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Abstract 

False positive findings in science are inevitable, but are they particularly common in 

psychology and psychiatry? The evidence that we review suggests that while not restricted 

to our field the problem is acute.  We describe the concept of researcher ‘degrees-of-

freedom’ to explain how many false-positive findings arise, and how the various strategies 

of registration, pre-specification, and reporting standards that are being adopted both 

reduce and make these visible. We review possible benefits and harms of proposed 

statistical solutions, from tougher requirements for significance, to Bayesian and machine 

learning approaches to analysis. Finally we consider the organisation and methods for 

replication and systematic review in psychology and psychiatry. 

  



3 
 

Introduction 

 

When regarded from the positivist perspective of the scientific method, psychology and 

neuroscience should be an accumulative, iterative, self-correcting endeavour. While 

mistakes are inevitable they will typically be identified by the onward march of the research 

process. However, like all human activity, psychology and neuroscience research is also a 

social process. It relies on many inter-personal and organisational processes and displays all 

the social phenomena we observe elsewhere, such as fashions, concern with status and 

reputation, group-identification, collective judgements, social norms, competitive and 

defensive actions (Edmonds et al., 2011). We are active participants in this complexity 

though we may sporadically rail against its norms and culture.  

While the importance attached to scientific rigour is undoubtedly more than lip-service, the 

needs of careers, funders, scientific institutions and commercial stakeholders have priorities 

in addition to or other than the generation of reliable and unbiased findings.  That published 

reports in psychology were over-represented by positive tests of hypotheses has long been 

known. Already in 1959 and again with colleagues in 1995 Sterling had  reported that almost 

all statistical hypotheses in contemporary psychology journals were significant (Sterling, 

1959, Sterling et al., 1995) and Fanelli (2010)  could not show an improvement in this 

century,  finding more than 90% of published hypotheses were described as positive  in 

spite of typical studies being insufficiently powered for such “success” (Bakker et al., 2012).  

 Pashler and Wagenmaker (2012) describe this implausible reality as a “crisis of confidence” 

and examples of published reports of studies of premonition having achieved statistical 

significance and survived peer review seemingly particularly damning  (Bem, 2011). The 

Open Science Foundations Reproducibility Project (https://osf.io/ezcuj/) attempted to 

provide a more objective assessment of the reliability of findings by attempting to replicate 

studies. Repeating almost 100 studies published in three high-ranking psychology journals, 

they found that less than half of the reported results could be replicated, the figure being 

somewhat higher for formal experimental studies than observational (Aarts et al., 2015). 

This and many other studies confirmed Ioannidis’ claim in his seminal paper (Ioannidis, 

2005) that more than half of claimed positive discoveries in medical and psychological 



4 
 

studies are false positives. Figure 1 explains Ioannidis’ reasoning behind his assumption, 

now strongly supported by empirical evidence, and why underpowered studies are a major 

problem for the replication crisis.  

However, false positive results from underpowered studies ought to be detected and self-

corrected by the “vigorous and uncompromising scepticism “ of the  scientific method 

(Sagan, 1995). However, self-correction isn’t always swift and it may need time and effort to 

uproot belief in false positive reports. Pickles (2009)  has described a common natural 

history for many “findings”.  It begins with a small study that finds a significant association 

and an editor persuaded of its interest.  Many small studies follow with the great majority 

failing to replicate the finding. Everyone knows that small studies have low power so the 

lack of replication comes as no surprise. Few are published but preference is given to those 

that do find a significant association, apparently confirming the interesting finding.  Often 

studies are of different design and non-significant results are explained by small conceptual 

differences in the design. Eventually, a large study fails to replicate what is now an 

apparently well-established finding, and because of the study’s size and the fact this failure 

is now seen as overturning a received wisdom, publication in a prominent journal follows.  

Such frequent diversions into cul-de-sacs, with research following these false trails, slows 

the real progress that we could be making.   With research funding in psychology and 

mental health being so disproportionately low (Luengo-Fernandez et al., 2015), researchers 

in these areas, in particular, cannot afford such diversions. Moreover, corrupting incentives 

persist or are increasing. We struggle with replication of simple main effects, so the high-

level of enthusiasm for stratified or personalized medicine in which effects are shown in 

some isolated sub-group serves to exacerbate the problem, and the expectation that 

researchers show “impact” encourages clinical dissemination, commercialisation and 

incorporation into health guidelines prior to proper corroboration.  

As the above suggests, we have moved from expressions of concern by a few lone 

voices, through a period of more widespread unease and some embarrassment, to a series 

of more objective assessments and ad hoc proposals and initiatives. However, the problem 

is many facetted, complicated in technical, sociological and economic terms, and insidious.  

To change the way we do science requires a form of political movement, so perhaps it is 

unsurprising therefore that we now have manifestos, for example the Manifesto for 
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Reproducible Science (Munafò et al., 2017) that promotes a set of these proposals. 

Interestingly, while arguing for their broad adoption by researchers, institutions, funders 

and journals, the authors make explicit that there is also the need for the iterative 

evaluation and improvement of such proposals.  As in any other area of policy, what may 

sound sensible could nonetheless have unintended and possibly negative consequences that 

will need evaluation. 

In this review, while we highlight a fuller understanding of the statistical and 

methodological issues and suggestions as to how to improve the unsatisfactory situation, 

we also underscore how statistics alone is not sufficient. Both as investigators and reviewers 

we need to reassess what we should be valuing, and how that influences what we do. Our 

review falls into two major parts. We begin by a description of researcher “degrees-of-

freedom”(Simmons et al., 2011), the recognised and unrecognised flexibility of the 

researcher to “chase significance”. From this a whole series of practices - both 

methodological and organizational - have been proposed to make this flexibility visible and 

then, where required, to curtail it. We discuss methodological solutions to the problem 

including machine learning methods and explain how many current applications can still 

mislead.  

Fraud, False Positives and Researcher degrees-of-freedom 

While there are cases of deliberate fraud, where data have been made-up or 

intentionally incorrect analysis presented, these remain fortunately relatively rare. 

Nonetheless a recent meta-analyses shows worryingly that about 2% of scientists admitted 

to having fabricated, falsified or modified data (Fanelli, 2009). But these represent the 

extreme end of a much larger problem where researchers may be turning a blind eye to 

what they know is not fully rigorous science or may be entirely unaware that what they 

have done results in misrepresentation.   

We tend to think about the choices available to a researcher as being concerned 

with the study design and the instruments and schedule to be used in the measurement 

protocol. However, once the data are collected, the researcher still has a vast number of 

choices to be made before a report of findings is finalized.  These choices imply alternatives 

and the extent to which the researcher can pick one or another, dependent upon how 
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appealing are the results of such choices, and are referred to as degrees of freedom.  

Perhaps the most familiar are those associated with having multiple risk variables and 

multiple outcomes. A single p-value is interpretable against the standard probability 

threshold of .05 if it is the only test being undertaken.  With multiple risks and multiple 

outcomes we face the problem of multiple comparisons, for which Bonferroni proposed a 

well-known correction, tightening the required threshold the more comparisons the 

researcher makes (Bender and Lange, 2001).  

However, before users of multiple-comparison adjustment methods feel too self-

righteous, we should consider some of the other researcher degrees of freedom (Simmons 

et al., 2011).  There may be multiple alternative definitions or constructions of even single 

risk factors or outcome disorders.  Over how long/what follow-up period should these be 

measured?  What transformations can be applied and what does the researcher do with 

potential outliers? What participants should be included or excluded?  What statistical test 

should be used? Will additional data be collected if a finding is not quite significant such that 

there is an implicit series of interim analyses? Will univariate pre-screening be performed to 

reduce the number of variables?  (Gelman and Loken, 2014) describe how these researcher 

degrees of freedom substantially increase the multiple testing problem but may not feel like 

fishing for significant results to the researcher. Exploiting these degrees-of-freedom can 

dramatically increase the actual false positive rate and rarely yields replicable results 

(Harrell, 2015, Simmons et al., 2011). Many researchers are not aware of the consequences 

of such subtle types of fishing and they need to be more aware of the negative impact of 

ignoring researcher’s degrees of freedom. Researchers should list their use of degrees of 

freedoms to determine the potential for bias e.g. by using a checklist (Wicherts et al., 2016) 

and if possible correct for them in their analyses (Harrell 2015).  However, given the current 

state of affairs, a paper from 72 researchers from around the world (Benjamin et al., 2017) 

have proposed the blunt approach of reducing the standard alpha level for claiming 

significance from the gold standard of 0.05 to 0.005, with consequent  implications for 

larger sample size to maintain power. 

The null-hypothesis testing framework of Fisher, Neyman and Pearson works well if 

correctly applied, especially in double blinded placebo controlled randomized trial with a 

single outcome. However, it becomes more problematic with increasing numbers of often 
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unplanned tests and choices, giving  p values that are too small, confidence intervals too 

narrow and the final model from model selection too complex (Freedman, 1983, Harrell, 

2015).  Some have proposed Bayesian hypothesis testing instead, using the Bayes’ factor -

the ratio of the evidence for the alternative compared to the null (Ly et al., 2016, Rouder et 

al., 2009). Johnson (2013)  showed that the significance level of 0.05 generally 

correspondents to a Bayes Factor of 5 or less, a range generally regarded as providing only 

modest evidence. Unsurprisingly therefore, given the use of a more demanding criterion, a 

Bayesian re-analysis of Bem’s extrasensory perception (ESP) study by Wagenmaker and 

colleagues found little evidence for ESP (Wagenmakers et al., 2011)  and Wetzels and 

colleagues (2011) reanalysis of 259 psychology articles found only “anecdotal evidence” for 

70% of the findings previously claimed as significant. Thus these arguments for a Bayesian 

approach as a solution appear to share much with the proposal for a stricter 0.005 criterion 

for nominal significance and may not escape the limitations of dichotomous thinking 

(Cumming, 2014). 

Fixing upon an even lower alpha level may create new problems and could prevent 

innovation in science. Many sound research studies would become infeasible where funding 

envelopes and participant availability is fixed. Small but well-designed studies are already 

not expected to produce significant results at an alpha level of 0.05 and yet can still provide 

important insight for future research (see e.g. Parmar et al. (2016) for a discussion in the 

context of clinical trials).  Making the practice of science more rigorous by reducing 

researcher degrees of freedom is therefore also necessary.  

Prespecification, Registration and Oversight 

An explicit consideration of these and similar questions have become routine for 

those working in pharmaceutical trials, where both the financial incentive and the potential 

harms to patients are large and obvious, and drug regulatory authorities and independent 

trialists have been formalizing procedures to defend against false positives.  

In trials, the intention to undertake a study is made public by registration (e.g. at 

www.isrctn.com or www.clinicaltrials.gov), the details of the intended design and measures 

published in the Trial Protocol, and sometimes too the Statistical Analysis Plan, that has 

been first approved by the independent Data Monitoring Committee as a fair and complete 

http://www.isrctn.com/
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specification of the intended analysis.  These documents reduce the degrees-of-freedom of 

the researcher, laying the foundation for effective disclosure and oversight, and for a direct 

comparison of the study report against the originally intended study (http://compare-

trials.org/).  For the field of psychology and psychiatry as a whole, registration also helps 

improve the visibility of the evidence base for otherwise unpublished negative findings  

(Munafo and Black, 2017).   

Any investigator first experiencing this process finds it challenging. Firstly, it soon 

becomes apparent just how many research questions had been previously poorly defined 

and how many decisions, some large and many small, had been left implicit, postponed or 

simply not made.  Secondly, each of these decisions corresponds to giving up a researcher 

degree-of-freedom, and many find this quite painful.  In particular, committing to one 

definition of risk, outcome and one analysis is seen as “risking” missing important positive 

findings. Of course those “missed” findings would have been much more likely to be a false 

positive than any positive finding from a pre-specified test of a well-founded research 

hypothesis.  

It should also be understood that pre-specification is not intended to bind 

investigators come what may. Departures from the prespecification can, and often should 

be made. But when, how and the reasons why should be explicit in the study publication 

(Simmons et al., 2011) so that HARKing (Hypotheses after the results are known (Kerr et al., 

1999), the practice of presenting results of posthoc or other explorative analyses as 

research hypotheses, can be prevented without denying the researcher the right to present 

explorative, novel findings. 

Reporting and Reviewing 

First published in 1996 the Consolidated Standards of Reporting Trials (CONSORT) 

has become a model for more than 350 reporting guidelines that now span laboratory 

measurement to epidemiology, and now helpfully collated by the Equator Network 

(www.equator-network.org).  Reporting guidelines ease the writing of a protocol for pre-

registrations and a report of a study drafted following these guidelines should allow an 

independent researcher to reproduce the published findings. The fact that such a report 
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would exceed the word length of traditional journals is, with the use of online supplements, 

now of little consequence. 

Pre-specification and reporting guidelines make the task of the reviewer much 

simpler – clarity of research question, appropriateness of design and the evidence of 

rigorous implementation should now be obvious.  However, it is important to recognize, 

especially for editors, that the combination of pre-specification and reporting standards that 

press for full disclosure leave the authors exposed to unconstructive criticism and 

constrained in their ability to respond, for example to requests for unplanned revised 

analysis. Publishing reviewer’s comments and responses may also be useful to encourage 

constructive criticism.  

Organization of Research 

Description and awareness of researcher’s degrees of freedom, while good practice, 

does not solve the problem of underpowered studies. University and college based 

undergraduate and postgraduate psychology is hugely popular, and the common training 

vehicle is the small scale structured experiment. Schaller (2016)  suggests that the tested 

hypotheses are often little more than personal opinion, rarely being based on formal 

deduction from well-founded theory (e.g. Festinger and Hutte, 1954) and often with no or 

an over-optimistic consideration of likely effect-size, both increasing the chances of a false 

positive. Small enough for completion by a single student or scientist rehearsing basic study 

design and with greater emphasis on methodology to achieve high internal validity, little 

priority is given to external validity and generalizability. A simple way to improve the 

situation was suggested by Daniel Kahneman (cited in Yong, 2012)  by turning 

undergraduate and graduate projects into replication studies. 

In some areas of research increased scale can offer advantages over and above a 

reduction in false positives, such as where industrial scale brings the opportunity for 

industrial processing with improvements in standardisation, quality control and economy.  

But for studies involving, say, neuro-imaging, face-to-face interviewing or coding of 

observational data, as yet there seem few such economies.  Thus, outside of genetics and a 

small number of epidemiological studies, truly large studies are rare in our field and more 

common has been the formation of consortia.  A frequently adopted model is one where 
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contributing groups agree a common set of core measures that will enable large sample 

analysis of a limited number of key research questions, while retaining scope for site specific 

independent extensions.  Such consortia have the advantages of being potentially sustained 

by a mixture of core and site-specific funding, and can also provide a framework for 

intellectual collaboration, training and exchange.  However, they can also incur significant 

costs with respect to much time-consuming discussion about process, agreements, 

standards, publication rights and so on.  For scientists used to the rapid pursuit of flights of 

scientific imagination this can be anathema.  However, incorporating a wider brief, including 

training and a sharing of scientific ideas, can make such organisations both productive and 

healthy environments for early career and experienced researchers alike. The BASIS (British 

Autism Sibling Infant Study) Consortium (http://www.basisnetwork.org) is one such which is 

more focussed on protocol sharing and making a core study sample available to a wider 

group of researchers who undertake largely independent research. 

Machine Learning and Cross-Validation 

Increasing study size or establishing consortium is not always feasible and current 

methodology needs to be optimized as well. Increasingly journals already encourage the use 

of new statistics by focusing on confidence intervals and effect sizes (Eich, 2014, Giofrè et 

al., 2017) or the use of Bayesian statistics (Dienes, 2011, Gallistel, 2015). 

An interesting alternative statistical approach to reducing  the problem of false 

positive results is assessing prediction accuracy of unseen cases as a measure of evidence is 

based on work by statisticians in the 1970s (Allen, 1974, Browne, 1975, Geisser, 1975, 

Harrell et al., 1996, Stone, 1974) and nowadays widely used in the field of machine learning. 

The contribution of machine learning to look at inference as a search through a space of 

possible hypotheses to identify one or more supported by the data (Hunter, 2017) is an 

important one, and unlike the frequentist and Bayesian approaches, it allows the inclusion 

of data-preprocessing steps, such as variable transformation, variable selection or 

imputation of missing data within the model selection process (Kuhn and Johnson, 2013) 

and can thus account for some of the problems of researcher’s degrees of freedom. The 

prediction capability of a model for independent, unseen data is different to “classical” 

inferential statistics where efficient unbiased estimation of parameters is the goal. This 
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means that the best predictive model may differ from the best explanatory model (Hastie et 

al., 2009, Hoerl and Kennard, 1970, Sober, 2006).  The first minimizes the prediction error of 

unseen data while the second minimizes prediction error of the training data set (Shmueli, 

2010, Shmueli and Koppius, 2011).  

Less well understood is that model selection and model assessment are two separate 

goals and cannot be assessed on the same unseen data set (Hastie et al., 2009, Varma and 

Simon, 2006) ). This is often ignored in the machine learning community (Cawley and Talbot, 

2010). If we want to perform model selection we would need to randomly divide the 

dataset into three parts: a training set to fit the models, a validation set to estimate 

prediction error, and a test set to assess the generalization error of the final chosen model 

(Hastie et al., 2009) This three-way split-sample approach may be feasible for big-data but is 

usually not possible in medical research and is anyway inefficient and potentially unreliable 

(Harrell, 2015, Steyerberg, 2009). Better alternatives are nested cross-validation or 

bootstrap validation (see supplementary procedures). Being more complex and 

computationally demanding these are often avoided, simpler two-split cross-validation 

being used instead with users often unaware that this provides incomplete correction  

(Harrell, 2015, Hastie et al., 2009, Stone, 1974).  Also, the fashion to maximize prediction by 

using Support Vector Machines or Deep Learning should also be questioned, as these offer 

poor interpretability as compared to regularized methods and simpler models may perform 

better in practical replication studies  (Hand, 2006). 

External Validation, Replication and Triangulation 

Cross-validation can deliver sound internal validation. For external validation to 

confirm the generalizability of findings replication with a new study sample of sufficient size 

to have good power for a plausible effect size is the gold standard. Journals need to accept 

replication studies and these should be linked to the original studies with the original paper. 

However, three highly influential journals refused to publish a (negative) replication of 

Bem’s ESP study because of their policy not publishing straight replication studies (Gelman 

and O'Rourke, 2014, Yong, 2012). Even 2017, only 3% of 1151 psychology journals welcome 

scientists to submit replication studies (Martin and Clarke, 2017). Pre-registration of 

replication studies with a commitment to publish them irrespective of the outcome would 
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help. Still better would be the encouragement of complementary studies to partner, 

sometimes in reciprocal agreements, enabling primary and replication studies to appear in 

the same or linked reports.  The Dutch cohort study Generation-R and the UK  Avon 

Longitudinal Study of Pregnancy and Childhood (ALSPAC),  have examined the consistency of 

the effects of parental depression and anxiety during pregnancy (Van Batenburg-Eddes et 

al., 2013), finding maternal symptoms increased attentional problems in both studies, but 

neither convincingly excluding the possibility of a confounder induced association.  The 

ability to nominate a respected study as a replication partner within a research funding 

proposal is an important strength, emphasizing the willingness of the primary study to put 

its findings under immediate independent testing.  Outside of genetic studies, however, 

such partnering remains rare. 

The term replication presupposes much about the equivalence of the primary and 

replication populations. For example, sometimes primary study samples for developing a 

classifier are selected as pure cases and non-cases, whereas the replication sample might 

include more every-day patients. Discrepancies can occur even when the causal process of 

interest is the same in the two samples, but the pattern of confounders is different.  It is 

therefore recommended to quantify the predictive accuracy of a prediction model in 

different samples from the same or similar target populations or domains (Debray et al., 

2015). This needs also to be considered for “classical” statistical modelling. External 

validation studies may range from temporal (e.g., sample from the same hospital or primary 

care practice only later in time), to geographical (e.g., sample from different hospital, 

region, or even country), to validations across different medical settings (e.g., from 

secondary to primary care setting or vice versa) or different target populations or domains 

(e.g., from adults to children) with increasingly different study samples or case mix between 

development and validation samples. But is it exact/direct replication that is being sought, 

where as far as possible everything is held identical to the original study, or is it 

reproducibility (Drummond, 2009) – the replication of the concept, where some aspects of 

the study are allowed or designed to be different?  The latter is more appealing to funders 

and editors in that it has novel elements, but the associated researcher degrees of freedom 

that comes with these must be made visible and controlled. Triangulation could be 

considered a special case of a reproducibility study, where the differences in the studies 
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relate to the differences in the likely impact or measurement of confounders rather than the 

core variables (Lawlor et al., 2016) 

 

Meta-Analysis/Systematic Review 

Systematic review, the exhaustive collation of research findings, their structured 

evaluation against indicators of quality, and their formal quantitative combination has 

become the accepted basis for recommendations from organisations such as NICE (National 

Institute for Clinical Excellence www.nice.org) charged with formulating evidence based 

recommendations as to good clinical practice for the National Health Service in England. The 

best method available to establish consensus in multiple studies addressing the same issue is 

meta-analysis (Cumming, 2014).  In therapeutic research systematic review has been led by 

the Cochrane collaboration that started in 1993. However at the end of 2014, of the more 

than five thousand Cochrane Reviews, only 2% (119) were within the areas of developmental, 

psychosocial and learning problems.  It appears that many reviews fail to identify sufficient 

studies of eligible quality to justify a formal review panel.  This cannot be considered 

satisfactory. 

  The small number of eligible studies also does not allow an adequate assessment of 

publication or other biases, such as selective analyses or outcome reporting towards 

significant studies (Ioannidis, 2008, Ioannidis and Karassa, 2010, Sterne et al., 2011). Based 

on their expected power, Tsilidis and colleagues (2013)  examined animal studies of 

neurological disorders finding that almost twice as many than expected showed a significant 

result. The discrepancy was larger in studies with small sample sizes. Even in randomized 

clinical trials for the efficacy of psychotherapies for major depressive disorder an excess of 

significant studies is evident (49 % expected versus 58% reported, Flint et al., 2015). 

Although researchers are nowadays fully aware of the file drawer problem it seems still to 

exists. Finally, results are also sensitive to study inclusion criteria e.g. meta-analyses of 

moderating effect of serotonin transporter genotype on the association between stressful 

life events and depression resulted in different conclusions based on different (but sensible) 

inclusion criteria (Taylor and Munafò, 2016). Psychiatric studies may be particular prone to 
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this problem because of the variety of outcomes measures of similar cognitive deficits and 

of types of control treatments or groups.  

Thus even results from Cochrane based meta-analyses need to be treated with care, 

and biases towards positive results assessed (Ioannidis and Trikalinos, 2007), perhaps using 

the online p value analyser (www.p-curve.com) of Simonsohn et al (2014) and used by 

Taylor and Munafo (2016). Schuit et al (2015) suggest a simple correction based on the 

number of studies, the number of significant results and the sample size of studies to keep 

the nominal alpha error at the pre-specified (i.e. 5% ) level without loss of power. The use of 

network meta-analyses (Caldwell, 2014, Caldwell et al., 2005) which allows the comparison 

of a network of related studies addressing a common condition or outcome should also be 

encouraged.  

We have already noted that there are instances where small scale studies remain 

essential (Parmar et al. (2016)). Small trials of good quality may also be desirable from the 

point of view of generalization, with results of meta-analyses involving several smaller 

independent studies potentially being more reliable than performing one large study as long 

as all studies are available for a meta-analysis (Cappelleri et al., 1996, Contopoulos-Ioannidis 

et al., 2005). 

Conclusions 

Statisticians are professional sceptics.  That more than half of published findings are 

not reproducible came as no surprise to us.  The environment in which scientists work, 

namely what we teach, the training and career opportunities, data and publication 

infrastructures, and individual and institutional incentives all require careful monitoring and, 

in many cases, revision.  We would encourage modernization of the curriculum for research 

methods to get away from presenting context-free statistical tests, to highlight instead the 

systematic and where possible pre-specified approaches to each step of the research 

process, and statistical modelling and analysis methods that more properly account for and 

describe uncertainty – the latter requiring further development work from statisticians. In 

spite of the claims of some, machine learning alone will not solve the problem, and badly 

done will make the problem worse. Well done, which is currently not that easy, it has a 

valuable place in our overall endeavour.  Statistical learning, the study of properties of 

http://www.p-curve.com/
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learning algorithm from the perspective of statistical theory can serve as a unifying of 

statistical modelling and machine learning (Hastie et al 2009).  Perhaps we might even need 

to change the way research excellence is defined, away from the number of high impact 

publications and high h-index towards a replication index which measures how often other 

scientists could replicate their results as Chamber and Sumner (2012) suggested in a 

newspaper article. 

Of course, the problem does not stop in the scientific community. Dumas-Mallet et 

al (2017) reported that newspapers also selectively cover mainly exciting positive findings of 

lifestyle risk factors studies, often triggered by exaggerated press releases from Universities 

(Sumner et al., 2014). Here psychiatry performed poorly with only ~25% of studies being 

supported by later meta-analyses. Even more worryingly, newspapers rarely inform the 

public about the subsequent null finding. The crisis of replication is thus is not only a 

problem of science but also of the media, as the autism and vaccination “debate” illustrated 

only too well.  
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Figure 1 and figure legend 

 

Figure 1: Why more than 50% of published research findings are false  

Ioannidis (2005)  claimed that more than 50% of published “significant” research findings in 

natural sciences are false. As others before him he explained that the p-value of a statistical 

test does not allow making probabilistic statements about the underlying validity of an 

effect. For that we need to make assumptions about the prior probability that an effect 

exists. The probability that a statistical test with a positive “significant” result is a true effect 

is the positive predicted value (PPV). The PPV depends on our prior probability, the power of 

a test (the probability of a test to detect a specified effect with a given sample size) and the 

alpha error. 

Assume we are assessing 1000 risk factors for a mental health problem and 10% of the risk 

factors are real (but we do not know which ones). Our statistical tests have got 80% power 

to get a significant result if a specific effect exists and we usually specify an alpha error level 

of 0.05 or 5%. We would detect 80% of our 100 risk factors and thus obtain 80 true positive 

test results. 20 risk factors would not be detected (false negative results). The remaining 
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900 factors are not risk factors but we would expect that 5% or 45 would be falsely declared 

as such (false positives). We would therefore obtain 80+45 = 125 positive results but only 80 

(64%) are true positives and about 1/3rd of the positive results are false positives, far more 

than our alpha error of 5% would suggest.  

However, the PPV also depends on the power (and therefore the sample size) and the alpha 

error. Meta-analyses have shown that typically studies in psychology and psychiatry often 

have little power: an estimate for animal studies with neurological diseases is 20 % power 

(Tsilidis et al., 2013) and 35% for psychological studies (Bakker et al., 2012) although low 

power is not restricted to these research domains (Dumas-Mallet et al., 2017a). The Figure 

shows the PPV (Y axis) against the probability that a hypothesis is true for different powered 

studies (25%, 35%, 50%, 80% and 90 %) at an alpha error of 5%. Even without publication 

bias towards positive results the PPV of positive statistical results is far less than we may 

have expected. It underlines the importance of conducting and presenting a power analyses 

where feasible.  
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