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Optical communications, laser science, microscopy and metrology demand control of 

light polarization, also used as a probe of chemical and biological systems. Typically, 

certain polarization states of light are achieved using macroscopic anisotropic crystals. 

Metamaterials and metasurfaces have recently been developed to act as efficient passive 

polarization components of subwavelength dimensions1-4, however active polarization 

control has so far been mainly limited to microwave and THz wavelengths5-7. Here we 

demonstrate all-optical switching of visible light polarization, achieving up to 60o 

rotation of the polarization ellipse at picosecond timescales. This is accomplished both 

under control illumination and in a self-phase modulation regime, where the intensity of 

light affects its own polarization state, by exploiting the strong anisotropy and nonlinear 

response of a hyperbolic metamaterial3,8-10. The effects are general to any resonant, 

anisotropic, nonlinear nanoantennas and metasurfaces and suited to numerous photonic 

applications and material characterization techniques where ultrafast polarization 

shaping is required. 

 



Active control and fast switching of the polarization state of light is required in many 

free-space and integrated photonics applications. In macroscopic optics, active control and 

modulation of light polarization is achieved by magneto-optical, in the case of Faraday 

rotators, or electro-optical, as with Pockels cells, effects. The latter provides arguably fastest 

switching rate, on nanosecond time scales, and is extensively used for signal encoding in 

telecommunications and for the development of ultrafast lasers, but is hardly suitable for 

integrated photonics applications. Recently, several implementations of metamaterials and 

metasurfaces have been developed to act as passive polarization components of 

subwavelength thickness. These include helical1,11, split-ring-resonator-based2,11-14 and 

hyperbolic metamaterials3,15, as well as metasurfaces with chirality16 and subwavelength 

phase control4,17-19, but do not allow active control.  

Metamaterials for active polarization components have been developed in the 

radiofrequency, microwave and THz spectral ranges, allowing for ease of fabrication, and 

have used a variety of modulation methods. These have included electrically tuneable pin-

diode based elements20,21, thermally controlled micro-cross metamaterials based on active 

semiconductor-metal phase changes 22, and mechanically deformable chiral materials capable 

of handedness switching of THz waves23.  Coherent control of polarization has also been 

demonstrated in GHz metamaterials allowing enhancement or destruction of metamaterial 

polarization effects through counter-propagating beam interference5. In the THz spectral 

range, photo-induced conductivity changes in chiral metamaterials have been used to achieve 

up to 10o polarization rotation with millisecond recovery times6, while using optical 

excitation of wire-grid polarizers provided polarization modulation limited by a relaxation 

time of about 60 ps7. The ability to influence and tailor the polarization degree of freedom at 

THz switching rates has the potential to revolutionize many photonic applications and forge 

new techniques; for example, information on ultrafast chemical processes can be gained from 



time resolved polarimetry. This fast switching can be achieved in metamaterials by exploiting 

free-electron nonlinearities of plasmonic metals induced by optical excitation, already 

demonstrated for strong light transmission modulation9. The all-optical control of 

polarization, where the polarization of a signal light pulse is controlled with another light 

pulse, may allow vastly improved switching rates, much higher than commercially available 

products. 

Here, we use a strongly anisotropic nonlinear metamaterial based on a plasmonic gold 

nanorod array (Fig. 1), fabricated via self-assembly technique over large macroscopic areas, 

to demonstrate ultrafast all-optical switching of polarization of transmitted light: more than 

60o polarization rotation on sub-picosecond timescales, with switching rates of 0.3 THz 

calculated from the relaxation decay constant. Furthermore, intensity variations of the 

incident light can be encoded in its own polarization state upon transmission through the 

metamaterial. The effect is based on the different nonlinear phase changes experienced by the 

ordinary and extraordinary waves in the metamaterial and has a broadband nature with 

strongest polarization modulation near the effective plasma frequency of the metamaterial. 

The changes to the polarization state of light transmitted through the anisotropic 

metamaterial were induced by illumination with femtosecond control light pulses (Fig. 1a). 

The incident polarized light (Einc) generally changes its polarization state upon transmission 

(۳୲୶) through the anisotropic medium24. In the same way as conventional anisotropic 

materials, the nanorod metamaterial can be described by a permittivity tensor (See 

Supplementary Information) and supports ordinary (o-) waves, with electric field 

perpendicular to the nanorod axes, and extraordinary (e-) waves, with a component of the 

electric field along the nanorod axes, that experience generally different effective refractive 

indexes. In fact, one component of the permittivity tensor can be made to have an opposite 

sign to the others for wavelengths above the effective plasma frequency ߱୮ୣ୤୤ of the 



metamaterial, leading to strong anisotropic behaviour3 (Supplementary Fig. 1). In this so-

called hyperbolic regime, the metamaterial behaves as a transparent dielectric for light 

polarization normal to the principal axis and as a metal for light polarization along it25. This 

leads to extraordinarily high anisotropy not seen in nature, with Δn = 1.25-1.68 in a 

wavelength range 650-750 nm (Supplementary Fig. 1). Importantly, the e-wave has a 

resonance in transmission near the transition between the elliptic and the hyperbolic 

dispersion regimes. The following description of the effect would apply generally to any 

anisotropic material exhibiting a tunable resonance for one of the polarizations. 

Under control light illumination, hyperbolic metamaterials exhibit a strongly 

enhanced Kerr-type optical nonlinearity near ߱୮ୣ୤୤	9,10. This results in ultrafast light-induced 

variations of the ordinary (no) and extraordinary (ne) refractive indices, due to changes in the 

electron temperature in the gold nanorods (see Supplementary Information). This nonlinearity 

influences ordinary and extraordinary refractive indices differently, allowing the use of 

control light of adjustable intensity to modulate transmitted signal light from its initial ground 

state output polarization ۳୲୶ to a time-dependent excited state output polarization ۳୲୶ᇱ , which 

can be expressed via Jones vectors24 as   

۳୲୶ ൌ ൬
୧୬ୡܧ௢ݐ

௢

୧୬ୡܧ௘ݐ
௘ ൰ 	→ 	۳୲୶ᇱ ൌ ൬

௢ᇱݐ ୧୬ୡܧ
௢

୧୬ୡܧ௘ᇱݐ
௘ ൰                      (1) 

where ݐ௢  and ݐ௘  are the transmission coefficients of the o- and e-waves, which act on the 

transverse magnetic (TM) and transverse electric (TE) polarization components of incident 

light respectively. The optical nonlinearities of the material induce a change in the 

coefficients ݐ௢ → ௢ᇱݐ  and ݐ௘ → ௘ᇱݐ . The situation is particularly interesting near the e-wave 

transmission resonance, as recent works have demonstrated that abrupt phase flipping near 

resonances are more sensitive than traditional transmission amplitude changes26,27.  



Under control light excitation, the e-wave resonance experiences a redshift16, so that a 

wavelength range exists in which the phase of the transmission coefficient can be actively 

tuned between a ‘0-state’ and a ‘-state’ for the e-wave with little to no change in its 

amplitude, while keeping the same amplitude and phase for the o-wave (ݐ௢ᇱ ൎ ௘ᇱݐ ௢ andݐ ൎ

െݐ௘, see schematic in Figure 1c). In this case, the polarization of a transmitted wave is 

modified from a ground state output ሺܧ୲୶	
௢ , ୲୶ܧ

௘ ሻ, to an excited state output ሺܧ୲୶	
௢ , െܧ୲୶

௘ ሻ in the 

presence of control light illumination, i.e., “flipped” with respect to its e-component. This 

means that for transmitted linear polarizations with Jones vector (1,	േ1) and circular 

polarizations (1, േi), one can achieve complete switching to their respective orthogonal 

polarizations (1,	േ1)	→ (1,	∓1) and (1,േi) → (1,∓i) upon control light illumination. This 

requires phase changes, and is not possible to achieve by modulating the output intensity of 

the ordinary and extraordinary components only. In practice, transmission coefficients may 

deviate slightly from this idealized behavior, so linear and circular polarizations at the output 

will be elliptical upon excitation. Fig. 1d shows experimentally measured optical properties 

of the fabricated nanorod metamaterial. The measurements exhibit a sharp resonance for the 

extraordinary waves at a wavelength of 698 nm for the ground state of the metamaterial, 

which, on excitation, red shifts to 705 nm. Thus, this uniaxial nonlinear crystal can be used 

for polarization synthesis based on nonlinear phase changes of ordinary and extraordinary 

waves near the metamaterial’s effective plasma frequency. Note that the strong polarization 

change refers to different states of the output (transmitted) light, not to the polarization of 

input and output light. Near a broad resonance, output states have considerably lower 

amplitude than input states, as in the studied metamaterial, but increasing the sharpness of the 

resonance will allow the device to operate with both full phase shift and low insertion loss 

(the phase shift retrieved from the measurements is shown in Supplementary Fig. 2). 



Furthermore, the observed effect could also be utilized in reflection, removing loss 

constraints experienced in transmission. 

The transient transmission spectra (Fig. 2a), measured for different time delays Δݐ 

between a white light signal and a 585 nm control light femtosecond pulse, show negligible 

changes in optical density ΔܱܦሺΔݐሻ ൌ ሻݐሺΔܦܱ െ ݐሺΔܦܱ ൏ 0ሻ	for the ordinary wave in the 

spectral range of interest. Conversely, a strong red-shift, approximately 10 nm, of the 

transmission minimum of the extraordinary wave is observed near the effective plasma 

frequency, followed by a fast recovery with a 3.4 ps time constant (Fig. 2a and 

Supplementary Fig. 3). This red-shift of the e-wave resonance and the associated phase 

change described above, confirmed experimentally in Fig. 1d, lead to strong polarization 

changes of the transmitted signal light in the wavelength range near the effective plasma 

frequency. 

The dynamics of four different polarization components of the transmitted signal light 

were measured (Fig. 2b) for both TE and TM polarizations corresponding to the ordinary and 

extraordinary transmitted waves with Jones vectors (1,0) and (0,1), respectively, and both 

diagonal linear polarizations (1,1) and (1, −1). Importantly, at each measured wavelength, 

quarter and half waveplates are used to tune the incident light polarization such that the 

transmitted light polarization is close to diagonal (1, −1) in the ground state by minimizing 

the (1,1) component. Therefore, the (1, −1) polarization component is labelled as co-

polarized, and the (1,1) as cross-polarized. Under control light illumination, the transmitted 

intensity at a wavelength of 700 nm in the cross-polarized state increases three-fold (Fig. 2b).  

The effect is so dramatic that the cross- and co-polarized signals effectively swap intensity 

level upon control action. With careful optimization, high contrast on-off states can be 

achieved.  



The transmitted polarization ellipse can be directly retrieved from the measured 

intensity of the four different linear polarization components (see Supplementary 

Information). Experimental measurements and numerical simulations of the polarization 

ellipse changes are in good agreement (Fig. 3a). Under control illumination, strong 

modulations of the polarization components at 700 nm are associated to rotations of the 

polarization ellipse of over 60o (Figs. 3a,b,c). The polarization state then relaxes back to the 

ground state polarization. At the wavelengths to the red and to the blue of the effective 

plasma frequency, positive and negative rotation angles are observed, respectively. The 

experimental rotation angles agree with the expected values obtained from the simulations 

(Fig. 3c). The nonlinear effects not only modify the polarization ellipse orientation but also 

swap the handedness of the polarization of the transmitted light compared to the ground state 

in a given wavelength range (Fig. 3a and Supplementary Fig. 4). 

The angle of rotation of the transmitted polarization state can be further controlled at a 

given wavelength by altering the power of the control light (Figs. 4a,d). This is due to the 

smaller phase changes obtained for decreased control intensities. Lower control intensity 

results in a smaller red-shift of the e-wave resonance of a finite width, where a larger red-

shift is required to achieve a ߨ phase shift for the broad resonance. Note that, in theory, 

interference effects can be used to achieve a metamaterial transmission coefficient that 

crosses exactly zero, even for lossy constituent materials, associated with an instantaneous ߨ 

phase shift. In practice, imperfections and inhomogeneity will always result in a non-zero 

transmission at a resonance, associated with a finite bandwidth required for the phase shift.  

A more complex mechanism of self-induced nonlinear polarization changes of the 

transmitted light can also be observed. If the incident signal light is strong enough, the 

leading front of the pulse induces electron-temperature-dependent changes of the permittivity 

which in addition to a phase shift may lead to self-induced transparency or absorption10, 



influencing the polarization state of the transmitted pulse as a whole (Figs. 4b,e). This self-

action effect is relatively strong and produces a change in the orientation of the polarization 

ellipse of more than 60o. This opens a new degree of freedom for potential devices, where the 

polarization of light depends self-consistently on its intensity, and can be used for self-

modulation and power limiting functionalities if observed through a polarizer. It should be 

noted that while the low power polarization state was recoverable after each measurement 

presented in Fig. 4, no recovery was observed when intensities over a damage threshold of 80 

GW cm-2 were used. The working range of active polarization control can be tuned by 

designing a metamaterial with an effective plasma frequency in a required spectral range; to 

illustrate this, the self-action effect was also studied on a different sample, with ߱୮ୣ୤୤ situated 

around 590 nm exhibiting similar behavior to other samples, as expected, although with 

slightly weaker experimental polarization ellipse rotations of about 25o (Figs. 4c,f). 

In summary, we have shown that strong and ultrafast all-optical modulation of 

transmitted light polarization can be achieved in anisotropic nanorod metamaterials. This 

anisotropy was controlled with femtosecond light pulses leading to strong modulation of the 

intensity and a more than 60o rotation of the polarization state of a signal light pulse, 6 times 

larger than previous all-optical polarization control studies at THz wavelength6 and at order 

of magnitude improved switching time7. The intensity of the incident light was used to 

control its polarization state through a self-modulation effect upon transmission through the 

metamaterial. We associate the high strength and efficiency of the polarization modulation to 

(i) the strong nonlinear optical response of the metamaterial and (ii) the use of abrupt phase 

changes near the effective plasma frequency of the metamaterial. The common approach of 

using changes in output intensity caused by resonance shifts usually results in relatively small 

differential changes, here we instead exploit abrupt phase changes to control the polarization 

state of a signal beam, an effect that easily translates into an intensity modulation through the 



use of polarizing filters. This proposed ultrathin nonlinear device acts as a polarization switch 

at sub-picosecond speeds. Further studies into these effects and optimization could provide 

real promise in all-optical polarization control in integrated nanodevices at very high speeds. 

These nonlinear anisotropic metamaterials are fabricated using a scalable electrochemical 

approach over cm-size metamaterial chips and can be used in all possible photonic and laser 

science environments in the same way as conventional anisotropic and nonlinear crystals. 

Apart from ultrafast polarization modulation and coding, other applications based on the 

presented effect can be foreseen in high-resolution and single-molecule imaging; quantum 

information processing, where control and manipulation of the polarization states of light is 

extremely important, as well as sensing applications, where polarization adjustment and 

detection leads to improved refractive index sensitivities and possibly chiral molecule 

identification. 

 



 

Fig. 1. The principle of polarization synthesis with anisotropic metamaterial. (a) 

Schematics of polarized light interaction with nanorod metamaterial in a pump-probe 

configuration. The control light modifies the anisotropy of the metamaterial which is probed 

by a time-delayed signal light. Inset: schematic of the metamaterial with Cartesian reference 

frame. (b) SEM image of the sample surface. Inset tilted image of a typical nanorod sample 

with the alumina template removed and photograph of the full sample area. (c) Illustration of 

the polarization modulation mechanism: due to a nonlinearity-induced shift of the resonance, 

a π phase shift can be experienced by the transmitted extraordinary wave with the ordinary 

wave unaffected.  (d) Experimentally measured o- and e-wave transmission spectra for an 

angle of incidence  = 45o without (blue) and with (red) control light illumination. 

 



 

Fig. 2. Polarized transmission dynamics. (a) Transient spectra of changes in optical density 

(ΔOD) for extraordinary and ordinary waves through the metamaterial for an angle of 

incidence of  = 45o. The incident light polarization was optimized to minimize the cross-

polarized component at the output at 700 nm. Control light wavelength and peak power 

density are 585 nm and 16 GW cm-2, respectively. The dashed line indicates cross-sections 

plotted in (b). (b) Transient transmission dynamics at a wavelength of 700 nm for selected 

output polarization components which are used to reconstruct polarization ellipses in Fig. 3 

(cross-section indicated in (a)).  

 

 

 

 

 

 



 

Fig. 3. Dynamics of polarization state of transmitted light. (a) Upper-row: experimental 

time-dependent polarization state ellipses for the transmitted light. The time-delay between 

control and signal beams is color-coded. Control light parameters as in (a). The incident light 

polarization was optimized to minimize the cross-polarized component at each measured 

wavelength. Lower-row: simulated polarization state of the transmitted light without control 

light illumination Te = 300 K (ground state) and under control light illumination Te = 900 K 

(excited state). (b) The dependence of the induced rotation of the polarization ellipse on time 

after the excitation. (c) Spectral dependence of the maximum polarization rotation angle 

extracted from (a): (crosses) experiment and (dots) simulation.  

 

 



 

Fig. 4. Power dependence of polarization switching. (a) Polarization state dependence of 

the 700 nm signal light on the intensity of the 585 nm control light. (b, c) Dependence of the 

polarization of the transmitted light on the intensity of the incident light for a wavelength (b) 

700 nm for the metamaterial as in Fig. 2 with the e-wave resonance at 698 nm and (c) 600 nm 

for the metamaterial with e-wave resonance at 590 nm. (d-f) The intensity dependence of the 

polarization ellipse rotation angle from the ground state plotted from a-c, respectively. 

Intensity of the pulse is given by its peak power density. 

 

 

 

 



Data availability. All data supporting this research are provided in full in the results section 

and supplementary materials. The data that support the plots within this paper and other 

findings of this study are available from the corresponding author upon reasonable request. 
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