

King’s Research Portal

DOI:
10.1007/3-540-45023-8_14

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Ashri, R., Rahwan, I., & Luck, M. (2003). Architectures for negotiating agents. In V. Marik, J. Mueller, & M.
Pechoucek (Eds.), Multi-Agent Systems and Applications III: 3rd International Central and Eastern European
Conference on Multi-Agent Systems, CEEMAS 2003 Prague, Czech Republic, June 16–18, 2003 Proceedings
(Vol. 2691, pp. 136-146). (Lecture Notes in Computer Science; Vol. 2691). Springer Berlin Heidelberg.
https://doi.org/10.1007/3-540-45023-8_14

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 13. Jan. 2025

https://doi.org/10.1007/3-540-45023-8_14
https://kclpure.kcl.ac.uk/portal/en/publications/8faf4d2e-a900-446b-bdcf-70539b4b399a
https://doi.org/10.1007/3-540-45023-8_14

Architectures for negotiating agents

Ronald Ashri1, Iyad Rahwan2, and Michael Luck1

1 Dept of Electronics and Computer Science, Southampton University,
Southampton, UK

ra00r@ecs.soton.ac.uk
2 Department of Information Systems, University of Melbourne

Melbourne, Australia
i.rahwan@pgrad.unimelb.edu.au

Abstract.

1 Introduction

In multi-agent environments, agents often need to interact in order to achieve their ob-
jectives or improve their performance. One type of interaction that is gaining increasing
interest isnegotiation. We adopt the following definition of negotiation that reconciles
views proposed by [8] and [13], which we believe is a reasonable generalisation of both
the explicit and implicit definitions in the literature.

Negotiation is a form of interaction in which a group of agents, with conflict-
ing interests and a desire to cooperate, try to come to a mutually acceptable
agreement on the division of scarce resources.

Agents typically have conflicting interests when they have competing claims on
scarce resources, which means their claims cannot be simultaneously satisfied. The use
of the word “resources” here is to be taken in the general sense. Resources can be
commodities, services, time, etc. which are needed to achieve something.

To address this problem, a number of interaction and decision mechanisms have
been presented3 and a number of implemented systems emerged. There has been ex-
tensive work on implementing frameworks of negotiation based on auction mechanisms
as evident, for example, in the Trading Agent Competition (TAC) (cite). There is also
a wealth of systems that adopt heuristic-based bilateral offer exchange (e.g. [6, 7]). Re-
cently, argumentation-based approaches [9, 11, 1] have been gaining increasing interest.
However, there are very few implemented systems that cater for this more sophisticated
form of interaction. One of the reasons behind this is that many of these frameworks
involve complex systems of reasoning based on logical theories of argumentation, for
which there are yet many open research questions [12]. Another reason is that there
are no software engineering methodologies that structure the process of designing and
implementing such systems. This is why in most cases, these systems are implemented
in an ad hoc fashion.

3 For a more comprehensive comparison between different approaches to negotiation, the reader
can refer to [8].

The aim of this paper is to address the software engineering issues related to the
development of architectures for negotiating agents, ranging from simple “classical”
agents to more complex “argumentative” negotiators. More specifically, this paper ad-
vances the state of the art in automated negotiation in the following ways. First, it
presents a novel agent construction model that enables the description of a range of
agent architectures through a common set of concepts. Secondly, it uses this agent
construction model to describe the architectures of two generic classes of negotiating
agents:simple negotiatorsandargumentative negotiators. More specifically, the paper
demonstrates how a generic architecture for argumentative negotiators can be achieved
by extending the simple negotiator architecture and reusing its components, and shows
how this modularity is facilitated by the construction model.

The paper is organised as follows. We begin by presenting the agent construction
model in section 2. In section 3, we present a generic architecture for a basic negotiating
agent and explain how the construction model allow us to re-use it in developing a more
complex architecture for an agent performing argumentation-based negotiation.

2 Engineering Agent Architectures

2.1 Design approach

In this section, we present the design approach that we use in specifying architectures
for negotiating agents. The agent construction model should allow us to describe and
compare a range of alternative architectures through a set of common concepts. In order
to achieve this the construction model should be architecturally neutral. If the model
already proposed a certain generic type of architecture (e.g. one inspired by belief-
desire-intention) we would have totranslateany non-generic architecture into a generic
one. Such a translation, however, may lead to a loss of features that cannot be translated
from one architecture into the other. Through atruly neutral model we can view a range
of architectures based on a common understanding of agents and without losing in
expressive capabilities. Furthermore, the model should allow for modular construction
of agents. This is necessary both in order to meet general software engineering concerns
but also the only way to delineate clearly the different aspects of an architecture, as
we discuss below. Such a fine-grained approach leads to a better understanding of the
overall functioning of the agent as well as how it can be altered. Finally, we need to
be able to re-configure the resulting architectures easily, if possible even at run-time,
in order to deal with dynamic, complex dependencies that develop in heterogeneous
computing environments.

SMART The agent construction model departs fromSMART [5] (Structured, Mod-
ular Agent Relationships and Types), which provides us with the foundational agent
concepts that allow us to reason about different types of agents, and the relationships
between them, through a single point of view. We choseSMART because it provides us
with the appropriate agent concepts without restricting us to a specific agent architec-
ture. Furthermore,SMART has already been successfully used to describe some existing
agent architectures and systems [4, 3].

We avoid here a more complete presentation ofSMART and focus on just those
concepts that are used for the agent construction model. In essence,SMART provides
a compositional approach to the description of agents that is based on two primitive
concepts,attributesandactions. Formally, these primitives are specified as given sets
which means that we say nothing about how they might be represented for any particular
system. Attributes refer to describable features of the environment, while actions can
change the environment by adding or removing attributes.

Now, an agent is described by a set of attributes and a set ofcapabilities, were
capabilities are actions an agent can perform. An agent hasgoals, where goals are set
of attributes that represent desirable states of the environment for the agent. On this
basic concept of an agentSMART, adds the concept of anautonomous agentas an agent
that generates its own goals throughmotivations, which drive the generation of goals.
Motivations are can be preferences, desires, etc. of an autonomous agent that cause it to
produce goals and execute actions in an attempt to achieve those goals.

This approach to agent description fits well with our requirement for architecture
neutrality but does not sufficiently address our requirements for modularity and run-
time reconfiguration so it is enhanced through a decoupling of the different aspects of
an agent. This decoupling allows us to view agent from astructural, behaviouralor
descriptivepoint of view and as such improves the overall modularity of the resulting
architecture and enables powerful run-time reconfiguration mechanisms. In the next
section we elaborate on this refinements to the understanding of an agent.

Decoupling description, structure and behaviour In this subsection, we describe
how we extendSMART to provide a more flexible decoupling of agent aspects.SMART

allows systems to be specified based on an observer’s point of view, based on their
attributes and goals, as well as the actions they can perform. This description does not
show how agents are built or how they behave. In other words, the focus is on the
what and not thewhy or how. We call this a descriptive specification, since what it
essentially does is describe the agent without analysing its underlying structures that
sustain this description. Along with the descriptive specification we need to have the
ability to specify systems based on their structure, i.e. the individual components that
make up agents, as well as their behaviour. So we extendSMART with structural
specificationand behavioural specification.

The structural specification enables the identification of relevant building blocks and
how different sets of building blocks enable the instantiation of different agent types.
The behavioural specification of an agent addresses the process through which the agent
arrives at such decisions as what actions to perform. These views, along with the de-
scriptive specification, can provide a more complete picture of the system. The agent
construction model, described next, reflects these concepts by allowing direct access to
these different aspects of agents, based on a clear decoupling at the architectural level.

2.2 Agent construction model

The basic principles of the model are illustrated in Figure 1. Ashell acts as the con-
tainer in whichcomponentsare placed. It manages the sequence in which components

Fig. 1. Agent shell

execute and the flow of information between components. Control policies relating to
the permissions an agent has in a specific environment are defined within the shell in
order to make them independent of the agent architecture. Finally, attributes describing
the agent as a whole are defined as part of the shell.

Components encapsulate specific types of actions that an agent can perform and are
grouped into four categories.Sensors(illustrated as dotted line rectangles) receive infor-
mation from the environment,infostores(rounded corner rectangle) store information,
actuators(continuous line rectangle) perform actions that affect the environment and
controllers(accented rounding) are the main decision-making components. Controllers
analyse information and delegate actions to other components. The aim of dividing
components into these categories is that it enables us to abstract between high level de-
sign, providing an understanding of an architecture early, before specific mechanisms
for controllers, sensors or actuators have been defined. Each component is described
using two types of attributes.Stateless attributesrefer to persistent characteristics, such
as the kind of communication language the agent uses, whilesituation attributesrefer
to attributes describing the component’s current state (e.g. as the parties with whom the
agent is currently negotiating with).

Information flows throughlinks that the shell establishes between components.
Links are uni-directional, one-to-one relationships. The information that flows through
links between components is packaged withinstatements. One component acts as the
producer of a statement and the other as the consumer. Statements are typed, and al-
though currently just two types are defined,INFORM and EXECUTE, designers may
choose to define different ones depending on the application needs. Inform-type state-
ments are used when one component simply notifies another component about some-
thing; while execute-type statements are used when a component wants an action to be
performed from another component. All statements are divided into abodyandpred-
icates. The body carries the main information (e.g. an update from a sensor), while
the predicates carry additional information (e.g. the source of information or specific
conditions associated with the execution of the action).

The sequence in which components execute is defined as theexecution sequence
of the architecture. Execution of a component includes the processing of statements
received, the dispatch of statements and the performance of any other actions that are
called for. The execution sequence is an essential aspect of most agent architectures

and, by placing the responsibility of managing the sequence within the shell, we can
easily reconfigure it at any point during the agent’s operation.

An agent design begins with an empty shell. It can then be specialised by defin-
ing control policies in order for it to meet application requirements or the demands of
the environment within which it will operate. One could envisage implementations of
shells being provided by environment owners, which would ensure compatibility with
their environment while allowing the agent developer relative freedom in designing the
structure and behaviour of the agent within that shell. Consequently, shell-specific at-
tributes can be defined to form part of the description of the agent to the outside world.
The components can then be loaded into the shell, and link relationships, as well as an
execution sequence, can be defined. With the execution sequence in place, the opera-
tional cycle of the agent can begin. The agent lifecycle can be suspended or stopped
by stopping the execution sequence. This operational cycle can be modified by altering
the execution sequence, modifying relationships between components, or by applying
alternative control policies.

One of the main benefits of this approach, is that it is possible at any moment to
extract the three aspects of agent as described previously. The descriptive specification
can be obtained by aggregating the situation attributes and stateless attributes from each
component as well as the attributes contained at the shell level. The structural specifi-
cation is given by the components and the behavioural specification is given by the
execution sequence and the links between components.

3 Negotiating Agent Architectures

With the agent construction model in place we can now investigate the suitability of
our model for specifying flexible negotiating agent architectures. But before we start
describing negotiating agents, we discuss the main components of anegotiation frame-
work. In addition to the negotiating agents, a negotiation framework usually includes a
communication language and an interaction protocol. For example, a negotiation frame-
work based on a simple English Auction protocol would need a communication lan-
guage locution (or performative), saypropose(.), that can express bids. The protocol is
the set of rules that specify, at each stage of the interaction, what locutions can be made,
and by who. In addition, the framework needs a language for representing information
about the world, such as agents, agreements, arguments, and so on. This information
is used within the communication language locutions to form utterances. For exam-
ple, a bid might be presented aspropose(a, b, {toyota, $10K}), wherea andb are the
sending and receiving agents , and{toyota, $10K} is the specification of the proposal.
Finally, a negotiation framework usually includes various information stores needed to
keep track of various information during the interaction. This information may include
proposals made by different agents, concessions they have committed to [13], and so
on. Finally, the framework also needs a set of additional non-protocol rules. These may
include rules that identify the winner in a particular negotiation, or rules that specify
that agents cannot retract their previous proposals, and so on.

In this paper, we focus our attention on the construction of the agents within the
framework. So we do not address, for example, how protocols can be modularly speci-

fied (this has been investigated in [2] for example), or how the locutions can be verified.
We assume that developers have at their disposal definitions of the appropriate negotiat-
ing protocols, domain ontologies and communication languages, and instead deal with
the problem of framing such mechanisms within an appropriate agent architecture. Note
that we do not claim to have specified theonly way of describing negotiating agents.
Instead, we attempted to providea construction model that is generic enough to capture
a variety of negotiators.

3.1 Basic Negotiating Agent

We begin by presenting a generic model of abasic negotiating agent, illustrated in Fig-
ure 2. Basic negotiating agents include those participating in auctions or those engaged
in bilateral offer exchanges. The common aspect of these agents is that they engage in
interactions in which the primary type of information exchanged between agents are
proposals (i.e., potential agreements). We call thembasic in order to distinguish them
from agents that can engage in more sophisticated forms of negotiations which allows
the exchange of meta-information (or arguments). We discuss the latter form of nego-
tiators in the next subsection.

Fig. 2. Negotiating Agent Architecture

Descriptive SpecificationThe description of the negotiating agent is based on its
attributes, capabilities, goals and motivations. The goals of the agent, i.e. the desired ne-
gotiation outcomes, could be represented in theMental Attitudesinfostore, and would
refer to specific application domains. The architecture, however, does not require ex-
plicit representation of agent goals. We could have as an overarching goal the achieve-
ment of the environmental state which represents the best possible negotiation outcome
for the agent. This optimal state would be determined by the mechanisms used by the
Proposal EvaluatorandResponse Generatorcomponents, which will ultimately decide

when this environmental state has been reached. Here we see how access to an overar-
ching, architecturally neutral agent theory allows to reason about such things as goals
even though they find no explicit representation in the architecture.

Attributes of the agent are given by the types of information that is stored and inter-
preted inside components and flows between them through statements. These attributes
will include representations of beliefs about the opponents, the environment, mental
attitudes, negotiation protocols, and so on. Because all this information is explicitly
represented within components and stateless and state-dependent information is sepa-
rated we can easily extract it.

The capabilities of the agent are given by the aggregation of capabilities of each
component and can be understood, in our case, by referring to individual components
in the architecture diagram. This is possible because our architecture attempts to rep-
resent the main capabilities with separate components so as to make clear the various
functionalities required. However, alternative designs could (as in many implementa-
tions in the literature) combine a number of components (e.g. the representation of op-
ponents, mental attitudes and environment) within a single component. In such cases,
the descriptive specification would remain unaltered, since the capabilities exist, but the
structural specification would refer to different components that combine those capabil-
ities.

Finally, the motivations of the agent, if the agent were autonomous, form part of
the agents mental attitudes, and ultimately guide the agent’s decisions. How exactly
these are defined depends on the application. In many auction-based mechanisms, for
example, the motivations are represented in the form of a utility function.

Structural specification The structure of the agent refers to the components that
make up the architecture. Messages are received, checked and parsed through theIllo-
cution Interpreter. TheProposals Historyinfostore keeps track of the various proposals
received. TheNegotiation Protocolsinfostore contains the rules relating to the negotia-
tion protocols. By separating the rules dictating the protocol, from the reasoning about
the protocol we can more easily extend the agent to handle different protocols. TheOp-
ponent Modelinfostore keeps track of opponents models, while theEnvironment Model
keeps information about the environment within which the agent is situated. Informa-
tion such as the agent’s preferences in stored in theMental Attitudesinfostore. Deci-
sions are taken by three controllers that, abstractly, support the different negotiation
stages. TheProtocol Reasonerchecks whether the proposal received by the opponent
is a valid response based on the negotiation protocol. TheProposal Evaluatorevaluates
the proposal and theResponse Generatorgenerates an appropriate response based on
this evaluation. Finally, theLocution Generatorpackages responses in the appropriate
message format and handles outgoing communication.

Behavioural SpecificationThe behaviour of the agent is largely dictated by the
flow of information through the architecture. It begins by message interpretation and
storage inProposals History. The current proposal and information of the history of
proposals is send to theProtocol Reasoner, which uses rules in theNegotiation Proto-
cols infostore to check the validity of the proposal. If it is valid it is forwarded to the
Proposal Evaluator, which retrieves information about the opponent from theOpponent
Model infostore. This controller uses this information along with information from the

Mental Attitudes, Environment ModelandProposal Historyto evaluate the proposal.
As a result of the evaluation, the evaluation is send to theResponse Generator, and
the opponent model may be updated. This controller also uses information from the
now updated opponent model, the mental attitudes and environment model in order to
generate a response. It also takes into account the negotiation protocol rules in order to
generate the appropriate response. The response is packaged in the appropriate format
by theLocution Generatorbefore it is sent to the opponent.

3.2 Argumentative Negotiating Agent

In this section, we reuse the architecture of the basic negotiating agent in order to pro-
vide a generic description of agents capable of conducting argumentation-based nego-
tiation (ABN). An argumentative negotiator shares many components with the basic
negotiator. For example, it also needs to be able to evaluate proposals, generate pro-
posals and so on. What makes argumentative agents different is that they can exchange
meta-information (or arguments) in addition to the simple proposal, acceptance, and
rejection utterances. These arguments can potentially allow agents to (i) justify its ne-
gotiation stance; or (ii) influence the counterparty’s negotiation stance [9]. This can
potentially lead to (i) better chance of reaching agreement; and/or (ii) higher-quality
agreements. In ABN, influencing the counterparty’s negotiation stance takes place as a
result of providing it with new information, which may influence its mental attitudes
(e.g., its beliefs, desires, intentions, goals, preferences, and so on). This can potentially
entice (or force) the agent to accept a particular proposal, or concede on a difficult issue.
Arguments can range from threats and promises (e.g. cite Sierra) to logical discussion
of the agent’s beliefs (e.g. [11]) or underlying interests (cite Rahwan).

In order to facilitate ABN, the logical and communication language usually needs
to be capable of expressing a wider range of concepts. For example, the proposal might
instead by represented aspropose(a, b, P, A) wherea andb are agents,P is a proposal,
andA is a supporting argument denoting why the recipient should accept that proposal.
ABN frameworks may also allow agents to explicitly request information from one
another. This may be done, for example, by posing direct questions about agent’s pref-
erences or beliefs, or be challenging certain assumptions the agent adopts. Since in this
paper we are more interested in the abstract structures within the agents, we shall not
discuss these issues in more detail. In order to be capable of engaging in ABN, an agent
needs the following additional capabilities:

1. Argument Evaluation: This component encompasses the ability of the agent to as-
sess an argument presented by another, which may cause updates to its mental state.
This is the fundamental component that allows negotiators’ positions to change.

2. Argument Generation: This component allows the agent to generate possible ar-
guments, either to support a proposal, or as an individual piece of meta-information.
The locution generated may also be a question to present to the opponent.

3. Argument Selection:Sometimes, there might be a number of possible arguments
to present. For example, an agent might be able to either make a promise or a
threat to its opponent. A separate component is needed to allow the agent to choose
the more preferred argument. Selection might be based on some analysis of the
expected influence of the argument, or on the commitments it ties the utterer to.

Fig. 3. Argumentation-based negotiation agent Architecture

Figure 3 shows the specification of an argumentative agent using our construction
model. The figure shows how all components from the basic negotiating agent have
been used, and complemented by the additional capabilities needed for ABN. We point
out that the diagram has been simplified for clarity (e.g. a bidirectional link stand for
a pair of unidirectional links). Furthermore, the link fromNegotiation Protocolto Re-
sponse GeneratorandArgument Generatorhas been omitted although it is, of course,
necessary. Below we analyse how the descriptive and behavioural specification are af-
fected, while with regards to the structural specification we simply point out that three
new components have been added that deal with ABN.

Descriptive SpecificationA crucial difference between the simple negotiation agent
and the ABN agent is that arguments from opponents can change the agents mental at-
titudes. As a result the agent’s goals or motivations may change based on the new infor-
mation obtained. As a result even this aspect of the descriptive specification is dynamic
and the ability to refer to this changing descriptive specification directly, at run-time,
by extracting the relevant attributes is crucial. The descriptive specification must also
include the new decision-making capabilities of the agent.

Behavioural SpecificationHere the flexibility provided by the agent construction
model is particularly evident. In order to deal with ABN agent we have essentially the
same behavior as before (i.e. the same links and information flows), simplyextended
by links to the new controllers and refined through changes to the execution sequence.
The opponent model, mental attitudes and environment model are now updated by the
evaluation of the argument received before the proposal is evaluated. The response is not
sent directly to the opponent but arguments are attached to the proposal by theArgument
GeneratorandArgument Selectorcomponents. Finally, both theResponse Generator

andArgument Generatoruse the negotiation rules in order to determine what type of
responses are possible.

4 Conclusions

Negotiation, in a variety of forms, will play an increasingly more important role in the
design of agent-based applications. In this paper we take the first steps towards placing
negotiation within the wider context of engineering agent-based software systems...

References

1. L. Amgoud, S. Parsons, and N. Maudet. Arguments, dialogue, and negotiation. In W. Horn,
editor,Proc. ECAI 2000, pages 338–342. IOS Press, 2000.

2. C. Bartolini, C. Preist, and N. R. Jennings. Architecting for reuse: A software framework for
automated negotiation. InProc. 3rd Int Workshop on Agent-Oriented Software Engineering,
pages 87–98, 2002.

3. M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A Formal Specification of dMARS.
In M. Singh, A. Rao, and M. Wooldridge, editors,Intelligent Agents IV: Proc. ATAL 1996,
volume 1365 ofLNAI, pages 155–176. Springer, 1996.

4. M. d’Inverno and M. Luck. Engineering AgentSpeak(L): A Formal Computational Model.
Journal of Logic and Computation, 8(3):233–260, 1998.

5. M. d’Inverno and M. Luck.Understanding Agent Systems. Springer-Verlag, 2001.
6. P. Faratin.Automated Service Negotiation Between Autonomous Computational Agents. PhD

thesis, University of London, Queen Mary and Westfield College, Dept. of Electronic Engi-
neering, 2000.

7. S. Fatima, M. Wooldridge, and N. R. Jennings. Multi-issue negotiation under time con-
straints. In C. Castelfranchi and L. Johnson, editors,Proc. AAMAS-2002, pages 143–150.
ACM Press, 2002.

8. N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C. Sierra, and M. Wooldridge. Auto-
mated negotiation: prospects, methods and challenges.Intt. Journal of Group Decision and
Negotiation, 10(2):199–215, 2001.

9. N. R. Jennings, S. Parsons, P. Noriega, and C. Sierra. On argumentation-based negotiation.
In Proc. of the Int. Workshop on Multi-Agent Systems, pages 1–7, Boston, USA, 1998.

10. R. Kowalczyk. On negotiation as a distributed fuzzy constraint satisfaction problem. In
Proc. 3rd Int. Symposium on Soft Computing for Industry, World Automation Congress,
pages 631–637, 2000.

11. S. Parsons, C. Sierra, and N. Jennings. Agents that reason and negotiate by arguing.Journal
of Logic and Computation, 8(3):261–292, 1998.

12. H. Prakken and G. Vreeswijk. Logics for defeasible argumentation. In D. Gabbay and
F. Guenthner, editors,Handbook of Philosophical Logic, volume 4, pages 219–318. Kluwer,
2nd edition, 2002.

13. D. N. Walton and E. C. W. Krabbe.Commitment in Dialogue: Basic Concepts of Interper-
sonal Reasoning. SUNY Press, Albany, NY, USA, 1995.

