmin 1 with 99mTc 

with using a fusion protein glutathione S-transferase (99mTc-C2A-GST). In vivo SPECT 

imaging of acute myocardial infarction (AMI) mouse models showed increased uptake of 

the radiopharmaceutical in areas with ischemic injury.106 Tavare et al. designed and 
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synthesised a new 99mTc-labelled bioconjugate for apoptosis imaging, based on C2A, the 

phosphatidylserine (PS)-binding domain of rat synaptotagmin I.107  

2.7.4 Proteolysis:  

 Proteases contribute to the progression of atherosclerotic lesions through degradation 

of the extracellular matrix. Strategies to image proteolytic activity include the use of 

radiolabeled matrix metalloproteinase (MMP) inhibitors, substrates of MMP and 

cathepsins. CGS 27023A derivative (R)-2-(N-((6-fluoropyridin-3-yl)methyl)-4-

methoxyphenyl-sulphonamido)-N-hydroxy-3methylbutan amide is an inhibitor of MMP 2, 

-8, -9 and -13. A broad spectrum of MMP inhibitors has been conjugated with 123I to 

develop the radioligand 123I-HOCGS27023A for in vivo imaging of MMP activity.96 18F-

labelled derivative of the MMP inhibitor CGS 27023A has also been developed for PET 

studies. Giersing et al. reported the synthesis of DTPA-N-TIMP-2 and its radiolabeling 

with 111In.108 

2.7.5 Thrombogenicity and cell recruitment:  

Thrombogenicity is one of the prime features of vulnerable plaques and the strategy to 

image the process was by radiolabeling cells involved in thrombus formation. 

Radiolabeled (111In) platelets were successfully used to image atherosclerosis.97 

Monocytes play a key role in all phases of atherogenesis. The early stage of 

atherogenesis is marked by the recruitment of monocytes into the intima. In the intima 

monocytes take up oxidised LDL and differentiate into foam cells to form “fatty 

streaks”.109, 110 The dynamics of monocyte recruitment to developing plaques can be 

clinically exploited as a viable imaging tool. Radiopharmaceuticals that have been 

developed to image atherosclerosis include 111In-oxine labelled monocytes for targeting 

cells specific to atherosclerosis.87, 111  
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2.7.6 Use of bone seeking agents:   

Vascular calcification is one of the common phenomena involved with atherosclerosis, 

an avenue that was not explored in nuclear medicine until recently.  The use of 18F as a 

bone imaging agent was presented by Blau et al. in 1962, but its use remained restricted 

due to the unavailability of dedicated PET scanning equipment.118 The availability of 

modern PET scanners has renewed the interest in 18F-fluoride and its use in PET 

scanning of bones. By the process of chemisorption 18F-fluoride ions binds onto 

hydroxyapatite, then it replaces the hydroxyl (OH-) group of the hydroxyapatite matrix 

[Ca10(PO4)6(OH)2] to form fluoroapatite [Ca10(PO4)6F2].119 Recently, 18F-fluoride has been 

studied for its possibility to be used in imaging atherosclerosis. Table 2.7 illustrates the 

recent studies published by various groups who reported the use of 18F-NaF for in vivo 

imaging to detect arterial calcification. One of the earliest works was published by Derlin 

et al. The study was conducted on 75 patients with a history of atherosclerosis and 

vasculitis. The patients were undergoing whole body PET-CT scan with 18F-NaF to 

evaluate bone metastases. They concluded that out of 1930 sites of calcification (on CT), 

increased radiotracer accumulation was observed in only 254 sites (12%).112 Joshi et al. 

Research group and 

year 

No. of 

patients 

Radiopharmaceutical 

used 

Target 

Derlin et al.  2010112 75 18F-Fluoride Arteries 

Li et al. 2012 113 61 18F-Fluoride Calcified atherosclerotic plaque. 

Derlin et al. 2011 114 269 18F-Fluoride Common carotid arteries. 

Dweck et al. 2012 115 119 18F-FDG & 18F-Fluoride Coronary arteries. 

Quirce et al. 2013 115, 

116 

15 18F-Fluoride Carotid arteries. 

Joshi et al. 2014 117 40 18F-Fluoride/18F-FDG Carotid arteries. 

Table 2.7: Recent studies that demonstrate the successful use of 18F-sodium fluoride in imaging 

calcified atherosclerotic plaques. 
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recently demonstrated the successful use of 18F-NaF in detecting and localising 

vulnerable calcified plaques in a cohort of 40 patients with carotid artery calcification.117 

2.8 Multimodality imaging 

Every imaging modality has its advantages and disadvantages and none can provide 

information on all aspects of structure and function, hence an approach to get greater 

information is to integrate the imaging modalities. Integrating two modalities enables us 

to utilise the advantages of both the modalities while negating their drawbacks.120 

Multimodality imaging has seen vast development in the recent past but the concept is 

decades old. The first prototype SPECT-CT system was developed in 1966 by Kuhl et 

al.121   However, it took 30 years for SPECT and PET systems fused with CT scanners 

to gain popularity. The CT scans are used as anatomical references for the 3D images 

obtained in a SPECT or PET systems for physicians to locate the diseased area 

accurately. The CT scans are also used for attenuation correction of SPECT and PET 

images.121-123  SPECT-CT and PET-CT imaging is now a routinely performed medical 

imaging modality in different branches of medicine. PET-CT has become an 

indispensable part of oncology and has been used for radiotherapy treatment planning.124 

The advantage of using a PET- or SPECT-CT system is that it integrates the sensitivity 

and molecular information of PET imaging coupled with a high resolution CT image. On 

the other hand the use of ionising radiation by both modalities is a major limitation as it 

increases the radiation burden on the patients.  

Although a challenging task, efforts were made to integrate MRI with nuclear imaging 

(PET and SPECT). A prototype of a preclinical simultaneous PET-MRI was developed in 

the late 1990’s by Marsden et al. at King’s College London in collaboration with Shao et 

al. of University of California, Los Angeles.125 PET-MRI enables the integration of the 

sensitivity of radionuclide imaging with high resolution and better soft tissue contrast of 
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MRI. It has three important advantages over PET- and SPECT-CT: (1) Simultaneous 

imaging is possible with PET-MRI whereas the images obtained from PET and SPECT-

CT are sequential; (2) In comparison with CT, MRI provides a better soft tissue contrast. 

(3) The radiation burden delivered to the patient is also significantly reduced as MR does 

not involve the use of ionising radiation.126 Recently, the US Food and Drug 

Administration (FDA) has approved the PET-MRI systems developed by Royal Philips 

Electronics and Siemens Healthcare. This has opened the door for research and 

development for developing agents to be used in these scanners.  

There have been efforts to develop agents for simultaneous PET-MR imaging. Choi et 

al. demonstrated the use of 124I conjugated with serum albumin (SA)-coated manganese 

doped magnetism engineered iron oxide (SA-MnMEIO) as a multimodal agent for 

imaging sentinel nodes in mice.127 Nahrendorf et al. used a trireporter nanoparticle (64Cu-

TNP) to target macrophage activity and image atherosclerotic plaques in ApOE mice. 

The agent was developed by derivatising magnetic nanoparticle base material with DTPA 

for the nuclear tracer 64Cu and a near-infrared fluorochrome, yielding a trimodality 

reporter for PET, MRI, and fluorescence imaging.128 Hwang et al. developed a quadruple 

imaging agent using  cobalt–ferrite nanoparticle surrounded by rhodamine (MF) that was 

conjugated with luciferase (MFB) and p-SCN-bn-NOTA (2-(4-isothiocyanatobenzyl)-

1,4,7-triazacyclonane-1,4,7-triacetic acid) followed by 68GaCl3 (magnetic-fluorescent 

bioluminescent-radioisotopic particle, MFBR)  capable of fluorescence, bioluminescence, 

bioluminescence resonance energy transfer (BRET), positron emission tomography 

(PET) and magnetic resonance (MR) imaging of tumour vasculature in vivo.129 A 99mTc-

bisphosphonate (dipicolylamine alendronate)-iron oxide nanoparticle conjugate was 

developed by Torres et al. for simultaneous SPECT-MRI.130  Blower et al. have described 
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an array of aluminium hydroxide stabilised MnFe2O4 and Fe3O4 nanoparticles that have 

potential to be used as a dual modality PET/MRI agent.131  

Another notable multimodality imaging approach is the integration of optical imaging with 

radiological imaging modalities such as PET, SPECT, CT and MRI. Cai et al. developed 

a dual modality agent based on 64Cu-RGD-peptide and fluorescent quantum dots (QD) 

for PET and NIRF imaging. They conjugated 1,4,7,10-tetraazacyclododecane-

N,N’,N’’,N’’’-tetraacetic acid (DOTA) on the surface of QD for 64Cu chelation.132 Although 

radiolabeled RGD has been primarily used for imaging neovascularisation in tumours, it 

has the potential to be used in atherosclerotic plaque imaging also.  

2.9 Summary 

In the quest to establish a convenient and cost effective imaging modality that will 

successfully identify the early stages of vascular calcification, several avenues have been 

explored. A range of technologies have been evaluated from the simple x-ray to complex 

multimodality imaging.  CT is considered as the ‘gold standard’ for the in vivo diagnosis 

of vascular calcification. Recent findings suggest that CT fails to detect 

microcalcifications, which might play a crucial role in plaque rupture. The need to detect 

these pathological changes at the molecular level in vivo has been the driving force 

behind developing novel labelling techniques. Several molecular probes have been 

developed for the detection of atherosclerosis, but imaging the multifaceted vascular 

calcification paradigm remains unchartered.  

2.10 Aims and outline of the thesis 

The main objective of the project is to study novel and clinically-established bone seeking 

radiopharmaceuticals for imaging vascular calcification. After a thorough in vitro 

evaluation the radiopharmaceuticals were subsequently used to investigate vascular 
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calcification in vivo using small animal SPECT-CT and PET-CT. The rationale for 

choosing the radiopharmaceuticals are discussed below. 

2.10.1 99mTc-labelled bisphosphonates as an agent for imaging 

vascular calcification 

Bisphosphonates (BPs) are analogues of pyrophosphate where the central oxygen of the 

pyrophosphate (P-O-P) is replaced by a carbon (P-C-P) (Figure 2.3). The replacement 

with carbon provides stability and makes the compound resistant to biological 

degradation including enzymatic hydrolysis.133 Pyrophosphates exist naturally in the 

body and act as inhibitors of biomineralisation.134 BPs have been widely used as an 

antiresorptive agent to treat metabolic bone disorders like Paget’s disease and 

osteoporosis. They have also been used in management of patients with metastatic bone 

disease and multiple myeloma. Bisphosphonates bind avidly with hydroxyapatite (HA), 

which is one of the major constituents of the inorganic matrix of the bone. The processes 

of calcification and normal bone formation are indistinguishable and use similar signalling 

pathways.  

The affinity of bisphosphonates to bind with hydroxyapatite can be capitalised in imaging 

vascular calcification. Optical imaging using a bisphosphonate conjugate has been 

successful in detecting microcalcifications. Radiolabeled bisphosphonates might provide 

a solution for the problem posed in optical imaging.  

Figure 2.3: Basic structure of pyrophosphate and bisphosphonate. 
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(A): 99mTc-MDP 

 99mTc-MDP is the clinically established bone seeking SPECT agent used in our study.135, 

136  There have been reports of extra-osseous uptake of 99mTc-MDP linked to 

atherosclerosis and vascular calcification. DeLong et al. reported the visualisation of 

calcified femoral arteries in patients undergoing bone scans. After a study conducted on 

237 patients, Lantto et al. concluded that radiolabeled bisphosphonates might have a 

role in imaging atherosclerosis.137, 139 Despite published case studies of radiolabeled 

bisphosphonates being visualised in calcified arteries, the prospect of using them as a 

tool for detection of vascular calcification remains untapped. 

(B) 99mTc-labelled novel bisphosphonates: 99mTc-N(DTCBP)2 and 99mTc-DPA Ale 

In order to overcome the drawbacks of 99mTc-MDP, including the unknown nature of its 

structure, composition and compromised stability in vivo, two novel bisphosphonates 

were explored (see Figure 2.4). These compounds have enhanced binding affinity and 

in vivo stability. This is achieved by separating the bisphosphonate from the radiometal 

chelator rendering the chemical bifunctional. 

(A) 

(B) 

 99mFigure 2.4: Novel radiolabeled bisphosphonate used in the study (M= Tc). (A) 
99m

Tc-N(DTCBP)
2
 

and (B) 
99m

Tc-DPA Ale 
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2.10.2 18F-NaF PET for imaging vascular calcification 

18F-NaF has been in the forefront of PET imaging of VC recently. Several clinical studies 

have shown promising results with 18F-NaF for the detections of microcalcifications. 

However, there is a distinct lack of published pre-clinical animal models of calcification 

using 18F-NaF. To complement our bisphosphonate studies, both in vivo and in vitro 18F-

NaF was used. 

The thesis is divided into seven chapters. A brief outline of the thesis is described below: 

Chapter 3 describes the initial investigation and characterisation of the 

radiopharmaceuticals. In vitro binding assays with minerals of synthetic (hydroxyapatite) 

and biological origin (isolated from human intimal and medial plaque). In vitro and in situ 

binding assays were also performed with ABs from calcifying and control VSMCs. ABs 

and MVs form the first nidus nidus for biomineralisation in the vasculature.  

Chapter 4 addresses the development of animal models of vascular calcification. We 

attempted to replicate a previously published murine model of medial arterial calcification. 

In conjunction, modifications were made to an established rat models of vascular 

calcification to reduce pain threshold as well as to comply with the Home Office 

requirement.  

Chapter 5 describes the findings of the pilot cum optimization study conducted to 

determine whether the bone seeking radiopharmaceuticals binds with regions of vascular 

calcification. SPECT-CT and PET-CT studies were performed with the radiotracers 

99mTc-MDP, 99mTc-N(DTCBP)2 , 99mTc-DPA Ale and 18F-NaF.  

Chapter 6 illustrates longitudinal SPECT-CT and PET-CT imaging with the 

radiopharmaceuticals 99mTc-MDP, 99mTc-DPA Ale and 18F-NaF. The purpose of the study 
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was demonstrate the feasibility of early detection of vascular calcification with bone 

seeking agents and monitor the disease progression. 

Chapter 7 provides the summary of our findings and some future perspectives. 
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Chapter 3: Do radiolabeled bone seeking agents bind 

with minerals present in vascular calcification? An in 

vitro study. 

3.1 Introduction 

Although there have been significant advances in clinical in vivo imaging of vascular 

calcification, the earliest stages of calcification cannot be detected on a cellular and 

molecular level.1 This is primarily due to the unavailability of suitable molecular imaging 

agents that detect early markers of calcification. Currently the gold standard for in vivo 

imaging of vascular calcification is electron beam computed tomography and multi-slice 

computed tomography.2 However, these x-ray based imaging modalities depict the 

morphological changes in the anatomy depending on the changes in density of the 

organs. The early changes in the process of mineralisation are subtle and do not cause 

significant change in density to be detected by CT. This was demonstrated by Shroff et 

al. on patients with chronic kidney disease.3 They demonstrated that molecular changes 

Figure 3.1: Transmission EM image of matrix vesicles (MV’s) released into the extracellular matrix 

in response to cell death. These are the structures that form the nidus for calcification in the vessel 

wall. Kapustin et al. Circulation Research.2011; 109: e1-e12  

 

5 µm 



65 
 

that result in calcification begin as early as the pre-dialysis stages but remain clinically 

silent and cannot be diagnosed with CT. It has also been established that dialysis induces 

apoptosis and subsequent release of ABs and MVs which eventually results in overt 

calcification.3   

MVs are membrane-bound vesicles produced by budding from chondrocytes, 

osteoblasts and odontoblasts. Chondrocytes are a unique cell type in articular cartilage 

tissue and are essential for cartilage formation and functionality.4 Osteoblasts are 

specialised mesenchymal cells that are essential for bone resorption.5 Odontoblasts are 

the cells responsible for the formation of dentine, the collagen-based mineralised tissue 

that forms the bulk of teeth.6 MVs contain the necessary calcium-binding proteins and 

phosphatases for nucleation of hydroxyapatite and initiate calcification in bone formation 

and mineralising cartilage.3 Ultrastructural study of young healthy arteries and calcified 

arteries obtained from patients with atherosclerosis and CKD shows the presence of 

hydroxyapatite minerals only in a subset of MVs of the calcified arteries but not in young 

healthy arteries.4 MVs and ABs form a nidus for calcification.7-9 ABs are released by dying 

VSMC’s, promoting the release of MVs in the extracellular matrix (see Figure 3.1). 

Calcium plays an important role in inducing apoptosis and in the formation and release 

of hydroxyapatite-laden matrix vesicles. In vitro treatment of VSMCs with high calcium 

conditions induces apoptotic cell death which results in release of more calcium.7, 8 This 

leads to a vicious cycle of apoptosis, release of calcium, release of ABs and MVs 

resulting in overt calcification. High cytosolic calcium levels can change the intrinsic 

properties of VSMC-derived MVs and induce them to calcify. High calcium levels lead to 

annexin 6-phosphatidylserine nucleation complexes and enhanced matrix 

metalloproteinase-2 activity, which leads to elastin degradation and calcification. More 

importantly, exposure to high calcium levels will eventually deplete the endogenous 
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calcification inhibitor, MGP, from matrix vesicles, when vesicles contain preformed 

crystalline hydroxyapatite or become mineralisation competent, thereby promoting 

further calcification.9 

The role of calcification in plaque rupture has been under debate; however in recent times 

a consensus has been developed that microcalcification is associated with plaque 

vulnerability, whereas homogeneous or sheet-like calcification macrocalcification favours 

plaque stabilisation.10-14 MVs and ABs with nano-crystals of HA are potential targets to 

detect vascular calcification in its early stages. Small animal imaging (optical) with Pam78 

(OsteoSense750/OS750, VisEn Medical Inc, Woburn), a fluorescent bisphosphonate 

conjugate, have been used to target the nano-crystals of hydroxyapatite for in vivo whole 

body imaging of vascular calcification.15-17 

Radiolabeled bisphosphonates are clinically used as bone imaging agents and there are 

incidental findings of extra osseous uptake of the radiotracer associated with vascular 

calcification reported in the literature. However, the avenue has not been pursued 

clinically as a means of detecting vascular calcification, and novel radiolabeled 

bisphosphonates with higher binding potency and in vivo stability could be potential 

imaging agents to target the hydroxyapatite nano-crystals.  

In this study we have performed in vitro binding experiments to evaluate the possibility 

of using novel radiolabeled bisphosphonate derivatives for imaging vascular calcification. 

In vitro studies provide a fast and cost-effective means to study the pharmaceutical 

interaction with the targets and generate data to support the hypothesis, and to provide 

ethical justification for in vivo studies. 
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3.2 Materials and Methods 

3.2.1 Radiopharmaceuticals: Synthesis & Quality Control (QC) 

18F- NaF: 18F-NaF was supplied by the PET Radiochemistry Laboratory at the St. 

Thomas’ PET Centre. 18F-fluoride was produced by irradiation of [18O]-water (97 atom%, 

Isochem Ltd., Hook, UK) with 11 MeV protons from a CTI RDS 112 cyclotron (beam 

current 30 μA). The solution in [18O]-water was diluted with sterile water (500 MBq, 5 mL) 

and used without further purification. 

99mTc-MDP:  99mTc-MDP (1000 MBq in 100 µL), prepared by reconstitution of a 

Draximage kit with 99mTcO4
- eluted from a generator with physiological saline), was 

supplied by Guy’s Hospital Radiopharmacy, Guy’s and St Thomas’ NHS Trust. 

99mTc-DPA Ale 99mTc-DPA Ale was synthesised and characterised by a two-step 

chemical reaction described previously.10 Firstly, [99mTc(CO) 3(H2O) 3] + was prepared by 

injecting 1 ml of 99mTcO4
- (500 MBq) into tricarbonyl kit vial (Carbonyl labelling agent; 

Mallinckrodt Medical) and placing it in a heating block maintained at 90oC. After 30 min 

of heating the kit was placed in the ice bath and neutralised by adding 120 µL of 1 M HCl 

into the vial. The pH of the solvent was measured using a pH paper (pH 6.5-7). QC was 

performed using TLC and solvent system 1: 1% HCl in methanol (MeOH) as the solvent. 

TLC analysis was carried out on glass-backed TLC silica gel 60 plates (Merck 

1.15326.0001) with 1% HCl in methanol as the mobile phase. Radio-TLC chromatograms 

were analysed with a Mini-Scan TLC scanner (Bioscan) and Laura 4.0.2.75 (Lablogic) 

software. 

In the second step, 50 μg of DPA Ale in 300 μL of 50 mM carbonate buffer (pH = 9, [NaCl] 

= 0.15 M) was mixed with 300 μL of an aqueous solution of [99mTc(CO)3(H2O)3] + (250-

300 MBq) in a glass vial with a rubber stopper and heated at 90 ⁰C for 30 min. The vial 
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was allowed to cool in an ice bath. The final compound was then analysed for 

radiochemical purity by radio-TLC using solvent system 1. 

99mTc-N(DTCBP)2: 800-1000 MBq 99mTcO4
− generator eluate (in 1 mL saline) was added 

to a lyophilised SDH kit vial (generous gift of Prof. Roberto Pasqualini, Cis 

Biointernational, IBA Group, Gif-sur-Yvette, France, as previously used for production 

of 99mTc-NOET) and incubated for 30 minutes at room temperature. The composition of 

the kit vial was as follows: SDH 5.0 mg; stannous dichloride dihydrate 0.10 mg; DPTA 

5.0 mg; sodium dihydrogen phosphate monohydrate 0.6 mg; disodium phosphate 

heptahydrate 10.9 mg; under a dinitrogen atmosphere. Quality control was performed 

using TLC with solvent system 1. 500 μL of the resulting solution was then added to 500 

μL of the of DTC-BP ligand (1 mg mL−1) in carbonate buffer (pH 10). The vial was 

incubated at 60 °C for 30 minutes. QC was performed using TLC with solvent system 2.  

TLC analysis was performed on silica gel aluminium-backed TLC plates (Merck 

1.16834.0001) using solvent system 2: Methanol + 1% of a 60% solution of HEDP 

(Sigma H6773). Silica gel plates were spotted with the sample on the origin and the spot 

was allowed to dry before development in the mobile phase.  The chromatograms were 

analysed with Mini-Scan TLC and Laura 4.0.2.75 (Lablogic) software. 

3.2.2 Binding measurements with minerals from human intimal 

plaques, medial plaques and equine (horse) bone  

Rachel C. Murray of the Animal Health Trust provided us with the equine bone sample. 

Isolated minerals from human vessels with intimal calcifications medial calcifications 

were used. The minerals were left over from a previous study. The methods to release 

these biominerals from their organic matrix and connective tissues have been previously 

published.18 Synthetic hydroxyapatite was purchased from Sigma-Aldrich.  Binding study 

was performed with synthetic hydroxyapatite, powdered equine bone and powdered 
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minerals isolated from human intimal and medial plaques. A stock solution of 1 mg/mL 

of minerals was prepared by adding 100 mg of each of the minerals to 100 mL double 

distilled (dd) water in a 250 mL Duran borosilicate glass bottle. Suspensions of 0.5, 0.2, 

0.1, 0.05 and 0.02 mg/mL of each sample were prepared in distilled water. 1 mL of the 

suspensions in triplicate (synthetic hydroxyapatite, powdered equine bone, medial and 

intimal arterial minerals) was placed in 1.5 mL eppendorf tubes alongside mineral-free 

controls. 20 µL of 99mTc-MDP, 99mTc-DPA Ale and 99mTc-N(DTCBP)2 and 18F-NaF (0.5-1 

MBq) was added to each tube. The tubes were incubated for 5, 20 and 60 min in a shaker 

at 37 ⁰C and 550 RPM. The tubes were centrifuged at 13,200 RPM for 5 minutes. 50 µL 

of the supernatant from the vials were pipetted out and counts were measured in a 

gamma counter.  

The percentage of the radioactivity bound to the mineral was calculated using the 

following equation: 

𝐁𝐢𝐧𝐝𝐢𝐧𝐠 (%) = [1 − (
𝐜𝐩𝐦 𝐢𝐧 𝐬𝐚𝐦𝐩𝐥𝐞 𝐚𝐥𝐢𝐪𝐮𝐨𝐭

𝐜𝐩𝐦 𝐢𝐧 𝐬𝐭𝐚𝐧𝐝𝐚𝐫𝐝 𝐚𝐥𝐢𝐪𝐮𝐨𝐭
)] × 100 

3.2.3 Tissue Culture 

All chemicals and reagents used were purchased from Sigma Aldrich (Gillingham, UK). 

Human aortic vascular smooth muscle cells (VSMC) immortalised with SV40 large T 

antigen (VSMC-SV40) were used in the experiments. The cells were grown in culture 

medium (M199-Sigma Aldrich M2154), supplemented with 100 IU/mL penicillin, 100 

mg/mL streptomycin and 4 mmol/L of L-glutamine. The flasks were placed in an incubator 

maintained at 37 oC with 5% CO2. Cells were divided into new flasks when they reached 

80% confluence.  
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3.2.4 In vitro model of calcification in VSMC: Media & Treatment 

Human vascular smooth muscle cells immortalised with SV-40 large T-antigen (VSMC-

SV40) were cultured in M199 medium supplemented with 20% FCS and antibiotics. 

VSMC were grown to 80% confluence and grown in Dulbecco’s Modified Eagle’s Salt 

Medium (DMEM) with 0.1% BSA. After starving the cells of serum for 24 h, the cells were 

washed in Earle’s Balanced Salt Solution (EBSS) and treated with control (no Ca/Pi) or 

test media containing high calcium (Ca media; 2.0 and 3.0mM Ca) and high phosphate 

(Pi media; 1.5mM Pi).  

3.2.5 Isolation of apoptotic bodies & matrix vesicles 

Confluent VSMC were washed twice with EBSS and treated with a serum free media that 

contained 0.1% BSA in DMEM. After 24 h, the medium was pipetted out and a freshly 

prepared calcium phosphate-rich media with 0.1% BSA in DMEM was introduced to the 

cells. 24 h later the medium was pipetted out and spun at 2500 rpm for 5 min in a Sorvall 

RF7 centrifuge to remove the apoptotic bodies (AB) which form a pellet. The supernatant 

was collected to harvest the matrix vesicles (MV) by centrifugation at 45,000 rpm for 40 

min at 4°C in a Beckman Ultracentrifuge (125647g). The cells left in the flask were 

scraped, re-suspended in EBSS and centrifuged (2000 rpm for 5 min) to obtain a pellet 

of cell debris. The MVs, ABs and the cell debris were collected in Eppendorf tubes and 

stored at -80oC for further use. 

3.2.6 Bicinchoninic acid (BCA) protein assay:  

Micro-plate (BCA) protein assay was performed using a Protein Assay Kit (Bio-rad) to 

determine the protein concentrations in the apoptotic bodies. 8 serial dilutions of bovine 

serum albumin (BSA) standard (1.54 mg/mL) were prepared in 200 µL of PBS. The ABs 

obtained was resuspended in 300 µL of PBS. 5 µL of the BSA standards and the ABs 
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were transferred on to a 96 well plate and 25 µL of reagent A and 200 µL of reagent B 

was added. The plate was incubated in the dark for 5 minutes for the reaction to occur 

and then the absorbance of all samples was measured at 750 nm. A standard graph was 

obtained using the values and concentrations of the known BSA standard and the 

unknown concentrations were calculated. 

3.2.7 45Ca assay  

A previously established method by Hashimoto et al. was used to measure calcium 

deposition in the MVs and ABs.19 A standard reaction medium or calcifying medium 

consisting 50 mM TES (N-tris(hydroxymethyl) methyl-2-amino-ethanesulfonic acid) at pH 

7.65 (37 °C) with  2.2 mM CaCl2 (50,000 cpm of 45Ca), 1.6 mM KH2PO4, 1 mM ATP 

disodium salt, 1 mM MgCl2, 85 mM NaCl, 15 mM KCl and 10 mM NaHCO3 was prepared. 

The medium was then filtered with a 0.22 μm membrane (Millipore). MVs (10 μg of 

protein) and ABs (20 μg protein) isolated from control and calcified VSMC were added to 

500 μL of calcifying medium and incubated in a water bath at 37 °C for 24 hrs. After the 

incubation period the samples were centrifuged at 13,200 rpm from 20 min in a 

microcentrifuge. The supernatant was pipetted out and collected into vials containing 4 

mL of scintillation liquid (ScintiSafeTM Econo 2 cocktail, Fisher Scientific). The pellet 

obtained was washed with 250 μL cold calcifying medium, vortexed, centrifuged and the 

supernatant was collected into respective vials. The washing step was performed twice 

following which 250 μL of 0.1M HCl was added into it and allowed to incubate for 1 h at 

room temperature. To neutralise the sample, 250 μL of 0.1 M NaOH and 0.1% SDS were 

added into the vial. The samples were vortexed and pipetted into vials with scintillation 

liquid. Using a Beckman liquid scintillation counter the activity in the supernatant and the 

pellet was counted. 
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3.2.8 Binding study with ABs – In vitro and in situ: 

In vitro: ABs were isolated from control VSMC’s cultured in a serum free medium and 

VSMC’s treated with elevated levels of Ca and Pi. Triplicates of 150 µg, 100 µg, and 50 

µg, of protein equivalents were pipetted out and resuspended in eppendorf tubes 

containing 500 µL of PBS. The tubes were then incubated with the radiopharmaceuticals 

(50 µL) on a shaker maintained at 550 RPM and 37°C. After 60 minutes of incubation the 

Eppendorf tubes were centrifuged at 13,200 RPM for 5 min and 50 µL of the supernatant 

was pipetted out and counts were measured. Using the above mentioned equation the 

binding efficiencies were calculated.   

In situ: Radiotracers (50 µL; 0.5-1 MBq) were added into T-75 flasks (n = 3) of VSMC 

cultured in a serum free medium and VSMC treated with elevated levels of Ca and Pi. 

After an incubation of 1 h the ABs were isolated by centrifuging the medium 13,200 RPM 

for 5 min. The pellet was transferred to eppendorf tubes, washed twice with PBS and 

then the tubes were scanned in a SPECT-CT scanner (Bisocan, NanoSPECT) or a PET-

CT scanner (Bisocan, NanoPET). 

3.3 Results  

3.3.1 Radiolabeling and Quality control 

The preparation of 99mTc-DPA Ale and 99mTc-N(DTCBP)2 is schematically shown in 

Figure 3.2. For radiochemical purity analysis TLC (Figure 3.3, A-D) was performed with 

the intermediate as well as the final compound. For 99mTc-DPA Ale radio-TLC solvent 

system 1 on silica plates was performed (intermediates: reduced hydrolysed technetium, 

Rf = 0; [99mTc(CO)3(H2O)3]+, Rf = 0.1-0.7; pertechnetate, Rf = 0.9; product, [99mTc-DPA 

Ale], Rf = 0]). Radiochemical purity of the final product was >99%.  TLC with solvent 

system 2 was used for the quality control of the intermediate (99mTc-N)+ complex reduced 
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hydro lysed technetium, Rf = 0; required technetium nitride intermediate and 

pertechnetate, Rf = 0.9) as well as the final compound 99mTc-N(DTCBP)2 (reduced 

hydrolysed technetium and 99mTc-N(DTCBP)2, Rf = 0; required technetium nitride 

intermediate and pertechnetate, Rf = 0.9) 

             

 

 

 Figure 3.2: Synthesis of (A) 99mTc-DPA Ale and (B) 99mTc-N(DTCBP)2 
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Figure 3.3: Radio-TLC chromatograms on silica gel coated glass plates of (A) [99mTc(CO)3(H2O)3]+ Rf 

= 0.1-0.7 and [99mTcO4
-] Rf = 0.9, solvent system 1; (B): [99mTc-DPA-Ale], Rf = 0], solvent system 1 

(demonstrating the absence of pertechnetate and [99mTc(CO)3(H2O)3]+ at this stage); Radio-TLC 

chromatograms on silica gel coated glass-backed aluminium plates (C): 99mTcN2+ intermediate and 

pertechnetate Rf = 0.9, solvent system 2 and (D): 99mTc-N(DTCBP)2 Rf = 0, solvent system 2 

(demonstrating the absence of both pertechnetate and 99mTcN2+ intermediate in the final product). 



74 
 

  

3.3.2 Binding with synthetic HA 

Binding studies were performed with different concentrations of synthetic HA for three 

time points: 5 min, 20 min and 60 min (See Figure 3.4 A-D). The radiotracers bound with 

the synthetic HA in a concentration-dependent manner. Highest radiotracer binding was 

observed with 0.5 mg/mL of synthetic HA and the binding percentage dropped with a 

drop in the concentration.   

After 5 minutes of incubation with 0.5 mg/mL of synthetic HA the binding percentages 

were 93.1 ± 0.04%, 88.3 ± 1.1%, 87.3 ± 1.9% and 84.7 ± 1.7% for 99mTc-MDP, 18F-NaF, 

99mTc-DPA Ale and 99mTc-N(DTCBP)2 respectively, whereas, with a concentration of 0.02 

mg/mL the binding percentage after 5 min of incubation were 6.28 ± 2.7%, 26 ± 3.5%, 

78.2 ± 2.6% and 20.7 ± 1.8%. 

After 60 minutes of incubation the binding percentage measured were 91.9 ± 3.2%, 96.4 

± 1.1%, and 97.1 ± 1.7 and 94.6 ± 3.0% respectively with 0.5 mg/mL, and with 0.02 

mg/mL concentration of synthetic HA, the binding percentage were 11.5 ± 1.2%, 35.35 ± 

2.6%, 87.8 ± 2.7% and 34.5 ± 9.3%respectively.  

In comparison to the other radiotracers used for the experiment, 99mTc-DPA Ale had the 

highest propensity to bind with synthetic HA both at low and high concentrations. 
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3.3.3 Binding with powdered equine bone and minerals isolated from 

intimal and medial calcified plaques: 

In vitro binding studies (Figure 3.5; A-C) were performed to evaluate the binding 

efficiencies of the radiopharmaceuticals 18F-sodium fluoride, 99mTc- MDP, 99mTc-DPA Ale 

and 99mTc-N(DTCBP)2] with minerals from intimal and medial calcification and bones. The 

results obtained were plotted as graphs with binding efficiencies (mean ± SD, n = 3) 

against the concentrations of minerals used. The concentrations of minerals used for the 

experiments were 0.5 mg/mL, 0.2 mg/mL, 0.1 mg/mL, 0.05 mg/mL and 0.02 mg/mL.  

Figure 3.4: (A-D): Binding percentages (Mean ± SD, n=3) of the radiopharmaceuticals plotted against the 

concentration of synthetic hydroxyapatite.  

A B 

C D 
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18F-fluoride: After incubation for 60 min the binding percentages of 18F-fluoride with 0.5 

mg/mL of medial and intimal minerals and powdered equine bones were 83 ± 6%, 35 ± 

8% and 63 ± 4% whereas the binding efficiency with 0.02 mg/mL of the same were 22 ± 

10%, 16 ± 2% and 11 ± 3%.  

99mTc-MDP: With 0.5 mg/mL of medial minerals, 99mTc-MDP had the highest binding 

percentage of 98 ± 1%. On the other hand the binding percentages with 0.5 mg/mL 

intimal mineral and crushed bone the binding efficiencies were 56 ± 5% and 90 ± 1%.  

The binding percentages with 0.02 mg/mL of medial minerals, intimal minerals and 

powdered bone were 50 ± 11%, 6 ± 3% and 15 ± 2%. 

99mTc-DPA Ale: In comparison to the other radiopharmaceuticals used in the experiment, 

99mTc-DPA Ale showed higher binding percentages with the minerals in almost all 

concentrations. Binding percentage of 94 ± 1% was achieved with 0.5 mg/mL of medial 

minerals in 60 min incubation time. The binding percentages with similar concentration 

of medial mineral and powdered equine bone were 74 ± 3% and 88 ± 2%.  

On the other hand the binding percentage with 0.02 mg/mL were measured to be 82 ± 

6% (medial minerals), 52 ± 10% (intimal minerals) and 10 ± 8% (powdered bone) 

respectively. 

9mTc-N(DTCBP)2: The binding percentage with 0.5 mg/mL of intimal minerals and 

powdered equine bone were 24 ± 7% and 51 ± 5% respectively.  

The binding percentages of radiopharmaceuticals can be ranked as: 

1. Powdered bone: 99mTc-DPA Ale ≈ 99mTc-N(DTCBP)2 ≈ 18F-NaF ≈ 99mTc-MDP 

2. Medial minerals: 99mTc-DPA Ale > 99mTc-N(DTCBP)2 > 18F-NaF > 99mTc-MDP 

3. Intimal minerals: 99mTc-DPA Ale >18F-NaF > 99mTc-N(DTCBP)2 > 99mTc-MDP 
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Figure 3.5: In vitro binding studies to evaluate the binding percentages of the radiopharmaceuticals 18F-

sodium fluoride (Pink), 99mTc-MDP (Blue), 99mTc-DPA-Ale (Black) and 99mTc-N(DTCBP)2 (Green) with 

minerals isolated from (A) intimal and (B) medial calcified plaques and (C) powdered equine bone. The 

graphs represents binding percentages (mean ± SD, n = 3) against the concentrations of minerals used. 

The concentrations of minerals used for the experiments were 0.5 mg/mL, 0.2 mg/mL, 0.1 mg/mL, 0.05 

mg/mL and 0.02 mg/mL. The binding percentages were calculated after an incubation periods of 60 

minutes. 
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3.3.4 In vitro and in situ binding with ABs 

In vitro binding experiments were performed with ABs isolated from VSMCs maintained 

in normal medium and medium with elevated levels of calcium and phosphate. BCA 

protein assay was employed to determine the protein concentrations. Protein equivalents 

of 0.15 mg, 0.10 mg and 0.05 mg were used for the binding experiments. Simultaneously, 

45Ca assay was performed using 5-10 µL (10 µg protein) of the isolated ABs. The latter 

assay confirmed that the ABs used in the experiments was calcified with more than 50% 

of the 45Ca bound to the ABs within 24 hours of incubation.   

Results (See Figure 3.6) show that 99mTc-N(DTCBP)2 had the highest binding efficiency 

of >90% with protein weights of 0.15 mg/mL, 0.10 mg/mL and 0.05 mg/mL. 99mTc-DPA-

Ale and 18F-NaF had a binding percentage of 82 ± 2% and 81 ± 2% with 0.15 mg/mL, 81 

± 1% and 79 ± 3% with 0.10 mg/mL and 76 ± 3%, and 70±3% with 0.05 mg/mL of AB 

protein equivalent. Except for 18F-NaF, the other radiopharmaceuticals showed 10-20% 

of binding with the control ABs. This may be due to non-specific protein binding properties 

of the 99mTc-labelled bisphosphonates.  

The nano SPECT-CT scan (Figure 3.7) performed on the isolated ABs from the in situ 

binding study showed the uptake of radiotracers only in the ABs isolated from the calcified 

VSMCs. On the contrary there was no uptake of radiotracer in the ABs obtained from 

control VSMCs. 
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Figure 3.6: (A-D) Binding percentages of radiotracers (A) 99mTc-MDP, (B) 18F-fluoride, (C) 99mTc-

DPA-Ale and (D) 99mTc-N(DTCBP)2 with isolated ABs from calcified and control VSMC. (E-H) 45Ca-

Assay of the ABs used for the in vitro binding study confirming that the ABs were calcified. 
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 3.4 Discussion 

Vascular calcification is a clinically important risk predictor of cardiovascular disease.20 

Coronary artery calcium scoring with computed tomography is clinically used for risk 

classification and prediction of coronary heart disease events.21, 22 It is a hallmark in 

patients with diabetes and chronic kidney disease, which is associated with higher 

prevalence of cardiovascular disease.23 Recent findings suggest that microcalcification 

may play a crucial role in plaque rupture.11 This has led to an emergent interest in 

developing different molecular imaging probes to target and visualise microcalcifications. 

Positron emission tomography (PET) imaging with the molecular probe 18F-NaF in human 

subjects to target active microcalcification in atherosclerotic plaques has shown 

promising results.24-27 Although, a sensitive imaging modality, the use of PET imaging is 

still restricted because of logistics and cost. 18F has a half-life of 110 min and is a 

Figure 3.7:  In situ studies were performed by adding radiotracers in flasks of VSMCs maintained in 

normal (control) and high Ca/Pi medium. The ABs from these cells were then isolated by centrifugation 

and collected in eppendorf tubes. The eppendorf tubes were scanned on a nano SPECT scanner. MIP 

images of the scanned tubes (A) CT, (B) SPECT and (C) SPECT-CT. The ABs were incubated with 

radiolabeled bone seeking agent (
99m

Tc-DPA Ale). The arrows show the uptake of radiotracers only in 

the pallet of the tubes containing ABs isolated from VSMCs maintained in a high Ca/Pi medium.  

A B C 
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cyclotron produced radioisotope. Therefore the use of 18F-NaF requires an in-house 

medical cyclotron facility or a commercial supplier in the vicinity, which increases the cost 

of operations substantially. A SPECT alternative to 18F-NaF would alleviate these 

disadvantages and enable a more accessible and convenient modality. Cardiovascular 

disease is more prevalent in developing countries,28, 29 due to genetic susceptibility and 

other factors like diet and lifestyle.29, 30 Especially, in this scenario a cost effective solution 

is a necessity.  

A conjugate of bisphosphonate (pamidronate) and a NIR fluorophore IR Dye 78, Pam-78 

has been used successfully for in vivo optical imaging of microcalcification in different 

mouse models.1, 15, 17, 31, 32 Radiolabeled bisphosphonates can therefore be used to image 

microcalcifications in a more effective manner.  

99mTc-MDP is a radiolabeled bisphosphonate clinically used as a bone imaging agent for 

more than four decades.  However, it has some serious physiochemical limitations. The 

chemical structure and composition remains unknown and HPLC studies show that 

99mTc-MDP exists as a mixture of small and long chain oligomer with varied chemical 

properties. The drawback of the older generation 99mTc-labelled bisphosphonates (99mTc-

BPs) is that their design is ill-suited for the bifunctional role they are required to perform, 

which compromises it’s in vivo stability. The bisphosphonate groups have to chelate the 

metal ion as well as bind with the HA target. The latter interaction is affected by the 

presence of the radiometal. This has led to a new generation of 99mTc-labelled 

bisphosphonates with known chemical structure and properties being developed. These 

novel 99mTc-BPs are based on a more logical drug design approach exploiting the 

concept of bifunctional radiopharmaceuticals. In this approach the carrier molecules 

(bisphosphonate) and radiometal chelating groups are separated within the molecule so 

that they can each function independently. This in turn enhances the in vivo stability and 
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the binding efficiency of the radiopharmaceutical.33, 34 We have reported the radiolabelling 

of novel bisphosphonates 99mTc-DPA-Ale and 99mTc-N(DTCBP)2 with a consistently high 

radiochemical yield of > 95%.35 

In this study we characterise the biological applications of these novel radiolabeled 

bisphosphonates and compared them with the clinically established bone seeking 

agents. The binding studies show that at high mineral concentrations (0.5 mg/mL) all the 

radiopharmaceuticals bind avidly with synthetic HA and minerals from intimal and medial 

calcifications. On the other hand at low concentrations (0.02 mg/mL) of 99mTc-DPA-Ale 

exhibited the highest binding percentages of 52±10%, 82±6% and 81±5% with minerals 

isolated from intimal and medial plaques and synthetic hydroxyapatite respectively. The 

results corroborate previously published studies which confirmed that 99mTc-DPA Ale has 

a superior in vitro binding efficiency with synthetic HA as compared to 99mTc-MDP.36  

3.5 Conclusions 

Novel bisphosphonates DPA-Ale and DTCBP have been prepared and successfully 

radiolabeled with 99mTc, which consistently produced a high labelling yield. In comparison 

to clinically used radiolabeled bisphosphonate 99mTc-MDP, both 99mTc-DPA Ale and 

99mTc-N(DTCBP)2 demonstrated a high in vitro binding with minerals isolated from human 

intimal and medial plaques. The novel radiotracers also showed a high propensity of 

binding with mineral- laden ABs produced by calcified human VSMCs in vitro and in situ. 

These findings suggest that novel radiolabeled bisphosphonates with enhanced binding 

potency have the potential to image vascular calcification and preclinical imaging with 

these agents is warranted. 
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Chapter 4: Refining animal models. 

4.1 Introduction 

Use of animals in research has always been a subject of debate. However, according 

to the Public Health Service, U.S. Department of Health and Human Services 

“virtually every medical achievement of the last century has depended directly or 

indirectly on animal research.”1 Animal models have contributed substantially to our 

understanding of disease pathogenesis, development of diagnostic techniques as 

well as testing and optimising of therapeutic procedures, whether pharmacological or 

interventional.2, 3 It is indispensable for the translation of a pharmaceutical from bench 

to bedside.4  

 

 Animal models do make it possible to obtain direct information about specific events, 

offering good control over several variables while applying accurate and typically 

invasive procedures, which are difficult to employ in clinical studies. The limitation of 

using animal models is the difference in anatomic and genetic regulatory mechanism 

of diseases. Therefore animal models do not represent the clinical situations and 

cannot predict with certainty what will happen in the human counterpart; hence clinical 

trials are essential for translation.5, 6 According to a study, only 11% of 

Figure 4.1: The advantages and limitations of using animal models. Chorro et al. Revista espanola 

de cardiologia. Jan 2009;62(1):69-84. 
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pharmaceuticals that showed potential in animal models were successful in ‘first in 

human clinical trials’.7 However, a thorough animal study is a prerequisite for an 

investigational medicinal pharmaceutical to enter a phase 1 clinical trial. Rodents 

(mouse and rats) comprise more than 90% of the animals used in research. Over the 

years several murine knockout models and rat models of extraosseous calcification 

have been developed which have led to a better understanding of the pathogenesis 

of vascular calcification. Selected widely used mouse and rat models are summarised 

below. 

4.2 Murine models of arterial calcification 

4.2.1 MGP-/- mice  

Luo et al. demonstrated spontaneous calcification of the aorta and cartilages in mice 

lacking matrix GLA protein. 8 Spontaneous calcification was observed in the elastic 

lamellae in the media of the aortic wall, coronary arteries and aortic valves without 

the presence of atherosclerosis in the MGP─∕─ mice. These mice showed phenotypic 

changes after two weeks and died within two months. Haemorrhage due to rupture of 

the aorta was reported as the cause of death.8 Mutation in the genes encoding human 

MGP leads to Keutel Syndrome, an autosomal recessive disorder characterised by 

abnormal calcification of the cartilages, midfacial hypoplasia and peripheral 

pulmonary stenosis.9, 10 

4.2.2 OPG-/- mice 

An interesting mouse model for vascular calcification is the OPG null mouse that also 

develops osteoporosis.11 Although this knock out model is not as severe as the MGP 

null model for vascular calcification it is of great mechanistic interest. This paradoxical 

model of calcification in the bone versus the vasculature describes a decrease in the 

total bone density that is therefore prone to fractures but an increase in medial 

calcification sites.12 The role of OPG in the bone literature has been fairly well 
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characterised. OPG is a secreted factor that acts as a decoy of receptor activator of 

nuclear factor kappa-B ligand (RANKL) and therefore inhibits osteoclastic resorption 

of bone. The delicate balance in the opposing activity of osteoblasts and osteoclasts 

maintains healthy bone remodelling. However, with the lack of OPG, control over 

osteoclast differentiation is lost and bone mass is diminished.  However, it is difficult 

to determine the mechanism leading to the inappropriate deposition of hydroxyapatite 

in the aorta upon loss of OPG. It is interesting to note that the arteries exhibiting 

calcification in the OPG knockout mice are sites of endogenous OPG expression, 

implying that OPG may have a role in protecting these arteries from pathological 

calcification.12 

4.2.3 ApoE-/- mice 

Apolipoprotein E (apoE) is a glycoprotein primarily synthesised in the liver and brain 

and is essential for the catabolism of triglyceride-rich lipoprotein constituents. Other 

tissues such as macrophages can also make apoE, which participates in the uptake 

and clearance of cholesterol-rich lipoprotein.13 The ApoE-/- model was simultaneously 

reported by two groups (Meda et al. and Breslow et al.) in 1992 and since then has 

been a widely used animal model in cardiovascular research.14-16 The model has 

played a crucial role in the understanding of the processes underlying the pathology 

of atherosclerosis such as inflammation, fibrinolysis, plaque remodelling and plaque 

vulnerability.15  Vascular calcification occurs spontaneously in old apoE-/- mice.17 

Towler et al. demonstrated that high-fat, diabetogenic diet with low-density lipoprotein 

(LDL) results in arterial calcification in apoE-/- mice.18 Recently, Schurgers et al. 

reported that vitamin K-antagonists (VKA) like warfarin can accelerate the process of 

calcification in ApoE-/- mice.19 
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4.2.4 DBA/2 mice 

DBA/2 is a strain of inbred mouse developed at the Jackson Laboratories. Studies 

show that DBA/2 mice develop spontaneous calcified cardiovascular lesions when 

fed with a high fat diet.20 Qiao et al. published a study comparing the pathophysiology 

of calcification in genetically distinct inbred and recombinant inbred strains of mice 

DBA/2J, SM/J, C57BL/6J, and C57BL/10ScSnA.  Their findings revealed significant 

differences in arterial calcification among inbred strains and concluded that aortic 

calcification is partly determined by genetic factors.21, 22 DBA/2 has been reported to 

be susceptible to aortic calcification. 100% of the animals developed calcification of 

the aorta when they were fed an atherogenic diet for 15 weeks.22 It has also been 

reported that DBA/2 mice fed with a warfarin diet suffer calcification in both the medial 

layer of the aorta as well as in the heart in a dose- and time-dependent manner.23  

4.3 Rat models of arterial calcification 

Remnant kidney rat models are widely used in research related to chronic kidney 

failure. The model requires a two stage surgical procedure, a partial nephrectomy 

followed by a total nephrectomy to mimic progressive nephron loss. The remnant 

kidney rats are prone to medial calcification. When fed with a standard rodent diet for 

10 weeks these rats develop calcification in the aortic arch.24 Administration of 

1,25(OH)2 vitamin D3  orally, subcutaneously or intraperitoneally to the remnant 

kidney rats results in massive calcifications of the entire aortic wall, involving both the 

thoracic and abdominal aorta.24-26 

 Price et al. were the first to report a rat model for vascular calcification that did not 

require a surgical intervention. They demonstrated that warfarin exposure of Sprague 

Dawley (SD) rats induces calcification in the elastic lamellae, heart valves and the 

arteries.27 Findings in agreement with Price et al. were published by Howe et al. and 

they concluded that treatment of SD rats with warfarin caused extra-hepatic 

deficiency of vitamin K resulting in inhibition of γ-carboxylation of MGP.28 Vitamin K1 
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was supplemented along with warfarin to avoid lethal bleeding.27 This leads to severe 

extraosseous calcification in the aorta and the kidneys. Price et al. later demonstrated 

that the process of warfarin-induced calcification can be accelerated by treating the 

rats with warfarin and vitamin D3 simultaneously.29 

The aim of the study is to develop a robust animal model of vascular calcification by 

making changes in previously established protocols, in order to reduce pain and 

stress imparted on the animal. 

4.4 Materials and methods 

4.4.1 Animal studies 

All procedures were performed in accordance with licences and guidelines approved 

by the UK Home Office.  

4.4.2 DBA/2J 

Six DBA/2J (10 weeks old, female) mice were purchased from Harlan Laboratories, 

UK and maintained in a pathogen-free environment at the BSU in Denmark Hill 

Campus of KCL. After the acclimatisation period of 7 days the mice were divided into 

2 groups, each comprising of three mice. One group was fed with normal diet whereas 

the other group was fed with a warfarin diet. Custom made rodent diet containing 3.0 

mg/g of warfarin and 1.5 mg/g of vitamin K1 was obtained from AB diets, Netherlands. 

Food and water was provided ad libitum. After 8 weeks of feeding the mice were 

culled, tissues dissected and fixed with 4% formaldehyde and snap-frozen in liquid 

nitrogen for histological and physiological studies. (Figure 4.2) 
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4.4.3 DBA/2N Crl 

Twenty female DBA2/N Crl mice were purchased from Charles River Laboratories 

and housed at the BSU in St. Thomas’ campus of King’s College, London. The mice 

were 57-63 days old on the day of arrival and were allowed to acclimatise. The mice 

were divided into two groups (9 mice each). One group received a warfarin diet 

whereas the other was kept on a normal rodent diet. Depending on the duration of 

the diet, the two groups were divided into three sub-groups, 6 weeks (3 mice), 7 

weeks (3 mice) and 8 weeks (3 mice). Figure 4.3 illustrates the experimental protocol. 

At the end of the experiment the mice were sacrificed with CO2 followed by neck 

dislocation and organs retained for histological and physiological studies.  

 

6 DBA/2 J Mice (53-60 days, ♀)

(7 days Acclimatization)

3 Mice

Warfarin Diet

3 Mice 

Normal Diet

18 DBA/2 NCrl Mice (53-60 days, ♀)

(7 days Acclimatization)

9 Mice

Warfarin Diet

3 Mice 

6 Weeks 
Warfarin diet

3 Mice 

7 Weeks 
Warfarin diet

3 Mice 

8 Weeks 
Warfarin diet

9 Mice 

Normal Diet

3 Mice

6 Weeks 
Normal diet

3 Mice

7 Weeks 
Normal diet

3 Mice

8 Weeks 
Normal diet

Figure 4.2: Flow diagram of the protocol used to induce calcification in DBA/2J mice.  

Figure 4.3: Flow diagram showing the protocol used to induce calcification in DBA/2NCrl mouse. 
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4.4.4 Sprague-Dawley (SD) rats  

Sprague Dawley rats (n = 6; male; 21-27 days old) were purchased from Charles 

River Laboratories and housed at the BSU at Denmark Hill Campus. After an 

acclimatisation period of 7 days, the rats were divided into three groups comprising 

of two each. Figure 4.4 describes the protocol used in this study. 

 The first batch was maintained on a normal rodent diet, and these rats were used as 

a negative control for the experiment. The second batch of rats was fed with a diet 

containing warfarin (3 mg/g food) and vitamin K1 (1.5 mg/g food) for 11 days. The rats 

were injected with 5 mg/kg/day (200,000 IU) subcutaneous injections of 

cholecalciferol (Sigma-47763) from day 7 to day 11 of the diet. The stock solution of 

cholecalciferol (vitamin D3) for subcutaneous injection was prepared by dissolving 33 

mg (1.32×106 IU) of cholecalciferol (Sigma- 47763) in 200 μL of absolute ethanol 

along with 1.4 mL of kollilphor (Sigma-C5135) in a foil-wrapped 50 ml tube with mixing 

(Stuart-roller mixer) for 15 minutes. Water (18.4 mL) containing 750 mg of dextrose 

(Sigma-D9434) was then added, and the final solution was mixed for an additional 15 

minutes. The stock solution (1.32×106 IU) was then stored at 4°C and used for 3 days. 

Fresh vitamin D3 solution was prepared for each 3-day injection. The third batch was 

maintained on a warfarin diet for 4 weeks, following which the animals were 

euthanised and organs were preserved.  

6 Sprague-Dawley rats (21-28 days, ♂)

(7 days Acclimatisation)

2 Rats Normal 
Rodent diet.

(Control)

2 Rats 

11 Days Warfarin diet

5 mg/kg/Day (7-11)

Sub-cutaneous injections of Vitamind D3

2 Rats
4 Weeks Warfarin 

diet

Figure 4.4: Flowchart describing the protocol used to induce calcification in SD rats. 
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4.4.5 O-cresolphthalein Complexone Assay 

The tissues were decalcified with 1M HCl for 2 hours. The calcium content of HCl 

supernatant was determined colorimetrically by o-cresolphthalein complexone 

method (Calcium C-test Wako; Wako Pure Chemical Industries). After decalcification, 

the cells were washed three times with phosphate-buffered saline (PBS) and 

solubilised with 0.1N NaOH/0.1% sodium dodecyl sulfate (SDS). The protein content 

was measured with a BCA protein assay kit (Pierce). The calcium content of the cell 

layer was normalised to the protein content. 

4.4.6 Histology 

Specimens for histological analysis were fixed in 4% paraformaldehyde for 4 hours 

following which the tissues where transferred to 70% ethanol solution, embedded in 

paraffin, and cut into consecutive 5 μm sections. Von Kossa staining and alizarin red 

S staining was performed using standard procedures. 

4.4.7 Histomorphometry 

Paraffin embedded sections 5 μm thick, were cut from the thoracic aorta and 

abdominal aorta and cut using a microtome (Leica-RM2125RTF). Consecutive 

sections were stained alternately with Alizarin Red S (Sigma,UK). Images of stained 

sections were obtained using a Leica DM2000 LED microscope equipped with a 

Reitga Exi Fast1394 digital camera. Figure 4.5 describes the pre-processing steps 

involved prior to quantification. Quantitative analysis was performed using ImageJ 

histomorphometry software on at least six sections from each rat. The quantification 

was performed only on aorta samples of rats on warfarin and vitamin K1 diet only.  
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4.4.8 Statistical analysis 

Data are expressed as the mean ± standard deviation (SD). Statistical analysis was 

performed using the GraphPad Prism 5.0 (GraphPad Software, Inc., USA).  

4.5 Results 

4.5.1 Warfarin feeding fails to induce calcification in DBA/2J 

The DBA/2J mouse strain is known to be susceptible to vascular calcification. 

Previously published studies show that calcification can be induced in this strain of 

mouse by feeding them with a high fat diet for 15 weeks.21 When fed with a diet 

containing warfarin (3 mg/g) and vitamin K1 (1.5 mg/g) calcification can be induced in 

6 weeks. However in our study DBA/2J mouse fed with warfarin and vitamin K1 for 8 

weeks did not show any significant changes in calcium load in the aortas (Figure 4.6). 

Paraffin embedded sections stained with von Kossa and alizarin red S (Figure 4.7; A-

D) stain for calcification were negative for calcification. 

Figure 4.5: The pre-processing steps to obtain images of thoracic and abdominal rat aortas for 

histomorphometry. As the aorta sections are larger than the field of view of the camera, tiled images 

(A & B) of the aorta were obtained. (C) Using Image J stitching tool the tiled images were merged to 

obtain the whole aorta in a single image. (D) Using Adobe Photoshop CS6 quick selection tool, 

images of the unwanted tissues around the aorta were removed. Quantification was performed on 

these images by measuring the number of pixels in the stained region and the pixels in the aorta. 
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Figure 4.6 Measurement of the calcium load in the aorta of DBA/2J mouse (n=3) on a warfarin diet 

and control diet for 8 weeks.    

  

 
Figure 4.7: Paraffin embedded sections (5 µm) in von Kossa counter stained with H&E stain

(A,C) andalizarin red S stain (B,D). Sections of aorta from a mouse on warfarin diet (A, B) 

and normal diet (C, D) were negative for the presence of calcification. (Magnification 10X) 
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4.5.2 Warfarin feeding induces calcification in DBA/2N Crl mouse 

DBA/2 NCrl is a substrain of inbred DBA/2 mouse and is known to be prone to 

extraosseous calcification.30 Calcification of the aorta was seen in all mice fed with a 

warfarin diet for 6, 7 and 8 weeks. Presence of calcification was demonstrated 

histologically by von Kossa and alizarin red staining (Figure 4.9), as well as 

colorimetrically with O-cresolphthalein assay (Figure 4.8). The extent and distribution 

of the arterial calcification varied between animals and were dependent on the 

duration of treatment. With an increase in the duration of warfarin treatment an 

increase in the extent of calcification was observed. The most heavily calcified aortas 

were from mice fed with the warfarin diet for 8 weeks with a calcium load of 1±0.32 

mg/mg of protein, whereas the mice fed with a normal diet for the same duration had 

a calcium load of 0.32±0.04 mg/mg of protein.  The calcium load in weeks 6 and 7 of 

warfarin feeding was 0.67±0.06 and 0.84±0.18 mg/mg of protein, respectively. 

Figure 4.8: O-cresolphthalein assay measurements of the calcium load in the thoracic aorta of warfarin 

fed DBA/2 N mice at week 6, 7 and 8 (n=3). (
* 
= P < 0.05) 
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   Figure 4.9:Figure 4.9: Aortic sections stanined with Von-Kossa counter stained with H&E stain (A,C,E,G,I & J), and alizarin red S stain (B,D,F,H,J&L). The black arrows in (A &B), (E & F), 

(I & J) show calcification in aorta of DBA/2NCrl mouse fed with warfarin diet for 6, 7 and 8 weeks respectively. Sections (C&D), (G&H) and (K&L) are aortas of DBA/2NCrl mouse 
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on standard rodent diet for the same time point with no evidence of calcification. (Magnification 10X, Scale bar = 212 µm)
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4.5.3 Warfarin feeding induces calcification in SD rats and vitamin D 

accelerates the process  

In all of the rats fed with warfarin for 4 weeks, there was calcification along the abdominal 

aorta and thoracic aorta as demonstrated by von Kossa (Figure 4.11 A, C, E, G) and 

alizarin red-staining (Figure 4.11 B, D, F, H). Aortas of rats on a normal diet were not 

affected (Figure 4.10 B-E). Calcification was not observed in the whole aortic ring, rather 

it occurred in numerous centres of varying size in rats that received warfarin diet only for 

four weeks (Figure 4.11 A-H). The number of calcified centres and the extent of 

calcification in the thoracic aorta were less when compared with that seen in the abdominal 

aorta. The calcified areas in the thoracic aorta (Figure 4.11 C, D) were predominantly 

located near the adventitia whereas in the abdominal aorta (Figure 4.11 G, H) the 

calcification extended up to the lumen. The most heavily calcified vessel was usually the 

abdominal aorta and the extent of calcification gradually reduced towards the aortic arch. 

Calcification was absent in some aortic arch sections of rats treated with warfarin only. 

Histomorphometric analysis showed that the area of the aorta positively stained for 

calcification in the abdominal aorta was significantly higher than that in the thoracic aorta 

(Figure 4.13).  

On the other hand, SD rats maintained on a warfarin diet for 11 days and injected with 

high doses of vitamin D3 for 4 days (day 7-11) resulted in overt calcification both in the 

thoracic as well as the abdominal aorta (Figure 4.12 A-H). Unlike the rats treated with 

warfarin only, rats treated with warfarin and vitamin D3 exhibited calcification in a 

concentric manner covering the whole aortic ring. Histomorphometric study demonstrated 

that both thoracic and abdominal aortas were equally affected.  The percentages of area 

positively stained for calcification in the thoracic and the abdominal aorta were almost 

equal (Figure 4.13).  
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 Figure 4.10: (A) Diagrammatic representation of the rat aorta showing the areas of the aorta used for 

sectioning and staining. The  segment  of t he  between the aortic arch and the renal branch (thoracic 

aorta)  and  the  renal  branch  and the  iliac  bifurcation (abdominal aorta) was removed at necropsy 

and  fixed  in 4% buffered formalin. Von-Kossa counter stained with Haematoxylin & Eosin stain and 

Alizarin red S  stained sections of the ( B & C) thoracic aorta and (D & E) abdominal aorta of SD rat 

on standard rodent diet for 28 days (4 weeks). (Magnification = 10X, Scale bar = 212 µm)       
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Figure 4.11: Effect of warfarin feeding on the thoracic (A-D) and abdominal (E-H) aorta of SD rats. Sections 

show the thoracic and abdominal aorta of rats fed with warfarin diet for 28 days (4 weeks). Consecutive 

longitudinal sections were stained with von Kossa counter stained with H&E stain and alizarin red S stain to 

detect areas of mineralization. A,B and E,F are sections of the thoracic and abdominal aorta stained for 

mineralization at 5X magnification; the arrows shows the calcified areas. (Scale bar = 212 µm)        
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Figure 4.12: Circumferential calcification in the thoracic (A,B) and the abdominal (E,F) aorta of rat on warfarin 

diet for 11 days and receiving subcutaneous injections of 5 mg/kg/day of vitamin D3 from day 7 to day 11 of 

the diet. (C, D and G, H): Images of the aortas at higher magnification (20X). (Scale bar = 141 µm)        
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4.6 Discussion  

The concept of 3R’s replacement, refinement and reduction was first proposed and 

developed by Russel and Burch in 1959. The 3R’s are now widely accepted 

internationally as the criteria for humane animal use in research. In these experiments 

we have tried to refine some previously published animal studies with minor changes to 

minimise the stress and pain imparted on the animals without changing the outcome.   

We first explored replicating previously reported murine model23 of vascular calcification. 

In our studies warfarin feeding of DBA/2J mice did not result in calcification of the arterial 

system, although previously published studies demonstrate that warfarin induces 

calcification in DBA/2J mice.31, 32 Ectopic calcification in the DBA/2J mouse is attributed 

to allelic Abcc6 mutation.33 A likely explanation for the failure of calcification in DBA/2J 

could be the absence of a mutation of this gene in the mouse strain used in the 

experiment, however further studies are needed to confirm the exact reason of the failure. 

For the second experiment a substrain of the DBA/2 mouse, DBA/2 NCrl was used. 

Figure 4.13: Histomorphometry of sections from the thoracic and abdominal aorta of rats treated with 

warfarin only (4 weeks) and warfarin with vitamin D3 administration stained with alizarin red. The values 

were calculated from 6 random sections.  (*** = P < 0.001).  
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Feeding with the diet used in the previous experiment resulted in calcification of the aorta. 

The calcification was found to be dose-dependent and the calcium load in the aortas 

increased gradually with an increase in the duration of warfarin feeding.  

In conjunction with the murine model, we modified the protocol of a previously published 

rat model by Price et al. They demonstrated that warfarin administration in SD rats’ 

results in heavy calcification of the aorta. However, the protocol employed by Price et 

al.29 required the administration of warfarin every 12 hours and vitamin K1 every 24 hours 

either by gavage feeding or subcutaneous injections and the routine was followed up to 

5 weeks. They also reported that the process can be accelerated by simultaneous 

administration of vitamin D3. The vitamin D3 administration calls for an additional dose 

every 24 hours. Administration by gavage or subcutaneous injection causes the animal 

distress. This is because it requires removing the animal from its cage, manually 

restraining it and inserting a small-diameter tube into the oesophagus for gavage feeding 

or injecting via subcutaneous route. Gavage feeding may damage the oesophagus or 

stomach due to accidental puncture. Inadvertent dosing into the lung while gavage 

feeding causes severe respiratory distress and as per guidelines the animal may have to 

be euthanised immediately.34 Two or more subcutaneous injections per day over a period 

of 5 weeks would require the same injection sites to be used multiple times leading to 

inflammation and necrosis of the tissue.35 In this study we report that vascular 

calcification can be induced in rodents by feeding them with a warfarin diet.  

Warfarin is a coumarin derivative, and is clinically used as an anticoagulant therapeutic 

in patients with thromboembolic disorders like pulmonary embolism and deep vein 

thrombosis.36 The anticoagulant effect of warfarin is produced by interfering with the 

cyclic interconversion of vitamin K1 and its vitamin K1 2,3 epoxide. Vitamin K1 is a cofactor 

for the carboxylation of glutamate residues to γ-carboxyglutamates (Gla).37 During the 
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carboxylation reaction vitamin K1 is converted to vitamin K1 2,3 epoxide. Interfering with 

the cyclic interconversion of vitamin K1 thereby inhibits the carboxylation of glutamate 

residues to γ-carboxyglutamates (Gla). Proteins that contain a GLA domain include 

coagulation factors VII, IX, X, XIV and calcium inhibitors MGP and osteocalcin.38-41 The 

deficiency of carboxylated MGP results in extraosseous calcification in the aorta.  

Warfarin feeding of SD rats results in aortic calcification, which is in agreement with 

previously published studies by Price et al. and Howe et al.27, 28 Calcification in the 

abdominal aorta of rats fed with a warfarin diet was severe in comparison to the thoracic 

aorta. Some sections of the thoracic aorta were negative for the presence of calcification 

suggesting that the abdominal aorta is more prone to calcification. Clinical studies 

published by Oyama et al. and Wong et al. on a cohort of 1763 and 1812 participants 

with early stage cardiovascular disease and hypertension concluded that prevalence of 

calcification in the abdominal aorta was higher than that in the thoracic aorta.42, 43 

Vitamin D3 administration in conjunction with warfarin treatment accelerates the process 

of calcification.29 Vitamin D has pleiotropic activities in multiple organs and plays a crucial 

role in Ca2+ and bone homeostasis, immune system and the cardiovascular system.44 

Besides dietary sources vitamin D3 can be generated through photolysis of 7-

dehydrocholesterol in the skin in the presence of UV light.45 It is known that a high dose 

of vitamin D3 induces calcification in animals as well as humans.46-48 In comparison to 

rats on with warfarin diet only for 28 days, the calcification in rats on warfarin diet for 11 

days administered with vitamin D3 injections demonstrated a higher degree of 

calcification. Rats on warfarin diet only demonstrated calcification in localised pockets 

whereas the calcification in those which received vitamin D3 was circumferential.  The 

severity of calcification in both the thoracic and the abdominal aorta was almost equal 

suggesting that the process of calcification is accelerated by vitamin D3.  
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4.7 Conclusions 

The major aim of this work was to characterize animal models of medial arterial 

for potential use in molecular imaging. In this study we have successfully demonstrated 

that calcification can be induced in the DBA/2 NCrl mouse strain and SD rats by feeding 

them a warfarin diet without going through the painstaking process of gavage feeding or 

injections. Warfarin in the form of diet reduces the distress and pain imparted in the 

animals substantially.  

The rat model of calcification was considered for the in vivo studies as it presented with 

practical advantages over the murine model. The advantages are: 

1. Validation and repeatability: The DBA/2 mice failed to calcify in one of our studies, 

raising concerns on the repeatability of the model.  

2. The process of calcification in the rat model could be accelerated with the 

administration of vitamin D3. This offered us with two models, one with extensive 

calcification and another progressive calcification which suited our requirements. 
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Chapter 5: In vivo imaging of vascular calcification 

with bone seeking agent: When to image? 

5.1 Introduction  

Drug discovery is a long and costly process. From the discovery of a compound to its 

approval and availability in the market takes an average of 12-15 years costing more 

than US $800 million.1-3 Cutting the expenditure, shortening the length spent in 

research and development are the two greatest challenges in pharmaceutical industry 

today.4 Molecular imaging with PET & SPECT can provide quantitative, and repetitive 

analytical information on molecules and biological processes in living organisms and 

is now widely used in field research and clinical drug development.5-7 Small animal 

PET & SPECT scanning have been helpful in cutting the cost whilst accelerating the 

drug development process by providing valuable inputs in target identification and 

validation stages as well as synthesis and optimisation of drug candidates.8-11 Pre-

clinical imaging of animal models acts as a bridge between in vitro studies and those 

performed in vivo, in humans and is an indispensable part of pharmaceutical 

research.  

5.1.1 Basic Principle of SPECT imaging 

Single-photon emission computed tomography (SPECT) is a clinically established, 

sensitive nuclear imaging technique.  It provides a three dimensional (3D) spatial 

distribution of single-photon emitting radiopharmaceutical/radiotracer within the body. 

A radiotracer is a pharmaceutical compound in which one or more atoms can be 

replaced by a radioisotope. It can be administered in trace amount, and hence used 

for in vivo imaging of biological processes without any pharmacological effects. The 

γ-rays emitted by the radiotracers are detected by the head of a gamma-camera, 

which comprises of a scintillation crystal, optically coupled to an array of 

photomultiplier tubes, which then converts the γ-rays into electric signals. The γ-rays 
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of the radiopharmaceuticals are emitted randomly; hence, multiple 2D images are 

acquired at different angles around the subject. Subsequently the images are 

reconstructed using reconstruction algorithms to generate cross-sectional images of 

the in vivo distribution of the injected molecules. The random emission of γ-rays calls 

for a geometric collimation to restrict the travelling direction of the emitted γ-rays from 

the body. It is accomplished by the use of lead collimators. Collimators are made of 

thousands of precisely aligned holes (channels). Different types of collimators are 

used in clinical set ups. Based on the energy of the radioisotope the collimators can 

be classified as low energy (~140 keV; 99mTc, 111In etc.), medium energy (~250 keV; 

67Ga) and high energy (~364 keV; 131I). The use of a lead collimator is considered as 

a ‘necessary evil’ as it reduces the detection efficiency and sensitivity of SPECT by 

absorbing the photons that travel in other directions than those specified by the 

aperture of the collimator. Modern SPECT systems can detect radiotracers within the 

whole-body, at nano to picomolar levels12, the sensitivity required for in vivo tracking 

of radiolabeled drugs without inducing pharmacological effects or toxicity. 

 

The energies of γ-ray emitting radionuclides used in SPECT imaging range 

approximately 30 to 300 keV. The half-lives of the SPECT radionuclides vary between 

hours to several days and are commercially available in the form of generators, or 

Figure 5.1 : Diagrammatic representation of a small animal SPECT scanner. 
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cyclotron or reactor produced making them easy to transport and cheap. The 

radiometal technetium-99m (99mTc) is considered as the “work horse” in the field of 

conventional nuclear imaging. It is the most widely used SPECT radionuclide due to 

its favourable physical properties (t1/2 = 6.03 h, Eγ = 140 keV) and its commercial 

availability in the form of 99Mo/99mTc generator. Other routinely used γ-emitting 

radionuclides for SPECT imaging are gallium-67 (67Ga), thallium-201 (201Tl), indium-

111 (111In), iodine-123 (123I) and iodine-131 (131I).  

Small animal SPECT scanners (Figure 5.1) have evolved from well-established 

clinical systems developed for human use, hence the fundamentals are same. 

However, the miniaturisation of the clinical SPECT system to image small animals 

poses its own challenges related to camera sensitivity, spatial resolution and image 

reconstruction and quantification. Recent advances in the SPECT instrumentation 

have successfully addressed those issues. A small animal SPECT scanner employs 

pinhole collimators allowing it to achieve millimetre or submillimetre spatial 

resolution.13 Currently, multimodality approach or fusion imaging with CT or more 

recently MRI is employed to negate the drawbacks of SPECT system.  

5.1.2 Basic Principle of PET Imaging 

Positron emission tomography (PET) is a clinically established sensitive molecular 

imaging modality that records the distribution of imaging agents labelled with positron 

emitting radionuclides. Natural biological molecules as well as pharmaceuticals can 

be labelled with a positron-emitting radioisotope. One advantage of PET over SPECT 

is that it allows the use of isotopes of carbon, oxygen, and nitrogen, the three most 

common elements in living organism. Positron-emitting radioisotopes frequently used 

in clinical practice and research are carbon-11 (11C), oxygen-15 (15O), nitrogen-13 

(13N), and fluorine -18 (18F), the latter used as a substitute for hydrogen. This allows 

the possibility of using active biological substances as radiotracers. Other positron 

emitting radionuclides include 14O, 64Cu, 62Cu, 124I, 76Br, 82Rb, and 68Ga. Most of the 
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PET radioisotopes are produced in a cyclotron;14 however some are available in the 

form of a generator (e.g., 68Ga, 82Rb).15, 16 Unlike SPECT radiotracers, most of the 

positron-emitting isotopes used have relatively short half-lives (e.g., 18F has t1/2 = 

110 min).  The short half-lives of the radioisotopes demands a fast and efficient 

chemical reaction to incorporate the isotope into the parent molecule and 

subsequently it is necessary to inject it to the patient quickly.  

Proton-rich radioisotopes can decay via positron emission, in which a proton in the 

nucleus decays to a neutron, a positron and a neutrino. A positron traverses for a 

distance and annihilates to generate a pair of gamma rays that are ~180 degrees to 

each other with energy of 511 keV.  The distance travelled by a positron is known as 

positron range. For the detection of the gamma rays PET scanners employ pairs of 

radiation detectors to measure the nearly simultaneous, coincident interaction of 511 

keV photons. The detectors are normally arranged in geometric shapes that 

approximates a circle in 2D and a cylinder in 3D. The line that connects any two 

detectors in the PET scanner is called a line of response. One advantage of PET over 

SPECT is that allows better quantification of the distribution of the PET tracers in vivo.  

This is possible because the attenuation of the emitted radiation in PET can be 

corrected precisely. Reconstruction software makes corrections for dead time, and 

random coincidences, and scatter to reconstruct an image that depicts the localization 

and concentration of the positron-emitting radioisotope within a plane of the scanned 

organ. The main difference between SPECT and PET measurements is the use of 

lead collimators for the definition of the angle of incidence, compared with electronic 

collimation in the case of PET. 

Small animal micro-PET scanners (Figure 5.2) have been developed, in the recent 

years with a spatial resolution of ∼1-3 mm3.17-19 Development of small animal PET is 

particularly advantageous in drug development as it allows for an in vivo tool to study 

pharmacokinetics, pharmacodynamics, gene expression, cell tracking, protein-
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protein interaction and receptor-based imaging. The ability to perform translational 

research from a cell culture setting to preclinical animal models and further to clinical 

applications is one of the most unique and powerful features of PET technology.  

The aim of these experiments is to answer two important questions: 

1. Can bone seeking radiopharmaceuticals bind to sites with extra-osseous 

calcification? 

2. What would be the ideal time point (post injection) to scan the animals? 

 

5.2 Materials and methods 

5.2.1 Maintenance of animal 

All procedures were performed in accordance with licences and guidelines approved 

by the UK Home Office and were approved by a King’s College ethics committee. The 

experiments in this section were carried out under the person project licence (PPL) 

70/7097 (PPL holder Rene Botnar) and personal investigator licence (PIL) 70/23976 

(PIL holder Jayanta Kumar Bordoloi). Sprague Dawley (SD) rats (n = 16; male; 21–

27 days old) were purchased from Charles River Laboratories, UK. The animals were 

Figure 5.2: Diagrammatic illustration of a small animal PET scanner, co-incidence detection of positron and 

annihilation of a positron. A positron released from the radionuclide annihilates releasing two coincidence 

photons of 511 keV, which are detected by scintillation crystals. Coincidence detection of annihilated gamma 

rays along a line-of-response makes it possible to localize the source of the annihilation. 
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housed at the BSU located at the St. Thomas’ Hospital campus of King’s College, 

London under a strict aseptic condition.   

After an acclimatisation period of 7 days, the rats were divided two groups comprising 

8 rats each. One group was fed with a diet containing warfarin (3 mg g−1 food) and 

vitamin K1 (1.5 mg g−1 food) for 11 days. The rats also received subcutaneous 

injections of cholecalciferol, 5 mg (200,000 IU) kg−1 per day for 4 days (from day 7 to 

day  11  of  the  diet).  The  other  group  was  maintained  in  a  normal  rodent  diet. All 

animals were maintained on a 12 hour light-dark cycling with access to environmental

enrichment (tunnel). Food and water were provided ad libitum. For imaging the two 

groups of rats were further divided into 4 sub-groups of two rats each (as shown in

Figure 5.1) to be scanned with the 4 below mentioned radiopharmaceuticals. 

 

5.2.2 Radiopharmaceuticals: radiolabelling and quality control 

Four radiotracers were used in the study. They are clinically established bone seeking 

agents 99mTc-MDP and 18F-NaF and novel radiotracers with pendant 

bisphosphonates groups 99mTc-DPA Ale and 99mTc-N(DTCBP)2. The radiolabelling 

technique and quality control have been explained in detail in Chapter 4.  
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5.2.3 Image acquisition 

5.2.3 (I) SPECT-CT imaging  

The scans were performed on a BioScan nanoSPECT-CT®PLUS (Mediso, Hungary) 

machine using their proprietary acquisition software (Nucline 1.07).   CT acquisition 

was performed (512×512 pixels), 55 kVp tubeat standard frame resolution

voltage, and 600 ms of exposure time and 360○ projections. A total of two fields of 

views were scanned which required 24 minutes for completion. The SPECT scanner 

is equipped with 4 heads and multi pinhole general purpose (GP) collimator. 

Sequential SPECT images were acquired for each lasting for 30 minutes, for 4 h. This 

provided 7 sets of SPECT images starting from 30-60 minutes post-injection of the 

radiotracers to 210-240 minutes. At the end of the imaging experiments the animals 

were then euthanised and organs retained for biodistribution (gamma counting) and 

histological examinations.  

 

5.2.3 (II) PET-CT acquisition 

The PET-CT scans were performed on a BioScan nanoPET-CT®PLUS (Mediso, 

Hungary) scanner and their proprietary acquisition software (Nucline 1.07). The rats 

were injected on an injection table and then transferred to the scanner. The transfer 

of animal, scout image and positioning required 7 minutes. Dynamic PET scan was 

performed for a single volume of interest (VOI = 94.7mm) from 7 min to 240 min post 

IV administration of 18F-NaF (8-10 MBq). Acquisition took place in 1–5 coincidence 

mode with coincidence window of 5 ns, 400–600 keV energy window. A CT scan was 

performed with the above mentioned parameters after the completion of the PET 

scan.  
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5.2.3 (III) Contrast enhanced CT 

CT angiography was performed on one SD rat receiving warfarin diet for 11 days and 

vitamin D3 injections from day 7 to 11. To obtain vascular contrast, the rat was injected 

with 0.8 mL of iodinated intravascular contrast agent eXIATM160XL (Binitio 

Biomedical Inc, Ottawa, Canada). CT acquisition consisted of 270 projections 

acquired with exposure time of 600 ms, x-ray voltage of 55 kVp, for a full 360° rotation. 

 

5.2.3 (IV) Imaging protocol 

  

  

 

  

 

 

  

 

 

  

 

 

  

   

 

 

              

 

 

 

 

            

                

            

  

 

 

    

           

1. The rats were transferred from the BSU to the pre-clinical lab and left to

acclimatise for 30 minutes.

2. The rats were anaesthetised on the Vet tech rig, in the induction box (lined with

Benchkote), O2 flow rate of 1 l/min and isofluorane levels of 2.5-3.0%.

3. The rats were then transferred to the injection table on a paper tray. The rats

were kept under anaesthesia on a mask maintained at 1 l/min O2 and

isofluorane level at 2.5 %.

4. The tail of the rat was heated with an infra-red heat lamp till the veins were

prominent.

5. Radiotracer [200 µL; 8-10 MBq 18F-NaF or 45-50 MBq of 99mTc-MDP, 99mTc-

DPA Ale or 99mTc-N(DTCBP)2] was injected via the tail vein with a 300 µL insulin

syringe.

6. Rats  were  then  transferred   from  the  injection  table  to  the  scan  bed  (rat

bed, lined with Benchkote) in the nanoSPECT-CT or nanoPET-CT.

7. A scout scan was performed to select the region of interest.

8. After completion of the scout scan, helical SPECT was started 7 min post

injection with 45 sec/projection completing one study in 30 minutes. Sequential

SPECT scan was performed for a maximum of 240 min (4 h) post injection. For



118 
 

 

 

 

 

  

 

 

 

  

 

 

 

PET  imaging,  a  dynamic  scan  was  performed  from 7 min  to  240  min  post 

injection. CT scan was performed after the completion of PET or SPECT 

study.

9. At the end of the study the rats were euthanised by Schedule 1 method (over

dose of anaesthesia followed by neck dislocation).

10. The rats were then transferred on a tray to the dissection area.

5.2.4 Ex-vivo biodistribution study protocol

At  the  end  of  the  experiment  the  animals  were  euthanised  by  a  lethal  dose  of 

anaesthesia followed by neck dislocation. Multiple tissues samples were harvested, 

weighed  and  the  activity  measured  in  a  gamma  counter  (LKB  Wallac;  1282 

Compugamma). The following were the steps involved:

1. The carcass was weighed.

2. The dead rat was transferred to the dissection area and placed on a lead lined

dissection tray lined with Benchkote.

3. The tail was dissected and collected in a pre-weighed scintillation tube, and the

carcass was weighed again.
 

4. pretotransferredorgansvitalThe carcass was dissected and -weighed 

 

  

 

  

  

scintillation tubes.

5. Full vials with organs were weighed and recorded.

6. The  activity  in  the  organs  was  measured  on  a  Wallac,  Gamma  Camera  (10

            sec/sample with a window levels of 110-155 for 99mTc and 175-220 for 18F).  

 

          

  

   

 

 

The energy  range  of  the  gamma  counter in 10-2000 keV which  is  divided 

algorithmically into 256 window levels. The selected energy levels of the

gamma counter corresponds to the energy window of 120-160keV (99mTc) 

and 400-600 keV (18F) respectively.

7. Tissue sample from the aorta, mesenteric artery, liver, kidney and lungs were

fixed in 4% formaldehyde for histology. Samples of the same were snap-frozen 

in liquid nitrogen and stored at -80 ºC for biochemical assays. 
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5.2.5 Image reconstruction and analysis

SPECT: SPECT images were reconstructed in a 128 × 128 matrix using HiSPECT

(ScivisGmbH), a reconstruction software package, and images were fused using 

proprietary Bioscan InVivoScope (IVS) software. All  scans  were  30  minutes  long.

PET: 3D expectation maximization (3D EM) PET reconstruction algorithm (Mediso 

Tera - Tomo TM)  was  applied  to  produce  PET  images.  The reconstruction was 

performed  using  coincidence  mode  of  1:5, corrections for attenuation and scatter, 

dead time,  decay,  and  randoms were  applied. The  number  of  iterations  and 

subsets were 4 and 6, resulting in images with 0.4 mm voxel size and time frames of 

6 × 30 min.

             

        

   

         

              

  

       

             

ensure correct ROI  placement reconstructed sagittal and coronal views were

viewed too. Standard uptake value (SUV) was calculated using the equation: SUV 

= d/(ID/W), where ‘d’ is the measured activity in volume of interest, ID is decay

corrected injected dose (MBq), and W is the weight of the rat (g). SUVmax of 

radiopharmaceuticals were calculated as  the  maximum  pixel activity  in region of

interest. TBRmax was  calculated as   the mesenteric artery SUVmax normalized to 

muscle SUVmax.

5.2.6 Statistical analysis

If not mentioned otherwise, all the results are expressed as mean ± standard 

deviation. Statistical analyses were conducted using GraphPad Prism 5.0 statistical

software (GraphPad Software, Inc., CA 92037 USA).
  

 

 

  Target to background ratio (TBR) calculation: Using  the 3D region  of interest

         (ROI) tool provided with the analysis software (VivoQuant),  volume of interest

               (VOI) were defined on the mesenteric arteries (target) and the thigh  muscles

         (background). Transaxial sections were used to  select the VOIs, however to 
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5.3 Results

5.3.1 Visual evaluation of SPECT-CT and PET-CT

CT: Visual inspection of the CT scans of treated SD rats (maintained on a warfarin

diet and injected with toxic doses of vitamin D3) revealed extensive calcification in the 

aorta  extending  from  the  aortic  arch  to  the  abdominal  aorta  (See Figure 5.4).

Additionally an unexpected area of extraosseous calcification was also observed in

the  abdomen,  located  above  the  left  kidney.  On  the  other  hand  the  scan  of  the 

corresponding controls, (rats maintained on a standard rodent diet) appeared to be 

normal with no evidence of extraosseous calcification. Histological sections stained 

with alizarin red S confirmed calcification in the aortas of the treated rats which was 

absent in the controls. (see Figure 5.15 A-D). 

 

SPECT:  Control rats injected with the 99mTc-labelled bisphosphonates (99mTc-MDP, 

99mTc-DPAAle, 99mTc-N(DTCBP)2) depicted a normal bone scan pattern with uptake 

primarily in the skeletal and the renal system (Figure 5.5 A-B). Compared to the 

images of the control rats obtained at 30-60 min there was a significant decrease in 

B A 

Figure 5.4: CT image of a SD rat fed with warfarin diet for 11 days and injected with vitamin D3 (200,000 

IU
-1 

kg
-1 

day
-1

) from day 7-11. (A) Sagittal section; the arrow shows the calcified aorta in the (B) 

transversal section; arrows showing calcification in the ascending and descending aorta.  
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the intensity of the radiotracers in the kidneys at 210-240 min, whereas the opposite 

was observed in the urinary bladder which indicates excretion of the tracer through 

the renal system.  

Visual examination of the 30-60min SPECT-CT images of the treated rats revealed 

intense uptake of the 99mTc-labelled bisphosphonates in the kidneys (Figure 5.6, 5.7, 

and 5.8) which remains unchanged throughout the scan duration. Histological 

sections of the kidneys of these rats when stained with von Kossa (Figure 5.14 A) 

and alizarin red (Figure 5.14 B) disclosed the presence of calcification in the fine 

branches of the renal arteries. 

 

 

 

Figure 5.5: Maximum intensity progression of SPECT & PET scans of SD rats maintained on a control 

diet 210-240 min (4 h) after IV administration of (A) 99mTc-MDP, (B) 99mTc-DPA Ale and (C) 18F-NaF.

The  intensity  scales  have  been  set low  to  visualise  the  areas  of low  uptake in  the  extraosseous 

tissues.

Corroborating  the  CT  findings, 99mTc-labelled  bisphosphonate  accumulation  in  the 

unexpected calcified area above the left kidney was observed in the SPECT images

(Figure 5.6,  5.7  and 5.8).  Interestingly,  despite  CT  (Figure  5.4)  and  histological 

confirmation  of  aortic  (Figure 5.15 A,B)  calcification,  these areas  did not show  any

visually  noticeable  uptake  of  the  radiotracers  in  the  SPECT  study.  There  were  no

 

B
 

C
 

A
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notable changes between the images obtained at 30-60 min and 210-240 min post

injection  in  the  SPECT  images  of  the  treated  rats.  Rats  (both  control  and  treated)

injected  with 99mTc-N(DTCBP)2 exhibited  diffuse  uptake  in  the   liver  at  30-60  min

SPECT  images (Figure  5.6  A-D) which  gradually  increased  with  time,  suggesting

some degree hepatobiliary excretion.

PET images: Visually 18F-sodium fluoride PET scan (Figure 5.5 C) of the control rats

appeared to be normal with uptake of the tracer primarily in the bones and the renal 

system. On the other hand the PET scan of the treated rats revealed high uptake of

the probe in the unanticipated calcified region above left kidney (Figure 5.9 A-B), a 

similarity  with  the  uptake  pattern  observed  in  the  SPECT  study  with  radiolabelled

bisphosphonates.

  However,  there  were  startling  differences  between  the  uptake  of 99mTc-labelled 

bisphosphonates and 18F-NaF in the treated rats. Firstly, 18F-NaF PET scan detected

calcification in the abdominal aorta of the treated rats (Figure 5.9 C and D) which was 

missed  in  the 99mTc-labelled  bisphosphonates.  There  was  no  visible  uptake  of 18F-

NaF and 99mTc-labelled bisphosphonates in the thoracic aorta, although there was CT

(Figure 5.4A) and histological (Figure 5.15 A and C) evidence of calcification in the 

thoracic as well as abdominal aorta. Another striking difference was the absence of

18F-NaF uptake in the kidneys of the treated rats (Figure 5.10 A; B). Intense uptake 

of 99mTc-labelled bisphosphonates was observed in the kidneys of the treated rats 

and histological sections of the kidneys of these rats confirmed the presence of 

calcification when stained with Von-Kossa and Alizarin red S (Figure 5.14 A-B). 

However, there were no noticeable difference in the uptake of 18F-NaF in the kidneys 

of the control and treated rats. Appreciable reduction in the intensity of radiotracer 

uptake was observed in the 210-240 min (Figure 5.10 B) scan image in comparison 

to scan images of 30-60 min (Figure 5.10 A) post injection of 18F-NaF. 
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Figure 5.6: SPECT-CT scan images of calcified SD rats with 
99m

Tc-N (DTCBP)
 2

. (A) Multi-view CT 

images showing extraosseous calcification above the left kidney. (B) Co-localised multi-view 

(Sagittal, Coronal and Transversal) images showing the uptake of the radiotracer in the calcified area 

above the left kidney. (C-D) Maximum intensity projections (MIP) of SPECT images at time points 

(C) 30-60 min, (D) 210-240 min respectively. The arrows show the uptake of the radiotracer in the 

liver, unexpected calcified region and kidneys. 

A  B  
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Figure 5.7: SPECT-CT scan images of calcified SD rats with 
99m

Tc-DPA Ale. (A) Multi-view CT 

images showing extraosseous calcification in the mesenteric artery. (B) Multi-view (Sagittal, Coronal 

and Transversal) of fused images, the arrows show the uptake of the radiotracer in the calcified 

region above the left kidney. (C-D) Maximum intensity projections (MIP) of SPECT images at time 

point (C) 30-60 min, (D) 210-240 min respectively. The arrows show the uptake of the radiotracer in 

the mesenteric artery. Intense uptake of the radiotracer can also be seen in the kidneys. 

A  

C
 

D
 

B  
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Figure 5.8: SPECT-CT scan images of calcified SD rats with 
99m

Tc-MDP.  (A) Multi-view CT images, 

the arrows show the extraosseous calcification above the left kidney. (B) Multi-view (Sagittal, Coronal 

and Transversal) fused images, the arrows show the uptake of the radiotracer in the calcified region 

above left kidney. (C-D) Maximum intensity projections (MIP) of SPECT images at time point (C) 30-

60 min, (D) 210-240 min respectively. The arrows show the unexpected uptake of the radiotracer. 

Intense uptake of the radiotracer can also be seen in the kidneys. 

C D 

A
 B 
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Figure 5.9 18F-NaF PET-CT scan SD rat fed with a warfarin diet for 11 days and injected with 

vitamin D3 (200,000 IU kg-1day-1) from day 7-11. The Multiview layout consist of sagittal (left), 

coronal (middle) and transversal sections. (A) PET and (B) Fused PET-CT, the arrows show the 

unidentified calcified region above the left kidney. (C) PET and (D) PET-CT, the arrows show uptake 

in the abdominal aorta of the same rat. 
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5.3.2 Visual evaluation of contrast enhanced CT

One interesting finding of the SPECT-CT and PET-CT was the intense uptake of the

radiotracer  in  a  calcified  area  above  the  left  kidney.  Unenhanced  CT  images  also 

confirmed that the area was heavily calcified, but was unable to delineate the exact 

branching from the aorta. Contrast enhanced CT was performed to visualise the exact 

anatomical structure in vivo. The contrast CT images (Figure 5.11 A-C) revealed that 

the  calcified  area  was  the  superior  mesenteric  artery.  Histological  sections  of  the

tissues collected from the rats confirmed the presence of calcification when stained 

with alizarin red staining. (Figure 5.11 D).  

 

 

 

 

 

 

Figure 5.10: MIP of treated rats injected 18F-NaF, scanned at (A) 30-60 min and (B) 210-240 min. 

The arrows show the uptake of the radiotracer in the kidneys and the unexpected calcified area 

above the left kidney. 

A B 



128 
 

Figure 5.11: CT angiogram of a SD rat with vascular calcification (A) sagittal, (B) coronal and (C) 

transversal sections. The arrows shows that the unknown area of calcification above the left kidney 

braches from the superior mesenteric artery. (D) Histological sections of the superior mesenteric 

artery stained positively with alizarin red S confirming the presence of calcification. (Scale bar = 212 

µm) 

C D C 
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5.3.3 Target to background ratios

The target to background ratios (TBRmax) were measured as the ratio of the SUVmax of 

the mesenteric artery versus the muscles (Figure 5.12). The TBRmax at 30-60 min was

3.83±0. for2.44±0.01 and 1.76±0.0106, 99mTc-MDP, 99mTc- andDPA Ale 99mTc-

N(DTCBP)2 respectively. The TBRmax for each radiopharmaceuticals drops in the 

sequential images gradually with time. At the end of the study i.e. 210-240 min the TBRmax 

were 2.78±0.05, 1.79±0.02 and 1.45±0.01 for 99mTc-MDP, 99mTc-DPA Ale and 99mTc-

N(DTCBP)2 respectively. The highest TBRmax of 18F-NaF in the calcified mesenteric artery 

was 6.10 measured in images obtained at the 30-60min post injection, whereas the 

lowest was 4.29 in the 210-240 min images.  
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Figure 5.12: TBRmax theofadministrationIVafterpointstimedifferentatratstreatedtheof

radiopharmaceuticals. (#; n=1). 
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5.3.4 Ex-vivo biodistribution studies

Biodistribution studies were carried out on rats sacrificed after the scanning studies i.e. 

4 hrs post IV administration of the radiopharmaceuticals. For comparison, biodistribution 

studies were performed on both treated and control rats. Data obtained from the studies 

have been summarised in table 5.1 (A-D). As expected the radiotracers mainly

accumulated in the bones. The uptake in the femur (bone) of the rats with induced 

calcification, expressed as %ID/g, were 7.47±0.17, 20.60*(n=1), 7.65±1.00, and

16.57±0.22, for 99mTc-MDP, 18F-NaF, 99mTc-N(DTCBP)2 and 99mTc-DPA Ale respectively;

whereas the uptake in the femur of the control rats were 7.39±0.63, 9.83±0.23, 6.18±1.49

and 6.36±1.50. The findings of the biodistribution studies are in agreement with the scan

results and increased uptake is observed in the kidneys, lungs and the aorta of the 

treated rats. However, a comparison of the ex-vivo biodistributions of the control and 

treated rats reveal that an increased uptake of the radiopharmaceuticals was seen in all 

organs of the treated rats with muscles being the exception. The radiotracers showed

fast and rapid renal clearance with >50% (data not shown) injected dose accumulated in 

the urinary bladder 4.66 h post injection. 
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(Table 5.1 A) 

99mTc-MDP 

Organ Treated# Control 

Heart 2.31±0.82 0.28±0.03 

Lungs 6.91±0.59 0.16±0.02 

Liver 0.30±0.06 0.04±0.03 

Kidney 24.30±0.51 1.03±0.37 

Femur 7.47±0.17 7.39±0.63 

Aorta 1.99±0.75 0.08±0.03 

Blood 0.20±0.02 0.07±0.01 

Thyroid 3.80±3.06 0.29±0.02 

Trachea 3.69±1.66 0.27±0.02 

S. Intestine 1.03±0.58 0.03±0.03 

L. Intestine 0.96±0.26 0.08±0.04 

Spleen 1.29±0.86 0.14±0.01 

Muscle 0.32±0.03 0.02±0.06 
 

 

 

   

   

   

   

   

   

   

   

   

   

   

   

   

  

(Table 5.1 B)

99mTc-DPA Ale

Organ

 

Treated#

 

Control

Heart

 

3.30±0.82

 

0.05±0.02

Lungs

 

6.80±0.60

 

0.11±0.04

 

Liver

 

0.64±0.33

 

0.44±0.15

Kidney

 

16.36±10.04

 

2.67±3.2

 

Femur

 

16.57±0.23

 

6.18±1.49

Aorta

 

2.46±1.54

 

0.07±0.02

 

Blood

 

0.19±0.07

 

0.08±0.07

Thyroid

 

0.18±0.01

 

0.79±0.38

Trachea

 

3.73±2.04

 

1.39±0.5

S. Intestine

 

1.73±0.50

 

0.23±0.13

L. Intestine

 

2.09±1.44

 

0.28±0.09

 

Spleen

 

1.26±1.01

 

0.29±0.30

Muscle

 

0.37±0.07

 

0.03±0.01 
 

(Table 5.1 C) 

99mTc-N(DTCBP)2 

Organ Treated# Control 

Heart 2.77±0.36 0.29±0.07 

Lungs 4.037±1.12 0.41±0.04 

Liver 5.85±2.22 4.14±1.08 

Kidney 17.30±5.5 1.74±0.09 

Femur 7.65±1.00 6.36±1.51 

Aorta 4.24±0.77 0.16±0.09 

Blood 1.24±0.63 0.06±0.03 

Thyroid 2.04±0.12 0.22±0.07 

Trachea 2.04±0.43 0.23±0.12 

S. Intestine 1.45±0.05 1.56±0.62 

L. Intestine 1.04±0.05 1.10±0.35 

Spleen 3.35±0.27 0.36±0.16 

Muscle 0.25±0.06 0.27±0.16 
 

(Table 5.1 D) 

18F-NaF 

Organ Treated#(n=1) Control 

Heart 0.63 0.02±0.01 

Lungs 0.62 0.02±0.01 

Liver 0. 10 0.02±0.01 

Kidney 0.51 0.04±0.01  

Femur 20.59 9.83±0.23 

Aorta 2.04 0.06±0.05 

Blood 0.02 0.02±0.01 

Thyroid 0.94 0.58±0.18 

Trachea 3.23 0.39±0.22 

S. Intestine 0.09 0.02±0.01 

L. Intestine 0.05 0.21±0.04 

Spleen 0.01 0.02±0.01 

Muscle 0.03 0.03±0.01 
 

 

Table 5.1:

 

The results of %ID/g (Mean ±SD, n=2 except where specified) of (A)

 

99mTc-MDP, (B)

 

99mTc-

DPA Ale, (C)

 

99mTc-N(DTCBP)2

 

and (D)

 

18F-NaF, respectively in the vital organs of rats with calcification

 

induced by warfarin feeding and injecting high doses of vitamin D3. The organs were harvested 280 min

after the IV administration of the radiopharmaceuticals. 

# treated- SD rats (male, 22±7 days old) maintained on a warfarin diet for 11 days and injected with 

200,000 IU kg-1 day-1 for four days (day 7-11 of the diet). 
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 5.3.5 Histology

Histological  sections  of  the  aorta  (thoracic  and  abdominal),  kidneys,  and  lungs  were 

stained  with  von-Kossa  (counter  stained  with  H&E)  and  alizarin  red  to  determine  the 

presence  of  calcification.  The  treated  rats  were  positively  stained  confirming  the 

presence of extraosseous calcification, which was negative in the sections of the same

organs obtained from the control rats. 

 

 

 

 

 

 Figure 5.13: Histological evidence of calcification in the lungs shown with von Kossa (A,C) and alizarin

red (B,D) staining. Von Kossa stain was counter stained with hematoxylin and eosin stain. The arrows 

shows the calcified blood vessels in the lungs. (Scale bar = 212 µm) 

 

B A 

C D 
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Figure 5.15: Positive alizarin red staining of paraffin embedded section (5 µm thick) obtained from the rat 

maintained on warfarin diet and injected with sub-cutaneous doses of vitamin D
3
. Circumferential 

calcification pattern is seen in the (A) thoracic aorta and (B) abdominal aorta.  Whereas the aortas; [(C) 

thoracic aorta and (D) abdominal aorta] of the control rats were normal. (Scale bar = 212 µm) 

A B 

C D 

Figure 5.14: Calcification of renal blood vessels. Von Kossa (A, C) and alizarin red (B, D) staining of 

paraffin embedded section (5 µm thick) shows the calcification in the renal arteries of the treated rats. 

(Scale bar = 212 µm) 

 

A 
B  

C  D 
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5.4 Discussions 

We report the first comprehensive in vivo molecular imaging (SPECT-CT and PET-CT) 

study comparing rats with induced medial calcification and control rats with bone mineral 

seeking radiopharmaceutical.  We report the use of: 

1. Novel technetium complexes with two pendant bisphosphonate groups 99mTc-DPA 

Ale and 99mTc-N(DCTBP)2 

2. Clinically established bone seeking agents 99mTc-MDP and 18F-NaF 

This would also be the first study to compare CT findings with the findings of PET and 

SPECT scans with bone seeking agents in the detection of aortic calcification in animal 

models. For this pilot study we chose two animal per group in order to derive some 

statistical parameter like mean.  Of the two treated rats in the 18F-NaF group, one died 

during the induction of anaesthesia. Therefore, only one treated rat was scanned with 

18F-NaF.  

Although SPECT and PET are very sensitive imaging modalities, they have the drawback 

of poor spatial resolution. Therefore, detection of aortic calcification and accurate 

localisation of the site of uptake in SPECT and PET images can be difficult. This is one 

of the reasons for choosing the rat model with extensive calcification over mouse models, 

as the increase in size of the animal and correspondingly larger organs provide bigger 

targets. The use of CT when using a hybrid PET-CT camera for image acquisition 

enables the exploitation of the superior spatial resolution of CT and thus improves the 

anatomic certainty of the site of extra-osseous radiotracer uptake. However, the 

drawback of CT is poor soft tissue contrast therefore the identification of the unexpected 

calcified area seen above the left kidney was difficult. A contrast enhanced study was 

performed on one rat which was helpful in delineating the fine branches of the aorta. It 
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revealed that the unexpected calcification to be the superior mesenteric artery and 

histology confirmed the same. 

99mTc-MDP is a routinely used bone seeking radiopharmaceutical in the clinical set up. It 

has been used for more than four decades in the diagnosis of metabolic and metastatic 

bone diseases;20-22 however it has some serious limitations. The structures of the active 

metal complexes are unknown and the compound is unstable. The instability arises 

because the bisphosphonate groups in these ligands serve the dual purpose of binding 

the metal ion (for which they are not well-suited) and for bone targeting (in which their 

affinity may be compromised by the bound radiometal). To achieve the improvements in 

in vivo stability and affinity for mineral deposits, two novel technetium complexes 99mTc-

DPA Ale, 99mTc-N(DTCBP)2 were developed. We adopted the strategy wherein the metal 

chelating site was separated from the bisphosphonate (bone targeting) site in a 

bifunctional molecule. This allows separate control/optimisation of metal chelation and 

bone targeting. The novel complexes demonstrated higher binding percentages with 

synthetic HA and HA from biological origin (chapter 3). However our findings show that 

these advantages were not translated to in vivo imaging of rat models with vascular 

calcification.  

One interesting finding of this study was the differences in 99mTc-bisphosphonates and 

18F-NaF studies. With extensive calcification in the aorta, it was expected that the in vivo 

imaging with the bone seeking agents will also reflect the same. However, the 

radiolabelled bisphosphonates were not visualised in the aorta. On the other hand, the 

PET scan with 18F-NaF enabled only visualisation of the abdominal aorta despite 

evidence of extensive calcification in the thoracic as well abdominal aorta both 

histologically as well as in CT images. However, the biodistribution study showed 

increased uptake of the tracer in the aorta. This might be because the whole aorta was 

used for the gamma counting instead of different segments. The uptake mechanism of 
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18F-NaF that ofresembles 99mTc- bind to different sites in thetheyMDP, but

hydroxyapatite. The advantages of 18F-NaF over 99mTc-bisphosphonates includes: 

smaller molecular size and weight and a negligible non-specific protein binding.23, 24 The 

active diffusion of molecules from the capillary wall to the extravascular space is 

proportional to the molecular size; therefore, diffusion of small molecules of 18F-NaF is 

expected to be more rapid than that of 99mTc-bisphosphonates. Comparison studies show 

that 18F-NaF has a higher sensitivity and specificity in diagnosing metastatic bone 

diseases compared to 99mTc-MDP.25-27  

There was no visible 18F-NaF uptake in the kidneys of the treated rats. However, SPECT 

studies conducted with the 99mTc-bisphosphonates demonstrated intense uptake in the 

kidneys of the calcified rats, which was corroborated by ex vivo biodistribution results and 

further histological examinations of the kidneys revealed the presence of calcification in 

the renal vessels. These findings suggest that 99mTc-bisphosphonates and 18F-NaF may 

be complimenting each other and binding to different processes or stages of calcification. 

Further study needs to be conducted to understand the reasons and implications of these 

differences. 

Previously published studies show that SD rats treated with warfarin and toxic doses of 

vitamin D3 suffer extensive calcification in the aorta, kidney, lungs, trachea, tongue and 

the liver.28, 29 In vivo imaging and ex vivo biodistribution of the rat model presented with 

a unique opportunity to understand the effects of warfarin and toxic doses of vitamin D3 

in the whole body. The biodistribution findings suggest that the effects are severe and is 

not localised to the aorta, but the treatment has a global effect. This may explain why 

PET and SPECT imaging failed to detect increased tracer uptake in the aorta, whereas 

ex vivo organ counting did. 

It was essential to find out the ideal time for imaging the rats with calcification, as there 

were no published data available. This would enable optimisation of the imaging 
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protocols for future studies. This in turn would also provide the added benefit of reducing

the stress imparted on the animals, especially during longitudinal experiments, where the 

animal has to be revived and re-scanned at several time points. Rather than performing

continuous dynamic imaging for hours, the animal can be injected and scanned once 

during the optimal scanning time. Another benefit of an optimized imaging protocol would 

be in minimising cost and increasing efficiency.

A limitation of the study was that, Patlak quantification of the dynamic PET study

could not be performed. 18F-NaF was administered on an injection table and following 

which the animal was transferred to scanner. Therefore an image derived input function

(IDIF)  could  not be obtained. Invasive arterial sampling was not performed on warfarin 

fed rats as they are prone haemorrhage and bleeding. Therefore semi quantitative 

analysis techniques such as SUV and TBR were used.

In this study, we noted that the delayed images did not provide better target to

background contrast during visual assessment. We performed continuous SPECT and

PET images over 4 h. With the 99mTc-labelled bisphosphonates, visually there was no 

difference in the radiotracer intensity in the calcified areas at all the time points. The 

target to background ratios measured also showed a subtle change with time. However,

in PET images with 18F-NaF there was a visually noticeable loss in the intensity with 

passage of time. The TBR of the 18F-NaF PET scan becomes more variable with delayed

imaging, most probably because of the short half-life of 18F resulting in decay of the tracer 

and the subsequent increase in image noise. Therefore, the possible benefits of delayed

imaging are counterbalanced by the effects of image noise and more variable 

TB measurements.  
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5.5 Conclusions

In this study we performed sequential SPECT-CT and PET-CT imaging with novel and 

clinically established bone seeking agents. The study has shown that bone seeking 

SPECT and PET agents can detect the presence of extraosseous calcification. The 

optimum time for imaging was found to be 30-60min and delayed imaging did not offer 

any significant advantage. The tracer distribution showed that soft tissue calcification as

a result of warfarin treatment was not limited to the main blood vessels but was global 

affecting many tissues.

Although, 99mTc-N(DTCBP)2 showed high binding propensity with isolated minerals and 

ABs  in  both in vitro  and  in situ binding  assays, the same was not replicated in vivo.

Non-specific uptake of the radiopharmaceutical 99mTc-N(DTCBP)2 was observed in the 

liver of  both  control and treated  rats.  Owing to  this drawbacks we  decided to drop 

radiopharmaceutical from the study.
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Chapter 6: Longitudinal SPECT-CT and PET-CT 

imaging of rats with medial arterial calcification.  

6.1 Introduction and aim  

In vitro studies are the backbone for outlining biochemical interactions in basic 

biological and pharmaceutical research; however they have limitations. In vitro 

studies do not offer a true representation of the dynamics of complex biological 

processes in a living subject. In vivo studies compliment in vitro studies and provide 

a holistic view of the interactions of the biochemical under scrutiny. Molecular imaging 

of animal models is now an integral part of pharmaceutical research. It offers distinct 

advantages over conventional in vitro and cell culture research. Molecular imaging 

allows monitoring the temporal and the spatial biodistribution of a molecular probe 

and related biological processes in an intact organism. It also provides quantifiable 

data of biological phenomena keeping the physiology of the experimental subject 

intact. A further advantage of molecular imaging over in vitro and cell culture 

experimentation may be achieved by repetitive study of the same animal model, using 

identical or alternative biological imaging assays at different time points. This reveals 

a dynamic and more meaningful picture of the progressive changes in biological 

parameters under scrutiny, as well as possible temporal assessment of therapeutic 

responses, all in the same animal without recourse to its death. This yields better 

quality results from far fewer experimental animals.  

In the previous experiments (chapter 5) we demonstrated that bone seeking 

pharmaceuticals can detect the presence of extraosseous calcification in rat models. 

The results were also used in optimising the imaging protocol for further studies. In 

continuation of the previous findings we plan to perform longitudinal study with rat 

model where extraosseous calcification is induced by warfarin feeding without the 

administration of vitamin D3. In chapter 4 we have demonstrated that the rats fed with 
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warfarin diet show a slower progression mineralisation and the extent of 

mineralisation is significantly less than rats received vitamin D3 injection along with a 

warfarin diet. This makes these rats suitable for a longitudinal imaging study.  

The objectives of the experiments are to demonstrate that in vivo molecular imaging 

(SPECT-CT and PET-CT) with radiolabeled bone seeking probes can detect 

calcification in the early stages. The findings will also assist in comparing PET, 

SPECT and CT for detecting vascular calcification. 

6.2 Materials and Methods 

6.2.1 Experimental design maintenance of animals 

All procedures were performed in accordance with licences and guidelines approved 

by the UK Home Office and were approved by a King’s College ethics committee. The 

experiments in this section were carried out under the project licence (PPL) 70/7097 

(PPL holder Rene Botnar) and personal investigator licence (PIL) 70/23976 (PIL 

holder Jayanta Kumar Bordoloi). The animals were housed at the BSU located at the 

St. Thomas’ Hospital campus of King’s College, London under a strict aseptic 

condition.  All animals were maintained on a 12 hour light-dark cycling with access to 

environmental enrichment (tunnel). Food and water were provided ad libitum.  

 

 Longitudinal study:  Sprague Dawley (SD) rats (n = 18; male; 21–27 days old) were 

purchased from Charles River Laboratories, UK. After an acclimatisation period of 7 

days, the rats were divided two groups comprising 9 rats each. One group was fed 

Figure 6.1: Flow chart showing the division of rats and diet modification of the SD rats used for 

longitudinal imaging. 
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with a diet containing warfarin (3 mg g−1 food). The other group was maintained in a 

normal rodent diet. For  in vivo imaging studies, the two groups of rats were further 

divided into 3 sub-groups of two rats each (as shown in Figure 6.2) to be scanned 

with the 3 below mentioned radiopharmaceuticals.  As this is a pilot study to 

demonstrate the feasibility of using radiolabeled bone seeking agent to detect 

vascular calcification, power analysis wasn’t performed. The number of animals used 

in each group is kept at 3 to derive statistical parameters like mean and standard 

deviation. Observations of these studies may be used for statistical power evaluations 

for future studies. 

 

Dual radionuclide scan: Sprague Dawley (SD) rats (n = 12; male; 21–27 days old) 

were purchased from Charles River Laboratories, UK. As shown in figure 6.4, the rats 

were divided two groups comprising 6 rats each after an acclimatisation period of 7 

days. One group was maintained on a diet containing warfarin (3 mg g−1 food), 

whereas the other was provided with a normal rodent diet.  

6.2.3 Radiopharmaceuticals: radiolabelling and quality control 

Three radiotracers were used in the study. They are clinically established bone 

seeking agents’ 99mTc-MDP and 18F-NaF and a novel radiotracer with pendant 

bisphosphonate group 99mTc-DPA Ale. The radiolabelling technique and quality 

control have been explained in detail in Chapter 3.  

Figure 6.2: Flow chart showing the diet modification SD rats for the longitudinal imaging studies. 
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6.2.4 In vivo imaging - scanning protocol 

Longitudinal imaging 

As mentioned above, for the longitudinal study the rats were divided into two groups 

(Figure 6.1). One was maintained on warfarin diet whereas the other received normal 

rodent diet. SPECT-CT and PET-CT scans were performed on day 7, 14 and 28 

(week 1, 2 and 4) of the diet.  

Figure 6.3 depicts a brief illustration of the steps and the duration of the procedures 

used in the study.  

1. The rats were transferred from the BSU to the pre-clinical lab and left to 

acclimatise (30 min). 

2. The rats were anaesthetised on the Vet tech rig, in the induction box (lined with 

bench coat), O2 flow rate of 1 l/min and isofluorane levels of 2.5-3.0%. 

3. The rats were then transferred to the injection table on a paper tray. The rats 

were kept under anaesthesia on a mask maintained at 1 l/min O2 and 

isofluorane level at 2.5%. 

4. The tail of the rat was heated via an infra-red heat lamp till the veins were 

prominent. 

5. Radiotracer (18F-NaF = 5 MBq; 99mTc-MDP and 99mTc-DPA Ale = 50 MBq; 

volume = 200 µL) was injected via the tail vein with a 300 µL insulin syringe.  

6. After IV injection of radiopharmaceuticals the rat was then transferred from the 

injection table to the scan bed (rat bed, lined with bench coat) in the 

nanoSPECT-CT or nanoPET-CT. The rat was kept under anaesthesia with the 

isofluorane levels maintained at 2-2.5%. 

7. A scout scan was performed to select the region of interest, following which a 

helical CT scan was performed.  
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8. After completion of the CT scan, helical SPECT was started (30 min post 

injection) with 45 sec/projection completing one study in 30 minutes. For PET 

imaging, a dynamic scan was performed from 30 min (refer Figure 6.3). 

9. At the end of the study the rats were revived and monitored for 30 min, following 

which they were transferred to the BSU and held in the isolated rat holding area 

for hot animals.   

10. The procedure was repeated on day 14 and day 28 of warfarin diet. At the send 

of the study the rats were culled with schedule one technique (high dose of 

anaesthesia followed by neck dislocation) and organs were retained for 

histology and biodistribution. Details of the steps involved in dissection of the 

rats and gamma counting has been explained in chapter 5. 

 

 

Figure 6.3: Steps involved in the longitudinal SPECT-CT and PET-CT imaging. 

6.2.5 SPECT-CT acquisition  

The scans were performed using a BioScan nanoSPECT-CT®PLUS (Mediso, Hungary) 

machine and their proprietary acquisition software (Nucline 1.07).  CT first approach 

was followed in all the imaging studies. CT acquisition was performed at standard 

frame resolution (512×512 pixels), 55 kVp tube voltage, and 600 ms of exposure time 

and 360○ projections. A total of two fields of view were scanned which required 24 

minutes for completion. The SPECT scanner is equipped with 4 heads and multi 

pinhole general purpose (GP) collimator. SPECT images were acquired for the 

selected FOV, with 40 sec/projections and 45 projections in total and energy window 

settings of 15% for the centered window at 140 keV. At the end of the imaging 

experiment the rats were revived and kept under observation for 30 min before 

transferring them the BSU. For repetitive imaging study where in the rats were 
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recovered and held at the isolated holding facility in the BSU. The animals and holding 

facility was monitored for any radioactive spillage. Animal cages contaminated with 

radiotracers excreted by the animals were held (delay and decay), and released after 

the decay of the radioactivity. At the end of experiment (4 week of feeding and 

imaging) the animals were then euthanised and organs retained for biodistribution 

(gamma counting) and histological examinations.  

6.2.6 PET-CT acquisition 

The department is equipped with a BioScan nanoPET-CT®PLUS (Mediso, Hungary) 

scanner and their proprietary acquisition software (Nucline 1.07).  A CT scan was 

performed with the above mentioned parameters. PET scan was performed for a 

single volume of interest (VOI) for 30 min (30 min to 60 min post IV administration of 

18F-NaF) binned with 400–600 keV energy window, 5 ns coincidence time and 

coincidence mode 1–5. 

6.2.7 Dual radionuclide phantom study 

A micro hollow sphere phantom (JRT Associates, USA) was used for dual 

radionuclide phantom study. The phantom is cylindrical with an inner diameter of 4cm 

equipped with four hollow microspheres. The volume of the empty cylinder is 408 cm2. 

The spheres have a radius of ~ 5.95 mm, ~ 6.95mm, ~ 8.23mm and ~9.6 mm which 

holds a volume of  ~ 31 μL, ~ 63 μL, ~ 125 μL, and ~ 250 μL respectively. The micro 

spheres were first filled with 18F-NaF 1.5 MBq, 2.9 MBq, 4.83 MBq, and 7.75 MBq of 

18F-NaF. The outer cylinder was filled with water. 

The phantom was placed on the nano PET-CT scanner, and a 30 min PET scan was 

acquired for a single bed position with the coincidence level set at 1-5, energy window 

400-600 keV and coincidence time of 5 ns. This was followed by a helical CT scan 

acquired at standard frame resolution (512×512 pixels), 55 kVp tube voltage, and 600 

ms of exposure time and 360○ projections. 
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50 MBq of 99mTc-DPA Ale was injected into the cylinder and was shaken vigorously. 

SPECT-CT scan was done with the above mention parameter (section 6.2.6). 

Dual-radionuclide scan 

For dual radionuclide longitudinal study a total of 12 rats were used, 6 were kept on 

a warfarin diet whereas the other 6 were fed with a standard rodent diet. The scans 

were conducted on week 1 (day 7) and week 4 (day 28) since the introduction of the 

diet. After the completion of week 1 scan 3 rats each from the two diet regimes were 

sacrificed and organs were retained for histological evaluation. The same was 

repeated after finishing the week 4 scans. 

 

The dosing and imaging protocol used for the dual radionuclide PET/SPECT scan 

has been described in figure 6.5. The rats were first placed under anaesthesia and 

injected with ~5 MBq (100 µl) of 18F-NaF via the tail vein.  The rats were then 

transferred to the nanoPET-CT scanner and a CT scan (55 kVp tube voltage, and 

600 ms of exposure time and 360○ projections) lasting for 24 minutes was initiated. 

Figure 6.4: Flow chart showing the division of the SD rats, the details of the dual-isotope scan 

experiment. 
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After completion of the CT scan (30 min post injection of PET tracer) a dynamic PET 

scan of the same FOV, was performed for 30 min. 

After the completion of the PET scan, the rat was transferred to the nanoSPECT 

scanner and a blank SPECT study (multi-pinhole collimator, 40 sec/projection, 45 

projections) was conducted which also lasted for 30 min, following which ~50 MBq 

(100 µl) of 99mTc-DPA Ale was injected and a CT scan followed by a SPECT scan 

was performed with the above mentioned parameters. 

 

6.2.8 Image processing and quantification 

All SPECT scans were reconstructed in a 256 × 256 matrix using HiSPECT (Scivis 

GmbH, Germany) software. The same reconstruction parameters were applied for all 

datasets: 35% Gaussian filtering, 9 iterations with a voxel size of 0.4 mm. The 

reconstruction algorithm calculate volumes from multiplexing overlapping multi-

pinhole SPECT. The proprietary software suite VivoQuantTM, Version 2.50 (Mediso, 

USA) automatically fused the SPECT with CT data sets and was used for 

quantifications and image analyses.  

PET scans were reconstructed using Tera-Tomo (OSEM), iterative reconstruction 

algorithms provided by the nanoPET-CT vendor (Mediso Ltd). Reconstruction was 

performed with the detector coincidence mode set to 1:5. Corrections for decay, 

randoms, crystal dead time, detector normalization and attenuation were 

implemented. A total of 4 iterations and 6 subsets were applied. The PET and CT 

images were co-registered automatically. Images were reconstructed with a voxel 

size of 0.25×0.25×0.25 mm3 for CT, and 0.4×0.4×0.4 mm3 for PET.
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Figure 6.5: Diagrammatic illustration of the protocol used for dual tracer in-vivo imaging with PET and SPECT probes in rat model.  
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Image analysis was performed using pre-clinical image post processing software 

VivoQuant; (Version 2.5). Using 3D ROI tool feature of the software, cylindrical 3D ROI 

(volume = 9.9 mm3) were manually delineated in the aorta and the spine (refer Figure 

6.6). The SUVmax were calculated and used to determine the aorta to bone ratio. The 

analysis was performed on longitudinal 18F-NaF scans of rats on a warfarin diet for week-

1 and week-4.  

 

 

6.2.9 Ex vivo biodistribution studies 

At the end of the experiments the animals were euthanised by a lethal dose of 

anaesthesia followed by neck dislocation. Multiple tissues samples were harvested, 

weighed and the activity measured in a gamma counter (LKB Wallac). Samples of tissues 

Figure 6.6: Example of image analysis. The analysis was performed on longitudinal scans of rats 

that were subjected to a warfarin diet. Cylindrical ROI was drawn around the aorta and the spine. 

Data from the ROI was used to calculate the SUVs within the defined ROI. Analysis was repeated 

on the same animal on (A) week-1 and (B) week-4. The ratio of the SUVmax of the aorta and the 

spine was calculated. 

A B 
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originating from the aorta, kidney, lung and heart were preserved for histological 

examination. 

6.2.10 Histology 

Tissues were treated with 4% PFA in PBS for 24 hours and maintained at 4 degree 

Celsius following which the tissues were transferred to 70% ethanol. Paraffin embedding 

of the samples was performed using an automated embedding machine. Sections (5 µm) 

were cut on a microtome, and stained with von Kossa and alizarin red staining to detect 

the presence of calcification. 

6.2.11 Histomorphometry 

The steps involved in the histomorphometric analyses to determine has been described 

in detail in chapter 4 (Refining of animal model). A total of 8 randomly selected sections 

of the thoracic and abdominal aorta from the warfarin fed rats were stained with alizarin 

red. Using the previously described technique and software (ImageJ) the percentage of 

the aorta stained positively for the presence of calcification was determined. The software 

was also used to determine the distance of the pockets of calcifications in the aorta from 

the lumen. For sections with more than one calcified pocket, the area with the minimum 

distance from the lumen was selected. 

6.2.12 Statistics 

GraphPad Prism (version 5.0) was used for all statistical measurements and graphs. All 

data sets are represented as mean ± SD, except where mentioned. Unpaired t-tests were 

used to compare the continuous variables. 
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6.3 Results 

 6.3.1 Visual Inspection of longitudinal SPECT-CT scan 

 

Figure 6.7: Multi-view (left-CT; center- SPECT-CT and right- SPECT) sagittal sections of a treated 

SD rat scanned 60 min after IV administration of 99mTc-MDP. Scans were performed on the same 

subject on (A) Week-1 (B) Week-2 and (C) Week-4 of treatment (warfarin feeding), the arrows show 

the area with extraosseous uptake in the abdomen (possibly mesenteric artery). The bladder has 

been removed from the image and the intensity of the images has been kept low, so that area with 

low uptake of the radiotracer is not missed. Other rats (n=2) in the group did not show any 

extraosseous uptake. (D-F) Corresponding MIP’s for a 3D perspective (D) Week-1, uptake of 99mTc-

MDP can be seen in the skeletal system, the urinary bladder has been removed. (E) On Week-2, 

99mTc-MDP uptake can be seen in the skeletal system, the renal pelvis and urinary bladder 

(removed). Interestingly the intense uptake visualised in the abdomen on week-1 was faintly 

visualised. (F) Week-4 showed uptake in the skeletal and urinary system, the extraosseous uptake 

in the abdomen was absent.  
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99mTc-MDP: A total of 6 rats were scanned with 99mTc-MDP, of which 3 treated (warfarin 

diet) and the others with a normal rodent diet. On scans performed on week 1 (day-7) of 

the diet, the control rats depicted a normal scan pattern with uptake visible in the skeletal  

 

Figure 6.8: Multi-view (left-CT; centre- SPECT-CT and right- SPECT) sagittal sections of a 

control SD rat scanned 60 min after IV administration of 99mTc-MDP. Scans were performed on 

the same subject on (A) Week-1 (B) Week-2 and (C) Week-4. The bladder has been removed 

from the image.  (D-F) Corresponding MIP’s for a 3D perspective (D) Week-1, uptake of 99mTc-

MDP can be seen in the skeletal system, the urinary bladder has been removed and there is no 

retention of 99mTc-MDP. (E) On Week-2, 99mTc-MDP uptake can be seen in the skeletal system, 

the renal pelvis and urinary bladder (removed). (F) Week-4 showed uptake in the skeletal and 

urinary system, the extraosseous uptake in the abdomen was absent. Uptake was seen in the 

kidneys. 
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and renal system (Figure 6.8 A; D). On week 1, extraosseous calcification was observed 

in the abdomen (possibly mesenteric artery) of one rat on warfarin diet (Figure 6.7 A; D). 

However, the other treated rats exhibited a normal scan pattern with no visible 

extraosseous uptake. 

Scans performed on the same rat on week 2 and week 4 of the treatment didn’t indicate 

any new area of extraosseous radiopharmaceutical uptake. Interestingly, the intensity of 

uptake in the previously visualised extraosseous calcification reduced in the week 2 scan 

(Figure 6.7 B; E), and in week 4 (Figure 6.7 C; F) there was no visible uptake in the 

abdomen. The control rats showed a normal scan pattern both in weeks 2 (Figure 6.8 B; 

E) and week 4 (Figure 6.8 C; F). 

 

99mTc-DPA Ale: On week 1, the SPECT-CT study conducted on the warfarin fed rats did 

not reveal any visibly noticeable extraosseous uptake of the radiopharmaceutical (Figure 

6.9 A). The results were identical to the scan images of the control rats with uptake visible 

in the skeletal and renal system (Figure 6.10 A). On week 2, uptake of the 

radiopharmaceutical was observed in two distinct areas of the upper and lower 

abdominal aorta of one warfarin fed rat (Figure 6.9 B), whereas the others had no 

extraosseous uptake of the tracer. The control rats revealed a normal scan pattern 

(Figure 6.9 B). The SPECT-CT performed on week 4 did not reveal any new area of 

extraosseous uptake of the radiotracer in the group of rat fed with the warfarin diet. 
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Figure 6.9:  Multi-view (left-CT; center- SPECT-CT and right- SPECT) sagittal sections of a 

treated SD rat scanned 60 min after IV administration of 99mTc-DPA Ale. Scans were performed 

on the same subject on (A) week-1 (B) week-2 and (C) week-4 of treatment (warfarin feeding). 

The arrows show the area with extraosseous uptake in the abdominal aorta (B) on week-2. The 

bladder has been removed from the image. Other rats (n=2) in the group did not show any 

extraosseous uptake.(D-F) Corresponding MIP’s for a 3D perspective (D) Week-1, uptake of 

99mTc- DPA Ale can be seen in the skeletal system, the urinary bladder has been removed. (E) 

On Week-2, 99mTc- DPA Ale uptake can be seen in the skeletal system, the renal pelvis, and 

abdominal aorta. (F) Week-4 showed uptake in the skeletal and urinary system, the 

extraosseous uptake in the abdominal aorta was absent. 
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Figure 6.10: Multi-view (left-CT; center- SPECT-CT and right- SPECT) sagittal sections of a control 

SD rat scanned 60 min after IV administration of 99mTc-DPA Ale. Scans were performed on the same 

subject on (A) week-1 (B) week-2 and (C) week-4 of treatment (warfarin feeding). The urinary bladder 

has been removed from the image. The images depicted a normal bone scan pattern with uptake in 

the bones and the renal system (D-F) Corresponding MIP’s for a 3D perspective. 
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18F-NaF: The control rats scanned at the three time points i.e. weeks 1, 2 and 4 (Figure 

6.11 A-F) were representative of a normal bone scan, with uptake visible in the skeletal 

system and the renal system. However, some activity was visible in the gut suggestive 

of some degree of hepatic clearance of the radiotracer in addition to the renal clearance.  

 

All rats that received warfarin diet and underwent PET scan with 18F-NaF on week 1 had 

intense uptake of the tracer in the region of the aorta where the superior mesenteric aorta 

originates (See figure 6.11 A). On scans performed on the next time-point (week 2) 
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Figure 6.11: Longitudinal PET scans performed with the radiotracer 
18

F-NaF of a treated rat (warfarin diet). Multi-

view (left-CT; center- PET-CT and right- PET) sagittal sections of the week-1 (A) scan reveals intense uptake in 

the aorta show with an arrow. PET scan performed on week 2 (B) reveal uptake in the lower abdominal aorta 

shown with the second arrow. The same rat when scanned on week-4 (C) reveals radiotracer in the whole 

abdominal aorta and the as well as its branches. (D-F) Corresponding MIP of the scans. Besides bones and 

uptake of 18F-NaF was also seen in the gut. 
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uptake the progression of calcification was observed in parts of the abdominal aorta and

the mesenteric artery (Figure 6.11B). 18F-NaF PET scans performed on the same group 

of animals showed intense uptake in the whole of the abdominal aorta and the mesenteric 

artery  (Figure  6.11C).  Interestingly,  the  area  of  the  aorta  where  calcification  was 

visualised on week 1 (Figure 6.11 A) had no radiotracer uptake on the week 4 (Figure

6.11C) scan. The scan of the rats on normal diet depicted a normal bone scan, however 

radiotracer uptake in the gut was observed. The scan of the rats on normal rodent diet 

portrayed  (Figure  6.12  A-E)  a  normal  bone  scan,  with  uptake  in  the  bones  and  renal 

system.
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  Figure 6.12: Longitudinal PET scans performed with the radiotracer 18F-NaF of a control rat.  Multi-view
    (left-CT; center- PET-CT and right- PET) of sagittal sections of the rat scanned on (A) week-1,(B) week 
 2, (C) week-4. The scans showed a normal scan pattern with uptake in the bones (skeletal system)and 
 the renal system. (D-F) Corresponding MIPs of the scans.
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6.3.2 Histomorphometry and distance measurements 

Using ImageJ (Version 1.49) the extent of calcification in thoracic and abdominal aorta 

of the treated SD rats used in the longitudinal study was measured. The percentage of 

calcification in the thoracic aorta was found to be 3.52 ± 1.52 (n=8) whereas the 

abdominal aorta it measured to be 43.31 ± 4.35 (n=8). This shows that after 4 weeks of 

warfarin feeding both the thoracic and the abdominal aorta were calcified, however the 

damage to the abdominal aorta was significantly higher than the thoracic. 

Visual inspection of the sections of the thoracic and abdominal aorta obtained from the 

treated rats (receiving warfarin diet for 4 weeks) revealed that the calcified areas in the 

thoracic aorta were deep seated where as those in the abdominal aorta were exposed to 

the lumen(See Figure 6.13 A-B). Using ImageJ, the distance of the calcified pockets from 

the lumen was measures (Figure 6.13 C).  

Histomorphometry 

 

Figure 6.13 : Histological sections of the (A,B) thoracic and (C,D) abdominal aorta of a treated SD rat
(warfarin  fed  for  4  weeks)  with  von  Kossa  ( H&E  counter  stain )   and   alizarin   red   respectively. 
(Scale bar = 200 µm) (E) Histomorphometry analysis  comparing the percentages of area positively 
stained for the presence ofcalcification. The percentage of  calcification  in the  thoracic  aorta  was 
3.52 ± 1.52 (n=8) and 43.31 ± 4.35 (n=8) in the abdominal aorta. (***=p<0.001) 
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6.3.3 Ex-vivo biodistribution studies 

The biodistributions of 99mTc-MDP, 99mTc-DPA Ale, and 18F-NaF in treated (SD rats on 

warfarin diet; 4 weeks) and normal SD rats are presented in Table 6.1. The samples were 

obtained from treated and control rats at the end of the longitudinal study. The 

radiotracers were injected 60 minutes before the animals were culled. The uptake of 18F-

NaF accumulated in the femur was substantially high both in the treated (10.68±5%) and 

control (14.32±4.27%) compared to 2.26±0.13% and 2.87±0.46% with 99mTc-DPA Ale 

and 1.77±0.40% and 2.49±0.47% with 99mTc-MDP for the treated and control rats 

respectively. 

C A 

B 

Figure 6.14: Histological sections of the (A)  thoracic and (B)  abdominal aorta of a treated SD rat (warfarin 

fed for 4 weeks)  alizarin  red. ImageJ was used to measure the  distance of the calcified pockets from the 

lumen. In sections with multiple calcified regions, the one closest to the lumen was considered. As seen in 

fig 6.12 (A-D), the thoracic aorta has less calcification and calcified  areas  compared to the thoracic aorta, 

furthermore those pockets were deep seated in the tunica -media. On the other hand the abdominal aorta 

was heavily calcified with lesions exposed to the lumen. 
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Increased uptake in the aortas, lungs and hearts of the treated rats compared to the 

controls was observed with all the radiopharmaceuticals. 

 

6.3.4 Qualitative assessment of radionuclide phantom study 

In order to see the feasibility of dual radionuclide in vivo imaging a phantom study was 

performed to see the effect of cross talk in the image quality. Reconstructed scan images 

of the phantom (A) PET-CT with the micro spheres filled with 18F-NaF was compared the 

(B) reconstructed SPECT-CT scan of the phantom. The hot microspheres in the PET-CT 

appeared cold on the SPECT-CT images. Visual inspection of the reconstructed SPECT 

study clearly shows different noise textures between the spheres. The outline of the 

spheres with diameter of ~ 5.95 mm, ~ 6.95mm, and ~ 8.23mm were smooth without with 

Organ 18F-NaF 99mTc-DPA Ale 99mTc-MDP 

Treated Control Treated Control Treated  Control 

Skin 0.08±0.01 0.22±0.18 0.08±0.07 0.04±0.01 0.08±0.02 0.05±0.03 

Blood 0.13±0.02 0.17±0.09 0.07±0.05 0.06±0.02 0.07±0.03 0.06±0.05 

Heart 0.50±0.24 0.13±0.07 0.36±0.16 0.05±0.01 0.28±0.02 0.04±0.03 

Lung 0.60±0.07 0.17±0.09 0.43±0.23 0.09±0.01 0.27±0.04 0.06±0.05 

Liver 0.14±0.01 0.18±0.06 0.35±0.19 0.33±0.05 0.03±0.01 0.03±0.02 

Spleen 0.13±0.01 0.14±0.06 0.05±0.04 0.05±0.01 0.05±0.01 0.04±0.03 

S. Intestine 0.24±0.06 0.38±0.18 0.23±0.13 0.14±0.03 0.07±0.02 0.06±0.04 

L. Intestine 0.16±0.05 0.25±0.09 0.17±0.12 0.06±0.01 0.11±0.05 0.03±0.02 

Stomach 0.21±0.12 0.17±0.11 0.32±0.28 0.11±0.03 0.16±0.01 0.05±0.03 

Kidney 0.37±0.16 0.41±0.30 0.94±0.52 2.49±1.17 1.25±1.31 1.99±2.58 

Muscle 0.14±0.02 0.12±0.06 0.06±0.04 0.02±0.01 0.03±0.01 0.04±0.03 

Femur 10.68±5 14.32±4.27 2.26±0.13 2.87±0.46 1.77±0.40 2.49±0.47 

Aorta 1.40±0.17 0.19±0.05 0.91±0.82 0.18±0.11 0.40±0.04 0.23±0.23 

Mesenteric 0.13±0.05 0.08±0.03 0.07±0.03 0.02±0.02 0.13±0.025 0.03±0.02 

Table  6.1: Ex-vivo  biodistribution  conducted  on  treated  and  control  rat  after  the  completion  of  the

longitudinal  study  (mean±SD,  n=3,  %Id/g).  The  rats  were  culled  60  minutes  after  the  injection  of  the 

radiotracers and the treated rats were on a warfarin diet for 4 weeks and the control rats were on a normal

rodent diet for an equal duration. 
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no noticeable noise on the image. However the largest sphere (~9.6 mm; 7.75 MBq) had 

noticeable noise with uneven edges.  

 

 

 

Figure 6.15: A multi-sphere phantom with 18F-NaF in the spheres 7.75 MBq, 4.83 MBq, 2.9 MBq and

1.5 MBq respectively and the reconstructed PET image. (B) The reconstructed image of same multi- 

sphere with the tube with the above mentioned radioactivity and 50MBq of 99mTc-DPA Ale filled in the

cylinder.  

A 
B 

Figure 6.16: Multi-view (CT-left; SPECT-right; fused SPECT/CT-center) sagittal section of a SD rat on a 

warfarin diet for 1 week. (A) PET/CT scan conducted on week-1, the arrow shows the uptake of radiotracer in 

the aorta. (B) A blank SPECT/CT performed with 18F-NaF and no SPECT agent. (C) SPECT/CT scan after 

administration of 99mTc-DPA Ale, the arrows show uptake in the mesenteric artery. 
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6.3.5 Dual-radionuclide longitudinal PET-CT and SPECT-CT scan 

Dual radionuclide scans were performed as per the protocol mentioned in Fig 6.5. 18F-

NaF PET detected calcifications in 5 out of 6 treated rats on week 1, whereas 99mTcDPA 

Ale SPECT detected calcification only in 1. All 18F-NaF PET scans positive for 

calcification on week -1 had an area of intense uptake in the mid segment of the aorta 

(Figure 6.16 A), the region from which the superior mesenteric artery originates (parallel 

to L1-L2 vertebrae). No other area of extra osseous calcification was observed on the 

18F-NaF PET scans. 3 rats were revived and transferred to the BSU and the other 3 rats 

were culled and the organs were retained for histology. 

 

On week-4 scan PET scans (figure 6.17 A) with 18F-NaF revealed calcification in all the 

3 treated rats and SPECT with DPA Ale detected in 1. 18F-NaF PET showed calcification 

the abdominal aorta and parts of the mesenteric artery, whereas 99mTc-DPA appeared to 

be a normal bone scan.  The scans conducted on the control rats showed a normal scan 

Figure 6.17 Multi-view (CT-left; SPECT-right; fused SPECT/CT-center) sagittal section of a SD rat 

on a warfarin diet for 4 week. (A) PET/CT scan conducted on week-1, the arrow shows the uptake 

of radiotracer in the aorta. (B) A blank SPECT/CT performed with 18F-NaF and no SPECT agent. 

(C) SPECT/CT scan after administration of 99mTc-DPA Ale. 
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pattern both on week 1 and 4. No extraosseous uptake was seen in the PET or SPECT 

scans in the control mice. The uptake was primarily in the skeletal system and the renal 

system. Some uptake of the radiotracer was observed in the gut which is normal for both 

the radiotracers. 

6.3.6 Histological examination of rat aorta  

 

B 

C 

D 

A 

Figure 6.18: Sections of the aorta stained with alizarin red to detect the presence of calcifications. (A) 

Sagittal view of a SD rat receiving warfarin diet for 7 days and underwent an 
18

F-NaF PET scan. The rat 

was culled and the aorta retained for histology. The arrows indicate the region of the aorta from which 

the sections were obtained. The sections from the thoracic (B) and abdominal (D) aorta were negative 

whereas the section from region of with 
18

F-NaF uptake was positive for the presence of calcification. 

(Magnification 10X, Scale bar= 212 µm)  

Histological examination of rat aorta (Week-1 of warfarin feeding) 
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6.3.7 Aorta to bone ratio 

The SUVmax of the aorta was normalised to the SUVmax of the bone (spine) to derive aorta 

to bone ratio. The aorta to bone ratios on week 1 was calculated to be 0.06 ± 0.01 (N=7) 

which was 58.5% higher than the ratio on week-4 which was 0.04 ± 0.01 (N=5). 

A B 

C 

D 

Figure 6.19: Sections of the aorta stained with alizarin red to detect the presence of calcifications. (A) 

Sagittal view of a SD rat 9
18

F-NaF PET scan) receiving warfarin diet for 28 days (week-4). The rat was 

culled and the aorta retained for histology. The arrows indicate the region of the aorta from which the 

sections were obtained. The sections from the thoracic (B) and abdominal (C) region of the aorta with 

positive 
18

F-NaF uptake on week 1 and (D) abdominal aorta were all positive for calcification. The section 

from the thoracic (B) aorta has less extent of calcifications which were located deep seated as compared 

to the other two sections. (Magnification 10X, Scale bar= 212 µm) 

Histological examination of rat aorta (Week-4 of warfarin feeding) 
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6.4 Discussions 

We report the first longitudinal PET-CT and SPECT-CT using rat model of arterial 

calcification to monitor the progression of disease. We also report the first dual-isotope, 

tri-modal (PET/SPECT-CT) longitudinal study using the small animal model (rat) to 

detect, monitor and compare the modalities.  

18F-NaF (PET) and 99mTc-bisphosphonates SPECT detects calcification earlier than 

CT 

Our first important finding is that both 18F-NaF and 99mTc-bisphosphonates detects 

calcification earlier than CT. Extraosseous uptake of 18F-NaF (PET) as well as 99mTc-

bisphosphonates (SPECT) were visualised in the aortas of the treated rats on scans 

performed on week 1 of warfarin diet. Whereas, CT scans of the same were negative for 

calcification. CT scans of the same rats conducted on week-4 were positive for aortic 

calcification. 

 Dual radionuclide longitudinal scans also corroborated the above mentioned finding of 

the longitudinal study. Interestingly, 18F-NaF PET and SPECT scan with 99mTc-DPA Ale 

were positive for the presence of calcification on week 1, whereas aortic calcification was 

Figure 6.20: Aorta to bone calculated from the in vivo measurements at 60 min, after radiotracer 

injection in treated SD rats. ** P < 0.01. 
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visualised on CT scans performed on the 4th week of the diet modification. Von Kossa

and  alizarin  red  staining were  performed  on paraffin  embedded  sections of  aortas 

obtained from warfarin fed rats scanned on week 1 and 4. Histomorphometric analysis 

of the sections show that the extent of calcification on week 1 is less than week 4. This 

finding  indicates   that  warfarin  feeding  leads  to  a progressive  vascular  mineralisation 

and  the  extant  of vascular damage is proportional to the length of the treatment.

For clinical purposes CT is considered as the ‘gold standard’ in vivo imaging modality for

detection and quantification of vascular calcification; however it has been demonstrated

that it fails to detect early stages of calcification.1-3 CT is an imaging modality that works 

on the principle of attenuation of x-rays and looks for structural changes in the anatomy. 

CT can detect the presence of macrocalcification; however it is an unreliable modality in 

detecting microcalcifications. A possible explanation for the failure of CT in detecting 

early stages of vascular calcification could be that the subtle changes involved in the 

early stages of mineralisation do not produce attenuation strong enough to cause a 

noticeable change in the scanned images. Furthermore, CT fails to provide any molecular 

information. Recent findings show evidence that microcalcification plays a detrimental 

role in plaque rupture.4-6 This makes microcalcifications an important predictor as well as 

a target for the diagnostics of vulnerable plaques. Detecting vulnerable plaques has been 

a challenge for clinicians and molecular imaging with 18F-NaF and 99mTc-

bisphosphonates to target microcalcifications might open new doors in cardiovascular 

diagnostics. 

99mTc-bisphosphonates compliments 18F-NaF in detecting vascular calcification 

Our findings from the previous chapters, and the findings of the longitudinal and dual 

radionuclide study indicate that both18F-NaF and 99mTc-bisphosphonates complement 

each other in detecting calcification. These findings indicate that 18F-NaF and 99mTc-

bisphosphonates they bind to minerals at different stages of the process of calcification.  
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The distribution of both 18F-NaF and 99mTc-bisphosphonates reflect blood flow in bone 

and osteoblastic activity. 99mTc-bisphosphonates binds to bone by physicochemical 

adsorption or chemisorption to the hydroxyapatite crystals of bone tissue. An increased 

deposition of 99mTc-bisphosphonates is observed in the epiphyseal growth plates and 

osteochondral junctions indicating it to be representation of osteoblastic activity.7, 8 

Autoradiographic studies show that 99mTc-MDP binds primarily at the mineralisation front 

of bone and at the osteocytic lacunae, but not near osteoclasts.9 This makes it an 

unreliable agent in detecting diseases like multiple myeloma which is characterised by 

osteolytic bone lesions.10   On the other hand, fluorides have anabolic properties and can 

enable increase in bone mass.11 18F-NaF interacts with bone minerals in two steps; firstly 

it undergoes chemisorption which is followed by a direct incorporation into the bone 

matrix. Direct incorporation is possible because fluoride ions exchange with hydroxyl 

groups in the hydroxyapatite crystal (Ca10 (PO4)6OH2) to form fluoroapatite 

(Ca10(PO4)6F2).12   

The advantage of 18F-NaF over 99mTcMDP is that it has minimal non-specific binding to 

serum proteins, which allows rapid single-pass extraction and fast clearance from the 

soft tissues. This was evident in the ex vivo biodistribution study where 18F-NaF had 5 

fold high uptake in the bones as compared to the 99mTc-bisphosphonates (See Table 

6.1). Although reports suggest that 18F-NaF is superior imaging agent for bone imaging, 

but one has to take into account the imaging instrumentation into account too. Clinical 

PET scanners has the advantage of a higher sensitivity and image resolution over 

SPECT; these advantage do come into play when the radiopharmaceuticals are 

compared in the in vivo environment. The exact reason of our finding showing different 

binding of 99mTc-bisphosphonates and 18F-NaF in different regions of calcification 

remains unanswered.  A thorough study needs to be conducted to understand as to why 

these differences are observed and what could be its clinical implications. 
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Maturity in calcification effects radiopharmaceutical uptake 

Another important finding of the longitudinal and dual isotope in vivo imaging study with 

the warfarin fed rats is that a negative relation of radiotracer uptake was observed with 

maturity in calcification. On week-1 scans of warfarin fed rats, uptake of 18F-NaF was 

visualised in the region of the abdominal aorta where the superior mesenteric artery 

originates. Visually noticeable drop in intensity of radiotracer uptake was observed on 

week-4 scans. Aorta to bone ratios of the same region was calculated on week 1 and 

week 4 scans. The finding confirmed that maturity in calcification results in poor uptake 

of 18F-NaF.  Clinical studies have been published where in 18F-NaF PET scanning have 

been utilised to detect calcifications in the carotid artery, coronary artery, aorta, 

identification of vulnerable atherosclerotic plaques and also soft tissue calcification 

associated with breast cancer.2, 13-19  Dweck et al. also observed the absence of 18F-NaF 

in certain patients with extensive coronary calcification evident on CT.15 There are two 

possible explanations to this phenomenon. Firstly, early stage calcification comprises of 

thin, long nano sized hydroxyapatite crystals, offering a high surface area for the 

radiotracer to bind.  The surface area of the hydroxyapatite may be one of the governing 

factors for the uptake of the radiopharmaceutical (18F-NaF). As the process of 

calcification progresses, the hydroxyapatite nucleates to form macro sized calcification 

which results in a substantial loss surface area for the radiotracer to bind with. Secondly, 

18F-NaF provides quantitative estimates of bone metabolism.20 Therefore, 18F-NaF 

binding is an indicative of process of active biomineralisation. It is believed that once the 

macrocalcifications are formed the calcification process ceases therefore, those areas 

do not show any radiotracer uptake. 
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Availability of radiopharmaceutical a key factor 

Von Kossa and alizarin red staining was performed on sections of the aortas obtained 

from treated rats that were scanned and sacrificed after week-1 and week-4 scans. 

Based on the 18F-NaF PET scan findings the aorta was divided into three regions 

(thoracic, mid-abdominal and lower abdominal) see Figure 6.18. Sections from the 

thoracic and abdominal were negative for calcification with alizarin red whereas the 

section from the area of the aorta with positive uptake showed the presence of 

calcification. On week-4, the 18F-NaF PET scan revealed uptake in the abdominal aorta 

only. However the sections from the aortas of those rats were positive for the presence 

of calcification in all the three regions. The findings indicate that warfarin feeding initiates 

aortic calcification in the aorta initiates in the region of the aorta where the superior 

mesenteric artery originates, and progresses towards the as well as abdominal aorta. 

These findings also suggest that the process of calcification in the aorta was active and 

progressive. The software ImageJ (version 1.49) was used to calculate the percentage 

of the section stained positive for calcification which showed that the extant of 

Figure 6.21: Our hypothesis on the detection vascular calcification based on the findings of the in vivo 

imaging studies. Both PET and SPECT detect early calcification, whereas CT fails to detect calcification the 

early stages.  However, in the later stages of calcification the radiotracers may fail to detect calcification 

whereas CT can. 
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calcification in the abdominal aorta significantly severe compared to the thoracic aorta. 

This finding is in agreement with reported in clinical studies that indicate abdominal aorta 

is more susceptible to calcification compared to the thoracic aorta.21  

The exchange of a tracer between blood and tissue depends on three important 

parameters (I) blood flow, (II) surface area, and (III) the permeability of the capillary 

system.22 99mTc-bisphosphonates and 18F-NaF undergo diffusion through the capillary 

wall into the extravascular space.23, 24 Interestingly our findings show that 18F-NaF uptake 

was observed only in the abdominal aorta, whereas there was no uptake of 18F-NaF in 

the thoracic aorta. Sections of the aortas show that the calcified pockets in the abdominal 

aorta extended from the medial layer of the aorta to the intima and in some cases very 

close or exposed to the lumen whereas the calcified areas of the thoracic aorta were 

deep seated in the media adjacent to the outermost layer of the vessel wall, the 

adventitia. These findings suggest that:  

(i) 18F-NaF is directly taken up from the lumen and it may not be able to penetrate 

through the intimal layer therefore, isn’t available for binding with the deep seated 

calcification located in the media.  

(ii) The microvasculature (adventitial vasa vasorum) network has no role in the 

transport of the radiopharmaceutical. 

Dual-radionuclide scan  

A limitation of the longitudinal imaging study was that different set of animals were used 

for different radiopharmaceuticals which means variability within the animals cannot be 

ruled out. Ideally the same subject should be scanned with both PET and SPECT agents 

to rule out variability and yield a more meaningful data for comparison. To address this 

issue dual-radionuclide scanning was performed. However, simultaneous dual 

radionuclide PET and SPECT study has its challenges.  
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PET  and  SPECT  dual  tracer  imaging  has  the  potential  in  many  research  applications 

especially  in  situations  where  two  or  more  radiopharmaceuticals  are  compared.

However,  it  remains  a  challenge because  of  physical  properties  of the radiotracer  and 

hardware  limitations.  The  NanoSPECT-CTPLUS (Mediso,  Hungary)  is  optimised  to  for

detection of gamma rays in energy range of 25keV to 354keV. For SPECT scans with

99mTc-bisphosphonates a low energy multi-pinhole collimator is utilised and the energy

window  maintained  at  140  keV  ±  15%.   The  low  energy  collimators  are  meant  for 

absorption of scattered low energy gamma rays emitted by 99mTc. The presence of the

PET tracer (18F;  511keV) would lead to crosstalk  as the  high energy gamma  rays  can

penetrate the SPECT collimator and   the resulting down-scattered gamma rays fall within 

the SPECT energy window of 140keV±15%. On the other hand, the presence of 99mTc 

with 18F results in the increase in the dead time due to an increased count rate.  Studies 

have  been  reported  that  dual radionuclide PET  and  SPECT  scans  are  feasible.25,26, 27

Chapman et al. reported that in the presence of 18F, a significant artifact was observed

in the reconstructed SPECT images. Therefore, they employed the SPECT first protocol,

where the animal is injected with the SPECT tracer and scanned  followed by the PET.27

On  the  other  hand  Yiping  et  al.  suggested  a  SPECT  followed  by  PET  protocol.  They 

reported  that  reconstructed  SPECT  images  with  no  artifacts  can  be  obtained  with

radioactivity ratio 5:1 (99mTc:18F).

Our experience with NanoPET-CTPLUS (Mediso, Hungary) indicates that scanning small 

animal scanning with radioactivity >10MBq results in substantial increase in dead time.

We performed  a  simple experiment  with a micro  hollow  sphere  phantom  (Figure  6.15)

where  the  spheres  were  filled with 18F-NaF  and  the  cylinder  was  filled  with 99mTc-

bisphosphonate  (left  over  from in  vivo longitudinal  imaging)  and  scanned. The 

microspheres of the phantom appeared as cold spots on reconstructed SPECT images 
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suggesting that the SPECT scanner with 15% window for discrimination of gamma rays 

emitted at 140 keV by 99mTc exclude the 511 keV emission stimulated by a PET tracer.  

For in vivo imaging we followed the PET first protocol (see Figure 6.5) and used an 

activity ratio of 1:10 (18F-NaF; [~5MBq]:  99mTc-DPA Ale; [~50MBq]). A blank SPECT scan 

was performed with 18F-NaF only, which demonstrated that the SPECT scanner 

registered scattered photons that penetrated through the collimator and appeared like 

random background rather than an outline of the skeletal system. There was a gap of 90 

minutes between 18F-NaF and 99mTc-DPA Ale injections. The SPECT scan was 

performed 120 min after the PET tracer injection which allowed the activity to decay. 

These findings show that dual-radionuclide PET/SPECT study is feasible. However, the 

drawback of the study is that ex vivo biodistribution is not possible due to the cross 

contamination of the radioactivities. Further study  

6.5 Conclusions    

We report the first longitudinal PET-CT and SPECT-CT study of animal models with 

arterial calcification for detection and monitoring the progression of vascular calcification 

using bone seeking radiopharmaceuticals. We also report the first dual radionuclide tri-

modality PET/SPECT-CT imaging with animal model. The findings show that dual 

radionuclide scanning is feasible, however have some limitations.  

The studies have yielded some interesting results and have raised some intriguing 

questions. The findings prove that 18F-NaF PET and SPECT with 99mTc-bisphosphonates 

detects calcification much earlier than CT. However, it was also observed that with 

maturity calcification the radiotracer uptake reduces. The study also shows that 99mTc-

bisphosphonates and 18F-NaF do not behave similarly, rather complement each other 

and may be binding to calcification at different stages. Histological examinations indicate 

that calcification close or exposed to the lumen is detected whereas the deep seated 
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active calcified area goes undetected. All these findings are promising and call for further 

studies and answering them will draw new understanding of the process of vascular 

calcification, and devising ways of detecting it early with more meaning clinical 

information to the physician. 
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Chapter 7: Conclusions and future work 

7.1 Conclusions 

1. The major aim of the study was to investigate 99mTc-labelled novel bisphosphonate 

complexes as SPECT imaging agents for the in vivo detection of vascular 

calcification. The novel compounds are based on bifunctional ligands where in the 

metal chelating site is separated from the bisphosphonate, thereby improving the 

in vivo stability. The ligands dipicolyl-amine alendronate and dithiocarbamate-

bisphosphonate were used in a kit-based approach to synthesise the novel 

complexes 99mTc-DPA Ale and 99mTcN(DTC-BP)2 with high (>95%) chemical purity 

and yield suitable for in vivo work. 

2. The compounds were evaluated in vitro before proceeding to in vivo imaging. In 

vitro binding studies were conducted with synthetic hydroxyapatite, powdered 

equine bone and minerals isolated from calcified human intimal and medial 

calcification. The findings were compared to clinically established bone seeking 

tracers 99mTc-MDP (SPECT) and 18F-NaF (PET). 99mTc-DPA Ale and 99mTcN(DTC-

BP)2 demonstrated a high binding percentages with minerals isolated from calcified 

human intimal and medial calcification as well as synthetic hydroxyapatite.  

3. Two rat models of vascular calcification were developed for the in vivo molecular 

imaging. The models were developed by making changes in pre-existing models, 

to reduce the pain threshold and meet the regulatory requirement of the Home 

Office (UK). The first model involved changing the diet regime of SD rats from a 

normal diet to warfarin diet [warfarin (3mg kg -1) and vitamin K1 (1.5 mg kg -1)] for 11 

days and subcutaneous injections of vitamin D3 (200,000 IU kg -1 day -1) from day 7 

to 11 of the diet. This resulted in acute and extensive vascular calcification in the 
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rats, and the model was suitable for the initial proof-of-principle and optimisation 

study. The second model was a milder model, where the development of 

calcification was slow. This was achieved by feeding the rats with warfarin diet only. 

The model was suitable for longitudinal studies. In addition to rat models, a mouse 

model was also replicated by feeding female DBA/2 NCrl with the warfarin diet. 

4. The first set of in vivo imaging studies were conducted to optimise the imaging 

protocol as well as determine if these agents detect extraosseous calcification. Rat 

model with acute and extensive arterial calcification (warfarin diet with vitamin D3 

injections) was used in the study. Novel 99mTc-bisphosphonates as well as 99mTc-

MDP and 18F-NaF detected arterial calcifications. However, there were some 

noticeable differences between the SPECT and PET scans. The SPECT scans 

with 99mTc-DPA Ale, 99mTc-N(DTCBP)2, and 99mTc-MDP uptake was visualised in 

the kidneys and mesenteric arteries and the kidneys and on 18F-NaF PET scans, 

increased uptake was seen in the mesenteric artery and abdominal aorta.  

Histologically calcification was detected in the aorta (both abdominal and thoracic), 

mesenteric artery, kidneys and lungs of the treated rats. The optimum time for 

scanning was determined to be between 30-60min of IV administration of the 

radiopharmaceuticals.  

5. Longitudinal imaging with warfarin fed rats (n=3) were performed on three time 

points (week 1, 2 and 4 of diet). SPECT and PET detected calcification earlier than 

CT. SPECT with 99mTc-DPA Ale and 99mTc-MDP detected calcification in 1 treated 

rat, whereas 18F-NaF detected calcification in all 3 treated subjects. The scan 

findings also revealed that the maturity in calcification had a negative effect on the 

uptake of the radiotracers. Scans performed on control rats (SD rats on normal 
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diet) appeared to be normal with uptake primarily in the skeletal system and renal 

system, some gut activity was also visualised.  

6. Phantom studies were conducted to determine the feasibility of dual isotope 

trimodality PET, SPECT and CT scans. An imaging protocol was generated from a 

phantom study which involved PET/CT followed SPECT/CT scans. Dual isotope 

longitudinal studies were performed with the radiopharmaceuticals 18F-NaF and 

99mTc-DPA Ale. Warfarin fed SD rats well as controls maintained on normal rodent 

diet were scanned on week 1 and 4. The findings show the uptake 18F-NaF and 

99mTc-DPA Ale in different calcified regions of the same animal, indicating that the 

tracers might bind to minerals at different stages of the process of 

biomineralisation.  

In summary, bone seeking tracers demonstrated potentially optimal properties for 

the imaging of vascular calcification. Although the novel tracers exhibited superior 

binding percentages with minerals in vitro, these advantages were not replicated in 

vivo. The findings do raise some intriguing questions, and answering them might 

reveal more insights about the complex process of vascular calcification and the 

means to image calcification in vivo. The initial success with the animal model does 

indicate the need to pursue the study in other animal models and if possible in 

human subjects too.  

7.2 Future directions 

1. Increasing the cohort size: A small number of animals were used in these 

studies, which may be inadequate to notice any statistically significant differences 

which results in the impression of similarity between the compared agents. The 

reasons for this are to cut the costs, pre-clinical in vivo especially PET/CT and 
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SPECT/CT are expensive which restricts the number of animals scanned. 

Repeating the experiments in a larger cohort of animals will yield a statistically 

meaningful result. This will also be helpful in determining whether our hypothesis 

from the initial study i.e. that bisphosphonates are superior imaging agents for 

calcification holds true. 

2. Ex vivo investigation of human samples: The initial success with the pre-clinical 

in vivo SPECT and PET imaging study with both novel and clinically established 

bone seeking agents warrants for further investigation. Although the animal models 

should emulate the process of calcification in human, it is not an exact 

representation of the same. Therefore, ex vivo binding studies with calcified aortic 

samples from medial (calcified inferior epigastric artery, from adult patients 

undergoing renal transplant) and intimal calcification (calcified carotid arteries from 

patients undergoing carotid endarterectomy) will be helpful in answering the 

intriguing questions raised by the imaging study we conducted. 

3. Intimal vs medial calcification: CT is considered as the ‘gold standard’ in vivo 

imaging modality in detection of vascular calcification.1 However, differential 

diagnosis of intimal and medial calcification is not possible with CT.  

The etiology and pathophysiology of vascular calcification is not fully elucidated.2, 3 

However, the present understanding is that Mönckeberg’s arteriosclerosis and 

atherosclerotic intimal calcifications are pathophysiologically different processes.4, 

5 The minerals in the medial plaques closely resembles bone whereas the minerals 

in intimal calcifications have cholesterol and cholesteryl acids associated with it.3 

Medial calcification also contains noncrystalline (or amorphous) calcium 

phosphate, whitlockite and crystalline Mg-substituted carbonate apatite 

[(Mg,Ca)10(PO4,CO3)6(OH)2]. 
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These differences in the properties of the minerals can be exploited to detect intimal 

and medial calcifications.  Radiolabelled bisphosphonates with varying lipophilicity 

can be developed. In vitro studies can be conducted with minerals isolated from 

intimal and medial plaques. Pre-clinical in vivo imaging can be conducted with 

murine models of atherosclerotic calcification and medial calcification for 

comparison.  

4. Vulnerable plaque imaging: Myocardial infarction is the major cause of morbidity 

and mortality worldwide, despite all the advances in the field of medicine, surgery 

and diagnostics. Diagnosis of vulnerable plaques still remains the “Achilles heel” of 

medical diagnostics.  

The present understanding of the biology of atherosclerotic plaques indicates that 

microcalcifications influence the plaque rupture potential.6-8 Therefore, 

microcalcifications could be a potential target for the detection of vulnerable 

plaques. Recently published clinical studies confirm that 18F-NaF has the potential 

as a marker for in vivo diagnosis of vulnerable plaques.9-11 A distinguishing feature 

of vulnerable plaques is the presence of a thin fibrous cap.12 Fractures in the cap 

result in a change of the plaque geometry thereby initiating a series of reactions 

resulting in plaque rupture.13  

Our findings of the longitudinal studies indicate that the early stages of 

mineralisation (microcalcification) may go undetected if the calcifications are deep 

seated. Our findings showed that calcifications in the thoracic aortas with 

calcification in the media (in close proximity to the adventitia) weren’t detected by 

any of the radiopharmaceuticals used, including 18F-NaF. This suggests that the 

vasa-vasorum doesn’t play a role in the transport of the radiotracers in the 

adventitia to the tunica media. However, in the abdominal aorta, where the 
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calcification sites were exposed to the lumen, calcification was visualised on 18F-

NaF scans. These findings indicate that 18F-NaF uptake can be visualised only in 

mineralised areas exposed to the lumen. We believe that the same could be 

replicated in atherosclerotic plaques where 18F-NaF will detect the calcified 

unstable plaques with fractures in the fibrous cap, whereas the stable plaques (with 

intact fibrous cap) should be negative due to the unavailability of the radiotracers.   

This is also consistent with the current data published were vulnerable plaques 

were detected post rupture rather than as a predictive model of rupture using F18. 

Pre-clinical imaging study should be conducted on suitable animal models for 

vulnerable plaque. High fat diet fed ApoE-/- and LDL-/- mice has been the choice of 

animal models for the understanding of biology atherosclerosis, due to similarities 

to human plaque.  However, these mouse strains rarely develop rupture-prone 

lesions. Several research groups have used rabbit models (New Zealand White) of 

atherosclerosis to image plaque vulnerability. The plaques can be induced by high-

cholesterol diet and/or by surgery (balloon induced endothelial injury).14 High-fat 

diet induced atherosclerotic plaques in rabbit models are better for nuclear imaging 

compared surgical models because the wound itself may create an artefact.  

5. Radiolabelled bisphosphonates for PET scanning: 68Ga-based 

radiopharmaceuticals have emerged as a prospective alternative to cyclotron 

dependent PET radiotracers. 68Ga is attractive because of the several practical and 

economic advantages it offers.15 Generator produced radionuclides eliminates the 

need of a costly cyclotron. 68Ga can be eluted form a 68Ge/68Ga-generator, which 

is relatively cheap and allows for the easy availability of the isotope. The half-life of 

68Ge is 270.8 days; therefore the shelf life of the 68Ge/68Ga-generator is almost a 

yearlong which is an added benefit. The half-life of 68Ga is 68 min, long enough for 
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the chemical manipulations.16 Fellner et al. published the first in human study of 

68Ga labelled bisphosphonate (68Ga-BPAMD) in patients with metastatic bone 

disease.17, 18 Novel bisphosphonates labelled with 68Ga could also be a prospective 

candidate for detection vascular calcification. 
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Technetium-99m and rhenium-188 complexes
with one and two pendant bisphosphonate groups
for imaging arterial calcification†

Jayanta Kumar Bordoloi,a,b David Berry,a Irfan Ullah Khan,a,c Kavitha Sunassee,a

Rafael Torres Martin de Rosales,a Catherine Shanahanb and Philip J. Blower*a

The first 99mTc and 188Re complexes containing two pendant bisphosphonate groups have been syn-

thesised, based on the mononuclear M(V) nitride core with two dithiocarbamate ligands each with a

pendant bisphosphonate. The structural identity of the 99Tc and stable rhenium analogues as uncharged,

mononuclear nitridobis(dithiocarbamate) complexes was determined by electrospray mass spectrometry.

The 99mTc complex showed greater affinity for synthetic and biological hydroxyapatite, and greater stabi-

lity in biological media, than the well-known but poorly-characterised and inhomogeneous bone imaging

agent 99mTc-MDP. It gave excellent SPECT images of both bone calcification (mice and rats) and vascular

calcification (rat model), but the improved stability and the availability of two pendant bisphosphonate

groups conferred no dramatic advantage in imaging over the conventional 99mTc-MDP agent in which

the bisphosphonate group is bound directly to Tc. The 188Re complex also showed preferential uptake in

bone. These tracers and the biological model of vascular calcification offer the opportunity to study the

biological interpretation and clinical potential of radionuclide imaging of vascular calcification and to

deliver radionuclide therapy to bone metastases.

Introduction

Techetium-99m (99mTc) complexes of MDP (methylene diphos-
phonate, 1, Fig. 1) and related 1,1-bisphosphonates such as
HDP (hydroxymethylene diphosphonate) have been used suc-
cessfully for decades in the clinic for acquiring planar and
SPECT images of osteoblastic processes associated with bone
tumours and metastases.1–3 Another 1,1-bisphosphonate ana-
logue, HEDP (2) has found use in palliative treatment of bone
metastases with the beta-emitting rhenium isotopes rhenium-
186 (186Re) and rhenium-188 (188Re).4–7 Despite the proven
value of these complexes in imaging and therapy, both the
technetium and rhenium complexes have limitations. The
structures of the active metal complexes are unknown, and cer-
tainly not homogenous.8 Despite their periodic relationship,
the technetium and rhenium complexes are not chemically
analogous (for example, the technetium complexes are biologi-

cally effective at no-carrier-added concentrations whereas the
rhenium complexes are ineffective without carrier non-radio-
active rhenium,9 suggesting that they are polymeric). The com-
plexes show poor in vivo stability; while this is not a major
problem over the short time scales of imaging with 99mTc (typi-
cally 3 h) it is detrimental to therapeutic use of 186/188Re, as a
high proportion of the rhenium is rapidly converted to perrhe-
nate,10 which does not bind to bone and is taken up in thyroid
or excreted renally. The instability arises because the bisphos-
phonate groups in these ligands serve the dual purpose of
binding the metal ion (for which they are not well-suited) and
for bone targeting (in which their affinity may be compromised
by the bound radiometal).

In addition to the need for improved in vivo stability and
therapeutic efficacy of bone-targeting rhenium complexes, new
applications are emerging for imaging calcification (or decalci-
fication) processes that place more stringent demands on
imaging agents than conventional imaging of osteoblastic
bone metastases. For example, imaging osteolytic lesions
characteristic of multiple myeloma has very poor sensitivity
with conventional 99mTc-bisphosphonate complexes,11 and
imaging soft tissue calcification associated with cardiovascular
diseases such as atherosclerosis and arterial calcification may
require complexes with improved imaging characteristics
because the lesions are small and mineral content and miner-
alisation/demineralisation rates may be low.

†Electronic supplementary information (ESI) available. See DOI: 10.1039/
c4dt02965h
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To achieve the required improvements in in vivo stability
and affinity for mineral deposits, we adopted the strategy of
separating the metal chelating site from the bisphosphonate
(bone targeting) site in a bifunctional molecule. This allows
separate control/optimisation of metal chelation and bone tar-
geting, exemplified by the ligand DPA-Alendronate (3) and its
99mTc12 and 188Re13 complexes (4) using the readily-syn-
thesised tricarbonyl [M(CO)3]

+ cores. [188Re]-5 showed higher
bone uptake and more prolonged bone retention of 188Re
in vivo and higher biological stability compared with
188Re-HEDP (188Re-2) over a 24 hour period.13 The results indi-
cate that [188Re]-5 has potential as an improved palliative
agent for bone metastases, but remains non-ideal due to
modest uptake in non-target organs such as the liver, attribu-
ted to the increased lipophilicity of the complex.

In this paper we extend the concept of bifunctional ligands
for bone targeting, by synthesising complexes with increased
mineral affinity by the inclusion of two pendant bisphospho-
nate groups in the molecule, and evaluating them in the chal-
lenging setting of an animal model of arterial calcification.
The pentavalent technetium/rhenium nitrido bis(dithiocarba-
mate) core was identified as potentially meeting the require-
ments of retaining a structurally discrete, well-characterised
and stable Tc/Re core with the expectation that the Tc and Re
complexes will share similar biological behaviour. Precursors
containing the [MuN]2+ core (M = 99mTc or 188Re) are readily
synthesised14 and react with dithiocarbamates to give sym-
metrical MN(DTC)2 complexes.15–17 Despite the simplicity of
the structures and syntheses, MN(DTC)2 complexes have found
only limited use in radiopharmaceuticals, amongst which
99mTc-NOET for myocardial perfusion imaging has been most
prominent.17,18 Here we have used the ligand DTC-BP (6), pre-
viously used to form a copper-64 complex,19 in a kit-based
approach to synthesise the novel bis(bisphosphonate) complex
99mTcN(DTC-BP)2 ([

99mTc]-7) and its rhenium analogues 8 and
[188Re]-8, and compared their biological behaviour with that of

the mono(bisphosphonate) derivative [99mTc]-4 and the con-
ventional bone-imaging agent 99mTc-1.

Experimental
Equipment and consumables

TLC analyses were carried out using silica gel on aluminium-
backed TLC plates (Merck 1.16834.0001) cut to 100 mm ×
25 mm, using four mobile phase systems. Solvent system 1:
ethanol–chloroform–toluene–0.5 M ammonium acetate (6/3/3/
1);16 solvent system 2: methanol + 1% of a 60% solution of
HEDP (Sigma H6773); solvent system 3: methanol–10%
Ammonium Acetate (1/1) containing 15 mM EDTA; solvent
system 4: 1% HCl in methanol. The spots were allowed to dry
before development in the mobile phase. Paper chromato-
graphy was carried out using Whatman 3MM paper or
Whatman P81 paper and 0.9% saline as mobile phase. Radio-
TLC chromatograms were analysed with a Mini-Scan TLC
scanner (Bioscan) with FC3600 detector and γ-detector probe
and Laura 4.0.2.75 (Lablogic) software. HPLC analyses were
carried out on an Agilent 1200 series HPLC with degasser
(G1322A), quaternary pump (G1311A), UV detector (G1314B)
and manual injector (Rheodyne 7725i). The column used was
an Agilent Zorbax Eclipse analytical XDB-C18 column (150 mm
× 4.6 mm, 5 μm) unless otherwise indicated. Gamma counting
of 99mTc and 188Re samples was done using a 1282 Compu-
gamma Gamma Counter (LKB Wallac) with Ultroterm soft-
ware, counting for 10 seconds using a 110–155 KeV window.
Higher activities were measured with a CRC-25R (Capintec)
dose calibrator. Freeze drying of samples was done using an
Edwards freeze dryer connected to an Edwards RV8 vacuum
pump. Mass spectra were acquired on an Agilent 6520 Accu-
rate-Mass Q-TOF LC/MS with electrospray ionisation coupled
to an Agilent 1200 HPLC system with degasser, quaternary
pump and autosampler (G1329A), using Agilent Masshunter

Fig. 1 Bone targeting bisphosphonate derivatives and their 99mTc and 188Re complexes with 99mTc and 188Re.
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workstation acquisition software, B.02.1 (B2116). Data were
analysed using Agilent Masshunter Qualitative software
B.03.01 (Build 3.1.346.14 service pack 3). Sample shaking and
centrifugation were done on a Grant PHMT shaker and an
Eppendorf centrifuge 5424 microcentrifuge, respectively.
99mTc-1 (99mTc-MDP, prepared by reconstitution of a Drax-
image kit with [99mTc]-pertechnetate eluted from a generator
with physiological saline), was supplied by Guy’s Hospital
Radiopharmacy, Guy’s and St Thomas’ NHS trust. [188Re]-
perrhenate was eluted with physiological saline from a genera-
tor purchased from ITG (Isotope Technologies, Garching
GmbH) and, where necessary, concentrated using a previously
described procedure.20,21 S-Methyl-N-methyl-dithiocarbazate
(DTCZ) was synthesised as previously described.22

Radiolabelling and quality control of [99mTc]-4

[99mTc-4] was synthesised and characterised according to pro-
cedures described previously.12,23 50 μg of DPA-ale in 300 μL of
50 mM carbonate buffer (pH 9) containing 0.15 M NaCl was
mixed with 300 μL of an aqueous solution of [99mTc]-
[Tc(CO)3(H2O)3]

+ (250–300 MBq) in a glass vial with a rubber
stopper and heated at 90 °C for 30 min. The product was puri-
fied by passing it through a Sep-Pak C-18 Plus Light cartridge
(Waters, WAT-23501) activated with absolute ethanol. [99mTc]-4
trapped by the column was eluted with 500 μL of 1 : 1 ethanol–
water. The ethanol was then evaporated under a stream of
nitrogen and the remaining solution diluted with 250 μL of
saline for injection. The intermediates and product were ana-
lysed by radio-TLC using solvent system 4 on silica plates
(intermediates: reduced hydrolysed technetium, Rf = 0;
[Tc(CO)3(H2O)3]

+, Rf = 0.1–0.7; pertechnetate, Rf = 0.9; product,
[99mTc-4], Rf = 0). Radiochemical purity of the final product
was >99%.

Synthesis and mass spectrometry of [TcN(DTC-BP)2] (7)

K[99TcO4] (Amersham International plc, UK; 0.6 mg, 20 μL of a
30 mg mL−1 solution) was added to a vial containing 3.6 mg
succinic dihydrazide (SDH) and 1.3 mg 1,2-diaminopropanete-
traacetic acid (DPTA) in 500 μL physiological saline, followed
by 500 μL of a 10 mg mL−1 solution of SnCl2 in 0.05 N HCl.
The solution immediately turned yellow/orange and a precipi-
tate formed. After 35 minutes the solution was centrifuged and
50 μL of the supernatant was added to 1.3 mg HDTC-BP (6),
synthesised as described previously,19 in 400 μL of pH 10 car-
bonate buffer. The solution was heated at 60 °C for 30 minutes
before cooling to room temperature and analysing by mass
spectrometry using the LC-MS system without a column. The
mobile phase was 15 mM ammonium bicarbonate, adjusted to
pH 9.4 with 30% NH4OH solution. The flow rate was 0.5 mL
min−1 and a splitter was fitted (10% LC flow to mass spectro-
meter, 90% flow to waste). The mass spectrometer was run in
negative ion mode with a gas temperature of 325 °C, an N2 gas
flow of 5 L min−1 and a nebuliser pressure of 20 psi. The capil-
lary voltage was 3500 V and the fragmentor voltages were 175 V
and 250 V. The injection volume for each sample was between
0.1 and 1 μL.

Synthesis and mass spectrometry of [ReN(DTC-BP)2] (8)

[ReNCl2(PPh3)2]
24 was reacted with 1,3,5-triaza-7-phospha-

adamantane (PTA) to produce the water-soluble complex
[ReNCl2(PTA)3] according to an established method.25 This
complex (8.9 mg, 1.12 × 10−5 mol) was dissolved in 1 mL water
to give a cloudy brown solution which was then added to 6
(8 mg, 2.46 × 10−5 mol, 2.2 eq.) and shaken at 800 rpm at
room temperature for 80 min. The solution was then freeze
dried. The freeze dried material was reconstituted to 1 mg
mL−1 in water for mass spectrometry analysis, giving a clear
yellow solution. This was analysed by mass spectrometry as
described above for [99Tc]-7 but with fragmentor voltage set at
125 V or 325 V.

Radiolabelling of [99mTc]-7

Method 1 (arrived at after extensive optimisation to ensure
reliable quantitative radiochemical yield): To a vial containing
SDH (2.5 mg) and DPTA (1 mg) in 500 μL saline was added
695 MBq 99mTcO4

− generator eluate (120 μL), followed by 50 μL
of a 10 mg mL−1 solution of SnCl2 in 0.05 N HCl. The mixture
was shaken at room temperature for 1 h. Quality control was
performed using TLC with solvent system 1 (pertechnetate, Rf
= 0.5; reduced hydrolysed technetium, Rf = 0; required techne-
tium nitride intermediate, Rf = 0–0.3) and solvent system 2
(reduced hydrolysed technetium, Rf = 0; required technetium
nitride intermediate and pertechnetate, Rf = 0.9). 300 μL of
this solution was then added to a vial containing 0.5 mg 6 in
200 μL carbonate buffer, to give a total of 280 MBq in 500 μL.
The solution was heated at 60 °C for 30 minutes, followed by
quality control by TLC using solvent system 2 ([99mTc]-7, Rf =
0). For in vivo administration 200 μL of the solution was added
to 80 μL 0.1 N HCl, to give 101 MBq of 99mTc-7 in 280 μL with
a final pH of 6.6–7.

Method 2 (developed after optimising the synthesis via
method 1): 623 MBq 99mTcO4

− generator eluate (in 1 mL
saline) was added to a lyophilised SDH kit vial (generous gift
of Prof. Roberto Pasqualini, Cis Biointernational, IBA Group,
Gif-sur-Yvette, France, as previously used for production of
99mTc-NOET)17,18 and incubated for 30 minutes at room tem-
perature. The composition of the kit vial was as follows: SDH
5.0 mg; stannous dichloride dihydrate 0.10 mg; DPTA 5.0 mg;
sodium dihydrogen phosphate monohydrate 0.6 mg; disodium
phosphate heptahydrate 10.9 mg; under a dinitrogen atmos-
phere. Quality control was performed using TLC with solvent
system 1. 300 μL of the resulting solution was then added to
300 μL of the of DTC-BP ligand (1 mg mL−1) in carbonate
buffer (pH 10). The vial was incubated at 60 °C for 30 minutes.
QC was performed using TLC with solvent system 2.

Radiolabelling of [188Re]-8

Kit vials were prepared as follows: 1.5 mg DTCZ was placed in
a nitrogen-purged vial followed by 2.8 mg mL−1 SnCl2·2H2O
dissolved in 0.5 mL of 20% glacial acetic acid and 28 mg
sodium oxalate. The vial was capped with a rubber stopper,
sonicated and purged with nitrogen for 10 min. To a kit vial
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thus prepared, 500 MBq 188ReO4
− in 0.5 mL generator eluate

was added. The vial was vortex-mixed, heated at 80 °C for
2–3 min and allowed to cool to room temperature for 15 min.
TLC was performed using solvent system 1 above. This inter-
mediate solution as also analysed by radioHPLC using an
Agilent HPLC with an Eclipse XDB-C18 column (4.6 × 150 mm)
and a guard column eluted with 95% water, 5% methanol
each with 0.1% trifluoracetic acid, at a flow rate of 1 mL
min−1. In this system perrhenate (5% of eluted activity) eluted
at <2 min, while the rhenium nitride intermediates (95% of
eluted activity) eluted as a series of isomeric species at
10–13 min. 50 µL of this solution of 188Re-nitride intermediate
was then added to 71.4 µg DTC-BP in 100 µL carbonate buffer
(0.5 M, pH 9.0), to give a total of 25 MBq in 150 µL. The solu-
tion was gently vortexed and heated at 80 °C for 30 min, fol-
lowed by quality control by TLC using solvent system 3
(perrhenate, Rf = 0.8–0.9; [188Re]-8, Rf = 0).

Log P measurement

The lipophilicity of each 99mTc and 188Re radiotracer, with a
radiochemical purity of at least 95%, was determined by parti-
tioning the complex between 1-octanol and water. 50 µl (∼1–2
MBq) of the radiotracer was added to a 1.5 mL Eppendorf tube
(n = 9) containing 500 µL 1-octanol and 495 µL of distilled
water and vortexed at room temperature for 15 minutes and
then centrifuged at 1200 RPM for 5 minutes. A 0.2 mL aliquot
of each phase was pipetted out and counted in a gamma-
counter. The partition coefficient was calculated as log P =
log((cpm in octanol − cpm background)/(cpm in water − cpm
background)).

Synthetic and biological mineral binding studies

Preparation of mineral salts and buffer solutions: 1 mg of each
bone mineral analogue (hydroxyapatite, β-tricalcium phos-
phate, calcium phosphate dibasic, calcium oxalate, calcium
carbonate or calcium pyrophosphate, all purchased from
Sigma-Aldrich) was added to a 1.5 mL plastic microcentrifuge
tube in duplicate. 1 mL TRIS-HCl buffer (50 mM, pH 6.8) was
added to each tube followed by 10 μL of either 99mTc-7 (pre-
pared by method 1) or 10 μL of the 99mTcN2+ intermediate
(method 1, as a control). 10 μL of either tracer were also added
to control tubes containing 1 mL TRIS-HCl with no mineral
salts. All tubes were then shaken at 900 rpm for 1 h then cen-
trifuged at 10 000 rpm for 5 min. 10 μL of supernatant was
removed from each tube (including the controls) and added to
1 mL TRIS-HCl buffer (50 mM, pH 6.8) in triplicate. Percentage
binding of radioactivity to the mineral salts was calculated as
(1 − cpmsample/cpmcontrol) × 100%.

Similar studies were performed with mineral samples of
biological origin, including powdered equine bone and human
minerals isolated from vascular intimal and medial calcified
plaques obtained from surgical procedure with appropriate
ethical approval. The methods to release these biominerals
from their organic matrix and connective tissues have been
previously published.26,27 Suspensions of 0.5 mg mL−1 of each
sample were prepared in distilled water. 1 mL of the suspen-

sions in triplicate (synthetic hydroxyapatite, powdered equine
bone, medial and intimal arterial minerals) was placed in
1.5 mL Eppendorf tubes in triplicate alongside mineral-free
controls. 20 μL of 99mTc-1, [99mTc]-4 and [99mTc]-7 (0.5–1 MBq)
was added to each tube. The tubes were incubated for 60 min
in a shaker at 37 °C and 550 RPM. The tubes were centrifuged
at 13 200 RPM for 5 minutes. 50 μL of the supernatant from
the vials were pipetted out and counts were measured in a
gamma counter. The binding percentage was calculated as
above.

Hydroxyapatite binding in the presence of serum and serum
protein binding

To microcentrifuge tubes containing 2 mg mL−1 hydroxy-
apatite in TRIS-HCl buffer (50 mM, pH 6.8) or human serum
(Sigma) were added 10 μL of either [99mTc]-7 or 99mTc-1. Identi-
cal controls without mineral were prepared similarly. All tubes
were prepared in triplicate. All samples were then incubated
with shaking at 1400 rpm at 37 °C. At intervals of up to 23 h
all tubes were centrifuged at 10 000 rpm for 5 minutes. 5 μL
supernatant was removed from each tube and counted in a
gamma counter. Hydroxyapatite % binding was calculated as
described above. Binding to serum proteins in the serum-con-
taining samples was assessed as follows: 70 μL ethanol was
added to 50 μL aliquots of the supernatant after centrifugation
of each serum incubation. The tubes were centrifuged at
10 000 rpm for 5 minutes and the supernatant was removed.
The pellets were washed with another 70 μL ethanol, centri-
fuged again and the supernatant was decanted and added to
the supernatant from the initial precipitation. The pellets and
supernatant were then counted separately in a gamma
counter. Percentage serum protein binding was calculated as
100% × cpmpellet/(cpmpellet + cpmsupernatant). Control samples
of [99mTc]-7 in buffer were also subjected to ethanol precipi-
tation to ascertain whether or not the addition of ethanol
caused the complex to precipitate.

Animal studies

All procedures were performed in accordance with licences
and guidelines approved by the UK Home Office and were
approved by a King’s College ethics committee. Normal female
BALB mice, 9 weeks old, were used for preliminary compara-
tive biodistribution studies with 99mTc-1, [99mTc]-7 and [188Re]-
8. For imaging of arterial calcification, Sprague Dawley rats (n
= 6; male; 21–27 days old) were purchased from Charles River
Laboratories. After an acclimatisation period of 7 days, 6 rats
were fed with a diet containing warfarin (3 mg g−1 food) and
vitamin K1 (1.5 mg g−1 food) for 11 days. The rats were given
200 000 IU kg−1 per day subcutaneous injections of cholecalci-
ferol (Sigma-47763) from day 7 to day 11 of the diet. It has
been reported that warfarin treatment in the form of diet, oral
administration (gavage) or subcutaneous injections induces
vascular calcification27,28 and the process is accelerated by
vitamin D3 (cholecalciferol). All animals were maintained on a
12 hour light-dark cycling with access to environmental enrich-
ment (tunnel). Food and water were provided ad libitum.
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SPECT/CT scanning and biodistribution: Mice (n = 1) under
Isoflurane anaesthesia were injected with 40 MBq of either
[99mTc]-1 or [99mTc]-7 in ∼100 μL via a tail vein. SPECT-CT
scans were acquired at intervals up to 338 min using a Nano-
SPECT-CT scanner (Bioscan, USA) with SPECT acquisition
time 1800 s, obtained in 24 projections using a 4-head scanner
with 4 × 9 (2 mm) pinhole collimators in helical scanning
mode and CT images with a 45 kVP X-ray source, 500 ms
exposure time in 180° projections over 9 min. Images were
reconstructed in a 128 × 128 matrix using HiSPECT (Sci-
visGmbH), a reconstruction software package, and images were
fused using proprietary Bioscan InVivoScope (IVS) software. All
scans were 30 minutes long. Kinetic studies (% uptake) were
carried out by calculating the radioactivity in local regions of
interest (ROIs) relative to the radioactivity in the whole body
ROI. ROI data were calculated for both a knee joint and a single
vertebra. The mice were sacrificed with an overdose of anaesthe-
sia at the end of scanning and the organs and tissues were
harvested, weighed and counted in a gamma counter. Uptake
was reported as standard uptake values (SUVs). Rats under
Isoflurane anaesthesia were injected with 40–50 MBq (100 µL)
of the radiotracers via a tail vein with 99mTc-1, [99mTc]-4 or
[99mTc]-7 (n = 2 in each case). CT images were acquired with a
55 kVP X-ray source, 100 ms exposure time in 360° projections
over 24 min. SPECT imaging was performed with above men-
tioned parameters at intervals of 30 min up to 240 min. After
4 hours of SPECT-CT scanning the rats were culled by an over-
dose of anaesthesia. Vital organs were harvested, weighed and
counted with a gamma counter, along with standards prepared
from a sample of the injected material. The percent of injected
dose per gram of tissue (% ID g−1) was calculated. Biodistribu-
tion of [188Re]-8 was determined similarly (n = 3) after injection
of 8.5 MBq (50 μL) of the radiopharmaceutical. Mice were killed
at 24 h post-injection and organs harvested as described above,
weighed and counted in a gamma counter.

Results
Chemical syntheses and characterisation

[TcN(DTC-BP)2] (7). The beta-emitting isotope 99Tc has a
long half-life (200 000 years) and hence, unlike the gamma-
emitter 99mTc, a low enough specific activity to be handled in
quantities sufficient to perform conventional spectrometry.
Compound 8 was synthesised by a scaled-up version of the no-
carrier-added method used with 99mTc (see below), starting
from potassium pertechnetate and reducing it with stannous
chloride in the presence of succinic dihydrazide as a nitride
source and propane-1,2-diamine tetraacetic acid as an inter-
mediate chelator of the technetium complex and possibly of
tin. Like the rhenium analogue (see below for details), the
clear yellow solution resisted isolation of the product in pure
form by virtue of its intractable solubility and chromatography
properties, and was therefore characterised by electrospray
mass spectrometry (again, like the rhenium analogue dis-
cussed below). Negative ion mass spectra of the yellow 99Tc

solution show that at 250 V the only technetium-containing
ions detected were those derived from the expected molecule 7
i.e. (M − H)− (m/z = 759.8003) and sodium adducts (M − 2H +
Na)− (781.7815) and (M − 3H + 2Na)− (803.7624). At 175 V the
doubly charged (M − 2H)2− species was also present. No ions
containing Tc in a form other than this (e.g. with oxo-ligand
rather than nitride, or with a ligand-to-metal ratio other than
2 : 1, or oligomeric species) were detected. A full list of ions
can be found in Table S2 of the ESI†, along with raw spectra.

[ReN(DTC-BP)2] (8). Synthesis of 8 (Fig. 2) was achieved in
three steps. The well-known Re(V) nitride precursor
[ReNCl2(PPh3)2] was synthesised according to an established
method24 and was then reacted with 1,3,5-triaza-7-phosphaa-
damantane (PTA) to make the water-soluble [ReNCl2(PTA)3]
according to an established method.25 The aqueous solubility
of [ReNCl2(PTA)3] enabled its reaction with the dithiocarba-
mate-bisphosphonate conjugate 5 which is soluble only in
water; the resulting clear yellow aqueous solution was typical
in appearance to previously reported [ReN(dtc)2] complexes
but because of the extreme water solubility of the product, its
extreme insolubility in non-aqueous solvents, and its strong
adherence to all of the wide variety of chromatographic
stationary phases tested (including reverse-phase silica-based
HPLC media) it remained resistant to isolation in pure form.
Therefore the crude clear yellow aqueous solution was ana-
lysed by electrospray mass spectroscopy (in negative mode due
to the expected negative charge), as the only analytical
approach by which the complex could be characterised
without interference from other components of the mixture.
Because of the irreversible adsorption to all chromatographic
media, the LC-MS system was used without a column. The
sample was analysed at two different cone voltages. At 325 V
the only ion species showing the characteristic 185/187Re
isotope pattern were the negatively charged ions corres-
ponding to the expected molecule 8 ionising by loss of H+ or
2H+, and variants with H+ replaced by Na+. In the case of the
dominant 187Re isotope these were (M − H)− complex (m/z =
847.8721) and related sodium adducts (M − 2H + Na)−

(869.8517) and (M − 3H + 2Na)− (891.8341), and doubly
charged relatives (M − 2H)2− (m/z = 423.4129) and related
sodium adducts (M − 3H + Na)2− (434.4033) and (M − 4H +
2Na)2− (445.3949). The mass spectrum also showed another
187Re species with m/z 765.8919 (together with its 185Re
partner), corresponding to a fragmentation involving loss of
P(OH)3 and ionisation by loss of H+. No ions of higher mole-
cular weight that would indicate oligomeric species, or with
ratios of ligand-to-rhenium nitride other than 2 : 1, or indeed
rhenium species not containing the nitride ligand, were
detected in the mass spectrum at 325 V. At 125 V, the main
species identified were again the doubly charged (M − 2H)2−

derived from 8 and related sodium adducts (M − 3H + Na)2−

and (M − 4H + 2Na)2−. However, also present at 125 V were
peaks derived from [ReN(DTC-BP)2(PTA)] with (M − H)− and
(M − 2H)2− and related sodium adducts. There was also a set
of peaks relating to ReN(DTC-BP)3 (M − H). The absence of
these peaks from the 325 V spectrum of the same sample
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suggests that they appear of greater significance under the
milder ionisation conditions because the major species
derived from 8 itself are less efficiently ionised at this low
voltage. A full list of ions can be found in Table S1 of the ESI†
along with the raw spectra.

Radiolabelling and quality control of [99mTc]-7

The radiolabelling method was developed from the established
two-step methods used for radiolabelling the lipophilic
99mTcN(DTC)2 complexes such as 99mTc-NOET.15–17 The
general method was to make the pentavalent 99mTcN2+ inter-
mediate (presumably with PDTA as ancillary ligands) from per-
technetate by stannous reduction in the presence of succinic
dihydrazide as the nitride source in the first step before
adding this solution to the dithiocarbamate (in this case 5) in
the second step. As expected from the adsorption and solubi-
lity behaviour of 8 (above), analysis of radiochemical purity of
[99mTc]-7 using reverse phase HPLC proved to be unsuccessful,
leading to retention of all radioactivity on all columns evalu-
ated (whether reverse- or normal-phase) even after prolonged
washing with various solvents. The nitride intermediate and
the starting pertechnetate were, on the other hand, eluted suc-
cessfully from HPLC columns and migrated in suitable TLC
conditions, as expected. Two solvent systems were adopted for
quality control using silica gel TLC. Solvent system 1 could dis-
tinguish between 99mTcO4

− and the 99mTcN2+ intermediate
(Fig. 3A and B respectively). Solvent system 2 could distinguish
between the 99mTcN2+ intermediate and [99mTc-7] (Fig. 3C and
D respectively); all three species could be distinguished using
these two systems. Thus, the main evidence for the formation
of the required [99mTc]-7 is the presence of a radioactive
species with Rf = 0 under conditions of both TLC methods
1 and 2; no such species appeared at earlier stages of the syn-

thesis. These TLC methods were used to optimise the kit-
based process for synthesising [99mTc]-7, before finally arriving
at the conditions described in the Experimental section.
Octanol–water solvent extraction confirm that [99mTc]-7 is
highly hydrophilic (log P = −2.76 ± 0.08), and its increased lipo-
philicity compared to 99mTc-1 and [99mTc]-4 (log P = −2.40 ±
0.16 and 2.05 ± 0.03 respectively; see ESI†) is consistent with
the presence of two pendant bisphosphonate groups.

Radiolabelling and quality control of [188Re]-8

The approach to 188Re radiolabelling was similar to that used
for 99mTc labelling. First a labelled rhenium–nitrido intermedi-
ate was prepared using stannous chloride to reduce rhenium
from Re(VII) to Re(V) and DTCZ as a source of the nitride group,
as previously described.29 TLC and HPLC showed that at this
stage 95% of perrhenate had been converted to the intermedi-
ate. This intermediate was then treated with the dithiocarba-
mate ligand to produce [188Re]-8, which was used both to
confirm the equivalence of the radioactive species by TLC with
the cold complex characterised by mass spectrometry, and for
preliminary biodistribution studies. The final TLC showed that
no perrhenate or intermediate remained in the product. As in
the case of [99mTc]-7, no HPLC or TLC conditions could be
found in which the product could be eluted from the station-
ary phase.

In vitro bone mineral binding studies

To determine the propensity of the complexes to bind to
hydroxyapatite (HA) and other calcium phosphates, as a crude
in vitro assessment of bone targeting potential and to confirm
the availability of bisphosphonate groups for mineral binding,
[99mTc]-7 was mixed with a suspension of hydroxyapatite and
allowed to partition between solid and solution phase.

Fig. 2 Intermediates and products (the latter as identified by detection of corresponding molecular ions in electrospray mass spectrometry) in the
synthesis of rhenium nitride complexes.
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Binding of [99mTc]-7 was high for each mineral salt with values
ranging between 59% for β-tricalcium phosphate up to 90%
for hydroxyapatite as shown in Fig. 4. “Non-specific” binding
of radioactivity of the 99mTcN2+ intermediate to mineral salts
was very low with all values ≤1.6%. This encouraging result
prompted comparison of [99mTc]-7 with the other 99mTc-
bisphosphonate complexes, 99mTc-1 and [99mTc]-4, in their
affinity for synthetic and biologically-derived calcium
phosphates.

Each of these 99mTc-complexes was incubated with 0.5 mg
mL−1 of synthetic HA, equine bone and isolated minerals from
human intimal and medial atherosclerotic plaque samples.
The results are shown in Fig. 5. The percentages of 99mTc-1,

[99mTc]-4 and [99mTc]-7 bound to synthetic HA were 88.5 ±
0.9%, 92.4 ± 0.7% and 94.5 ± 3.05% respectively. A similar
range and ranking was observed with powdered bone and with
mineral from medial calcified plaques. However with the min-
erals isolated from intimal plaques the % binding was signifi-
cantly lower (possibly because these minerals contain a lipid
component) and the MDP complex had a markedly reduced
tendency to bind compared to the pendant bisphosphonate
complexes.

Binding to hydroxyapatite and proteins in serum
99mTc-1 and [99mTc]-7 were incubated in serum (and a non-
phosphate buffer, as a control) with and without hydroxyapatite

Fig. 4 Graph showing results of bone mineral binding studies of [99mTc]-7 (hatched bars) and 99mTcN2+ intermediate (black bars).

Fig. 3 Radio-TLC chromatograms on silica gel coated aluminium plates of (A) 99mTcO4
−, solvent system 1; (B) 99mTcN2+ intermediate, solvent

system 1, (demonstrating the absence of pertechnetate at this stage); (C) 99mTcN2+ intermediate, solvent system 2 and (D) 99mTc-7, solvent system 2
(demonstrating the absence of both pertechnetate and the Tc-nitride intermediate in the final product).
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over a period of 23 h in order to determine whether a biologi-
cal milieu interferes with mineral binding, and to compare
their binding to serum proteins. [99mTc]-7 binds well (>90%) to
hydroxyapatite in buffer and only slightly less well (>80%) in
serum, and the binding is largely retained during the 23 h.
99mTc-1 on the other hand binds less well in buffer (>60%) in
qualitative agreement with Fig. 6 despite the changed con-
ditions, and the binding is severely diminished (>30%) by the
presence of serum; moreover the fraction bound in buffer
diminishes with time (to ca. 35% by 23 h), whereas there is no
corresponding loss of binding with time in serum. Possibly
this behaviour is associated with vulnerability of 99mTc-1 to
gradual oxidation to pertechnetate, against which serum may
offer some protection, and to which [99mTc]-7 is less sensitive
because of the more appropriately designed chelator used.
Both complexes display a high level of binding to proteins

Fig. 5 Graph showing the % binding (mean ± SD) of 99mTc-1, [99mTc]-4 and [99mTc]-7 with synthetic hydroxyapatite, powdered equine bone and
minerals from intimal and medial plaques. *significant a p > 0.05, **significant at p > 0.001 and ***significant at p > 0.0001.

Fig. 6 Graph showing binding of [99mTc]-7 to hydroxyapatite in buffer
(black solid line) and in serum (black dotted line); 99mTc-MDP in buffer
(grey solid line) and in serum (grey dotted line).

Fig. 7 SPECT images (coronal sections) of a mouse injected with [99mTc]-7 at 54 min (A) and 365 min (B), and of a mouse injected with 99mTc-1
after 104 min (C) and 368 min (D), post injection. The bladders have been digitally removed from the field of view for the sake of clarity. All scans
show high uptake in bone and especially joints. A and B show transit and retention of activity by kidney, whereas in C and D the renal excretion
process is essentially complete and the kidneys are not evident.
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(70–80% in the case of [99mTc]-7, 60–70% in the case of 99mTc-
1), with a much faster loss of protein binding over time in the
case of 99mTc-1, possibly again because of gradual oxidation to
pertechnetate.

Biodistribution and imaging

The biodistribution of the new tracer [99mTc]-7 was compared
with that of the conventional bone imaging agent 99mTc-1 in
normal mice. Both tracers (Fig. 7) show qualitatively similar
biodistribution, with high uptake in bone and especially the
joints, no marked uptake in any other tissue except kidney and
bladder but a marked difference in the rate at which the tracer
accumulates and clears through the renal pathway. The biodis-
tribution of 99mTc-1 reached a steady state by 100 min, with
renal excretion essentially complete and no further uptake in
or clearance from bone and joints. [99mTc]-7 on the other hand
was still visibly being excreted through kidney at this time,
while Fig. 8 shows that activity continued to migrate from
blood and soft tissues to bone and joints until at least 6 h.
Although the SUV of [99mTc]-7 in bones and joints was lower
than that of 99mTc-1 at 1 h, by 2 h the SUVs were similar and
by 6 h the SUV of [99mTc]-7 was significantly higher than that
of 99mTc-1. The bladder (removed from the image for clarity of

display) contained 61% of the radioactivity from 104 minutes
onwards for 99mTc-1 compared with 24% at 54 minutes for
[99mTc]-7, rising to 28% at 365 minutes post injection.

Biodistribution data at 6 h post injection are shown in
Fig. 9. SUVs are higher in bone and joint for [99mTc]-7 com-
pared with 99mTc-1 but non-specific binding in most soft
tissues is higher for [99mTc]-7 particularly in the kidneys
because of slower excretion and slower binding to bone, and
minor uptake in trachea, spleen and liver. Also of note from
Fig. 8 is that [99mTc]-7 displays a higher ratio of uptake in joint
to mature bone than 99mTc-1.

The new rhenium-188 radiopharmaceutical [188Re]-8, like
[99mTc]-7, shows high specificity for bone and joints in prelimi-
nary biodistribution studies in mice (see ESI†). Radioactivity
concentration in bone and joints is high at 24 h (a much later
time point than in the evaluation of its 99mTc analogue) and
higher than in kidney and other tissues.

The ability of the tracers to detect vascular calcification was
compared in a rat model in which arterial calcification was
induced by administration of warfarin and vitamin K in the
diet and vitamin D subcutaneously. The resulting arterial calci-
fication in the aorta and mesenteric arteries was confirmed by
histological staining (see ESI†). SPECT-CT scans (Fig. 10 and
ESI†) were then performed with novel agents [99mTc]-7 and
[99mTc]-4 and the conventional agent 99mTc-1. As well as in
bones and joints, intense uptake of all the radiotracers was
most strikingly seen in the calcified mesenteric artery within
30 min of the injection. This manifests as a hollow sphere of
activity, in the abdominal region below the liver that does not
correspond to any major solid organs and is not visible in
scans of normal rats. Ex vivo biodistribution demonstrates sig-
nificantly increased uptake (%ID g−1) in most tissues (includ-
ing bones) compared to normal rats; of the tissues that could
be dissected and weighed (which do not include the mesen-
teric arteries), the increase is particularly marked for all three
tracers in the aorta, heart and lungs (Fig. 11) although uptake
in these organs is still too small to be clearly evident on the
scans at the thresholds used in Fig. 10. While these data
demonstrate the ability of the new tracers to detect vascular

Fig. 8 Graph showing uptake in knee joint (solid lines) and single verte-
bra (broken lines) over 6 h. 99mTc-7 is represented by black lines, 99mTc-
1 is represented by grey lines.

Fig. 9 Standard Uptake Values (SUVs) for 99mTc-1 (grey bars) and [99mTc]-7 (black bars) in mice at 6 h post injection.
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calcification, at the present stage of analysis they do not
demonstrate any dramatic advantage in sensitivity of the new
tracers with pendant bisphosphonate groups compared to the
conventional heterogeneous tracer 99mTc-1 in this application.

Discussion

We have described a simple synthesis and radiolabelling of the
first technetium and rhenium complexes with two pendant
bisphosphonate groups, building on the early development of
complexes in which bisphosphonate groups are bound directly
to the radiometal (and which have become established radio-
pharmaceuticals for imaging and palliative therapy of bone
disease2) and the later development of complexes containing a
pendant bisphosphonate group.12,13 We reasoned that this
sequence of developments in design should yield radiophar-
maceuticals with improved homogeneity, in vivo stability and

targeting of biomineral deposits. To produce a well-defined
complex with two pendant bisphosphonate groups we chose to
use the well-known technetium/rhenium(V) nitridobisdithio-
carbamate core, in conjunction with a dithiocarbamate–
bisphosphonate conjugate ligand, 6, which we previously
showed to coordinate to copper(II) via its dithiocarbamate
group to form a complex with two pendant bisphosphonate
groups.19

The synthesis of the 99Tc and 99mTc complexes is based on
the established formation of a M(V) nitride complex using suc-
cinic dihydrazide as a source of nitrogen to form the
nitride.17,18 To establish a robust, kit-based synthesis with
sufficiently high yield (>95%) to avoid the need for a purifi-
cation step, it was necessary to optimise the composition of
the kit and in particular to ensure that the concentrations and
molar ratios of the intermediate chelator DPTA and the final
ligand 6 were appropriately balanced: too little DPTA leads to
inadequate stabilisation of the metal nitride intermediate,

Fig. 10 A, B: Coronal sections of a rat scanned 30 min and 4 h, respectively after i.v. injection of [99mTc]-7. C, D: Coronal sections of a rat scanned
at 30 min and 4 h, respectively, after i.v. injection of [99mTc]-4. E, F: Coronal sections of a rat scanned at 30 min and 4 h, respectively, after i.v. injec-
tion of 99mTc-1. Arrows show the uptake of the radiotracers in the calcified mesenteric arteries.

Fig. 11 Biodistribution (%ID g−1, mean ± SD) in rats 4 h after injection of tracers 99mTc-1, [99mTc]-4 and [99mTc]-7 (n = 2).
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while too much causes competition with the dithiocarbamate
ligand in the second step. This optimisation led to methods 1
and 2 each of which provides a simple route to the 99mTc
complex. The 99Tc analogue was also synthesised, using the
same reagents, to generate sufficiently high concentrations for
analysis by mass spectrometry. The route to the rhenium
complex was based on conventional rhenium nitride starting
materials, adapted for compatibility with an aqueous synthesis
because 6 is only soluble in water.

The characterisation of the product complexes posed major
problems because the solubility and adsorption properties of
both 7 and 8 precluded purification by recrystallisation or
chromatography. The bisphosphonate complexes are all extre-
mely hydrophilic (see log P data, ESI†) and adherent to various
stationary phases. As a result, only negative ion electrospray
mass spectrometric data are available to confirm the identity
of the products. The mass spectra, however, confirm several
key aspects relating to the structure and homogeneity of both
7 and 8. The ions observed are consistent with the presence of
a mononuclear nitrido complex with two dithiocarbamate–
bisphosphonate ligands, with the metal in oxidation state five.
This is consistent with the body of literature on technetium
and rhenium nitride bis(dithiocarbamate) complexes.14 These
data cannot, however confirm that ligand is coordinated
through the dithiocarbamate group rather than the bisphos-
phonate group; but comparison with literature on technetium
and rhenium with coordinated bisphosphonates would
suggest such complexes are inhomogenous and polymeric,8,9

and there is no evidence of such behaviour in the mass spectra
of 7 and 8. Moreover, dithiocarbamates are well known to form
transition metal complexes with high affinity, whereas
bisphosphonates and pyrophosphates are have been used
because of their relative instability, as intermediate chelators
to make metastable Tc intermediates in which the bispho-
sphonates are ultimately displaced by more powerful ligands
(e.g. during protein radiolabelling at thiol groups of reduced
antibodies30). The mass spectra are also unable to distinguish
possible isomers due to the different relative orientations of
the ligands (e.g. syn- and anti- disposition of the methyl groups
of the two ligands); however, this is unlikely to be problematic
because the metal coordination sphere in this class of com-
plexes is well-known to be highly fluxional. The equivalence of
carrier free (radiolabelled, characterised only by virtue of its
Rf value of zero on TLC) and carrier added (185/187Re and 99Tc,
identified by mass spectrometry and Rf value of zero on TLC) is
demonstrated only by sharing Rf values of zero in various TLC
conditions and failure to elute from various HPLC columns.
This is weak evidence because many species such as reduced
hydrolysed Tc share this property. However, although differences
in structure and speciation of radioactivity are often observed in
technetium complexes at the tracer and macroscopic levels, these
typically involve oligomerisation at the higher concentration but
not at the lower; since the high concentration solutions here
have been shown by mass spectrometry to contain only mono-
nuclear complexes, there is no reason to doubt that the tracer
level complexes are also mononuclear.

Both the new pendant tracers [99mTc]-4 and [99mTc]-7 show
improved binding both to synthetic calcium-based minerals
and to hydroxyapatite-like minerals isolated from human calci-
fied tissue, and improved stability in buffer and serum com-
pared to 99mTc-1, as indeed they were designed to do. This
advantage is conferred by the design of the metal coordinating
ligands to match the known preferences of the metal core,
rather than relying on the relatively poor chelating ability of
the bisphosphonate group. This translates into improved stabi-
lity in buffer and blood serum, and in vivo, which in turn leads
to higher uptake in bone and calcified soft tissues than 99mTc-
1. However, this potential advantage is set against disadvan-
tage of the greater time taken to achieve the best target-to-
background ratio in vivo. Thus, the advantages in practical use
are likely to arise in situations where prolonged action are
important, that is, therapeutic applications of the longer lived
isotopes 188Re (17 h) and 186Re (90 h) rather than imaging
applications of the short lived 99mTc (6 h). These advantages
will be manifested if the biodistribution and kinetics of the Tc
and Re analogues prove to be the same, as they have done in
the case of [99mTc]-4 and [188Re]-5;12,13 preliminary in vivo bio-
distribution studies suggest that this is also the case for
[188Re]-8 (see ESI†). [188Re]-8 shows the expected and desired
specificity for bone and joints and low retention in kidney, at
24 h, giving a qualitative indication of prolonged in vivo stabi-
lity. Although quantitative comparison with other rhenium-
188 bone targeting radiopharmaceuticals has not been part of
this study, the data suggest that [188Re]-8 will have advantages
over 188Re-HEDP and warrants further evaluation as a radio-
pharmaceutical for radionuclide therapy of bone metastases.
Thus both [188Re]-5 and [188Re]-7 are likely to offer improve-
ments in radionuclide therapy compared to the conventional
agents 188/186Re-HEDP.

31P NMR and X-ray powder diffraction studies of calcified
plaques from animals and humans show that the minerals
present in vascular calcification closely resemble hydroxyapa-
tite.31 Radiolabelled bisphosphonates bind avidly with hydro-
xyapatite; hence they have the potential to be used as
agents for imaging of vascular calcification. This prediction
presupposes that the mechanism of uptake in calcified
tissue and bone is through direct binding to mineral – but it
could also be related to cellular transport mechanisms
involving osteoclast/osteoblast-like cells involved in the calcifi-
cation process, as has been implicated in the mechanism of
action of bisphosphonate drugs used to treat bone disorders.32

Nevertheless it is consistent with the observation that the
tracers described here bind to the pathological mineral
samples tested, and the in vivo results show that the tracers
indeed target not only bone but also vascular soft tissue
calcification. There have been previous reports of extra-
osseous uptake of 99mTc-1 linked with atherosclerosis and vas-
cular calcification. For example DeLong et al. reported the
visualisation of calcified femoral arteries in delayed images of
patients undergoing bone scans.33 The clinical value of
imaging vascular calcification has, however, yet to be fully
explored.
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Conclusion

The new technetium and rhenium complexes with two
pendant bisphosphonate groups have been synthesised by
simple methods amenable to kit-based radiolabelling. The
presence of one and two pendant bisphosphonate groups
confers advantages over conventional bisphosphonate com-
plexes in which the bisphosphonate group is involved in tech-
netium or rhenium chelation, in terms of in vivo stability and
affinity for hydroxyapatite of synthetic and biological origin.
These advantages are likely to be significant in therapeutic
applications involving the longer half-life isotopes 186Re and
188Re. All three classes of 99mTc complex described here are
capable of imaging vascular soft tissue calcification as well as
bone disease. The tracers and biological models described
here prove a means to study the diagnostic meaning and value
of imaging of vascular calcification, leading to clinical appli-
cations; however, the present data do not indicate that the
advantages in stability and mineral affinity displayed by the
new complexes translate into practical advantages in imaging
compared to conventional 99mTc-bisphosphonate tracers such
as 99mTc-1. Finally, [188Re]-8 deserves further biological evalu-
ation as a radiopharmaceutical for palliative treatment of bone
metastases because of its high in vivo stability, selective uptake
in bone and joints, and low retention in kidney at 24 h.
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