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An axiomatization of di¤erence-form contest
success functions�

María Cubely Santiago Sanchez-Pagesz

July 31, 2016

Abstract

This paper presents an axiomatic characterization of di¤erence-
form contests, that is, contests where agents� probability of victory
depends on the di¤erence of their e¤ective e¤orts. This axiomatization
rests on a pairwise comparison axiom that relates the winning prob-
abilities of any pair of participants to their winning probabilities in a
contest between the two of them. The resulting di¤erence-form contest
success function overcomes some of the drawbacks of the widely-used
ratio-form. Contrary to other di¤erence-form functions, the family we
charaterize here can be scale invariant and have a positive elasticity
of augmentation. By clarifying the properties of this family of contest
success functions, this axiomatization can help researchers to �nd the
functional form better suited to their application of interest.
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1 Introduction

Despite the relevance and ubiquity of contests in the real world, contest the-
ory is often criticized for its great reliance on a particular construct: The
Contest Success Function (Hirshleifer, 1989). This function maps the e¤orts
made by contenders into their probability of attaining victory or, alterna-
tively, their share of the contested prize. Critics argue that the contest
success function (CSF henceforth) is too reduced form, too much of a black-
box. For instance, the widely-used Tullock CSF (Tullock, 1967; 1980), under
which success in the contest depends on relative e¤orts, might seem sensible.
But there is no obvious reason why this functional form should govern most
types of contests, from interstate wars to sport competitions.1 Because of
this, the predictions of contest theory might be seen as too reliant on very
speci�c functional forms rather than on sound economic principles.
This view is somewhat unfair for two reasons: Firstly, because there are

other areas of Economics where very speci�c functional forms are often as-
sumed. Secondly, because there is an active and fruitful strand of research
which in the last few years has provided foundations to the most frequently
employed CSFs.2 This literature has even addressed the econometric esti-
mation of these functions.3 As a result of these e¤orts, economists have now
at their disposal a growing menu of well-founded CSFs to choose from. The
next natural question is which type of CSF is better suited to each speci�c
application. A systematic study of the properties of the di¤erent families of
CSFs can contribute to that aim.
One family of contests assumes that winning probabilities depend on the

di¤erence of contenders�e¤orts. These di¤erence-form contests were intro-
duced by Hirshleifer (1989; 1991) and explored later by Baik (1998) and Che
and Gale (2000) for the case of two-player contests. Di¤erence-form CSFs
have been shown to emerge naturally in a number of settings. Gersbach
and Haller (2009) show that a linear di¤erence-form CSF is the result of
intra-household bargaining when partners must decide how much time to
devote to themselves or to their partner. Corchón and Dahm (2010) mi-
crofound a di¤erence-form CSF as the result of a game where contenders
are uncertain about the type of the contest designer; by interpreting the
CSF as a share, they also show that the di¤erence-form coincides with the
claim-egalitarian bargaining solution. Corchón and Dahm (2011) obtain the

1For excellent surveys of the contest literature see Corchon (2007) and Konrad (2009).
2These characterizations fall into four main categories: Axiomatic, stochastic,

optimally-designed and microfounded (Jia, Skaperdas and Vaidya, 2013).
3For a detailed discussion of the econometric issues involved in the estimation of CSFs

see Jia and Skaperdas (2011) and Jia et al. (2013).
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di¤erence-form as the result of a problem where the contest designer is un-
able to commit to a speci�c CSF once contenders have already exerted their
e¤orts. Skaperdas and Vaydia (2012) derive a separable di¤erence-form CSF
in a Bayesian framework where contenders produce evidence stochastically
in order to persuade an audience of the correctness of their respective views.
Finally, Polishchuk and Tonis (2013) obtain a logarithmic di¤erence-form
CSF using a mechanism design approach when contestants have private in-
formation over their valuation of victory. In summary, it is fair to conclude
that di¤erence-form CSFs are well micro-founded. However, little is known
about their properties and about how these di¤er from the properties of the
more often used ratio-form CSFs, where winning probabilities are a function
of the ratio of contenders�e¤ective e¤orts.
The present paper o¤ers an axiomatic characterization of di¤erence-form

CSFs. This axiomatization rests on a Pairwise Comparison axiom that de-
scribes the winning probabilities of any two participants in the contest as
a function of their winning probabilities in the contest between the two of
them. Under this axiom, if a contender has a zero winning probability in
the grand contest, he/she can still have a positive probability of defeating
another participant in a direct confrontation. This contrasts with the Consis-
tency axiom employed in the characterizations of the ratio-form CSF. Under
this axiom, a contender with no chance of winning the grand contest has no
chance either of defeating another participant.
Our Theorem 1 shows that the Pairwise Comparison axiom, together with

two other axioms already employed in the literature, characterize a separable
di¤erence-form CSF which generalizes the di¤erence-form CSF introduced
by Che and Gale (2000). This family of separable CSFs also encompasses
as particular cases the ones micro-founded in the aforementioned literature
as well as the ones employed by Levine and Smith (1995), Rohner (2006),
Besley and Persson (2008, 2009) and Gartzke and Rohner (2011).
With our axiomatization, we help to clarify the properties of di¤erence-

formCSFs. The family we characterize is di¤erent from the logistic di¤erence-
form function introduced by Hirshleifer (1989; 1991) and later generalized by
Baik (1998). Under the logistic CSF winning probabilities are proportional
to contenders�exponential e¤orts. This functional form belongs to the ratio
family, as it satis�es the Consistency axiom and not our Pairwise Compari-
son axiom. We also show that contrary to the logistic CSF and to the Baik
(1998) CSF, our di¤erence-form CSF can be scale invariant, i.e. homogeneous
of degree zero, and that it can have a positive elasticity of augmentation.4

4A positive elasticity of augmentation (Hwang, 2012) implies that the di¤erence be-
tween the winning probabilities of two contenders diminishes when their e¤orts increase
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This paper contributes to the axiomatic work pioneered by Skaperdas
(1996) and Clark and Riis (1998). Later, Münster (2009) extended this
characterization from individual to group contests. Arbatskaya and Mi-
alon (2009) and Rai and Sarin (2009) axiomatized multi-investment contests,
whilst Blavatskyy (2010) did the same for contests with ties. More recently,
Hwang (2012) axiomatized the family of CSF with constant elasticity of aug-
mentation, which encompasses the logistic and the ratio forms as particular
cases. Lu and Wang (2015) characterized success functions for contests pro-
ducing strict rankings of players, whereas Vesperoni (2013) axiomatized an
alternative success function producing rankings of any type. Finally, Bozbay
and Vesperoni (2014) characterized a CSF for con�icts embedded in network
architectures. Let us add that in our axiomatization we make connections
with the income inequality literature. The literature on inequality measure-
ment o¤ers valuable insights on the properties of functional forms which we
employ at several points of the text.5

2 Axiomatization

Let us start by considering a group of K � 2 individuals indexed by k =
1; :::; K: Denote the set of individuals by K. These K agents are in compe-
tition. They are engaged in a contest which can have only one winner. In
Section 4 we generalize our analysis to the case of group contests.
Contenders can expend non-negative e¤ort in order to alter in their favor

the outcome of the contest. Depending on the speci�c type of contest, these
e¤orts can be money, time, physical e¤ort or weapons. Denote by x �
(x1; :::; xK) 2 RK+ the vector of e¤orts made by these contenders and by x�k
the vector of e¤orts made by contenders other than k:
E¤orts determine the winning probability of each contender according to

a Contest Success Function (CSF) pk : RK+! R+: The function pk(x) can
also be thought of as the share of the prize or object being contested that
participant k obtains in case of victory. We favor the former interpretation
throughout the paper.

2.1 Two basic axioms: Let us present the �rst two axioms we would
like to impose on our CSF. They were introduced by Skaperdas (1996) in
his axiomatization of CSFs for individual contests and later generalized by

whilst keeping their di¤erence constant.
5In this same spirit, Chakravarty and Maharaj (2014) characterize a new family of

individual contests success functions which satisfy properties akin to the intermediate
inequality and ordinal consistency axioms employed in the income distribution literature.
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Münster (2009) to group contests. These axioms are rather natural and
should apply to the class of di¤erence-form contests we study in this paper.

Axiom 1 (Probability)
PK

k=1 pk(x) = 1 and pk(x) � 0 for any x and all
k 2 K:

Axiom 2 (Monotonicity) Consider two e¤ort levels xk and x0k such that
x0k > xk. Then,

(i) pk(x
0
k;x�k) �pk(xk;x�k); with strict inequality if pk(xk;x�k) 2 (0; 1):

(ii) pl(x
0
k;x�k) �pl(xk;x�k) for all l 6= k and l 2 K:

The axiom of Probability states that the CSF generates a probability
distribution over the set of contenders (or a proper sharing rule). The
Monotonicity axiom implies that the winning probability of a contender is
weakly increasing in her e¤ort and weakly decreasing in the e¤ort of oth-
ers. Note that this axiom is slightly weaker than the Monotonicity axiom in
Skaperdas (1996) and the analogous one in Clark and Riis (1998).

2.2 Pairwise comparisons: The next axiom is crucial in our axiomatiza-
tion. Denote by pfk;jgk the winning probability of contender k in a bilateral
contest against contender j:

Axiom 3 (Pairwise Comparison) For any e¤ort vector x and any con-
tender k 2 K with K � 3 and such that pk(x) > 0

ln
p
fk;jg
k (xj; xk)

p
fk;jg
j (xj; xk)

= pk(x)� pj(x): (1)

This axiom relates the winning probability of any pair of participants in
a multilateral contest to their winning probabilities in a bilateral confronta-
tion between them. The functional form corresponds to the Bradley-Terry
model of pairwise comparisons (Bradley and Terry, 1952). This is a very
popular approach to describe and estimate the winning probability or overall
"strength" of a contender within a set (e.g. a tournament) whose elements
are repeatedly compared with one another (e.g. �ghts, games). It is used
by the World Chess Federation to rank players, it has been applied to sports
(Agresti, 2002), rankings of academic journals (Stigler, 1994), animal behav-
ior (Whiting et al, 2006) and models of gene transmission (Sham and Curtis,
1995).

2.3 Comparing axioms: The property above relates to two axioms fre-
quently employed in the axiomatic characterization of CSFs.
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Skaperdas (1996) and Munster (2009) employ an axiom of Independence
stating that the outcome of any contest among a subset of participants should
not depend on the e¤orts exerted by contenders outside the subset. Skaperdas
(1996) points out that this property relates to the axiom of Independence of
Irrelevant Alternatives in probabilistic individual choice. In fact, Rai and
Sarin (2009) label this axiom as IIA. Our Pairwise Comparison axiom also
implies a form of IIA but only in bilateral confrontations (e.g. sport matches,
combat) where it would seem natural to hold.
Another axiom employed in the literature is Consistency (Skaperdas,

1996; Münster, 2009; Rai and Sarin, 2009). It states

Axiom 3�(Consistency) For any vector x and any subcontest S � K such
that pk(x) > 0 for at least one l 2 S

pSk(x) =
pk(x)X

l2S

pl(x)
: (2)

This axiom posits that the winning probabilities of members of the smaller
contest S are proportional to their winning probability in K. As pointed out
by Clark and Riis (1998), Anonymity and Consistency together imply that
the resulting CSF satis�es Luce�s Choice Axiom. When applied to bilateral
contests it implies

p
fk;jg
k (x)

p
fk;jg
j (x)

=
pk(x)

pj(x)
:

However, this property presents some drawbacks. First, it is not well
de�ned when pk(x) = 0 for all contenders in S. Second, it forces contenders
with zero probability in the grand contest to have a zero winning probabil-
ity in any pair contest against another player. For instance, suppose that a
contender k is very weak and has a zero winning probability in the grand
contest, whereas contender l is marginally stronger and has a winning proba-
bility " arbitrarily close to zero. Then contender k must have a zero winning
probability in the bilateral contest against the similarly weak contender l.
This may be undesirable in a number of applications, such as sport compe-
titions where a team or an individual player may have no chance of winning
a tournament but can still defeat other players.
Our Pairwise Comparison axiom does not make contenders with a zero

winning probability in K to have a zero winning probability in all pair con-
tests. Still, we can compare both axioms when a contender has a winning
probability arbitrarily close to zero. Take two contenders, one with winning
probability p 2 (0; 1) and a weaker one with winning probability " 2 (0; p).
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Under Consistency, the latter would win their bilateral contest with proba-
bility "

"+p
; which tends to zero as " goes to zero. Under the Pairwise Com-

parison axiom though, the weaker contender would win the pair contest with
probability expf"g

expf"g+expfpg which tends to
1

1+expfpg as " goes to zero.
The reader may argue that one drawback of the Pairwise Comparison

axiom could be the following: Consider a scenario where one contender is
much weaker than the rest of contenders, who are all equally strong. But
because there is a large number of these strong agents, each of them enjoys a
winning probability of just q" where q > 1 and " is the (very small) winning
probability of the weak contender. The Pairwise Comparison axiom would
imply that the weak agent would have a winning probability of 1

1+expf(q�1)"g
in a bilateral contest against any of the strong agents. This seems an unre-
alistically large probability since this contender is substantially weaker than
the rest. But as we will see below, the CSF that we axiomatize would bound
to zero the winning probability of the weak contender; if this agent had a
positive winning probability in the grand contest then it could not be much
weaker than the rest of contenders.

2.4 The main theorem: We are now in the position to state our main
theorem characterizing the family of the di¤erence-form CSFs. This family
emerges from using the basic axioms of Probability, Monotonicity and the
Pairwise Comparison axiom.

Theorem 1 If the CSF pk(x) is continuous and satis�es axioms A1-A3 then
for each vector x there exists a set K� of K� � K contenders such that

pk(x) =

(
1
K� + hk(xk)� 1

K�

P
l2K�

hl(xl) for k 2 K�

0 otherwise
(3)

where each hk : R+ ! R is a continuous and increasing function.

Proof. Denote by K� the set of contenders who enjoy a positive winning
probability in the grand contest, that is, those A3 applies to. Let K� be the
cardinality of this set. Consider the case where at least three contenders j;
k and l have strictly positive winning probabilities in the grand contest K;
i.e. K� � 3: By A3

pk(x)�pl(x) = pk(x)�pj(x)� (pl(x)�pj(x))

= ln
p
fk;jg
k (xk; xj)

1� p
fk;jg
k (xk; xj)

� ln p
fl;jg
l (xl; xj)

1� p
fl;jg
l (xl; xj)

;
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Now de�ne for each k 2 K� a function hk : R2+! R

hk(xk; xj)= ln
p
fk;jg
k (xk; xj)

1� p
fk;jg
k (xk; xj)

: (4)

This implies that

pk(x)�pl(x) =hk(xk; xj)� hl(xl; xj) for any k; l 2 K�: (5)

Adding up across all contenders l 2 K� yields

K�pk(x)�1=K�hk(xk; xj)�
X
l2K�

hl(xl; xj);

which yields

pk(x) =
1

K� + hk(xk; xj)�
1

K�

X
l2K�

hl(xl; xj) for any k; l 2 K�: (6)

We next need to show that the function hk(xk; xj) does not depend on
xj: Take contender k and l: By A3 and (5) we know that

hk(xk; xj)� hl(xl; xj) = ln
p
fk;lg
k (xk; xl)

1� p
fk;lg
k (xk; xl)

:

Since the right hand side is independent of xj then the left hand side must
also be independent of xj: De�ne hk(xk) = hk(xk; 0): Therefore we can write

hk(xk)� hl(xl) = ln
p
fk;lg
k (xk; xl)

1� p
fk;lg
k (xk; xl)

= pk(x)�pl(x): (7)

So adding up again across l 2 K� yields the expression in (3).
Let us now show that the function hk(xk) must be increasing. Consider

a pair of vectors x0 and x such that x0 = (x1; :::; x0k; :::; xK) where x
0
k > xk.

That is, vector x0 is identical to vector x except for contender k: By A2 it
must be that pk(x) � pk(x

0) and pl(x) � pl(x
0) for any l 6= k: The property

holds trivially if pk(x) = 0 or pl(x) = 0: If both probabilities pk(x) and pl(x)
are strictly positive, expression (7) implies

hk(xk)�hl(xl) = pk(x)�pl(x)
� pk(x

0)� pl(x
0) = hk(x

0
k)�hl(xl);

thus proving that hk(xk) is increasing.
The last remaining step is to characterize the set K�: De�ne the set K�

as the set of contenders in K such that
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1. 1
K� +min

k2K�
hk(xk)� 1

K�

X
l2K�

hl(xl) > 0;

2. 1
K�+1 + max

j2KnK�
hj(xj)� 1

K�+1 [ maxj2KnK�
hj(xj) +

X
l2K�

hl(xl)] < 0.

In other words, the set K� is formed by the K� contestants with the
largest impacts such that

1

K� + hk(xk)�
1

K�

K�X
l=1

hl(xl) > 0; (8)

holds for all of them and does not hold for any other contestant if it were to
be included in K�. Next we show that a contender is a member of K� if and
only if it has a positive winning probability.
Let us work out the �rst implication. By contradiction, suppose that

j 2 K�; where K� satis�es the two conditions above, but pj(x) =0: Adding
up (3) for the members of K� except j yields

1 =
K� � 1
K� +

X
l2K�;l 6=j

hl(xl)�
K� � 1
K�

X
l2K�

hl(xl)

=
K� � 1
K� � hj(xj) +

1

K�

X
l2K�

hl(xl);

implying that
1

K� + hj(xj)�
1

K�

X
l2K�

hl(xl) = 0;

thus contradicting that j belongs to K�: Therefore, all players in K� must
have a positive winning probability:
Next, we need to prove the opposite implication, that is, that pj(x) >0

implies that j must belong to K�: Suppose on the contrary that j =2 K�: If
pj(x) >0 then

1

K� + 1
+ hj(xj)�

1

K� + 1

X
l2K�[fjg

hl(xl) > 0;

thus contradicting that j does not belong to K�: This establishes that all
contenders with positive winning probability must belong to K�: This to-
gether with the previous implication demonstrates that the set K� is the set
of contenders with positive probability.
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The function hk(xk) is commonly known as the impact function. In in-
dividual contests, it can easily be interpreted as a function determining the
e¤ectiveness of contenders�raw e¤orts.
One obvious feature of this CSF is that it is additively separable in the

impact of the contestants. The marginal productivity of individual e¤orts
does not depend on the e¤orts of outsiders. This implies that any equilibrium
in an individual contest under this CSF must be in dominant strategies under
two sets of circumstances: 1) when contenders are risk neutral, so pk(x)
can also be interpreted as a share; or 2) when individual utilities are non-
linear and pk(x) is a winning probability. It is thus natural that Beviá and
Corchón (2015) microfound this type of CSFs by means of dominant strategy
implementation. Dominance solvability does not apply however when utilities
are non-linear and pk(x) is instead a share of the prize contested, as in Levine
and Smith (1995).6

The di¤erence-form CSF in (3) relates the success of a contender to the
di¤erence between its impact and the average impact of all contenders. If
the impact of a contender is above (below) average impact, its winning prob-
ability must be above (below) the probability of winning the contest under
a fair lottery. This implies that if the impact of a contestant is positive but
su¢ ciently low, its winning probability is zero. By the same token, a con-
tender can attain a sure victory if her impact is su¢ ciently large. Take for
instance, the case of two-player contests, i.e. K = 2; where (3) boils down to

pk(x) =min

�
max

�
1

2
+
1

2
[hk(xk)� hj(xj)]; 0

�
; 1

�
:

This CSF generalizes the linear di¤erence-form CSF introduced by Che
and Gale (2000) and later employed by Rohner (2006), Besley and Persson
(2008, 2009) and Gartzke and Rohner (2011). Contender k can obtain victory
with certainty if hk(xk) � 1 + hj(xj): This shows that, as highlighted by
Che and Gale (2000), the di¤erence-form CSF has strong connections with
auctions: contenders can obtain a sure win by outbidding others by a wide
enough margin. On the other hand, a contender with zero impact can still
enjoy a positive winning probability if the other contestants have moderate
impacts. That would be the case for k in the example above if hj(xj) < 1:

6We thank Alberto Vesperoni for pointing this out.
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3 Invariance

3.1 Scale invariance

In this section, we study two other properties employed in previous axiomatic
characterizations of CSFs. These properties impose the invariance of winning
probabilities to certain changes in the pro�le of contestants�e¤orts. The �rst
one, and most-commonly used, is homogeneity of degree zero, which we refer
to here as scale invariance.

Axiom 4 (Scale Invariance) For all � > 0 and all k 2 K

pk(�x) =pk(x):

This axiom states that winning probabilities must remain constant to
equiproportional changes in all contenders�e¤orts. Scale invariance implies
that units of measurement of e¤ort do not matter. This is a desirable property
when e¤orts are measured in money or military units (battalions, regiments,
etc.). It is a property which is also satis�ed by the indices of relative inequal-
ity introduced by Atkinson (1970). The interest of this analogy will become
clear below.
Münster (2009) proved that if a CSF satis�es axioms A1, A2, A3�, A4

together with an Independence axiom, impact functions must be all homo-
geneous of the same degree. Let us perform the analogous exercise in our
setting and characterize the family of scale invariant di¤erence-form CSFs.

Theorem 2 If a CSF satis�es axioms A1-A4, then it satis�es (3) and the
impact functions hk(xk) satisfy

hk(xk) = �k + � lnxk, (9)

where �k and � > 0 are parameters.

Proof. A4 implies that pk(�x) =pk(x): Hence, if pk(x) =0 then pk(�x) =0
and viceversa, so the set K� does not change:
In the next step of the proof we follow a similar procedure to the proof

of Theorem 2 in Rai and Sarin (2009, p. 147). Take any two contenders
k; j 2 K�. By Theorem 1 and A4 their impact functions satisfy

hk(�xk)� hk(xk) = hj(�xj)� hj(xj) =
1

K� [
X
l2K

hl(�xl)�
X
l2K

hl(xl)];
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for any xk 2 R++: Since the last term in the above equality is just a constant,
the di¤erence hk(�xk)�hk(xk) is the same for all k 2 K� and we can conclude
that this di¤erence depends on � but not on xk: Hence it must hold true that

hk(�xk)� hk(xk) = hk(�)� hk(1):

Now add and substract hk(1) to the left hand side of this expression and
denote H(xk) = hk(xk)� hk(1): It can then be rewritten as

H(�xk) = H(�) +H(xk):

If xk = t for t > 0 then

H(�t) = H(�) +H(t): (10)

H(�) is a function of one variable and it is increasing since by Theorem
1 we know that hk(xk) must be increasing. Expression (10) is one of the
Cauchy functional equations whose only solution is given by G(z) = � ln z
where � is an arbitrary constant (Aczél, 1966, p. 41). This implies

H(�) = ln��;

and by the same token that

H(�xk) = ln�
� +H(xk):

Given our de�nition of the function H(�); this implies that

hk(�xk) = ln�
� + hk(xk):

By A4, � must be identical across participants.
Now, consider the case xk = 0: Fix xj 6= 0 for each j 6= k in K� and � 6= 1.

Because pk(�x) =pk(x) it must be that

1

K� +
K� � 1
K� hk(0)�

1

K�

X
l2K�;l 6=k

(ln�� + hl(xl))

=
1

K� +
K� � 1
K� hk(0)�

1

K�

X
l2K�;l 6=k

hl(xl):

This identity can only hold under two circumstances: First, if � = 0;
which in turn implies that the impact functions must be homogeneous of
degree zero, i.e. hk(�xk) = hk(xk); and thus constant. This violates A2. So
we are left with the only other possible case, that is, limxk!0+ hk(xk) = �1:
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Next de�ne Fk(xk) = expfhk(xk)g: It is clear that the function Fk(xk)
is homogeneous of degree � since Fk(�xk) = ��Fk(xk): This is a function
of one variable, which in turn must be a multiple of a power function, i.e.
F (s) = as� with � > 0 and a = F (1) (Münster, 2009; p 352): Hence it is
possible to rewrite

Fk(xk) = ak � (gk(xk))�;
where gk : R+! R: The function gk(xk) must be homogeneous of degree one
since

Fk(�xk) = ��Fk(xk)) gk(�xk) = �g(xk):

Again, because g(xk) is a function of one variable and homogeneous of
degree one, it must be of the form g(s) = cs where c > 0.
Finally, tracing back our steps

hk(xk) = lnFk(xk) = ln ak + � ln g(xk) = �k + � ln cxk:

Finally, observe that it must also be that gk(1) = 1 given that

ak = Fk(1) = expfhk(1)g = akc
�;

implying that either � = 0 or c = 1: Since the former violates A2, it must be
that hk(xk) = �k + � lnxk: Note that, as stated above, lim

xk!0+
hk(xk) = �1:

When impact functions are of the form in (9), changes in the unit of mea-
surement of e¤orts do not change contenders�winning probabilities, albeit
their impact changes in absolute terms. Therefore, despite the received wis-
dom (Skaperdas, 1996; Hirshleifer, 2000; Alcalde and Dahm, 2007, p. 103;
Corchón, 2007, p. 74),7 di¤erence-form CSFs do not necessarily violate Scale
Invariance. Such violation would be undesirable if the di¤erence between
the e¤orts of two contenders is kept �xed, the weaker side is expected to be
more likely to win as contenders�absolute e¤orts increase. More formally,
p
fk:jg
k (xk; xk + c) should be increasing in xk; where c > 0: This property is
called positive elasticity of augmentation by Hwang (2012). It is indeed not
satis�ed by either the logistic ratio-form (Hirshleifer, 1991), the Baik (1998)
CSF or the linear CSF introduced by Che and Gale (2000). This is because
these CSFs assume a linear mapping from e¤ort to impact implying that

pk(xk; xk + c) = pk(xk + t; xk + t+ c);

7�It might be thought a fatal objection against the di¤erence form of the CSF that a
force balance of 1,000 soldiers versus 999 implies the same outcome (in terms of relative
success) as 3 soldiers versus 2! [...] Any reasonable provision for randomness would imply
a higher likelihood of the weaker side winning the 1,000:999 comparison than in the 3:2
comparison.�(Hirshleifer, 2000, p 779)
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for t > 0: This in turn implies that pk(xk; xk + c) is constant in xk; so the
elasticity of augmentation is zero.
Our Theorem 2 proves that our separable di¤erence-form CSF can be

scale invariant and have a positive elasticity of augmentation. More formally,
when the impact function is of the form (9), winning probabilities under the
family of di¤erence-form CSFs in (3) satisfy

p
k
(xk; c+ xk) = p

k
(�xk; �c+ �xk)

� p
k
(�xk; c+ �xk);

for any � > 1; where the last inequality follows from the Monotonicity axiom.
Therefore, the weaker contestant has a higher winning probability as the
e¤orts of the two contenders increase whilst keeping their absolute di¤erence
between them constant; that is, the elasticity of augmentation is positive.
To the best of our knowledge, this family of scale invariant di¤erence-form

CSFs has only been studied in Polishchuk and Tonis (2013, p. 218). They
microfound a CSF of the form

pk(x) =
1

K
+ ln g(xk)�

1

K

KX
l=1

ln g(xl);

by using a mechanism design approach when contenders are individuals who
have private information over their valuation of victory.

3.2 Translation invariance

If a CSF is de�ned as a function of the di¤erence between contenders�e¤orts,
another natural invariance property is the following: Winning probabilities
should remain constant when the e¤ort of all contenders increase by the same
amount. This is equivalent to the following property.

Axiom 5 (Translation Invariance) For all � > 0 and all k 2 K;

pk(x+��1) =pk(x);

where 1 =(1; :::; 1) is the vector of appropriate length whose components are
all equal to one.

Skaperdas (1996) and Münster (2009) used this property as an alternative
to homogeneity of degree zero in their axiomatization of ratio-form CSFs. Ac-
tually, Translation Invariance can be traced back to the income distribution
literature, and in particular to the concept of absolute inequality introduced
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by Kolm (1976a,b). Absolute inequality states that the level of inequality in
a distribution should not vary when the income of every individual increases
by the same �xed amount. Hence, any measure of absolute income inequality
must be translation invariant.
As a matter of fact we borrow the following concept from the study of ab-

solute inequality by Blackorby and Donaldson (1980).

De�nition The impact function hk(xk) is said to be translatable if

hk(xk+�) =hk(xk)+�k� where �k; � > 0:

We will refer to the scalar �k as the degree of (linear) translatability of
the impact function. Translatability is analogous to linear homogeneity when
a �xed amount is added to the arguments of a function.
We are �nally ready to state our theorem characterizing the family of

translation invariant di¤erence-formCSFs.

Theorem 3 If a CSF satis�es axioms A1-A3 and A5, then it is of the form
(3) and the impact functions hk(xk) satisfy

hk(xk) =�+ �xk:

where �; � > 0 are parameters.

Proof. A5 implies that pk(x+��1) =pk(x) so we can use the same reasoning
as in the proof of Theorem 2 to establish that K� does not change.
Now, combining Theorem 1 with A5 for any k; l 2 K� we obtain,

hk(xk+�)�hk(xk) =hl(xl + �)�hl(xl):

Since this holds for any l; k 2 K�, the di¤erence in impacts must depend
only on � so

hk(xk+�)�hk(xk) =�(�);
where �(�) is a continuous function because it is equal to the di¤erence of
two continuous functions. This expression holds for any � > 0 so

hk(xk+(�+ �))=hk(xk + �)+�(�) =hk(xk)+�(�)+�(�);

implying that
�(�+�) =�(�)+�(�):
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This is just the Cauchy functional equation whose only solution is of
the form �(�) = �� where � > 0 is an arbitrary real number: Now de�ne
H(t) = expf�(t)g. Then

H(xk+�) = expf�(xk+�)g = expf��gH(xk):

Let xk = 0: In that case, H(�) = expf��gH(0): Substituting � by t yields

H(t) = a expf�tg;

where a = H(0) = expf�(0)g: Now, tracing back our steps,

�(xk) = lnH(xk) = ln a+ �xk = �+ �xk;

which completes the proof.

One remark is in order at this point: In his Theorem 3, Skaperdas (1996)
characterizes the class of ratio-form CSF which are also translation invariant.
He shows that for individual contests, this class boils down to the logistic
di¤erence-form CSF introduced by Hirshleifer (1989; 1991). Our Pairwise
Comparison axiom does not lead to a logistic CSF but to a separable one, and
with linear impact functions rather than exponential. Both the logistic and
our separable CSF share the property that contenders with zero e¤ort may
still enjoy a positive winning probability. Contrary to our CSF, no participant
under the logistic CSF can win the contest with certainty, no matter how
much more e¤ort he/she exerts compared to the rest of participants.

4 Group contests

Let us extend our previous analysis to group contests. Now consider that
society is divided into K � 2 disjoint groups formed by a number nk � 1
of individuals each, adding up to a total of N . Denote the set of groups by
K, by xk � (x1k; :::; xnkk) 2 R

nk
+ the vector of e¤orts made by members of

group k and by x the vector (x1; :::;xK). For convenience denote by x�k the
vector of e¤orts in groups other than k: Impact functions must now aggregate
members�e¤orts into a measure of group in�uence, i.e. hk : Rnk+ ! R.
All theorems above can be re-stated in this set-up after modifying Axioms

A1 to A5 in order to account for groups.8 In this Section, we explore two
sets of results that are speci�c to group contests. The �rst one refers to an
important modi�cation of the Translation Invariance axiom. The second set
of results stems from imposing additional properties to the aggregation of
members�e¤orts.

8These results are available from the authors upon request.
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4.1 Group Translation Invariance

In his axiomatization of group CSFs, Münster (2009) employed the Transla-
tion Invariance property explored in Section 3.2 as an alternative to homo-
geneity of degree zero. However, this axiom builds in an implicit bias against
big groups. Adding a constant � to the e¤ort of each member means that the
total e¤ort of each group increases by �nk: Therefore, bigger groups increase
their total e¤ort more than smaller groups. Translation Invariance implies
though that winning probabilities should remain invariant after that change.
In order to correct this bias, we introduce the following axiom:

Axiom 6 (Group Translation Invariance) For all � > 0 and all k 2 K

pk(x1+
�

n1
�1; ::;xK+

�

nK
�1) =pk(x):

This property implies that if total e¤ort increases across all groups by
the same positive amount �; because members increase their e¤ort by a �x
amount �

nk
, winning probabilities should remain constant. Group Translation

Invariance thus eliminates the bias against big groups implicitly built in
the standard Translation Invariance property, a bias which has been so far
overlooked by the literature.
The following Theorem characterizes the group impact functions satisfy-

ing Group Translation Invariance.

Theorem 4 If a group CSF satis�es axioms A1-A3 and A6, then it is of the
form (3) and each impact function hk(xk) is translatable of degree �nk.

Proof. The �rst part of the Theorem proceeds along the same lines as the
proof of Theorem 1 in order to show that the CSF is of the form (3) but
where each impact function is now a mapping hk : Rnk+ ! R.
Next, by A6 we know that

pk(

�
xj+

�

nj

�
j2K

) =pk(x) 8� > 0 and 8k 2 K:

Take two vectors x0 and x such that x0 = (x1; :::;x
0
k; :::;xK): That is,

vector x0 is identical to vector x except for group k: Therefore

pk(

�
xj+

�

nj

�
j2K

)�pk(x) =pk(x0k+
�

nk
�1;
�
xj+

�

nj

�
j 6=k
)�pk(x0): (11)

For the case where k 2 K� and the set K� is the same under xk and x0k;
the combination of Theorem 1 and (11) implies

hk(xk+
�

nk
�1)�hk(xk)=hk(x0k +

�

nk
�1)�hk(xk):
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Hence, the di¤erence in impacts cannot depend on xk and x0k and must
depend only on �

nk
; implying that

hk(xk+
�

nk
� 1)�hk(xk) = k(

�

nk
); (12)

where  k(�) is a continuous function because it is the di¤erence of two con-
tinuous functions.
By the same token as in (11),

pk(

�
xj+

�

nj

�
j2K

)�pk(x) = pl(

�
xj+

�

nj

�
j2K

)�pl(x))

hk(xk+
�

nk
� 1)�hk(xk) = hl(xl+

�

nl
� 1)�hl(xl)

 k(
�

nk
) =  l(

�

nl
); (13)

for any two groups k; l 2 K�.
On the other hand, because (12) holds for any � > 0; then one can write

hk(xk+
�+ �

nk
�1)=hk(xk +

�

nk
�1)+ k(

�

nk
) =hk(xk)+ k(

�

nk
)+ k(

�

nk
);

which implies that

 k(
�+ �

nk
) = k(

�

nk
)+ k(

�

nk
):

By induction, this property implies that  k(�) = nk k(
�
nk
): Hence,  k(�+

�) = k(�)+ k(�): This is again the Cauchy functional equation whose solu-
tion is  k(�) = �k�: This together with (12) implies that

 k(
�

nk
) =

 k(�)

nk
=
�k�

nk
=
�l�

nl
=
 l(�)

nl
=  l(

�

nl
);

so �k = �nk where � is an arbitrary positive scalar. Therefore, impact func-
tions are translatable of degree �nk because hk(xk+ �

nk
� 1) =hk(xk)+�nk�:

For an example of a translation invariant di¤erence-form group CSF, con-
sider the following group impact function which we employ in a companion
paper (Cubel and Sanchez-Pages, 2014):

hk(xk) =n
�
k ln (

1

nk

nkX
i=1

e�xik)�
1
 where  � 0 and � 2 f0; 1g:
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This is the natural logarithm of a CES function with exponential e¤orts.
The parameter  measures the degree of complementarity of members�ef-
forts. This function is linear when  = 0. As  ! 1 it converges to the
weakest-link technology (Hirshleifer, 1983). This function satis�es Transla-
tion Invariance when � = 0 and Group Translation Invariance when � = 1:

4.2 Aggregation

A distinctive feature of group contests is that impact functions must aggre-
gate members�e¤orts. Because of that, the group contest versions of Theo-
rems 2 and 3 are less tight than for individual contests.9 Further assumptions
on the aggregation of e¤orts are necessary in order to obtain sharper char-
acterizations of the group impact functions.
Consider the following axiom.

Axiom 7 (Intragroup Aggregation) For any k 2 K consider two e¤ort
vectors xk and x0k such that

Pnk
i=1 xik =

Pnk
i=1 x

0
ik. Then it must be that

pk(xk;x�k) =pk(x
0
k;x�k):

This axiom was introduced by Münster (2009) who calls it Summation.
We changed its name in order to distinguish it better from the axiom we dis-
cuss below. Intragroup Aggregation implies that winning probabilities should
remain invariant to changes in the distribution of e¤orts within groups which
leave total group e¤ort unchanged. In the context of lobbying or rent-seeking,
where e¤orts are monetary, such property seems granted. Underlying this ax-
iom is the assumption that e¤orts within groups are perfect substitutes, so
the marginal productivity of individual e¤ort does not depend on the e¤ort
made by other group members.
Let us now apply this property to our characterization.

Proposition 1 If a group CSF satis�es axioms A1-A4 and A7, then it is of
the form (3) and the group impact functions hk(xk) satisfy

hk(xk) = �k + � ln(
1

nk

nkX
i=1

xik), (14)

where �k and � > 0 are parameters.

9In Theorem 2, it can be proven that group impact functions must satisfy hk(xk) =
�k + � ln g(xk) where g(xk) : Rnk+ ! R+ is increasing, homogeneous of degree one and
satis�es g(0) = 0 and g(1) = 1. In the group contest version of Theorem 3, each hk(xk)
must be translatable of the same degree � > 0:
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Proof. Following the same steps as in Theorem 2, one can show that

hk(xk) = �k + � ln g(xk):

At that point we only need to prove that g(xk) = 1
nk

Pnk
i=1 xik: By A7, we

know that the group impact function can be expressed just as a function of
the average group e¤ort

hk(xk) = hk(
1

nk

nkX
i=1

xik; :::;
1

nk

nkX
i=1

xik):

This together with expression (9), implies that it is possible to write
g(xk) = �( 1

nk

Pnk
i=1 xik): Since by Theorem 2, �( 1

nk

Pnk
i=1 xik) must be homo-

geneous of degree one, and because it is a function of one variable, it must
be a multiple of a power function. Hence,

�(
1

nk

nkX
i=1

xik) = c
1

nk

nkX
i=1

xik;

where by Theorem 2 again, c = �(1) = g(1) = 1: This leads to the functional
form (14) : Note that this function g(xk) satis�es also g(0) = 0.

The addition of Intragroup Aggregation to our set of axioms produces a
tighter characterization of the group impact function. Proposition 1 high-
lights once more that the di¤erence-form CSF can be scale invariant when
the function mapping members�e¤orts into impact is logarithmic.
Let us now turn our attention to the case of translation invariant CSFs:

Proposition 2 If a CSF satis�es axioms A1-A3, A5 and A7, then it is
of the form (3) and the impact functions hk(xk) satisfy

hk(xk) = �k + �k

nkX
i=1

xik, (15)

where �k and �k > 0 are parameters, and �k =
�
nk
for all k: If A5 is replaced

by A6, then �k = �:

Proof. As established in the proof of Proposition 1, by A7 it is possible to
write

hk(xk + � � 1) = hk(

Pnk
i=1 xik
nk

+ �; :::;

Pnk
i=1 xik
nk

+ �) = �(

Pnk
i=1 xik
nk

+ �):
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By Theorem 3 and A5, we know that function �k(�) must be translatable
of degree �; that is, it must satisfy

�k(

Pnk
i=1 xik
nk

+ �) = �k(
1

nk

nkX
i=1

xik) + ��:

Now de�ne Hk(t) = expf�k(t)g. Then

Hk(

Pnk
i=1 xik
nk

+ �) = expf��gHk(
1

nk

nkX
i=1

xik):

Let xk = 0: In that case, Hk(�) = expf��gHk(0): Substituting � by t
shows that it must be that

Hk(t) = ak expf�tg;

where ak = Hk(0) = expf�k(0)g:
Summarizing all the steps made so far,

hk(xk) = �k(
1

nk

nkX
i=1

xik) = lnHk(
1

nk

nkX
i=1

xik) = ln ak+
�

nk

nkX
i=1

xik = �k+
�

nk

nkX
i=1

xik:

If we employ A6 instead of A5, A7 implies that it is possible to write

hk(xk � 1) = hk(

Pnk
i=1 xik
nk

+
�

nk
; :::;

Pnk
i=1 xik
nk

+
�

nk
) = �(

Pnk
i=1 xik
nk

+
�

nk
):

Recall that we know from Theorem 4 that the function �k(�) must be
translatable of degree �nk; that is

�k(

Pnk
i=1 xik
nk

+
�

nk
) = �k(

Pnk
i=1 xik
nk

) + ��:

Now de�ne again Hk(t) = expf�k(t)g so

Hk(
�+

Pnk
i=1 xik
nk

) = expf��gHk(

Pnk
i=1 xik
nk

):

Applying the same procedure when xk = 0; it must be the case that
Hk(

�
nk
) = expf��gHk(0); so substituting �

nk
by t

Hk(t) = ak expf�nktg
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yields

hk(xk) = �k(
1

nk

nkX
i=1

xik) = lnHk(
1

nk

nkX
i=1

xik) = ln ak+�

nkX
i=1

xik = �k+�

nkX
i=1

xik:

Intragroup Aggregation plus Translation Invariance imply that impact
functions must be linear and the resulting di¤erence-form group CSF becomes
fully separable.
One potentially undesirable consequence of the Intragroup Aggregation

axiom is that the resulting CSFs can admit biases. Take for instance the lin-
ear impact in (15) for the case of two-group contests, i.e. K = 2: In that case
the translation invariant di¤erence-form CSF characterized in Proposition 2
boils down to

pk(x) =min

�
max

�
1

2
+
�k � �l
2

+
�

2
(
_
xk �

_
xl); 0

�
; 1

�
;

where
_
xk denotes the average e¤ort in group k: Note that group k has a head-

start (handicap) whenever �k > (<)�l. The reason why the CSF admits this
type of biases is because the Intragroup Aggregation axiom remains silent
on the relative success of di¤erent groups with the same total e¤ort. One
possibility is to modify the axiom in order to account for this.

Axiom 8 (Intergroup Aggregation) For any two groups k; l 2 K such
that

Pnk
i=1 xik =

Pnl
i=1 xil it must be that pk(x) =pl(x):

This axiom is a stronger version of Intragroup Aggregation; it is actually
a combination of Summation and the Between-Group Anonymity axiom in
Münster (2009). It requires that two groups with the same total e¤ort must
have the same winning probability regardless of their size. Again, this prop-
erty can make sense when e¤orts are monetary units, but less so when e¤orts
represent time or when group size matters. For instance, the impact of a
group of 10 people demonstrating for 100 hours may not be the same as the
impact of a group of 1000 people demonstrating for an hour.
The following Proposition shows that when Intergroup Aggregation re-

places Intragroup Aggregation, the bias described above vanishes.

Proposition 3 If A7 is replaced by A8, then the impact functions charac-
terized in Propositions 1 and 2 must satisfy �k = � for all k 2 K:
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Proof. It su¢ ces to show that when A8 holds, impact functions, whatever
their functional form, should be identical across groups. To see this note that

hk(xk) = hk(

Pnk
i=1 xik
nk

; :::;

Pnk
i=1 xik
nk

);

because A8 also applies to changes in the distribution of e¤orts within groups
which maintain total e¤ort constant. Hence, for any vector xk it is possible
to write the group impact as a function of its total e¤ort, i.e. hk(xk) =
�k(
Pnk

i=1 xik): Similarly for group l; i.e. hl(xk) = �l(
Pnl

i=1 xil): From this it
is clear that �k and �l are identical functions since by A8 they yield the
same value whenever they are applied to the same argument. Hence, impact
functions (14) and (15) must not di¤er across groups and �k = � for all
k 2 K:

Intergroup Aggregation eliminates biases in favor of certain groups. Such
biases can be desirable in some instances. For instance, when they are the
result of a¢ rmative action policies aimed at fostering the participation of
disadvantaged groups (Franke, 2012). In other contests, such as when a
social planner seeks to commit to a fair and impartial sharing rule (Corchon
and Dahm, 2011), these biases should be removed.
A particularly interesting CSF emerges when the Intergroup Aggregation

axiom and Scale Invariance are imposed: Denote by Xk the sum of e¤orts in
group k. Then, the CSF characterized by Proposition 3 must be

pk(x) =

�
1
K� + � ln Xk

GX
for k 2 K�

0 otherwise

where GX = (
Y

l2K�
Xl)

1
K� is the geometric mean of the sums of e¤orts of

groups in K�:

5 Conclusion

In this paper, we have o¤ered a normative study of contests where winning
probabilities depend on the di¤erence between contestants�e¤ective e¤orts.
Our axiomatic characterization rests on a Pairwise Comparison axiom, which
relates winning probabilities of any pair of participants to their winning prob-
abilities in their bilateral contest. One advantage of this axiom is that it does
not bound contestants to have a zero probability of defeating any other par-
ticipant when they have zero chances of winning the grand contest. Other
di¤erence-form CSFs, such as the logistic function (Hirshleifer, 1989, 1991)
or the Baik (1998) CSF do not satisfy this axiom.
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The di¤erence-form CSF resulting from our characterization generalizes
the functional form introduced by Che and Gale (2000) and later employed
by Rohner (2006), Besley and Persson (2008, 2009) and Gartzke and Rohner
(2011). This functional form has three distinctive features: 1) Impacts across
contestants are separable, 2) it can award a sure victory to a contender who
overpowers its rivals by a large enough margin and 3) it allows contenders to
enjoy a positive winning probability when their impact is zero provided that
other contenders are not too strong.
We showed that, contrary to other di¤erence-form CSFs in the literature,

our functional form can be homogeneous of degree zero, and that it does not
force di¤erences in winning probabilities to remain invariant when absolute
di¤erences in raw e¤orts remain constant, i.e. it can have a positive elasticity
of augmentation.
In the last part of the paper, we explored group contests. We �rst �agged-

up that the Translation Invariance property builds in an implicit bias against
big groups which should be corrected. We then explored possible technolo-
gies of aggregation of e¤orts within groups. This helped us to sharpen our
characterization of admissible group impact functions. We also showed that
a modi�ed version of the Summation axiom in Münster (2009) can unbias
the CSF, a desirable property in contexts where impartiality has a value.
The family of di¤erence-form CSFs we characterized here has not been

employed in the contest literature as often as other functional forms. We
hope that, by clarifying its properties, our axiomatization can persuade re-
searchers in the area to include this family of CSFs in their toolkit. Of course,
our characterization is normative and leaves out strategic interactions. Che
and Gale (2000) showed that their linear di¤erence-form CSF often leads
to mixed-strategy equilibria and that any equilibrium in pure-strategies in-
volves at most one contender exerting positive e¤ort. One possible next step
would be to explore whether the equilibria of contests under the generalized
di¤erence-form CSF we axiomatized still presents such features. In addition,
this form leads to dominant strategy equilibria in individual contests and in
group contests when group impact functions are linear. We explore these is-
sues in a companion paper (Cubel and Sanchez-Pages, 2014). Other avenues
of further research might be the generalization of our characterization to the
case of multiple-prizes and to provide microfoundations from the perspective
of noise performance rankings as in Fu and Lu (2012).
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