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Random plane wave is conjectured to be a universal model for high-energy eigenfunctions of the Laplace

operator on generic compact Riemannian manifolds. This is known to be true on average. In the present

paper we discuss one of important geometric observable: critical points. We first compute one-point

function for the critical point process, in particular we compute the expected number of critical points

inside any open set. After that we compute the short-range asymptotic behaviour of the two-point

function. This gives an unexpected result that the second factorial moment of the number of critical

points in a small disc scales as the fourth power of the radius.

1 Introduction and main results

1.1 Random Gaussian functions

Studying the Laplace eigenfunctions and their geometry is a classical subject going back to at least
XIX century. It is most important to understand the eigenfunctions behaviour in the high energy
limit. For a given domain, this is a difficult question, and we only have limited information about
it other than in the few cases where the eigenfunctions is explicitly given.

For a generic chaotic domain (i.e. where the billiard dynamics is chaotic) it was conjectured
by Berry [3] that the high energy functions behave like a random superposition of monochromatic
plane waves propagating in different (random) directions, usually referred to as the random plane
wave, rigorously defined below. As the comparison between these two is lacking mathematical
rigour, one may understand this comparison in different ways.

Berry’s conjecture seems to be out of reach by modern analytic techniques; a similar
statement for a random linear combination of eigenfunctions with close eigenvalues could be proved
though. Namely, for a compact Riemannian manifold M we can consider an orthonormal basis of
eigenfunctions φi satisfying ∆φi + t2iφi = 0 with t0 ≤ t1 ≤ . . . , and define the band-limited functions

fT =
∑

T−
√
T≤ti≤T

ciφi

where ci are i.i.d. normal random variables. It is known [10, 9, 15, 6] that the local scaling limit of
fT is the random plane wave.

The above conjectures and results show that the random plane wave is a universal object,
and motivate their further study; here we are interested in their geometry. As usual, a Gaussian
random field could be defined or constructed in two different ways. On one hand we may define it
as a concrete random series, an on the other hand we may describe it as uniquely defined in terms
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of it covariance function via Kolmogorov’s Theorem. As a concrete random series we define the
random plane wave with energy E = k2 to be

Ψ(z) = Ψ(r, θ) = Re

∞∑
n=−∞

anJ|n|(k r)e
inθ (1)

in polar coordinates, where Jn are Bessel functions and an are independent complex Gaussian
random variables with variance 2. Since the Bessel functions decay exponentially fast as functions
of the order n, the series (1) is almost surely convergent, absolutely and uniformly on any compact
set, and hence the sum is a real analytic function.

By the definition (1), Ψ is a centred Gaussian random field, therefore its law is prescribed by
the covariance function

ψ(z, w) := E[Ψ(z) ·Ψ(w)],

for z, w ∈ R2. It is then easy to evaluate ψ explicitly as

ψ(z, w) = J0(k|z − w|),

where J0 is the Bessel J function of order 0. From this representation it follows that Ψ is stationary
(i.e. its law is translation invariant), and isotropic, (i.e. its law is invariant under rotations); by the
standard abuse of notation we write ψ(z, w) = ψ(z − w).

It also follows directly from (1) that the function Ψ is an a.s. solution of the Helmholtz equation

(∆ + k2)Ψ = 0, (2)

i.e. Ψ is an a.s. eigenfunction of −∆ with eigenvalue k2; we are interested in the geometry of
random (or “typical”) solutions Ψ of (2). The geometric properties considered below are related
to the nodal lines (i.e. Ψ−1(0)), nodal domains (i.e. connected components of the complement of
the nodal set), as well as the level curves (Ψ−1(c)), and excursion sets (connected components of
{z : Ψ(z) > c}). The geometry of these sets is closely related to that of the set of critical points
of Ψ. The critical points and values and their applications appear a lot ([11, 14, 12, 8, 7, 13] to
mention a few) in the literature on nodal domains of random plane waves and, more generally,
smooth Gaussian fields.

1.2 Critical points

There are several intriguing questions on the critical points of random fields. From our perspective,
of the most important questions are the ones on the distribution of the critical points number,
and the corresponding critical values. This general question could be made more concrete in
different ways, most basically, evaluating the expected number of critical points inside a given
domain; the latter admits a precise answer in a more general scenario. In an analogous case of
random spherical harmonics (that converges to Ψ as a scaling limit), Cammarota, Marinucci and
Wigman [4] evaluated the expected number of minima, maxima and saddles whose value falls into
a given window, and also determined the order of magnitude of the corresponding variance for a
“generic” window, which does not include the total number of critical points. In a subsequent work
Cammarota and Wigman [5] resolved this outstanding case by evaluating the variance of the total
number of critical points to be of lower order as compared to the generic case.

It is important to understand the finer aspects of the structure of critical points. Upon looking
at Figure 1 (left), it is evident that the structure of critical points is very “rigid” or “regular”;
however it is not entirely clear how to formulate or quantify this statement with mathematical
rigour. One can compare this to two other very well known translation invariant processes: in
Figure 1 (centre) one may observe the Poisson point process, and Figure 1 (right) shows the
corresponding picture for Ginibre point process; both are scaled to have the same intensity as the
critical points in Figure 1 (left).

For all three point processes depicted in Figure 1 the number of points in a square of side-
length n is c · n2 where c = 1/2

√
3π. This value of c is the natural intensity of critical points (see
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Fig. 1: Left: critical points of a random plane wave. Center: The Poisson point process which has
the same density. Right: a bulk part of the Ginibre ensemble with the same density.

Proposition 1.1) of Ψ, whereas the other two point processes are so rescaled. The fluctuations of the
total number of points in a square depend a lot on the point process. Though formally stated for
random spherical harmonics (which are only equivalent to Ψ in the limit, under a natural scaling),
it is likely that one may deduce from [5] that the variance for the critical points scales like n2 log(n),
whereas for the Poisson point process it is asymptotic to c · n2 (with the same c as above), and for
the Ginibre ensemble it is of order n.

On the local scale, the probability that there is at least one point in a small disc or radius ρ is
the same for all three processes due to the translation invariance and our choice of normalization.
The respective probabilities that there are exactly two points in a small disc are very different
though. For the Poisson point process it is the probability that a Poisson random variable with
intensity cπρ2 is equal to 2. By the definition it is given by

P(2 points) =
(cπρ2)2 exp(−cπρ2)

2
≈ c2π2 · ρ4

2
=

1

233
· ρ4,

whereas for the Ginibre ensemble (which is a determinantal point process) this probability is of
order ρ6. That means that the points corresponding to the Ginibre ensemble repel each other,
inducing on their visible regularity or rigidity.

Our principle result (Theorem 1.2) is the evaluation of the 2nd factorial moment of the number
of critical points of Ψ in a radius ρ disc, asymptotically for ρ→ 0. This suggests (Corollary 1.3 and
Conjecture 1.4) that the probability of having precisely two critical points in the disc is

1

263
√

3
ρ4 + o(ρ4),

of the same order of magnitude (and leading constant smaller by the factor 8
√

3 ≈ 13.8) as the
probability of finding 2-points in the same disc for the Poisson point process. This minor difference
could not stand for the striking difference in the appearance of the two processes, highly regular
for the critical points of Ψ. It is also worth noting, that despite the fact that critical points are
more “lattice like” than the Ginibre ensemble, for the critical points clustering is significantly more
likely (see Figure 2).

A possible explanation for this effect could come from the second part of Theorem 1.2. Let us
separate the critical point process into two parts, namely extrema and saddles. Both processes are
very “regular” and exhibit a strong repulsion. In both cases the probability of having at least two
points in a small disc of radius ρ decays at rate of at least ρ7 log(1/ρ)) which is smaller than the
corresponding decay for the Ginibre ensemble almost by an order of magnitude. We believe that
the apparent “rigid” structure that is observed in Figure 1 (left) comes from the regularity of both
these point processes. Moreover, it seems that both processes have a very similar structure (see
Figure 3).

All clustering comes from the probability that after overlapping, a point in one process is
close to a point in another process. “Rigidity” and similarity in the structure suggest that the
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Fig. 2: Central fragment of the critical points process from Figure 1. Here we distinguish between
different types of critical points: red diamonds are local maxima, blue squares are local minima,
and black discs are saddles.

Fig. 3: The same central fragment as in Figure 2 according to their type. Left: extrema only, right:
saddles only.

pairs of critical points that are close to each other are well separated and do not affect the general
impression of “rigidity” in Figure 1 (left).

To formulate our main results we introduce the following notation for the number of critical
points of a random plane wave Ψ in a disc B(ρ) of radius ρ > 0:

N c
ρ = #{x ∈ B(ρ) : ∇Ψ(x) = 0}.

The numbers N saddle
ρ , Nmin

ρ , Nmax
ρ , and N e

ρ of saddles, minima, maxima, and extrema respectively
may also be defined.

Since the function Ψ is translation invariant, the above random variables are independent of
the center of the disc, so for simplicity, we may assume that it is centred at the origin. Another
useful observation is that the random plane waves are scale invariant (that is, the law of Ψ with
arbitrary k on B(1) is (up to homothety) equivalent to the law of Ψ with k = 1 on B(k)); hence,
with no loss of generality, we may assume that k = 1, as we will for the rest of this manuscript.
The following principal results of this manuscript evaluate the expectation and the second factorial
moment of N c

ρ for small values of ρ. The first result, consistent to a similar statement from [4,
Proposition 1.1], is for the expectations.
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Proposition 1.1. For every ρ > 0 we have

E[N c
ρ ] =

1

2
√

3
ρ2 (3)

and

4E[Nmin
ρ ] = 4E[Nmax

ρ ] = 2E[N saddle
ρ ] = 2E[N e

ρ ] = E[N c
ρ ].

Note that (3) is not an asymptotic result, but rather a precise identity. More generally, same
proof works on any open domain Ω, i.e. the expected number of critical points lying in Ω is equal

to Area(Ω)

2
√

3π
. Evaluating the second moment is more involved, and we were unable to obtain a precise

expression. Instead, we show how it behaves asymptotically as the radius ρ→ 0.

Theorem 1.2. As ρ→ 0, we have the following expansion for the number of critical points:

E[N c
ρ (N c

ρ − 1)] =
1

25 3
√

3
ρ4 +O(ρ6). (4)

For N saddle
ρ , Nmin

ρ , Nmax
ρ , and N e

ρ – numbers of saddles, local minima, local maxima, and local
extrema in a ball of radius ρ we have

E[Nmax
ρ (Nmax

ρ − 1)] = E[Nmin
ρ (Nmin

ρ − 1)] = O(ρ7 log(1/ρ)), (5)

E[N e
ρ (N e

ρ − 1)] = O(ρ7 log(1/ρ)), (6)

E[N saddle
ρ (N saddle

ρ − 1)] = O(ρ7 log(1/ρ)), (7)

E[Nmax
ρ Nmin

ρ ] = O(ρ12), (8)

E[N e
ρN saddle

ρ ] =
1

26 3
√

3
ρ4 +O(ρ6). (9)

There is no evidence that the estimates (5)-(7), and (8) are sharp. In fact, it seems quite likely,
that they are not, for (8) particularly. Since the extremum-saddle covariance (9) gives the main
contribution to (4), the last formula (9) is an asymptotic and as such gives a sharp decay rate.
For integer-valued random variables it is more natural to consider factorial moments instead of
the usual moments. The asymptotic behaviour of the variance, dominated by the expectation (and
hence less useful), can be easily obtained by combining (3) and (4)

Var
[
N c
ρ

]
=

1

2
√

3
ρ2 − 8

√
3− 1

253
√

3
ρ4 + . . . .

Since all our random variables Nρ are integer valued, the first and second factorial moments yield
the asymptotics for probabilities of the events Nρ = 1 and Nρ ≥ 2, as follows.

Corollary 1.3. As ρ→ 0 we have the following asymptotic formulas for probabilities to have
exactly one point:

P(N c
ρ = 1) =

1

2
√

3
ρ2 +O(ρ4),

P(Nmin
ρ = 1) = P(Nmax

ρ = 1) =
1

8
√

3
ρ2 +O(ρ4),

P(N e
ρ = 1) =

1

4
√

3
ρ2 +O(ρ4),

P(N saddle
ρ = 1) =

1

4
√

3
ρ2 +O(ρ4).

(10)
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For probabilities to have at least two points we have

P(N c
ρ ≥ 2) = O(ρ4),

P(Nmin
ρ ≥ 2) = P(Nmax

ρ ≥ 2) = O(ρ7 log(1/ρ)),

P(N saddle
ρ ≥ 2) = O(ρ7 log(1/ρ)),

P(Nmin
ρ ≥ 1,Nmax

ρ ≥ 1) = O(ρ12)

(11)

Finally, for the probability to have three points we have

P(N c
ρ ≥ 3) = O(ρ7 log(1/ρ)). (12)

Proof . The proof is straightforward. For the sake of notational convenience we write N = N c
ρ .

The expectation and the second factorial moment could be written as series

E [N ] = P(N = 1) + 2P(N = 2) + 3P(N = 3) + . . .

E [N(N − 1)] = 2P(N = 2) + 6P(N = 3) + 12P(N = 4) + . . .

Comparing the coefficients in front of P(N = k) we see that if the second moment is o-small of the
expectation, then the expectation is dominated by P(N = 1). In this case P(N = 1) has the same
leading term as the expectation and the error term is of the same order as the second moment.
This, combined with the results of Proposition 1.1, proves formulas (10). The estimates (11) are
obtained by applying Markov inequality to the results of Theorem 1.2. Finally, to prove (12), we
notice that the event N c ≥ 3 is majorised by N e ≥ 2 or N saddle ≥ 2.

Note that the third factorial moment should be dominated by the event N = 3, which, by
(12), is O(ρ7 log(1/ρ)). This gives a strong evidence that

E [N(N − 1)(N − 2)] = o(ρ4).

Assuming that this is indeed true, we can repeat the argument above and compare the coefficients
in the second and third factorial moments and show that

P(N = 2) = ρ4/263
√

3 + o(ρ4).

1.3 Outline of the proofs

The proofs of Proposition 1.1 and Theorem 1.2 are based on the Kac-Rice formula applied to the
gradient of Ψ. The Kac-Rice formula is a standard tool for studying the expected number of zeros
of a random field (see e.g. [1, Theorem 11.2.1] or [2, Theorem 6.8]) and its higher moments by
expressing the n-th (factorial) moment in terms of an n-dimensional integral. In general, under
some non-degeneracy conditions on the given random field, for every n ≥ 1 the factorial moments
are given by:

E[N c
ρ (N c

ρ − 1) · · · (N c
ρ − (n− 1))] =

∫
· · ·
∫
B(ρ)×···×B(ρ)

Kn(z) dz, (13)

where z = (z1, . . . zn) ∈ B(ρ)× · · · × B(ρ) ⊂ R2n, and Kn is the n-point correlation function defined
as the conditional Gaussian expectation

Kn(z) = φ(∇Ψ(z1),...,∇Ψ(zn))(0, . . . , 0) · E

[
n∏
i=1

|detHΨ(zi)|
∣∣∇Ψ(z1) = · · · = ∇Ψ(zn) = 0

]
,

where φ(∇Ψ(z1),...,∇Ψ(zn))(0, . . . , 0) is the density function of the Gaussian vector

(∇Ψ(z1), . . . ,∇Ψ(zn))
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evaluated at (0, . . . , 0), and HΨ(zi) is the Hessian matrix of Ψ at zi. The Kac-Rice formula in (13)
holds under the condition that the Gaussian vector (∇Ψ(z1), . . . ,∇Ψ(z1)) is non degenerate.

For n = 1 the computation of K1 is straightforward; it is essentially the same as in [4]. We give
it below since demonstrates the use of the Kac-Rice formula. The case n = 2 is more involved and
the asymptotics of K2(z1, z2) as z2 → z1 (inducing on the second factorial moment) was entirely
unexpected. Based on the above computer simulations one would expect for the critical points
repel, i.e. as z2 → z1, K2(z1, z2)→ 0. That would have indicated that the second factorial moment
is o(ρ4), with plausible true order ρ5 of decay. To our surprise, a precise analysis of the relevant
Gaussian integrals have shown that K2 does not vanish on the diagonal; it has a finite, non-zero
limit. Hence the second factorial moment for small ρ behaves like a constant times the square of
the area of B(ρ), i.e. a constant times ρ4.

It is theoretically possible to compute the behaviour of the higher correlation functions Kn

near the diagonal i.e. when zi → zj for i 6= j, but seems extremely technically demanding. On the
other hand, it is easy to believe, that Kn should stay bounded. Considering it as a given and using
the same argument as in the proof of Corollary 1.3, we obtain the following conjecture.

Conjecture 1.4. For n > 2 and ρ→ 0 we have the following estimate of the factorial moment

E[N c
ρ (N c

ρ − 1) · · · (N c
ρ − (n− 1))] = O(ρ2n)

and, correspondingly, on the probability to have exactly n points in a small ball

P(N c
ρ = n) = O(ρ2n).

Be believe that this estimate holds, but we know that it is not sharp since already for n = 3
we have P(N c

ρ = 3) = O(ρ7 log(1/ρ)) = o(ρ6) (see (12)).

2 Expected number of critical points

2.1 On the Kac-Rice formula for computing the expected number of critical points

In this section we apply Kac-Rice formula to compute the expected value of N c
ρ . Counting the

critical points of Ψ in the ball B(ρ) is equivalent to counting the zeros of the map B(ρ)→ R2 given
by z → ∇Ψ(z). One defines the zero density K1 : B(ρ)→ R of Ψ as

K1(z) = φ∇Ψ(z)(0, 0) · E[|detHΨ(z)|
∣∣∇Ψ(z) = 0],

where φ∇Ψ(z) is the Gaussian probability density of 2-dimensional vector ∇Ψ(x) ∈ R2 evaluated at
(0, 0), and HΨ(z) is the Hessian matrix of Ψ at z. By the Kac-Rice formula, if ∇Ψ(z) is nonsingular
for all z ∈ B(ρ), then

E[N c
ρ ] =

∫
B(ρ)

K1(z)dz. (14)

2.2 Proof of Proposition 1.1

We first observe that in our case the zero density K1 is independent of z because Ψ is isotropic;
hence the Kac-Rice formula (14) sates that

E[N c
ρ ] = πρ2K1. (15)

Moreover, as we are dealing with a smooth Gaussian field, it is possible to write an analytic
expressions for K1 in terms of the covariance function ψ and its derivatives; to derive such analytic
expression we evaluate the covariance matrix Σ of the 5-dimensional centred jointly Gaussian vector

(∇Ψ(z),∇2Ψ(z))
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where ∇2Ψ(z) is the vectorized Hessian evaluated at z, that is a vector

(∂2
z1,z1Ψ(z), ∂2

z1,z2Ψ(z), ∂2
z2,z2Ψ(z)).

The covariance matrix Σ of (∇Ψ(z),∇2Ψ(z)) is evaluated in Appendix B.1 and has the form

Σ =

(
A B
Bt C

)
,

where

A =

(
1
2 0
0 1

2

)
, B = 0, C =

 3
8 0 1

8
0 1

8 0
1
8 0 3

8

 . (16)

From A we immediately obtain the probability density of the 2-dimensional vector∇Ψ(z) evaluated
at (0, 0):

φ∇Ψ(z)(0, 0) =
1

2π
√

1/4
=

1

π
, (17)

in addition, since the first and the second order derivatives of Ψ are independent at every fixed
point z ∈ R2, we have that

E[|detHΨ(z)|
∣∣∇Ψ(z) = 0] = E[|detHΨ(z)|].

From the covariance matrix C of ∇2Ψ(z) in (16) we immediately see that

E[|detHΨ(z)|] =
1

8
E[|Y1Y3 − Y 2

2 |], (18)

where Y = (Y1, Y2, Y3) is a centred jointly Gaussian random vector with covariance matrix

C1 =

 3 0 1
0 1 0
1 0 3

 .

To evaluate (18) we introduce the transformation W1 = Y1, W2 = Y2, W3 = Y1 + Y3, and we write
E[|Y1Y3 − Y 2

2 |] in terms of a conditional expectation as follows

E[|Y1Y3 − Y 2
2 |] = EW3

[ E[|W1W3 −W 2
1 −W 2

2 |
∣∣W3 = t] ]; (19)

to evaluate the conditional expectation in (19) we follow the argument in the proof of [4, Proposition
1.1], i.e. we note that

E[|W1W3 −W 2
1 −W 2

2 |
∣∣W3 = t] = E

[ ∣∣W1 t−W 2
1 −W 2

2

∣∣∣∣W3 = t
]

= E
[∣∣(Z1 + t/2) t− (Z1 + t/2)2 − Z2

2

∣∣]
= E

[∣∣−Z2
1 − Z2

2 + t2/4
∣∣] = E

[∣∣∣∣−X +
t2

4

∣∣∣∣] ,
where Z1, Z2 are independent standard Gaussian and X is a χ-squared random variable with
density

fX(x) =
1

2
e−

x
2 , x > 0.

It follows that

E
[∣∣∣∣ t24 −X

∣∣∣∣] = −2 + 4e−
t2

8 +
t2

4
,

and

E[|Y1Y3 − Y 2
2 |] =

1

4
√
π

∫
R
e−

t2

16

(
−2 + 4e−

t2

8 +
t2

4

)
dt =

22

√
3
. (20)

The statement follows combining (15), (17), (20), and observing that

E[N c
ρ (Ψ)] = πρ2 · 1

π
· 1

8

22

√
3

=
1

2
√

3
· ρ2.
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3 Second factorial moment

3.1 On the Kac-Rice formula for computing the second factorial moment of the
number of critical points

We will find an explicit expression for the 2-point correlation function K2 : B(ρ)× B(ρ)→ R,
defined as the conditional Gaussian expectation

K2(z, w) = φ(∇Ψ(z),∇Ψ(w))(0, 0) · E[|detHΨ(z)| · |detHΨ(w)|
∣∣∇Ψ(z) = ∇Ψ(w) = 0],

in terms of the covariance function ψ and its derivatives. Finding such an expression involves
studying the centred Gaussian vector

(∇Ψ(z),∇Ψ(w),∇2Ψ(z),∇2Ψ(w)) (21)

with covariance matrix Σ(z, w), z, w ∈ B(ρ). It is known [2, Theorem 6.9] that, if for all z 6= w the
Gaussian distribution of (∇Ψ(z),∇Ψ(w)) is non-degenerate, the second factorial moment of the
number of critical points in B(ρ) can be expressed as

E[N c
ρ (N c

ρ − 1)] =

∫∫
B(ρ)×B(ρ)

K2(z, w) dz dw. (22)

We note that K2 is everywhere nonnegative.

3.2 Proof of Theorem 1.2

In order to study the asymptotic behaviour of the second factorial moment of the number of critical
points in B(ρ), as the radius ρ of the disk goes to zero, we need to study the centred Gaussian
random vector (21). Its covariance matrix Σ = Σ(z, w) is of the form

Σ =

(
A B
Bt C

)
,

where A = A(z, w) is the covariance matrix of the gradients (∇Ψ(z),∇Ψ(w)), C = C(z, w) is
the covariance matrix of the second order derivatives (∇2Ψ(z),∇2Ψ(w)) and B = B(z, w) is the
covariance matrix of the first and second order derivatives.

The function Ψ is isotropic, hence, the critical point process is also invariant w.r.t. translations
and rotations. This means that its 2-point function K2(z, w) depends on |z − w| only (this is not
true for covariance matrix Σ); by the standard abuse of notation we write

K2(z, w) = K2(|z − w|). (23)

We will compute K2(z, w) for z = (0, 0) and w = (0, r), which, thanks to the by-product (23) of
the isotropic property of Ψ, this will give us K2(r).

In Appendix B.2 we evaluate the entries of Σ(z, w) with z and w as above, and in Appendix
B.3 we evaluate the covariance matrix ∆ = ∆(z, w) of (∇2Ψ(z),∇2Ψ(w)) conditioned on ∇Ψ(z) =
∇Ψ(w) = 0, i.e.,

∆ = C−BtA−1B.

From now on we will work only with Σ(r) and ∆(r) which we define as Σ(z, w) and ∆(z, w) with
z = (0, 0) and w = (0, r).

As we discussed above, the two-point function is given by

K2(r) =
1

(2π)2
√

det(A(r))

×
∫
R6

|ζ1ζ3 − ζ2
2 | · |ζ4ζ6 − ζ2

5 |
1

(2π)3

1√
det(∆(r))

exp

{
−1

2
ζt∆−1(r)ζ

}
dζ,

(24)
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where ζ = (ζ1, ζ2, ζ3, ζ4, ζ5, ζ6) is a vector in R6. Indeed, the density of (∇Ψ(0, 0),∇Ψ(0, r)) at zero is
given by (2π)−2(det(A(r)))−1/2, and the integral gives the expectation of |detHΨ(z)| · |detHΨ(w)|
with respect to the Gaussian measure of (∇2Ψ(z),∇2Ψ2(w)) conditioned on ∇Ψ(z) = ∇Ψ(w) = 0,
that is, having covariance ∆(r).

Our aim is to study the asymptotic behaviour of the 2-point correlation function K2 in the
vicinity of r = 0.

For every strictly positive r, ∆(r) is symmetric, hence we may diagonalise it with an orthogonal
P (r):

∆(r) = P−1(r)Λ(r)P (r) = P t(r)Λ(r)P (r), (25)

where the matrix Λ(r) is diagonal, with eigenvalues λi(r), i = 1, . . . , 6, and P (r) is the orthogonal
matrix with row vectors the normalized eigenvectors of ∆(r). The analytic expressions of the
eigenvalues and eigenvectors of ∆(r), r > 0, are computed in Lemma A.1 and Lemma A.3
respectively. In Lemma A.2 and Lemma A.4 we compute their Taylor expansion around r = 0. We
prove these lemmas with the aid of Mathematica since the calculations are technically demanding.
We stress that all the computations performed with Mathematica are symbolic.

Equation (25) implies that we can write

1√
det(∆(r))

exp
{
− 1

2
ζt∆−1(r)ζ

}
=

1√∏6
i=1 λi(r)

exp
{
− 1

2
ζtP−1(r)Λ−1(r)P (r)ζ

}
=

1√∏6
i=1 λi(r)

exp
{
− 1

2
(Λ−1/2(r)P (r)ζ)t(Λ−1/2(r)P (r)ζ)

}
.

(26)

This suggests to introduce a new variable ξ = Λ−1/2(r)P (r)ζ. Clearly, we can express ζ in
terms of ξ as

ζ = P−1(r)Λ1/2(r)ξ = P t(r)Λ1/2(r)ξ (27)

With this change of variables

1√
det(∆(r))

exp
{
− 1

2
ζt∆−1(r)ζ

}
dζ = e−|ξ|

2/2dξ.

Using (27), we can write components ζi as

ζi =

6∑
j=1

(Q(r))ij
√
λj(r) ξj =

6∑
j=1

qij(r)
√
λj(r) ξj ,

where the qij(r) are the elements ofQ(r) = P−1(r) = P t(r). The columns ofQ form an orthonormal
basis of the eigenvectors of ∆(r). With this change of variables we can rewrite the two quadratic
forms ζ1ζ3 − ζ2

2 and ζ4ζ6 − ζ2
5 in (24) as

ζ1ζ3 − ζ2
2 =

(
6∑
j=1

q1j(r)
√
λj(r) ξj

)(
6∑
j=1

q3j(r)
√
λj(r) ξj

)
−

(
6∑
j=1

q2j(r)
√
λj(r) ξj

)2

,

ζ4ζ6 − ζ2
5 =

(
6∑
j=1

q4j(r)
√
λj(r) ξj

)(
6∑
j=1

q6j(r)
√
λj(r) ξj

)
−

(
6∑
j=1

q5j(r)
√
λj(r) ξj

)2

.

Summing it all up, the 2-point correlation function K2 in (24) in ξ coordinates becomes

K2(r) =
1

(2π)5
√

det(A(r))

∫
R6

|ζ1ζ3 − ζ2
2 | · |ζ4ζ6 − ζ2

5 | exp
{
− 1

2

6∑
i=1

ξ2
i

}
dξ (28)
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where ζ1ζ3 − ζ2
2 and ζ4ζ6 − ζ2

5 are functions of ξi as described above.
To obtain the asymptotic behaviour around r = 0 of the integral in (28), we Taylor expand

around the origin the entries qij of the matrix Q and eigenvalues λj . Such Taylor expansions up to
O(r4) are given by equations (35) and (34). Combining these expansions and noting that the first
two factors in the integrand are homogeneous polynomials of degree 2 in terms of ξ we obtain the
following expansion:[∑

j

q1j(r)
√
λj(r) ξj

∑
j

q3j(r)
√
λj(r) ξj −

(∑
j

q2j(r)
√
λj(r) ξj

)2]
×
[∑

j

q4j(r)
√
λj(r) ξj

∑
j

q6j(r)
√
λj(r) ξj −

(∑
j

q5j(r)
√
λj(r) ξj

)2]
= − 1

273
ξ2
4ξ

2
6r

2 + (1 + ||ξ||4) O(r4),

and then

K2(r) =
1

(2π)5
√

det(A(r))

[
r2

273

∫
R6

ξ2
4ξ

2
6 × exp

{
−1

2

6∑
i=1

ξ2
i

}
dξ +O(r4)

]
. (29)

In the Gaussian integral variables separate and it is a product of standard one-dimensional integrals.
Each of them is equal to

√
2π and the entire integral is (2π)3. Matrix A has a simple block structure

and it is easy to compute its determinant. Explicit computation in Appendix B.2 (see equation
(39)) gives

det(A) =
3r4

28
+O(r6).

Combining this asymptotic with (29), we finally obtain that, as r → 0,

K2(r) =
1

253
√

3π2
+O(r2),

and, in view of (22), as ρ→ 0,

E[N c
ρ (N c

ρ − 1)] =
1

253
√

3π2
π2ρ4 +O(ρ6) =

1

253
√

3
ρ4 +O(ρ6).

To prove the second part of Theorem 1.2 we need to evaluate the two-point correlation function
K2 modified for the respective types of critical points. The modified function K2 has the same
expression (24) with the integration over a proper subset of R6, i.e. the ζ with the corresponding
critical points of the prescribed types.

To be more precise, let us define two Hessians at points z and w (already conditioned to be
critical points). In terms of ζi these Hessians are given by

H1 =

(
ζ1 ζ2
ζ2 ζ3

)
, and H2 =

(
ζ4 ζ5
ζ5 ζ6

)
The characteristic polynomials for these matrices are

x2 + b1x+ c1 = x2 − (ζ1 + ζ3)x+ ζ1ζ3 − ζ2
2

and
x2 + b2x+ c2 = x2 − (ζ4 + ζ6)x+ ζ4ζ6 − ζ2

5 .

The particular type of a critical point depends on the eigenvalues of its Hessian: they are both
negative for the local maxima, positive for the local minima, and of different signs for the saddles.
We may reformulate these dependencies in terms of the coefficients bi = −TrHi and ci = det(Hi):
a critical point with Hessian Hi is a minimum if ci > 0 and bi < 0, a maximum if ci > 0 and bi > 0,
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and a saddle if ci < 0 (we may ignore the special probability 0 cases when one of the eigenvalues
vanishes).

As before, we rewrite ζi in terms of ξi. This gives the coefficients of the polynomials as functions
of ξi and r. Expanding in powers of r we get

b1 = − ξ6√
3

+

(
ξ6

144
√

3
− ξ5

96
√

2

)
r2 +O(r3) = b1,0 + b1,2r

2 +O(r3)

c1 = − ξ4ξ6
8
√

6
r +
−9ξ2

1 − 9ξ2
4 + 2

√
6ξ6ξ5 + 4ξ2

6

2732
r2 +O(r3) = c1,1r + c1,2r

2 +O(r3)

b2 = − ξ6√
3

+

(
ξ6

144
√

3
− ξ5

96
√

2

)
r2 +O(r3) = b2,0 + b2,2r

2 +O(r3)

c2 =
ξ4ξ6

8
√

6
r +
−9ξ2

1 − 9ξ2
4 + 2

√
6ξ6ξ5 + 4ξ2

6

2732
r2 +O(r3) = c2,1r + c2,2r

2 +O(r3).

(30)

We observe the following: all of the coefficients bi,j are linear functions of ξ, and all of the coefficients
ci,j are quadratic forms. We also notice that

b1,0 = b2,0, b1,2 = b2,2, c1,1 = −c2,1, c1,2 = c2,2.

Since all the expressions we deal with are homogeneous functions of various degrees, it is
natural to work in spherical coordinates. We introduce si = ξi/|ξ| and rescale bi by |ξ| and ci by
|ξ|2. Abusing notation we denote the rescaled coefficients bi, bi,j , ci, and ci,j that are now functions
of si instead of ξi by the same letters; there is no confusion since from now on all expressions will
be in terms of |ξ| ∈ (0,∞) and s = (s1, . . . , s6) ∈ S5. With this notation, the formula (28) for K2

becomes

K2(r) =
1

(2π)5
√

det(A(r))

∫
R6

|ξ|4|c1c2|e−|ξ|
2/2dξ

=
1

(2π)5
√

det(A(r))

∫ ∞
0

|ξ|9e−|ξ|
2/2d|ξ|

∫
S5

|c1(s)c2(s)|ds

=
12

π5
√

det(A(r))

∫
S5

|c1(s)c2(s)|ds,

(31)

where ds is the spherical volume element on the unit sphere S5, and we evaluated the standard
Gaussian integral ∫ ∞

0

|ξ|9e−|ξ|
2/2d|ξ| = 27 · 3.

Minimum-minimum two point function.
The two-point correlation function Kmin,min

2 (r) corresponding to the local minima is given by
(31) except that we replace the domain of the integration S5, by

Smin,min = {s ∈ S5 : c1 > 0, c2 > 0, b1 < 0, b2 < 0},

the set of s such that both Hessians correspond to local minima. If |s4s6| > Cr for sufficiently large
C, then c1 and c2 are of opposite signs (for the rest of this section we use C to denote all absolute
constants). This implies that Smin,min is a subset of {s : |s4s6| < Cr} for some C sufficiently big.
It is easy to see that on this set |ci| = O(r2), thus∫

Smin,min

|c1(s)c2(s)|ds ≤
∫
{s:|s4s6|<Cr}

|c1(s)c2(s)|ds ≤ O(r4)

∫
{s:|s4s6|<Cr}

ds = O(r5 log(1/r)).

That yields Kmin,min
2 (r) = O(r3 log(1/r)) via (31), where r2 cancelled out with

√
det(A).

Integrating this estimate over B(ρ)× B(ρ) we obtain an estimate of the second factorial moment:

E
[
Nmin
ρ (Nmin

ρ − 1)
]

= O(ρ7 log(1/ρ)).
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The other estimate of (5) follows from symmetry considerations.

Minimum-maximum two point function.
In the similar way, we have to estimate the integral over Smin,max, the set where one point is a

minimum and the other is a maximum. This set is given by conditions that both ci are positive and
b1 and b2 are of different signs. First, the same argument as above forces |s4s6| < Cr for some large
constant C. If |s6| > Cr2 for a large constant C, then the leading terms in the formulas (30) for
bi dominate and b1 and b2 are of the same sign, contradicting our assumption. Hence this implies
that |s6| < Cr2, and under this assumption both bi are of the form

− s6√
3
− s5r

2

96
√

2
+O(r3).

Again, since bi should be of different signs, it forces the term corresponding to O(r3) to dominate,
that is

L(s5, s5) =

∣∣∣∣− s6√
3
− s5r

2

96
√

2

∣∣∣∣ ≤ Cr3,

for some big constant C. Notice that this condition is stronger than the previous condition that
|s6| < Cr2.

Substituting the estimate |s6| < Cr2 into the formulas (30) for c1 and c2 we see that they both
are equal to

− 9

2732
(s2

1 + s2
4)r2 +O(r3).

It then follows that (s2
1 + s2

4) is bounded by Cr (for large C), as otherwise both c1 and c2 are
negative; also under this condition both ci are O(r3). Combining all of this we get the estimate∫
Smin,max

|c1(s)c2(s)|ds ≤
∫

(s21+s24)<Cr

L(s5,s5)<Cr3

|c1(s)c2(s)|ds = O(r6)

∫
(s21+s24)<Cr

L(s5,s5)<Cr3

ds = O(r6)O(r4) = O(r10),

and substituting this into (31) and integrating K2 the Kac-Rice formula yields

E
[
Nmin
ρ Nmax

ρ

]
= O(ρ12).

Saddle-saddle and extremum-extremum two point functions.
For two extrema or two saddle points both ci are forced to be of the same sign. The same

argument as for the minimum-minimum case yields

E
[
N saddle
ρ (N saddle

ρ − 1)
]

= O(ρ7 log(1/ρ)),

and
E
[
N e
ρ (N e

ρ − 1)
]

= O(ρ7 log(1/ρ)).

Extremum-saddle two point function.
Finally we notice that N = N e +N saddle, and

N (N − 1) = N e(N e − 1) +N saddle(N saddle − 1) + 2N eN saddle.

Combining this formula with previous estimates we obtain

E
[
N e
ρN saddle

ρ

]
=

1

2
E [Nρ(Nρ − 1)] +O(ρ7 log(1/ρ)) =

1

26 3
√

3
ρ4 +O(ρ6).

This completes the proof of Theorem 1.2.
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A Eigenvalue and eigenvectors of ∆(r), r > 0

We introduce the notation

∆(r) =

(
∆1(r) ∆2(r)
∆2(r) ∆1(r)

)
where ∆1 and ∆2 are 3× 3 symmetric matrices, and define ai, i = 1, . . . 8 so that

∆1(r) =

 1
3 + a1(r) 0 a4(r)

0 a2(r) 0
a4(r) 0 a3(r)

 , ∆2(r) =

 1
3 + a5(r) 0 a8(r)

0 a6(r) 0
a8(r) 0 a7(r)

 . (32)

We compute now the eigenvalues and eigenvectors of the matrix ∆(r), r > 0. We introduce the
following notation:

A+
1 (r) = a1(r) + a5(r) +

2

3
, A−1 (r) = a1(r)− a5(r),

A±2 (r) = a2(r)± a6(r),

A±3 (r) = a3(r)± a7(r),

A±4 (r) = a4(r)± a8(r);

with ai(r) defined above.

Lemma A.1. For every r > 0, the eigenvalues of the matrix ∆(r) have the following explicit
expressions:

λ1(r) = A−2 (r),

λ2(r) = A+
2 (r),

λ3(r) =
1

2

[
A−1 (r) +A−3 (r)−

√
(A−1 (r)−A−3 (r))2 + 4A−4 (r)2

]
,

λ4(r) =
1

2

[
A−1 (r) +A−3 (r) +

√
(A−1 (r)−A−3 (r))2 + 4A−4 (r)2

]
,

λ5(r) =
1

2

[
A+

1 (r) +A+
3 (r)−

√
(A+

1 (r)−A+
3 (r))2 + 4A+

4 (r)2
]
,

λ6(r) =
1

2

[
A+

1 (r) +A+
3 (r) +

√
(A+

1 (r)−A+
3 (r))2 + 4A+

4 (r)2
]
.

(33)

Proof . We can compute explicitly the roots of

det(∆(r)− λI) = det

(
∆1(r)− λI ∆2(r)

∆2(r) ∆1(r)− λI

)
,
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by observing that since ∆i are square matrices, we have the following identity for the determinant
of a block matrix

det

(
∆1(r)− λI ∆2(r)

∆2(r) ∆1(r)− λI

)
= det(∆1(r)− λI −∆2(r)) det(∆1(r)− λI + ∆2(r)).

The matrices ∆1(r)− λI ±∆2(r) could be written in terms of A±i as

∆1(r)− λI ±∆2(r) =

 A±1 (r)− λ 0 A±4 (r)
0 A±2 (r)− λ 0

A±4 (r) 0 A±3 (r)− λ

 .

Since these matrices have many elements equal to zero, their determinants are particularly simple
and could be factorized as

det(∆1(r)− λI ±∆2(r)) = (A±2 (r)− λ)[λ2 − λ(A±1 (r) +A±3 (r)) +A±1 (r)A±3 (r)−A±4 (r)2].

The last factor is quadratic in terms of λ and the roots could be found explicitly. They are equal
to λ5 and λ6 in the “+” case and λ3 and λ4 in the “−” case.

This lemma expresses the eigenvalues of ∆ in terms of A±i which, in their term, are expressed in
terms of ai. In (40) we will compute the asymptotic behaviour of ai. Substituting these expansions
into explicit formulas (using Mathematica)(33) we get expansions for λi and

√
λi.

Lemma A.2. The following Taylor expansions hold around the origin

λ1(r) =
r2

26
− 7

214325
r6 +O(r8),

√
λ1(r) =

r

4
√

2
+O(r5)

λ2(r) =
r4

21032
− r6

213335
+O(r8),

√
λ2(r) =

r2

253
+O(r4)

λ3(r) = O(r8),
√
λ3(r) = O(r4)

λ4(r) =
r2

25
+

37

213325
r6 +O(r8),

√
λ4(r) =

r

4
√

2
+O(r5)

λ5(r) =
r4

21032
+

7

214335
r6 +O(r8),

√
λ5(r) =

r2

253
+O(r4)

λ6(r) =
2

3
− 5

2333
r2 +

191

21035
r4 − 11 · 241

214375
r6 +O(r8)

√
λ6(r) =

√
2√
3
− 5r2

2432
√

6
+O(r4).

(34)

After obtaining the explicit formulas for eigenvalues we, again, use computer algebra to find
explicit formulas for eigenvectors of ∆.

Lemma A.3. For every r > 0, the following vectors vi(r) are the eigenvectors of the matrix ∆(r)
corresponding to λi(r)

v1(r) = (0,−1, 0, 0, 1, 0),

v2(r) = (0, 1, 0, 0, 1, 0),

v3(r) = (v31(r), 0,−1,−v31(r), 0, 1),

v4(r) = (v41(r), 0,−1,−v41(r), 0, 1),

v5(r) = (−v51(r), 0, 1,−v51(r), 0, 1),

v6(r) = (−v61(r), 0, 1,−v61(r), 0, 1).



16 D. Beliaev, V. Cammarota and I. Wigman

where

v31(r) =
A−3 (r)−A−1 (r) +

√
[A−3 (r)−A−1 (r)]2 + 4A−4 (r)2

2A−4 (r)
,

v41(r) =
A−3 (r)−A−1 (r)−

√
[A−3 (r)−A−1 (r)]2 + 4A−4 (r)2

2A−4 (r)
,

v51(r) =
A+

3 (r)−A+
1 (r) +

√
[A+

3 (r)−A+
1 (r)]2 + 4A+

4 (r)2

2A+
4 (r)

,

v61(r) =
A+

3 (r)−A+
1 (r)−

√
[A+

3 (r)−A+
1 (r)]2 + 4A+

4 (r)2

2A+
4 (r)

.

The elements of vi are explicit algebraic expressions in terms of ai that are defined by (32).
Normalizing the vectors and using expansions of ai (40) we obtain the following expansion for the
matrix Q

Lemma A.4. The orthogonal matrix Q(r) of normalized eigenvectors of ∆(r) is

Q =



0 0 −1

2

1

2
0

1√
2

− 1√
2

1√
2

0 0 0 0

0 0 −1

2
−1

2

1√
2

0

0 0
1

2
−1

2
0

1√
2

1√
2

1√
2

0 0 0 0

0 0
1

2

1

2

1√
2

0



+r2



0 0 − 1

48
− 1

48
− 1

253
√

2
0

0 0 0 0 0 0

0 0
1

48
− 1

48
0

1

253
√

2

0 0
1

48

1

48
− 1

253
√

2
0

0 0 0 0 0 0

0 0 − 1

48

1

48
0

1

253
√

2


+O(r4)

(35)

B Expansions of covariance matrices

B.1 Covariance matrix of (∇Ψ(z),∇2Ψ(z))

In this section we compute the covariance matrix Σ of the 5-dimensional centred Gaussian vector
which combines the gradient and the elements of the Hessian evaluated at z. By the translation
invariance of Ψ, Σ does not depend on the point z ∈ R2. It is convenient to write the covariance
matrix in blocks

Σ =

(
A B
Bt C

)
,

where

A = E[∇Ψ(z)t · ∇Ψ(z)], B = E[∇Ψ(z)t · ∇2Ψ(z)], C = E[∇2Ψ(z)t · ∇2Ψ(z)].
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It is a standard fact that covariances of the derivative are given by derivatives of the covariance
kernel.

The computations of A, B and C are quite lengthy, but they do not require sophisticated
arguments other than iterative differentiation of Bessel functions. For example to compute A we
first have to compute expressions

E[∂ziΨ(z) ∂wjΨ(w)] =
∂2

∂zi∂wj

ψ(z − w) =
∂2

∂zi∂wj

J0(|z − w|)

where z = (z1, z2) and w = (w1, w2) are two points in R2. The elements of A are obtained by
passing to the limit w → z.

To give an example of such computation we give details of the computation of (A)1,1. For this
we first use the chain rule to obtain

∂2

∂z1∂w1

J0(|z − w|) = J ′′0 (|z − w|)
(
∂

∂z1
|z − w|

) (
∂

∂w1

|z − w|
)

+ J ′0(|z − w|) ∂2

∂z1∂w1

|z − w|.

The zeroth Bessel function could be defined by power series

J0(x) =

∞∑
n=0

(−1)n

(n!)2

(x
2

)2n

.

From this expansion we can immediately get the expansions for J ′0 and J ′′0 and show that

lim
w→z

∂2

∂z1∂w1

J0(|z − w|) =
1

2
.

In the same way we compute the other entries of A and obtain

A =

(
1
2 0
0 1

2

)
. (36)

Since the first and second order derivatives of any stationary field are independent at every fixed
point z ∈ R2, we immediately have B = 0. With analogous calculations, but using higher order
derivatives of J0 we compute the entries of C and find that

C =

 3
8 0 1

8
0 1

8 0
1
8 0 3

8

 . (37)

B.2 Covariance matrix of (∇Ψ(z),∇Ψ(w),∇2Ψ(z),∇2Ψ(w))

We compute the covariance matrix Σ(z, w) for the 10-dimensional Gaussian random vector which
combines the gradient and the elements of the Hessian evaluated at z, w:

(∇Ψ(z),∇Ψ(w),∇2Ψ(z),∇2Ψ(w)),

only for the case z = (0, 0) and w = (0, r). As explained in Section 3.2 this is sufficient in order to
evaluate K2(r) for all relevant r, thanks to the isotropic property of Ψ. It is convenient to write
the matrix Σ(z, w) in block form, i.e.,

Σ(z, w) = Σ(r) =

(
A(z, w) B(z, w)
Bt(z, w) C(z, w)

)
.

The matrix A also has a natural block structure

A(z, w)|z=(0,0),w=(0,r) = A(r) =

(
A A(r)
A(r) A

)
,
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where A is the same as in (36), and A(r) turns out to be a diagonal matrix, we denote its diagonal
elements by αi(r)

A(r) =

(
α1(r) 0

0 α2(r)

)
The diagonal elements αi are found by differentiating the covariance kernel of Ψ:

α1(r) =
∂2

∂z1∂w1

J0(|z − w|)
∣∣∣∣
z=(0,0),w=(0,r)

= −J ′0(r)
1

r
,

α2(r) =
∂2

∂z2∂w2

J0(|z − w|)
∣∣∣∣
z=(0,0),w=(0,r)

= −J ′′0 (r).

(38)

Again, using the block structure of A we can write its determinant as

det(A(r)) =

(
α2

1(r)− 1

4

)(
α2

2(r)− 1

4

)
.

From the Taylor series for J0 one immediately gets

α1(r) = −J ′0(r)
1

r
=

1

2
− 1

24
r2 +O(r4),

α2(r) = −J ′′0 (r) =
1

2
− 3

24
r2 +O(r4)

so that

det(A(r)) =
3r4

28
+O(r6). (39)

With analogous calculations we derive also the entries of the matrices B and C: we have

B(z, w)|z=(0,0),w=(0,r) = B(r) =

(
0 B(r)

−B(r) 0

)
,

where

B(r) =

(
0 β1(r) 0

β1(r) 0 β2(r)

)
and, in the same way as before, we obtain explicit formulas in terms of J0 and expansions at r = 0

β1(r) = −J ′′0 (r)
1

r
+ J ′0(r)

1

r2
= −r

8
+
r3

96
+O(r5)

β2(r) = −J ′′′0 (r) = −3r

8
+

5r3

96
+O(r5).

In the same way

C(z, w)|z=(0,0),w=(0,r) =

(
C C(r)
C(r) C

)
,

where C defined in (37) and

C(r) =

 γ1(r) 0 γ2(r)
0 γ2(r) 0

γ2(r) 0 γ3(r)

 ,

with

γ1(r) = J ′′0 (r)
3

r2
− J ′0(r)

3

r3
=

3

8
− r2

32
+O(r4),

γ2(r) =
J ′′′0 (r)

r
− J ′′0 (r)

2

r2
+ J ′0(r)

2

r3
=

1

8
− r2

32
+O(r4),

γ3(r) = J ′′′′0 (r) =
3

8
− 5r2

32
+O(r4).
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B.3 Conditional covariance matrix

As explained before, the covariance matrix of the conditional vector

(∇2Ψ(z),∇2Ψ(w)|∇Ψ(z) = ∇Ψ(w) = 0)

is given by

∆(r) = C(r)−B(r)tA(r)−1B(r) =

(
∆1(r) ∆2(r)
∆2(r) ∆1(r)

)
where ∆i are defined in (32).

Since we already have explicit formulas for elements of A, B, and C we can obtain the following
explicit formulas and expansions for ai that define ∆:

a1(r) = − 2β2
1(r)

1− 4α2
2(r)

+
1

233
= − 13

2733
r2 − 151

21135
r4 − 1531

21537
r6 +O(r8),

a2(r) = − 2β2
1(r)

1− 4α2
1(r)

+
1

23
=

1

27
r2 +

1

21132
r4 − 23

215335
r6 +O(r8),

a3(r) = − 2β2
2(r)

1− 4α2
2(r)

+
3

23
=

1

27
r2 +

41

21133
r4 +

2617

215355
r6 +O(r8),

a4(r) = −2β1(r)β2(r)

1− 4α2
2(r)

+
1

23
= − 5

2732
r2 − 23

21134
r4 +

521

215365
r6 +O(r8),

a5(r) = γ1(r)− 4α2(r)β2
1(r)

1− 4α2
2(r)

− 1

3
= − 67

2733
r2 +

7 · 71

21135
r4 +

13 · 271

215375
r6 +O(r8),

a6(r) = γ2(r)− 4α1(r)β2
1(r)

1− 4α2
1(r)

= − 1

27
r2 +

1

21132
r4 +

19

215335
r6 +O(r8),

a7(r) = γ3(r)− 4α2(r)β2
2(r)

1− 4α2
2(r)

= − 1

27
r2 − 31

21133
r4 − 2621

215355
r6 +O(r8),

a8(r) = γ2(r)− 4α2(r)β1(r)β2(r)

1− 4α2
2(r)

=
13

2732
r2 − 23

21134
r4 +

7

21536
r6 +O(r8).

(40)
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