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Diego Bombardelli,1 Andrea Cavaglià,1 Davide Fioravanti,2 Nikolay Gromov3,4 and

Roberto Tateo1
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Bologna, Italy.
3Mathematics Department, King’s College London, The Strand, London WC2R 2LS, UK
4St.Petersburg INP, Gatchina, 188 300, St.Petersburg, Russia.

E-mail: diegobombardelli@gmail.com, cavaglia@to.infn.it,

fioravanti@bo.infn.it, nikgromov@gmail.com, tateo@to.infn.it

Abstract: The spectrum of planar N = 6 superconformal Chern-Simons theory, dual to

type IIA superstring theory on AdS4 × CP 3, is accessible at finite coupling using integrabil-

ity. Starting from the results of [arXiv:1403.1859], we study in depth the basic integrability

structure underlying the spectral problem, the Quantum Spectral Curve. The new results

presented in this paper open the way to the quantitative study of the spectrum for arbitrary

operators at finite coupling. Besides, we show that the Quantum Spectral Curve is embedded

into a novel kind of Q-system, which reflects the OSp(4|6) symmetry of the theory and leads

to exact Bethe Ansatz equations. The discovery of this algebraic structure, more intricate

than the one appearing in the AdS5/CFT4 case, could be a first step towards the extension

of the method to AdS3/CFT2.
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1 Introduction

The idea of a duality between gauge and string theory was put forward many years ago by ’t

Hooft [1], who noticed that the perturbative expansion in SU(Nc) Yang-Mills theory in the

large Nc limit naturally organizes in terms of the topology of Feynman diagrams, mimicking

the genus expansion of string theory.

The first concrete realization of the duality [2–4] conjectures the exact equivalence of

N = 4 super Yang-Mills (SYM) theory and type IIB string theory on AdS5 × S5. The

precise identification of observables and parameters in the two theories relates the perturbative

region of each model to the deep non perturbative regime of the other. For this reason, the

correspondence makes powerful predictions, but is also very difficult to test.

An important turning point in this field was the discovery of fingerprints of integrability,

at both weak and strong coupling [5, 6], in the planar limit of this duality. At least in this

limit, it is hoped that the theory will be exactly solved adapting integrable model tools, and

remarkable progress has been made on the study of various observables, including Wilson

loops and correlation functions.

In particular, the problem of computing the conformal spectrum of the theory was tackled

by tailoring integrable QFT techniques to this new setting, in particular the Bethe Ansatz

[5, 7, 8], the TBA, the Y and T-systems [9–15], leading to the discovery of the very effec-

tive Quantum Spectral Curve (QSC) formulation [16, 17]. The latter is a very satisfactory

simplification and probably the most elementary formulation of the problem. Thanks to the

mathematical simplicity of the QSC, it appears that, in the near future, the spectral prob-

lem may be completely solved also in a practical/computational sense. Already, the QSC
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method allows to compute the spectrum numerically with high precision [18, 19] and to in-

spect analytically interesting regimes such as the BFKL limit [20, 21] or the weak coupling

expansion [22–24]. It has also been generalized to so-called γ deformations [25] and to the

quark-antiquark potential [26, 27].

Another remarkable example of AdS/CFT correspondence was introduced by Aharony,

Bergman, Jafferis and Maldacena (ABJM) in [28]. The gauge side of the duality corresponds

to the N = 6 superconformal Chern-Simons theory with gauge group U(N) × U(N), with

opposite Chern-Simons levels, k and −k, for the two U(N) factors. We will be concerned

with the planar limit, where k,N →∞ with the ’t Hooft coupling λ = k
N kept finite and the

dual gravity theory becomes type IIA superstring theory on AdS4 × CP 3. In this regime,

integrability emerges, making the ABJM model the only known example of 3d quantum field

theory which can be exactly solved [29–33] (see also the review [34]).

The spectral problem in ABJM theory was approached exploiting the experience gained

in AdS5/CFT4. Anomalous dimensions of single trace operators with asymptotically large

quantum numbers are described at all loop by the so-called Asymptotic Bethe Ansatz equa-

tions, conjectured in [35] and derived from the exact worldsheet S-matrix of [36]. The exact

result, including all finite-size corrections for short operators, is formally described by an

infinite set of TBA equations, proposed in [37, 38]. These equations were solved numerically

for a particular operator in [39]. However, solving excited states TBA equations with high

precision is a challenging task already for very simple models [40–42]. Besides, the form

of the TBA equations depends on the state and possibly also on the range of the coupling

considered, so that they can be studied only on a case-by-case basis.

It is important to look for a simpler formulation which overcomes these problems. Starting

from a precise knowledge of the analytic properties of the TBA solutions [43], the basic

equations characterizing the Quantum Spectral Curve of the ABJM model were obtained in

[44]. These results were used to compute the so-called slope function in a near-BPS finite

coupling regime [45] and to develop a generic algorithm for the weak coupling expansion in

the SL(2)-like sector [46].

Although we stress that, as proved by the applications discussed above, the results of [44]

contain all the analytic information necessary to solve the spectral problem, several important

aspects of the full picture were still missing. First of all, the concrete recipe to describe states

within the QSC framework was discussed in [44] only for the SL(2)-like sector. Secondly, the

set of equations obtained in [44], the Pµ/Pν-system, can be associated, in the classical limit,

to degrees of freedom related to the CP 3 part of the whole AdS4 × CP 3 target space. A

dual system of equations, only briefly mentioned in [44], may be instead associated to AdS4

classical degrees of freedom. The interplay between the two systems is important for the

development of the state-of-the-art solution algorithm at finite coupling [18], as well as at

weak coupling for generic states [21, 23]. Furthermore, the full algebraic structure was still

not transparent, and for example the link between the formulation of [44] and the Asymptotic

Bethe Ansatz of [35] was difficult to see. In this paper we will fill these gaps and present

the necessary elements for the quantitative solution of the spectral problem for an arbitrary
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operator at finite coupling. Besides, we reveal an interesting underlying representation theory

structure, which could allow for generalisations and may in particular help in the solution of

the spectral problem for AdS3/CFT2 dualities (see [47] for a recent review).

To conclude this introduction, let us review an important fact. In contrast with N=4

SYM, in ABJM theory integrability leaves unfixed the so-called interpolating function h(λ)

[30, 48], which parametrizes the dispersion relation of elementary spin chain/worldsheet ex-

citations and enters as an effective coupling constant in the integrability-based approach, in

particular in the QSC equations. An important conjecture for the exact form of this function,

passing several tests at weak and strong coupling [49], was made in [45] by a comparison with

the structure of localization results. This conjecture was extendend in [50] to encompass the

ABJ model [51], which is based on a more general gauge group U(N)× U(M) and possesses

two ’t Hooft couplings λ1, λ2 in the planar limit. According to the proposal of [50] (based

on important observations of [52–55]), at the level of the spectrum the only difference be-

tween the ABJM and ABJ theories lies in the replacement of h(λ) with an explicitly defined

hABJ(λ1, λ2) (see [50]). In the following we will simply denote the ABJM/ABJ interpolating

function as h.

The contents of this paper are presented in detail below.

In Section 2, we discuss the bosonic symmetry underlying the problem, namely SO(3, 2)×
SO(6), the isometry group of AdS4 × CP 3. We will introduce important vector and spinor

notation used in the rest of the paper. Besides, we comment on the interesting fact that the

isometry group of CP 3 effectively appears in the Quantum Spectral Curve as SO(3, 3), rather

than SO(6).

In Section 3, we review the results of [44] and discuss how they reflect the CP 3 symmetry.

We discuss a subtle modification of the analytic properties (initially overlooked in [44]), which

is needed for the study of certain non-symmetric sectors of the theory. The modified equations

contain an extra nontrivial function of the coupling, which can be interpreted at weak coupling

as the momentum of a single species of magnons.

In Section 4, we present an explicit construction of new variables, the functions QI , Q◦
and τi, which satisfy a dual system of Riemann-Hilbert equations reflecting the symmetry of

AdS4.

In Section 5, we treat in full generality the boundary conditions which need be imposed

on the solutions of the QSC at large value of the spectral parameter in order to describe a

physical state. This is the place where the quantum numbers of the state make an appearance.

We also discuss the correspondence between the functions P and Q and quasi-momenta of

the spectral curve in the classical limit.

In Section 6, based on results obtained in [21, 56], we discuss a set of exact relations which

are perhaps the most convenient way to repack the analytic properties discussed in Sections

3, 4. It is also shown how these equations encode the quantization of the spin.

In Section 7, we embed the previous results into a larger set of functional relations which

may be considered as (part of) a Q-system. Q-systems are familiar in the theory of integrable

models [57, 58] and in the ODE/IM framework [59]: they are powerful sets of functional
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relations that, supplemented by simple analytic requirements, become equivalent to exact

Bethe equations. The structure of Q-systems is completely fixed by symmetry: for example,

the QQ relations relations appearing in the N=4 SYM case are the same as the ones for

SU(4|4) spin chains. For the OSp(4|6) superalgebra relevant to ABJM theory, however,

this algebraic construction was not known in the literature. While we do not treat in full

generality the representation theory aspects, we construct explicitly an enlarged set of Q

functions, and prove that they satisfy exact Bethe equations reflecting the full supergroup

structure. Generalizing arguments of [17], we will show that, in the limit of large volume,

some of these exact Bethe equations reduce to the Asymptotic Bethe Ansatz.

The paper also contains four Appendices:

In Appendix A, we discuss the details of the derivation (already summarized in [44])

of the QSC from the analytic properties of the T-system [43]. In Appendix B, we list some

useful algebraic identities used in the derivation of the Q-system relations. In Appendix

C, we deduce some of the constraints on the asymptotics of P and Q functions. Finally, in

Appendix D we review the dictionary between OSp(4|6) quantum numbers and number of

Bethe roots appearing in various versions of the (Asymptotic) Bethe Ansatz, which could be

useful for the reader wanting to apply the prescription of Section 5 to concrete states.

2 Symmetries and conventions

ABJM theory is invariant under the supergroup OSp(4|6), whose bosonic subgroups are

associated to the isometries of AdS4 and CP 3. We will see that the Quantum Spectral

Curve equations encode elegantly this symmetry structure. Let us briefly introduce the main

group-theoretic constructions related to the bosonic symmetries.

• CP 3: the isometry group of CP 3 is the orthogonal group SO(6) ' SU(4). The invariant

6 × 6 symmetric tensor naturally associated to this symmetry is the metric. This tensor

enters the QSC equations1, and will be denoted in this paper as ηAB. Peculiarly, we will

see that it appears in the QSC with a (+ + +−−−) signature. The concrete form of ηAB
to be used in the rest of this paper is

ηAB = ηAB =



0 0 0 1 0 0

0 0 −1 0 0 0

0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0


, (2.1)

where ηAB is the inverse matrix, i.e. ηAB η
BC = δCA . This particular choice for ηAB emerged

naturally from the derivation of the QSC, summarized in Appendix A. As explained there,

the specific form of ηAB in (2.1) is partly conventional, but its signature cannot be modified

1In [44], this tensor was denoted as χAB .
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without spoiling the reality properties of the system. The fact that the CP 3 symmetry

appears effectively as SO(3, 3) can be understood heuristically considering the classical

limit, where the basic variables of the QSC are related to the quasi-momenta of the algebraic

curve (see Section 5.1). The quasi-momenta describing a string moving in CP 3 are defined

through the diagonalization of a SO(6) block of the classical monodromy matrix. An

SO(2n) orthogonal matrix in general cannot be diagonalized with a real transformation,

so that the signature of the metric is not preserved in the eigenvectors basis; moreover, the

signature changes precisely to the one typical of SO(n, n).

Let us introduce some conventions. We will use different index labels for objects with

different symmetry properties. The indices A,B,C = 1, . . . , 6 will be assumed to carry the

vector representation of SO(3, 3), and will always be lowered and raised with the metric ηAB
and its inverse ηAB, respectively. It will be useful to consider also spinor representations

of SO(3, 3). The relevant 8× 8 gamma matrices are defined by{
ΓA8×8,Γ

B
8×8

}
= ηAB Id8×8. (2.2)

In even dimension, gamma matrices can always be written in a chiral form:

ΓA =

(
0 σAab

(σ̄A)
ab

0

)
, (2.3)

where the matrices σAab and (σ̄A)
ab

satisfy

σAab (σ̄B)bc + σBab (σ̄A)bc = ηAB δca. (2.4)

While all our equations will be covariant, it is convenient to specify a concrete basis. The

matrices σAab and (σ̄A)
ab

are defined in our conventions by

VAσ
A
ab =


0 −V1 −V2 −V5

V1 0 −V6 −V3

V2 V6 0 −V4

V5 V3 V4 0

 , VA(σ̄A)
ab

=


0 V4 −V3 V6

−V4 0 V5 −V2

V3 −V5 0 V1

−V6 V2 −V1 0

 , (2.5)

for an arbitrary vector (V1, . . . , V6). Lower-case indices a, b, c will always be taken to run

over 1, . . . , 4 and will be reserved for the spinor representations. Note that there is a

distinction between upper and lower spinor indices, as they belong to the chiral and anti-

chiral spinor representations, respectively, which are equivalent to the representations 4

and 4̄ of SU(4) ' SO(6). Another natural tensor that will make an appearance in the

equations is the anti-symmetrized product of gamma matrices,

(σAB) ba ≡ −
1

2

(
(σA)ai(σ̄

B)
ib − (σB)ai(σ̄

A)
ib
)
. (2.6)
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• AdS4: the isometry group of AdS4 is SO(3, 2) ' Sp(4). We will denote the metric of this

orthogonal group as ρIJ , and our concrete choice will be:

ρIJ =


0 0 0 1 0

0 0 −1 0 0

0 −1 0 0 0

1 0 0 0 0

0 0 0 0 1
2

 , ρIJ ≡ (ρ−1)IJ =


0 0 0 1 0

0 0 −1 0 0

0 −1 0 0 0

1 0 0 0 0

0 0 0 0 2

 . (2.7)

In the following, we shall always reserve the indices I, J,K, running over 1, . . . , 5, for the

vector representation of SO(3, 2).

Let us remind the reader of the isomorphism between SO(3, 2) and Sp(4), the group of

linear maps preserving a 4 × 4 anti-symmetric two-form. One way to see this is to view

SO(3, 2) as obtained from SO(3, 3) by reducing to the subspace orthogonal to a preferred

vector v, with v · v = −1.

Then we see that an anti-symmetric two-form naturally emerges: κij ≡ vA (σA)ij . Let

us denote a projection of the σ, σ̄ matrices on the subspace orthogonal to v as ΣI , Σ̄I ,

respectively, with I = 1, . . . , 5. By construction, they satisfy the intertwining relations

Σ̄ij
I = κii1 (ΣI)i1i2 κ

i2j , showing that there are in fact only five independent matrices ΣI .

The latter give a four dimensional representation of Clifford algebra:{
ΓI4×4,Γ

J
4×4

}
= ρIJ Id4×4, (2.8)

with

(ΓI4×4)ji ≡ (ΣI)ik κ
kj = κij(Σ̄

I)jk. (2.9)

In the following, we will use indices i, j, k, l, running over 1, . . . , 4, to refer to the four-

dimensional representation of SO(3, 2). Finally, one can introduce the anti-symmetric

combinations

(Σ̄IJ) ji ≡ −
1

2

(
(ΣI)ik(Σ̄

J)
kj − (ΣJ)ik(Σ̄

I)
kj
)
, (2.10)

which play the role of generators of SO(3, 2). By construction, these generators leave

invariant the two-form κij : therefore the spinor representation of SO(3, 2) is identified

with the fundamental representation of Sp(4).

In our concrete case, we see that the metric (2.7) is obtained from (2.1) by restricting to

the subspace orthogonal to v = (0, 0, 0, 0,−1, 1). Our choice for the Σ matrices will be

ΣI ≡
(
σ1, σ2, σ3, σ4, σ5 + σ6

)
, Σ̄I ≡

(
σ̄1, σ̄2, σ̄3, σ̄4, σ̄5 + σ̄6

)
, (2.11)

and the two-form κij reads

κij ≡ vA (σA)ij =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 . (2.12)
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3 Formulation of the QSC from the TBA

In this Section, we recall the first version of the QSC equations proposed in [44]. These equa-

tions were obtained through a reduction of the T-system underlying the TBA formulation (see

Appendix A), and ultimately take the form of a nonlinear Riemann-Hilbert problem defined

on the complex domain of the spectral parameter u. In the u-plane, the Q functions have a

characteristic pattern of branch points, whose positions depends on the coupling constant h

as specified below. These branch points will all be of square-root type. This peculiar kind

of analytic structure for the Q functions, beside AdS5/CFT4, is also characteristic of some

non-relativistic integrable systems such as the Hubbard model [60].

3.1 Equations in vector form and analyticity conditions

In the first version of the equations derived from TBA, the basic variables are: six func-

tions {PA(u)}6A=1, and a 6× 6 anti-symmetric matrix {µAB(u) = −µBA(u)}6A,B=1. They are

constrained by the following quadratic conditions:

P5P6 −P2P3 + P1P4 = 1, µAB η
BC µCD = 0, (3.1)

where ηAB is defined in (2.1). All these functions live on an infinite-sheet cover of the u-

plane, which, however, is built out of a simple set of rules. On what we will consider the first

Riemann sheet, the functions PA(u) have a single branch cut, running from −2h to +2h, see

Figure 1. We assume that they have power-like asymptotics at large u, which means that

they can be written as a Laurent series in the Zhukovsky variable x(u):

PA(u) = (x(u))−MA

∞∑
n=0

cA,n
xn(u)

, x(u) =

(
u+
√
u− 2h

√
u+ 2h

)
2h

. (3.2)

The functions µAB(u) instead display an infinite ladder of branch cuts, at u ∈ (−2h , +2h) +

iZ. They however have the following analyticity property (mirror periodicity2):

µ̃AB(u) = µAB(u+ i), (3.3)

where the symbol tilde is used throughout the paper to denote analytic continuation around

any of the branch points at ±2h (see Figure 1), while the shift on the rhs is evaluated avoiding

all branch cuts.

Finally, the discontinuities of PA and µAB across the cut on the real u-axis are related by

P̃A −PA = µAB η
BC PC , µ̃AB − µAB = PAP̃B −PBP̃A. (3.4)

In addition, as common for the Q functions in integrable models, we should impose a regularity

condition for the basic variables PA and µAB. The precise statement of this condition,

however, cannot be formulated in terms of the matrix entries µAB, but of more fundamental

building blocks which we introduce below.

2This property means that µAB is i-periodic on the long-cuts section of the Riemann surface, known as the

mirror sheet [16].
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Figure 1. Cut structure of the PA functions,

with a single cut on the first sheet. We denote

with P̃A the analytic continuation to the next

sheet, through the cut on the real axis.

Figure 2. The quasi-periodicity property of

νa functions on a sheet with long cuts corre-

sponds to νa(u + i) = e−iP ν̃a(u) on the defi-

ning sheet with short cuts.

3.2 Equations in spinor form

As already discussed in [44], the matrix µAB can be decomposed in terms of 4 + 4 functions
νa, ν

a, as3

µAB =



0 ν1ν
4 −ν2ν3 −ν3ν3 − ν4ν4 −ν1ν3 ν4ν2

−ν1ν4 0 −ν3ν3 − ν1ν1 ν3ν
2 ν1ν

2 ν4ν3
ν2ν

3 ν3ν3 + ν1ν
1 0 −ν4ν1 ν3ν4 ν2ν

1

ν3ν3 + ν4ν4 −ν3ν2 ν4ν
1 0 −ν2ν4 ν3ν

1

ν1ν
3 −ν1ν2 −ν3ν4 ν2ν4 0 −ν3ν3 − ν2ν2

−ν4ν2 −ν4ν3 −ν2ν1 −ν3ν1 ν2ν
2 + ν3ν3 0


, (3.5)

which, using the sigma matrices introduced in Section 2, can be compactly written as

µAB = νa (σAB) ba νb. (3.6)

The constraint (µη)2 = 0 is now equivalent to the condition

νa νa = 0. (3.7)

3 Notice that in [44] a different notation was used and the functions νa were labeled as ν̄, the precise relation

being
{
ν1, ν2, ν3, ν4

}here
= {−ν̄4, ν̄3,−ν̄2, ν̄1}[44].
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As suggested by the analysis of the weak coupling limit [44, 46], we will require that the

functions νa, ν
a are entire functions on any sheet of the Riemann surface, bounded as u

approaches any of the branch points at ±2h+ iZ, and with power-like asymptotics at infinity.

Under these conditions, the splitting (3.6) contains nontrivial analytic information, and may

be argued to be essentially unique4. The new functions νa and νa should therefore be regarded

as more fundamental objects than µAB. Indeed, at weak coupling, ν1 and ν4 are proportional

to the Baxter polynomials containing the two types of momentum-carrying roots entering the

2-loop Bethe Ansatz of [29].

The weak coupling analysis also reveals that the periodicity of µAB on the mirror sheet,

equation (3.3), in general translates into quasi-periodicity for the basic functions νa, ν
a (see

Figure 2). In the subsector considered in [46], these functions could be either periodic or anti-

periodic, and this is a general characteristic of a large sector of states discussed in Section

4.4. For a completely generic state, however, we have5

ν̃a(u) = eiP νa(u+ i), ν̃a(u) = e−iP νa(u+ i), (3.8)

where the phase P depends on the state under consideration and may be, in general, a

nontrivial function of the coupling constant h. We will make more comments on this quantity

in Section 3.3 below.

It is now convenient to pack the six P functions into an anti-symmetric 4× 4 tensor Pab,

defined as

Pab = PAσ
A
ab =


0 −P1 −P2 −P5

P1 0 −P6 −P3

P2 P6 0 −P4

P5 P3 P4 0

 , (3.9)

while the inverse matrix reads

Pab = PA(σ̄A)
ab

=


0 P4 −P3 P6

−P4 0 P5 −P2

P3 −P5 0 P1

−P6 P2 −P1 0

 . (3.10)

The constraint (3.1) can now be rewritten as the condition that Pab has unit Pfaffian:

Pf(Pab) = 1. (3.11)

Besides, it is possible to verify that the discontinuity equations (3.4) can be split nicely as

P̃ab −Pab = νaν̃b − νbν̃a, P̃ab −Pab = −νaν̃b + νbν̃a, (3.12)

ν̃a = −Pab ν
b, ν̃a = −Pab νb. (3.13)

4 It is unique apart for trivial rescalings νa → νa z, ν
a → νa/z, where z is a constant independent of u.

This freedom is however removed by the choice of the normalization of equations (3.12),(3.13) below.
5Notice that P has to be the same for all the components of νa, due to the fact that in (3.5) all combinations

of νaν
b are present, for every a, b.
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As discussed in [44], in this form the equations are, from a purely algebraic point of view,

exactly the same as the Pµ-system of N = 4 SYM [16, 17], with the redefinitions

νa → (Pa)
SYM, νa → (Pa)SYM, Pab → (µab)

SYM. (3.14)

The analytic properties characterizing the AdS5/CFT4 case are however completely different:

the map between the two models in (3.14) requires to change all periodic functions into single-

cut functions, and viceversa6.

Equations (3.7),(3.11),(3.12) and (3.13) should be supplemented with the requirement

that all functions are bounded and free of singularities on every sheet of the Riemann surface,

and with some information on their large-u asymptotics, see Section 5. This set of conditions

is in principle already constraining enough to determine the spectrum, but it is difficult if not

impossible to solve in practice at finite coupling. For this purpose it is necessary to embed

them in the wider set of equations derived in Sections 4 and 6.

3.3 Interpretation of the phase P at weak coupling

The phase P appearing in (3.8) has an interesting interpretation at weak coupling. Recall

that the ABJM spin chain admits two types of momentum-carrying excitations [28, 36], also

known as A and B particles and corresponding to excitations of type 4 and 4̄ in our notations.

These pseudoparticles satisfy collectively the zero momentum condition:

K4∑
j=1

p4,j +

K4̄∑
j=1

p4̄,j = 0, mod(2π). (3.15)

The total momentum of a single type of excitations is instead in general a nontrivial function

of the coupling: it can be defined in the regime of validity of the Asymptotic Bethe Ansatz

as

P
(4)
ABA = −P (4̄)

ABA =

K4∑
j=1

p4,j = −
K4̄∑
j=1

p4̄,j , mod(2π),
(
ps,j = −i log(x+

s,j/x
−
s,j)
)
. (3.16)

We will show that, at the first two weak coupling orders,

P = P
(4)
ABA +O(h4). (3.17)

In particular, since A and B particles are decoupled at weak coupling, this shows that P is

quantized in units of the spin chain length L at leading order: P +O(h2) ∈ 2πZ
L .

At order O(h0), the identification (3.17) follows from the condition that the νa(u) func-

tions have a finite limit as u approaches one of the branch points. As discussed in [22], at the

leading weak coupling order this requirement boils down to

ν̃a(0)− νa(0) ∼ 0, ν̃a(0)− νa(0) ∼ 0, h ∼ 0. (3.18)

6The very existence of this relation is naturally quite surprising and, on the level of pure speculation, one

may wonder if the two theories can somehow be connected through a continuous interpolation.
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Using the weak coupling limits ν1(u) ∝ Q4(u − i/2) + O(h2), ν4(u) ∝ Q4̄(u − i/2) + O(h2),

where Q4 and Q4̄ are the Baxter polynomials storing 4 and 4̄-type Bethe roots, respectively,

equations (3.8), (3.18) lead to:

eiP ∼ Q4(−i/2)

Q4(+i/2)
=

Q4̄(i/2)

Q4̄(−i/2)
= exp( i

K4∑
j=1

p4,j ) +O(h2). (3.19)

Further, in Section 7.3, we derive an explicit expression for P for finite h in the large volume

limit – equation (7.88) – which proves the identification (3.17) up to the next order at weak

coupling.

For a generic short operator at finite coupling, the above mentioned large-volume result

is not applicable, and therefore P is in principle an undetermined, state-dependent function

of the coupling. This could raise some questions on the completeness of the system of QSC

equations. It is part of our proposal that P should not be seen as an input, but is rather

fully fixed, for every state, from the self-consistency of the QSC. In particular, we expect

that it is not necessary to know P in advance in order to compute the anomalous dimension

numerically using the method of [21]7. On the contrary, this phase can be computed as an

output from the solution of the QSC (for instance, one method to reconstruct P is presented

in Appendix E). It would be interesting to clarify whether this quantity has any meaningful

physical interpretation at finite h.

4 Construction of the AdS4-related Q functions

As we will discuss in Section 5.1, the equations presented above are associated, in the clas-

sical limit, to the CP 3 degrees of freedom, and in particular the PA functions are quantum

versions of the classical quasi-momenta living in this part of the target space. We shall now

show how to construct an equivalent version of the QSC which is more appropriate to the

description of AdS4 degrees of freedom, and contains, in the classical limit, the four quasi-

momenta parametrizing the motion of a classical string solution in AdS4. As in the case

of AdS5/CFT4 considered in [17], this entails a swap between the physical and the mirror

section of the Riemann surface. In addition, we will see that this alternative system natu-

rally encodes the relevant symmetry group SO(3, 2), which was not explicitly visible in the

previous formulation.

4.1 The Qa|i and Qij functions

It is convenient to introduce the standard notation for shifts of the rapidity variable u:

F [±n] ≡ F
(
u± in

2

)
; F± ≡ F

(
u± i

2

)
; F±± ≡ F (u± i), (4.1)

where we will always assume that shifts are performed on the section of the Riemann surface

where all cuts are short.
7We plan to return on this issue shortly [56].
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The first step of our construction is the definition of a 4× 4 matrix Qa|i, through the 4th

order finite difference equation

Q+
a|i = Pab (Pbc)[−2]Q

[−3]
c|i . (4.2)

Notice that exactly the same equation is satisfied by ν+
a , as can be verified by combining (3.8)

and (3.13):

ν[+2]
a = Pab (Pbc)[−2] ν[−2]

c , (4.3)

and that the index i in (4.2) does not enter the matrix structure of the equation. We will

take this index to run from 1 to 4, labeling a set of independent solutions of this fourth-order

equation, distinguished by different asymptotic behaviours at large u (see Section 5). Despite

the fact that they satisfy the same finite-difference relation, the analytic properties of νa and

Qa|i will be different: we shall require that Qa|i(u) has no singularities in the whole region

Im(u) > 0. Notice that, because of the cut of Pab on the real axis, (4.3) implies that Qa|i has

an infinite ladder of short branch cuts in the lower half plane, starting at Im(u) = −1/2.

It will be convenient to define Qa|i ≡ (Pab)− (Qb|i)
[−2], so that (4.2) can be split as

Q+
a|i = Pab (Qb|i)

−, (Qa|i)
+ = PabQ−b|i. (4.4)

Now, let us construct the tensor

kij ≡ Q+
a|i (Qa|j)

+ = Q+
a|iP

abQ−b|j . (4.5)

Using (4.4), it is simple to see that kij is invariant under a shift u → u + 2i, and, since by

construction it is free of cuts in the upper half plane and has power-like asymptotics, it must

be a constant matrix. In addition, notice that (4.4) implies more precisely that k+
ij = −k−ji, so

that kij is an anti-symmetric matrix, i.e. a symplectic form. This shows that the space of the

i-indices should be thought as carrying the fundamental representation of Sp(4) ' SO(3, 2),

the isometry group of AdS4. It is suggestive that this symmetry was completely hidden at

the level of the equations discussed in Section 3, and the mechanism by which it has appeared

evokes somehow a spontaneous symmetry breaking.

From (4.5) we see that the specific form of kij can be adjusted by taking different linear

combinations of the columns of the matrix Qa|i (we are allowed to do this since the defining

relation (4.2) is linear). We use this freedom to impose that kij = κij as defined in (2.12).

Note in particular that8 Pf(κij) = −1.

Using (4.5), we can relate Qa|i to the inverse transposed matrix of Qa|i:

Qa|i = Qa|j κji, (4.6)

8This concrete choice is purely conventional, however notice that a different value for the Pfaffian of κij
would affect some of the equations below.
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where Qa|i ≡ (Q−T )a|i, such that Qa|j Q
a|j = δji , Qa|iQ

b|i = δba. Another simple consequence

of (4.2) is that the determinant det(Qa|i) is invariant under shifts of +2i; by the same ar-

guments as above, it also must be a constant independent of u. Considering the Pfaffian of

equation (4.5) and using the property Pf(AtBA) = det(A) Pf(B), we see that

det
(
Qa|i

)
= det

(
Qa|i

)
= Pf (κij) = −1. (4.7)

We proceed now to construct an object whose indices live in the product of two Sp(4) repre-

sentations, as

Qij = (Qa|i)
+Q−a|j = (Qa|i)

+ Pab (Qb|j)
+. (4.8)

Let us discuss the algebraic properties of this tensor. First, from (4.8), we see immediately

that

Qij = −Qji, Pf(Qij) = −1. (4.9)

Being a 4× 4 anti-symmetric matrix, Qij has six independent components. It will be conve-

nient to decompose it into 5+1-dimensional irreducible representations of SO(3, 2) using the

invariant tensor κ: the trivial representation is given by the trace

Q◦ = Qij κ
ij = Q−a|i (Qa|i)+, (4.10)

while the five dimensional vector representation is the traceless part:

Q5
ij = Qij +

1

4
κij Q◦. (4.11)

Finally, the inverse matrix Qij , satisfying Qij Q
jk = δkj , can be computed as

Qij = κii1 κji2 (Qa|i1)+ Pab (Qb|i2)+ (4.12)

= −(Qa|i)−Pab (Qb|j)−, (4.13)

and it is simple to show (see Appendix B.3) that the following identity holds

Qij = κii1 κji2 Qi1i2 −
κij

2
Q◦. (4.14)

The following relations constitute a natural counterpart of (4.4) involving the Sp(4)-invariant

indices:

Q+
a|i = −Q−a|j Q

jk κki, (Qa|i)
+ = −(Qa|j)

− κjkQki. (4.15)

Shortly, we will show that the elements Qij have very simple analytic properties: starting

from the upper half plane, they can be analytically continued to a Riemann section with the

only branch cuts being the semi-infinite segments (−∞,−2h) and (2h,∞).
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4.2 The τi functions

We now construct a new set of four functions, denoted as τi and defined as

τi = νaQ−a|i. (4.16)

Manifestly, these quantities exhibit an infinite series of short branch cuts. Applying (4.4) and

(3.8), we see that, under a shift u→ u+ i, they transform as

τ
[+2]
i = Q

[+]
a|i (νa)[+2] = Pab (Qb|i)

− (−eiP Pac νc) = eiP νa (Qa|i)
−, (4.17)

and shifting this expression once more we find that τi are 2i-periodic on the Riemann section

with short cuts:

τ
[+4]
i = τi. (4.18)

The τi functions may be seen as counterpart of the νa functions. Their analytic properties are

very similar, with a characteristic swap of short and long cuts. However, notice that, while

the functions νa and νa are distinct objects, carrying different irreps of SO(3, 3), there are

only four independent functions τi, corresponding to the spinor representation of SO(3, 2).

4.3 The Qτ-system

The functions Qij(u) introduced above have, by their very definition, no singularities in the

upper half plane, with two branch points at u = ±2h and an infinite ladder of short cuts

further down in the lower half plane.

Let us study the analytic continuation of Qij and τi through the branch cut on the real

axis. Combining (4.18) and (4.17), we have

τi = eiP ν[+2]
a (Qa|i)

+ = ν̃a (Qa|i)
+, (4.19)

and, since Qa|i has no cuts in the upper half plane, we find

τ̃i = νa (Qa|i)
+ = −νa (Qa|j)

− κjkQki, (4.20)

where we used (4.15) in the last step. By comparison with (4.19), we see that (4.20) can be

rewritten as τ̃i = −Qij τ
j , where we have defined

τ i ≡ e−iP κij τ [+2]
j . (4.21)

Let us now consider the discontinuity of Qij : we find

Q̃ij −Qij = (Qa|i)
+
(
P̃ab −Pab

)
(Qb|j)

+

=
(

(Qa|i)
+ νa

) (
ν̃b (Qb|j)

+
)
−
(

(Qa|i)
+ ν̃a

) (
νb (Qb|j)

+
)

= τ̃i τj − τ̃j τi. (4.22)

– 14 –



Figure 3. Cut structure of the Q functions in the

physical Riemann section. On the first (second)

sheet, Q is analytic in the upper (lower) half plane.

Figure 4. Gluing the two analyticity regions from

the sheets 1 and 2 of Figure 3, one defines the mir-

ror sheet, with a single long cut.

All in all, we see that the discontinuities (4.20) and (4.22) take the form

Q̃ij −Qij = τ̃i τj − τ̃j τi, τ̃i = −Qij τ
j . (4.23)

The second relation in (4.23) shows how the phase P appears in the Qτ -system, through

(4.21). Finally, contracting (4.16) and (4.17) with κij , we find the constraint

τi τ
i = e−iP τi κ

ij τ
[+2]
j = −νa νa = 0. (4.24)

Equations (4.23), with the constraints (4.24), (4.9) may be considered as a counterpart of

the Pν-system (3.7),(3.11)-(3.13). While the equations take a very similar form, they are not

identical from the algebraic point of view, due to the fact that the functions τi and τ i are

simply related, for a generic state, by a shift in the spectral parameter, as expressed by (4.21).

This distinction reflects the representation theory, as there is only one four-dimensional rep-

resentation of Sp(4). The difference can be fully appreciated by projecting the Qτ equations

on irreducible representations; this is discussed below in Section 4.3.2.

4.3.1 Qij on the mirror sheet

Let us now prove that, when analytically continued from the upper to the lower half plane

passing through the cut (−2h, 2h), the matrix Qij is analytic in the whole lower half plane
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(see Figure 3). Therefore, on an appropriate Riemann section, it has only a pair of long

cuts stretching from ±2h to infinity (see Figure 4). This is a very strong analogy with the

AdS5/CFT4 case considered in [16].

We start by observing that, using (4.24) and the second equation in (4.23), the disconti-

nuity relation (4.22) can be put in the form

Q̃ij = Qmn (δmi − τi τm)
(
δnj − τj τn

)
≡ Qmn f

m
i fnj , (4.25)

where we have defined a 2i-periodic matrix function f ji ≡ δji − τi τ j . This relation can be

recast as

Q̃ij =
(
Q−b|mPabQ−a|n

)
fmi fnj = Pab (QLHPA

b|i )− (QLHPA
a|j )−, (4.26)

where

QLHPA
a|i ≡ Qa|j (f ji )+ = Qa|i −Qa|j (τ j)+ τ+

i = Qa|i + ν+
a (νb)+Qb|i. (4.27)

We will now show that QLHPA
a|i has no branch cuts in the lower half plane (hence the superscript

LHPA – Lower Half Plane Analytic). Therefore, the representation (4.26) manifestly shows

that the same is true for Q̃ij , and therefore Q has a single long cut on the mirror Riemann

sheet.

To prove that QLHPA
a|i has no cuts in the lower half plane, we can exploit the fact that, due

to the periodicity of f ji (u), it satisfies the same fourth order difference equation (4.2) fulfilled

by Qa|i. Therefore, it is sufficient to check that it has no cut on the lines Im(u) = −1/2, −3/2:

the difference equation (4.2) will then automatically imply that it is analytic everywhere in

the lower half plane. This leaves us with just two conditions to check. The first discontinuity

to study is

4( (QLHPA
a|i )− ) = 4(Q−a|i −Q

−
a|j τ

j τi ), (4.28)

where we are using the notation 4(G) = G − G̃. From the first relation in (4.15), we find

4(Q−a|i) ≡ Q−a|i − Q̃
−
a|i = −Q+

a|k κ
kl
(
Qli − Q̃li

)
(4.29)

= −Q+
a|k κ

kl (τl τ̃i − τi τ̃l) , (4.30)

where we used (4.23) in the last step. We may now to use the following identities, found by

inverting (4.19),(4.20):

νa = −Q+
a|i κ

ij τ̃j , νa = −Q−a|iτ
i, (4.31)

to transform (4.30) into

4(Q−a|i) = ν̃a τ̃i − νa τi = −4(νa τi) = 4(Q−a|j τ
j τi). (4.32)

The last equality shows the vanishing of the discontinuity (4.28). A completely analogous

calculation would show that

4
[
(Qa|j)

− (f ji )[−2]
]

= 0, (4.33)

therefore also the next discontinuity is trivial

4
[

(QLHPA
a|i )[−3]

]
= P

[−2]
ab 4

[
(Qa|j)

− (f ji )[−2]
]

= 0, (4.34)

which concludes the proof.
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4.3.2 Vector form of the Qτ-system

We may rewrite the discontinuity equations (4.23) in an alternative form, more similar to the

Pµ-system. To do this, let us rearrange the components of Q5
ij into a five-vector:

QI(u) ≡ −1

2

(
Q5
ij(u) Σ̄ij

I

)
, (I = 1, . . . , 5), (4.35)

or equivalently

Q5
ij(u) = (ΣI)ij ρ

IJ QJ(u), (4.36)

where we are using the matrices ΣI and the metric ρIJ defined in Section 2. In components,

this definition reads

QI = −
(
Q12,Q13,Q24,Q34,

1

2
(Q14 + Q23)

)
, (4.37)

Q5
ij =


0 −Q1 −Q2 −Q5

Q1 0 −Q5 −Q3

Q2 Q5 0 −Q4

Q5 Q3 Q4 0

 . (4.38)

It is also convenient to define

ωIJ(u) ≡ τk(u) (ΣIJ) ik τi(u), ψI(u) ≡ τm(u)κmi Σ̄ij
I τj(u), (4.39)

or explicitly:

ωIJ =


0 τ1τ

4 −τ2τ3 −τ3τ3 − τ4τ4 1
2 (τ2τ

4 − τ1τ3)

−τ1τ4 0 −τ3τ3 − τ1τ1 τ3τ
2 1

2 (τ1τ
2 + τ3τ

4)

τ2τ
3 τ3τ3 + τ1τ

1 0 −τ4τ1 1
2 (τ2τ

1 + τ4τ
3)

τ3τ3 + τ4τ4 −τ3τ2 τ4τ
1 0 1

2 (τ1τ3 − τ2τ4)
1
2 (τ1τ

3 − τ2τ4) − 1
2 (τ1τ

2 + τ3τ
4) − 1

2 (τ2τ
1 + τ4τ

3) 1
2 (τ2τ4 − τ1τ3) 0

 ,

(4.40)

ψI =
(
−τ1τ

3 − τ2τ
4, τ1τ

2 − τ3τ
4, −τ2τ

1 + τ4τ
3, −τ2τ4 − τ1τ3, τ2τ

2 + τ3τ
3
)
. (4.41)

From (4.18),(4.21), it is simple to prove that the components of ωIJ(u) are i-periodic functions,

while the components of ψI are anti-periodic under the same shift:

ω
[+2]
IJ = ωIJ , ψ

[+2]
I = −ψI . (4.42)

In terms of these new variables, the nonlinear constraints (4.9),(4.24) take the form

Q2
◦

16
− 1 = Q2

5−Q2 Q3 +Q1 Q4 , ωIJ ρ
JK ωKL = −1

2
ψI ψL , ψI ρ

IJ ψJ = 0 , (4.43)

while the discontinuity equations (4.23) can be rewritten as

Q̃I −QI = −ωIJ ρJK QK +
1

4
ψI Q◦, ω̃IJ − ωIJ = QI Q̃J −QJ Q̃I ,

Q̃◦ −Q◦ = 2ψJ ρ
JK QK , ψ̃I − ψI =

1

2

(
QI Q̃◦ −Q◦ Q̃I

)
.
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4.4 Reduction to 4↔ 4̄ symmetric states

In this Section we consider the reduction of the QSC equations to a large subsector character-

ized by perfect symmetry between the contributions of A- and B-type excitations. In terms

of the ABA, this subsector is characterized by the equality of the sets of momentum-carrying

Bethe roots, {u4,k}K4

k=1 =
{
u4̄,k

}K4̄

k=1
. As discussed in Appendix A, this case is selected by the

conditions:

P5 = P6, νa = κabνb. (4.44)

In this case we have the relation Pab = κalPlm κ
mb and we see that necessarily, eiP is either

1 or −1. By studying the large-u asymptotics of equation (4.2), we find that, in this case,

the elements of the matrices Qa|i, Q
a|i may be chosen as related by the symmetry:

Qa|i = −eiP κabQb|j K
j
i , (4.45)

with

Ki
j =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 . (4.46)

This means also that

Qa|i κ
abQb|k κ̂

kl = δ li , (4.47)

where κ̂ki ≡ −eiP (κK)ki = −eiP (Kκ)ki. The symmetry imposes the following condition:

Qij = −Kk1
i Qk1k2 K

k2
j −

κij
2

Q◦, (4.48)

which implies

Q5
ij = −Kk1

i Q5
k1k2

Kk2
j . (4.49)

Taking (4.44),(4.45) into account in (4.17), we see that in this subsector the periodicity of τi
is enhanced to

τ
[+2]
i = τkKk

i , (4.50)

which means that τ1 and τ4 are i-periodic, while τ2, τ3 are i-anti-periodic. Since we expect

all these functions to have power-like asymptotics for physical operators, we see, from the

condition of anti-periodicity, that

lim
u→±∞

τ2 = lim
u→±∞

τ3 = 0. (4.51)

This resut will be important in the following. Finally, in terms of the variables of Section 4.3.2,

the reduction to the symmetric subsector can be obtained setting Q5 = ψ5 = ω5I = ωI5 = 0.
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5 Asymptotics and global charges

The Riemann-Hilbert type equations described in Sections 3 and 4 have to be supplemented

with appropriate constraints on the large-u behaviour of the functions entering the QSC. We

will assume, in analogy with [17], that all the functions we have described scale as powers of

u for large values of the spectral parameter, in particular

PA(u) ∼ AA u−MA . (5.1)

An important observation is that, since the P functions have a single short cut on the first

Riemann sheet, they must have trivial monodromy around infinity, which forces MA ∈ Z.

These integer parameters are related to the three SO(6) R-charges J1, J2, J3, correspond-

ing to three angular momenta parametrizing the motion of the string in CP 3, through the

prescription

MA = (J2 + 1, J1, −J1, −J2 − 1, J3, −J3) . (5.2)

The AdS4 charges ∆ and S, corresponding to the conformal dimension and spin of the gauge

theory operator, respectively, enter the QSC through the asymptotics of νa, described below.

Equivalently, they can be read off the coefficients AA in (5.1), through the constraints

AB AB = 2

∏5
I=1

(
MB − M̂I

)
∏6
C 6=B(MB −MC)

, (B = 1, . . . , 6), (5.3)

(with no summation implied on the index B), where the 5-vector M̂ is defined as

M̂I = (∆ + S + 1 , ∆− S , −∆ + S , −∆− S − 1 , 0) . (5.4)

The charges (∆, S, J1, J2, J3) used above are defined relatively to the Dynkin diagram of

Figure 5. We remind the reader that, for supersymmetric algebras, the definition of the

charges depends on a choice of grading of the Dynkin diagram; if a different grading were

chosen, relations (5.2) and (5.4) would be slightly different. However, we stress that the

parameters MA and M̂I appearing in the asymptotics of the QSC are invariant under these

changes, and unambiguously associated to a given multiplet (see [17] for a detailed discussion).

Concretely, we may read the charges from the Asymptotic Bethe Ansatz description of the

state:

J1 = L−K1, J2 = L−K4 −K4̄ +K3, J3 = K4 −K4̄, (5.5)

∆− S = L+K2 −K1 + γ, ∆ + S = L+K3 −K2 + γ, (5.6)

where L is the length parameter and Ki denotes the number of Bethe roots of type i in the

so-called η = +1 version of the ABA [35], while γ is the anomalous dimension. For more

details and a dictionary between different forms of the ABA, see Appendix D.

The large-u asymptotics of the matrix Qa|i(u) may be determined by studying (4.2).

There are four possible asymptotic behaviours where Qa|i scales as a power of u, parametrized
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in terms of the charges MA, M̂I entering the equation through (5.1),(5.3). By choosing a

suitable linear combination of solutions, we shall impose that different columns of Qa|i have

distinct leading asymptotics, ordered in such a way that |Qa|i| > |Qa|j | for i < j for large u.

To describe the possible scaling behaviours, it is convenient to introduce:

Na =

(
1

2
(−M1 −M2 +M5),

1

2
(−M1 +M2 −M5),

1

2
(M1 −M2 −M5),

1

2
(M1 +M2 +M5)

)
,

N a =

(
1

2
(M1 +M2 −M5),

1

2
(M1 −M2 +M5),

1

2
(−M1 +M2 +M5),

1

2
(−M1 −M2 −M5)

)
,

N̂i =

(
1

2
(M̂1 + M̂2),

1

2
(M̂1 − M̂2),

1

2
(M̂2 − M̂1),

1

2
(−M̂1 − M̂2)

)
. (5.7)

With these definitions, we have

Pab(u) ∼ uNa+Nb , Qa|i(u) ∼ uNa+N̂i , Qa|i(u) ∼ uNa+N̂i , (5.8)

while νa and νa have the same leading asymptotic behaviour as Qa|1, Qa|1, namely:

νa(u) ∼ uNa+N̂1 , νa(u) ∼ uNa+N̂1 . (5.9)

The asymptotics of Qij can be computed from the definition (4.8), and turn out to be, for

the vector components,

QI(u) '
(
B1 u

M̂1−1,B2 u
M̂2−1,B3 u

−M̂2−1,B4 u
−M̂1−1,

B5

u

)
, (5.10)

where the coefficients BI are constrained by consistency conditions similar to (5.3):

BI BI =
1

2

∏6
A=1

(
M̂I −MA

)
∏5
J 6=I(M̂I − M̂J)

, (I = 1, . . . , 5), (5.11)

B5 = − i
2

M1M2M5

M̂1 M̂2

, (5.12)

(with no summation on the index I in (5.11)). The trace part satisfies

Q◦(u) = 4 +
2 C
u2

+O
(

1

u3

)
, (5.13)

where the constant C coincides with the value of the OSp(4|6) Casimir:

C =
1

4

(
M̂2

1 + M̂2
2 −M2

1 −M2
2 −M2

5

)
. (5.14)

A derivation of these constraints is discussed in Appendix C. Finally, let us comment on the

asymptotics of the four functions τi(u). Since the latter are 2i-periodic, and by construction

grow less than exponentially for large u, they must approach a vector of constants at infinity.
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There is a certain amount of freedom in normalizing these constants, but we expect that for

any physical state the components of τi with i = 2, 3 always vanish at large u:

lim
u→±∞

τ2(u) = lim
u→±∞

τ3(u) = 0. (5.15)

In Section 4.4 we established (5.15) for the class of 4 ↔ 4̄-symmetric operators. While

we do not have a fully rigorous argument, we postulate that (5.15) is true in general even

for nonsymmetric states. As we discuss in Section 6, the asymptotics (5.15) implies the

quantization of the spin and is the main ingredient for deriving the so-called gluing conditions,

a powerful set of constraints encoding the main analytic properties of the system.

While here we presented these prescriptions on the asymptotics somehow axiomatically,

we stress that they are fixed to a great extent by the internal consistency of the QSC equations

(see Appendix C). Indeed, one can derive the form of the constraints presented in this Section

assuming only that all functions have power-like asymptotics, and that the parameters MA

are paired up as in (5.2), namely M5 = −M6, M1 = −M4, M2 = −M3. The latter condition

was fixed by studying the weak coupling limit. The identifications (5.2),(5.4) between the

parameters and the charges are strongly motivated by the classical limit discussed in Section

5.1 below, and by several tests both at weak and finite coupling [46, 56].

5.1 Classical limit

The algebraic curve describing IIA string solutions on AdS4×CP 3 in the classical limit where

∆, S, Ji = O(h), h→∞9 was proposed in [33]. In particular, a monodromy matrix was built

on the basis of the Lax connection found in [31, 32] and its eigenvalues λa ≡ eiqa were shown

to define a ten-sheeted Riemann surface covering the domain of the relevant strong coupling

spectral parameter, the Zhukovsky variable x. It is convenient to consider the logarithm of

the eigenvalues, the so-called quasi-momenta, naturally grouped as {q3, q4, q5,−q3,−q4,−q5}
and {q1, q2,−q1,−q2}, corresponding respectively to the SO(6) invariant CP 3 and the Sp(4)

invariant AdS4 sectors of the monodromy matrix. The quasi-momenta are connected by

logarithmic cuts10, which may be viewed as condensates of Bethe roots. Classical string

solutions can be studied by listing algebraic curves satisfying appropriate analytic properties

(see [33] for full details), and in particular the charges can be read off the asymptotics of the

curve at large values of the spectral parameter:
q1

q2

q3

q4

q5

 ∼
1

hx


∆ + S

∆− S
J1

J2

J3

 , x ∼ ∞, (5.16)

9In this limit, h(λ) ∼
√
λ/2.

10These cuts exist only in the classical limit and of course they should not be confused with the square-root

branch cuts at u = ±2h+ iZ considered in the rest of the paper for the QSC.
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where the quasi-momenta are ordered as in [33].

In the classical limit, we expect that some of the P and Q functions of the QSC are

related to the quasi-momenta as follows:

P1(u) ∼ e−h
∫ u/h q4(z)dz, P4(u) ∼ e+h

∫ u/h q4(z)dz, (5.17)

P2(u) ∼ e−h
∫ u/h q3(z)dz, P3(u) ∼ e+h

∫ u/h q3(z)dz, (5.18)

P5(u) ∼ e+h
∫ u/h q5(z)dz, P6(u) ∼ e−h

∫ u/h q5(z)dz, (5.19)

Q1(u) ∼ e+h
∫ u/h q1(z)dz, Q4(u) ∼ e−h

∫ u/h q1(z)dz, (5.20)

Q2(u) ∼ e+h
∫ u/h q2(z)dz, Q3(u) ∼ e−h

∫ u/h q2(z)dz. (5.21)

Given these identifications, (5.16) justifies the expressions (5.2)-(5.4) for the large-u asymp-

totics of P and Q functions in terms of the charges11. Moreover, at least some of the limits

in (5.17)-(5.21), particularly the ones for P1, P2, Q1, Q2, can be directly confirmed from the

large volume limit of the QSC, see Section 7.3 below.

Another important property of the classical curve is the so-called inversion symmetry,

which reads [33] 
q1(1/x)

q2(1/x)

q3(1/x)

q4(1/x)

q5(1/x)

 =


−q2(x)

−q1(x)

2πm− q4(x)

2πm− q3(x)

q5(x)

 , m ∈ Z. (5.22)

The symmetry (5.22) is inherited by the transformation property of the monodromy matrix

under the Z4 automorphism of OSp(4|6) [31, 32], and is related to the Riemann-Hilbert type

equations valid for P and Q at finite coupling. Let us illustrate this point and discuss some

consistency checks of the quasi-classical identifications (5.17)-(5.21). Consider the case of P

functions. In the classical limit, one can argue (see [17]) that, due to its mirror-periodicity, the

matrix µAB(u) connecting P and P̃ freezes to a constant value independent of u. Moreover,

we see from (5.17)-(5.21) that P1 and P2 are exponentially suppressed as h→∞. Therefore,

from the QSC equation (3.4) we find

P̃1 ∼ P3, P̃2 ∼ P4. (5.23)

On the other hand, starting from the classical expressions (5.17),(5.18) for P1 and P2, ana-

lytically continuing to the second sheet and using the inversion symmetry (5.22), one finds

(see [17] for details)

P̃1 ∼ e+h
∫ u/h q3(z)dz, P̃2 ∼ e+h

∫ u/h q4(z)dz, (5.24)

and the comparison between (5.24) and (5.23) gives the classical identification for P3 and P4.

This analysis cannot be straightforwardly repeated for the Q functions, since the τ ’s are not

11In principle, since the charges are assumed to be large in this regime, this reasoning fixes (5.2)-(5.4) only

up to finite shifts. As already mentioned, the precise form of the asymptotics has been determined studying

the solution of the QSC at weak coupling [44, 46].
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constants in the classical limit. However, the inversion symmetry has a quantum analogue in

the gluing conditions discussed in Section 6, which connect Q̃ij and the complex conjugate

functions Qij . From the analytic continuation of (5.17)-(5.21), combined with the inversion

symmetry, we may infer that in the classical limit

Q̃3 ∝ Q1, Q̃4 ∝ Q2. (5.25)

This is indeed consistent with the results of Section 6.

As a last comment, notice that there is no classical analogue for two of the components

of the matrix Qij , namely the functions Q5 and Q◦, which enter the basic Riemann-Hilbert

constraints at finite coupling, but appear to completely decouple from the dynamics in the

classical limit. This is a peculiar feature, as compared with the case of AdS5/CFT4, and it

would be important to find a proper interpretation. One may also speculate that there is a

connection with the fact that part of the classical string solutions in ABJM theory are not

captured by the classical spectral curve [61].

5.2 Unitarity conditions

The structure of the QSC also appears to automatically implement the unitarity bounds

satisfied by the charges of a physical state. The discussion here will be very similar to the

argument of Section C.2 of [17], so we will only sketch the main points. From the perspective

of the QSC, the unitarity bounds arise from the requirement that the powers appearing in

the asymptotics of P and Q functions are all distinct. This condition is very natural, since

otherwise expressions like (5.3) and (5.11) for the coefficients AA, BI would become singular.

A further condition appears to be needed, namely that, for all consistent solutions of the

QSC, the powers entering the asymptotics of Q functions are greater than the ones entering

the asymptotics of P functions: precisely, |MA| < |M̂I |, I 6= 5. While it is more difficult to

motivate this bound from first principles, it can be verified that it holds at weak coupling or

in the large volume limit. Assuming a (purely conventional) ordering of magnitude for the

components of PA and QI , we can therefore argue that all non-singular solutions of the QSC

can be found restricting our attention to

M̂1 > M̂2 > M2 > M1 > |M5|. (5.26)

With the identification (5.2),(5.4), we find that these conditions coincide with the unitarity

bounds

J2 ≥ |J3|, J1 ≥ 2 + J2, S ≥ 0, ∆ > S + J1, (5.27)

or equivalently, in terms of excitation numbers (see [53]12):

L+K3 − 2K4 ≥ 0, L+K3 − 2K4̄ ≥ 0, K4 +K4̄ −K3 ≥ 2 +K1, (5.28)

K3 +K1 ≥ 2K2, K2 + γ > 0. (5.29)

12Notice that, in [53], the bounds are written in terms of the excitation numbers referring to a different

version of the Bethe Ansatz, associated to the distinguished grading of the Dynkin diagram. The rules to

convert between different conventions are reported in Appendix D.
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As a final comment, notice that, in principle, some of the inequalities (5.26) could be saturated

exactly in the weak coupling limit, where γ → 0. Since the parameters MA, as well as M̂2−M̂1

(see Section 6) are quantized, this is possible only for the condition M̂2 > M2. The saturation

of this bound for γ → 0 is equivalent to the multiplet shortening condition:

∆(0) − S − J1 = 0, (5.30)

where ∆(0) is the classical conformal dimension, or equivalently K2 = 0 in terms of excitation

numbers. The states satisfying (5.30) have a peculiar characteristic in the QSC, namely they

are the ones for which one of the P functions vanishes at weak coupling. This is shown by

the fact that for these operators A2A3 → 0 as M̂2 −M2 → 0 in (5.3).

6 Gluing conditions and spin quantization

We shall now derive an exact relation (valid for real values of the charges) connecting the

values of Qij on the second sheet to the values of the complex conjugate function Qij . A

similar result was first found in the AdS5/CFT4 context and exploited to solve the QSC

in various regimes [18, 21]. In particular the equations presented below13 may be used to

solve the QSC numerically at finite coupling [56]. For the derivation, we need an important

technical assumption: we require that the matrix elements Qa|i can be expanded at large-u

as

Qa|i(u) ∼ uNa+N̂i
∞∑
m=0

B(a|i),m

um
, u→ +∞. (6.1)

In words, (6.1) means that there is no mixing among the powers occurring in the asymptotics

of different columns of Qa|i. This condition was dubbed “pure asymptotics” in [21], and can

always be enforced using the freedom to take linear combinations of the columns of Qa|i. We

also assume that, for real values of the charges and the coupling, Pab can be chosen to be

real14. Under these conditions, the conjugate matrix elements Qa|i satisfy the same difference

equation (4.2) as Qa|i. This implies that the two matrices are related through

Qa|i(u) = Qa|j(u) (Ωj
i (u))+, (6.2)

where Ωj
i (u) is a 2i-periodic function of u: Ωi

j(u + 2i) = Ωi
j(u). The condition of pure

asymptotics (6.1) implies that, as u → ∞, the matrix Ωi
j becomes diagonal. Now, we recall

the discontinuity relation (4.25):

Q̃ij(u) = f li (u)Qlk(u) fkj (u), (6.3)

13The results presented in this Section were also obtained independently by Riccardo Conti using a slightly

different argument [62].
14Throughout this section, reality and complex conjugation will be defined on the Riemann section with

short cuts. Concretely, the reality of PA means that all coefficients cA,n in (3.2) are real.

– 24 –



where f ji (u) = δji − τi(u) τ j(u), which, combined with (6.2), gives

Q̃ij = Lli κlk Q
km

κmn Lnj , (6.4)

with

Lil(u) = (f(u) Ω−1(u))ji . (6.5)

The crucial observation is now that Lij(u) must be a constant independent of u. In fact, the

definition (6.5) can be rewritten as

Lji = fki Q
−
a|k (Q

a|j
)− = (QLHPA

a|i )− (Q
a|j

)−,

and the last equality shows manifestly that Lji has no cuts in the upper half plane, since this

property is true for both QLHPA
a|i and Q

a|j
. Because of its 2i-periodicity, Lij is then entire in

u, and, since it does not grow exponentially, it must be a constant.

To determine the form of Lji , we can study its definition at large u, where Ωi
j becomes

diagonal and many of the matrix elements of f ij vanish due to the fact that τ2, τ3 → 0. The

structure is further specified by several consistency conditions. For instance, since L does not

depend on u, we should certainly impose the equality of the following limits:

Lji = lim
u→+∞

(
f(u) Ω−1(u)

)j
i

= lim
u→−∞

(
f(u) Ω−1(u)

)j
i
. (6.6)

To exploit this constraint, notice that the constant limits of Ω at ±∞ are related as follows:

lim
u→−∞

Ωi
i(u) =

(
lim

u→+∞
Ωi
i(u)

)
e−2πi(Na+N̂i). (6.7)

This condition can be obtained studying the definition (6.2) as u→ ±∞, using the fact that

the asymptotic behaviour of Qa|i(u) (Qa|i(u), respectively) as u → −∞ must be connected

to the one for u → +∞ through analytic continuation along a large semicircle in the upper

(lower) half plane, where this function is free of singularities. Considering relation (6.6) for

j = 2, 3, and using (6.7), we find

e2πi(Na+N̂i) = 1, (6.8)

for i = 2, 3, ∀a. This equation implies that M̂2 − M̂1 = 2S + 1 ∈ Z, namely the spin is

integer or half-integer. The other conditions in (6.6) constrain the asymptotics of the non-

zero components of τ . Denoting ti,± ≡ limu→±∞ τi, we have in particular

t1,± t4,± = ±i eiP tan(π M̂1). (6.9)

Finally, evaluating L at large u and using (6.9), relation (6.4) leads to the gluing conditions:

Q̃1 = − eiπM̂1

y1 y2 cos(πM̂1)
Q1 + δ1 Q3, Q̃3 = − e−iπM̂1

y2 y4 cos(πM̂1)
Q3 +

y3

y2
δ2 Q1, (6.10)

Q̃2 = − eiπM̂1

y1 y3 cos(πM̂1)
Q2 +

y2

y3
δ1 Q4, Q̃4 = − e−iπM̂1

y4 y3 cos(πM̂1)
Q4 + δ2 Q2, (6.11)

Q̃◦ = Q◦, Q̃5 = −Q5, (6.12)
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where we are using the vector notation defined in Section 4.3.2, δ1 = e−iPt21,+/(y1y2), δ2 =

−e−iPt24,+/(y3y4), and yi ≡ limu→+∞Ωi
i(u). For completeness we point out that the constants

yi, δi may in general depend on the coupling and on various normalization choices. For the

implementation of the numerical method, it is only needed to know explicitly the value of yi.

These constants, which satisfy the consistency conditions y1 = 1/y4 = 1/(y∗1), y2 = 1/y3 =

1/(y∗2), are simply related15 to the choice of normalization of the Qa|i(u) functions, and can

be determined as:

yi = (B(a|i),0)∗/B(a|i),0, ∀a. (6.13)

The relations (6.10)-(6.12) are similar to the ones obtained in [18, 21], but slightly more

complicated. Indeed, in the AdS5/CFT4 context a single Q function appears on the rhs of

the gluing conditions, which are an almost direct lift of the inversion symmetry connecting

pairs of quasi-momenta in the classical limit. In the present case, the quantum version is a

bit more intricate. In particular, the explicit parametric dependence of the gluing conditions

on the charge M̂1 needs to be taken into account in order to develop a numerical algorithm

[56]. As a last comment, we observe that the quantization of the spin is a direct consequence

of the choice of vanishing asymptotics for two of the components of τ . As shown in [18], it

should be possible to relax this condition and consider continuous values of S by admitting

exponentially growing asymptotics in τ2 and τ3.

7 The Q-system

In this Section we show how to embed the previous results into a larger set of functional

equations reflecting the OSp(4|6) symmetry. It is important to mention that, while the

form of Q-systems associated to GL(M |N)-type superalgebras is known (see e.g. [14, 25,

63]), there appears to be no comprehensive understanding of this mathematical structure for

orthosymplectic superalgebras. Here we take a bottom-up approach to the problem and try

to construct the Q-system starting from the Q functions already introduced16: PA, QI , Qa|i,

Qa|i, together with the relations linking them, equations (4.4),(4.5),(4.8). We will explicitly

define new Q functions and prove the validity of a set of functional relations which is rich

enough to contain various forms of exact Bethe Ansatz equations (equivalent to the absence

of poles for the Q functions) related to the OSp(4|6) symmetry.

Before starting the construction, let us describe some of its main characteristics. Various

types of Q functions will be assigned to particular nodes of the Dynkin diagram. We will

almost exclusively consider the two versions of the diagram shown in Figures 5, 6, which are

15Actually, for real values of the coupling it is always possible to choose a normalization where B(a|i),0 ∈ R,

so that yi = 1.
16Starting from these functions, we will define a Q-system where the Q functions are free of cuts in the upper

half plane. An analogous construction, analytic in the lower half plane, could be performed starting from the

Q functions PA, Q̃I , and QLHPA
a|i defined in (4.27). Notice that the two systems are connected through the ν

or τ functions, which therefore play the role of a symmetry transformation of the Q-system (for an interesting

discussion see [17]).
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Figure 5. Chain of Q functions corresponding

to the η = +1 grading of the Bethe Ansatz.

Figure 6. Chain of Q functions corresponding

to the η = −1 grading of the Bethe Ansatz.

the ones associated to the two known forms of Asymptotic Bethe Ansatz. The Q functions

will have the general index structure17 Q•|∗, where • and ∗ are (vector or spinor) multi-indices

carrying representations of SO(3, 3) and SO(3, 2), respectively, see Section 2 for notations.

Various arguments, and in particular the weak coupling analysis, suggest that Q functions

of types PA and QI carry Bethe roots associated to the first node of the two diagrams,

while the Q functions Qa|i, Q
a
|i should be linked to the nodes corresponding to the spinorial

representations, see Figures 5, 6. The main task of this Section is to complete the picture

by constructing Q functions and functional relations associated to the remaining nodes. In

analogy with the Q-system of [17], and in contrast to the case of standard Lie algebras, for

every node of the diagram one may define equations of two basic types – fermionic or bosonic.

This feature of supersymmetric Q-systems is known to be related to the existence of different

gradings of the Dynkin diagram. Choosing different chains of Q functions, we will recover

different sets of exact Bethe equations. Finally, as a non-trivial check of the construction, we

will recover the two forms of the ABA equations in the large volume limit.

7.1 Construction of the Q-system

First step: identifying QA|I
We start the construction by some guesswork. From the form of the Bethe Ansatz, and taking

inspiration from [17], it is natural to expect that one of the functional relations should read:

F1 : Q+
A|I −Q

−
A|I = PAQI . (7.1)

We have marked this equation with the symbol F1 to point out that it is a fermionic-type

Q-system relation, based at the first node of the Dynkin diagram. This equation might be

17 Notice that also the Q functions PA and QI fit this pattern and we could identify them with PA ≡ QA|∅,
QI ≡ Q∅|I , where ∅ denotes the trivial representation.
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taken as a non-local definition of the 6 × 5 matrix18 QA|I . However, this new type of Q

functions can also be expressed as an explicit, local combination of the building blocks Qa|i,

Qa|i, through the following quadratic combinations:

Qab|ij = Qa|iQb|j −Qa|j Qb|i = det

(
Qa|i Qa|j
Qb|i Qb|j

)
, (7.2)

namely, the 2 × 2 minors of the 4 × 4 matrix
{
Qa|i

}
. Notice that Qab|ij is antisymmetric in

both (ab) and (ij), and therefore has 6 × 6 independent components. To match the 6 × 5

components of QA|I we need of course to project the (ij) indices on the vector representation.

The correct identification, which will be important for the derivation of the rest of the Q-

system, is simply:

QA|I ≡ −
1

4
Qab|ij σ̄

ab
A Σ̄ij

I . (7.3)

We will show below that this definition implies the validity of (7.1).

One could also consider the complementary projection on the singlet representation for

the (ij) indices, and define:

QA|◦ = −1

4
Qab|ij κ

ij σ̄abA . (7.4)

However, it turns out that all Q functions carrying the singlet representation of SO(3, 2), such

as QA|◦ and Q◦, drop out of the functional relations needed for the derivation of exact Bethe

equations. It would be interesting to understand from the algebraic point of view whether

they should be considered as part of the Q-system.

7.1.1 Q-system relations for the nodes 1, 2, 3

To prove the validity of (7.1), we start by rewriting the constraint Pf(Pab) = 1 as:

PabPcd −PcbPad −PacPbd = εabcd, (7.5)

where εabcd denotes the completely antisymmetric Levi-Civita tensor. Using this identity, it

is immediate to prove that19

Q+
a| [i Q

+
b| j] = Paa1 Pbb1

(
Qa1

| [i Q
b1
|j ]

)−
(7.6)

=
1

2
εaa1bb1

(
Qa1

| [ iQ
b1
|j ]

)−
+

1

2
Pab

(
Pa1b1(Qa1

|[ i)
− (Qb1|j ])

−
)
,

and, inserting (4.14), we obtain

Q+
ab|ij +

1

2
εabcd (Qcd|ij)

− = −Pab

(
Qij +

κij
2
Q◦

)
. (7.7)

18Notice that we are denoting Q functions carrying capital indices such as A ∈ {1, . . . , 6} or I ∈ {1, . . . , 5}
with the calligraphic font Q in order to avoid possible confusion with Qa|i when the indices take some concrete

value. So, for example, notice that Q1|2 6= Q1|2!
19 We are using the standard notation [ , ] for the antisymmetrization of indices, e.g. H[i ,j] ≡ Hij −Hji.

– 28 –



Projecting on vector indices as in (7.3) and taking into account simple algebraic identities

(see (B.24)), (7.7) yields precisely the fermionic equation (7.1):

F1 : Q+
A|I −Q

−
A|I = PAQI . (7.8)

For completeness, we report also the identity obtained by tracing over (ij):

Q+
A|◦ +Q−A|◦ =

1

2
PAQ◦. (7.9)

As anticipated, (7.9) is apparently decoupled from the rest of the Q-system and will not play

a role in the following considerations. Bosonic-type Q-system relations for the first node can

be introduced straightforwardly. They take the standard form:

B1 : P+
AP−B −P−AP+

B = QAB|∅, (7.10)

B1∗ : Q+
I Q−J −Q−I Q−J = Q∅|IJ , (7.11)

which can be interpreted as definitions of the new two-index objects QAB|∅ and Q∅|IJ . These

Q functions do not sit on the diagrams in Figures 5, 6, but appear in other choices of gradings,

such as the distinguished one (see discussion below).

The construction of functional relations for the second and third nodes is standard and

follows the usual fusion rules, cf [17]. In particular, associated to the third node we define

the Q functions

QA|IJ ≡ QI Q−A|J −QJ Q−A|I = QI Q+
A|J −QJ Q+

A|I , (7.12)

QAB|I ≡ PAQ−B|I −PB Q−A|I = PAQ+
B|I −PB Q+

A|I , (7.13)

which satisfy bosonic-type relations for the second node:

B2 : QA|IJ PA = Q+
A|I Q

−
A|J −Q

+
A|J Q

−
A|I , (7.14)

B2∗ : QAB|I QI = Q+
A|I Q

−
B|I −Q

+
B|I Q

−
A|I . (7.15)

Using equation F1 (7.8), we can also straightforwardly establish the following fermionic-type

functional relations for the second node:

F2 : QA|I QAB = Q+
AB|I P

−
A −P+

AQ
−
AB|I , (7.16)

F2∗ : QA|I QIJ = Q+
A|IJ Q

−
I −Q+

I Q
−
A|IJ . (7.17)

Now let us derive the relations centered around the third node. Using (7.12)-(7.13), it is

simple to obtain the bosonic-type equations

B3 : QAB|IJ QAB|∅ = Q+
AB|I Q

−
AB|J −Q

−
AB|I Q

+
AB|J , (7.18)

B3∗ : QAB|IJ Q∅|IJ = Q+
A|IJ Q

−
B|IJ −Q

−
A|IJ Q

+
B|IJ , (7.19)
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while the definitions (7.12),(7.13) and relation (7.8), imply the validity of the fermionic iden-

tity

F3 : QA|IJ QAB|I = Q+
AB|IJ Q

−
A|I −Q

−
AB|IJ Q

+
A|I , (7.20)

where

QAB|IJ ≡ QA|I QB|J −QB|I QA|J . (7.21)

As we may expect from the Dynkin diagram, the newly defined object in (7.21) represents the

fusion of the spinorial Q functions Qa|i and Qa|i. Indeed, let us prove that it can be rewritten

as:

QAB|IJ = (σAB)ba Q
a
|iQb|j Σij

IJ , (7.22)

where Σij
IJ ≡

1
2 (Σ̄I κ Σ̄J−Σ̄J κ Σ̄I)

ij . This equation will be crucial for the derivation of closed

sets of exact Bethe equations. To derive (7.22), start from the definition of QA|I in (7.3) and

rewrite (7.21) as

QAB|IJ =
1

4

(
Qa|iQ

b
|j Qc|kQd|l

) (
(σA)ab (σ̄B)cd − (σB)ab (σ̄A)cd

)
Σ̄ij
I Σ̄kl

J . (7.23)

Using formula (B.8) for the commutator of sigma matrices appearing in (7.23), we find

QAB|IJ =
(
Qa|iQc|k (σAB) ca

)
Σ̄ij
I

(
Qb|j Qb|l

)
Σ̄kl
J =

(
Qa|iQc|k (σAB) ca

)
Σ̄ij
I κjl Σ̄

lk
J

=
(
Qa|iQc|k (σAB) ca

)
Σ̄ik
IJ , (7.24)

where, in the last step, we have used the anti-symmetry in (IJ) of the whole expression by

definition of QAB|IJ .

7.1.2 Q-system relations for the nodes 4 and 4̄

Let us now derive the functional relations centered at the spinor nodes. The two bosonic

Q-system equations (centered at nodes 4 and 4̄, respectively) are:

B4 : (σ̄A)ab
(
Q+
a|i Q

−
b|j

)
(ΣIJ)ij = QA|IJ , (7.25)

B4̄ : (σA)ab

(
(Qa|i)

+ (Qb|j)
−
)

(ΣIJ)ij = QA|IJ , (7.26)

while the fermionic-type relations, which cross the two spinor nodes, read

F4 : (σAB) ba

(
(Qa|i)

+ Q−b|j

)
(Σ̄I)

ij = QAB|I , (7.27)

F4̄ : (σAB) ba

(
(Qa|i)

− Q+
b|j

)
(Σ̄I)

ij = QAB|I . (7.28)

To prove (7.25), start from the combination(
Q+
a|i Q

−
b|j −Q

+
b|i Q

−
a|j

)
(ΣIJ)ij . (7.29)
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Using (4.15), (4.14), (4.11), we can eliminate all positive shifts through

Q+
a|i =

1

4
Q−a|iQ◦ +Q−a|m

(
κmlQI ΣI

li

)
, (7.30)

and we find20:(
Q+
a|i Q

−
b|j −Q

+
b|i Q

−
a|j

)
(ΣIJ)ij = Q−ab|mj

(
κmlQK ΣK

li

)
(ΣIJ)ij (7.31)

=
1

2
Q−ab|mj

(
QI (Σ̄J)mj −QJ (Σ̄I)

mj
)

= Q−ab|I QJ −Q−ab|J QI , (7.32)

where we have used identity (B.11) to simplify the product of Σ matrices in (7.31). Con-

tracting with (σ̄A)ab and comparing with (7.12) yields (7.25). Similarly, to prove (7.27), we

consider (
(Qa|i)

+ Q−b|j − (Qa|j)
+ Q−b|i

)
(σAB) ba , (7.33)

and replace all Q functions with positive shifts using (Qa|i)
+ = Paa1 Q−a1|i:(

(Qa|i)
+ Q−b|j − (Qa|j)

+ Q−b|i

)
(σAB) ba = −Q−a1b|ij P

a1a (σAB) ba (7.34)

=
1

2
Q−a1b|ij (σ̄C σA σ̄B − σ̄C σB σ̄A)a1b PC

= −PA Q
−
B|ij + PB Q−A|ij = −QAB|ij ,

where we have used (3.10) in the second equality and identity (B.4) in the third. Finally,

projecting on the vector component out of the antisymmetric indices (ij), we get (7.27).

7.2 Exact Bethe equations

Let us now show how to obtain exact Bethe equations for the zeros of Q functions. We will

obtain equations formally identical to the various versions of 2-loop Bethe Ansatz proposed in

[29], based on the underlying OSp(4|6) symmetry, with the important difference that, at finite

coupling, Q functions are nontrivial functions of the spectral parameter living on infinitely

many sheets (and, in general, with infinitely many zeros). In the weak coupling limit, the

branch cuts shrink to zero size, usually being replaced by poles. However, some of the Q

functions become polynomials, and in particular the equations presented below reduce to the

weak coupling BA of [29].

To derive a version of the Bethe Ansatz related to the η = 1 grading of the Dynkin

diagram, we need to consider a chain of functional relations made of equations of type F1

(7.8), B2 (7.14) and F3 (7.20) for the first, second and third nodes respectively, and B4 (7.25)

20Notice that the terms proportional to Q◦ cancel out of the equation due to the symmetry (ΣIJ)ij = (ΣIJ)ji,

see Appendix B.
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and B4̄ (7.26) for the nodes at the bifurcation. For concreteness, let us make a specific choice

of indices, and consider the following sequence of Q-system relations

F1 : Q+
2|2 −Q

−
2|2 = P2 Q2, (7.35)

B2 : Q+
2|1Q

−
2|2 −Q

+
2|2Q

−
2|1 = Q2|12 P2, (7.36)

F3 : (Q1|1Q
4
|1)+ Q−2|2 − (Q1|1Q

4
|1)− Q+

2|2 = Q12|2Q2|12, (7.37)

B4 : (Q1|1)+Q−3|1 − (Q3|1)+Q−1|1 = Q2|12, (7.38)

B4̄ : (Q4
|1)+ (Q2

|1)− − (Q2
|1)+ (Q4

|1)− = Q2|12, (7.39)

where we used (7.22) to evaluate

Q12|12 = Q1|1Q
4
|1. (7.40)

Relations (7.35)-(7.39), supplemented with the requirement that no Q functions have poles,

imply a set of exact BA equations for the zeros of the Q functions

P2, Q2|2, Q2|12, Q1|1, Q4
|1. (7.41)

Let us denote the zeros of these functions as {us,k}, with s = 1, 2, 3, 4, 4̄, respectively (where

the index k runs over different zeros of a given Q function).

Taking the ratio of (7.38) evaluated at points u4,k + i/2 and u4,k − i/2, where u4,k is a

generic zero of Q1|1, gives the massive node Bethe equation

− 1 =
Q++

1|1

Q−−1|1

Q−2|12

Q+
2|12

∣∣∣∣∣
u4,k

, with Q1|1(u4,k) = 0, (7.42)

and similarly from (7.39) one gets

− 1 =
Q4|++

|1

Q4|−−|1

Q−2|12

Q+
2|12

∣∣∣∣∣
u4,k

, with Q4
|1(u4̄,k) = 0. (7.43)

Auxiliary equations for the fermionic nodes are obtained simply by evaluating (7.35) and

(7.37) at the respective zeros u1,k and u3,k of their rhs:

1 =
Q−2|2
Q+

2|2

∣∣∣∣∣
u1,k

, with P2(u1,k) = 0, (7.44)

1 =
Q+

1|1

Q−1|1

Q4|+|1
Q4|−|1

Q−2|2
Q+

2|2

∣∣∣∣∣
u3,k

, with Q2|12(u3,k) = 0, (7.45)

while the Bethe equation for the second node is obtained by taking the ratio of (7.49) com-

puted at u2,k + i/2 and u2,k − i/2:

− 1 =
Q−−2|2

Q++
2|2

Q+
2|12

Q−2|12

P+
2

P−2

∣∣∣∣∣
u2,k

, with Q2|2(u2,k) = 0. (7.46)
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In Section 7.3, we will show that in the large volume limit these equations reduce to the η = 1

form of the ABA [35]. We can describe an alternative grading by using relation B2∗ (7.15)

instead of B2 for the second node and the fermionic-type equations (7.27),(7.28) for the nodes

4 and 4̄. Consider for example the chain of Q functions

Q2, Q2|2, Q12|2, Q1|1, Q4
|1, (7.47)

connected by the Q-system relations

F1 : Q+
2|2 −Q

−
2|2 = P2 Q2, (7.48)

B2∗ : Q+
1|2Q

−
2|2 −Q

+
2|2Q

−
1|2 = Q12|2 Q2, (7.49)

F3 : (Q1|1Q
4
|1)+ Q−2|2 − (Q1|1Q

4
|1)− Q+

2|2 = Q12|2Q2|12, (7.50)

F4 : (Q4
|1)+Q−1|3 − (Q4

|3)+Q−1|1 = Q12|2, (7.51)

F4̄ : (Q4
|1)−Q+

1|3 − (Q4
|3)−Q+

1|1 = Q12|2. (7.52)

Using the pole-free condition, they straightforwardly lead to exact BA equations correspond-

ing to the Dynkin diagram of Figure 6:

1 =
Q4|++

|1

Q4|−−|1

Q−12|2

Q+
12|2

∣∣∣∣∣
u4,k

, with Q1|1(u4,k) = 0, (7.53)

1 =
Q++

1|1

Q−−1|1

Q−12|2

Q+
12|2

∣∣∣∣∣
u4̄,k

, with Q4
|1(u4̄,k) = 0, (7.54)

1 =
Q+

1|1

Q−1|1

Q4|+|1
Q4|−|1

Q−2|2
Q+

2|2

∣∣∣∣∣
u3̃,k

, with Q12|1(u3̃,k) = 0, (7.55)

−1 =
Q−−2|2

Q++
2|2

Q+
12|2

Q−12|2

Q+
2

Q−2

∣∣∣∣∣
u2,k

, with Q2|2(u2,k) = 0, (7.56)

1 =
Q−2|2
Q+

2|2

∣∣∣∣∣
u1̃,k

, with Q2(u1̃,k) = 0. (7.57)

The main difference with respect to the derivation in the η = +1 case concerns the equations

for the momentum-carrying nodes: for instance, (7.53) is obtained by taking the ratio of

equation (7.51) evaluated at u4,k + i/2 and equation (7.52) at u4,k − i/2. As shown in the

next Section 7.3, equations (7.53)-(7.57) reduce to the η = −1 version of the ABA of [35] in

the large-L limit.

We may also consider subsets of Q functions whose zeros satisfy exact Bethe equations

related to the so-called “distinguished” grading of the Dynkin diagram. An example of such

a chain is:

Q2, Q∅|12, Q2|12, Q1|1, Q4
|1. (7.58)
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The Bethe equations associated to the momentum-carrying nodes are (7.42), (7.43). To

constrain the remaining Q functions, we may use B1∗ (7.11), F2∗ (7.17) and B3∗ (7.19) with

indices A, I = 1; B, J = 2. Employing standard arguments, we find the Bethe equations:

−1 =
Q+
∅|12

Q−∅|12

Q−−2

Q++
2

∣∣∣∣∣
u1̃,k

, with Q2(u1̃,k) = 0, (7.59)

1 =
Q+

2|12

Q−2|12

Q−2
Q+

2

∣∣∣∣∣
ud2,k

, with Q∅|12(ud2,k) = 0, (7.60)

−1 =
Q++

2|12

Q−−2|12

(Q1|1Q
4
|1)−

(Q1|1Q
4
|1)+

Q−∅|12

Q+
∅|12

∣∣∣∣∣
u3,k

, with Q2|12(u3,k) = 0. (7.61)

At the leading weak coupling order these equations reduce to one of the variants of the 2-

loop Bethe Ansatz of [29]. However, it is well known that this grading is impractical when

considering the large-volume limit and does not lead to simple Asymptotic Bethe equations.

7.3 The ABA limit

Let us now argue that in the large volume limit a subset of Q functions – in particular, the

ones appearing in the chains (7.41) and (7.47) – reduces to a simple explicit form parametrized

by a finite set of Bethe roots living on two sheets only. The exact BA equations (7.42)-(7.46)

and (7.53)-(7.57) will then be shown to reproduce the Asymptotic Bethe Ansatz of [35].

The following argument is very similar to the one presented in [17]. The main origin of the

simplification occurring in the large volume limit is that some of the Q functions vanish at

an exponential rate at large L. To keep track of the scaling of different quantities with L,

we can rely heuristically on the asymptotics discussed in Section 5. From (5.5),(5.6), we see

that the charges scale as ∆, J1, J2 ∼ L, while S, J3 ∼ O(1) at large L, from which we get for

example that

νa ∼ (1, 1/ε, 1/ε, 1/ε2), νa ∼ (1/ε2, 1/ε, 1/ε, 1), (7.62)

where ε ∼ u−L represents a quantity exponentially suppressed in L. Similarly, we have

Qa|i ∼


1 ε ε ε2

1/ε 1 1 ε

1/ε 1 1 ε

1/ε2 1/ε 1/ε 1

 , Qa|i ∼


1 1/ε 1/ε 1/ε2

ε 1 1 1/ε

ε 1 1 1/ε

ε2 ε ε 1

 , (7.63)

P1,P2 ∼ ε, P3,P4 ∼ 1/ε, P5,P6 ∼ 1, (7.64)

Q1,Q2 ∼ 1/ε, Q3,Q4 ∼ ε, Q5,Q◦ ∼ 1. (7.65)

Moreover, since the functions τi approach constants with no explicit L dependence at large

u, we deduce that they scale as O(1) in the large volume limit. Using this information, we

– 34 –



obtain some simplified relations. Let us list the ones most relevant for the derivation of the

ABA. First, from the scaling (7.63) we find that (4.31) reduces to:

νa ' Q−a|1 τ
1, νa ' (Qa|4)− τ4. (7.66)

Second, from (3.12) we find, for α = 1, 2,

P̃α ∼ (σ̄α)ab ν̃a νb ∼ (σ̄α)ab (Q+
a|1Q

−
b|1) τ1 τ4 = Qα|12 ω

12, (7.67)

where we used also the identity (7.25) in the last step, and we recall that ω12 = τ1 τ4. Finally,

it will be useful to consider the relation between the Q functions analytic in the upper/lower

half plane, which simplifies in the large volume limit. In particular, we have

(QLHPA
a|i )− ' Q−a|1

(
δ1
i − τ1 τi

)
, (7.68)

from which we see that equation (7.67) can be rewritten as

P̃α ∼ (σ̄α)ab (QLHPA
a|4 )+ (QLHPA

b|4 )−
1

ω12
=
QLHPA
α|34

ω12
. (7.69)

Computing µ12, ω
12 and Q12|12

The first part of the argument is essentialy the same as in [17]. We shall assume that ν1 and

ν4 have each a finite number of real zeros on the first sheet in physical kinematics, which we

denote as {u4,j}K4

j=1,
{
u4̄,j

}K4̄

j=1
respectively. We start by defining

F 2 ≡ µ12

µ̃12

∏
s=4,4̄

Q+
s

Q−s
, (7.70)

where we remind the reader that µ12 = ν1 ν
4 and

Q4 =

K4∏
j=1

(u− u4,j) , Q4̄ =

K4̄∏
j=1

(
u− u4̄,j

)
. (7.71)

F is manifestly free of poles on the first sheet. Using (7.66), we can rewrite this quantity as

F 2 '
(Q1|1Q

4|4)−

(Q1|1Q4|4)+

∏
s=4,4̄

Q+
s

Q−s
=
Q−12|12

Q+
12|12

∏
s=4,4̄

Q+
s

Q−s
, (7.72)

where the contribution of ω12 = τ1τ4 cancels due to its i-periodicity and we used (7.40) in

the last equality. The expression (7.72) shows that, within this approximation, F 2 is built

out of quantities that have manifestly no cuts in the upper half plane. On the other hand,

using (7.68) we see that F 2 could equivalently be rewritten in terms of LHPA Q functions

– 35 –



only. We therefore conclude that it must have no branch cuts apart from a short cut running

on the real axis. The discontinuity across the latter is described by the condition

FF̃ =
∏
s=4,4̄

Q+
s

Q−s
, (7.73)

which is a simple consequence of (7.70). These analyticity requirements completely fix F (but

for a sign) as:

F = ±
∏
s=4,4̄

Bs(+)

Bs(−)
, (7.74)

where

Bs(±)(u) =

Ks∏
j=1

√
h

x∓s,j

(
1

x(u)
− x∓s,j

)
, x∓s,k = x(us,k ∓ i/2), (7.75)

Rs(±)(u) = B̃s(±)(u) =

Ks∏
j=1

√
h

x∓s,j

(
x(u)− x∓s,j

)
. (7.76)

Let us also define the functions f4, f4̄ as the unique, up to a constant factor, solutions to the

difference equation
fs

f
[+2]
s

=
Bs(+)

Bs(−)
. (7.77)

Plugging (7.74) into (7.70), we find an equation for µ12. Imposing the mirror-periodicity

(3.3), the solution is

µ12 = ν1ν
4 ∝

∏
s=4,4̄

fs f̄
[−2]
s Q−s , (7.78)

and similarly we find

ω12 = τ1 τ4 ∝
∏
s=4,4̄

f̄
[−2]
s

fs
, Q12|12 = Q1|1Q

4
|1 ∝

∏
s=4,4̄

Qs (f [+]
s )2. (7.79)

Already at this stage, we can prove that the zero momentum condition (3.15) is contained in

the QSC equations. Indeed, from (7.78) we have:

µ̃12

µ12
=
∏
s=4,4̄

Rs(+)Bs(−)

Bs(+)Rs(−)
, (7.80)

in the ABA limit. Due to the mirror i-periodicity of µ12, this ratio should approach 1

at large u. Expanding the rhs of (7.80), and taking into account the dispersion relation

p4,j = −i log(x+
4,j/x

−
4,j), p4̄,j = −i log(x+

4̄,j
/x−

4̄,j
), we find precisely (3.15):K4∏

j=1

x+
4,j

x−4,j

 K4̄∏
j=1

x+
4̄,j

x−
4̄,j

 = 1. (7.81)
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The next order in the large-u expansion can be compared with the asymptotics (5.7)-(5.8),

and fixes the ABA limit of the anomalous dimension:

γ = 2hi

K4∑
j=1

(
1

x+
4,j

− 1

x−4,j

)
+ 2hi

K4̄∑
j=1

(
1

x+
4̄,j

− 1

x−
4̄,j

)
. (7.82)

Computing ν1, ν
4

Let us now show that the ratio between Q1|1 and Q4
|1 must be, in the large-L limit, a mero-

morphic function without branch cuts (and therefore, due to the power-like asymptotics, it

must be a rational function of u). Indeed, equation (7.68) shows that

Q1|1/Q
4
|1 ' Q

LHPA
1|1 /(Q4

|1)LHPA. (7.83)

The analyticity strips of the two sides of (7.83) overlap nontrivially, showing that this ratio

is indeed a ratio of polynomials. The correct way to split (7.79) is then

Q1|1 ∝ Q4 f
+
4 f+

4̄
, Q4

|1 ∝ Q4̄ f
+
4 f+

4̄
, (7.84)

which implies

ν1 ∝ Q−4

 ∏
s=4,4̄

fs f̄
[−2]
s

 1
2

F e−iP/2, ν4 ∝ Q−
4̄

 ∏
s=4,4̄

fs f̄
[−2]
s

 1
2

F−1 e+iP/2, (7.85)

for some function F which should be free of zeros on the first sheet. The factors e±iP/2 ,

with P defined in (3.8), have been introduced for future convenience. To fix the form of the

splitting factor F we should enforce the properties ν̃1 = eiP ν
[+2]
1 , (τ1)[+2] = −e−iP τ4, which

give the conditions

F [+2] = F−1, FF̃ =

(
Q+

4

Q−4

Q−
4̄

Q+
4̄

) 1
2

eiP . (7.86)

The solution of the constraints (7.86) may be found in terms of an integral representation21:

logF(u) =
√
e2πu − e4πh

√
e2πu − e−4πh

∫ 2h

−2h

log(
Q+

4 (z)

Q−4 (z)

Q−
4̄

(z)

Q+
4̄

(z)
e2iP) eπ(u+z)√

(e2πz − e4πh) (e2πz − e−4πh) (e2πz − e2πu)

dz

2i
.

(7.87)

We should also impose that logF(u) has the correct bounded asymptotic behaviour as u →
+∞, which leads to the condition

P = − 1

4π E(h)

∫ 2h

−2h

log(
Q+

4 (z)

Q−4 (z)

Q−
4̄

(z)

Q+
4̄

(z)
) eπz√

(e2πz − e4πh) (e2πz − e−4πh)
dz, (7.88)

21 A detailed derivation of essentially the same formula is given in another context in [45].
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where

E(h) ≡ − 1

2πi

∫ 2h

−2h

dz eπz√
(e2πz − e4πh) (e2πz − e−4πh)

. (7.89)

Expanding (7.88) for small h, we see that it confirms the identification (3.17) up to order22

O(h2).

As already discussed in Section 3.3, the expression for P in (7.88) is expected to hold

only in the large-L limit, or at the first ∼ L orders at weak coupling. A general exact integral

formula for P, expressed in terms of quantities computable form the numerical solution of

the QSC, can be found in Appendix E.

Computing Pα, Qα|12 and Qα|β
Let us now derive the ABA limit of Pα, with α = 1, 2 (again, we follow [17] closely). We

define

σ σ̃ ∝
∏
s=4,4̄

f̄ [−2]
s f [+2]

s , (7.90)

where σ has a single short cut on the real axis on its defining sheet. Since (7.90) is simply

one of the crossing equations, it follows that σ is related to the dressing factor as in (D.14).

Let us consider the quantity Pα/σ, which by construction has a single cut on the first sheet.

Using (7.67),(7.79), we see that, on the second sheet, it may be written as

P̃α/σ̃ ∼ Qα|12 ω
12/σ̃ ∝ σQα|12/(

∏
s=4,4̄

fs f
[+2]
s ), (7.91)

which has no cuts in the upper half plane, or alternatively from (7.69) as

P̃α/σ̃ ∝ σQLHPA
α|34 /(

∏
s=4,4̄

f̄s f̄
[−2]
s ), (7.92)

which has no cuts in the lower half plane. Hence, P̃α/σ̃ must have a single cut on the second

sheet as well, so that it may be written as a rational function in the Zhukovsky variable x(u).

Therefore, we have

Pα ∝ x−LBα|12Rα|∅ σ, α = 1, 2, (7.93)

22Notice that the ABA expression for the total momentum of a single excitation species is given by:

P
(4)
ABA =

1

2
(P

(4)
ABA − P

(4̄)
ABA) =

1

2

K4∑
i=1

pABA
4,i −

K4̄∑
i=1

pABA
4̄,i



= − i
2

K4∑
i=1

log
x+

4,i

x−4,i
−

K4̄∑
i=1

log
x+

4̄,i

x−
4̄,i

 = −
∫ 2h

−2h

log(
Q+

4 (z)

Q−
4 (z)

Q−
4̄

(z)

Q+
4̄

(z)
)

√
4h2 − z2

dz,

which agrees with the rhs of (7.88) at the first two orders at weak coupling.
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where the x−L prefactor is fixed by imposing the large-u asymptotics (5.1), and we have

introduced the notation Bα|12(u) (Rα|∅(u)) to indicate generic polynomials in x(u) (1/x(u),

respectively), see Appendix D for a precise definition. By consistency with (7.67), we then

find:

Qα|12 ∝ x+LRα|12Bα|∅

∏
s=4,4̄ fs f

++
s

σ
, α = 1, 2 , (7.94)

where Rα|12(u) = B̃α|12(u) and Bα|∅(u) = R̃α|∅(u) are obtained through analytic continuation,

which sends x(u)→ 1/x(u). At this stage, we have computed four of the functions entering the

chain (7.41); to complete the picture we still need to compute the Q functions corresponding

to the second node. We start from relation

Q−1b|1j = (QLHPA
1b|1j )−

(
1− τ1τ1

)
, ∀b, j, (7.95)

which is a consequence of (7.68), and implies that ratios of the form23

Qα|β/Qα′|β′ = QLHPA
α|β /QLHPA

α′|β′ , α, β, α′, β′ ∈ {1, 2} , (7.96)

have no cuts and are therefore ratios of polynomials. We have therefore a parametrization

Qα|β = Qα|β f
+
4 f+

4̄
, α, β ∈ {1, 2} , (7.97)

where Qα|β is a polynomial function of u, and the f4 f4̄ factor was fixed by comparison with

(7.79).

Asymptotic Bethe Ansatz in η = +1 grading

Generalizing the arguments of Section 7.2, we see that the Q functions

Pα, Qα|β, Qα|12, Q1|1, Q4
|1, (7.98)

for any choice of α, β ∈ {1, 2}, satisfy exact Bethe equations of the form (7.42)-(7.45). Using

(7.84), (7.93), (7.94), (7.97), it is straightforward to verify that, in the large volume limit,

these Bethe equations reduce precisely to the ABA of [35] in η = +1 grading (see Appendix

D). In each of these four equivalent sets of ABA equations, the role of roots of types 1,2,3,

is played by the zeros of the following polynomials in u: Qα|∅(u) = Rα|∅(u)Bα|∅(u), Qα|β(u),

Qα|12(u) = Rα|12(u)Bα|12(u), respectively.

Computing Q1 and Q2

The large volume limit of Qβ with β = 1, 2, may be computed from the Q-system relation

F1, namely:

PαQβ = Q+
α|β −Q

−
α|β, (7.99)

23Notice the restriction of the indices to the set {1, 2}. This ensures that the ratios in (7.96) are of order

O(1) for large L, which is a prerequisite condition for obtaining nontrivial information in the asymptotic limit.
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for α, β ∈ {1, 2}. Similarly, Q12|β may be determined from the F3 equation:

Qα|12Q12|β = (Q1|1Q
4
|1)+Q−α|β − (Q1|1Q

4
|1)+Q+

α|β. (7.100)

Using the large-L expressions (7.93), (7.94) and (7.97), these relations yield

Qα ∝ xLR∅|αB12|α
∏
s=4,4̄

f++
s

σs Bs(−)
, Q12|α ∝ x−LB∅|αR12|α

∏
s=4,4̄

f++
s σs Bs(+), (7.101)

where the functions R∅|α and R12|α (B∅|α and B12|α, respectively) are polynomials in x(u)

(1/x(u)) defined by

Rα|∅R∅|β B12|β Bα|12 ∝
(
Q+
α|β B4(−)B4̄(−) −Q−α|β B4(+)B4̄(+)

)
, (7.102)

Bα|∅B∅|β R12|β Rα|12 ∝
(
Q+
α|β R4(−)R4̄(−) −Q−α|β R4(+)R4̄(+)

)
. (7.103)

Notice that the fact that the newly defined R and B functions have no poles is a consequence

of the ABA. Equations (7.103)-(7.103) are the well-known fermionic duality relations, which

allow to switch between the η = ±1 versions of the ABA, see Section D.2. Using (7.84),

(7.97), (7.93), (7.101), we may indeed check that the exact Bethe Ansatz satisfied by the

chains of Q functions

Qβ, Qα|β, Q12|β, Q1|1, Q4
|1, (7.104)

which in particular involves the fermionic form of the massive node equations, (7.53),(7.54),

reduce precisely to the η = −1 ABA equations.

As a last comment, we point out that, from the large volume limit, we can get a further

confirmation of the semi-classical identifications (5.17)-(5.21). To this end, we exploit the

well-known fact that the classical spectral curve can be obtained as a scaling limit of the

Asymptotic Bethe Ansatz, where the roots condense to form the cuts connecting various

pairs of quasi-momenta [64]. Consider for instance, the following large volume expression

derived from (7.101):

Q+
2

Q−2
=

(
x+

x−

)L R+
∅|2B

+
12|2

R−∅|2B
−
12|2

∏
s=4,4̄

σ−s B
−
s(−)

σ+
s B

+
s(+)

. (7.105)

In the limit where h ∼ L � 1, it is meaningful to concentrate on the region u > h, where

the lhs of (7.105) becomes approximately exp(∂u logQ2). On the other hand, a standard

calculation shows that, in the limit where the Bethe roots scale like us,j ∼ h and condense to

form a set of cuts, the rhs reconstructs precisely exp(iq2), where the quasi-momentum q2 is

defined in terms of Bethe root densities as in [35, 38] (see also Section 6 of [17]). Therefore

we recover the identification (5.21). Similarly one could derive the classical limits of the

remaining P and Q functions which we have determined in the large volume limit.
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8 Conclusions

In this paper, besides a detailed derivation of the equations proposed in [44], we presented

several new results on the Quantum Spectral Curve associated to the AdS4/CFT3 duality,

deepening our understanding of the basic integrable structures underlying this theory.

There are many directions for future work. First of all, the results of this paper make it

possible to develop a high-precision numerical algorithm for the computation of anomalous

dimensions at finite coupling, inspired by [18]. We already have partial results [56, 65] con-

firming the TBA data of [39]. The QSC method however allows us to move deeper in the

strong coupling region, and therefore to test more accurately the AdS/CFT predictions.

Secondly, we expect from the example of AdS5/CFT4 [26, 66, 67] that the QSC may

be used, with minimal modifications, to describe also various open string configurations. In

particular, it would be very interesting to find an integrable description of some kind of

generalized cusp anomalous dimension, such as the one described in [68]. This would give a

direct way to test the proposals of [44, 45] for the ABJM/ABJ interpolating functions, by

comparison with localization results for the Brehmsstrahlung function [69–72].

Third, these results should allow to extend the weak coupling algorithm of [46] to a

generic operator.

It would be very interesting to gain a complete understanding of the algebraic structures

underlying our results. Especially, it would be desirable to understand the interpretation of

the Q-system described in Section 7 in terms of representation theory of the full supergroup

OSp(4|6).

We hope that the results presented in this paper, which exhibit some interesting differ-

ences from the AdS5/CFT4 case, will also help to extend the QSC method to the integrable

examples of AdS3/CFT2 and AdS2/CFT1, see e.g. [47, 73–75]. These cases are less su-

persymmetric, and the construction may be expected to be even more complicated. It is

important to stress that, since a TBA formulation for these models is at present still missing

(and even the structure of the Asymptotic Bethe Ansatz is quite intricate and fully known

only in one case, see [76]), there is presently no way to rigorously derive the QSC for these

theories. However, the two examples at hand, AdS5/CFT4 and AdS4/CFT3, show that the

structure of the QSC is, in the end, quite universal and rigidly constrained by the symmetry.

It would be very nice if these examples could help to develop a classification of several types

of QSC corresponding to different gauge and string theories.
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A Derivation of the QSC from the analytic properties of T functions

In this Appendix we present in detail the derivation of the QSC equations from the TBA/T-

system framework, which was already outlined in [44]. In particular, we will obtain the QSC

equations in the “Pµ” vector form presented in Section 3.1.

A.1 Summary on the properties of T functions

Let us briefly summarize the starting point of the derivation (see [43] for more details). The

discrete Hirota equation, or T-system, is the following difference equation for a set of T

functions defined on the nodes of the “T-hook” diagram shown in Figure 7:

T (+1)
a,s T (−1)

a,s =
∏

(a′∼a)l

Ta′,s +
∏

(s′∼s)↔

Ta,s′ , for s > 0, (A.1)

(Tα)
(+1)
a,0 (T β)

(−1)
a,0 = Tαa+1,0 T

β
a−1,0 + Ta,1 T

β
a,−1, α, β ∈ {I, II} , α 6= β, (A.2)

(Tα)
(+1)
a,−1(T β)

(−1)
a,−1 = Tαa+1,0 T

β
a−1,0 + Ta,1 T

β
a,−1, α, β ∈ {I, II} , α 6= β, (A.3)

where T functions with indices outside the diagram are taken to be zero and the products in

(A.1) are over horizontal (↔) and vertical (l) neighbouring nodes, with the subtlety that, for

s = 0,−1, the two wings of the diagrams need to be crossed24. Notice that T (n) = T (u+ i
2n)

denotes shifts on a specific section of the u domain where all cuts are long, connecting ±2h+iZ
to infinity. This is called the mirror section and is the one where the Y-system and T-

system are naturally defined [12]. Throughout this Appendix we will use the special notation

f (n)(u) ≡ f(u+ in/2) to denote a function shifted on this particular sheet.

T functions are related to Y functions, the objects appearing in the TBA formulation, by

Ya,s =

∏
(s′∼s)↔ Ta, s′∏
(a′∼a)l

Ta′,s
, s > 0, Y α

a,0 =
Ta,1 T

β
a,−1

Tαa+1,0 T
β
a−1,0

, α, β ∈ {I, II} , α 6= β. (A.4)

This parametrization is not unique: there is a vast “gauge” freedom (which we will exploit)

in choosing a set of T functions corresponding to a given solution of the TBA. In order to

furnish a complete formulation of the spectral problem, the T-system must be supplemented

by some information on its analytic dependence on the spectral parameter. As learnt in the

24This subtlety was not reported in [44] but was fully explained in [43].

– 42 –



s

a

I

II
(0,1)

Figure 7. Domain of definition of the T-system (A.1)-(A.3). In our notations, T functions belonging

to the two wings of the diagram are distinguished by the superscript α ∈ {I, II}.

AdS5/CFT4 case, this extra input can be expressed in terms of discontinuity relations for

the Y (u) functions across their branch cuts in the u-plane [12], but can be simplified and

much better understood in the T-system framework [15]. In the case of AdS4/CFT3, similar

analytic constraints on the T functions were identified in [43]. They are expressed in terms

of two special gauges, denoted as T and T. The properties of the T gauge needed in the

following derivation are:

(i) Analyticity strips: denoting as An the class of functions free of branch point singularities

in the strip |Im(u)| < n
2 , we have

(Tα
n,0) ∈ An+1, (Tn,1) ∈ An, (Tn,2) ∈ An−1, n ∈ N, α ∈ {I, II} . (A.5)

Besides, on the leftmost edges of the diagram: Tα
n,−1 = 1.

(ii) The two functions TI
0,0, TII

0,0 are equal, and periodic on the mirror section:

(TI
0,0)(+1)(u) = (TII

0,0)(+1)(u) ≡ µ̌12, (A.6)

µ̌
(+1)
12 = µ̌

(−1)
12 . (A.7)

The function µ̌12 defined above will eventually be identified with an element of the µAB
matrix appearing in the QSC equations. The notation µ̌12 signals that, throughout

this Appendix, we will consider µ̌12(u) as a function defined on the mirror Riemann

section with long cuts, where it is i-periodic. This function agrees with µ12(u) used

in the rest of the paper in the strip 0 < Im(u) < 1/2, and elsewhere is obtained by

analytic continuation keeping all cuts long. Notice that the mirror i-periodicity of µ̌(u)

is equivalent to the property (3.3).

(iii) Finally, the T functions enjoy the following group-theoretical properties:

T0,n = (µ̌
(n)
12 )2, Tn+1,2 = T2,n+1, n ∈ N+. (A.8)
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We expect that the T gauge defined by these properties is essentially unique (apart from

rescalings by constants independent of u). The T gauge may be defined by a transformation:

Tn,s(u) = Tn,s(u)
(
µ̌

(n+s−1)
12 (u)

)2−n
, s ∈ N+, n ∈ N, (A.9)

Tα
n,0(u) = Tαn,0(u)

(√
µ̌

(n−1)
12 (u)

)2−n
(d(n)(u))sα n, α ∈ {I, II} , n ∈ N (A.10)

Tα
n,−1(u) = Tαn,−1(u) = 1, α ∈ {I, II} , n ∈ N, (A.11)

where sI = −sII = +1, and d(u) = d(+2)(u) is a mirror i-periodic function, representing

an additional degree of freedom in the definition which will be practically irrelevant for our

derivation25. It is simple to check that (A.9)-(A.11) leave invariant the form of the T-system

due to the mirror periodicity of µ̌12 and d(u).

In general, we expect both the T and T functions to exhibit an infinite ladder of branch

points for u ∈ ±2h + iZ/2. From the TBA analysis, we know that these singularities are

all of square-root type and that analytic continuation around branch points symmetric with

respect to the imaginary axis leads to the same sheets. This structure is further specified by

the property (i) above: some of the potential branch points in the T functions fall inside the

analyticity strips and therefore they must have trivial monodromy.

Besides, the T functions enjoy some special properties when continued to the short-cut

section of the Riemann surface (also known as the physical sheet). We will denote their values

on this section as T̂: in analogy with the case of µ̌ and µ, the convention is that T and T̂
are the same in the analyticity strip immediately above the real axis, while in the rest of the

complex plane, they are defined by analytic continuation keeping long cuts for T and short

cuts for T̂. The T̂a,s functions have the following nontrivial properties:

(a) the functions T̂1,n with n ≥ 1 have only two short branch cuts: (−2h, 2h)± in/2,

(b) the functions T̂2,m with m ≥ 2 have only four short branch cuts, lying at (−2h, 2h) ±
i(m− 1)/2, (−2h, 2h)± i(m+ 1)/2.

The goal of the following derivation is to obtain the Riemann-Hilbert type equations char-

acterizing the QSC. We will see that the whole structure can be derived by imposing the

consistency of the conditions (i), (ii) , (iii) and (a), (b).

Let us make an additional comment. Here, we do not aim to derive the regularity proper-

ties of the QSC, namely the statement that P(u) and ν(u) functions are entire on the Riemann

surface defined by the branch points at u ∈ ±2h± iZ. However, it is natural to expect that

this condition is equivalent to the requirement that the T functions are regular in appropriate

gauges, and indeed one can verify a posteriori that, picking appropriately the function d(u) in

(A.9) and assuming the regularity of the QSC, all the T and T functions can be chosen to be

25In [43],[44], a different convention was taken with a specific constant choice for d(u). Here, we keep this

degree of freedom explicit since it is relevant for discussing the regularity properties of the T gauge (see the

explanation at the end of this Section).
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regular. For instance, it is possible to identify26 TI
1,0(u) = ν1(u) ν̃1(u), TII

1,0(u) = ν4(u) ν̃4(u).

Therefore, choosing d(u) ∝ (ν1(u)/ν4(u))
1
2 , one can set TI1,0(u) ∝ ν̃1(u), TII1,0(u) ∝ ν̃4(u),

from which we have a clear indication that the regularity properties of the ν and T functions

are equivalent. This example also illustrates the fact that a requirement of regularity for the

T gauge specifies the function d(u) uniquely, apart for an overall constant27. However, we

remark that, for the purposes of the following derivation, the precise form d(u) is irrelevant:

this function cancels out of all the equations reported below.

A.2 Strategy of the derivation

The main tactic of the derivation is to choose a parametrization of the T functions that

makes (a), (b) explicit; we will then reconstruct the T functions through (A.9) and impose

the validity of (i), (ii), (iii).

To start, we notice that the properties (a), (b) presented above can be encapsulated by

the following parametrization [15]:

T̂1,s = P
[+s]
1 P

[−s]
2 −P

[+s]
2 P

[−s]
1 , , T̂2,s+1 = T̂[+s+1]

1,1 T̂[−s−1]
1,1 , s ∈ N+, (A.12)

T̂α0,0 = 1, , T̂0,s = 1, s ∈ N+, α ∈ {I, II} , (A.13)

where P1, P2 are functions with a single short cut. Notice that this parametrization covers

only the right tail of the T-hook diagram. To reach the rest of the diagram using the T-system

relation (A.1), we need one more constraint involving at least one node outside this domain.

For this purpose we may use

T3,2/T2,3 = µ̌12, (A.14)

which follows from the transformation (A.9) combined with the property (iii). We then see

that, applying Hirota equation starting from any point in the right band, we may parametrize

any of the T functions in terms of only three building blocks, the functions P1, P2, µ12, which

as we will see will be evaluated on various Riemann sheets. The T functions, defined through

(A.9), can be expressed in terms of the same data, and one can check that they satisfy the

constraints (ii), (iii) by construction. However, it is not obvious that they have the correct

analyticity strips described by condition (i); we still need to impose an infinite ladder of

relations:

4
(

(Tα
n+1,0)(+n)

)
= 4

(
T

(+n)
n+2,1

)
= 0, (A.15)

where we use the symbol 4 for the discontinuity 4f ≡ f − f̃ expressing the monodromy

around any of the branch points at ±2h on the real axis. The conditions (A.15) place further

constraints on P1, P2 and µ̌12 and will lead us to the QSC equations.

26These expressions for Tα
1,0 follow from the comparison between equation (A.28) below and the Pν-system.

27In fact, from (A.9) it is evident that this function must be chosen in such a way that it cancels the extra

singularities in Tαa,0 introduced by the square root factors
√
µ̌12 in (A.9). For states with 4↔ 4̄-symmetry, we

can simply set d(u) = 1, since in that case µ12 has only double zeros.
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As a convenient notation, we will introduce a splitting function g(u), defined through

g2 ≡
TI

1,0

TII
1,0

=
TI1,0
TII1,0

d2. (A.16)

In particular, in the 4 ↔ 4̄-symmetric subsector in which TI
n,0 = TII

n,0, one has simply

g(u) = 1.

A.3 Details

Before discussing the derivation in detail, let us mention a technical point. In the following

paragraphs, we will find relations between functions which are defined, by default, on different

sections of the Riemann surface covering the u plane. To remove possible ambiguities, we

specify that all the equations below are valid for u in a strip slightly above the real axis. With

this understanding, we will use interchangeably µ̌12 and µ12 in the following equations.

First level n = 0

The first constraint coming from (A.15) is that T2,1 = T2,1 has no cut on the real axis. The

consequences of this requirement were already discussed in [44]. Using Hirota equation and

carefully continuing the expressions (A.12) to the mirror sheet, we find

T2,1 =
T(+1)

2,2 T(−1)
2,2 − T1,2T32

T23
(A.17)

= (P
[+2]
1 P2 −P

[+2]
2 P1)(P̃1P

[−2]
2 − P̃2P

[−2]
1 )− µ12 T1,2. (A.18)

Imposing the absence of a cut on the real axis, we obtain

4 (T2,1) = T1,2

(
µ̃12 − µ12 −P1P̃2 + P2P̃1

)
= 0, (A.19)

and, since T1,2 cannot be zero everywhere, we get a first relation of the Pµ-system (3.4):

µ12 + P1 P̃2 −P2P̃1 = µ̃12. (A.20)

Using the Hirota equation centered at the node (1, 1), we can also compute

TI
1,0 T

II
1,0 = µ12

T(+1)
1,1 T(−1)

1,1 − T2,1

T1,2
= µ12 (µ12 + P1P̃2 −P2P̃1) = µ12 µ̃12, (A.21)

which means we can parametrize

TI
1,0(u) =

√
µ12(u)µ̃12(u) g(u), TII

1,0(u) =

√
µ12(u)µ̃12(u)

g(u)
. (A.22)

The requirement that Tα
1,0 have no cuts on the real axis then imposes 4(g(u)) = 0.
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General level

As illustrated in the previous example, the functions Ta,s with a > s, computed using the

T-system relations, will depend not only on the values of P1, P2 and µ12 on their defining

sheet, but also on their shifted values on the second sheet: this is due to the fact that Hirota

equation is defined on the mirror section, while the cut in the definition of P1 and P2 is short.

In general, the constraints (A.15) can be translated as conditions on the monodromies of P̃1,

P̃2 and g around the branch points lying further and further from the real axis. Remarkably,

the content of (A.15) can be recast in a very simple form: the constraints on the cuts in the

upper half plane yield28

µ12
˜

(P̃A)(2n) = +P
(2n)
1 4(P2 PA)−P

(2n)
2 4(P1 PA) + (P̃A)(2n) µ̃12 + 24(PA) ηn, (A.23)

for n ∈ N+, A ∈ {1, 2}, with

ηn ≡
1

2

(
g(+2n)

g
+

g

g(+2n)

) √
µ̃12 (µ̃12)(2n) + P̃1P

(2n)
2 − P̃2P

(2n)
1 , (A.24)

together with the condition that

4
(g(+2n)

g

√
(µ̃12)(2n)

µ12

)
= 4

( g

g(+2n)

√
(µ̃12)(2n)

µ12

)
. (A.25)

One obtains very similar but not identical equations describing the discontinuities in the

lower half plane. For conciseness, we will only refer to (A.23) in the following arguments.

Remarkably, the form of these relations contains already the full structure of the QSC.

Constructing the Pµ-system

The equations in (A.23) can be rewritten as

− µ̃12µ12 4
(P̃(2n)

A

µ12

)
= +P

(2n)
1 4(P2 PA)−P

(2n)
2 4(P1 PA) + 24(PA) ηn, (A.26)

for A ∈ {1, 2}. Considering the discontinuity of these relations on the real axis, we see that

4(ηn) = 0. Inspecting expression (A.24), we then see that(
−P

(+2n)
1 4(P2) + P

(+2n)
2 4(P1)

)
√
µ̃12 µ12

= 4
(g(+2n)

α

gα

√
(µ̃12)(2n)

µ12

)
, α ∈ {I, II} , (A.27)

with gI = g, gII = 1/g. We will exploit (A.27) to construct two new functions with a single

short cut, which we denote as P5 and P6 in anticipation of their role in the QSC equations.

They are defined through

P5 ≡
√
µ̃12√
µ12

g −P2 φ1,I + P1 φ2,I , P6 ≡
√
µ̃12√
µ12 g

−P2 φ1,II + P1 φ2,II , (A.28)

28 We verified the form of these equations for the first few values of n, and conjecture that the pattern is

general.
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where the functions φA,α, with indices A ∈ {1, 2}, α ∈ {I, II}, are defined from the require-

ment that they are periodic on the mirror section, with power-like asymptotics and with

discontinuities 29√
µ̃12µ12 4(φA,α) = 4(PA) gα, A ∈ {1, 2} , α ∈ {I, II} . (A.29)

Combining (A.29) and (A.28), we can indeed verify that the newly constructed functions have

vanishing discontinuities in the upper half plane 4(P
(+2n)
5 ) = 4(P

(+2n)
6 ) = 0, ∀n ∈ N+. A

simple extension of this analysis shows that (A.28) defines a function with only a single short

cut on the real axis.

Let us point out that, when g = 1 (which is appropriate for 4 ↔ 4̄-symmetric states),

by definition we have P5 = P6, in agreement with the rules described in Section 4.4. As

another side remark, notice that the definitions (A.28) can be recognized as two equations of

the Pν-system (3.12) provided the mirror-periodic functions φA,α are identified as ratios of ν

functions, and g(u) is identified as

g2 =
ν1 ν̃1

ν4 ν̃4
. (A.30)

In the rest of this Appendix, for simplicity we will concentrate solely on obtaining the “Pµ”

vector form of the equations.

Using (A.28),(A.24), equations (A.26) becomes

−µ̃12µ12 4
(P̃(2n)

A

µ12

)
= +P

(2n)
1

4(PAP2)− 24(PA)

P̃2 +
√
µ̃12µ12

∑
α=I,II

φ2,α

2gα


−P(2n)

2

4(P1 PA)− 24(PA)

P̃1 +
√
µ̃12µ12

∑
α=I,II

φ1,α

2gα


+4(PA)

(
P5

(2n)

√
µ̃12µ12

g
+ P

(2n)
6 g

√
µ̃12µ12

)
, (A.31)

with A ∈ {1, 2}. Let us now introduce four functions ΦAB, periodic on the mirror sheet,

ΦAB = Φ
(+2n)
AB , for A,B ∈ {1, 2}, whose (periodically repeated) discontinuities are

µ12µ̃124(ΦAB) = 4(PAPB)− 24(PA)

P̃B +
√
µ̃12µ12

∑
α=I,II

φB,α
2gα

 . (A.32)

Then, defining the functions P3 and P4 as

−P3 ≡
P̃1

µ12
+ Φ12 P1 − Φ11 P2 + φ1,II P5 + φ1,I P6, (A.33)

−P4 ≡
P̃2

µ12
+ Φ22 P1 − Φ21 P2 + φ2,II P5 + φ2,I P6, (A.34)

29These requirements specify ωA,α uniquely apart from an additive constant independent of u.
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we see that, due to (A.31),

4(P
(2n)
3 ) = 4(P

(2n)
4 ) = 0, n ∈ N+, (A.35)

therefore P3 and P4 are free of branch points in the upper half plane and, by a small additional

effort, we can show that they have just a single short cut on the real axis.

Let us summarize the situation: by a scrutiny of the equations, we have so far found six

functions with a single short cut, and eight mirror-periodic functions ΦAB , φA,α. It remains

only to check that the relations between their monodromies can be written in a closed form.

The fifteen components of the antisymmetric matrix µAB can be defined in terms of the

periodic functions introduced above. Indeed, setting

µ14 = −Φ12 µ12 − 1, µ13 = −Φ11 µ12, µ15 = −φ1,I µ12, µ16 = −φ1,II µ12, (A.36)

µ24 = −Φ22 µ12, µ23 = −Φ21 µ12 + 1, µ25 = −φ2,I µ12, µ26 = −φ2,II µ12, (A.37)

we immediately recognize that (A.33),(A.34) are two equations of the Pµ-system. Besides, the

form of these relations implies the existence of three quadratic constraints among the matrix

elements defined in (A.36); let us discuss in detail how these conditions emerge. Consider the

following equation:

µ13 − µ̃13 + P1P̃3 −P3P̃1 = −2 (µ12 − µ̃12) (Φ11 − φ1,I φ1,II), (A.38)

which can be derived from (A.33) and its analytic continuation to the second sheet using

the monodromy rules (A.20),(A.29),(A.32). The form of (A.38) implies that the combination

of mirror-periodic functions Φ11 − φ1,I φ1,II must be free of cuts. Due to its power-like

asymptotics, it must be a constant independent of u and, using the freedom to redefine the

Φ’s by a constant shift, we will assume that Φ11 − φ1,I φ1,II = 0. Therefore, (A.38) can be

recognized as another equation of the Pµ-system. Moreover, the quadratic constraint we have

just found can be rewritten as µ12µ13 − µ15µ16 = 0, which is one of the components of the

matrix equation (µη)2 = 0. By similar reasoning, we can impose two more constraints and

all in all we can set

Φ11 − φ1,I φ1,II = 0, Φ22 − φ2,I φ2,II = 0, Φ12 + Φ21 + φ1,Iφ2,II + φ2,Iφ1,II = 0. (A.39)

The rest of the derivation goes along the same lines. The remaining independent entries of

µAB are defined as:

µ35 = φ1,I (µ23 − µ12 φ1,II φ2,I), µ36 = φ1,II (µ23 − µ12 φ1,I φ2,II), (A.40)

µ45 = φ2,I (µ23 − µ12 φ1,II φ2,I), µ46 = φ2,II (µ23 − µ12 φ1,I φ2,II), (A.41)

µ34 =
µ35 µ36

µ12 φ1,I φ1,II
, µ56 = −µ12(φ1,II φ2,I − φ1,I φ2,II), (A.42)

and it is possible to verify that all equations of the Pµ system, including the quadratic

constraints on the P and µ functions, follow from the relations listed above (and their analytic

continuation around the branch cut on the real axis).
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The specific form of the matrix ηAB entering the Pµ-system equations does depend on

the normalization of our definitions (A.28),(A.33),(A.34),(A.36)-(A.42), and could be changed

by rescaling some of the µ or P functions, or by a more general linear change of basis,

PA(u)→ HB
A PB(u), µAB(u)→ HC

A H
D
B µCD(u), which would transform ηAB → HC

A H
D
B ηCD.

However, ηAB is clearly always a symmetric tensor, and besides its signature (+ + + −
−−) is invariant under all linear transformations with H ∈ R6×6. This reality restriction is

meaningful since it preserves the following property: for real values of the coupling, all the

functions PA(u) can be chosen to be real30 on the Riemann section with short cuts. This

property is verified with our choice of conventions, and follows from the reality of the solutions

of the TBA.

B Algebraic identities

B.1 Identities for gamma matrices

In this Appendix we collect some useful algebraic identities, descending from the properties of

gamma and sigma matrices for SO(3, 3) and SO(3, 2). The defining relation for the SO(3, 3)

sigma matrices is

(σA)ai (σ̄B)ib + (σB)ai (σ̄A)ib = δba ηAB, (B.1)

and we recall that (σAB)ba is defined through

(σA)ai (σ̄B)ib − (σB)ai (σ̄A)ib = −2 (σAB)ba, (B.2)

so that we have

(σA)ai (σ̄B)ib =
1

2
δba ηAB − (σAB)ba. (B.3)

A useful property, specific to orthogonal groups in six and five dimensions, is the fact that

gamma matrices are anti-symmetric: (σA)ab = −(σA)ba. This allows us to prove the following

very useful relation:

(σ̄C σA σ̄B − σ̄C σB σ̄A)ab = ηAC (σ̄B)ab − ηBC (σ̄A)ab, (B.4)

and its consequence

Tr
(
σAB σ

CD
)

= δDA δ
C
B − δCA δDB . (B.5)

Another identity that is specific to this dimension is

σ̄ab = −1

2
εabcd σcd, (B.6)

which implies in particular that (σAB) is traceless: (σAB)aa = 0, and moreover that, for any

anti-symmetric matrix 4× 4 matrix Gab:

2 Pf(Gab) = GA η
AB GB, (B.7)

30Correspondingly, one can choose all functions µ+
AB(u) to be purely imaginary on the real axis.
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where the corresponding vector {GA}6A=1 is defined by Gab = GA (σA)ab. Another useful

formula is:

(σA)ab(σ̄B)cd − (σB)ab(σ̄A)cd = (σAB)ca δ
d
b − (σAB)cb δ

d
a − (σAB)da δ

c
b + (σAB)db δ

c
a. (B.8)

All the properties listed above are independent on for any choice of chiral representation of the

gamma matrices. The situation is analogous for the representations of SO(3, 2). In that case

we recall that we use the symbols (ΣI)ij , (ΣIJ)ji , and denote the metric as ρIJ ≡ 1
2 Tr(ΣI Σ̄J).

In particular the defining relation for the matrices ΣI and ΣIJ is:

(ΣI)ai (Σ̄J)ib =
1

2
δba ρIJ − (ΣIJ)ba, (B.9)

with ΣIJ = −ΣJI . On top of these properties, in the SO(3, 2) case the matrices Σ and Σ̄ are

related by a similarity transformation:

(ΣI)ij =
(
κik (Σ̄I)

kl κlj

)
, (B.10)

where κij is an anti-symmetric 4 × 4 matrix. Equation (B.10) can be used to prove the

additional symmetry property (ΣIJ)ij = +(ΣIJ)ji. Finally, the analogue of (B.5), (B.4) are

Tr
(
ΣIJ ΣKL

)
= δLI δ

K
J − δKI δLJ , (B.11)(

Σ̄K ΣI Σ̄J − Σ̄K ΣJ Σ̄I

)ij
= ρIK (Σ̄J)ij − ρJK (Σ̄I)

ij . (B.12)

Finally, we report below some useful identities for a generic antisymmetric 4× 4 matrix

Gab = −Gba:

GabGcd −GcbGad −GacGbd = εabcd Pf(G), (B.13)

−1

2
εijklGklGjm = δim Pf(G), (B.14)

Gik Gjl ε
klmn = −Pf(G)

(
Gij G

mn + δmi δ
n
j − δni δmj

)
, (B.15)

Gij = −1

2
εijklG

kl Pf(G), (B.16)

where we recall that the Pfaffian is defined as

Pf(G) =
1

8
εabcdGabGcd = G12G34 +G14G23 −G13G24. (B.17)

In particular:

κik κjl ε
klmn =

(
κij κ

mn + δmi δ
n
j − δni δmj

)
. (B.18)

B.2 Relation between Qab|ij and Qab|ij

In Section 7.1, we have defined the objects Qab|ij as subdeterminants of the 4 × 4 matrix{
Qa|i

}
. Notice that, in principle, one can also define

Qab|ij = Qa|iQ
b
|j −Q

a
|j Q

b
|i. (B.19)
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However, a simple linear algebra identity relates the minors of a matrix and its inverse, and

shows that the two definitions are algebraically related:

Qab|ij =
1

2

(
det(Q∗|∗)

)
εabcd εijkl Q

c|kQd|l = −1

2
εabcd εijkl Q

c|kQd|l. (B.20)

From (B.20), we see that

Qab|ij = −1

2
εabcdQ

c
|j1 Q

d
|j2 εijkl κ

kj1 κlj2 , (B.21)

and using (B.18) we find

Qab|ij = −1

2
εabcd

(
Qcd|ij + κij Q

cd
◦

)
. (B.22)

Let us define the projections:

Qab|◦ ≡
1

2
Qab|ij κ

ij , Q
ab|(ij) ≡ Qab|ij +

1

2
κij Qab|◦, (B.23)

where Q
ab|(ij) denotes the traceless part and satisfies Q

ab|(ij) κ
ij = 0. Identity (B.22) then

splits as

Qab|◦ =
1

2
εabcdQ

cd
|◦, Q

ab|(ij) = −1

2
εabcdQ

cd
|(ij). (B.24)

B.3 Relation between Qij and its inverse

From (B.16), we have

Qij =
1

2
εijkl Q

kl, (B.25)

and, using (B.13), we immediately find

Qij = κii1 κjj1 Q
i1j1 − 1

2
κij Q̂◦, (B.26)

where

Q̂◦ = Qmn κmn. (B.27)

Contracting (B.26) with κij , we find that in fact Q̂◦ = Q◦ = Qij κ
ij , so that (B.26) reduces

to equation (4.14) presented in the main text.

C Derivation of constraints on large-u asymptotics

Here we derive the constraints (5.3), (5.11) on the asymptotics of P and Q functions using

the QQ-relations derived in Section 7. In order to find (5.3), we start from relation (7.8). At

large u, its rhs is given by

PA(u)QI(u) ' AA BIuM̂I−MA−1 , (C.1)
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which constrains the asymptotic behaviour of QA|I to be

QA|I(u) ' −iAABIu
M̂I−MA

M̂I −MA

. (C.2)

We may now use the following relation, which is a consequence of the Q-system:

QI = ±PAQ±A|I , (C.3)

and gives, using the aymptotics (C.2), the constraint

∑
A

AAAA

M̂I −MA

= 0, I = 1, . . . , 5. (C.4)

These relations, together with the constraint Pf (Pij) = 1, may be solved for the termsAAAA,

giving precisely (5.3). To derive (5.11), it will be convenient to use the following equaton,

which can be obtained with simple manipulations from the Q-system relations:

PA = QI Q−A|I +
Q◦Q

−
A|◦

4
. (C.5)

The large-u asymptotics of Q◦ can be fixed using the first constraint in (4.43), which yields

Q◦(u) = 4 +
2 C
u2

+O
(

1

u3

)
, C = B1B4 − B2B3 + B2

5. (C.6)

We will also need

PA(u) ' u−MA

[
AA +

AsubA

u
+O

(
1

u2

)]
, (C.7)

and, from (7.9),

QA|◦(u) = u−MA

[
AA +

AsubA

u
+O

(
1

u2

)]
. (C.8)

Expanding (C.5) at NLO, we find, using (C.6), (C.7), (C.8),

5∑
I=1

BIBI
M̂I −MA

=
MA

2
, A = 1, . . . , 6. (C.9)

The solution of these equations finally yields (5.11) and fixes the coefficient C as in (5.14).

D State/charges dictionary

The purpose of this Appendix is to provide a dictionary to express the charges MA, M̂I in

terms of the spin chain length and excitation numbers appearing in the Asymptotic Bethe

Ansatz description of a generic state.
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D.1 Asymptotic Bethe Ansatz equations

In [35] two equivalent versions of the ABA were introduced, characterized by the gradings

η = ±1. The ABA equations in η = +1 grading read

1 =
Q+

2 B4(−)B4̄(−)

Q−2 B4(+)B4̄(+)

∣∣∣∣∣
u1,j

, j = 1, . . . ,K1, (D.1)

−1 =
Q−−2 Q+

1 Q+
3

Q++
2 Q−1 Q−3

∣∣∣∣
u2,j

, j = 1, . . . ,K2, (D.2)

1 =
Q+

2 R4(−)R4̄(−)

Q−2 R4(+)R4̄(+)

∣∣∣∣∣
u3,j

, j = 1, . . . ,K3, (D.3)

−1 =

(
x−4,j

x+
4,j

)−L
Q[−2]

4

Q[+2]
4

B+
1 R

+
3

B−1 R
−
3

σ−4 σ
−
4̄

σ+
4 σ

+
4̄

∣∣∣∣∣
u4,j

, j = 1, . . . ,K4, (D.4)

−1 =

(
x−

4̄,j

x+
4̄,j

)−L
Q[−2]

4̄

Q[+2]

4̄

B+
1 R

+
3

B−1 R
−
3

σ−4 σ
−
4̄

σ+
4 σ

+
4̄

∣∣∣∣∣
u4̄,j

, j = 1, . . . ,K4̄, (D.5)

while the η = −1 grading version is

1 =
Q+

2 B4(−)B4̄(−)

Q−2 B4(+)B4̄(+)

∣∣∣∣∣
u1̃,j

, j = 1, . . . , K̃1, (D.6)

−1 =
Q−−2 Q+

1̃
Q+

3̃

Q++
2 Q−

1̃
Q−

3̃

∣∣∣∣∣
u2,j

, j = 1, . . . ,K2, (D.7)

1 =
Q+

2 R4(−)R4̄(−)

Q−2 R4(+)R4̄(+)

∣∣∣∣∣
u3̃,j

, j = 1, . . . , K̃3, (D.8)

1 =

(
x−4,j

x+
4,j

)L̃
Q[−2]

4̄

Q[+2]

4̄

B+
1̃
R+

3̃
B+

4(+)B
+
4̄(+)

B−
1̃
R−

3̃
B−4(−)B

−
4̄(−)

σ+
4 σ

+
4̄

σ−4 σ
−
4̄

∣∣∣∣∣
u4,j

, j = 1, . . . ,K4, (D.9)

1 =

(
x−

4̄,j

x+
4̄,j

)L̃
Q[−2]

4

Q[+2]
4

B+
1̃
R+

3̃
B+

4(+)B
+
4̄(+)

B−
1̃
R−

3̃
B−4(−)B

−
4̄(−)

σ+
4 σ

+
4̄

σ−4 σ
−
4̄

∣∣∣∣∣
u4̄,j

, j = 1, . . . ,K4̄, (D.10)
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for a different set of Bethe roots. The precise relation between the two sets of roots is reviewed

in Section D.2 below. Above and in the main text, we have used the notations:

Qs(u) =

Ks∏
j=1

(u− us,j), (D.11)

Rs(u) =

Ks∏
j=1

√
h

xs,j
(x(u)− xs,j) , Bs(u) =

Ks∏
j=1

√
h

xs,j
(1/x(u)− xs,j) , (D.12)

Rs(±)(u) =

Ks∏
j=1

√
h

x∓s,j

(
x(u)− x∓s,j

)
, Bs(±)(u) =

Ks∏
j=1

√
h

xs,j

(
1/x(u)− x∓s,j

)
, (D.13)

σ+(u)

σ−(u)
=
∏
s=4,4̄

Ks∏
j=1

σBES(u, us,j), x±s,j = x(us ± i/2), xs,j = x(us,j), (D.14)

where σBES(u, v) is the Beisert-Eden-Staudacher dressing factor [8].

D.2 Fermionic duality: from η = +1 to η = −1

It is expected that every state (or, more precisely, every multiplet) can be represented by a

regular solution of the Asymptotic Bethe Ansatz, where regular means that for every type of

root xi we have xi 6= 0, xi 6= ∞. Let us now review (see Appendix A in [35]) how to switch

from a regular solution of the η = +1 ABA, characterized by the roots

{u1,j}K1

j=1 , {u2,j}K2

j=1 , {u3,j}K3

j=1 , {u4,j}K4

j=1 ,
{
u4̄,j

}K4̄

j=1
, (D.15)

to a regular solution of the η = −1 ABA. This type of duality transformations is well known

from the N=4 SYM case [7]. Following the standard argument, we consider the polynomial

in x(u):

P (x) =

K4∏
j=1

(x− x+
4,j)

K4̄∏
j=1

(x− x+
4̄,j

)

K2∏
j=1

(x− x−2 ) (x− 1/x−2 ) (D.16)

−
K4∏
j=1

(x− x−4,j)
K4̄∏
j=1

(x− x−
4̄,j

)

K2∏
j=1

(x− x+
2 ) (x− 1/x+

2 ). (D.17)

Due to the ABA equations (D.1),(D.3), we see that this polynomial has zeros at all roots of

type x = x(u3,j) and x = 1/x(u1,j); besides, due to the zero momentum condition, it vanishes

for x = 0. One may then write

P (x) = x

K1∏
j=1

(x− 1/x1,j)

K̃1∏
j=1

(x− 1/x1̃,j)

K3∏
j=1

(x− x3,j)

K̃3∏
j=1

(x− x3̃,j), (D.18)

where
{
x3̃,j

}K̃3

j=1
and

{
1/x1̃,j

}K̃1

j=1
label the extra zeros of P (x) outside/inside the unite circle,

respectively. By considering the weak coupling limit of P (x), and considering that xs,j ∼ h−1,
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one may count the two new types of roots:

K4 +K4̄ +K2 − 1− δK2,0 = K3 + K̃3, K2 − 1 + δK2,0 = K1 + K̃1. (D.19)

We have then found the fermionic duality equation31:

R4(−)R4̄(−) Q+
2 −R4(+)R4̄(+) Q−2 ∝ x

δK2,0 R3R3̃B1B1̃, (D.20)

with an inessential proportionality factor independent of u. It is now standard to verify that

the set of roots{
u1̃,j

}K̃1

j=1
, {u2,j}K2

j=1 ,
{
u3̃,j

}K̃3

j=1
, {u4,j}K4

j=1 ,
{
u4̄,j

}K4̄

j=1
, (D.21)

satisfy the η = −1 ABA, where the spin chain length parameter is

L̃ := Lη=−1 = Lη=+1 − δK2,0. (D.22)

D.3 Asymptotics of the QSC and excitation numbers

The charges entering the asymptotics of the QSC are, in terms of the number of Bethe roots

in η = +1 grading:

M1 = L+K3 −K4 −K4̄ + 1, M2 = L−K1 M5 = K4 −K4̄, (D.23)

M̂1 = γ + L+K3 −K2 + 1, M̂2 = γ + L+K2 −K1. (D.24)

Using the rules (D.19) and (D.22), (D.23)-(D.24) can be rewritten as

M1 = L̃− K̃3 +K2, M2 = L̃+ K̃1 −K2 + 1, M5 = K4 −K4̄ (D.25)

M̂1 = γ +K4 +K4̄ + L̃− K̃3, M̂2 = γ + L̃+ K̃1 + 1, (D.26)

where we have denoted L̃ = Lη=−1.

D.4 Important subsectors

In what follows we list a set of special cases corresponding to different subsectors of the theory,

described by different values of excitation numbers and subsets of BA equations in η = ±1

gradings.

SL(2|1) sector: This sector can be represented by operators made of scalars Y 1Y †4 , covari-

ant derivatives and fermions ψ4+, ψ1†
+ . The corresponding large-volume spectrum is described

by the solutions of the ABA equations (D.6)-(D.10) in η = −1 grading without any auxiliary

root, namely K̃3 = K̃1 = K2 = 0. The classical dimensions of these operators as realized in

31Notice that the prefactor xδK2,0 appears here due to the fact that we insisted on enumerating only regular

Bethe roots in both gradings.
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the η = −1 grading is ∆(0) = L̃ + 1
2(K4 + K4̄), and their spin is Sη=−1 = 1

2(K4 + K4̄). The

corresponding subset of ABA equations in η = −1 grading is

1 =

(
x−4,k

x+
4,k

)L̃
Q[−2]

4̄

Q[+2]

4̄

B+
4(+)B

+
4̄(+)

B−4(−)B
−
4̄(−)

σ+
4 σ

+
4̄

σ−4 σ
−
4̄

∣∣∣∣∣
u4,k

, with Q4(u4,k) = 0, (D.27)

1 =

(
x−

4̄,k

x+
4̄,k

)L̃
Q[−2]

4

Q[+2]
4

B+
4(+)B

+
4̄(+)

B−4(−)B
−
4̄(−)

σ+
4 σ

+
4̄

σ−4 σ
−
4̄

∣∣∣∣∣
u4̄,k

, with Q4̄(u4̄,k) = 0, (D.28)

and the asymptotics of the corresponding QSC solution is parametrized by:

M1 = L̃, M2 = L̃+ 1, M5 = K4 −K4̄, (D.29)

M̂1 = L̃+K4 +K4̄ + γ, M̂2 = L̃+ γ + 1. (D.30)

In the grading η = +1, the description of this sector involves some of the auxiliary roots:

K3 = K4 +K4̄ − 2, while K̃1 = 0.

SL(2)-like sector: Rather than a sector, this is a subset of states belonging to the SL(2|1)

sector, which satisfy the condition K4 = K4̄ and {u4,j} =
{
u4̄,j

}
(see [77] and [34] for a

detailed discussion). In this case M5 = 0 and the ABA equations reduce to the following

single equation:

1 =

(
x−4,k

x+
4,k

)L̃
Q[−2]

4

Q[+2]
4

(
B+

4(+)

B−4(−)

σ+
4

σ−4

)2
∣∣∣∣∣∣
u4,k

, with Q4(u4,k) = 0. (D.31)

This set of states were studied at weak coupling using the QSC in [46].

SU(4) sector: The operators belonging to this sector are made of all the complex scalars

of the theory: Y a, Y †b , a, b = 1, . . . , 4. The corresponding scaling dimensions are described

most conveniently by the ABA equations in η = +1 grading (D.1)-(D.5), where only Bethe

roots of type 4, 4̄ and 3 are excited:

−1 =

(
x−4,k

x+
4,k

)−L
Q[−2]

4

Q[+2]
4

σ−4 σ
−
4̄

σ+
4 σ

+
4̄

R+
3

R−3

∣∣∣∣∣
u4,k

, with Q4(u4,k) = 0, (D.32)

−1 =

(
x−

4̄,k

x+
4̄,k

)−L
Q[−2]

4̄

Q[+2]

4̄

σ−4 σ
−
4̄

σ+
4 σ

+
4̄

R+
3

R−3

∣∣∣∣∣
u4̄,k

, with Q4̄(u4̄,k) = 0, (D.33)

1 =
R4(−)R4̄(−)

R4(+)R4̄(+)

∣∣∣∣∣
u3,k

, with Q3(u3,k) = 0, (D.34)

and the excitation numbers are constrained by the conditions

L+K3 − 2K4 ≥ 0, L+K3 − 2K4 ≥ 0, K4 +K4̄ ≥ 2K3, (D.35)
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(which are stricter than the general unitarity constraints). In this case the parameters entering

the asymptotics of the QSC read

M1 = L+K3 −K4 −K4̄ + 1, M2 = L, M5 = K4 −K4̄, (D.36)

M̂1 = L+K3 + 1 + γ, M̂2 = L+ γ. (D.37)

In the η = −1 grading, these states are represented with K̃3 = K4+K4̄−K3−2, K2 = K̃1 = 0.

SU(2)× SU(2) sector: This can be realized considering only scalars Y 2 and Y †3 as exci-

tations on top of the vacuum tr [(Y 1Y †4 )L]. The corresponding Bethe Ansatz solutions have

only massive Bethe roots excited in η = +1 grading, with K3 = 0.

D.5 Distinguished grading

Finally, a further very common form of the Bethe Ansatz equations is the one related to

the distinguished Dynkin diagram. This is the form in which the 2-loop BA was originally

written in [29]; it is known that it does not admit an all-loop generalization in terms of explicit

functions of the Bethe roots. At two loops, one can relate the roots appearing in this version

of the BA to the ones featuring in the other two versions by a chain of fermionic dualities (see

[77], Appendix A). The relation between the excitation numbers in the distinguished-grading

Bethe Ansatz, denoted as Kd
s for s = 1, 2, 3, 4, 4̄, and the excitation numbers in the η = −1

grading, is

Kd
1 = K̃1, Kd

2 = K4 +K4̄ + K̃1 − K̃3 − 2, Kd
3 = K4 +K4̄ +K2 − 1− K̃3, (D.38)

Kd
4 = K4, Kd

4̄ = K4̄,

and the length entering this version of the BA is the same as in the η = −1 grading, Ld = L̃.

The translation between excitation numbers of distinguished and η = +1 gradings can be

obtained comparing equations (D.38) and (D.19):

Kd
1 = K2 −K1 − 1 + δK2,0, Kd

2 = K3 −K1 − 2 + 2δK2,0, Kd
3 = K3 + δK2,0, (D.39)

while Ld = Lη=+1 − δK2,0.

Finally, let us make contact with the Dynkin labels [∆, j; p1, q, p2] defined in relation to

the distinguished diagram, which are widely used in the literature, e.g. [77]. In terms of these

charges, the parameters entering the asymptotics of the QSC are given by

M1 = 1 + r2, M2 = 2 + r1, M5 = r3, (D.40)

M̂1 = ∆ + j + 2, M̂2 = ∆− j + 1, (D.41)

where

r1 =
1

2
(p1 + p2 + 2q), r2 =

p1 + p2

2
, r3 =

p2 − p1

2
. (D.42)
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E An integral formula for P

In this Appendix we prove an exact integral formula for P, which could be useful for computing

this quantity from the numerical solution of the QSC. The expression is

P =
1

2π E(h)

∫ 2h

−2h

dz eπz log
(
−τ4(z)
τ1(z)

)
√

(e2πz − e4πh) (e2πz − e−4πh)
(E.1)

=
1

4π E(h)

∫ 2h

−2h

dz eπz log
(
τ4(z) τ̃4(z)
τ1(z) τ̃1(z)

)
√

(e2πz − e4πh) (e2πz − e−4πh)
, (E.2)

where E(h) is an elementary function of h defined in (7.89). To prove (E.1), we use (4.21) to

write

log

(
−τ4(z)

τ1(z)

)
= iP +A(z), A(z) = log

τ4(z)

τ4(z + i)
, (E.3)

where A(z + i) = −A(z). Assuming that A(z) has no singularities on the first sheet, we can

open up the integration contour circling the cut to a couple of infinite horizontal lines lying at

Im(z) = ±i/2. Thus we see that the integral over A(z) exactly cancels due to the periodicity

of the integrand, leading to (E.1). Notice that the ABA expression (7.88) for P is just a an

application of this formula where τ4/τ
1 takes its large volume value, which can be read from

(7.66),(7.84),(7.85),(7.87).
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