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Abstract—Motivated by the practical constraints arising in
emerging sensor network and Internet-of-Things (IoT) applica-
tions, the zero-delay transmission of a Gaussian measurement
over a real single-input multiple-output (SIMO) additive white
Gaussian noise (AWGN) channel is studied with a low-resolution
analog-to-digital converter (ADC) front end. Joint optimization of
the encoder and the decoder mapping is tackled under both the
mean squared error (MSE) distortion and the distortion outage
probability (DOP) criteria, with an average power constraint on
the channel input. Optimal encoder and decoder mappings are
identified for a one-bit ADC front end under both criteria. For
the MSE distortion, the optimal encoder mapping is shown to
be non-linear in general, while it tends to a linear encoder in
the low signal-to-noise ratio (SNR) regime, and to an antipodal
digital encoder in the high SNR regime. This is in contrast to the
optimality of linear encoding at all SNR values in the presence of
a full-precision front end. For the DOP criterion, it is shown that
the optimal encoder mapping is piecewise constant and can take
only two opposite values when it is non-zero. For both the MSE
distortion and the DOP criteria, necessary optimality conditions
are then derived for K-level ADC front ends as well as front ends
with multiple one-bit ADCs. These conditions are used to obtain
numerically optimized solutions. Extensive numerical results are
also provided in order to gain insights into the structure of the
optimal encoding and decoding mappings.

Index Terms- Analog-to-digital converter, distortion outage
probability, joint source channel coding, mean squared error
distortion, zero-delay transmission.

I. INTRODUCTION

The power consumed by analog-to-digital converters (ADCs)
grows exponentially with the number of bits and linearly
with the sampling rate [2], [3]. This technological limitation
constrains the resolution of the ADCs used in devices that need
to operate under stringent power budgets, such as sensor nodes
and mobile devices. As an extreme case, one-bit ADCs are of
particular interest, since they can be realized using a simple
threshold comparator and without the need for automatic gain
control [4], [5].
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Motivated by these considerations, the impact of a one-
bit ADC front end on the performance of a communication
system has been studied in [6]–[12] for various models, as
briefly reviewed below. While these works focus on reli-
able transmission of digital information over long blocks, in
many applications, such as the Internet-of-Things (IoT), cyber-
physical systems and wireless sensor networks, the low-delay
transfer of analog measurements is crucial. Specific examples
include uncoded video transmission techniques [13], [14],
memoryless amplify-and-forward relays, wearable sensors that
detect neurological impulses [15], and real-time control ap-
plications for the IoT [16], [17]. In light of these emerging
applications, this work considers the zero-delay transmission
of an analog Gaussian source over a real single-input multiple-
output (SIMO) additive white Gaussian noise (AWGN) channel
followed by a low-resolution ADC front end. As illustrated
in Figure 1, this problem refers to the transmission of a
single sample of a Gaussian source over an individual use of
the SIMO AWGN channel. With an infinite resolution front
end and equal bandwidth of the Gaussian source and the
AWGN channel [18], it is well known that, linear transmission
and minimum mean squared error (MMSE) estimation are,
respectively, the optimal encoder and decoder under an average
power constraint and a mean squared error (MSE) distortion
measure. Nonetheless, in the finite resolution scenario studied
here, the optimal encoder and decoder mappings have been
unknown.

A. Related Works

Within the spectrum of information theoretic analysis of joint
source-channel coding, while the classical Shannon theoretic
infinite block-length regime occupies one end of the spectrum,
the zero-delay transmission of a single source sample over
single channel use lies at the opposite end. Intermediate, but
still asymptotic, analyses have also been put forth recently by
investigating second-order approximations [19], [20]. For the
problem of zero-delay transmission, there is no explicit method
to obtain the optimal encoding and decoding mappings, except
for the special case of statistically matched source-channel
pairs [21], [18]. This special case includes the setting studied
in this paper when the receiver front end has infinite resolution.
Various solutions have been proposed in the literature for
specific unmatched source-channel pairs. Notable examples
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are the space-filling curves proposed by Shannon [22] and
Kotelnikov [23], and later extended in [24]–[28], for the delay-
limited transmission of a Gaussian source over an AWGN
channel with bandwidth mismatch between the source and the
channel. Other solutions include [24], [29]–[31].

Communication with a finite resolution receiver front end
received considerable recent attention, focusing mostly on the
channel coding aspects. In [6], it is shown that antipodal
signalling, or BPSK, is capacity achieving for a real-valued
AWGN channel with a one-bit ADC front end, whereas,
for the complex counterpart, QPSK is optimal. While these
results hold under the assumption that the one-bit ADC is
symmetric (that is, it is a zero-threshold comparator), in
[7] it is shown that, in the low signal-to-noise ratio (SNR)
regime, a symmetric quantizer is not optimal, and the optimal
performance is achieved by flash signalling [8, Def. 2] together
with an optimized asymmetric quantizer. In [9], it is shown
that, for a point-to-point Rayleigh fading channel with a one-bit
ADC front end, under the assumption of perfect channel state
information (CSI) at the receiver, QPSK is capacity achieving.
Instead, when CSI is not available at the receiver, reference
[10] proves that QPSK is optimal above an SNR threshold
that depends on the coherence time of the channel, while, for
lower SNRs, on-off QPSK achieves the capacity. For the point-
to-point multiple-input multiple-output (MIMO) scenarios with
a one-bit ADC front end at each receive antenna, the capacity
is unknown. In [11], it is argued that, with perfect CSI at the
receiver, QPSK is optimal at very low SNRs, while, in [12],
upper and lower bounds on the capacity with perfect transmitter
CSI are presented. To the best of our knowledge, joint source-
channel coding with a finite resolution ADC is first studied in
[1], which is extended to the scenario with a correlated receiver
side information in [32].

B. Main Contributions and Organization of the paper

We study the optimization of encoding and decoding map-
pings for the transmission of a Gaussian source sample over
the single use of a real SIMO AWGN channel with a low-
resolution ADC front end (see Figure 1). We consider two
different criteria, namely the MSE distortion and the distortion
outage probability (DOP), with an average power constraint
on the channel input. Optimal solutions are derived for the
case of a one-bit ADC front end for both criteria. For the
MSE distortion, we show that the optimal encoder mapping
tends to a linear encoder, which is optimal with a full-precision
front end, only in the low-SNR regime. For the DOP criterion,
we derive the optimal encoder mapping, showing that it is
piecewise constant and that it can take only two opposite values
when it is non-zero. For both the MSE distortion and the DOP
criteria, we study necessary optimality conditions for K-level
ADC front ends as well as for front ends with multiple one-bit
ADCs. Extensive numerical results are also provided in order
to gain insights into the structure of the optimal encoding and
decoding mappings.

The rest of the paper is organized as follows. In Section II,
we introduce the system model. In Section III, we consider

Figure 1: System model for the transmission of a single Gaus-
sian source sample over a quantized SIMO AWGN channel
with N ADC front ends.

the design of the optimal transceiver under the MSE distortion
criterion when the receiver has a single observation of the
source. In Section IV, we study the same design problem under
the DOP criterion. In Section V, we study the more general
case in which the receiver makes multiple one-bit observations
under both the MSE distortion and the DOP criteria. In Section
VI, numerical results are provided, followed by the conclusions
in Section VII.

Notation: Throughout the paper, R denotes the set of real
numbers; uppercase and lowercase letters denote random vari-
ables and realizations, respectively. We use bNj to denote the
bit-wise representation of the number 2N − j, j = 1, . . . , 2N

with length N . E[·] and Pr(·) denote the expectation and
probability operators, respectively. Let f

′
(x) = df(x)

dx , f
′′
(x) =

d2f(x)
dx2 denote the first and second order derivatives of the con-

tinuously differentiable function f with respect to its argument.
The standard normal distribution is denoted by N (0, 1), with
cumulative distribution function Φ(·) and the complementary
cumulative distribution function (CCDF) by Q(·), which is
given by

Q(z) =
1√
2π

∞∫
z

e−
t2

2 dt.

Unless stated otherwise, boundaries of integrals are from −∞
to ∞.

II. SYSTEM MODEL

We consider the system model in Figure 1, in which a single
sample of a Gaussian source V ∼ N (0, σ2

v) is transmitted
over a single use of a quantized SIMO AWGN channel. The
encoded signal is given as X = f(V ), where f : R → R
is a mapping from the source sample to the channel input,
with average transmission power P = E[f(V )2]. The receiver
makes N noisy measurements of the encoded signal, which
are digitized by means of a low-resolution ADC front end.
Mathematically, each noisy received signal is modelled as

Zi = f(V ) +Wi, i = 1, ..., N, (1)
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where the noise Wi ∼ N (0, σ2
wi), i = 1, ..., N , is independent

over index i. Each received signal Zi is quantized with a scalar
K-level ADC producing a quantized signal

Yi = Γ(Zi), i = 1, . . . , N. (2)

The scalar K-level ADC is characterized by fixed quantization
intervals and corresponding quantized levels, namely

Γ(z) = y(j), for z ∈
[
z(j−1), z(j)

)
, j = 1, . . . ,K, (3)

where z(j−1) and z(j) are the lower and upper bounds of the
interval corresponding to the quantized signal y(j), respectively,
for j = 1, . . . ,K, and we have z(0) = −∞ and z(K) = ∞.
Note that the ADCs employed to quantize different channel
outputs all have the same quantization intervals and recon-
struction levels.

For most of the paper, we will consider a symmetric one-
bit ADC with threshold z(1) = 0 and reconstruction levels
y(1) = 1 and y(2) = 0:

Γ(z) =

{
0 z ≥ 0,
1 z < 0.

(4)

We define the SNR as

γ =
NP
N∑
i=1

σ2
wi

. (5)

Based on the quantized signals (Y1, ..., YN ) , Y N , the decoder
produces an estimate V̂ of V using a decoding function g :
{y(1), . . . , y(K)}N → R, i.e., V̂ = g(Y N ).

Two performance criteria are considered, namely the MSE
distortion, which is defined as

D̄ = E
[
(V − V̂ )2

]
, (6)

and the DOP, which is instead defined as

ε(D) = Pr
(

(V − V̂ )2 ≥ D
)
. (7)

In both cases, we aim at studying the optimal encoder function
f , along with the corresponding optimal estimator g at the
decoder, such that D̄ and ε(D) are minimized, subject to an
average power constraint. More specifically, as it is common in
related works (see, e.g., [31]), we consider the unconstrained
minimization

minimize
f,g

L(f, g, λ), (8)

where

L(f, g, λ) =

{
D̄ + λE[f(V )2] for the MSE criterion,
ε(D) + λE[f(V )2] for the DOP criterion,

(9)

with λ ≥ 0 being a Lagrange multiplier that defines the relative
weight given to the average transmission power E[f(V )2] as
compared to the distortion criterion.

III. SINGLE OBSERVATION: MSE DISTORTION

In this section, we study the design of the encoder and the
decoder under the MSE criterion by focusing on the case of a
single observation (N = 1). For the one-bit ADC in (4), we
obtain the optimal encoder and decoder in Section III-A. Fur-
thermore, we consider the conventional linear transmission and
digital modulation schemes for reference in Section III-B and
Section III-C, respectively. Finally, we consider the extensions
to a K-level front end, and obtain a necessary condition on the
optimal mapping in Section III-D. For brevity, throughout this
section, we drop the subscript i = 1 identifying the observation
index.

A. Optimal Encoder and Decoder for a One-Bit Front End

To elaborate on the optimal encoder and decoder for the
one-bit ADC in (4), without loss of generality, we write the
receiver mapping as

g(Y ) = V̂ =

{
v̂(1) Y = 0,
v̂(2) Y = 1,

(10)

which is defined by the pair of parameters (v̂(1), v̂(2)). In (10),
since, for any encoder mapping f , the MMSE estimator is
optimal under the MSE criterion, and hence also for problem
(8), we have v̂(1) = E[V |Y = 0] and v̂(2) = E[V |Y = 1]. The
next proposition provides the optimal encoder mapping.

Proposition III.1. The optimal mapping f for problem (8)
under the MSE criterion is unique up to a sign, is an odd
function of v, and is defined by the implicit equation

f(v)e
f(v)2

2σ2w =
v√

2πσwλ
. (11)

Proof : See Appendix B.
Illustrations of the optimal mappings satisfying (11) will be

given in Section VI. Here, we observe that, by expanding the
Taylor series of the exponential function in (11), it can be easily
verified that, in the low SNR regime, that is, as σ2

w → ∞,
the optimal mapping satisfies the condition f(v) ∝ v, that is,
it approaches a linear mapping. Furthermore, given that the
optimal mapping f(v) is odd, we can write

v̂(1) = E[V |Y = 0] (12a)

=

1
σv

∫
vΦ
(
v
σv

)
Pr(Y = 0|V = v)dv

Pr(Y = 0)
(12b)

=
−2

σv

∫
vΦ

(
v

σv

)
Q

(
f(v)

σw

)
dv (12c)

=
2σv√

2π
− 4

σv

∞∫
0

vΦ

(
v

σv

)
Q

(
f(v)

σw

)
dv, (12d)

and hence the average distortion can be simplified as

D̄ = σ2
v − E[V V̂ ] (13a)

= σ2
v −

1

2

(
v̂(1)E[V |V̂ = v̂(1)]

+v̂(2)E[V |V̂ = v̂(2)]
)

(13b)
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= σ2
v − v̂2(1), (13c)

where (13a) is due to the orthogonality property of MMSE
estimation; (13b) follows from the fact that the optimal encoder
is odd; and (13c) is due to the chain of equalities E[V |V̂ =
v̂(1)] = E[V |Y = 0] = v̂(1) = −v̂(2) = −E[V |V̂ = v̂(2)].

B. Linear Transmission for One-Bit Front End
Here we consider the performance of linear transmission in

the presence of a one-bit ADC front end. The encoder mapping
for linear transmission is given by

f(v) =

√
P

σ2
v

v. (14)

As seen in Section III-A, linear transmission is asymptotically
optimal in the low-SNR asymptotic regime. In the following,
we elaborate on its performance for any given channel SNR γ.
The MSE distortion D̄l achieved by linear transmission, can be
found by calculating the integral in (12d) with f(v) given in
(14) and substituting the result in (13c). As a result, the MSE
distortion for the linear mapping is obtained as

D̄l = σ2
v

(
1− 2

π

(
γ

γ + 1

))
. (15)

Note that for γ = 0, we have D̄l = σ2
v . On the other

hand, in the high SNR regime, i.e., as γ → ∞, we obtain
D̄l = σ2

v(1 − 2/π). Both distortions can be argued to be
asymptotically optimal. In fact, for zero SNR, even with an
infinite-resolution front end, the MMSE estimate is given by
V̂ = 0, which yields D̄ = σ2

v . Instead, for infinite SNR, the
best mapping is given by the optimal binary quantizer, which
yields D̄ = σ2

v(1− 2/π) (see, e.g., [33, Section 10.1]).

C. Digital Transmission for One-bit Front End
Here we consider a conventional digital transmission

scheme, which is based on quantizing and mapping the source
to a discrete constellation for transmission over the channel.
Accordingly, the source is quantized to one of the M levels,
each characterized by the interval [v(l−1), v(l)), l = 1, ...,M ,
where v(M) = ∞, v(0) = −∞, and v(l) ≥ v(l−1) for
all l = 1, ...,M . Each interval [v(l−1), v(l)) is mapped to
the corresponding channel input X = x(l). We take the
constellation of possible transmission points to be {X =
A(2l − 1 − M), l = 1, ...,M}, for some parameter A ≥ 0,
such that the average power constraint is satisfied. Note that,
when M is even, this corresponds to the M -PAM modulation,
while if M is odd, the constellation includes the zero-power
signal, i.e., x(M+1

2 ) = 0. The average transmission power

can be written as E[X2] =
∑M
l=1 x

2
(l) · Pr(X = x(l)), where

Pr(X = x(l)) = 1
σv

∫ v(l)
v(l−1)

Φ (v/σv) dv.
The average achievable distortion for M levels of symmetric

digital transmission, i.e., v(l) = −v(M−l), can be easily
obtained as

D̄d,M = σ2
v −

 2

σv

M∑
l=1

Q(Sl)

v(l)∫
v(l−1)

vΦ

(
v

σv

)
dv


2

, (16)

where S2
l = (2l−1−M)2γ∑M

l=1(2l−1−M)2Pr(x(l))
.

As a special case, when M = 2, setting the quantization
threshold as v(1) = 0, we obtain BPSK transmission. The
resulting achievable distortion can be computed from (16) as

D̄d,2 = σ2
v

(
1− 2

π
(1− 2Q (

√
γ))

2

)
. (17)

We observe that, as for linear transmission, when γ → ∞,
we have D̄d,2 = σ2

v(1 − 2/π), and when γ → 0, we have
D̄d,2 = σ2

v . From (17), one can check that the slope of
the average distortion for BPSK transmission as γ → 0 is
−4σ2

v/π
2, whereas the slope for linear transmission, obtained

from (13c), is −2σ2
v/π. This means that linear transmission has

a decline in the distortion in the low SNR regime; therefore,
it outperforms BPSK transmission, in this regime.

As another example, for M = 3, we set the quantization
thresholds as v(1) = −c and v(2) = c, so that [−c, c] is the
interval of source values for which the transmission symbol is
x(2) = 0. The MSE distortion can be computed by solving the
following optimization problem with line search:

D̄d,3 = min
c≥0

σ2
v

1− 2e
− c2

σ2v

π
· κγ(c)2

 , (18)

where κγ(c) , 1− 2Q

(√
γ

2Q( c
σv

)

)
.

D. K-Level Front End

In this section, we consider the system model in Figure 1
with a single observation, i.e., N = 1, but with a K-level ADC
front end as in (3). As in the case of single one-bit observation,
without loss of generality, we write the receiver mapping as

g(Y ) = V̂ = v̂(j), if Y = y(j), (19)

for j = 1, . . . ,K. In the next proposition, we obtain a
necessary optimality condition for the encoding and decoding
functions f and g.

Proposition III.2. The optimal encoder and decoder mappings
f and g for the K-level ADC front end in (3) satisfy the
necessary conditions

f(v) =
1

2
√

2πσwλ

K∑
j=1

v̂(j) (2v − v̂(j))

·

e− (z(j−1)−f(v))
2

2σ2w − e−
(z(j)−f(v))

2

2σ2w

 , (20)

and (19) with

v̂(j) =

∫
vΦ
(
v
σv

)(
Q
(
z(j−1)−f(v)

σw

)
−Q

(
z(j)−f(v)

σw

))
dv∫

Φ
(
v
σv

)(
Q
(
z(j−1)−f(v)

σw

)
−Q

(
z(j)−f(v)

σw

))
dv

,

(21)
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for j = 1, ...,K. Furthermore, the gradient of the Lagrangian
function L(f, g, λ) over f for g in (19) is given as

∇L = 2λf(v)− 1√
2πσw

K∑
j=1

v̂(j) (2v − v̂(j))

·

e− (z(j−1)−f(v))
2

2σ2w − e−
(z(j)−f(v))

2

2σ2w

 . (22)

Proof : See Appendix C.
As detailed later, the gradient in (22), along with (21), will

be used in Section VI to obtain numerically optimized encoders
and decoders.

IV. SINGLE OBSERVATION: DISTORTION OUTAGE
PROBABILITY

In this section, we study the optimal encoder and decoder
under the DOP criterion defined in (7) for the case of a single
observation (N = 1). We first study the case of a one-bit front
end in Section IV-A, and then we extend the results to a K-
level front end in Section IV-B.

A. Optimal Encoder and Decoder for a One-Bit Front End

With no loss of generality, the decoder is given as in (10)
for some reconstruction points (v̂(1), v̂(2)). To proceed, we first
focus on the optimization of the encoder mapping f for a given
decoder in (10). We then tackle the problem of minimizing the
DOP over the reconstruction points (v̂(1), v̂(2)).

To elaborate, we define the intervals

Ij , {v : (v − v̂(j))2 < D}, (23)

for j = 1, 2, which are depicted in Figure 2. Each interval
Ij , corresponds to the set of source values that are within
the allowed distortion D of the reconstruction point v̂(j). The
following claims hold: (i) For all source outputs v in the set
(I1 ∪ I2)C = {v : minj=1,2(v − v̂(j))2 > D}, outage occurs
(superscript C denotes the complement set). We refer to this
event as source outage. (ii) For all source values in the interval
I1∩I2, either of the reconstruction points yield a distortion no
more than the target value D. Therefore, regardless of which
of the two reconstruction levels, v̂(1) and v̂(2)), is selected by
the receiver, no outage occurs. From observations (i) and (ii),
it easily follows that, for all source values v inside the intervals
(I1 ∪ I2)C and (I1 ∩ I2), the optimal mapping is f(v) = 0,
since, for both intervals, the occurrence of an outage event is
independent of the transmitted signal.

From the discussion above, we only need to specify the
optimal mapping for the intervals I1\I2 and I2\I1. This should
be done by accounting not only for the source outage event
mentioned above, but also for the channel outage events. In
particular, the distortion outage probability ε(D) can be written
as

ε(D) = Pr
(
V ∈ (I1 ∪ I2)C

)
+ Pr

(
V ∈ (I1 \ I2), V̂ = v̂(2)

)

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

−3 −2 −1 0 1 2 3
−1
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v̂(2) v̂(1)

I1 \ I2

v̂(1)v̂(2)

Figure 2: Illustration of the intervals I1, I2 and (I1 ∩ I2) that
characterize the optimal encoder for the DOP criterion, for two
different cases depending on the (v̂(1), v̂(2)) values.

+ Pr
(
V ∈ (I2 \ I1), V̂ = v̂(1)

)
, (24)

where the first term accounts for the source outage event, while
the second and third terms are the probabilities of outage due
to channel transmission errors. For instance, the second term
is the probability that the decoder selects V̂ = v̂(2) while V
is in the interval I1 \ I2 (see Figure 2). The next proposition
characterizes the optimal encoder mapping.

Proposition IV.1. Given a target distortion D, and arbitrary
reconstruction points v̂(1) and v̂(2), the optimal mapping f for
the problem (8) is given by

f(v) =

 0 v ∈ (I1 ∪ I2)C ∪ (I1 ∩ I2),
−u v ∈ (I2\I1),
u v ∈ (I1\I2),

(25)

where u is the unique solution of

ue
u2

2σ2w =
1

2
√

2πσwλ
. (26)

Proof : See Appendix D.
We note here that, for given λ ≥ 0, the optimal u is

independent of the values of v̂(1) and v̂(2). Examples of
optimal encoders will be provided in Section VI. In the next
proposition, we turn to the optimization of the reconstruction
levels (v̂(1), v̂(2)).

Proposition IV.2. The optimal reconstruction points
(v̂(1), v̂(2)), are given by

v̂(1) =
√
D − a∗, (27a)

v̂(2) = −v̂(1), (27b)

where a∗ is obtained from

a∗ = arg min

a ∈ [0,
√
D]

2Q

(
2
√
D − a
σv

)
+2

(
Q

(
u

σw

)
+λu2

)

·

(
Q

(
a

σv

)
−Q

(
2
√
D − a
σv

))
, (28)

where u is obtained by solving (26).

Proof : See Appendix E.
To summarize, the optimal encoder and decoder are obtained

as follows. First, given the Lagrange multiplier λ ≥ 0, the
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value of u is obtained by solving (26). Then the decoder’s
reconstruction points (v̂(1), v̂(2)) are computed from (27)-(28).
Finally, the optimal encoder mapping is given by (25). The
next remark elaborates on the optimal encoder and decoder in
two asymptotic SNR regimes.

Remark IV.1. If λ is large, i.e., in the low-SNR regime, from
(26) we have u ≈ 0. Also from (26) it can be verified that

λu2 = e
− u

2

σ2w

8πσ2
wλ
≈ 0. Hence, from (28) we obtain

a∗ ≈ arg min

a ∈ [0,
√
D]

Q

(
a

σv

)
+Q

(
2
√
D − a
σv

)
, (29)

yielding v̂(1) = v̂(2) = 0, that is, I1 = I2 and ε(D) =

2Q
(√

D
σv

)
. On the other hand, for small values of λ, cor-

responding to the high-SNR regime, the variable u be-
comes large. Also, from (26) we have the equality λ =

1
/(

2
√

2πσwue
u2

2σ2w

)
and Hence the approximations λu2 =

u/

(
2
√

2πσwe
u2

2σ2w

)
≈ 0, and

a∗ ≈ arg min

a ∈ [0,
√
D]

2Q

(
2
√
D − a
σv

)
, (30)

which yield distinct intervals I1 and I2 with v̂(1) = −v̂(2) =√
D, and ε(D) = 2Q

(
2
√
D

σv

)
.

B. K-Level Front End

Here we turn our attention to the case of K-level front
end under the DOP criterion. With no loss of optimality,
the decoder is given as in (19) for some reconstruction
levels {v̂(1), . . . , v̂(K)} to be optimized. For a subset V ⊂
{v̂(1), ..., v̂(K)}, let IV be the set of source outputs v for which
the quadratic distance between v and the reconstruction points
in set V is less than D, while the quadratic distance with respect
to the reconstruction points in VC is larger than D. This set is
defined as

IV =
⋂

v̂(j)∈V

Ij \
⋃

v̂(j)∈VC
Ij , |V| = 1, ...,K, (31)

where Ij is given as

Ij ,
{
v : |v − v̂(j)|2 < D

}
. (32)

We also define the set I∅ corresponding to V = ∅ as

I∅ ,

 ⋃
V:|V|6=0

IV

C

, (33)

that is, the set of values v ∈ R that do not have a recon-
struction value v̂(j) within a distance

√
D. Note that the sets{

IV : V ⊂ {v̂(1), ..., v̂(K)}
}

form a partition of the whole real
line.

As for the single one-bit front end (24), the DOP depends
on both source and channel outage events. Note that the source

outage occurs if V ∈ I∅, whereas the channel outage occurs
when V /∈ I∅ and V /∈ I{v̂(1),...,v̂(K)}, with no outage occurring
when V ∈ I{v̂(1),...,v̂(K)}. In the following proposition, we
present necessary optimality conditions for the encoder and
decoder mappings.

Proposition IV.3. For a K-level ADC front end, the optimal
encoder and decoder mappings f and g satisfy the necessary
conditions

f(v) = 1
2λG(f, v), (34)

where G(f, v) is defined as

G(f, v) , 0 v ∈ IV : |V| = 0,K,∑
j: v̂(j)∈V

ξ(j,f(v))√
2πσw

v ∈ IV : |V| = 1, . . . ,K − 1, (35)

where ξ(j, f(v)) , e
− (z(j−1)−f(v))

2

2σ2w − e−
(z(j)−f(v))

2

2σ2w , and (19)
with

v̂(j) = arg max
t

t+
√
D∫

t−
√
D

Φ

(
v

σv

)

·
(
Q

(
z(j−1)−f(v)

σw

)
−Q

(
z(j)−f(v)

σw

))
dv. (36)

Furthermore, the gradient of the Lagrangian function
L(f, g, λ) over f for g in (19) is given as

∇L = 2λf(v)− 1

2
G(f, v). (37)

Proof : See Appendix F.
As for Proposition III.2, in Section VI, we will use (36) and

(37) to obtain numerically optimized encoders and decoders,
that satisfy the necessary optimality conditions.

V. MULTIPLE OBSERVATIONS

In this section, we study the more general case in which the
receiver has N > 1 noisy one-bit quantized observations, Y N ,
of the transmitted source sample. For both the MSE distortion
and the DOP criteria, without loss of generality, we write the
receiver mapping as

g(Y N ) = V̂ = v̂(j), if Y N = bNj , (38)

where bNj is the N -length binary representation of the number
2N−j for j = 1, . . . , 2N . Note that there are 2N reconstruction
levels v̂(j), each of which corresponds to a different configu-
ration of the received signal Y N ∈ {0, 1}N . We will denote
the k-th element of the vector bNj by bNj (k).

A. MSE Criterion

Recalling that the optimal decoding function under the MSE
criterion is the MMSE estimator, the optimal decoder satisfies
v̂(j) = E[V |Y N = bNj ]. In the next proposition, we provide
necessary conditions for the optimal encoder and decoder
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mappings along with an expression for the gradient of the
Lagrangian in (9) over the encoder mapping f .

Proposition V.1. Given a front end with N one-bit ADCs, the
optimal encoder and decoder mappings f and g, respectively,
satisfy the necessary conditions

f(v) =
1

2λ

2N∑
j=1

Θ (N, f(v), j) v̂(j)
(
2v − v̂(j)

)
, (39)

and (38) with

v̂(j) ,

∫
vΦ
(
v
σv

) N∏
i=1

Q

(
(−1)b

N
j (i)+1

f(v)
σwi

)
dv

∫
Φ
(
v
σv

) N∏
i=1

Q

(
(−1)b

N
j

(i)+1
f(v)

σwi

)
dv

, (40)

where Θ (N, f(v), j) is defined as

Θ (N, f(v), j) ,
N∑
k=1

 (−1)b
N
j (k)e

− f(v)
2

2σ2wk

√
2πσwk

·
N∏

l=1,l 6=k

Q

(
(−1)b

N
j (l)+1f(v)

σwl

) . (41)

Furthermore, the gradient of the Lagrangian function
L(f, g, λ) over f for g in (38) is given as

∇L = 2λf(v)−
2N∑
j=1

v̂(j)Θ (N, f(v), j)
(
2v − v̂(j)

)
. (42)

Proof : See Appendix G.

Remark V.1. In order to obtain numerically optimized encoder
(NOE) mappings in Section VI, we will adopt a gradient-
descent algorithm. This method updates the current iterate
f (i)(v) as

f (i+1)(v) = f (i)(v)− µ∇L, (43)

where i is the iteration index and µ > 0 is the step size.
∇L is the derivative of the Lagrangian (8) with respect to
the mapping f at f (i), which can be found in (22) and (42)
for K-level ADC and multiple one-bit ADCs, respectively.
The algorithm is initialized with the linear mapping specified
in (14). It is noted that the algorithm is not guaranteed to
converge to a global optimal solution.

B. DOP Criterion

In this subsection, we consider the DOP criterion. The anal-
ysis follows the same steps as in Section IV-B. In particular,
we define the different intervals IV , where V is a subset of
{v̂(1), . . . , v̂(2N )} as in (31). Based on this definition, in the
next proposition, we derive necessary optimality conditions for
the encoder and decoder mappings.

Proposition V.2. Given a front end with N one-bit ADCs, the
optimal encoder and decoder mappings f and g satisfy the
necessary conditions

f(v) =
1

2λ
G̃(f, v), (44)

where G̃(f, v) is defined as

G̃(f, v) ,

0 v∈IV : |V|=0, 2N ,∑
k:v̂(k)∈V

N∑
i=1

(−1)b
N
k (i)e

− f(v)
2

2σ2wi√
2πσwi

v∈IV : |V|=1, ..., 2N−1,

·
N∏
l=1
l 6=i

Q

(
(−1)b

N
k (l)+1f(v)
σwl

)
(45)

and (38) with

v̂(j) =arg max
t

t+
√
D∫

t−
√
D

Φ

(
v

σv

) N∏
i=1

Q

(
(−1)b

N
j (i)+1f(v)

σwi

)
dv,

(46)

for j = 1, . . . , 2N . Furthermore, the gradient of the La-
grangian function L(f, g, λ) over f for g in (38) is given as

∇L = 2λf(v)− 1

2
G̃(f, v). (47)

Proof : See Appendix H.

Remark V.2. From the optimal decoders in (40) and (46),
under the MSE and DOP criteria, respectively, it can be easily
verified that, with equal noise variances for the N observa-
tions, i.e., σ2

wi = σ2
w for i = 1, ..., N , the reconstruction points

v̂(j) corresponding to bNj vectors with the same number of ones
are equal. As a consequence, there are only N + 1 effective
reconstruction points instead of 2N .

Remark V.3. In Section VI, we obtain NOE mappings using
the gradient-descent method as follows:

1) Initialize the set of reconstruction points {v̂(j)}, j =
1, . . . , 2B;

2) Optimize the encoder mapping corresponding to the
decoder (19) and (38) for K-level ADC and multiple
one-bit ADCs, respectively, for the given {v̂(j)}, j =
1, . . . , 2B , using the gradient-descent algorithm (43),
with ∇L defined as in (37) for K > 2, and as in (47)
for N > 1;

3) Find the optimal reconstruction points corresponding to
the obtained encoder mapping using (36) for K > 2,
and (46) for N > 1;

4) If convergence is not obtained, go back to step 2.

VI. NUMERICAL RESULTS

In this section, we provide some illustrations of the results
derived above by means of numerical examples. We consider
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Figure 3: Optimal encoder mappings for the MSE distortion
criterion under different power constraints P (dB) (σ2

w = σ2
v =

1).

the MSE distortion and the DOP in separate subsections.
Throughout this section, we set σ2

v = σ2
w = 1, so that the

SNR in (5) is proportional to the power constraint P .

A. MSE Criterion

We start by considering the MSE distortion in a single
measurement system (N = 1) with a one-bit ADC front end
(K = 2). We then investigate alternative front ends with more
levels (K > 2) or more observations (N > 1) and present a
performance comparison of different front end architectures.

For the case N = 1 and K = 2, Figure 3 shows the
optimal mappings obtained from Proposition III.1 for different
values of P . The value of the Lagrange multiplier λ in (11)
is obtained by means of bisection so as to satisfy the power
constraint E[f(V )2] = P . Figure 3 shows that the optimal
mapping has a linear behaviour around the origin, and that it
saturates as the absolute value of the source sample increases.
As discussed in Section III-A, for low SNR, the saturation
occurs only for very large absolute values of the source; and
therefore, the numerically obtained solution for (11) tends
to a linear function, while, for high SNR, the numerically
obtained solution tends to a step function, resembling digital
transmission.

The conclusions above are corroborated by Figure 4, in
which the MSE distortion of the optimal, linear and digital
transmission schemes are plotted versus the SNR γ. For clarity
of illustration, we plot the complementary MSE distortion
1 − D̄, where we note that D̄ = σ2

v = 1 is achievable by
setting V̂ = 0 irrespective of the received signal. The figure
confirms that linear transmission approaches optimality at low
SNR, whereas, for high SNR, digital schemes outperform
linear transmission. It is also seen that, for digital transmis-
sion, increasing the number of constellation points generally

-5 -4 -3 -2 -1 0 1 2 3 4 5
-10

-9

-8

-7

-6

-5

-4

-3

Optimal
Linear
Digital

Figure 4: Complement of the MSE (1 − D̄) (dB) versus the
SNR (γ) (dB) for the optimal encoder obtained in Proposition
III.1 compared with the linear and digital schemes studied in
Sections III-A, III-B and III-C (σ2

w = σ2
v = 1).

improves the performance, although, in the high SNR regime,
binary transmission is sufficient to achieve the minimum MSE.

We now investigate the MSE performance with the K-level
ADC (N = 1, K > 2) front end studied in Section III-D and
with the multiple one-bit ADCs front end (N > 1, K = 2)
considered in Section V-A. For these architectures, for which
Proposition III.2 and Proposition V.1 provide respective nec-
essary optimality conditions, we resort to a gradient-descent
approach, as described in Remark V.1.

We now first illustrate the NOE mappings for the two types
of front end architectures and then provide a performance
comparison. In Figure 5, the obtained NOE mappings are
illustrated for a K = 4 and a K = 8 level ADC front
end, respectively, under the MSE distortion criterion. The
decision thresholds for K = 4 and K = 8 are chosen as
[∞,−d, 0, d,∞] and as [−∞,−3d,−2d,−d, 0, d, 2d, 3d,∞],
respectively, and the parameter d is optimized by means of a
line search. From the results obtained in Figure 5, it is noticed
that, in the low SNR regime, the NOE mappings for both
K = 4 and K = 8 approach linear transmission as discussed in
Section III-A. Instead, as the SNR γ increases, they resemble
digital mappings with K constellation points.

Considering now the alternative architecture with N ADCs
each with K = 2 quantization levels, Figure 6 illustrates the
NOE mappings for N = 2 and N = 7 under different power
constraints. It is again observed that, when the SNR is low, the
NOE mappings approach linear transmission. With increasing
SNR the NOE mapping exhibits a saturation behaviour, al-
though, as opposed to the N = 1 case in Figure 3, the linear
behaviour around the origin does not disappear completely.

We now compare the two front end architectures, under the
constraint that they both provide B output bits per received
sample. The first architecture uses all bits to quantize a single
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Figure 5: NOE mappings for different power constraints (dB)
and under the MSE distortion criterion (σ2

w = σ2
v = 1): (a)

K = 4; (b) K = 8. The curves are labelled by the pair (P, d),
where P is the average power constraint (dB) and d is the
quantization step size of the ADC front end.

observation, i.e., N = 1 and K = 2B , while the second
one outputs B one-bit measurements, i.e., N = B, K = 2.
In Figure 7, the achievable MSE distortion is shown for the
two architectures for B = 1, 2, 3, along with the Shannon
bound [18, Equation 21], which corresponds to the theoretical
performance limit for N = 1 and K = ∞. It is seen that,
for the same number of bits per sample, B, as the SNR
(γ) increases, the 2B-level ADC architecture outperforms the
receiver with B one-bit ADCs, whereas, the opposite is true
for low SNR. This shows that, for high SNR, it is more
beneficial to invest additional output bits in improving the
ADC resolution. In contrast, for low SNR, it is preferable to
increase the number of observations in order to improve the
effective SNR by collecting independent measurements of the
transmitted signal. We also note that, we found this conclusion
to hold when the threshold values of the N one-bit ADCs

-4 -2 0 2 4
-5

0

5

f
(v
)

6 dB

1 dB

9 dB

10 dB

v

(a)

-4 -2 0 2 4
v

-5
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f
(v
)

9 dB

6 dB

2 dB

−4 dB

−20 dB

(b)

Figure 6: NOE mappings for different power constraints (dB)
and under the MSE distortion criterion σ2

w = σ2
v = 1: (a)

N = 2, K = 2; (b), N = 7, K = 2. The curves are labelled
by their corresponding average power constraint (dB).

are allowed to be distinct, and optimized. Similar observations
have also been made when the mappings are restricted to be
linear (not shown here).

B. DOP Criterion

Here, we study the optimal mapping and performance under
the DOP criterion. We start by considering the case of a one-bit
ADC front end with a single observation, i.e., N = 1, K = 2.
The optimal mapping along with the corresponding optimal
reconstruction points (v̂(1), v̂(2)) for three different values of
the power constraint P are shown in Figure 8, as obtained
in Propositions IV.1 and IV.2. It is seen that, as the SNR
decreases, the optimal reconstruction points, v̂(1) and v̂(2), tend
to zero, while, for high SNR, they tend to v̂(1) = −v̂(2) =

√
D,

as per Remark IV.1. This observation can be explained as
follows. For low SNR, the DOP is dominated by the probability
of channel outage, i.e., by the last two terms in (24), which
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Figure 7: Complement of the MSE (1−D̄) vs. SNR (γ) (linear
scale) for different ADC architectures with B-bit outputs (σ2

v =
1). The variance of the AWGN in all the scenarios and for all
the observations is one (σ2

w = 1).

are zero for v̂(1) = v̂(2) = 0. In contrast, for high SNR,
the optimal solution aims at minimizing the probability of
source outage events, i.e., the first term in (24), which requires
v̂(1) = −v̂(2) =

√
D.

Continuing the analysis of the N = 1, K = 2 case, in Figure
9, the complement of the DOP, 1−ε(D), is plotted with respect
to the SNR for different values of D. As SNR decreases, based
on the discussion above and Remark IV.1, DOP tends to the
first term in (24) when v̂(1) = v̂(2) = 0, which can be computed
as Q(

√
D/σv). Furthermore, as the SNR increases, DOP tends

to the first term in (24) but with v̂(1) = −v̂(2) =
√
D, resulting

in ε(D) = Q(2
√
D/σv), indicated by the dashed lines in

Figure 9.
In order to derive NOE mapping under the DOP criterion for

K > 2 or N > 1, we apply iterative gradient-descent based
algorithm based on the results obtained in Propositions IV.3
and V.2 as described in Remark V.3.

For low SNR, based on the results in Section IV-A (see
also Figure 8) the reconstruction points are close to zero; and
hence, we can initialize the algorithm with all-zero values
when λ is very large. Therefore, we first set a large value for
λ and consider all-zero vector as the initial mapping. Then,
we consider successively smaller values of λ, i.e., increase
the SNR. We use the reconstruction points obtained for the
previous value of the Lagrange multiplier λ to initialize the
algorithm for the current value of λ. This approach is known
as noise channel relaxation (NCR) [34].

In Figure 10, the complement of the DOP, 1 − ε(D), is
shown for two architectures with B = 2 output bits, namely
one observation with 4-level ADC (N = 1, K = 4), and two
observations with one-bit ADCs (N = 2, K = 2), as well as
for the architecture with a one-bit ADC (N = 1, K = 2),
for a target distortion of D = 0.09. In accordance with the
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f
(v
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Figure 8: Optimal encoder mappings for N = 1, K = 2 under
the DOP criterion, for different values of the SNR (γ). The dots
are the reconstruction points v̂(1) and v̂(2) (σ2

w = σ2
v = 1 and

D = 0.3).

discussion above, all architectures have the same performance
for low SNR, namely ε(D) = 2Q(

√
D/σv) = 2Q(

√
0.09).

Furthermore, in a manner similar to the discussion on Fig-
ure 7 for the MSE criterion, in the low SNR regime, it is
beneficial to increase the number of observations, whereas at
high SNR, it is preferable to increase the ADC resolution.
In this regard, we note that, in the high SNR the optimal
K = 4 levels are selected to minimize the probability of
source outage, that is, the probability Pr(V ∈ I∅), yielding the
reconstruction points V̂ = {−3

√
D,−

√
D,
√
D, 3
√
D} and

a DOP of 2Q(4
√
D/σv) = 2Q(1.2) = 0.2301. Instead, for

N = 2 and K = 2, the three effective reconstruction points
(see Remark V.2) at high SNR tend to V̂ = {−2

√
D, 0, 2

√
D}

and the minimum DOP is lower bounded by Q(3
√
D/σv) =

2Q(.9) = 0.3681.

VII. CONCLUSIONS AND FUTURE WORK

We have considered the zero-delay transmission of a single
sample of a Gaussian source over a quantized SIMO AWGN
channel. We first studied a system with a one-bit ADC front
end at the receiver under two distinct performance criteria,
namely the mean square error (MSE) distortion and the dis-
tortion outage probability (DOP). For the MSE distortion, we
have shown that the optimal encoder mapping is odd, and
that, in the low SNR regime, linear transmission approaches
the optimal performance, whereas digital transmission becomes
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Figure 9: Complement of the DOP (1−ε(D)) versus SNR (γ)
in linear scale. Dashed lines represent the DOP in the high SNR
regime for the corresponding distortion target (σ2

w = σ2
v = 1).
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Figure 10: Complement of the DOP (1 − ε(D)) versus SNR
(γ) in linear scale for different ADC architectures with B-bit
outputs (σ2

w = σ2
v = 1).

optimal in the high SNR regime. For the DOP criterion, we
have obtained the optimal structure of the encoder and the
decoder, demonstrating that the optimal encoder function is
symmetric and piecewise constant. For both the MSE distortion
and the DOP criteria, we also derived necessary optimality
conditions for the encoder and decoder mappings for a K-level
ADC front end and for multiple one-bit ADC observations.

Among open problems that are left for future research,
we mention here the joint optimization of the quantization
intervals of the ADC front end with the encoding and decod-
ing functions. Another interesting problem is the zero-delay
joint source-channel coding over fading channels with finite-

resolution ADCs.

VIII. APPENDICES

A. PRELIMINARIES: CALCULUS OF VARIATIONS

In the proofs of the propositions reported above, we leverage
the standard method in variational calculus to obtain necessary
optimality conditions [35, Section 7]. The following lemma
presents the key result that will be used throughout the follow-
ing appendices. For the sake of brevity, we drop the arguments
of functions and functionals where no confusion can arise.
We also use the notation F f and F f

′

to denote the partial
derivatives of a functional F with respect to functions f and
f
′
, respectively.

Lemma A.1. Let Gi, i = 1, . . . , n, be continuous functionals
of (f , f

′
, u) and have continuous partial derivatives with

respect to (f , f
′
). Also, let F be a continuous functional of

(f , f
′
, r1, . . . , rn, u), where ri is a functional of Gi given as

ri =

t2∫
t1

Gi(f(t), f
′
(t), t)dt, i = 1, . . . , n. (48)

Let F has continuous partial derivatives with respect to
(f, f

′
, r1, . . . , rn). Consider the following minimization prob-

lem

minimize
f

L(f) ,

t2∫
t1

F (f(t), f
′
(t), r1, . . . , rn, t)dt. (49)

Define the functional derivative ∇L as

∇L ,F f (f(u), f
′
(u), r1, . . . , rn, u)

− d

du
F f
′

(f(u), f
′
(u), r1, . . . , rn, u)

+
n∑
i=1

((
Gfi (f(u), f

′
(u), u)− d

du
Gf
′

i (f(u), f
′
(u), u)

)
·
∫
F ri(f(t), f

′
(t), r1, . . . , rn, t)dt

)
, (50)

where F ri is the derivative of the functional F with respect
to ri. Similarly, Gfi , G

f
′

i are derivatives of the functional Gi
with respect to f, f

′
, respectively. A necessary condition for a

function f to be a solution of the problem (49) is

∇L = 0, ∀u ∈ [t1, t2]. (51)

Proof : Following the conventional approach in the calculus
of variations, we perturb the function f(t) by an arbitrary
function η(t), which vanishes on the boundary points t1 and
t2 [35]. Let δfL ,

dL(f+αη)
dα

∣∣∣
α=0

be the Gateaux derivative of
the functional L with respect to the parameter α. We have

δfL =

d

dα

t2∫
t1

F (f(t) + αη(t), f
′
(t) + αη

′
(t), rα1 , . . . , r

α
n , t)dt

∣∣∣∣∣
α=0

,

(52)
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where rαi is defined as

rαi =

t2∫
t1

Gi(f(u) + αη(u), f
′
(u) + αη

′
(u), u)du, (53)

for i = 1, . . . , n. Note that in (52), the order of the derivative
with respect to α and the integral can be exchanged due to the
Lebesgue dominated convergence theorem [36]. Therefore, the
Gateaux derivative δfL can be written as

δfL =

t2∫
t1

[
η(t)F f (f(t), f

′
(t), r1, . . . , rn, t)

+ η
′
(t)F f

′

(f(t), f
′
(t), r1, . . . , rn, t)

]
dt

+

t2∫
t1

n∑
i=1

drαi
dα

∣∣∣∣∣
α=0

· F ri(f(t), f
′
(t), r1, . . . , rn, t)dt (54)

=

t2∫
t1

η(t)

[
F f (f(t), f

′
(t), r1, . . . , rn, t)

− d

dt
F f
′

(f(t), f
′
(t), r1, . . . , rn, t)

]
dt

+ F f
′

(f(t), f
′
(t), r1, . . . , rn, t)η(t)

∣∣∣∣∣
t2

t1︸ ︷︷ ︸
=0

+

t2∫
t1

n∑
i=1

drαi
dα

∣∣∣∣∣
α=0

· F ri(f(t), f
′
(t), r1, . . . , rn, t)dt,

(55)

where (55) is due to integration by parts, and the fact that η(t)
vanishes at t1 and t2 by construction. We compute

drαi
dα

∣∣∣∣∣
α=0

=
d

dα

t2∫
t1

Gi(f(u) + αη(u), f
′
(u) + αη

′
(u), u)du

∣∣∣∣∣
α=0

(56)

=

t2∫
t1

[
η(u)Gfi (f(u), f

′
(u), u)

+ η
′
(u)Gf

′

i (f(u), f
′
(u), u)

]
du (57)

=

t2∫
t1

η(u)

[
Gfi (f(u), f

′
(u), u)

− d

du
Gf
′

i (f(u), f
′
(u), u)

]
du

+Gf
′

i (f(u), f
′
(u), u)η(u)

∣∣∣∣t2
t1

(58)

=

t2∫
t1

η(u)

[
Gfi (f(u), f

′
(u), u)

− d

du
Gf
′

i (f(u), f
′
(u), u)

]
du, i = 1, . . . , n. (59)

By plugging (59) into (55) we finally have

δfL =

t2∫
t1

η(u)

[
F f (f(u), f

′
(u), r1, . . . , rn, u)

− d

du
F f
′

(f(u), f
′
(u), r1, . . . , rn, u)

]
du

+
n∑
i=1

 t2∫
t1

F ri(f(t), f
′
(t), r1, . . . , rn, t)dt

·
t2∫
t1

η(u)

(
Gfi (f(u), f

′
(u), u)

− d

du
Gf
′

i (f(u), f
′
(u), u)

)
du

 (60)

=

t2∫
t1

η(u)

F f (f(u), f
′
(u), r1, . . . , rn, u)

− d

du
F f
′

(f(u), f
′
(u), r1, . . . , rn, u)

+
n∑
i=1

(Gfi (f(u), f
′
(u), u)− d

du
Gf
′

i (f(u), f
′
(u), u)

)

·
t2∫
t1

F ri(f(t), f
′
(t), r1, . . . , rn, t)dt

 du. (61)

Since η(u) is an arbitrary function and the term multiplying
η(u) is continuous, it must be zero everywhere on the interval
[t1, t2]. Thus, the optimal solution must satisfy the following
equality

F f (f(u), f
′
(u), r1, . . . , rn, u)

− d

du
F f
′

(f(u), f
′
(u), r1, . . . , rn, u)

+
n∑
i=1

(Gfi (f(u), f
′
(u), u)− d

du
Gf
′

i (f(u), f
′
(u), u)

)
t2∫
t1

F ri(f(t), f
′
(t), r1, . . . , rn, t)dt

=0, ∀u ∈ [t1, t2], (62)

which yields (51).
�

Remark A.1. When the functional F is independent of ri, i =
1, ..., n, then F ri(f, f

′
, u) = 0, and therefore, we obtain the

well known Euler-Lagrange equation

F f (f, f
′
, u)− d

du
F f
′

(f, f
′
, u). (63)
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Remark A.2. As a special case of Lemma (A.1), it will be
useful in Appendices B, C and G to consider the minimization
of the functional

L(f) =
1

σv

t2∫
t1

Φ

(
t

σv

)
F̃ (f(t), r1, . . . , rn, t)dt, (64)

where we recall that Φ(·) is the Gaussian probability density
function with mean zero and variance one, and ri, i =
1, . . . , n, are of the form given by

ri =
1

σv

t2∫
t1

Φ

(
t

σv

)
G̃i(f(t), t)dt, i = 1, . . . , n. (65)

From Lemma A.1, setting

F =
1

σv
Φ

(
t

σv

)
F̃ (f(t), r1, . . . , rn, t), (66)

Gi =
1

σv
Φ

(
t

σv

)
G̃i(f(t), t), i = 1, ..., n, (67)

the solution for this problem needs to satisfy ∇L = 0, where
the functional derivative ∇L is found as

∇L ,F̃ f (f(u), r1, . . . , rn, u) +
n∑
i=1

(
G̃fi (f(u), u)

·
∫

1

σv
Φ

(
t

σv

)
F̃ ri(f(t), r1, . . . , rn, t)dt

)
, u∈ [t1, t2],

(68)

with G̃i, i = 1, . . . , n, and F̃ being continuous functionals
of (f , t) and (f, r1, . . . , rn, t), respectively, and having
continuous partial derivatives with respect to f , and (f ,
r1, . . . , rn), respectively.

Remark A.3. In Appendices B, D, F and H we will consider
the minimization of the functional

L(f) =
1

σv

t2∫
t1

Φ

(
t

σv

)
F̃ (t, f(t)) dt. (69)

From Remark A.1, setting

F (f, t) =
1

σv
Φ

(
t

σv

)
F̃ (f(t), t), (70)

the solution for the minimization of the problem (69) needs to
satisfy

∇L , F̃ f (u, f(u)) = 0, u ∈ [t1, t2], (71)

where F̃ is continuous with respect to f and has continuous
partial derivatives with respect to f .

B. PROOF OF PROPOSITION III.1

As discussed in Section III, the MMSE estimator g(·) =
E[V |·] is optimal for any encoder mapping f . Due to the
orthogonality principle of the MMSE estimation, we can write
D̄ = σ2

v − E[V V̂ ]. Rewriting the Lagrangian in (9) for the

MSE distortion criterion, and dropping the constants that are
independent of f , we have

Ls(f, g, λ) , L(f, g, λ)− σ2
v (72)

= −E[V V̂ ] + λE[f(V )2]. (73)

In the following, we prove the proposition by means of three
key lemmas. In the first, using (68), we obtain a necessary
condition for the optimal encoder mapping. Then, using this
necessary condition, we show that the Lagrangian function in
(73) takes its minimum value when f is odd. Finally, tackling
the optimization problem in (8) over odd functions, and using
(71), we obtain the result of Proposition III.1.

Lemma B.1. The optimal encoder function f for the problem
(8), has to satisfy

f(v)e
f(v)2

2σ2w = af (v + bf ), (74)

where af and bf are defined as

af ,
−r1√

2πσwλr2(1− r2)
, (75a)

bf , −
(1− 2r2)r1
2r2(1− r2)

, (75b)

with r1 and r2 defined as

r1 ,
1

σv

∫
vΦ

(
v

σv

)
Q

(
f(v)

σw

)
dv, (76a)

r2 ,
1

σv

∫
Φ

(
v

σv

)
Q

(
f(v)

σw

)
dv. (76b)

Proof : Expanding the objective function Ls(f, g, λ) in (73),
we have

Ls(f, g, λ) = −EV
[
V EV̂ |V [V̂ |V ]− λf(V )2

]
(77a)

=
1

σv

∫
Φ

(
v

σv

)(
vQ

(
f(v)

σw

)(
v̂(1) − v̂(2)

)
+λf(v)2

)
dv

(77b)

=
1

σv

∫
Φ

(
v

σv

)(
vQ

(
f(v)

σw

)(
r1

r2(r2 − 1)

)
+λf(v)2

)
dv,

(77c)

where v̂(1) = r1
r2−1 and v̂(2) = r1

r2
. We observe that (77c) can

be stated in the form in (64) by setting

F̃ = vQ

(
f(v)

σw

)
·
(

r1
r2(r2 − 1)

)
+ λf(v)2, (78a)

G̃1 = vQ

(
f(v)

σw

)
, (78b)

G̃2 = Q

(
f(v)

σw

)
. (78c)

Note that ∇L = ∇Ls. Therefore, from (68) we have the
necessary condition

∇L =
vr1e

− f(v)
2

2σ2w

√
2πσwr2(1− r2)

+ 2λf(v)
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+
vr1e

− f(v)
2

2σ2w

√
2πσwr2(1− r2)

− (1− 2r2)r21
(r2(1− r2))2

e
− f(v)

2

2σ2w

√
2πσw

=
2r1e

− f(v)
2

2σ2w

√
2πσwr2(1− r2)

(
v− (1− 2r2)r1

2r2(1− r2)

)
+2λf(v)=0.

(79)

By solving (79) with respect to f(v), we obtain (74), which
concludes the proof.

Based on (74), we restrict the minimization of the objective
function over encoder mappings fa,b(v) that satisfy

fa,b(v)e
fa,b(v)

2

2σ2w =
1

a
(v − b), (80)

for some parameters a and b. Note that taking the derivative
of (80) with respect to b we have

f
′

a,b(v) =
1

ae
fa,b(v)

2

2σ2w (1 + 2fa,b(v)2)

, (81)

which implies that for a > 0, the function fa,b(v) is monoton-
ically increasing.

Defining the function fo(·) as the unique solution of

fo(v)e
fo(v)

2

2 = v, (82)

it will be convenient to write

fa,b(v) = σwfo

(
v − b
aσw

)
. (83)

This shows that any function fa,b(v) can be seen as a scaled
and shifted version of the function that satisfies (82). The
function fo(v) is plotted in Figure B1, along with an example
of the function fa,b(v) for a = 4, b = 10. It can be
easily verified that fo(v) is odd, that is, fo(−v) = −fo(v).
Furthermore, functions of the form fa,0(v), that is, with b = 0,
are odd as well.

In the following lemma, we show that the Lagrangian
functional in (73) takes its minimum value only over functions
of the form fa,b(v) where b = 0 for any a, which shows that
the optimal function fa,b(v) is odd as summarized in Corollary
B.3.

Lemma B.2. The optimal solution of the problem

minimize
b

L(fa,b, g, λ), (84)

is achieved for b = 0 for any fixed a.

Proof : We prove the lemma assuming that a, b ≥ 0. This is
without loss of generality given the relationship L(fa,b, g, λ) =
L(fa,−b, g, λ) = L(f−a,b, g, λ) = L(f−a,−b, g, λ). This can be
verified by substituting fa,−b, f−a,b and f−a,−b in (73) and
performing the changes of variables v = t−2b, v = 2b−t and
v = −t, respectively. In the following, we show that decreasing
the value of b ≥ 0, reduces the average power of the mapping,
i.e., E[fa,b(V )2], and increases E[V V̂ ]. Therefore, the function
L(fa,b, g, λ) becomes smaller by decreasing the value of b ≥ 0.

-40 -20 0 20 40
v

-2

-1

0

1

2

f
o
(v
)

fo(v)
f4,10(v)

Figure B1: The function fo(v) in (82) and the function fa,b(v)
in (80) with a = 4, b = 10 .

1) E[fa,b(V )2] is a strictly increasing function of b: By
writing the average power of the function fa,b(v) we have

E[fa,b(V )2] =
1

σv

∫
Φ

(
v

σv

)
fa,b(v)2dv (85)

=
σw
σv

∫
Φ

(
v

σv

)
fo

(
v − b
aσw

)2

dv (86)

=
aσ2

w

σv

∫
Φ

(
aσwv + b

σv

)
fo (v)

2
dv. (87)

Differentiating E[fa,b(V )2] with respect to b, we have

−dE[fa,b(V )2]

db

=
aσ2

w

σ3
v

∫
(aσwv + b)Φ

(
aσwv + b

σv

)
fo (v)

2
dv (88)

≤ aσ2
w

σ3
v

∫
(aσwv + b)Φ

(
aσwv + b

σv

)
Ψ(v)dv, (89)

where Ψ(v) is defined as

Ψ(v) ,

{
fo(v)2 v ≤ − b

aσw
,

fo

(
v + 2b

aσw

)2
v > − b

aσw
.

(90)

It is noted that the inequality in (89) holds due to the fact
that the integrand is positive and that we have the inequalities
Ψ(v) ≥ fo(v) for v ≥ −b/(aσw). Also, Ψ(v) is an even
function shifted to the left by b

aσw
. Hence, due to the fact that

(aσwv + b)φ(aσwv+bσv
) is odd with respect to v = −b/(aσw),

the integrand on the right hand side of the inequality in (89)
is an odd function shifted to the left by b/(aσw. Therefore,
the integral is zero, completing the proof. Note that (89) holds
with equality only when b = 0.
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2) E[V V̂ ] is a decreasing function of b: We first consider
the noiseless scenario, i.e., W = 0. In the noiseless scenario,
for the reconstruction points we have

V̂ =

{
E[V |v ≥ b] Y = 0,
E[V |v < b] Y = 1

(91)

=


σve
− b

2

2√
2πQ( b

σv
)

Y = 0,

−σve−
b2

2√
2π(1−Q( b

σv
))

Y = 1.

(92)

Therefore, E[V V̂ ] can be written as

E[V V̂ ] = Pr(V ≥ b)v̂(1)E[V |V̂ = v̂(1)]

+ Pr(V < b)v̂(2)E[V |V̂ = v̂(2)] (93)

=
σ2
ve
−b2

2πQ
(
b
σv

)(
1−Q

(
b
σv

)) , g̃(b). (94)

It can be verified that the function g̃(b) is even, and that it takes
its maximum at b = 0 as seen in Figure B2 (for the proof see
Appendix I).

Now, considering the noisy received signal, we expand
E[V V̂ ] as

E[V V̂ ] =
1

σw

∫
Φ

(
w

σw

)
E[V V̂ |W = −w]dw, (95)

where

E[V V̂ |W = −w]

= E[V |Y = 0,W = −w]2Pr(Y = 0|W = −w)

+ E[V |Y = 1,W = −w]2Pr(Y = 1|W = −w) (96)

=
σve
−(f−1

a,b(w))
2

2πQ

(
f−1
a,b(w)

σv

) +
σve
−(f−1

a,b(w))
2

2π

(
1−Q

(
f−1
a,b(w)

σv

)) (97)

= g̃
(
f−1a,b (w)

)
. (98)

Notice that the inverse of the function fa,b(v) exists because it
is one-to-one and is defined on the whole real line. Therefore,

E[V V̂ ] =
1

σw

∫
Φ

(
w

σw

)
g̃
(
f−1a,b (w)

)
dw. (99)

We want to show that∫
e−

w2

2 g̃
(
f−1a,b (w)

)
dw ≤

∫
e−

w2

2 g̃
(
f−1a,0(w)

)
dw. (100)

Using the change of variables w = fa,0(v) and the equality
f−1a,b (w) = b+ f−1a,0(w), inequality (100) can be written as∫

e−
f2a,0(v)

2 g̃(b+ v)f
′

a,0(v)dv ≤
∫
e−

f2a,0(v)

2 g̃(v)f
′

a,0(v)dv.

(101)

Inequality (101) is equivalent to

− b2∫
−∞

e−
f2a,0(v)

2 (g̃(b+ v)− g̃(v)) f
′

a,0(v)dv ≤

-5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure B2: Plot of the function g̃(b) in (94).

∞∫
− b2

e−
f2a,0(v)

2 (g̃(v)− g̃(b+ v)) f
′

a,0(v)dv. (102)

Using the transformation −b− v = t for the left hand side of
(102), we have
∞∫
− b2

e−
f2a,0(−b−t)

2 (g̃(−t)− g̃(−b− t)) f
′

a,0(−t− b)dt

=

∞∫
− b2

e−
f2a,0(b+t)

2 (g̃(t)− g̃(b+ t)) f
′

a,0(t+ b)dt, (103)

where the second equality is due to the fact that functions g̃,
f2a,0, f

′

a,0 are even. Therefore, (102) is equivalent to
∞∫
− b2

[
e−

f2a,0(b+t)

2 f
′

a,0(t+ b)− e−
f2a,0(t)

2 f
′

a,0(t)

]
· [g̃(t)− g̃(b+ t)] dt ≤ 0. (104)

The inequality in (104) concludes the proof and follows from
the following facts:
• Since g(t) is even and decreasing for t > 0, we have
g̃(t) ≥ g̃(t + b) > 0 for t ≥ − b

2 , and hence the second
bracket is nonnegative;

• Since fa,0(·) is nondecreasing, we have the inequality

e−
f2a,0(t)

2 ≥ e−
f2a,0(b+t)

2 ;
• From (81) given that the function f

′

a,0(t) is even and
decreasing for t > − b

2 , we have the inequality f
′

a,0(t) ≥
f
′

a,0(t+ b) > 0 for t > − b
2 .

Therefore, the inequality in (100) is concluded.

Corollary B.3. The optimal mapping for problem (9) under
the MSE criterion is odd.
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Proof: By Lemma B.1, the optimal mapping can be written
in the form fa,b(v) without loss of optimality. By Lemma B.2,
we conclude that the optimal mapping is in the form fa,0(v);
and hence, it is odd.

Lemma B.4. A necessary condition for an optimal solution to
problem (8) is

∇L =
−2v√
2πσw

e
− f(v)

2

2σ2w + 2λf(v) = 0. (105)

Proof : Since the optimal mapping is odd by Corollary B.3, it
can be easily verified that v̂(1) = −v̂(2). Furthermore, without
loss of optimality we can assume v̂(1) ≥ 0. Therefore, using
(13c) problem (8) can be restated as

minimize
f

− v̂(1) + λE[f(V )2], (106)

where v̂(1) is obtained as in (12d). Expanding (106), we can
write

minimize
f

−1

σv

∞∫
−∞

Φ

(
v

σv

)(
2vQ

(
f(v)

σw

)
−λf(v)2

)
dv. (107)

Since (107) is of the form (69) with

F̃ = −2vQ

(
f(v)

σw

)
+ λf(v)2, (108)

we have the necessary condition in (105) using (71). This
concludes the proof.

�

C. PROOF OF PROPOSITION III.2

Expanding the objective function L(f, g, λ) as in (77a) we
have

Ls(f, g, λ)

=
−1

σw

∫
Φ

(
v

σv

)(
v

∫
g (Q (f(v) + w)) Φ

(
w

σw

)
dw−λf(v)2

)
dv

(109a)

=
−1

σv

∫
Φ

(
v

σv

)v K∑
j=1

v̂(j)

(
Q

(
z(j−1)−f(v)

σw

)

−Q
(
z(j)−f(v)

σw

))
−λf(v)2

dv, (109b)

where we recall that v̂(j) is the MMSE estimation of the source
when the received signal is Y = y(j), i.e., Y = f(V ) +W ∈
[z(j−1), z(j)). We have v̂(j) =

r1j
r2j

with

r1j=
1

σv

∫
vΦ

(
v

σv

)(
Q

(
z(j−1)−f(v)

σw

)
−Q

(
z(j)−f(v)

σw

))
dv,

(110a)

r2j=
1

σv

∫
Φ

(
v

σv

)(
Q

(
z(j−1)−f(v)

σw

)
−Q

(
z(j)−f(v)

σw

))
dv,

(110b)

for j = 1, ...,K. Since (109b) is of the form (64) with

F̃ =−v
K∑
j=1

r1j
r2j

(
Q

(
z(j−1)−f(v)

σw

)
−Q

(
z(j)−f(v)

σw

))
+ λf(v)2, (111)

and

G̃1j=v

(
Q

(
z(j−1)−f(v)

σw

)
−Q

(
z(j)−f(v)

σw

))
,

G̃2j=

(
Q

(
z(j−1)−f(v)

σw

)
−Q

(
z(j)−f(v)

σw

))
, (112)

for j = 1, ...,K. By writing the necessary condition in (68),
we have

∇L = − v√
2πσw

K∑
j=1

r1j
r2j

e− (z(j−1)−f(v))
2

2σ2w −e−
(z(j)−f(v))

2

2σ2w


− v√

2πσw

K∑
j=1

r1j
r2j

e− (z(j−1)−f(v))
2

2σ2w −e−
(z(j)−f(v))

2

2σ2w


+

1√
2πσw

K∑
j=1

r21j
r22j

e− (z(j−1)−f(v))
2

2σ2w −e−
(z(j)−f(v))

2

2σ2w


+ 2λf(v) = 0. (113)

Solving for f , we have

f(v) =
1

2
√

2πσwλ

K∑
j=1

v̂(j) (2v − v̂(j))

·

e− (z(j−1)−f(v))
2

2σ2w − e−
(z(j)−f(v))

2

2σ2w

 . (114)

�

D. PROOF OF PROPOSITION IV.1

We start by expanding the Lagrangian function (9) for the
DOP criterion as

L(f, g, λ) = ε(D) + λE[f(V )2] (115a)

= Pr
(
V ∈ (I1 ∪ I2)C

)
+ Pr

(
V ∈ (I1 \ I2), V̂ = v̂(2)

)
+ Pr

(
V ∈ (I2 \ I1), V̂ = v̂(1)

)
+

λ

σv

∫
Φ

(
v

σv

)
f(v)2dv, (115b)

where we have used the decomposition in (24). The probabil-
ities in (115b) can be written as

Pr
(
V ∈ (I1 ∪ I2)C

)
=

1

σv

∫
v∈(I1∪I2)C

Φ

(
v

σv

)
dv, (116a)

Pr
(
V ∈ (I1 \ I2), V̂ = v̂(2)

)
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=
1

σv

∫
v∈I1\I2

Φ

(
v

σv

)
Q

(
f(v)

σw

)
dv, (116b)

Pr
(
V ∈ (I2 \ I1), V̂ = v̂(1)

)
=

1

σv

∫
v∈I2\I1

Φ

(
v

σv

)
Q

(
−f(v)

σw

)
dv. (116c)

Since the intervals on which the integrals in (116) are taken
do not overlap and span the real line, the Lagrangian in (115)
can be written in the form of (69) with F̃ (v, f) defined as

F̃ (v, f) =


1 + λf(v)2 v ∈ (I1 ∪ I2)C ,

Q
(
f(v)
σw

)
+ λf(v)2 v ∈ (I1 \ I2),

Q
(
−f(v)
σw

)
+ λf(v)2 v ∈ (I2 \ I1),

λf(v)2 v ∈ (I1 ∩ I2).
(117)

Using the optimality condition in (71) and differentiating
F̃ (v, f) in (117) with respect to f , we have the necessary
condition F̃ f = 0 with

F̃ f (v, f) =
2λf(v) v ∈ (I1 ∪ I2)C ∪ (I1 ∩ I2),

−1√
2πσw

e
−f(v)2

2σ2w + 2λf(v) v ∈ (I1 \ I2),

1√
2πσw

e
−f(v)2

2σ2w + 2λf(v) v ∈ (I2 \ I1).

(118)

Therefore, we have

f(v) =


0 v ∈ (I1 ∪ I2)C ∪ (I1 ∩ I2),

1
2λ
√
2πσw

e
−f(v)2

2σ2w v ∈ (I1 \ I2),

−1
2λ
√
2πσw

e
−f(v)2

2σ2w v ∈ (I2 \ I1).

(119)

�

E. PROOF OF PROPOSITION IV.2

Given λ, and obtaining the value of u from (26), we aim to
minimize the objective function in (9) for the DOP with respect
to the reconstruction points v̂(1) and v̂(2). Since by Proposition
IV.1 the non-zero optimal values of f(v) are opposite of one
another over I2\I1 and I1\I2, we can rewrite (9) for the DOP
as follows

L(f, g, λ) =
1

σv

 ∫
(I1∪I2)C

Φ

(
v

σv

)
dv

+Q

(
u

σw

) ∫
I2\I1

Φ

(
v

σv

)
dv +

∫
I1\I2

Φ

(
v

σv

)
dv


+λ

 ∫
I2\I1

Φ

(
v

σv

)
u2dv +

∫
I1\I2

Φ

(
v

σv

)
u2dv


 (120)

=
1

σv

 ∫
(I1∪I2)C

Φ

(
v

σv

)
dv

+

(
Q

(
u

σw

)
+ λu2

)
·

∫
(I2\I1)∪(I1\I2)

Φ

(
v

σv

)
dv

 , (121)

where u is the solution of ue
u2

2σ2w = 1
2σw
√
2πλ

. From (121), it
can be shown that (9) for the DOP is minimized if I1 and I2
lie around the origin, i.e., 0 ∈ I1 ∩ I2, and they are symmetric
with respect to the origin; that is, if I1 = [l, h] for l ≤ 0 ≤ h,

then I2 = [−h,−l]. From (26), we have λu2 = ue

−u2
2σ2w

2σw
√
2π

. By
substituting this into (121) we have

L(f, g, λ) =
1

σv

 ∫
(I1∪I2)C

Φ

(
v

σv

)
dv

+C(u) ·
∫

(I2\I1)∪(I1\I2)

Φ

(
v

σv

)
dv

 , (122)

where C(u) , Q
(
u
σw

)
+ ue

−u2
2σ2w

2σw
√
2π

. By differentiating C(u)

with respect to u it can be verified that C(u) is decreasing
with u and is less than or equal to 1/2 for all u ≥ 0. We
now prove the claim (the intervals are around the origin and
symmetric) for the case in which the intervals I1 and I2 do not
overlap. The proof is similar for the case in which the intervals
overlap.

Consider two symmetric non-overlapping intervals Is1 and
Is2 , such that Is1 = [−2

√
D, 0] and Is2 = [0, 2

√
D]. Note that

we have

1

σv

∫
I1∪I2

Φ

(
v

σv

)
dv

≤ 1

σv

∫
Is1∪Is2

Φ

(
v

σv

)
dv (123)

=
1

σv

∫
I1∪I2

Φ

(
v

σv

)
dv +Adiff, (124)

where Adiff ≥ 0. Therefore, we can write

L(f, g, λ) =
1

σv

 ∫
(I1∪I2)C

Φ

(
v

σv

)
dv

+C(u) ·
∫

I1∪I2

Φ

(
v

σv

)
dv

 (125)

=
1

σv

 ∫
(Is1∪Is2 )C

Φ

(
v

σv

)
dv +Adiff
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+C(u)·

 ∫
Is1∪Is2

Φ

(
v

σv

)
dv−Adiff


 (126)

=
1

σv

 ∫
(Is1∪Is2 )C

Φ

(
v

σv

)
dv

+C(u)·
∫

Is1∪Is2

Φ

(
v

σv

)
dv

+Adiff(1−C(u))

(127)
= Ls(f, g, λ) +Adiff(1− C(u)), (128)

where Ls(f, g, λ) represents the Lagrangian for symmetric
non-overlapping intervals. Since Adiff(1−C(u)) ≥ 0, it follows
that

L(f, g, λ) ≥ Ls(f, g, λ),

proving the claim.
Focusing on symmetric intervals, we define the positive

parameter 0 ≤ a ≤
√
D such that I2 = [−2

√
D + a, a] and

I1 = [−a, 2
√
D − a], and I1 ∩ I2 = [−a, a]. Therefore, (121)

can be rewritten as

L(f, g, λ) = 2Q

(
2
√
D − a
σv

)
+ 2

(
Q

(
u

σw

)
+ λu2

)

·

(
Q

(
a

σv

)
−Q

(
2
√
D − a
σv

))
. (129)

Optimizing (129) over a completes the proof of Proposition
IV.2.

�

F. PROOF OF PROPOSITION IV.3

Necessary optimality condition of an encoder mapping f
for a given set of reconstruction points {v̂(1), . . . , v̂(K)}: We
start by expanding ε(D) with respect to the different intervals
defined in (31). We have

ε(D) = 1− Pr
(

(V − V̂ )2 < D
)

(130a)

= 1−
∑
V:

V⊂{v̂(1),...,v̂(K)}

Pr
(

(V − V̂ )2 < D|V ∈ IV
)

Pr (V ∈ IV)

(130b)

= 1− Pr
(

(V − V̂ )2 < D|V ∈ I∅
)

Pr (V ∈ I∅)

− Pr
(

(V − V̂ )2 < D|V ∈ I{v̂(1),...,v̂(K)}
)

· Pr
(
V ∈ I{v̂(1),...,v̂(K)}

)
−

∑
V:V⊂{v̂(1),...,v̂(K)}
|V|=1,...,K−1

Pr
(

(V − V̂ )2 < D|V ∈ IV
)

Pr (V ∈ IV)

(130c)

= 1− Pr
(
V ∈ I{v̂(1),...,v̂(K)}

)

−
∑

V:V⊂{v̂(1),...,v̂(K)}
|V|=1,...,K−1

Pr
(

(V − V̂ )2 < D|V ∈ IV
)

Pr (V ∈ IV)

(130d)

= 1− Pr
(
V ∈ I{v̂(1),...,v̂(K)}

)
−

∑
V:V⊂{v̂(1),...,v̂(K)}
|V|=1,...,K−1

1

σv

∫
v∈IV

Φ

(
v

σv

)
Pr (W + f(v) ∈ ζV) dv

(130e)

= 1− Pr
(
V ∈ I{v̂(1),...,v̂(K)}

)
− 1

σv

∑
V:V⊂{v̂(1),...,v̂(K)}
|V|=1,...,K−1

∫
v∈IV

Φ

(
v

σv

)
(130f)

·
∑

j:v̂(j)∈V

(
Q

(
z(j−1)−f(v)

σw

)
−Q

(
z(j)−f(v)

σw

))
dv,

(130g)

where ζV ,
⋃
j:v̂(j)∈V

[
z(j−1), z(j)

)
. Note that the different

sets in (130f) partition the real line, that is, they are disjoint
and their union is the real line. Substituting (130f) in (14), the
Lagrangian L(f, g, λ) can be written in the form of (69) with
F̃ (v, f) defined as

F̃ (v, f) ,

1 + λf(v)2 v ∈ I∅,
λf(v)2 v ∈ I{v̂(1),...,v̂(K)},

1−
∑

j:v̂(j)∈V

(
Q
(
z(j−1)−f(v)

σw

)
v ∈ IV , |V| = 1, . . . ,K − 1.

−Q
(
z(j)−f(v)

σw

))
+λf(v)2

(131)

Writing the necessary condition in (71) and setting to zero
leads to (35).

Optimal decoder function g for a given encoder mapping f :
For a given encoder mapping f , the optimal decoder can be
obtained as

v̂(j) = arg min
t

Pr((V − t)2 ≥ D|Y = y(j)) (132a)

≡ arg max
t

Pr
(
(V − t)2 < D,Y = y(j)

)
(132b)

= arg max
t

t+
√
D∫

t−
√
D

z(j)−f(v)∫
z(j−1)−f(v)

Φ

(
v

σv

)
Φ

(
w

σw

)
dwdv

(132c)

= arg max
t

t+
√
D∫

t−
√
D

Φ

(
v

σv

)(
Q

(
z(j−1) − f(v)

σw

)

−Q
(
z(j) − f(v)

σw

))
dv. (132d)

�
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G. PROOF OF PROPOSITION V.1

Define yi , Γ(f(v) + wi), wN , [w1, ..., wN ]T , yN ,
[y1, ..., yN ]T . Expanding L(f, g, λ) in (9) for the MSE we have

Ls(f, g, λ)

=
−1

σσv

∫
v

∫
wN

vg
(
yN
)

Φ

(
v

σv

) N∏
i=1

Φ

(
wi
σwi

)
dwNdv

+ λ
1

σv

∫
Φ

(
v

σv

)
f(v)2dv (133a)

=
−1

σσv

∫
Φ

(
v

σv

)v∫
wN

g
(
yN
) N∏
i=1

Φ

(
wi
σwi

)
dwN−λf(v)2

dv
(133b)

=
−1

σσv

∫
Φ

(
v

σv

)v 2N∑
j=1

v̂(j)Pr
(
V̂ = v̂(j)|V = v

)
−λf(v)2

dv,
(133c)

where v̂(j) = E[V |Y N = bNj ] = E[V |Y1 = bNj (1), . . . , YN =

bNj (N)] and σ =
N∏
i=1

1
σwi

. We can compute

Pr
(
V̂ = v̂(j)|V = v

)
=

N∏
i=1

Pr
(
Γ(f(v) +Wi) = bNj (i)

)
(134a)

=

N∏
i=1

Q

(
(−1)b

N
j (i)+1f(v)

σwi

)
,

(134b)

for j = 1, ..., 2N . Substituting (134b) in (133c), we have

Ls(f, g, λ) =
−1

σv

∫
Φ

(
v

σv

)v 2N∑
j=1

v̂(j)

·
N∏
i=1

Q

(
(−1)b

N
j (i)+1f(v)

σwi

)
− λf(v)2

 dv,

(135)

where for v̂(j) we have

v̂(j) =

1
σv

∫
vΦ
(
v
σv

) N∏
i=1

Q

(
(−1)b

N
j (i)+1

f(v)
σwi

)
dv

1
σv

∫
Φ
(
v
σv

) N∏
i=1

Q

(
(−1)b

N
j

(i)+1
f(v)

σwi

)
dv

,
r1j
r2j

, (136)

for j = 1, . . . , 2N . Since (135) is of the form (64) with

F̃ = −v
2N∑
j=1

v̂(j)

N∏
i=1

Q

(
(−1)b

N
j (i)+1f(v)

σwi

)
+ λf(v)2,

(137)

G̃1j = v
N∏
i=1

Q

(
(−1)b

N
j (i)+1f(v)

σwi

)
, j = 1, . . . , 2N , (138)

G̃2j =
N∏
i=1

Q

(
(−1)b

N
j (i)+1f(v)

σwi

)
, j = 1, . . . , 2N . (139)

Writing down the optimality condition in (68), we have

∇L =− v
2N∑
j=1

r1j
r2j

Θ (N, f(v), j) + 2λf(v)

−
2N∑
j=1

v ·Θ (N, f(v), j)

r2j
· r1j

+
2N∑
j=1

r1j ·Θ (N, f(v), j)

r22j
· r1j (140a)

=−
2N∑
j=1

r1j
r2j

Θ (N, f(v), j)

(
2v −

r1j
r2j

)
+ 2λf(v)

(140b)

=−
2N∑
j=1

Θ (N, f(v), j) v̂(j)
(
2v − v̂(j)

)
+ 2λf(v) = 0,

(140c)

where

Θ (N, f(v), j) =

N∑
k=1

 (−1)b
N
j (k)e

− f(v)
2

2σ2wk

√
2πσwk

N∏
l=1,l 6=k

Q

(
(−1)b

N
j (l)+1f(v)

σwl

) . (141)

Therefore, the optimal mapping must be in the form given by
(42).

�

H. PROOF OF PROPOSITION V.2
Necessary optimality condition of an encoder mapping f

for a given set of reconstruction points
{
v̂(1), . . . , v̂(K)

}
: We

expand ε(D)

ε(D) = 1− Pr
(

(V − V̂ )2 < D
)

(142a)

= 1− 1

σσv

∫∫
v,wN :|v−g(yN )|2<D

Φ

(
v

σv

) N∏
i=1

Φ

(
wi
σwi

)
dwNdv

(142b)

= 1− 1

σσv

∑
V:V⊂

{
v̂(1),...,v̂(2N )

}
∫

v∈IV

∫
wN :g(yN )∈V

Φ

(
v

σv

)

·
N∏
i=1

Φ

(
wi
σwi

)
dwNdv (142c)

= 1− 1

σv

∑
V:V⊂

{
v̂(1),...,v̂(2N )

}
∫

v∈IV

Φ

(
v

σv

)

·
∑

j:v̂(j)∈V

(
N∏
i=1

Q

(
(−1)b

N
j (i)+1f(v)

σwi

))
dv (142d)
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= 1− 1

σv

∫
v∈I{

v̂(1),...,v̂(2N )

}
Φ

(
v

σv

)
dv

− 1

σv

∑
V:V⊂

{
v̂(1),...,v̂(2N )

}
|V|=1,...,2N−1

∫
v∈IV

Φ

(
v

σv

)

·
∑

j:v̂(j)∈V

(
N∏
i=1

Q

(
(−1)b

N
j (i)+1f(v)

σwi

))
dv, (142e)

where σ =
N∏
i=1

σwi . Substituting (142e) in (9), the Lagrangian

L(f, g, λ) can be written in the form of (69) with F̃ (v, f)
defined as

F̃ (v, f) , (143)

1 + λf(v)2 v∈I∅,
λf(v)2 v∈I{

v̂(1),...,v̂(2N )

},
1 + λf(v)2 v∈IV : |V|=1, ..., 2N−1.

−
∑

j:v̂(j)∈V

N∏
i=1

Q

(
(−1)b

N
j (i)+1

f(v)
σwi

)
(144)

Writing the necessary condition in (71) and setting to zero
yields the result in (45).

Optimal decoder function g for a given encoder mapping f :
Assume that the encoder mapping is given. Following a similar
approach to the derivation of the optimal decoder for a K-level
ADC front end, the optimal decoder at the receiver is obtained
as

v̂(j) =arg max
t

t+
√
D∫

t−
√
D

Φ

(
v

σv

)
Pr(Y1 =bNj (1), ..., YN =bNj (N))dv

(145a)

=arg max
t

t+
√
D∫

t−
√
D

Φ

(
v

σv

) N∏
i=1

Q

(
(−1)b

N
j (i)+1f(v)

σwi

)
dv.

(145b)

�

I. PROOF OF THE DECREASING CHARACTERISTIC OF (94)
WITH RESPECT TO |b|

It can be easily verified from (94) that g̃(b) is even. In the
following, using the bounding techniques for the Q function,
we show that g̃(b) is decreasing with respect to the absolute
value of b. We assume σ2

v = 1 for brevity of the presentation,
but the results are valid for any value of σ2

v . We consider the
cases b ≥ 1 and 0 ≤ b ≤ 1 separately.
• b ≥ 1: Taking the derivative of (94) with respect to b, we

have

g̃
′
(b) =

e−b
2

g1(b)

2π (Q(b) (1−Q(b)))
2 . (146)

where g1(b) , Φ(b)(1− 2Q(b))− 2bQ(b)(1−Q(b)).
It can be easily verified that g̃

′
(0) = 0. It is enough to

show that g1(b) < 0 for b > 1. Using the lower bound
Q(b) ≥ b

1+b2 Φ(b), we have

g1(b) ≤ Φ(b)(1− 2Q(b))− 2b2

1 + b2
Φ(b)(1−Q(b))

(147)

=
Φ(b)

1 + b2
(
1− b2 − 2Q(b)

)
, (148)

which is obviously negative for b > 1.
• 0 ≤ b ≤ 1: Taking the second derivative of g1(b), we have

g̃
′′

1 (b) = −Φ(b)
(
(b2 − 3)(1− 2Q(b)) + 2bΦ(b)

)
.

(149)

Using the first two terms of the Taylor series expansion
of the Q-function as a lower bound, that is, Q(b) ≥ 1/2−
Φ(0)b, we can write

g̃
′′

1 (b) ≥ −Φ(b)
(
(b2 − 3)2Φ(0)b+ 2bΦ(0)

)
(150)

≥ −2bΦ(0)Φ(b)(b2 − 2) ≥ 0. (151)

Therefore, g1(b) is convex for 0 ≤ b ≤ 1. Noticing that
g1(0) = 0, and g1(1) < 0, concludes that g1(b) < 0 for
all b > 0.

�
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