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An Investigation of Argumentation Framework
Characteristics

Josh Murphy, Isabel Sassoon, Michael Luck, Elizabeth Black

Department of Informatics, King’s College London

firstname.lastname@kcl.ac.uk

Abstract. We investigate the relationship between the structural prop-
erties of argumentation frameworks and their argument-based character-
istics, examining the characteristics of structures of Dung-style frame-
works and two generalisations: extended argumentation frameworks and
collective-attack frameworks. Our results show that the structural prop-
erties of frameworks have an impact on the size of extensions produced,
on the proportion of subsets of arguments that determine some topic
argument to be acceptable, and on the likelihood that the addition of
some new argument will affect the acceptability of an existing argu-
ment, all characteristics that are known to affect the performance of
argumentation-based technologies. We demonstrate the applicability of
our results with two case studies.

1 Introduction

Argumentation is a key sub-field of AI that provides an intuitive reasoning mech-
anism for dealing with inconsistent, uncertain and incomplete knowledge. A set
of arguments and the relationships between them can be represented as a directed
graph (referred to as an argumentation framework) to which one of a number of
semantics can be applied to determine which arguments it is coherent to accept
[12]. While progress has been made in the development of argumentation-based
technologies (e.g., argument solvers [5] and real-world applications [18]) realistic
evaluations of such technologies is difficult, due to the shortage of repositories
of argumentation frameworks that are representative of real-world domains [10];
typically, argument technologies are evaluated on randomly generated frame-
works, with little understanding of how the structure of such frameworks im-
pacts on performance. It has been shown that structural differences in argumen-
tation frameworks can affect the performance of argumentation-based technolo-
gies, such as dialogue systems [3] and argument solvers [2]. We argue here that
a better understanding of these effects can not only allow for a more thorough
evaluation, but can also inform development of technologies that are optimised
for specific framework structures.

In order to explore the characteristics of argumentation frameworks with dif-
ferent structural properties, we consider the classic Dung-style argumentation
frameworks (which represent attacks between arguments) [12] and two general-
isations of these that each have their own particular structural traits: extended
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Fig. 1. An example DAF.

argumentation frameworks (which allow an argument to attack the attack be-
tween two arguments) [17] and collective-attack frameworks (which allow attacks
from sets of arguments) [22]). We investigate three key characteristics.

1. The size of the set of acceptable arguments generated by the grounded and
preferred sceptical semantics. This characteristic is known to affect perfor-
mance of argument solvers [8];

2. The proportion of argument subsets of the framework that determine some
topic argument to be acceptable. This characteristic is known to be a factor
in the effectiveness of strategies for persuasion [3];

3. Whether the addition of a new argument to the framework results in a
change of acceptability of some topic argument. This is a type of dynamic
argumentation, another factor in the effectiveness of dialogue strategies [1],
and also may be a key property for improving the computational efficiency
of a variety of other argument technologies [16].

We demonstrate applicability of our results with two case studies: a Dung-
style framework from a decision-making tool for aggregating the effects of medi-
cal treatment [15], and an extended framework from a statistical model selection
tool in a clinical domain [25].

2 Argumentation frameworks (AFs)

Since Dung’s seminal work [12], the dominant approach to argumentation-based
reasoning is to represent arguments as abstract entities in an argumentation
framework that captures the relationships between them, and then to apply one
of several argumentation semantics to determine which subsets of arguments it
is rational to present as a coherent set. We now define Dung-style argumentation
frameworks [12] (DAFs), which capture attacks between arguments.

Definition 1. A Dung-style argumentation framework (DAF) is a pair
〈A,R〉 s.t. A is a finite set of arguments and R ⊆ A × A is a set of attacks.
(x, y) ∈ R means x attacks y.

Argumentation semantics are based on the intuitive principles that it is not
rational to accept any two conflicting arguments, and that an argument which
is attacked can only be accepted if all of its attacking arguments are themselves
attacked by an accepted argument [12].



An Investigation of Argumentation Framework Characteristics 3

a b

c

d

e f

h

g

Fig. 2. An example EAF, which is also a HEAF.

Definition 2. Let 〈A,R〉 be a DAF and S ⊆ A.
• S is conflict-free iff ∀a, b ∈ S: (a, b) 6∈ R.
• a ∈ A is acceptable w.r.t. S iff ∀b s.t. (b, a) ∈ R: ∃c ∈ S s.t. (c, b) ∈ R.
• S is admissible iff S is conflict-free and each argument in S is acceptable

w.r.t. S.

There are a range of different semantics that build on these principles and
determine sets of arguments that can rationally be presented as coherent, known
as extensions. Here we consider two semantics: an argument is acceptable under
the preferred sceptical semantics if it is part of all maximal admissible sets;
an argument is acceptable under the grounded semantics if it is in the smallest
set S such that every argument that is acceptable w.r.t. S is in S. In the DAF
shown in Figure 1, a and f are the only arguments that are acceptable under
the preferred sceptical semantics, while a is the only argument acceptable under
the grounded semantics.

Example 1. Considering the DAF in Figure 1, the only argument acceptable
under the grounded semantics is a, whereas the arguments a and f are acceptable
under the preferred sceptical semantics.

Though Dung-style argumentation frameworks are expressive, many generali-
sations have been proposed which provide explicit representation of relationships
other than attacks between arguments, seeking to intuitively capture particular
aspects of argumentation [4]. Extended argumentation frameworks (EAFs) allow
the representation of arguments that attack attack relations [17]. Thus, given an
argument a which attacks b, an argument c may attack the attack between a and
b. In this way, an EAF may be used to capture (possibly conflicting) preference
relations between arguments. For example, see Figure 2 in which c represents
a preference for a over b, which conflicts with d representing a preference for b
over a. EAFs are an especially expressive model as they represent preferences
as defeasible arguments, allowing agents to argue about their preferences and,
powerfully, about preferences over other preferences.

Definition 3. An extended argumentation framework (EAF) is a tuple
〈A,R,D〉 s.t. A is a finite set of arguments, R ⊆ A×A is a set of attacks,
• D ⊆ A×R is a set of attacks on attacks, and
• if (z, (x, y)), (z′, (y, x)) ∈ D then (z, z′), (z′, z) ∈ R.
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Fig. 3. An example CAF.

We especially consider here hierarchical EAFs (HEAFs), a particularly inter-
esting class of EAFs that can be used to formalise practical reasoning [17].

Definition 4. An EAF 〈A,R,D〉 is a hierarchical extended argumentation
framework (HEAF) iff there exists a partition P = [〈〈A1, R1〉, D1〉, ..., 〈〈Aj , Rj〉,
Dj〉, ...] s.t.:

• A = ∪∞i=1Ai, R = ∪∞i=1Ri, D = ∪∞i=1Di, and for i = 1, ...,∞, 〈Ai, Ri〉 is a
DAF.

• If (z, (x, y)) ∈ Di then (x, y) ∈ Ri, z ∈ Ai+1

We refer to an argument a as being in a lower partition than an argument b
if a ∈ Ap, b ∈ Aq, and p < q.

The arguments in Figure 2 can be partitioned into 4 levels: {a, b}, {c, d},
{e, f}, and {g, h}, where {a, b} is the lowest partition and {g, h} is the highest.

EAF argumentation semantics are defined equivalently as for DAFs, with the
following adjustments [17].

Definition 5. Let 〈A,R,D〉 be an EAF and S ⊆ A.
• a defeatsS b (also written as a →S b) iff (a, b) ∈ R and @c ∈ S s.t.

(c, (a, b)) ∈ D.
• S is conflict-free iff ∀a, b,∈ S: if (a, b) ∈ R then (b, a) 6∈ R or ∃c ∈ S s.t.

(c, (a, b)) ∈ D.
• RS = {x1 →S y1, . . . , xn →S yn} is a reinstatement set for c →S b iff:

(i) c →S b ∈ RS; (ii) ∀i ∈ {1, . . . , n}: xi ∈ S, and (iii) ∀x ∈ Rs, ∀y′ s.t.
(y′, (s, y)) ∈ D: ∃x′ →S y′ ∈ RS.
• a ∈ A is acceptable w.r.t. S iff ∀b s.t. b →S a: ∃c ∈ S s.t. c →S b and

there is a reinstatement set for c→S b.

Collective-attack frameworks (CAFs) allow the representation of sets of argu-
ments that attack an argument [22]. They can allow for a more intuitive repre-
sentation of common-sense reasoning and human dialogues and have been shown
to be useful in practical applications of argumentation [21,23]. See Figure 3, in
which there are three collective attacks: the set of arguments {a, b} attacks the
argument c, {a, b} attacks e, and {c, d} attacks f .

Definition 6. A collective-attack framework (CAF) is a pair 〈A,R〉 s.t.
A is a finite set of arguments, and R ⊆ (2A\{∅}) × A is a set of attacks where
(X, y) ∈ R is an attack from the set of arguments X to the argument y.

Similarly to EAFs, CAF argumentation semantics are defined equivalently
as for DAFs but with the following adjustments [22].
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Definition 7. Let 〈A,R〉 be a CAF and S ⊆ A.
• S is conflict-free iff 6 ∃a ∈ S s.t. ∃S′ ⊆ S s.t. (S′, a) ∈ R.
• a ∈ A is acceptable w.r.t. S iff ∀B ⊆ A s.t. (B, a) ∈ R: ∃b ∈ B, ∃S′ ⊆ S

s.t. (S′, b) ∈ R.

3 Structural properties of AFs

There are many different structural properties of DAFs, HEAFs and CAFs we
could investigate. Here we consider the DAF attack density, the distribution of
arguments across the different levels of a HEAF, and the restriction on the num-
ber of arguments that may appear in a CAF collective-attack set. Our analysis
of the characteristics of these different structural properties (Section 4) provides
valuable insights for understanding their impact on the performance of argu-
ment technologies such as argument solvers or dialogue systems, particularly
for domains or applications in which the structural properties we consider here
are typical. Our case studies (Section 5) demonstrate the applicability of two
of the structural classes we consider. More generally, our results show there is
significant difference in the characteristics of different structural classes of AFs,
which it can be important to consider when developing argument technologies
or selecting the most appropriate AF representation (e.g., [9]).

3.1 DAF attack density

Attack density of a DAF is the ratio of attack relations to the number of argu-
ments. A framework with many attacks with respect to the number of arguments
is dense, while a framework with fewer attacks is sparse.

Definition 8. An n-sparse DAF (n-DAF) is a DAF 〈A,R〉 s.t. |R| = |A|
n ,

where n ∈ [0, 1].

We investigate 0.25-DAFs, 0.5-DAFs and 0.75-DAFs. Note that as n in-
creases, the framework becomes more sparse. Note also that the number of
attacks in the framework is linearly related to the number of arguments in
the frameworks. We found in initial testing that if the number of attacks is
tied instead to the number of possible attacks in the graph (which increases
exponentially with the number of arguments) small changes in sparseness value
produce very sharp changes in the characteristics of that structural class of DAF;
linearly relating the number of attacks to arguments allows us to explore this
relationship more finely.

We also consider a class of DAFs that correspond to minimum-spanning trees
(mst-DAFs), which is a fully connected DAF in which the number of attacks is
linearly related to the number of arguments (|R| = |A| − 1).

Definition 9. A mst-DAF is a DAF 〈A,R〉 such that 〈A,R〉 is a minimum-
spanning tree of 〈A,A×A〉.
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3.2 Distributed HEAFs

In some domains, particularly human dialogues, it seems reasonable to assume
that the number of arguments will be higher than the number of preferences
over those arguments, which will be higher than the number of preferences over
preferences, etc. We consider two different distributions of the proportion of ar-
guments that appear in the different HEAF partitions. For normally-distributed
HEAFs (nEAFs), we use the binomial coefficient to approximate the normal
distribution (continuous) over a finite number of partitions (discrete), and thus
the proportions with which to assign arguments to each partition. We use the
number of partitions relative to the number of arguments in the graph that
allows for the best fit with the normal distribution (computed with Sturges’
formula [26]). The choice of normal distribution provides the desired trend of
decreasing proportions, and is somewhat common in nature [14].

Definition 10. The discrete normal distribution over l partitions is given by
the formula norm dist(l) = [d0, d1, ..., dl−1] s.t.:
• n = 2l − 1
• dk = n!

k!(n−k)!
The proportional weights of the partitions are thus given by the formula norm prop(l)
= [p0, p1, ..., pl−1] such that pi = 2(di)÷ 2n.

We can then use this definition of a normal distribution over partitions to de-
fine normally-distributed HEAFs. Note that the HEAF in Figure 2 us a normally-
distributed HEAF.

Definition 11. A normally-distributed HEAF (nEAF) is a HEAF 〈A,R,D〉
with a partition P = [〈〈A1, R1〉, D1〉, ..., 〈〈Am, Rm〉, Dm〉] s.t.:

• A = ∪mi=1Ai, R = ∪mi=1Ri, D = ∪mi=1Di, and for i = 1, ...,m, 〈Ai, Ri〉 is a
DAF,

• if (z, 〈x, y)) ∈ Di then (x, y) ∈ Ri, z ∈ Ai+1,
• m = blog2 |A|c+ 1 (Sturges’ formula), and
• |Aj | = b(pl−j × |A|) + 1c where norm prop(m) = [p0, p1, ..., pl−1].

We also consider evenly-distributed HEAFs (eEAFs), in which each level of
the partition has an equal number of arguments. We consider eEAFs to be an
interesting corner-case to investigate. Again, we use Sturges’ formula to compute
an appropriate number of partitions.

Definition 12. An evenly-distributed HEAF (eEAF) is a HEAF 〈A,R,D〉
with a partition P = [〈〈A1, R1〉, D1〉, ..., 〈〈Am, Rm〉, Dm〉] such that:

• A = ∪mi=1Ai, R = ∪mi=1Ri, D = ∪mi=1Di, and for i = 1, ...,m, 〈Ai, Ri〉 is a
DAF.

• If (z, (x, y)) ∈ Di then (x, y) ∈ Ri, z ∈ Ai+1

• m = blog2 |A|c+ 1
• For i = 0, ...,m, |Ai| = d(|A| ÷m± 1)e
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3.3 Capped CAFs

We consider two structures of CAF: those in which the size of any collective-
attack set is no greater than (capped at) 3 and CAFs in which there is no
restriction on the size of collective-attacks sets. We refer to capped frameworks
as cCAFS, and those which are uncapped as uCAFs.

Definition 13. A capped collective-attack framework (cCAF) is a CAF
〈A,R〉 s.t. ∀(S, a) ∈ R : |S| ≤ 3.

Note, in the rest of this paper, to emphasise the distinction with capped
collective-attack frameworks, we refer to collective-attack frameworks where it
is not necessarily the case that there is an upper bound of 3 on the size of the
attacking sets as uncapped collective-attack frameworks, (uCAFs).

4 Characteristics of structural classes of AF

We ran experiments with the following structural classes of AF: 0.25-DAF, 0.5-
DAF, 0.75-DAF, mst-DAF, eEAF, nEAF, cCAF and uCAF. We consider specif-
ically the size of the grounded and the preferred sceptical extensions (known
to affect the performance of argument solvers [8]), the proportion of argument
subsets that determine some topic argument to be acceptable (a factor in the
effectiveness of dialogue strategies for persuasion [3]), and whether the addition
of a new argument to the framework results in a change of acceptability of some
topic argument (also a factor in the effectiveness of dialogue strategies [1] and
intrinsic to a variety of other argument technologies [16]). To investigate these
properties empirically, we generate random instances of the specified structures.

When generating DAFs, we ensure that each possible weakly-connected DAF
with the specified density is equally likely to be generated, only excluding frame-
works that contain self-attacking arguments. For EAFs, we begin by generating
each partition as a 0.5-DAF (in the same manner as described above), where
the number of arguments in the partitions depends on the distribution of the
EAF (e.g. whether it is a eEAF or nEAF). Then, we add one random prefer-
ence relation from each argument (excluding those in the lowest partition), to
a random attack relation in the partition directly below it; preference relations
are generated one at a time, ensuring that the EAF has a valid HEAF struc-
ture (specifically maintaining the property in Definition 3, bullet 2). Finally, for
CAFs, we begin by generating a random 0.25-DAF (in the manner described
above); the attacks generated form the singleton attacks of the CAF. We then
add attacks from sets of more than one argument so that the total number of
attacks in the resulting CAF is the same as the number of attacks in a 0.5-DAF
with the same number of arguments. We begin by first randomly selecting the
size of the attacking set (for cCAFs either 2 or 3, for uCAFs from 2 to |A| − 1),
we then randomly select a set of arguments of that size and then randomly select
an argument to be attacked by that set; we repeat until we have the required
number of attacks.
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Our experiments were implemented in Java, partly using the Tweety li-
brary [27]. Our code is available at github.com/joshlmurphy. Experiments were
run on an Intel i5 3.20GHz CPU, with 4GB RAM.

4.1 Size of extension

The argument solver competition [8], in which argument solvers attempt to com-
plete a set of tasks related to computational argumentation as efficiently as
possible (such as computing an extension, or determining whether a particu-
lar argument is acceptable) used three benchmark sets of DAFs. Two of these
benchmarks were characterised by the size of their extensions: frameworks with
large grounded extensions and frameworks with large preferred extensions. Most
solvers were slower when tasked with frameworks with a large preferred extension
compared to those frameworks with a large grounded extension. This indicates
that the size of the extensions of a framework is an important consideration
when employing an argument solver for certain tasks. We investigated how the
average size of both the grounded and the preferred sceptical extensions differs
between our chosen framework classes.

For each framework class, we randomly generated at least 1,000 frameworks
with n number of arguments, where n = 12, 24, 36. Figure 4 shows the average
size of both the grounded and the preferred sceptical extension of the frameworks
we generated. For DAFs, we observe a trend for both semantics that the more
dense the DAF, the smaller the size of the extension. We also observe that the
larger the framework, the larger the extension.

Interestingly, CAFs reverse this trend when using the grounded semantics:
the larger a uCAF/cCAF, the smaller (on average) the grounded extension. This
surprising result can be explained by the intuition that as you increase the num-
ber of arguments in a CAF, this increases the proportion of group attacks, and
thus the more arguments that are part of a collective-attack relation, leading to
a higher number of attack cycles (the more arguments in a set S that collectively
attack an argument a, the higher the chance that a will attack at least one ar-
gument in S, causing a cycle) and the more attack cycles in a framework the
smaller the grounded extension is likely to be. This is supported by the obser-
vation that uCAFs have on average a smaller grounded extension than cCAFs,
which, we conclude, is due to more arguments being part of a collective-attack
relation in uCAFs (as there is no cap on the number of arguments in the attack
relation). When using the preferred semantics, cycles are less of a factor in the
size of the extension, and so we observe that the size of the preferred sceptical
extension increases as the size of CAF increases.

We find that eEAFs are more likely to have a larger grounded extension than
nEAFs, but have similar sized preferred sceptical extensions. We reason that in
EAFs, the more arguments that attack an attack between two arguments that
exist in a framework, the more likely attack relations in the partition below will
be defeated. This effectively lowers the attack density in lower partitions. So in
the frameworks with more preferences on average (eEAFs) there will be a lower
overall attack density. As we observe in DAFs, the lower the attack density of

github.com/joshlmurphy
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Fig. 4. The size of the grounded and preferred sceptical extensions.

the framework, the larger the extension — this is reflected in the results for the
grounded extension.

4.2 Subsets that determine a topic acceptable

Some particular topic argument will be determined acceptable by some subsets
of arguments, but not others. Any topic argument will be acceptable in at most
50% of the subsets, since it will not exist in half of the subsets of the power set
(an argument is deemed unacceptable in a framework it is not a part of). We
refer to the proportion of subsets in which the topic argument is determined to
be acceptable as SA. This property has been found to be an important factor in
the success of persuasion dialogues [3]: the lower SA, the more difficult it is to
persuade an agent that the topic argument is acceptable.

We investigated whether average SA differs between the selected framework
classes. Our implementation is naive, exhaustively checking whether some topic
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Fig. 5. The percentage of argument subsets in which a particular argument is accept-
able under the grounded semantics.

is acceptable in every set in the power set of arguments. The time for these
experiments is very high due to the exponential growth in the size of the power
set. To feasibly compute the results we used the grounded semantics (which are
faster to compute) and limited the framework size to 12 arguments. We generated
at least 1,000 random instances of each framework class with 12 arguments, each
time randomly selecting a topic argument.

Using the analysis of variance test (ANOVA, a collective of tests used to
analyse the difference between the means of multiple groups [13]) we find that
the different argumentation framework classes have significantly different SA
(apart from nEAF and eEAF which are distinct from other classes but not from
each other), and thus that each class is a distinct population (p < 0.05 for each
class); this implies that the framework class is a significant factor in determining
SA. The largest difference between two classes is between mst-DAF and nEAF,
with a 36.06 percentage points difference between means.

In the different classes of DAF, we observe a clear trend that the more dense
a framework class, the lower SA is for that class (see Figure 5). This follows
the trend observed in Figure 4, where the more dense a DAF, the smaller
the grounded extension. Similarly, uCAF frameworks typically have a smaller
grounded extension than cCAF frameworks, and this trend is repeated for SA.
For nEAF and eEAF frameworks of 12 arguments, there is little difference be-
tween the size of grounded extensions, and this trend is again shown for SA, in
which eEAF and nEAF were not found to have significantly different SA. When
using the grounded semantics it appears that the size of the extension and SA
are linked.
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Table 1. The percentage of frameworks that are resistant.

Framework class 12 args 24 args 36 args

mst-DAF 80.9 85.8 90.7

0.75-DAF 81.9 89.5 93.4

0.5-DAF 87.5 90.8 95.1

0.25-DAF 92.3 93.1 96.0

nEAF 87.2 91.7 96.8

eEAF 89.9 93.4 98.5

cCAF 76.7 84.1 88.8

uCAF 69.2 74.3 79.6

4.3 Resistance of AFs

Argumentation is an inherently dynamic process, with arguments and attack
relations changing as new knowledge becomes available. The dynamic nature
of argumentation can potentially be exploited for computational efficiency [16]
as well as for strategic advantage [6]. Amgoud and Vesic consider whether the
addition of a new argument to a framework changes the acceptability of a specific
argument (termed the topic argument) [1]. If the addition of a new argument does
not cause a change in the topic argument’s acceptability we say the framework is
resistant, otherwise it is susceptible. To investigate whether there is a difference
in their resistance, for each framework class, we randomly generated at least
1,000 frameworks with n number of arguments, where n = 12, 24, 36, selecting
both a topic argument and a test argument at random, determining the AF to be
resistant if the acceptability of the topic argument is unaffected by the inclusion
of the test argument. Table 1 shows the percentage of the framework instances
we generated that are resistant.

For all classes we observe that the larger the framework, the more likely it
is to be resistant. Intuitively, the more arguments in a framework, the more
likely it is that an argument is topographically further away from the topic, and
therefore the less likely the test argument will change the acceptability of the
topic (this relationship can be used as a heuristic to inform an argument dialogue
strategy [20]).

In a cCAF, a new argument can alter the acceptability of arguments both
through introducing new argument-argument attacks as well as new collective-
attacks. This is also true in uCAFs, though they have a greater chance of in-
troducing collective-attacks: since the size of a collective attack is uncapped,
each argument is in more collective attack relations on average. Thus, when we
add a new argument to a uCAF it is likely to result in more changes in the
acceptability of arguments, and this is why cCAFs are more resistant.

We see that eEAFs are more resistant than nEAFs, indicating that the higher
the proportion of preference arguments to arguments, the more resistant the
EAF will be. This is because an argument cannot alter the acceptability of an
argument in a partition higher than its own partition, since all attack relations
are either to arguments in the same partition or to arguments in the partition
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directly below. Therefore, if the topic argument is in a higher partition than the
test argument, the framework is guaranteed to be resistant. In eEAFs it is more
likely that the topic will be in a higher partition (since it is randomly selected
and there are more arguments in higher partitions than in a nEAF) and thus
the less likely it is that the test argument will affect the topic’s acceptability.

5 Case studies

We examine two case study frameworks, obtained from argument technologies
deployed on real-world data. These motivate the relevance of the classes of frame-
work structure we investigate (showing that the results of our experiments on
randomly generated AFs map to the properties of our case-study frameworks)
and also allow us to demonstrate how our results can be used to inform argument
technologies.

5.1 Trial aggregation

As evidence-based decision-making becomes increasingly important, clinical tri-
als can provide an important source of information to inform healthcare profes-
sionals. Hunter and Williams propose an argument-based approach for aggre-
gating the positive and negative effects of potential treatments, which has been
shown to produce recommendations that align with published clinical guide-
lines [15]. The approach performs a type of meta-analysis on a range of clinical
literature, producing a DAF (very sparse, almost a mst-DAF in structure) on
which reasoning about possible treatment options is done. We use such a frame-
work as our first case study.

Table 2 shows the number of arguments present in our trial aggregation case
study DAF (|Args|), the size of its grounded and preferred sceptical extensions
(|Gr| and |Pr|), the average SA over all possible topic arguments (SA) and the
percentage of cases that were resistant over each possible topic argument with
a randomly selected test argument (Res). We see that the results correlate with
the results obtained from mst-DAF presented earlier in this paper, with the size
of extensions, SA, and resistance being within the expected ranges of mst-DAFs.
This evidences the relevance of the structures we investigate.

We consider particularly the resistance of this case study framework to demon-
strate how our results may be used to inform a specific application. The resis-
tance of the trial aggregation framework is exceptionally high (97.2% ). This
indicates that new arguments added in the future, in this case by the addition of
new clinical studies, are unlikely to change the acceptability of other arguments
in the framework. This implication of this is that new studies are unlikely to
have an affect on the recommended treatment, meaning there can be confidence
in the current recommendation. If a framework produced by the trial aggrega-
tion approach had a low resistance, new studies would be likely to change the
recommended treatment, and this would imply that the recommendation is not
yet reliable.
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Table 2. Case study results.

|Args| |Gr| |Pr| SA Res

Trial aggregation 34 9 9 41.9 97.2

Model selection 13 7 7 46.5 89.1

5.2 Statistical model selection

Clinicians without statistical training often need support to select a suitable
model to correctly analyse and reason about their data. Sassoon et al. propose a
tool that uses argumentation to aid in the process of deciding which statistical
model is most suited to a user’s research question, data and preferences [25]. The
requirements and preferences of the user, as well as preferences from applicable
context domains, are captured in an EAF, which can then inform the user of
the most suitable model to use. We use a framework produced by using this
tool with real-world data from a study involving clinicians (originally presented
in [25]) as our second case study. The framework is an eEAF, being a HEAF
with the same number of arguments at each level of the hierarchy.

Table 2 shows the number of arguments present in our statistical model
selection case study eEAF (column |Args|), the size of its grounded and the
preferred sceptical extensions (column |Gr| and column |Pr|), the average SA
over all possible topic arguments (column SA) and the percentage of cases that
were resistant over each possible topic argument with a randomly selected test
argument (column Res). We see that the results correlate with our experiments
over randomly generated eEAFs. Perhaps the most interesting result from this
case study is the high SA of the framework (46.5% ). Empirical investigations
have demonstrated that the higher SA, the easier it is for a persuader to convince
a persuadee of the acceptability of some argument [3,19]. Therefore, we would
expect the persuasion of a user to use a particular statistical model to be likely
to be successful when the underlying AF is an eEAF, as in this case study we
consider here.

6 Discussion

We have shown that the type of AF and its structural properties have a sig-
nificant effect on the size of the grounded and preferred sceptical extensions,
on the proportion of subsets that determine some topic argument to be accept-
able, and on the resistance of the framework; these characteristics are known
to be important factors in the performance of different argument technologies.
Understanding these relationships is therefore important when considering how
to evaluate such technologies. Furthermore, it can allow technologies to be op-
timised for specific domains in which certain structures of AF are known to be
typical (such as our case study domains). For example, solvers can be developed
to be faster for particular classes of framework, or a dialogue strategy can be
effective for particular knowledge domains.
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Related work considers how graph-theoretic properties of DAFs can be used
to predict the “best” argument solver for a particular DAF [7], specifically the
work considers how fast solvers are for DAFs with structures based on social
networks. In contrast, we consider a range of general argument-based character-
istics that are known to impact on various argumentation-technologies, including
argument solvers. The structures we investigate are based on those derived from
generalised argumentation frameworks commonly used in argument-technology,
and our case-studies demonstrate the relevance of these structures.

We could also examine structures of framework derived from natural human-
style argumentation (such as recent work by Rosenfield and Kraus [24]). Argu-
ment mining offers the possibility of obtaining large datasets of frameworks from
real-world human-based argumentation, and can be applied to a vast array of
domains, providing a range of framework structures related to human-reasoning.
However, representing human reasoning in a formal argumentation framework
is a challenging task; detecting arguments can be difficult in human dialogues
because conflict tends to be hidden [11]. Nevertheless, investigating the prop-
erties of structural patterns that may be emerging in representations of human
reasoning is a possible direction for future work.
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