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Abstract 

 

People with autism spectrum disorder (ASD) have poor decision-making and 

temporal foresight. This may adversely impact on their everyday life, mental 

health and productivity. However, the neural substrates underlying poor 

choice behaviour in people with ASD, or its’ neurofunctional development 

from childhood to adulthood, are unknown. Despite evidence of atypical 

structural brain development in ASD, investigation of functional brain 

maturation in people with ASD is lacking. This cross-sectional developmental 

fMRI study investigated the neural substrates underlying performance on a 

temporal discounting (TD) task in 38 healthy (11-35 years old) male 

adolescents and adults with ASD and 40 age, sex, and IQ-matched typically-

developing healthy controls. Most importantly, we assessed group differences 

in the neurofunctional maturation of TD across childhood and adulthood. 

Males with ASD had significantly poorer task performance and significantly 

lower brain activation in typical regions that mediate TD for delayed choices, 

in predominantly right hemispheric regions of ventrolateral/dorsolateral 

prefrontal cortices, ventromedial prefrontal cortex, striato-limbic regions and 

cerebellum. Importantly, differential activation in ventromedial frontal cortex 

and cerebellum was associated with abnormal functional brain maturation; 

controls, in contrast to people with ASD, showed progressively increasing 

activation with increasing age in these regions; which furthermore was 

associated with performance measures and clinical ASD measures 

(stereotyped/restricted interests). 
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Findings provide first cross-sectional evidence that reduced activation of TD 

mediating brain regions in people with ASD during TD is associated with 

abnormal functional brain development in these regions between childhood 

and adulthood, and this is related to poor task performance and clinical 

measures of ASD.  

 

 

Abstract word count: 250 

Key words: autism, brain maturation, fronto-cerebellum, temporal 

discounting, fMRI 
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Introduction  

Autism spectrum disorder (ASD) is a neurodevelopmental disorder 

characterised by difficulties in reciprocal social communication and 

stereotyped, repetitive behaviours (International Classification of Diseases, 

Tenth Edition (ICD-10) (WHO. 1993.). People with ASD also report difficulties 

with, and avoidance of, decision making (Luke et al. 2012) which adversely 

impacts on their everyday life (Green et al. 2000) and may contribute towards 

the significant costs associated with ASD (Buescher et al. 2014), including 

unmanaged mental health difficulties (Murphy et al. 2011, Murphy et al. 2016, 

Russell et al. 2016). 

 

Our ability to make everyday decisions (e.g. financial planning, visiting the 

doctor) is of considerable economic, health and clinical importance (Bickel et 

al. 2015) and matures with age, becoming less impulsive and risk-prone with 

better planning and foresight in adulthood (Steinberg et al. 2009). Competent 

planning is crucial to decision making and involves inter-temporal 

bridging/temporal foresight; the ability to make future choices based on 

previous experience and to understand the future consequences of one’s 

actions. There is evidence that people with ASD have difficulty in planning 

(Geurts et al. 2004, Ozonoff et al. 2004, Sinzig et al. 2008, Bramham et al. 

2009), reward related decision making (Minassian et al. 2007), temporal 

processing (Szelag et al. 2004, Brenner et al. 2015) and temporal discounting 

(Chantiluke et al. 2014).  
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Temporal discounting refers to how much the subjective value of a reward is 

discounted (reduced) when reward delivery is delayed in time (Critchfield et 

al. 2001). Hence, temporal discounting tasks typically measure the choice 

between a small immediate or a larger delayed reward and require both 

inhibition of immediate reward and temporal foresight (forward thinking/future 

consideration of current choice) to choose the delayed reward (Rubia et al. 

2009, Noreika et al. 2013). Temporal foresight and the ability to wait for larger 

rewards is central to reward related decision making and is inversely 

associated with impulsivity (Richards et al. 1999).  

 

There is increasing evidence for the role of poor temporal discounting and 

decision making in impulsivity related disorders, including addictions and 

attention deficit hyperactivity disorder (Bickel et al. 2015). However, 

investigation of temporal discounting in people with ASD is limited. There is 

evidence that children with ASD have significantly steeper (worse) temporal 

discounting than typically developing children (Chantiluke et al. 2014) and that 

adults with ASD have difficulties in reward related decision making (Damiano 

et al. 2012), temporal foresight (Hanson et al. 2014) and future thinking (Lind 

et al. 2013), although no temporal discounting abnormalities have also been 

observed (Demurie et al. 2012).  

 

fMRI investigations of  temporal discounting in typically developing people 

have shown that immediate reward choices activate fronto-striato-limbic brain 

regions including ventromedial (vmPFC) (Hare et al. 2009) and lateral 

orbitofrontal cortex and ventral striatum (VS), while delayed reward choices 
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activate brain regions involved in temporal foresight/temporal bridging and 

future planning such as dorsolateral and ventrolateral prefrontal cortices 

(DLPFC, VLPFC), vmPFC (Hare et al. 2009), inferior parietal cortices, dorsal 

striatum (Wesley et al. 2014) and cerebellum (Blackwood et al. 2004, 

Christakou et al. 2011). There is increasing evidence of a single valuation 

system for both immediate and delayed rewards, including vmPFC, VS and 

posterior cingulate cortex (PCC) (Hare et al. 2009, Wiehler et al. 2015). 

 

In typical development, temporal foresight and temporal discounting matures 

from childhood to adulthood (Steinberg et al. 2009, Christakou et al. 2011), 

with decreased (better) rates of discounting with increasing age, which is 

underpinned by increased activation in vmPFC and its intercorrelation with 

lateral prefrontal regions and increasing top-down control over the VS 

(Christakou et al. 2011, Steinbeis et al. 2014). 

 

Despite neuropsychological evidence that people with ASD have temporal 

discounting difficulties, there has been limited fMRI investigation of temporal 

discounting in people with ASD. There is only one published paediatric fMRI 

temporal discounting study (Chantiluke et al. 2014); this found that children 

with ASD, relative to typically developing children, had steeper (worse) 

temporal discounting and a weaker relationship between temporal discounting 

and brain activation in bilateral inferior frontal cortices and superior temporal 

regions, right superior frontal cortex, pre and post central gyri, midbrain, 

supplementary motor area, insula and basal ganglia.  
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However, ASD is a lifelong neurodevelopmental disorder associated with 

significant neuropsychological difficulties in childhood (Sinzig et al. 2008) and 

adulthood (Bramham et al. 2009). ASD is now recognized as a major public 

health concern (UN 2007, WHO. 2013) that is remarkable in being of early 

childhood onset, yet persists across adulthood with high levels of associated 

difficulties (Simonoff et al. 2008). Furthermore, there is evidence of atypical 

and dynamic age-related changes in the brain structure of people with ASD in 

infancy (Carper et al. 2002, Hazlett et al. 2011), childhood and adulthood 

(Courchesne et al. 2011, Zielinski et al. 2014, Lainhart 2015, Lange et al. 

2015) that are associated with symptoms of ASD. However, there has been 

little investigation of functional brain maturation across children and adults 

with ASD. Hence, it is crucial to identify whether functional brain abnormalities 

occur across childhood and adulthood and, if so, whether this is associated 

with abnormal functional brain maturation in people with ASD as investigated 

during specific fMRI tasks of cognition.  

 

We have previously compared brain function between children and adults with 

and without ASD during a fMRI sustained attention task, providing first 

evidence that abnormal functional activation in fronto-striato-cerebellar 

sustained attention networks in people with ASD was associated with 

underlying abnormalities in their functional maturation (Murphy et al. 2014). 

However, to our knowledge, there are no other fMRI investigations of 

functional brain maturation in people with ASD across childhood and 

adulthood. 
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Hence, the aims of this cross-sectional developmental fMRI study were to 

investigate the neural substrates underlying performance on a temporal 

discounting task in a comparatively large group of healthy male adolescents 

and adults with ASD and age, sex, and IQ matched typically developing 

healthy controls and to assess whether these would be associated with 

differences in the neurofunctional maturation of TD between childhood and 

adulthood in people with ASD relative to typically developing controls.  

 

We hypothesized that people with ASD would, relative to typically developing 

participants, show steeper (poor) temporal discounting and reduced brain 

activation in temporal foresight-mediating regions of vmPFC, VLPFC, parietal 

lobe, striato-limbic and cerebellar areas and that these functional deficits 

would be associated with differential functional brain maturation in these 

regions from childhood to adulthood.  

 

Materials and methods  

Participants 

Seventy eight physically healthy, medication naïve, right handed (Oldfield 

1971), 11 - 35 year old males (thirty-eight with ASD, forty typically developing, 

all with an IQ > 70 participated. All participants with ASD (N = 38) and 20 

typically developing controls completed the Wechsler Abbreviated Scale 

of Intelligence (Wechsler 1999.) and 20 controls completed the Raven’s 

Performance Matrices).  Recruitment of people with ASD was supported by 

the Medical Research Council Autism Imaging Multicentre Study (MRC 

AIMS), the National Autistic Society, and the Maudsley Hospital. Controls 
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were recruited locally by advertisement and scored below clinical cut-off on 

the General Health Questionnaire (Goldberg et al. 1979), Strengths and 

Difficulties Questionnaire (SDQ) (Goodman et al. 2000) and revised Conners’ 

Parent Rating Scale (CPRS-R) (Conners et al. 1998). Parents of children with 

ASD completed the SDQ (Goodman et al. 2000) and CPRS-R (Conners et al. 

1998) and of adults with ASD the Barkley Parent Report Current Behavior 

questionnaire (Barkley et al. 2005.).  Diagnosis of ASD was made by a 

Consultant Psychiatrist using ICD-10-research diagnostic criteria (ICD-10R) 

and confirmed using the Autism Diagnostic Interview–Revised (ADI-R) (Lord 

et al. 1994). The ADI-R (Lord et al. 1994) and the Autism Diagnostic 

Observation Schedule (ADOS) (Lord et al. 2000) were completed for all thirty 

eight participants with ASD; all thirty eight reached algorithm cut-offs for 

autism on all ADI-R (social, communication, restricted/stereotyped) and 

ADOS (communication, social) domains. Participants with ASD either fulfilled 

ICD-10R criteria for childhood autism (N = 10) or fulfilled these criteria but had 

no history of language delay and therefore were subtyped with Asperger’s 

syndrome (N = 28) (Table 1). 

 

All participants with ASD underwent a structured clinical assessment to 

exclude co-morbid medical disorders, major psychiatric disorders, and 

biochemical, haematologic or chromosomal abnormalities possibly affecting 

brain function. Exclusion criteria were comorbidity affecting brain development 

(e.g., epilepsy or psychosis), psychotropic medication (antipsychotics, 

stimulants, mood stabilizers, anti-depressants, benzodiazepines), substance 

dependence, history of head injury, genetic disorders associated with ASD 
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(e.g., fragile X or 22q11.2), or clinically detectable abnormal MRI brain 

findings. 

 

Thirty three participants (eighteen typically developing, fifteen with ASD) also 

participated in our paediatric TD study, where analysis was restricted to brain-

behavioural correlations (Chantiluke et al. 2014). 

 

The local Ethics Committee conferred ethical approval. Each participant gave 

written informed consent/assent (and where relevant, parents) and received 

£30 for their participation. 

 

(Please insert Table 1 about here) 

 

fMRI task: Temporal Discounting Task. 

The 12 minute task (Rubia et al. 2009, Christakou et al. 2011, Chantiluke et 

al. 2014) is an fMRI adaptation of the temporal discounting task (Richards et 

al. 1999) and measures how much reward is discounted by delay. Participants 

are required to respond to a visual stimulus with a right handed button press 

to indicate their choice of either a smaller variable amount of money (between 

£0 - £100) available immediately (immediate reward/left button/right index 

finger), or a larger, fixed amount (£100) available a week, month, or year later 

(delayed reward/right button/right middle finger). Delay choices are presented 

to the right (fixed/delayed reward) and left (adjusted/immediate reward) of the 

screen for 4 seconds, followed by a blank screen of at least 8 seconds 

(serving as the implicit baseline), depending on the participant’s reaction time 
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(inter-trial interval = 12 seconds). Choice types were presented on the same 

side of the screen to minimise the sensorimotor mapping load of the decision. 

Trials of the three different delays were randomly interspersed throughout the 

testing session (20 trials for each delay). The value of the immediate reward 

value is adjusted in an algorithm based on the participant’s previous choices 

(Richards et al. 1997), which is calculated separately for each of the three 

different delays, in order to narrow the range of values converging into an 

indifference value that is considered by each subject as equivalent to the fixed 

delayed reward for that delay. Hence, the algorithm adjusts the amount of the 

immediate reward offered based on the participant’s choices, so determining 

the lowest immediate reward tolerated instead of waiting for the larger 

delayed reward, and ensures equal numbers of immediate and delayed 

reward choices for each participant in each delay trial type. 

 

The choice of larger, delayed reward reflects the neural correlates of reward 

related decision making and temporal discounting and is our key interest. 

Therefore we focused on the contrast of choice of delayed reward versus 

immediate reward. 

 

Each participant practiced the task once in a mock scanner before scanning. 

The practice task consisted of 12 pseudo-randomised presentations of 

hypothetical choices between a small immediate amount and a fixed £100 

available after a week, month or year, so allowing each delay to be presented 

four times.   
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Performance measures 

 

To estimate the steepness of each participant’s temporal discounting, we first 

calculated the effective indifference (or switch) point between the immediate 

amount and the delayed £100 for each delay interval (day, month, year). This 

indifference point was calculated as the midpoint value between the lowest 

immediate reward selected and the next lowest immediate reward available 

(i.e. the value of immediate reward offered at which the participant began 

consistently to select the standard £100 delayed reward) (Richards et al. 

1999). The indifference point is equivalent to the individual's subjective value 

of £100 when it is available after each delay. 

 

Reward is typically discounted in a hyperbolic function that depends on 

amount, delay and a free impulsiveness indicator “k”. k is calculated by fitting 

a hyperbolic function to the indifference values for every delay; V = A/(1+kD), 

where V = subjective value of a reward of amount A, D= delay, and k is a 

constant characterizing the individual's discounting rate (Richards et al. 1999). 

Larger k values indicate steeper reward devaluation with increasing delay (i.e. 

greater temporal discounting) (Richards et al. 1999) and impulsivity. 

 

Whilst k can be used as the main dependent variable, area under the curve 

(AUC) analysis is calculated directly from observed indifference points 

(Myerson et al. 2001), providing a theoretically neutral account of temporal 

discounting more appropriate for investigations with quantitative, inferential 

statistics (Myerson et al. 2011) and in fMRI tasks with few delays. Therefore, 
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AUC was calculated as the main temporal discounting outcome variable. AUC 

is calculated as; (x2–x1)[(y1+y2)/2], where x2 and x1 represent successive 

delays and y1 and y2 the indifference point values associated with these 

delays. Smaller AUC values represent steeper temporal 

discounting/impulsiveness.  

 

fMRI image acquisition  

 

fMRI images were acquired at King's College London Centre for 

Neuroimaging Sciences, on a 3T General Electric Signa HDx Twinspeed 

(Milwaukee, WI) MRI scanner using a quadrature birdcage head coil. In each 

of 22 non-contiguous planes parallel to the anterior–posterior commissure, 

480 T2*-weighted MR images depicting BOLD (blood oxygen level 

dependent) contrast covering the whole brain were acquired with echo time 

(TE) = 30 ms, repetition time (TR) = 1.5s, flip angle = 60°, in-plane voxel size 

= 3.75 mm, slice thickness = 5.0 mm, slice skip = 0.5 mm. A whole-brain high 

resolution structural scan (inversion recovery gradient echo planar image) 

used for standard space normalization was also acquired in the inter-

commissural plane with TE = 40 ms, TR = 3 s, flip angle = 90°, number of 

slices: 43, slice thickness = 3.0 mm, slice skip = 0.3 mm, in-plane voxel size = 

1.875 mm, providing complete brain coverage. 

 

fMRI image analysis  
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fMRI data were analyzed using XBAM software (version 4), developed at 

King's College London, The Institute of Psychiatry, Psychology and 

Neuroscience.  XBAM uses a nonparametric permutation based strategy 

rather than normal theory based inference, in order to minimize assumptions 

and employs median, rather than mean-based statistics, to control for outlier 

effects (Brammer et al. 1997, Bullmore et al. 1999). Finally, its goodness of fit 

statistic (SSQ ratio) is computed by standardizing for individual differences in 

residual noise before embarking on a second level multi-subject testing using 

robust permutation-based methods. This allows a mixed effects approach to 

analysis, an approach that has been recommended following detailed analysis 

of the validity and impact of normal theory based inference in fMRI in a large 

number of subjects (Thirion et al. 2007).    

 

Description of fMRI preprocessing 

 

fMRI data were first processed to minimise motion related artifacts (Bullmore 

et al. 1999).  A 3D volume consisting of the average intensity at each voxel 

over the whole experiment was calculated and used as a template. The 3D 

image volume at each time point was then realigned to this template by 

computing the combination of rotations (around the x, y and z axes) and 

translations (in x, y and z) that maximised the correlation between the image 

intensities of the volume in question and the template (rigid body registration). 

Following realignment, data were then smoothed using a Gaussian filter 

(FWHM, 7.2 mm) to improve the signal to noise characteristics of the images. 

A FWHM of 7.2 mm was used because the voxel distributions are 3 mm. 7.2 
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mm thus approximates to a nearest neighbour Gaussian smoothing filter and 

so allows for the effects of a unit voxel displacement during normalization. 

 

Further data analysis includes slice timing correction and the residual effects 

of motion are regressed out from the time series (using the estimated motion 

parameters) before fitting a GLM. 

 

After preprocessing, a time-series analysis of individual subject activation was 

performed with a wavelet based fMRI data resampling method (Bullmore et al. 

1999). Using rigid body and affine transformations, individual statistical maps 

were then normalized to Talairach-standard space (Talairach et al. 1988.).  

 

Group level analysis 

Group activation maps were produced for the key experimental condition of 

delayed > immediate choice by calculating the median observed SSQ-ratio 

over all subjects at each voxel in standard space and testing them against the 

null distribution of median SSQ-ratios computed from the identically 

transformed wavelet re-sampled (permuted) data (Brammer et al. 1997). The 

voxel-level threshold was first set to p<0.05 to give maximum sensitivity and 

to avoid type II errors. Next, a cluster-mass threshold was computed from the 

distribution of cluster masses in the wavelet-permuted data, such that the final 

expected number of type I error clusters under the null hypothesis was <1 per 

whole brain (cluster level probability p<0.01). Cluster mass rather than a 

cluster extent threshold was used, to minimise discrimination against possible 

small, but strongly responding foci of activation (Bullmore et al. 1999). 
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A group brain activation map was then produced for the experimental 

condition of delayed > immediate choice by calculating the median observed 

SSQ-ratio over all subjects at each voxel in standard space and testing them 

against the null distribution of median SSQ-ratios computed from the 

identically transformed wavelet re-sampled (permuted) data (Brammer et al. 

1997). Hypothesis testing was carried out at the cluster level. A voxelwise test 

at p<0.05 was conducted to identify any voxels that might plausibly be 

activated, followed by a subsequent test at a cluster-level threshold of p<0.01 

to remove false positive clusters produced by the voxel-level test. Combined 

voxel/cluster tests with permutation testing allow for excellent type I error 

control (Bullmore et al. 1999). For the group activation analysis, less than one 

false positive activated three-dimensional cluster was expected at p<0.05 in 

voxel-level comparisons and at p<0.01 in cluster-level comparisons. 

 

Following group level analysis, a between-group comparison of brain 

activation was completed using an ANOVA analysis (Bullmore et al. 1999). In 

all analyses, voxel and cluster level statistical thresholds were set to obtain 

less than one false positive cluster per map. 

 

Group Differences In Correlations Between Whole-Brain Activation And 

Age In Areas Of Group Differences  

 

To investigate whether regions that differed between groups were also 

different in their functional maturation across age, we tested differential linear 
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Pearson product-moment correlation coefficients between age and brain 

activation in those regions that differed between groups, by applying a mask 

of the ANOVA group differences activation clusters. For this purpose, the 

Pearson product-moment correlation coefficient was first computed at 

each voxel in standard space between age data and signal change across all 

subjects in each group. Correlation coefficients were recalculated after 

randomly permuting the ages, but not the fMRI data. Multiply repeating the 

second step (1,000 times per voxel, then combining across all voxels) gives 

the distribution of correlation coefficients under the null hypothesis of no 

association between specific ages and specific BOLD effects. This null 

distribution can then be used to assess the probability of any particular 

correlation coefficient under the null hypothesis. The critical value of the 

correlation coefficient at any desired type I error level in the original 

(nonpermuted) data could be determined by reference to this distribution. 

Statistical analysis was extended to cluster level (Bullmore et al. 1999). 

 

To test whether group had differential effects on linear age correlations across 

the whole brain, group differences were examined in the correlation 

coefficients of brain activation with age. For each group independently, at 

each voxel, the Pearson correlation coefficient between subject age and fMRI 

response was computed. We then computed, at each voxel, the difference 

between these two Pearson correlation coefficients, representing the 

difference in correlation between the groups. To determine the 

significance of this difference, the appropriate null distribution was generated 

by randomly permuting subjects and ages between groups, thus scrambling 
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any group differences. The same process as above was repeated for each 

permutation; Pearson correlation coefficients were calculated for each 

scrambled group and their difference computed. The resulting values were 

combined across all voxels to produce a whole-brain null distribution of 

differences in correlation. Testing was then extended to cluster level, with the 

cluster probability under the null hypothesis chosen to set the level of 

expected type I error clusters at less than one. Less than one error cluster 

was observed (at p<0.05) for voxel and p<0.01 for cluster analyses). Areas 

where either group showed exclusive significant progressive or regressive 

changes are reported. 

 

To determine the direction of group differences in age correlations, post hoc 

analyses were conducted on the statistical measures of the BOLD response 

extracted for each subject in these regions, and age correlations were then 

performed for all clusters within each group. 

 

Results  

There were no significant group differences in age (t(76) = 1.75, p = n.s.) or 

IQ (t(76) = 1.29, p = n.s.) (Table 1).  

 

Performance 

There was a significant group effect for both temporal discounting variables; k 

(t(76) = -2.26, p = 0.02) and AUC (t(76) = 2.235, p = 0.02). k was smaller and 

AUC was larger in Controls relative to people with ASD, suggesting that 
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people with ASD discounted larger rewards more steeply with increasing time 

delay.  

 

Age effect on performance 

The rate of temporal discounting (measured by AUC) significantly decreased 

with age in both people with ASD (r = 0.519, p = 0.001) and Controls (r = 

0.366, p = 0.020), but there were no significant group differences in 

correlations (zobs = - 0.793).  

 

Movement 

We excluded 4 participants (1 typically developing control and 3 with 

ASD) because of excess motion. There were no significant group 

differences in largest, mean, minimum or median displacement of x,y,z 

movement parameters (t(76) = -1.955,p = > 0.06) (p largest displacement x 

movement parameter = 0.3, p largest displacement y movement 

parameter = 0.7, p largest displacement z movement parameter = 0.06). 

 

fMRI results  

Within group brain activations are shown in Figure 1A and 1B.  

 

Figure 1 Within Group Differences in the Temporal Discounting 

Task 

 
 
Horizontal sections showing brain activation within typically developing controls (N = 40) and 

within individuals with ASD (N = 38) across temporal discounting.  
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Please insert Fig 1 here 

 

 

Tailarach z-coordinates are indicated for slice distance (in mm) from the intercommissural 

line. The right hemisphere corresponds to the right side of the image. 

 

 

ANOVA group difference 

Controls, compared with individuals with ASD, showed increased activation 

during delayed versus immediate choices in predominantly right hemisphere 

regions in a large cluster comprising right VLPFC, superior temporal lobe, 

ventromedial OFC, reaching into right amygdala, right hippocampus, insula, 

nucleus accumbens, globus pallidus, putamen, thalamus, hypothalamus, 

bilateral parahippocampal gyrus, and brain stem; in right dorso-rostral MPFC 

and anterior cingulate cortex (ACC); in a cluster comprising right VLPFC and 

MPFC, pre- and post-central gyri, extending into insula/PCC; and in bilateral 

cerebellum reaching into right occipital lobe. Group differences in all regions 

were driven by controls activating these regions more to delayed choices, 

while people with ASD activated them more during immediate choices (Table 

2, Figure 2). 

 

Figure 2. Group Differences in the Temporal Discounting Task 
 
 
 
Horizontal fMRI Sections Showing Group Differences in Brain Activation Between Individuals 

With Autism Spectrum Disorder (ASD) (N=38) and Typically Developing Controls (N=40)1 
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Please insert Fig 2 here 

 

1In Figure 2, the sections show analysis-of-variance (ANOVA) group differences in the 

temporal discounting task during delayed choices. Activation clusters in orange indicate 

regions where the ASD group had significantly lower activation relative to the Control group. 

No areas showed higher activation in the ASD group relative to the comparison group. 

Talairach z coordinates are indicated for slice distance (in mm) from the intercommissural 

line. The right hemisphere corresponds to the right side of the image. 

 

 

Group differences in whole-brain correlations between brain 

activation and age 

 

The group difference analysis of correlations between age and brain 

activation (using group difference regions as a mask) showed that in two sub-

clusters within regions that differed between groups, controls showed 

progressively increased activation with increasing age for delayed versus 

immediate choices relative to people with ASD in vmPFC and right cerebellum 

(Table 3, Figure 3). In the cerebellum, both groups showed increased 

activation with age for the delayed – immediate contrast, but this age-

correlated activation was significantly larger for controls relative to 

people with ASD. In vmPFC, the difference in brain function maturation 

was due to the fact that, with increasing age, people with ASD showed 

greater activation in this region in immediate versus delayed choices, while 
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controls showed greater activation in this region for delayed–immediate 

choices. 

 

Figure 3. Group Differences in Whole-Brain Correlations Between 
Brain Activation and Age, using a mask of group differences 
 

Horizontal fMRI Sections Showing Group Differences in Whole-Brain Correlations Between 

Brain Activation and Age Between Individuals With Autism Spectrum Disorder (ASD) (N=38) 

and Typically Developing Controls (N=40)1 

 

Please insert Fig 3 here 

 

1In Figure 3, the sections show group differences in whole-brain correlations between brain 

activation and age during delayed choices. In order to investigate brain maturation and 

temporal discounting, we first extracted a 3D mask of group differences in brain activation 

(from our group analysis) and then used this mask to confine our investigation of brain 

correlations between activation and age to these areas of group differences in activation 

during TD. Activation clusters shown in orange are those where the control group showed 

progressively greater activation with increasing age relative to the ASD group, which showed 

no significant age correlations in these regions. Talairach z coordinates are indicated for slice 

distance (in mm) from the intercommissural line. The right hemisphere corresponds to the 

right side of the image. 

 

To investigate the possible impact of IQ on group differences in whole-

brain correlations between brain activation and age, the analysis was 

repeated with IQ as a covariate and all findings remained. 

 

 

Brain Performance and Brain Behavior Correlations 
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To investigate whether regions that differed between groups in 

activation or in correlation between activation and age were associated 

with performance or behavior, we then extracted each subject’s average 

BOLD response from the clusters found to be different between groups, 

and correlated these with AUC for each group and, in people with ASD, 

with ADOS and ADI-R scores. 

 

In typically developing controls, no correlations between performance 

and brain activation, or brain activation and age, survived correction for 

multiple comparisons. 

  

In people with ASD, following correction for multiple comparisons, AUC was 

significantly positively correlated with the cluster of reduced activation in 

delayed choice in bilateral cerebellum/occipital lobe (r = .48, p = 0.002). 

ADOS/stereotyped scores correlated significantly negatively with activation in 

bilateral cerebellum/occipital lobe (r = -.53, p = .001) and with the abnormal 

age-correlated right cerebellum cluster with reduced functional maturation (r = 

-.42, p = .009).   

 

However, AUC was significantly negatively correlated with reduced activation 

in the right vmPFC/ACC cluster (r = -.5, p = .001), reduced functional 

maturation of vmPFC (r  = -.527, p = .001) and with reduced activation in the 

right VLPFC/STL/limbic/striatal cluster (r = -.535, p = 0.001). This suggests 

that the less people with ASD activated these regions during delayed 
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choices, and the more they activated them during immediate choices, 

the better their performance. Furthermore, the more these activations 

were age correlated during immediate choices, the better their 

performance. Furthermore, ADI-R restricted/repetitive scores correlated 

significantly positively with the vmPFC cluster that was significantly less age 

correlated in people with ASD relative to controls (r = .461, p = .004). 

 

To investigate the possible impact of group performance differences on both 

analyses (group differences in brain activation and group differences in 

whole-brain correlations between brain activation and age), we covaried 

each analysis with the key performance measure (AUC) and all findings 

remained. 

 

Discussion  

 

Individuals with ASD showed significantly steeper (worse) temporal 

discounting than typically developing participants. Furthermore, they showed, 

relative to controls, decreased activation to delayed choices in typical 

temporal discounting mediating brain regions, including predominantly right 

hemispheric regions of VLPFC, DLPFC, vmPFC, striato-limbic regions and 

cerebellum. Crucially, abnormal activation in vmPFC and right cerebellum was 

associated with abnormal functional brain maturation; with increasing age, 

controls, relative to people with ASD, showed increasing activation in these 

regions. Furthermore, abnormal activation and functional maturation in 

cerebellum and vmPFC was associated with worse temporal discounting and 
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clinical symptoms in people with ASD. Overall, findings provide first cross-

sectional evidence that functional abnormalities in individuals with ASD during 

temporal discounting tasks may be associated with differential neurofunctional 

maturation of these regions from adolescence to adulthood. 

 

The finding that people with ASD had significantly steeper (worse) temporal 

discounting, extends our pediatric findings (Chantiluke et al. 2014), but 

contrasts with other negative results (Demurie et al. 2012). However, 

methodological differences (for example; age, diagnosis, exclusion criteria, 

duration of temporal delay) could explain contrasting findings.  

 

Typically developing adolescents and adults showed increased activation 

relative to people with ASD during delayed choice in typical temporal 

discounting regions of vmPFC, VLPFC, DLPFC, limbic regions, striatum, and 

cerebellum (Ballard et al. 2009, Rubia et al. 2009, Wesley et al. 2014). This 

extends recent evidence of abnormal brain behaviour associations in fronto-

cerebellar regions during the same task in ASD children (Chantiluke et al. 

2014). Furthermore, the novelty of this study is that some regions that were 

underactivated during temporal discounting in people with ASD were also 

differentially age-correlated. Thus activation in vmPFC and right cerebellum 

was significantly more age correlated in controls than in people with ASD, 

suggesting that reduced activation in these regions is associated with 

diminished functional maturation.  If this finding is supported by subsequent 

longitudinal studies it suggests that abnormal brain function/behavior itself is 
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associated with subsequent ‘downstream’ maldevelopment of crucial brain 

systems. 

 

The group differences in brain activation and functional brain 

maturation survived the covariate analysis with performance (AUC). 

Although several of these activation differences were related to 

temporal discounting performance in people with ASD, the covariate 

analysis suggests that performance differences did not entirely account 

for the brain activation differences, but that these were dependent on 

diagnostic group differences. 

 

The components of the PFC-striatal-limbic-cerebellar network are intrinsically 

linked to reward related temporal decision making and its processing stages 

of valuation, choice/conflict-monitoring and consideration of future 

outcomes/prospection (Peters et al. 2011). The dmPFC and PCC are central 

to reward-related decision making (Ballard et al. 2009, Wesley et al. 2014), 

the VS and vmPFC (and their extensive connections to amygdala and 

hippocampus) are strongly implicated in reward valuation (Haber et al. 2010, 

Peters et al. 2010, Peters et al. 2011) and prospection (Schacter et al. 2007) 

and the VLPFC, insula and cerebellum are vital in timing and temporal 

foresight (Wiener et al. 2010, Christakou et al. 2011). The amygdala is central 

to decision making and valuation (Peters et al. 2011) and poor decision 

making is associated with right amygdala damage (Gupta et al. 2011). The 

ACC is implicated in choice (Pochon et al. 2008) and the nucleus accumbens 

evaluates financial risk (Knutson et al. 2008). Overall, therefore, our findings 
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support increasing evidence of hypoactivation of these areas in people with 

ASD during other monetary reward related tasks, including vmPFC, basal 

ganglia, striatum (Kohls et al. 2014) and nucleus accumbens (Dichter et al. 

2012). 

 

Furthermore, these findings are in line with our recent sustained attention 

developmental fMRI study, where we found that abnormal functional 

activation was associated with abnormalities in the functional brain maturation 

of fronto-striatal cerebellar sustained attention networks in children and adults 

with ASD (Murphy et al. 2014). This fMRI study adds to evidence of complex, 

dynamic, age-specific neuroanatomical changes in the brain structure of 

people with ASD from childhood to adulthood (Amaral et al. 2008, Murphy et 

al. 2012, Jou et al. 2013, Lainhart 2015), including fronto-cerebellar regions 

(Courchesne et al. 2011, Zielinski et al. 2014).  

 

Moreover, functional activation and functional maturation deficits in 

cerebellum in people with ASD were significantly correlated with both 

temporal discounting and ADOS/stereotyped scores. There is increasing 

recognition of the cerebellum’s potentially crucial role in ASD beyond motor 

anomalies, to other difficulties, including planning, social and repetitive 

behaviours (Rojas et al. 2006, Catani et al. 2008, Mostofsky et al. 2009, 

D'Mello et al. 2015). It has been suggested that time sensitive disruption in 

cerebellar connections may disturb maturation of distant fronto-cerebellar 

brain circuits and contribute to the behavioural difficulties of people with ASD, 

including abnormal response to reward and timing (Wang et al. 2014) and that 
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future research should consider timing as a biomarker for cerebellar 

dysfunction in individuals with ASD and developing cerebellar focused 

treatments (Fatemi et al. 2012). Our finding of a negative correlation between 

ADOS/stereotyped scores with abnormal cerebellar activation in people with 

ASD supports evidence of associations between repetitive behavior and 

fronto-striato-cerebellar abnormalities in individuals with ASD (Pierce et al. 

2001, Rojas et al. 2006, Cheung et al. 2009, Langen et al. 2014, D'Mello et al. 

2015).  

 

Strikingly, people with ASD activated vmPFC, ACC and right VLPFC, STL, 

limbic, striatal regions more for immediate choices while controls activated 

them for delayed choices. Furthermore, increased activation in these regions 

for immediate choices was associated with better temporal discounting 

performance and more severe symptoms of ASD. The vmPFC, ACC, VLPFC, 

limbic, striatal regions are vital temporal discounting mediating brain regions 

(Peters et al. 2011). In typical development from adolescence to adulthood 

(Christakou et al. 2011), progressively increased activation of the vmPFC and 

its top-down, presumably inhibitory, control over the VS has been associated 

with better temporal discounting. The findings suggest that people with ASD 

use the same brain regions but in different contrasts than controls, 

presumably reflecting a more immature alternative activation pattern, where 

the shift to the adult pattern of activating these regions more for delayed than 

immediate choices has not yet happened (Christakou et al. 2011). This 

hypothesis is supported by the finding that vmPFC activation for delayed 
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choices correlated with age in controls but not in people with ASD, where it 

correlated with age for immediate choices. 

 

Limitations  

This study was cross-sectional, specific to high functioning males with ASD, 

lacked pubertal developmental measures (Urosevic et al. 2014) and did not 

include a semi-structured clinical interview of possible psychiatric 

comorbidity such as the SCID-5-RV. Hence, our findings describe age 

related differences that may not generalise to others within the autism 

spectrum, including females (Craig et al. 2007, Wilson et al. 2016, Ecker et al. 

2017). However, study strengths include the relatively large sample of 

physically healthy, medication naive, clearly diagnosed males with ASD 

without confounding psychiatric diagnoses and matched controls, and the 25 

year age span from childhood to adulthood.  

 

Conclusion 

This is the first cross-sectional developmental fMRI investigation of brain 

activation and functional brain development in healthy adolescents and adults 

with ASD and typically developing people in temporal discounting. Findings 

show that individuals with ASD have differential activation of vmPFC, VLPFC, 

limbic, striatal and cerebellar regions during delayed choices in temporal 

discounting and that in vmPFC and cerebellar regions this is associated with 

abnormal functional brain development between childhood and adulthood and 

with clinical ASD measures of the behavioural phenotype 

(stereotyped/restricted interests) and temporal discounting. This may 
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contribute to difficulties with reward based decision making and forward 

thinking for individuals with ASD in childhood and adulthood. Longitudinal 

studies are required to identify the development of reward based decision 

making and timing networks from childhood to adulthood in ASD and enable 

development of novel age-appropriate treatments.  
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