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inclusion of a psychiatric control group, which is crucial to disentangle the effects of
abuse from those associated with the psychiatric conditions.

Methods: Cortical volume (CV), cortical thickness (CT) and surface area (SA) were
measured in 22 age-and gender-matched medication-naïve youth (aged 13-20)
exposed to childhood abuse, 19 psychiatric controls matched for psychiatric diagnoses
and 27 healthy controls. Both region-of-interest (ROI) and whole-brain analyses were
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Results: For the ROI analysis, the childhood abuse group compared to healthy controls
only, had significantly reduced CV in bilateral cerebellum and reduced CT in left insula
and right lateral orbitofrontal cortex (OFC). At the whole-brain level, relative to healthy
controls, the childhood abuse group showed significantly reduced CV in left lingual,
pericalcarine, precuneus and superior parietal gyri, and reduced CT in left pre-
/postcentral and paracentral regions, which furthermore correlated with greater abuse
severity. They also had increased CV in left inferior and middle temporal gyri relative to
healthy controls. Abnormalities in the precuneus, temporal and precentral regions were
abuse-specific relative to psychiatric controls, albeit at a more lenient level. Groups did
not differ in SA.
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Conclusions: Childhood abuse is associated with widespread structural abnormalities
in OFC-insular, cerebellar, occipital, parietal and temporal regions, which likely underlie
the abnormal affective, motivational and cognitive functions typically observed in this
population.
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Abstract 

Background: Childhood abuse is associated with abnormalities in brain structure and function. 

Few studies have investigated abuse-related brain abnormalities in medication-naïve, drug-free 

youth that also controlled for psychiatric comorbidities by inclusion of a psychiatric control group, 

which is crucial to disentangle the effects of abuse from those associated with the psychiatric 

conditions. 

Methods: Cortical volume (CV), cortical thickness (CT) and surface area (SA) were measured in 

22 age-and gender-matched medication-naïve youth (aged 13-20) exposed to childhood abuse, 19 

psychiatric controls matched for psychiatric diagnoses and 27 healthy controls. Both region-of-

interest (ROI) and whole-brain analyses were conducted. 

Results: For the ROI analysis, the childhood abuse group compared to healthy controls only, had 

significantly reduced CV in bilateral cerebellum and reduced CT in left insula and right lateral 

orbitofrontal cortex (OFC). At the whole-brain level, relative to healthy controls, the childhood 

abuse group showed significantly reduced CV in left lingual, pericalcarine, precuneus and superior 

parietal gyri, and reduced CT in left pre-/postcentral and paracentral regions, which furthermore 

correlated with greater abuse severity. They also had increased CV in left inferior and middle 

temporal gyri relative to healthy controls. Abnormalities in the precuneus, temporal and precentral 

regions were abuse-specific relative to psychiatric controls, albeit at a more lenient level. Groups 

did not differ in SA.  

Conclusions: Childhood abuse is associated with widespread structural abnormalities in OFC-

insular, cerebellar, occipital, parietal and temporal regions, which likely underlie the abnormal 

affective, motivational and cognitive functions typically observed in this population. 

 

 

Keywords: Childhood adversity, early-life stress, childhood maltreatment, cortical thickness, 

surface area, cortical volume, brain abnormalities  
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Introduction 

Brain development is a complex process regulated by genes and sculpted by environmental 

experiences (Lenroot & Giedd, 2008).  Although experiential influences affect brain structure and 

function throughout the lifespan, childhood experience is particularly crucial with  early stress  

adversely affecting the nature and trajectory of normal brain development (Pechtel & Pizzagalli, 

2011).  

 

Childhood maltreatment, which includes physical, sexual and emotional abuse and neglect, 

is common in the UK with paediatric prevalence rates of 7-10% (NSPCC, 2011). It has been 

associated with a host of adverse consequences, such as low IQ, abnormal error processing (Lim et 

al. 2015), impaired attention, inhibition, emotion and reward processing (De Bellis & Zisk, 2014; 

Hart & Rubia, 2012; Pechtel & Pizzagalli, 2011). Large-scale epidemiological studies found that 

childhood maltreatment is significantly associated with first onsets of various psychiatric disorders, 

such as depression and post-traumatic stress disorder (PTSD) (Green et al. 2010).  

  

The psychopathological outcomes associated with childhood maltreatment may be mediated 

by the disruption of neural underpinnings (Bremner & Vermetten, 2001).  Structural MRI studies 

show that, relative to non-maltreated controls, individuals exposed to childhood maltreatment have 

grey matter volume (GMV) abnormalities in several relatively late-developing brain regions, such 

as the orbitofrontal cortex (OFC) (De Brito et al. 2013; Edmiston et al. 2011; Hanson et al. 2010; 

Hodel et al. 2015; Thomaes et al. 2010), insula (Dannlowski et al. 2012; Edmiston et al. 2011; Lim 

et al. 2014), temporal lobes (Bremner et al. 1997; De Bellis et al. 2002; Tomoda et al. 2011) and 

cerebellum (Bauer et al. 2009; De Bellis & Kuchibhatla, 2006; Walsh et al. 2014). Volumetric 

abnormalities in subcortical regions such as the hippocampus and amygdala have been mainly 

observed in adults but not children/adolescents exposed to childhood maltreatment (Woon & 

Hedges, 2008). Recent studies also reported reduced visual cortex GMV in childhood maltreatment 
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(Edmiston et al. 2011; Tomoda et al. 2009; Tomoda et al. 2012). Several reviews of childhood 

maltreatment have consistently reported structural deficits in several stress-susceptible brain regions 

including the OFC, limbic, insula and cerebellar regions (Hart & Rubia, 2012; Lim et al. 2014, 

McCrory et al. 2011a; Nemeroff, 2016; Teicher et al. 2016), with the late-developing OFC and 

cerebellum being particularly vulnerable to the effects of early stress (Hanson et al. 2010; Pechtel & 

Pizzagalli, 2011), and the insula is known to be involved in regulating the glucocorticoid effect 

(Fornari et al. 2012). Our meta-analysis also showed that childhood maltreatment is associated with 

GMV reduction in OFC-limbic-temporal regions and inferior frontal cortices that mediate top-down 

affect and cognitive control, respectively; and with GMV reduction in pre-/postcentral gyri that 

mediate sensory functions (Lim et al. 2014).  

 

Cortical volume (CV) is determined by two separable cortical indices, cortical thickness (CT) 

and surface area (SA), which are genetically (Panizzon et al. 2009) and phenotypically (Winkler et 

al., 2010) independent with differing developmental trajectories (Panizzon et al. 2009). Studies 

examining CT, SA and CV may be more sensitive to individual differences than considering 

volume alone (Hutton et al. 2009). However, as most of the earlier structural studies on childhood 

maltreatment examined abuse-related volumetric abnormalities, examining group differences in 

volume in the current study thus allows for comparison with the existing literature. Also, volume 

measurements are useful for subcortical structures where CT/SA measurements are unavailable. 

Therefore, it is important to explore these brain measures to better understand the structural 

correlates of childhood maltreatment.  

 

 To date, few studies on childhood maltreatment examined whole-brain differences in CV, 

CT and SA within the same sample. Compared with healthy controls, maltreated young people had 

significantly reduced CT in right OFC (Gold et al. 2016; Kelly et al. 2016; Kelly et al. 2013), and 

reduced SA in left middle temporal and lingual regions (Kelly et al. 2013). Children who 
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experienced psychosocial deprivation exhibited widespread CT reductions in lateral OFC, 

precuneus, insula, parietal and lingual gyri, which were furthermore associated with inattention and 

impulsivity (McLaughlin et al. 2014). In adults, childhood sexual abuse was associated with 

reduced CT in left somatosensory cortex, while emotional abuse was associated with reduced CT in 

bilateral precuneus and left somatosensory cortex (Heim et al. 2013). Individuals exposed to 

domestic violence during childhood had reduced CT in bilateral lingual (Tomoda et al. 2012). 

 

Given that childhood maltreatment is associated with the development of psychiatric 

complications (Herrenkohl et al. 2013; MacMillan et al. 2013; Sugaya et al. 2012), it is crucial to 

control for these in order to disentangle the effects of maltreatment from the psychiatric 

comorbidities (Hart & Rubia, 2012; Lim et al. 2014; McCrory et al. 2011a). Only two prior 

structural studies in childhood maltreatment controlled for psychiatric disorders. However, they 

examined CV alone in specific disorders such as psychosis (Sheffield et al. 2013) and depression 

(Chaney et al. 2014), which limits the generalizability of their findings to other psychiatric 

comorbidities. Also, the majority of patients in the two studies were on psychotropic medications 

(e.g. Chlorpromazine, SSRIs), which are known to affect brain structure and function (Murphy, 

2010). 

 

Therefore, the aim of this study was to control for the limitations of earlier studies by 

conducting both ROI and whole-brain structural (CV, CT, SA) analyses in medication-naïve, drug-

free youth exposed to documented childhood physical abuse and in healthy controls. To assess the 

specificity of the association with childhood abuse, we included a third group of psychiatric 

controls that was matched with the abuse group on psychiatric comorbidities. Sexual abuse was 

excluded because it has different effects on brain structure (Heim et al. 2013) and different 

behavioural and psychiatric consequences (Lewis et al. 2016; Lopez-Castroman et al. 2013; Teicher 

et al. 1997; Weierich & Nock, 2008). For instance, both childhood physical abuse and neglect, but 
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not sexual abuse, were associated with alterations in regional corpus callosum size (Teicher et al. 

1997) and with GMV reduction in a distributed corticostriatal-limbic system (Edmiston et al. 2011).  

Furthermore, childhood sexual abuse is associated with experiences unique to sexual victimization 

relative to other abuse experiences; for example, traumatic sexualization, stigmatization, 

attributions of responsibility as well as feelings of guilt and shame may impact sexual abuse victims 

differently than victims of other abuse experiences (Feiring et al. 1996; Finkelhor & Browne, 1985).  

For these reasons, and in order to obtain a more homogenous group, we only included youth 

exposed to childhood physical abuse. Nevertheless, it is unrealistic to separate physical abuse from 

typically co-occurring emotional abuse and neglect (Claussen & Crittenden, 1991; Edwards et al. 

2003) since psychological maltreatment would be present in almost all cases of physical 

maltreatment (Claussen & Crittenden, 1991). 

 

Since childhood maltreatment is consistently associated with structural deficits in several 

stress-susceptible brain regions including the OFC, limbic, insula and cerebellar regions (Hart & 

Rubia, 2012; Lim et al. 2014; McCrory et al. 2011a; Nemeroff, 2016; Teicher et al. 2016), we 

hypothesized that the abuse group, relative to both healthy and psychiatric controls, would have 

structural abnormalities particularly in the OFC, insula and cerebellum. We also investigated 

abnormalities outside our priori defined ROIs with a whole-brain analysis.  

 

Methods and Materials 

Participants 

 Seventy (23 abuse, 20 psychiatric controls, 27 healthy controls) right-handed, medication-

naïve, drug-free and age-and-gender matched youth (aged 13-20) were assessed by a child 

psychiatrist (KM) using the Development and Well-Being Assessment (DAWBA) (Goodman et al. 

2000), which was designed to generate ICD-10 and DSM-IV psychiatric diagnoses. The Strengths 

and Difficulties Questionnaires (SDQ) (Goodman, 1997) and Beck’s Depression Inventory (BDI) 



7 
 

(Beck et al. 1988) were also used to provide symptom scores on psychopathology. IQ was assessed 

using the Wechsler Abbreviated Scale of Intelligence (WASI) (Wechsler, 1999). The Childhood 

Trauma Questionnaire (CTQ) (Bernstein & Fink, 1998) was used to measure the severity of 

childhood physical, sexual and emotional abuse, and physical and emotional neglect. 

Socioeconomic status (SES) was measured by two non-sensitive items (on housing tenure and room 

occupancy) from the Family Affluence Scale (FAS) (Currie et al. 1997).  

 

Exclusion criteria for all participants were childhood sexual abuse, drug abuse, learning 

disability, neurological abnormalities, epilepsy, IQ < 70 and MRI contraindications. Urine 

screening for recent drug use was conducted with 10-panel urine drug test integrated cups (T-Cup; 

http://www.testfield.co.uk). All participants or their guardians if they were under the age of 18, 

provided written informed consent to participate in the study. The study was approved by the 

National Research Ethics Service Committee London-Fulham. 

 

  The 23 youth who experienced physical abuse before the age of 12 were first recruited 

through social services and psychiatric clinics. They or their guardians were first asked to provide 

signed permission to contact their social services for written confirmation of official records of 

physical abuse. The Childhood Experience of Care and Abuse (CECA) interview (Bifulco et al., 

1994) was used to corroborate the CTQ and provide information on the age of onset and duration of 

abuse. The participants scored ≥ 13 (i.e. the cut-off for severe/extreme physical abuse) (Bernstein & 

Fink, 1998) on the CTQ physical abuse subscale and information from the CECA interview and the 

CTQ were consistent with the official records. The common psychiatric comorbidities included 

PTSD, depression, anxiety and conduct disorder (Table 1). One participant was excluded due to 

MRI motion artefacts, leaving a final sample of 22 participants. 
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 The 20 psychiatric patients that were matched with the abuse group on psychiatric 

comorbidities but with no history of childhood maltreatment (scoring below the cut-offs for the 

respective CTQ subscales) (Bernstein & Fink, 1998) were recruited through psychiatric clinics and 

social services (Table 1). PTSD patients experienced non-abuse related trauma (e.g. witnessed a 

murder, experienced a car accident or experienced the death of a loved one). One participant was 

excluded due to motion artefacts, leaving a final sample of 19 patients. 

 

 The 27 healthy controls with no history of psychiatric illness and childhood maltreatment 

(scoring below the same cut-offs as above) were recruited through advertisements in the same 

geographic areas of South London to ensure similar SES (Table 1). 

 

MRI Acquisition and Analysis 

The MRI acquisition procedures are described in the supplementary materials.  

Image preprocessing and analyses were carried out using FreeSurfer version 5.3.0 

(http://surfer.nmr.mgh.harvest.edu). After preprocessing (supplementary materials), whole-brain 

between-group differences in CV, CT and SA were investigated within the QDEC surface-based 

group analysis. For each hemisphere, the General Linear Model was computed vertex-by-vertex for 

analysis of each cortical morphometric measure (CV, CT and SA), with group as a between-

subjects factor and IQ, age, and a total brain measure (total brain volume for CV, mean CT for CT, 

and total SA for SA) included as covariates. Although there were no significant group differences in 

age, it was included given the relatively wide age range of the current sample. Cortical maps were 

smoothed with a FWHM Gaussian kernel of 10 mm. Between-group differences were corrected for 

multiple comparisons with a Monte Carlo z-field simulation at p < 0.05 (two-tailed).  

 

For group differences in the hypothesised ROIs (i.e. OFC, insula, cerebellum), ANOVA 

with group (Abuse vs Healthy controls; Abuse vs Psychiatric controls) as a between-subject factor  

http://surfer.nmr.mgh.harvest.edu/
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and covariates outlined above were used on the cortical measures of these regions generated during 

the automated segmentation and parcellation process (Fischl et al. 2004). Given that a limited 

number of studies have aimed at specifying surface-based brain indices in relation to abuse 

exposure (Kelly et al. 2016), the stringent Bonferroni multiple comparisons correction was not 

applied in this analysis to limit potential type II errors.  

 

Tests for normality were conducted in SPSS using the Kolmogorov-Smirnov and Shapiro-

Wilk tests. None of the volume measurement distributions deviated significantly from normality. 

 

Finally, we also conducted three preliminary analyses. First, we explored if gender 

influenced the impact of maltreatment on brain measures at the whole-brain level in QDEC with 

age, IQ and a total brain measure included as covariates. Second, the significant clusters were 

extracted for exploratory Pearson correlational analysis with the clinical measures within each 

group and with the abuse measures within the abuse group only. Lastly, we explored if the groups 

differed on hippocampus volume (supplementary materials). 

 

Results 

Subject Characteristics 

The groups did not differ significantly on age, gender, ethnicity nor SES (p>0.05), but 

differed on IQ (p<0.001), which was expected as this is typical for the population (Geoffroy et al. 

2016; Mills et al. 2011; Young & Widom, 2014) (Table 1). Although we selected participants with 

severe childhood physical abuse, they also experienced severe emotional abuse and neglect (Table 

1), which typically co-occur with physical abuse; hence we consider this group representative of the 

childhood abuse population (Edwards et al. 2003; Trickett et al. 2011).  
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ROI Analysis 

Relative to healthy controls only, the abuse group showed significantly reduced CV in left 

(F(1,44)=4.68, p=0.03) and right (F(1,44)=5.33, p=0.02) cerebellum, and reduced CT in left insula 

(F(1,44)=6.06, p=0.02) and right lateral OFC (F(1,44)=4.30, p=0.04). The abuse and psychiatric 

groups did not differ significantly (Table 2). There were no significant group differences on 

hippocampus volume (supplementary materials). 

 

Whole-brain Analysis  

Cortical volume  

Compared to healthy controls, the abuse group had significantly reduced CV in a left-

hemispheric posterior cluster comprising lingual, pericalcarine, precuneus, cuneus, isthmus 

cingulate and superior parietal gyri (Table 3, Figure 1; cluster-corrected p < 0.05). They had larger 

CV in two left-hemispheric clusters: inferior temporal gyrus, along with middle temporal and 

inferior parietal gyri (Table 3, Figure 2; cluster-corrected p < 0.05). Two of these regional 

differences, reduced CV in left precuneus (t = -2.36, p < 0.05) and larger CV in left middle 

temporal gyrus (t = 2.38, p < 0.05), were also significant relative to psychiatric controls at an 

uncorrected level; suggesting that the CV abnormalities in these two regions could be abuse-

specific. Healthy and psychiatric controls did not differ significantly from each other. There was no 

significant maltreatment by gender interaction. 

 

Cortical thickness 

The abuse group had significantly reduced CT in left precentral, postcentral and paracentral 

gyri (Table 4, Figure 3; cluster-corrected p < 0.05) relative to healthy controls, and significantly 

reduced left precentral CT (t = -2.18, p < 0.05) relative to psychiatric controls at an uncorrected 

level, suggesting that the precentral deficit could be abuse-specific. Healthy and psychiatric controls 
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did not differ significantly from each other. There was no significant maltreatment by gender 

interaction. 

 

Surface area 

There were no significant group differences or maltreatment by gender interaction in SA.  

 

Correlational Analysis 

 The significant clusters were correlated with the SDQ and abuse measures within each 

group, controlling for IQ and age. Lower CV in the lingual-pericalcarine-precuneus cluster was 

significantly associated with higher CTQ physical abuse (r= -0.45, p<0.05) and total score (r = -0.46, 

p<0.05) in the abuse group, and with higher SDQ total score (r = -0.49, p<0.05) and peer problems 

(r = -0.56, p<0.05) in the healthy controls. Reduced CT in the pre-/postcentral cluster was also 

significantly associated with higher CTQ total score (r = -0.46, p<0.05) in the abuse group.  

 

Discussion  

To our knowledge, this is the first structural study on childhood abuse that examined 

group differences in CV, CT and SA within the same sample in a group of medication-naïve, 

drug-free youth that also controlled for psychiatric comorbidities by inclusion of a psychiatric 

control group. Both are crucial to elucidate the effects of abuse independent from effects 

associated with psychiatric comorbid conditions or medication and drug abuse (Hart & Rubia, 

2012; Lim et al. 2014; McCrory et al. 2011a).  

 

For the ROI, the abuse group had significantly reduced CV in bilateral cerebellum and 

reduced CT in left insula and right lateral OFC, compared to healthy controls only. At the whole-

brain level, relative to healthy controls, the abuse group showed significantly reduced CV in a 
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cluster comprising left lingual, pericalcarine, precuneus and superior parietal regions, along with 

reduced CT in left pre-/postcentral and paracentral regions, which were furthermore significantly 

associated with greater abuse severity. Lower lingual-pericalcarine-precuneus CV was associated 

with greater SDQ total score and peer problems in the healthy controls, thereby suggesting possibly 

detrimental effects particularly in terms of peer problems, at least in the general healthy population. 

The abuse group also had increased CV in left inferior and middle temporal regions compared to 

healthy controls. Abnormalities in the precuneus, middle temporal and precentral regions were 

abuse-specific relative to psychiatric controls, albeit at a more lenient level.  

 

The OFC receives strong inputs from the limbic system and is involved in emotion 

regulation, social behaviour and reward-related decision making (O'Doherty et al. 2001; Rempel-

Clower, 2007). It also receives inputs from the visual and somatosensory regions, and the lateral 

OFC is activated when viewing aversive pictures (Nitschke et al. 2006) and experiencing 

unpleasant touch (Rolls et al. 2003). The current finding of a thinner right lateral OFC is consistent 

with previous studies that found thinner right (lateral) OFC in children who experienced severe 

early-life deprivation and childhood abuse (Gold et al. 2016; Kelly et al. 2013; McLaughlin et al. 

2014), and extends findings of our meta-analysis (Lim et al. 2014) and other volumetric studies that 

found significantly reduced OFC CV in children (De Brito et al. 2013; Edmiston et al. 2011; 

Hanson et al. 2010; Hodel et al. 2015) and adults (Thomaes et al. 2010) exposed to childhood 

maltreatment.  

 

The insula plays a key role in interoceptive-awareness and emotion regulation (Carlson et al. 

2011; Goldin et al. 2008) and together with the somatosensory, motor and prefrontal cortices, forms 

part of the neural circuitry of pain (Tracey & Mantyh, 2007). It is also part of the salience network 

that detects threat (Pichon et al. 2012), where it integrates information about salience into 

perceptual decisions about pain (Wiech et al. 2010). Previous structural studies have found thinner 
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insula in children who experienced severe early-life derivation (McLaughlin et al. 2014), as well as 

reduced insula CV in children (Edmiston et al. 2011) and adults (Dannlowski et al. 2012) exposed 

to physical abuse and childhood maltreatment, respectively.  

 

The cerebellum is vulnerable to the effects of early stress (Pechtel & Pizzagalli, 2011). It 

plays a crucial role in emotion processing and fear conditioning via its connection with limbic 

structures and the HPA axis (Schutter & van Honk, 2005), and is a key region in many cognitive 

processes, particularly attention and timing functions (Arnsten & Rubia, 2012; Stoodley & 

Schmahmann, 2009). Cerebellar deficit has also been reported in previous studies of childhood 

abuse (Bauer et al. 2009; De Bellis & Kuchibhatla, 2006; Edmiston et al. 2011), and may possibly 

underlie the affective and cognitive deficits in this population. 

 

Childhood maltreatment has been associated with abnormal development of the sensory 

systems that relay adverse sensory experiences. For instance, studies reported reduced lingual CV in 

women who experienced childhood sexual and physical abuse (Tomoda et al. 2009), reduced 

lingual CT in children who experienced psychosocial deprivation (McLaughlin et al. 2014) and in 

young adults who witnessed domestic violence during childhood (Tomoda et al. 2012), as well as 

reduced lingual SA in maltreated children (Kelly et al. 2013). Also, women exposed to childhood 

sexual and emotional abuse had reduced CT in left somatosensory cortex (Heim et al. 2013). Thus, 

the current findings of reduced left lingual CV and motor-somatosensory CT in the abuse group are 

consistent with these earlier studies and our meta-analysis finding of a smaller left motor-

somatosensory CV in childhood maltreatment (Lim et al. 2014). Together, these findings support 

the suggestion that the sensory systems that process and interpret adverse sensory inputs may be 

altered by the abuse experience, reflecting an adaptive response of the developing brain to protect 

the child from highly hostile environmental conditions by gating sensory experiences and 

processing related to the abuse (Heim et al. 2013). Given that painful stimulation decreases blood 
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flow in the somatosensory cortex (Tommerdahl et al. 1996), severe and painful punishments during 

the critical time of synapse formation and development in childhood may possibly reduce the 

number of synapses leading to a thinner somatosensory cortex. Moreover, the association between 

abuse and deficits in the sensory regions is further underpinned by the current findings of 

significant negative correlations between them. 

 

The finding of a possibly abuse-specific reduced precuneus CV corroborates earlier findings 

of a negative association between precuneus CV and abuse severity (Dannlowski et al. 2012), as 

well as reduced CT (Heim et al. 2013; McLaughlin et al. 2014) and network centrality of the 

precuneus (Teicher et al. 2014) in individuals exposed to childhood maltreatment. The precuneus 

plays a critical role in self-referential processing (Cavanna & Trimble, 2006). Childhood 

maltreatment has been associated with an increase in negative self-associations, which are 

postulated to further enhance negative bias when engaged in new situations, leading to the 

development and maintenance of affective disorders after exposure to childhood maltreatment (van 

Harmelen et al. 2010). Hence, the abuse-specific deficit in the precuneus may possibly be related to 

disturbances in self-referential processing in victims of childhood abuse, making them more 

vulnerable to the development and maintenance of psychopathology.   

 

The possibly abuse-specific increased middle temporal CV is also novel. The middle 

temporal lobe is involved in moral function and intention attributions, and its dysfunction is often 

implicated in violent psychopathy (Fumagalli & Priori, 2012; Sommer et al. 2010).  Boys with 

callous-unemotional conduct problems had greater middle temporal CV than healthy controls (De 

Brito et al. 2009), while thicker middle temporal cortex correlated with higher concurrent 

psychopathic traits and psychopathic tendencies in adolescents (Yang et al. 2015). Thus, the abuse-

specific increase in middle temporal CV may possibly serve as a biomarker for the development of 

psychopathic propensity in later life.   



15 
 

 

The OFC-limbic-cerebellar structural deficits may possibly underlie the neuropsychological 

deficits in emotion and reward processing (Pine et al. 2005; Weller & Fisher, 2013) and attention 

(Pollak et al. 2010) observed in childhood maltreatment. This relationship is further supported by 

findings of fMRI studies of childhood maltreatment of abnormal OFC-limbic-cerebellar activation 

during emotion processing. For instance, increased activation in the insula (Garrett et al. 2012; 

McCrory et al. 2011b) and cerebellum (McCrory et al. 2013) relative to controls to angry faces has 

been reported in maltreated children; together with lower OFC activation to angry faces in severely 

deprived children (Tottenham et al. 2011) and healthy adults exposed to childhood physical abuse 

(Taylor et al. 2006), suggesting a deficit in their emotion-regulation abilities.  

 

Finally, although there were no significant differences in the ROIs between the abuse group 

and psychiatric controls or between the psychiatric and healthy controls, the brain measurements of 

the psychiatric controls were in between those of the abuse group and healthy controls. This 

suggests that the abuse group, by nature of the abuse experience and the psychiatric comorbidities, 

was more adversely impaired than the psychiatric controls. 

 

Among the strengths of this study are that all participants were medication-naïve and drug-

free, and their abuse experience was carefully assessed and corroborated by social service records. 

Also, we included a psychiatric control group to determine the specificity of childhood abuse in our 

findings. The inclusion of a childhood abuse group without any psychiatric disorders would have 

provided a more robust means of determining abuse-specific abnormalities; however, such a “pure” 

group would not be representative of the general childhood abuse populations, as large-scale 

epidemiological and longitudinal studies have consistently reported that childhood maltreatment is 

linked developmentally to psychiatric disorders (Herrenkohl et al. 2013; MacMillan et al. 2013; 

Sugaya et al. 2012), and a meta-analysis further reported a causal relationship between non-sexual 
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childhood maltreatment and a range of mental disorders (Norman et al. 2012). It is unclear to what 

extent pubertal development, malnutrition, prenatal drug exposure and presence of current life 

stressors may have influenced the findings. The SES measure used is limited, as it does not provide 

information on parents’ income and education; however, youth often have difficulties in reporting 

this information (Currie et al. 1997). Although we recruited participants exposed to childhood 

physical abuse, it is unrealistic to separate physical abuse from typically co-occurring emotional 

abuse and neglect (Edwards et al. 2003; Trickett et al. 2011). 

 

In summary, using medication-naïve, drug-free, carefully assessed age-and-gender-matched 

groups of youth exposed to childhood abuse and psychiatric controls matched on psychiatric 

comorbidities, we found that childhood abuse is associated with widespread structural abnormalities 

in the OFC-limbic, cerebellar, parietal, temporal and sensory regions; which likely underlie the 

abnormal affective, motivational and cognitive functions typically observed in this population.  
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TABLE 1. Demographic Characteristics of 22 Young People Exposed to Childhood Abuse, 19 Psychiatric Controls and 27 Healthy Controls 

 Childhood 

Abuse 

 (N=22) 

 Psychiatric 

Controls 

(N= 19) 

 Healthy  

Controls  

(N=27) 

  

Analysis                       

 

 Mean SD  Mean SD  Mean SD  F(2, 65) p (corr.) Between Groups 

Age (years) 

[age range:13-20] 

17.6 2.31  16.8 2.59  17.5 1.63  0.80 ns - 

Socioeconomic status 2.77 0.69  2.94 0.66  3.22 0.75  2.53 ns - 

IQ 89.5 12.5  93.5 12.8  105.4 10.1  12.3 <0.001 CA, PC < HC 

Strengths and Difficulties 

Questionnaire: 
 

            

Emotional problems 4.68 2.72  4.89 2.98  1.92 1.61  10.7 <0.001 CA, PC > HC 

Conduct problems  4.36 1.99  2.21 2.20  1.68 1.60  12.4 <0.001 CA > PC, HC 

Hyperactivity  5.41 2.34  4.68 2.65  2.84 2.14  7.4 0.001 CA, PC > HC 

Peer problems  3.77 1.51  2.53 1.95  1.16 1.72  13.4 <0.001 CA > PC, HC 

Prosocial 7.36 1.76  8.58 1.78  8.08 1.41  2.87 ns - 

Total difficulties score 18.2 6.05  14.3 6.31  7.60 5.73  18.9 <0.001 CA, PC > HC 

Beck’s Depression Inventory   16.4 10.4  19.4 10.2  5.92 6.09  8.17 0.001 CA, PC > HC 

Childhood Trauma 

Questionnaire: 
 

            

Physical abuse  20.9 4.97  6.00 1.45  5.52 0.94  126.6 <0.001 CA > PC, HC 

Emotional abuse  17.9 4.30  7.00 1.86  6.04 1.13  98.1 <0.001 CA > PC, HC 

Sexual abuse  5.14 0.64  5.15 1.07  5.11 0.42  1.49 ns - 

Physical neglect  14.1 4.97  6.63 3.69  5.59 1.22  40.4 <0.001 CA > PC, HC 
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Emotional neglect  18.3 3.84  8.79 3.69  7.93 3.35  53.0 <0.001 CA > PC, HC 

Age at onset of (physical) 

abuse (years) 
 

4.00 2.76  - -  - -  - - - 

Duration of (physical) abuse 

(years) 
 

8.27 3.12  - -  - -  - - - 

 N %  N %  N %  χ2 p Between Groups 

Gender (Males) 15 68  9 47  21 77  4.67 ns CA vs HC (χ2 =0.57, ns); CA vs 

PC (χ2 =1.82, ns); HC vs PC (χ2 

=4.55, p=0.03) 

Ethnicity:          7.98 ns - 

Caucasian  10 45  3 16  13 48     

Afro-Caribbean  9 41  10 52  12 44     

Others (Asian/mixed) 3 14  6 32  2 8     

Psychiatric diagnosis:             

PTSD 13 59  12 63  -      

Depression 6 27  6 32  -      

Anxiety disorders 5 23  5 26  -      

Social phobia 1 5  1 5  -      

ADHD 1 5  1 5        

ODD/CD/Other disruptive 

behaviours  
 

5 23  4 21  -      

Abbreviations: CA=Childhood Abuse group; PC=Psychiatric Controls; HC=Healthy Controls; corr=Bonferroni corrected; ADHD=Attention Deficit Hyperactivity Disorder; 

PTSD=Post-Traumatic Stress Disorder; ODD=Oppositional Defiant Disorder; CD=Conduct Disorder; ns=non-significant  
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TABLE 2. Group Differences in the Cortical Measures of the Regions of Interest among 22 Young People Exposed to Childhood Abuse, 19 

Psychiatric Controls and 27 Healthy Controls 

 

 

Brain regions 

Childhood 

Abuse (N=22) 

 Psychiatric 

Controls (N=19) 

 Healthy Controls  

(N=27) 

 CA vs HC comparisons CA vs PC comparisons 

 Mean SD  Mean SD  Mean SD  F(1,44) p value  F(1,36) p value  

Cerebellum                

Left CV 54314 5158  56358 6854  57463 4992  4.68 0.03 CA<HC 0.24 ns - 

Right CV 55308 5038  55408 6799  58392 4318  5.33 0.02 CA<HC 1.27 ns - 

Insula                

Left CV 6959 812  6806 762  7025 708  0.53 ns - 0.11 ns - 

Left CT  3.13 0.13  3.19 0.17  3.23 0.14  6.06 0.02 CA<HC 0.28 ns - 

Left SA 2154 279  2083 223  2121 174  0.51 ns - 0.02 ns - 

Right CV 7101 922  7041 1020  7200 766  0.19 ns - 0.17 ns - 

Right CT 3.12 0.12  3.21 0.15  3.17 0.15  2.02 ns - 3.19 ns - 

Right SA 2221 280  2168 340  2228 234  0.29 ns - 0.36 ns - 

Lateral OFC                

Left CV 8556 998  8464 1099  8649 903  0.20 ns - 0.15 ns - 

Left CT 2.79 0.14  2.86 0.23  2.83 0.18  0.69 ns - 0.22 ns - 

Left SA 2624 319  2562 324  2636 287  0.35 ns - 0.86 ns - 

Right CV  8673 1222  8489 1117  8609 696  0.17 ns - 0.18 ns - 

Right CT 2.80 0.17  2.90 0.15  2.91 0.20  4.30 0.04 CA<HC 2.55 ns - 

Right SA 2747 358  2565 368  2624 252  1.74 ns - 1.79 ns - 

Abbreviations: CA=Childhood Abuse group; HC=Healthy Controls; PC=Psychiatric Controls; OFC=Orbitofrontal Cortex; CV=Cortical Volume (mm3); CT=Cortical Thickness (mm); 

SA=Surface Area (mm2); ns=non-significant; SD=Standard Deviation  
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TABLE 3. Regions with Significant Group Differences in Cortical Volume among 22 Young People Exposed to Childhood Abuse, 19 Psychiatric 

Controls and 27 Healthy Controls 

 

Comparison Brain regions Talairach 

Coordinates (x,y,z) 

 

Brodmann’s 

Area 

 

t value p value  Cluster size (mm3) 

CA < HC 

 

Left pericalcarine/precuneus/cuneus/ 

isthmus cingulate/lingual/superior 

parietal gyrus 

-19.0, -72.7, 10.4 18/17/19/29/7  -3.16a 0.003 3368.05 

CA < PC Left precuneus  -11.4, -64.2, 23.8 31 -2.36b 0.02 220.11 

CA > HC 

 

Left inferior temporal gyrus 

Left middle temporal/inferior parietal 

gyrus  

-48.1, -23.9, -23.4 

-48.0, -58.1, 5.5 

20 

21/39 

2.99a 

2.82a 

0.02 

0.03 

1301.33 

1231.88 

CA > PC Left middle temporal gyrus -54.5, -45.5, -1.5 21 2.38b 0.02 188.29 

Abbreviations: CA, Childhood Abuse group; HC, Healthy Controls; PC, Psychiatric Controls 

a The t value at which the test statistic is significant at p < 0.05, corrected for multiple comparisons with a Monte Carlo z-field simulation. 

b The t value at which the test statistic is significant at p < 0.05, uncorrected for multiple comparisons. 
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TABLE 4. Regions with Significant Group Differences in Cortical Thickness among 22 Young People Exposed to Childhood Abuse, 19 

Psychiatric Controls and 27 Healthy Controls 

 

Comparison  Brain regions Talairach 

Coordinates (x,y,z) 

 

Brodmann’s 

Area 

 

t value p value  Cluster size (mm) 

CA < HC 

 

Left precentral/postcentral/ 

paracentral  

-38.8, -13.0, 55.4   4/1/2/3 -3.05a 0.004 1029.25 

CA < PC Left precentral -28.6, -22.7, 60.9 4 -2.18b 0.04 207.44 

Abbreviations: CA=Childhood Abuse group; HC=Healthy Controls; PC=Psychiatric Controls 

a The t value at which the test statistic is significant at p < 0.05, corrected for multiple comparisons with a Monte Carlo z-field simulation. 

b The t value at which the test statistic is significant at p < 0.05, uncorrected for multiple comparisons. 
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Figure Legend 

Figure 1. Significant cortical volume cluster projected onto the inflated surface of the left hemisphere in (A) medial and (B) tilted anterior views. 

The significant cluster shows reduced cortical volume in the childhood abuse group compared with healthy controls, and survived cluster 

correction for multiple comparisons using Monte Carlo simulation, p < 0.05. 

Figure 2. Significant cortical volume clusters projected onto the inflated surface of the left hemisphere in lateral view. The significant clusters 

show increased cortical volume in the childhood abuse group compared with healthy controls, and survived cluster correction for multiple 

comparisons using Monte Carlo simulation, p < 0.05. 

Figure 3. Significant cortical thickness cluster projected onto the inflated surface of the left hemisphere in (A) lateral and (B) medial views. The 

significant cluster shows reduced cortical thickness in the childhood abuse group compared with healthy controls, and survived cluster correction 

for multiple comparisons using Monte Carlo simulation, p < 0.05. 
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Supplementary Materials 

 

MRI Image Acquisition 

Images were acquired using a 3-T GE Signa HDx system (General Electric, USA) at the 

Centre for Neuroimaging Sciences, King’s College London, UK. The body coil was used for radio 

frequency (RF) transmission and an eight-channel head coil for RF reception. High-resolution 

structural three-dimensional (3D) T1-weighted magnetization prepared rapid gradient-echo 

(MPRAGE) images were acquired. 166 contiguous slices, 1.2 mm thickness, a 256 x 256 x 166 

matrix and a repetition time/echo time of 7/2.8 ms (field of view 260 mm). Full brain and skull 

coverage was required for each subject and detailed quality control was carried out on all MR 

images according to previously published quality control criteria (Simmons et al. 2011). 

 

MRI Image Processing 

The surface-based analysis was carried out using FreeSurfer version 5.3.0 

(http://surfer.nmr.mgh.harvest.edu). Technical details of this well-validated and fully automated 

procedure have been extensively described elsewhere (Fischl et al 2002; Fischl et al 2004a; Fischl 

et al 2004b; Segonne et al. 2004). Briefly, the FreeSurfer pipeline performs cortical reconstruction 

and subcortical volumetric segmentation including the removal of non-brain tissue using a hybrid 

watershed/surface deformation procedure (Segonne et al. 2004). Automated Talairach (Talairach & 

Tournoux, 1988) transformation is performed, followed by segmentation of the subcortical white 

matter (WM) and deep grey matter (GM) volumetric structures (including hippocampus, amygdala, 

caudate, putamen, thalamus and ventricles) (Fischl et al. 2002; Fischl et al 2004a). This is followed 

by intensity normalization (Sled et al. 1998), tessellation of the GM-WM boundary and the GM- 

cerebrospinal fluid (CSF) boundary, automated topology correction (Fischl et al. 2001; Segonne et 

al. 2007) and surface deformation following intensity gradients to optimally place the GM/WM and 

GM/CSF borders at the location where the greatest shift in intensity defines the transition to the 

other tissue class (Fischl & Dale, 2000). On completion of the cortical models, individual cortical 

Other Supplementary Material Click here to download Other Supplementary Material CA
BrainStruct_Suppl_24uly2017.docx

http://surfer.nmr.mgh.harvest.edu/
http://www.editorialmanager.com/psm/download.aspx?id=113831&guid=db84e54c-8cd3-4922-986f-860b4af28fb5&scheme=1
http://www.editorialmanager.com/psm/download.aspx?id=113831&guid=db84e54c-8cd3-4922-986f-860b4af28fb5&scheme=1
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folding patterns are then registered to a spherical atlas based on folding patterns, to match cortical 

geometry across subjects (Fischl et al. 1999). Cortical thickness can be calculated at each location 

of the cortex as the distance between the white and pial surface (Fischl & Dale, 2000). The cerebral 

cortex is then parcellated into units based on gyral and sulcal structure allowing local curvature and 

surface area measures to be computed (Fischl et al. 2004b). Procedures for the measurement of 

cortical thickness have been validated against histological analysis (Rosas et al. 2002) and manual 

measurements (Salat et al. 2004). 
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Table S1. Group Differences in Hippocampus Volume among 22 Young People Exposed to Childhood Abuse, 19 Psychiatric Controls and 27 

Healthy Controls 

 

 

Childhood Abuse 

(N=22) 

 Psychiatric Controls 

(N=19) 

 Healthy Controls  

(N=27) 

 Analysis  

 Mean SD  Mean SD  Mean SD  F (2,62) p value Between Groups 

Left hippocampus volume (mm3) 4405 447  4286 435  4481 369  0.61 ns - 

Right hippocampus volume (mm3) 4293 465  4371 348  4520 354  0.46 ns - 

Abbreviations: SD=Standard Deviation; ns=non-significant 

 

Figure S1. Associations between (a) left lingual-pericalcarine-precuneus CV and CTQ total score, (b) left lingual-pericalcarine-precuneus CV and CTQ 

physical abuse score, (c) left pre-/postcentral CT and CTQ total score within the abuse group 

 

    (a)                                                                           (b)                                                                               (c)                                          
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Figure S2. Associations between (a) left lingual-pericalcarine-precuneus CV and SDQ total score (b) left lingual-pericalcarine-precuneus CV and SDQ 

peer problem score within the healthy control group  

 

 

(a)                                                                                                                 (b) 
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