

King’s Research Portal

DOI:
10.1007/s10514-015-9534-0

Document Version
Publisher's PDF, also known as Version of record

Link to publication record in King's Research Portal

Citation for published version (APA):
Bernardini, S., Fox, M., & Long, D. (2017). Combining temporal planning with probabilistic reasoning for
autonomous surveillance missions. Autonomous Robots, 41(1), 181-203. https://doi.org/10.1007/s10514-015-
9534-0

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 07. Jan. 2025

https://doi.org/10.1007/s10514-015-9534-0
https://kclpure.kcl.ac.uk/portal/en/publications/f7970afa-7584-4233-83d2-bb531bbb1e74
https://doi.org/10.1007/s10514-015-9534-0
https://doi.org/10.1007/s10514-015-9534-0

Auton Robot (2017) 41:181–203
DOI 10.1007/s10514-015-9534-0

Combining temporal planning with probabilistic reasoning
for autonomous surveillance missions

Sara Bernardini1 · Maria Fox2 · Derek Long2

Received: 15 March 2015 / Accepted: 9 December 2015 / Published online: 28 December 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract It is particularly challenging to devise techniques
for underpinning the behaviour of autonomous vehicles in
surveillance missions as these vehicles operate in uncertain
and unpredictable environments where they must cope with
little stability and tight deadlines in spite of their restricted
resources. State-of-the-art techniques typically use proba-
bilistic algorithms that suffer a high computational cost
in complex real-world scenarios. To overcome these limi-
tations, we propose a hybrid approach that combines the
probabilistic reasoning based on the target motion model
offered by Monte Carlo simulation with long-term strate-
gic capabilities provided by automated task planning. We
demonstrate our approach by focusing on one particular sur-
veillance mission, search-and-tracking, and by using two
different vehicles, a fixed-wing UAV deployed in simula-
tion and the “Parrot AR.Drone2.0” quadcopter deployed in
a physical environment. Our experimental results show that
our unique way of integrating probabilistic and deterministic
reasoning pays off when we tackle realistic missions.

Electronic supplementary material The online version of this
article (doi:10.1007/s10514-015-9534-0) contains supplementary
material, which is available to authorized users.

B Sara Bernardini
Sara.Bernardini@rhul.ac.uk

Maria Fox
maria.fox@kcl.ac.uk

Derek Long
derek.long@kcl.ac.uk

1 Department of Computer Science, Royal Holloway
University of London, Egham, Surrey TW20 0EX, UK

2 Department of Informatics, King’s College London,
London WC2R 2LS, UK

Keywords Automated task planning · Autonomy · UAVs ·
Quadcopters · Search-and-tracking · Monte Carlo methods

1 Introduction

Autonomous agents (software entities that operate without
direct human intervention and have control over their own
actions (Wooldridge and Jennings 1995)) are increasingly
used in surveillance applications. Surveillance problems are
characterised by two kinds of agents: observers and targets.
Observers might be mobile or fixed and targets might be
aware that they are being observed, and possibly evasive, or
not. In this paper, we focus on search-and-tracking (SaT),
which involves searching for a mobile target and tracking it
after it is found. We use SaT to demonstrate our approach, but
the main features of our technique can be applied to other sur-
veillance operations and data gathering missions (see Sect. 10
for additional details).

At the heart of a number of sophisticated surveillance
problems such as SaT, intelligence gathering and hazard
identification lies the need to plan complex sequences of
behaviours that achieve surveillance goals, which generally
consist of gathering as much information as possible given
the constraints and communicating findings to human oper-
ators. Observers usually operate in unpredictable environ-
ments with little stability and rapidly changing information.
They must decide what action to perform and how to coordi-
nate with other observers almost instantaneously. They must
be highly trained to react quickly, without spending too much
time reasoning about alternative courses of action. At the
same time observers have limited resources, e.g. fuel or bat-
tery, and need to be strategic in deciding what course to
follow, looking ahead at their remaining lifespan and fitting
their objectives within this time frame. Hence, surveillance

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-015-9534-0&domain=pdf
http://dx.doi.org/10.1007/s10514-015-9534-0

182 Auton Robot (2017) 41:181–203

missions give rise to many challenges: the management of
uncertainty in an unpredictable environment, the handling of
restricted resources, the right balance between reactivity and
deliberation and the communication of requests and commit-
ments between multiple heterogeneous observers, including
human operators in mixed-initiative scenarios.

Although many techniques have been used to address
these challenges separately, in our previous work (Bernardini
et al. 2013, 2014) concerning surveillance problems with one
observer and one target, we show that automated task plan-
ning is well suited to deal with all these requirements at the
same time. Planners offer a route to crafting effective strate-
gies for the observers to achieve their mission goals in the
face of all relevant constraints, such as restricted resources,
tight deadlines and uncertainty. In Bernardini et al. (2013),
we introduce a plan-based approach to SaT by expressing the
search phase of a SaT mission as a deterministic task plan-
ning problem. We use an automated temporal planning tool
to solve this problem and generate robust strategies for the
observer. Given the deterministic formulation of the prob-
lem, our technique leads to good policies when the target’s
behaviour is predictable, but incurs inaccuracies when the
target acts in a more sophisticated way, as we neglect impor-
tant probabilistic information about the physical motion of
the target in the environment.

In this paper, we combine our previous plan-based
approach to SaT with Monte Carlo (MC) methods. We take
our approach one step further by integrating it with proba-
bilistic reasoning based on the target’s motion model and on
the environment’s structure. In our novel hybrid technique,
we apply MC simulation (MCS) to estimate the probable
trajectories of the target and construct a fine-grained Prob-
ability Distribution (PD) map for the target location, while
using planning to reason about this map and create long-term
strategic plans for the observer that maximise the proba-
bility of rediscovering the target. The MCS works on the
basis of historical information about the target, its physi-
cal model of movement and topological information about
the area of operations. The experimental results presented
in Sect. 8 show that our hybrid method outperforms other
existing techniques as well as our previous approach.

The use of automated task planning for SaT missions has
received little attention so far, while probabilistic approaches
based on Recursive Bayesian Estimation (RBE) have been
explored in more depth. Efficient solutions to SaT have been
proposed under restrictive simplifying assumptions such as
the search area being small (one/two square km), the tem-
poral horizon being short (a few minutes) and the target’s
motion model being simple (e.g., targets being stationary or
in Markovian motion) (Stone 1975; Bourgault et al. 2006;
Furukawa et al. 2006; Lavis and Furukawa 2008; Lin and
Goodrich 2014). Although this purely probabilistic approach
is successful for small-scale and simple SaT problems, it

fails in the face of all the constraints that characterise real-
world SaT operations because it becomes computationally
too expensive.

In our work, we remove the typical assumptions behind
state-of-the-art approaches to SaT and consider scenarios
with the following features, which characterise the majority
of realistic missions: (i) the target moves according to its own
intentions; (ii) the target moves across a large geographical
area; and (iii) the target needs to be tracked over a long period
of time. Our method is flexible enough to deal with smaller
areas and shorter temporal horizons too, when needed. In
addition, unlike many SaT approaches that focus either on
target following or on target searching, our hybrid approach
deals with the entire decision-making process behind a SaT
mission in a dynamic fashion. Alongside constructing effi-
cient strategies for the observer to keep track of the target
during both tracking and searching, we plan other types of
actions for the observer that depend on the specific circum-
stances in which the target was lost and on the resources
available to the observer at that time. For example, we can
plan actions to renew depleted resources and to manage noisy
sensors. Thanks to generative task planning, we craft long-
term programmes of activity for the observer that address the
constraints of the environment and the limits of the searching
vehicle itself. At the same time, the plans generated are much
more accurate and robust, since the planning process is now
informed by probabilistic information based on a physical
model of the target motion.

In this paper, not only do we describe our new approach
to SaT (Sects. 2–4), we also give a full account of the knowl-
edge engineering process by which we combine probabilistic
reasoning with deterministic planning (Sects. 5, 6) and for-
mulate autonomous search as a planning task (Sect. 7). For
the actual planning phase, we use an off-the-shelf planner,
Optic (Benton et al. 2012), that is capable of dealing with
all the advanced modelling features of our domains. In so
doing, we prove that generic domain-independent planning
technology is mature enough to handle real-world complex
missions that have not traditionally been seen as task plan-
ning problems.

2 Search-and-tracking

SaT is the problem of searching for a mobile target and track-
ing it once it is found. Examples of SaT operations are a UAV
searching for life-rafts drifting with current, a police heli-
copter tracking a suspected criminal over a road network and
a small drone escorting a worker who performs risky tasks
in a factory.

A SaT mission aims to follow the target to its destina-
tion and proceeds in two phases, which constantly interleave
(see Fig. 1): (i) Tracking: the observer flies over the target,

123

Auton Robot (2017) 41:181–203 183

Fig. 1 Structure of a typical SaT mission

observing its progress; and (ii) Search: the observer loses the
target and flies a series of manoeuvres to rediscover it. Once
the target is spotted, the observer switches back to tracking.

We are interested in land SaT operations with a single
observer and a single target. The target is an object that moves
according to its own intentions and proceeds at a slower pace
than the observer. We assume that the target needs to reach
a specific destination and chooses an efficient path to do
so, without trying to evade the observer. This is a plausi-
ble assumption as the target might be cooperating with the
observer or simply be unaware of its presence, but we recog-
nise that the extension to consider evasive actions on the
target’s part is important future work. The observer knows the
map of the search area and is equipped with imaging systems
to scan it and observe the target. Observation is susceptible to
error and interference from the features in the environment.

The choice of a specific SaT hardware platform depends
on the characteristics of the SaT mission. Fixed-wing UAVs
are usually employed when the mission takes place in large
and heterogeneous geographical areas and over long tempo-
ral horizons because UAVs are fast and have good endurance.
On the other hand, Micro Aerial Vehicles (MAVs) (e.g.,
quadcopters) are used in scenarios that are inaccessible to
large unmanned vehicles, such as cluttered outdoor settings,
indoors and in proximity to people. SaT operations with
MAVs are typically short and take place in small areas since
they have a restricted payload, i.e. reduced computational
power, noisy sensors and a short battery life.

We demonstrate our approach to SaT by using two
different platforms, a fixed-wing airplane and a low-cost
quadcopter. In both cases, we are interested in missions that

stretch over long temporal horizons and wide areas, relative
to the scale of the vehicle used. Our approach is the same for
both platforms, but the planning instances that we build to
represent the problem for the two scenarios are different and
account for the specific physical features of these platforms.

3 Plan-based approach to SaT

During the tracking phase of a SaT mission, the observer fol-
lows the target, observing its progress. At first sight, tracking
might appear to be a planning problem, in particular a tem-
porally extended goal problem where the goal is to keep the
target in view as long as possible. However, as we consider
tracking in more depth, we see that it is in fact a reactive
control problem, since the target’s intentions are unknown
and the observer can only respond to the target’s movements
moment by moment. It is when the target is out of view that
we need to carefully plan a recovery strategy to relocate it.
Our approach is therefore to track the target reactively while
it is visible to the observer and to plan a recovery strategy
every time it is lost by using an automated planning tool. If
the observer rediscovers the target while executing the plan,
the observer abandons the plan and switches back to track-
ing. Figure 2 shows the layered architecture that we use to
support autonomous SaT missions. In this paper, we focus on
the deliberation layer only. An account of how we implement
the other layers can be found in Cashmore et al. (2015).

We manage the tracking phase through a reactive con-
troller equipped with sensing capabilities. If the speed of the
observer and the target are comparable, the observer sim-
ply flies over the target. However, if the observer flies much

Fig. 2 Layered architecture for autonomous SaT missions

123

184 Auton Robot (2017) 41:181–203

faster than the target and cannot hover, the flight path of
the observer is a circle of fixed radius centred on the target.
The radius depends on the observer’s capabilities: it cannot
be greater than the imaging equipment’s range, nor can it be
shorter than the observer’s turning radius at current speed. We
assume that the observer flies in a mid-range circle between
these extremes. As the target moves, the circle moves with it,
so the observer’s flight path describes a prolate cycloid over
the ground.

When the observer fails to follow the target, it must attempt
to rediscover it. For a short period after losing the target, the
observer simply tracks its predicted location, since the target
cannot move fast enough to significantly deviate from this
prediction. However, after a longer period, it is necessary
to make a more systematic effort to rediscover the target by
directing the search into specific places. This is when plan-
ning comes into play. We formulate the search phase as a
planning task consisting of deciding where exactly to search
for the target and what manoeuvres to use. The goal is to
maximise the likelihood of finding the target while favouring
manoeuvres that minimise the use of the observer’s consum-
able resources and, in the case of the quadcopter, generate
robust sensor measurements for stable flight. We useMCsim-
ulation to aid the planning process in making decisions by
suggesting probable trajectories that the target might follow
during its course of action.

4 Search operations

In line with SaT and SaR (Search-and-Rescue) international
standard guidelines (IMO 2013; NATSAR 2011; CSAR
2000), we employ the following procedure to manage the
search phase of a SaT mission, where each step is fully auto-
mated in our system:

1. Determine the optimal area where the search effort should
be deployed, which is an area where the target is most
likely to be found;

2. Divide this area into appropriate sub-areas for assignment
to individual search patterns, which are sets of manoeu-
vres for surveying specified regions;

3. Generate a set of search patterns to optimally cover each
sub-area and choose their orientations;

4. Select a subset of the generated search patterns for exe-
cution and sequence them over time; and

5. Execute the chosen sequence of patterns, switching back
to tracking if the target is rediscovered.

Steps 1 and 2 depend on information regarding the spe-
cific mission. In real-world SaT operations, these steps are
performed based on many biasing factors: the target last
known position (LKP), its intentions if predictable, its size

and motion characteristics, possible hazards, results of pre-
vious searches, the terrain characteristics, the road network’s
structure and the weather conditions. These features are used
to make predictions on where the target might be over time
and to construct a PD for the target location. In short, the
outcome of Steps 1 and 2 consists of:

– a confined search area, usually a circular sector that is
centred on the LKP of the target;

– a PD for the target position defined across this sector
and constructed considering the above-mentioned fac-
tors; and

– a number of points within the sector that present the high-
est probability of rediscovering the target and on which
candidate search patterns are deployed.

To calculate these three pieces of information, we perform
MCS based on the target motion model. In our previous work
(Bernardini et al. 2013), we construct the target PD manually
by considering the features of the road network and the terrain
in the search area. This calculation is very efficient, but our
experiments show that the plan-based approach suffers from
the use of this coarse-grained distribution. Through MCS, on
the other hand, we construct a much more precise PD map
for the target location because the simulation is based on the
target physical model of motion and incorporates information
that reflects the environment structure as well as the target’s
intentions and physical characteristics (e.g. its minimum and
maximum speed on roads). Our MC-based approach is very
general as any new assumption regarding the target motion
can be easily integrated in the simulation with the resulting
PD expressing such additional information.

Building on the outcome of the previous steps, Step 3
is concerned with generating specific patterns to cover the
points with the highest probability of rediscovering the target
within the optimal area of operations. Again, we adhere to
international guidelines (IMO 2013; NATSAR 2011; CSAR
2000) and use the following standard search patterns (see
Fig. 3 for a pictorial representation of these patterns except
the last one):

– Lawnmower Search (LS), which consists in flying along
straight lines with 180◦ turns at the end. Based on the
sweep direction, there are two types of lawnmowers:

– Parallel Track Search (PTS), if the search area is large
and level, only the approximate location of the target
is known and uniform coverage is desired;

– Creeping Line Search (CLS), if the search area is nar-
row and long and the probable location of the target
is thought to be on either side of the search track;

– Spiral Search (SS) and Expanding Square Search (ESS),
if the search area is small and the position of the target is
known within close limits;

123

Auton Robot (2017) 41:181–203 185

Fig. 3 Standard search patterns
used in SaT missions. a Parallel
Track Search. b Creeping Line
Search. c Spiral Search. d
Expanding Square. e Sector
Search

(a) (b)

(c) (d) (e)

– Sector Search (SES), used similarly to the ESS, it offers
several advantages: concentrated coverage near the cen-
tre of the search area, easier to fly than the ESS, and view
of the search area from many angles;

– Contour Search (CS), used to patrol obstacles, always
assumed to be polygonal in our application.

In Step 4, a subset of the candidate search patterns gen-
erated in Step 3 needs to be selected and sequenced for
execution. While these tasks are usually managed man-
ually in real missions, with the consequence of being a
time-consuming and error-prone process, we formulate the
problem of selecting and sequencing search patterns as a
planning problem and use a high-performing planner to solve
it. In Step 5, the plan devised in Step 4 is executed by the
observer until completion. Only if the target is rediscov-
ered during execution, the plan is abandoned and tracking
is resumed. If the target is lost again during the same mis-
sion, then Steps 1–5 are performed again from scratch.

In summary, in order to implement Steps 1–5, we need to
handle three main tasks:

(i) Produce a fine-grained probability map for the optimal
area of operation;

(ii) Generate a set of candidate search patterns to optimally
cover the area of operation, which involves deciding
their position, size, orientation and type; and

(iii) Select a subset of search patterns and sequence them
for execution.

The first task is managed via MC methods and is explained
in Sect. 5. The second task is performed based on the PD map
for the target’s location and is described in Sect. 6. The final

task is performed by applying automated planning and is
detailed in Sect. 7.

5 Trajectory prediction via probabilistic modelling

In SaT, the planner’s role is to select a set of search patterns
and sequence them over time. To operate effectively, we need
to provide the planner with an initial pool of candidate search
patterns from which to choose those to execute. It is prefer-
able to keep the cardinality of this set small so as to reduce
the computational complexity. We perform MCS to identify
points in the search area that present the highest probability
of finding the target at different points in time and then create
candidate patterns that have those points as their centres.

5.1 Graph construction

We assume that the target is located in Euclidean 2-space
and that this space is characterised by a road network (RN),
where each road is a sequence of connected line segments.
Roads can be of different types, where the type establishes the
speed limits on the road. The target motion on each segment is
assumed to follow a constant speed randomly and uniformly
sampled in a interval [νmin, νmax], where νmin and νmax are
the minimum and maximum speed allowed in that segment
depending on the road type.

We take a circular sector centred on the target’s LKP as
the optimal search area. This sector extends outwards with
its symmetry axis aligned with the target’s average bearing
over the period it was observed. The radius of the sector
is determined by considering both the target’s travel speed
and the time period over which the search is planned to be
performed (see Sect. 8 for the formula that we use in our

123

186 Auton Robot (2017) 41:181–203

Fig. 4 Building a graph
G = 〈V, E〉 based on the road
network. a Representing a very
small RN with the target LKP
and three major destinations:
d1, d2 and d3. Roads are labelled
with the minimum and
maximum speed allowed. b
Gridding the chosen search area
and the underlying RN, with the
side of each square cell being δ.
c Resulting graph representation
at δ-granularity: G = 〈V, E〉,
where V is the set of the cells in
the grid and (v,w) ∈ E if there
is a road in the RN that connects
the cells v and w

d1
d2

d3

LKP

[30-50]

[50-70]

[30-50]

[20-50]

[50-70]

d1
d2

d3
LKP

[30-50]

[50-70]

[30-50]

[20-50]

[50-70]

d1
d2

d3

LKP

[30-50]

[50-70]

[30-50]

[20-50]

[30-50]

[30-50]

Radius = 45km

(a) (b)

(c)

[50-70]

simulation). We then superimpose a grid on this sector, with
the side of each square cell being δ. To represent the topology
of the search area, we build a graph G = 〈V, E〉 based on
the RN enclosed in the grid. V represents the set of cells that
intersect at least a line segment within the given sector. Edges
in E are those pairs (v,w) where v and w are adjacent cells in
the grid and there exists a line segment that intersects both of
them. Each edge (v,w) is labelled with the minimum νmin

(v,w)

and maximum νmax
(v,w) speed allowed in the line segment that

connects v to w. We denote by v0 the cell that corresponds
to the target LKP and assume that a set of target possible
destinations, which we will identify with a subset W ⊂ V of
cells, is given. A walk-through of the process of constructing
the graph G, applied to a very simple example, is shown in
Fig. 4.

5.2 Probabilistic motion model

We assume that a PD over the destinations W is given:
μ : W → [0, 1]. From the graph G, we calculate the
shortest path from v0 to each destination in W by using Dijk-
stra’s single-source-shortest-path algorithm, assuming that
the travelling time on each edge (v,w) is δ/νmax

(v,w). Given v0

and a destination w ∈ W , we denote γw = (v0, . . . , w) the
shortest path from v0 to w and l the length of such path. Fig-
ure 5 shows the PD over the destinations d1, d2 and d3 and
the shortest paths towards them with their corresponding dis-
tances for our running example (see Fig. 4), both numerically
and pictorially.

The target motion is modelled as a continuous time sto-
chastic process X (t) that takes values on V and is described
as follows:

– The final destination cell w ∈ W is sampled according
to the PD μ;

– X (t) moves from v0 to w by following the shortest path
γw = (v0, v1, . . . , vl = w) and by jumping from vk to
vk+1 at the random time tk ;

– The jumping time tk’s are iteratively determined accord-
ing to the following formula: tk+1 − tk = δ/νk , where νk
is a uniformly distributed random variable in the interval
[νmin

(vk ,vk+1)
, νmax

(vk ,vk+1)
].

5.3 Approximation of marginal distributions

X (t) is a continuous time process, but we want to look at it
only at certain time points. Given the mission time interval
[0, T], we establish the time check points t0 = 0, t1, . . . , tn ,
where ti+1 = ti + T/n. Our goal is to estimate the mar-
ginal PD of the process X (t) on the above checkpoints
t0, t1, . . . , tn . We then use these marginals to generate can-
didate search patterns, as we will see in the next section.

Estimation of the marginal is performed through stan-
dard Monte Carlo Simulation (MCS). More specifically, we
consider a set of M particles moving in the graph as inde-
pendent realisations of the stochastic process X (t). Let x j (t)
be the position of the j-th particle at time t . We define the
approximated distribution of the process X (t) at time tk as

123

Auton Robot (2017) 41:181–203 187

(d1) = 0.5
(d2) = 0.3
(d3) = 0.2

Prior probability distribu�on over des�na�ons

d1
d2

d3

v0

0.14

0.2

0.2

0.2

a

b

c d

= 10

0.2

0.2

0.14

Shortest paths:
d1 d2 d3

v0 d1 = {v0,a,b,d1}
0.6

d2 = {v0,a,c,d2}
0.48

d3 = {v0,a,c,d,d3}
0.74

T = 45, n = 3
Checkpoints = {0,15 (red),30 (green),45 (yellow)}

d1
d2

d3
0.14

0.2

0.2

0.2

a

b

c d0.2

0.2

0.14

M=10

Fig. 5 Performing Monte–Carlo simulation of the target movement.
On the left hand side, the PD over the destinations d1, d2 and d3 and
the shortest paths towards them with their corresponding distances are
shown for our running example (see Fig. 4). On the right hand side,
the shortest paths are shown pictorially together with a representation

of how the particles move on these paths over time. Three time check
points are selected: 15, 30 and 45. The position of the particles at these
times is shown by representing them in different colours: red, green and
yellow (Color figure online)

qtkv = | { j |x j (tk) = v} | /M for v ∈ V. From the law of large
numbers, we know that qtkv approximates, for a sufficiently
large M , the true marginal distributions of X (tk).

Figure 5 shows the particles moving over the graph accord-
ing to the motion model described above and their positions
at three different checkpoints. It should be noted that, for the
sake of simplicity, we have used a very coarse δ, a small set
of checkpoints and very few particles. In real instances, the
grid and time discretisation are much finer and the MCS uses
thousands of particles (see Sect. 8 for realistic examples).

6 Generation of candidate search patterns

Thanks to MCS, our algorithm generates only candidates that
bear a high probability of rediscovery, thereby allowing the
planner to restrict its reasoning to a limited set of promis-
ing patterns. In particular, for each time check point tk , the
candidate generation algorithm selects the cell v∗

k that max-
imises the approximated marginal probability qtkv and creates
a candidate pattern centred around this cell. More precisely,
the centre of the cell v∗

k , which we call c∗, coincides with
the centre of the bounding box that contains the pattern. For
spirals and sector search patterns, such a bounding box is a
circle and the point c∗ is its centre. For expanding square,
parallel track and creeping line searches, the bounding box

is a square or a rectangle and c∗ is the intersection point of
the diagonals.

For spirals, expanding square and sector search patterns,
c∗ is also the entry point of the pattern. The exit point is
determined by fixing the outer radius (as specified below)
and the number of turns. For parallel track and creeping line
searches, the entry point is the rectangle’s upper corner that
is closer to the target LKP and the exit point is the bottom
corner that is further from it. The number of turns and legs
of the patterns are configurable parameters in our system.

We use patterns of two different sizes, small and large.
Small patterns cover limited portions of the map, but they do
so with great accuracy. On the other hand, large patterns give a
broader coverage, but are less accurate. Our algorithm selects
small patterns to cover areas in which it is more likely to find
the target, i.e. closer to the target LKP, while large patterns
are used further away from it. The radius of small and large
circles is 2500 and 4000 m respectively and the side of small
and large rectangles is 4000 and 9000 m respectively. These
are also configurable parameters of our simulation.

As explained in Sect. 4, the particular type of pattern to use
to cover an area depends on the specific features of the area.
Since spirals, expanding square and sector search patterns
provide a more focused coverage than lawnmower searches,
our algorithm favours them in urban and suburban areas with
a high road density. Parallel track and creeping line searches

123

188 Auton Robot (2017) 41:181–203

Fig. 6 Results of the MCS and candidate pattern generation phase. In
each time slice, the cells that accumulate more than one particle are
visualised with the same colour. For each time check point, the can-

didate generation algorithm creates one spiral (yellow circle) centred
around the cell with the highest probability of finding the target within
that time (Color figure online)

are used in rural areas or areas of lower road density, where
spirals and similar patterns are likely to cover significant
areas of little value in the search.

For lawnmower searches, our algorithm selects an orien-
tation that is based on the RN and is aligned to follow the
major road enclosed in the pattern.

Figure 6 shows a screenshot of our simulation immediately
after the candidate generation algorithm has generated a set
of spirals (yellow circles) to cover the most probable cells in
the grid at the different time check points from the beginning
to the end of the mission.

7 Search as planning

Not all the candidate search patterns that have been identified
can be executed since the observer has limited resources.
The challenge is then to decide which candidates should be
selected for execution, when exactly they should be executed
and how many times each one should be repeated. We see the
task of selecting and sequencing search patterns as a planning
problem. We assign each pattern a time-dependent reward,
i.e. a value corresponding to the expectation of finding the
target in a search of the area that the pattern covers. Based
on the patterns’ rewards, the planner can select a sequence
of patterns that maximises the accumulated expectation of
rediscovering the target.

This planning problem has some unusual and interesting
features. Despite the inherent uncertainty in the situation, the
problem is deterministic, since the uncertainty arises in the
position of the target and, if the target is found, the plan ceases
to be relevant. Therefore, the plan is constructed entirely
under the assumption that the target remains undiscovered. In

what follows, we first discuss why we discarded alternative
formulation for our problem and, then, described in detail the
knowledge engineering process that we follow to formulate
both the planning domains for the UAV and the quadcopter,
and the planning problems for SaT missions.

7.1 Modelling using a non-stationary MDP

In our approach, we first use the MCS process to define a
discretised reward function associated with the behaviour of
the target. Having done this, we then plan the behaviour of the
observer to accumulate as much reward as possible. Because
we separate the models of the target and the observer, we can
plan observer actions at a much finer granularity than was
used to define the reward function.

An alternative approach is to model and solve a non-
stationary Markov Decision Process (MDP) (Boutilier et al.
1999) in which the stages of the process are the n+ 1 check-
points {0, T/n, 2T/n, . . . T} at which the location of the
target changes. The model would require n + 1 transition
matrices to capture the n+1 stages of the process. By contrast
with our planning approach in which the target and observer
behaviours are separated, in the MDP approach, the behav-
iour of the two would be combined, so the granularity of
the checkpoints would need to be fine enough to allow for
timely behaviour of the observer. Figure 7 shows an exam-
ple non-stationary model. At each stage, the transition model
has been extended by the addition of a state in which the tar-
get has been found. This state attracts all the reward, so the
optimal policy is to reach this state as quickly as possible.
Whenever this “sink” state is reached, the search behaviour
is terminated and tracking is resumed.

123

Auton Robot (2017) 41:181–203 189

d1
d2

d3

v0

a

b

c d

d1
d2

d3

v0

a

b

c d

d1
d2

d3

v0

a

b

c d

a
Stage 1

Stage 2

Stage 3

Fig. 7 A three-stage MDP capturing our model. The central white
state at each stage is the sink. The probability of entering it depends
on the likely location of the target at that stage. Here, this is shown by
coloured dots for consistency with our planning model representation
(Color figure online)

Every transition of the observer would lead either to a state
in which a search had been performed without finding the tar-
get or to the sink state (in fine-grained models, multiple states
might be chained together to represent the commitment to
complete a search pattern once started). The best state to visit
next is the one with the highest probability of entering the
sink state in the next time step. In the MDP model, the proba-
bility of entering the sink state from a given state, at stage t , is
equal to the probability that the target will be identified by the
observer searching an appropriately located pattern at stage t .

In the two-stage process that we use in our planning
approach, our coarse target behaviour model simply allows
us to identify when the most reward is likely to be available,
with reward tailing off in a Gaussian way on both sides of the
peak. This allows the observer to plan to maximise reward by
choosing the best times at which to start and end search pat-
terns. To obtain this flexibility in the MDP model, the whole
system must be constructed at the finest sensible granular-
ity (e.g.: the granularity of the smallest observer operation).
Over a long horizon, this would lead to an infeasible blow-up
of the non-stationary model.

This is not the only way to model the search and track prob-
lem as an MDP, but the time-granularity issue will always
arise in any time-discretised model of the joint observer-
target behaviour. We therefore see the planning approach as
advantageous in discretising the target behaviour, for con-
venience, while allowing the observer to plan operations in
continuous time.

Table 1 PDDL2.2 specification of the action doSpiral contained in
the UAV domain

7.2 Planning domain

To model the SaT domain, we use the language PDDL2.1
(Fox and Long 2003), exploiting the Temporal Initial Lit-
eral (TIL) extension of PDDL2.2 (Edelkamp and Hoffmann
2004), further extended with TIFs (Temporal Initial Fluents)
(Piacentini et al. 2015).

The basic structure of the domain for the search problem
is simple: there is a flight action that allows the observer
to fly from one waypoint to another and there are search
actions corresponding to the flight patterns. Table 1 displays
an example of how search actions are modelled, showing the
action doSpiral extracted from the UAV domain. These
search actions have a similar form: they have an entry way-
point (?from) and an exit waypoint (?to) and the effect,
other than to move the observer, is to increase the total
reward (reward), which is the accumulated expectation of
finding the target, by a quantity that represents the specific
reward associated with that particular pattern (rewardOf
?p). The actions are durative and their duration is fixed in
the problem instance to be the correct (computed) value for
the execution of the corresponding search. The search pat-
terns can only be executed when they are active (active
?p), i.e. during a window of opportunity that coincides with
the period in which the target could plausibly be in the area
that the pattern covers. This window is calculated by con-
sidering the distance between the pattern’s entry point and
the target LKP and the minimum and maximum speeds of
the target along the shortest path from the target LKP to the
pattern’s entry point.

7.3 Modelling UAVs and quadcopters in PDDL2.2

The models for the UAV and the quadcopter share the same
structure described above, but differ in some of the aspects
relating to their different hardware characteristics.

In regard to the UAV, along with the flight action that
allows it to move from one waypoint to another, we have
actions corresponding to the following search patterns: spi-
rals, small and large lawnmowers and contour searches, used

123

190 Auton Robot (2017) 41:181–203

Table 2 PDDL2.2 specification
of the action doESS (do
Expanding Square Search)
contained in the quadcopter
domain

to get around obstacles. All these actions have the same struc-
ture of the action showed in Table 1. Appendix reports the
full domain for the UAV.

As for the quadcopter, Table 2 shows the description of
the action doESS as an example, while the full domain can
be found in the online Supplementary Material.

Since the quadcopter has a more limited flight autonomy
and noisier sensors than the UAV, we need to model some
of its physical features in the domain in order to produce
effective plans for the search problem. In particular, the quad-
copter domain contains the following actions: (i) taking-off;
(ii) landing; (iii) hovering; (iv) flying between waypoints;
(v) performing five types of patterns: parallel track, creep-
ing line, expanding square, sector search and contour search;
and (vi) performing a re-localisation procedure, planned for
execution when the anticipated confusion of the quadcopter
rises above a certain threshold.

The take-off and landing actions are straightforward. The
only caveat is that the duration of the take-off action and the
related battery consumption, pre-computed and fixed in the
problem specification, need to take into account the localisa-
tion algorithm initialisation.

The search actions have a structure similar to the corre-
sponding ones in the UAV model. However, given the specific
limitations of quadcopters, we need to take care of two addi-
tional issues, one relating to the management of the battery
life and the other concerning possible failures of the quad-
copter’s localisation algorithm in GPS-denied environments,
such as indoors and in cluttered outdoor regions. Let us con-
sider this second issue first.

Given their cheap and noisy sensors and their limited pay-
load, quadcopters are often unable to establish their position
accurately. Usually, they have enough sensing capabilities to
localise themselves in favourable conditions, but not every-
where. The localisation ability varies across the environment,
with different environmental features providing different
degrees of accuracy (He et al. 2008). For example, locali-
sation based on the Extended Kalman Filter performs well in

the vicinity of high-level features such as walls and corners,
but the performance starts degrading in moving away from
them. To deal with the problem of maintaing good localisa-
tion, we incorporate an abstract model of the quadcopter’s
sensors and their measurement capabilities into the planning
domain and prompt the planner to create plans that are robust
to sensor limitations.

More specifically, we use the numeric function con-
fusion to model the level of uncertainty that the quadcopter
has accumulated about its state during flight. The confusion
level increases when the drone moves away from the visual
features required for localisation and is reset when it is close
to them. We indicate the set of all search patterns with Σ and
the set of search patterns that overlap positions in the map
where good localisation is ensured with Σ+. Let us call σ (t)

the pattern σ executed at the time t and S = (σ (1), σ (2), . . . ,

σ (t̄)) a sequence of patterns to be executed at consecutive
times. The confusion function C for the sequence S at time t
is recursively defined as follows:

Ct (S) =
⎧
⎨

⎩

0 if σ (t) ∈ Σ+

Ct−1(S) + c(σ (t)) if σ (t) /∈ Σ+ (1)

where c : Σ → N is a function that quantifies the confu-
sion level that results from executing each pattern σ ∈ Σ .
These values are precomputed off-line based on the charac-
teristics of the search region and are specified in the problem
instance as well as a safety threshold (maxConfusion)
that represents the maximum amount of uncertainty that the
drone can accumulate before performing a re-localise
action. This action involves flying to a location where the
localisation algorithm is known to perform well and re-
initialising the state-estimation procedure in that position.
The safety threshold is set in such a way that, when it is
hit, the quadcopter is still capable of reaching one of the re-
localisation waypoints, although partially confused about its
own state.

123

Auton Robot (2017) 41:181–203 191

We calculate the confusion level for each candidate pattern
as follows. We lay a grid over the area of operations and assign
a confusion level to each cell. The confusion is zero in cells
that overlap the visual structures in the environment, such
as pillars, corners and walls, and increases progressively in
moving away from them. In particular, let us call Ig the set of
the cells that provide good localisation and, given a cell i , let
dist (i, Ig) be the distance between i and Ig , i.e. the length
of the minimum path between i and one of the cells in Ig .
The confusion associated with a cell i is then J ∗dist (i, Ig),
where J is a constant. The confusion associated with a pattern
σ is obtained by adding up the confusion levels of the cells
included in the pattern: c(σ) = ∑

i∈σ J ∗ dist (i, Ig).
The confusion level is manipulated by the actions corre-

sponding to the search patterns. They have a condition that
checks that the current confusion level is below the threshold
and an effect that increases the level of confusion to an extent
specified in the problem instance for that pattern. When rea-
soning about possible trajectories for the drone, the planner
tends to select patterns that keep the confusion level below the
threshold by favouring waypoints that maximise the locali-
sation accuracy.

In principle, our definition of confusion is related to the
sensor uncertainty field introduced in Takeda and Latombe
(1992), which is a mapping from locations to expected infor-
mation gain, where locations with high information gain
correspond to locations that generate sensor measurements
that maximise the localisation accuracy of the vehicle. In our
case, we estimate the information loss instead of the infor-
mation gain. However, we do not use probabilistic methods
to build the field, but we discretise the problem in space and
construct a coarse-grained confusion map by simply attribut-
ing a level of confusion to each cell based on the distance
from the cells where optimal localisation can be achieved.
Our attempt to incorporate predicted measurements into the
drone’s decision making is similar to the work in He et al.
(2008), where a motion planning algorithm is presented that
takes into consideration how well the quadcopter can localise
itself along that path. Similar to our case, in Fox et al. (2012),
a confusion variable is used to keep track of how far a AUV
moves without crossing the edge in a patch following task.
To obtain good measurements, the AUV needs to cross the
edge several times while exploring a patch. The problem is
finding trajectories for the AUV that are as short as possible,
but keep the confusion level within a small bound.

Let us now consider the second issue relating to the bat-
tery of the drone. As energy is a critical resource for the
quadcopter, we include a model of its battery in the planning
domain (batteryLevel). Instead of modelling the contin-
uous change of the battery level directly, we use discretised
durative actions in combination with numeric step-function
updates. The quadcopter’s manoeuvres have a condition at
start ensuring that the available amount of energy is sufficient

to perform the manoeuvre and an instantaneous effect at start
modelling their energy consumption. The energy required
for the different manoeuvres has been estimated off-line via
actual testing with the quadcopter and is fixed in the problem
instance.

We use two alternative domains for the quadcopter. In
the first one, the quadcopter’s maximum flight time is con-
strained by its battery life. To establish a planning horizon
for our problem corresponding to the total flight time, we
use an envelope action operate around all the activities of
the quadcopter: it must start before the take-off as well as
it must finish after landing and its duration is bounded by
the total flight time. In our second domain, SaT missions are
subdivided in different chunks. The quadcopter can use the
entire battery charge in each chunk and then recharge the
battery to perform the next part of the mission. We use a dis-
cretised durative action recharge to model the recharge
of the battery, which only makes new charge available at the
conclusion of the action, so that the charge gained during the
action cannot be exploited until after the recharging process
is complete.

7.4 Planning problem

The initial state of a planning problem contains all the can-
didate patterns from which the planner chooses the ones
to execute. They are the objects of the planning instance
together with the waypoints of interest in the map. Such way-
points are the target LKP, called origin, and all the entry
and exit points of the patterns.

Each candidate search pattern is assigned the following
information: (i) a fixed duration, which is the computed value
for the execution of the corresponding search; (ii) an oppor-
tunity window, which specifies when the pattern is active;
(iii) entry and exit waypoints; and (iv) a reward.

All these pieces of information are computed during the
candidate generation phase based on the geometry of the
pattern, the map of the environment and the motion models
of the target and the observer. They are then compiled into
a planning problem automatically and fed into the planner
together with the domain model.

While it is straightforward to compute the first three pieces
of information, the reward function is slightly more complex.
The reward is the product of the detection probability pd , i.e.
the probability that the observer sees the target while passing
over it, and the probability pa that the target enters the area
being searched.

The detection probability pd is affected by several fac-
tors, such as the type of search pattern, the camera used,
the direction in which the target has been travelling and the
characteristics of the area traversed by the target (e.g. terrain
types and RN). We assume that this probability is fixed for
a particular terrain type and use the following values: 0.8

123

192 Auton Robot (2017) 41:181–203

for rough terrain, 0.6 for mountainous, 0.2 for urban, 0.5
for sub-urban and 0.25 for forested. This is clearly a sim-
plification since these values combine the effects of terrain,
RN structure, traffic, speed of target and lighting conditions
into a single factor that is assumed constant for the whole of
a region of identical terrain. These values are configurable
parameters in our simulator and can be changed if desired.

The probability pa that the target enters the search area is
estimated based on the RN structure and the distance from
the target LKP. In particular, let G = {g0, . . . , gk} be the
cells covered by a pattern σ and rw : G → N the cell reward
function defined as follows: rw(g) = (1 + rd)/(1 + d),
where rd is the number of roads passing through g and d is
the distance between the centre of cell g and the target LKP.
The probability pa is obtained by summing up the reward of
the cells that are covered by σ and dividing this sum by a
normalisation factor f that maintains pa between 0 and 1:
pa = (

∑
g∈G rw(g))/ f .

Overall, the reward of a pattern is proportional to the num-
ber of roads and the terrain type in the pattern and inversely
proportional to the distance from target. Hence, patterns that
cover many roads are more rewarding and patterns that are
distant from the target LKP less rewarding.

Since we are searching for a moving target, the reward
is a time-dependent function. No reward is assigned until
the target has plausibly arrived in the area covered by the
pattern or after the target is deemed likely to have left the
area. Between these extremes, the reward is modelled as a
step function that approximates a lifted Gaussian distribu-
tion (Fig. 8). It increases when the pattern becomes active, it
increases further when the target is considered most likely to
be in the pattern and then it decreases until the end of the use-
ful life of the pattern. The underlying probability of detecting
the target peaks at the point where the target is assessed to
be in the centre of the search pattern. We use a unimodal dis-
tribution because we assume that the target moves towards
its destination using the most efficient path to reach it, never
revisiting locations that it has already traversed. The variance
is generated by uncertainty about the precise path, environ-
mental conditions and precise speed of the target.

To ensure that the planner does not exploit search patterns
when there is no reward associated with them, the patterns
are only made active during the period when the PD is posi-
tive. To achieve this, we use Timed Initial Literals (TILs) that
are asserted and retracted at the appropriate times and Timed
Initial Fluents (TIFs), which are numeric assignments asso-
ciated with time points specified in the initial state. Reward
for a specific pattern is therefore modelled as a series of step
functions, each asserting the new reward value for the inter-
val until the next function applies, while TILs assert or retract
the availability of the search pattern at the start and end of the
relevant window. The number of steps in the discretisation
can be increased, but we have found empirically that four

Fig. 8 Time-dependent reward function

step functions is a good compromise between accurate rep-
resentation of the reward function and efficient management
of the functions in the planner.

An important detail of the model is that the reward is
awarded as a discrete increment at the end of a search action,
but it is, in reality, accumulated continuously over the dura-
tion of the search action. The end point of the action adds
the current recorded reward value to the accumulated total
reward, which means that the value available at this time
point actually represents the accumulated reward for having
executed the search over the duration of the search ending at
this point (it is proportional to the integral of the PDF over
the interval of the search). Hence, the reward function used
in our model is offset from the period over which the model
predicts the target is most likely to be in the pattern area,
according to the duration of the search pattern (see Fig. 9).

Search p Search p Search p

Search p

Time

PDF (Target in search pattern p)

Example possible times for
execution of search in pattern p

Corresponding reward function

Fig. 9 Offset between underlying probability of target being within
the search pattern and the corresponding reward function

123

Auton Robot (2017) 41:181–203 193

Table 3 Small fragment of the initial specification for the UAV domain

Spiral 1 has a duration of 299 time units and is active between time
point 253 and time point 1349, which coincides with the interval during
which the target might plausibly be in the area covered by the pattern.
The reward is higher than zero only during this time window. It peaks
between time point 983 and time point 1129, when it is equal to 0.723,
and is equal to 0.361 elsewhere

A fragment of the problem specification for the UAV
domain is presented in Table 3.

For problems involving the quadcopter, each search pat-
tern is also assigned a battery usage and a confusion level,
which measures the localisation accuracy of the vehicle in
the area covered by the pattern and depends on the physical
characteristics of the area. They are both computed off-line
during the candidate generation phase based on the character-
istics of the vehicles and the search area as well as simulation
parameters such as weather conditions. For example, for cal-
culating the use of battery, we have two possible settings,
light and strong wind.

Along with the initial state, the problem specification con-
tains a description of the goal. In the UAV case, the goal is
that the reward must be greater than zero and the plan metric
measures the value of the plan in terms of the accumulated
expectation of finding the target. This is specified as reported
in Table 4.

In the quadcopter case, the planning problem has just one
goal, specifying that the vehicle should be on the ground at
the end of the operations. However, if relevant for a certain
mission, one can set out a number of waypoints that the vehi-
cle needs to visit before landing. We use a plan metric that
measures the value of the plan in terms of the accumulated
expectation of finding the target and the level of confusion.
Clearly, our objective is to maximise the reward and min-
imise the confusion level, so we use the metric specified in
Table 5, where the parameter K is chosen based on the desired
trade-off between the reward and the confusion level.

Table 4 Goal specification for the UAV domain

Table 5 Goal specification for the quadcopter domain

Table 6 A plan generated by Optic for the quadcopter

The columns indicate: execution time, action to perform and action
duration

7.5 Planning mechanism

We exploit the period in which the observer tracks the target
predicted location to perform planning. We use a temporal
metric PDDL planner planner called Optic (Benton et al.
2012) (Optimizing Preferences and TIme-dependent Costs)
to build plans for the observer.1 Optic is a temporal planner
for use in problems where the cost function is not directly
linked to the plan make-span, but can be expressed as a func-
tion of metric fluents. It builds on the planner popf (Coles
et al. 2010) and combines grounded forward search with
linear programming to handle continuous linear numeric
change. Optic performs anytime, cost-improving search: it
finds a first solution very quickly, since the plan with just
one pattern is already a feasible solution, but it then spends
the additional time improving on this solution by adding
further manoeuvres to the plan or by trying different collec-
tions of manoeuvres. The search uses a weighted-A� scheme
with steadily changing weights in a tiered fashion. The plans
produced are monotonically improving, so the final plan is
selected for execution. We use a time-bounded search limited
to 10 s because we are in a time-critical situation (although
this value is also a configurable parameter). We use Optic
because it is very fast at producing its first solution and
provides an any-time improvement behaviour. Although the
planner LPG- TD (Gerevini et al. 2004) offers some simi-
lar characteristics to Optic, it does not handle TIFs and, in
consequence, cannot be used in our case.

Table 6 shows an example of a plan generated by Optic
for the quadcopter domain.

All the plan that are outputted byOptic are single threaded
and are dispatched via a simple controller, action by action,
to the vehicle. When the target is found or at the conclusion
of the plan, the observer abandons the mission.

1 Optic is open source and can be downloaded at: http://sourceforge.
net/projects/tsgp/files/OPTIC/optic.tar.bz2/download.

123

http://sourceforge.net/projects/tsgp/files/OPTIC/optic.tar.bz2/download
http://sourceforge.net/projects/tsgp/files/OPTIC/optic.tar.bz2/download

194 Auton Robot (2017) 41:181–203

8 Experimental results

We demonstrate the viability of our hybrid approach to SaT
by providing two different implementations of our technique:
one, in simulation, features a fixed-wing UAV involved in
a complete SaT mission (Sect. 8.1) and the other uses the
Parrot AR.Drone2.0 quadcopter in the search phase of a SaT
mission (Sect. 8.2).

8.1 Simulation experiments

The UAV simulator was built in consultation with our indus-
trial collaborators at BAE Systems (Bernardini et al. 2013)
and is intended to provide an appropriately abstracted view
of the problem. The main abstraction is that we assume the
control problem for the UAV solved.

The simulated UAV is equipped with imaging systems
that allow the target to be observed and that is susceptible
to error. The detection probability on each observation cycle
(which can be considered as a ‘frame capture’ by the imager)
depends on: terrain, speed, discrepancy between anticipated
and actual target positions and the imaging system mode. As
explained in Sect. 7.4, this detection probability is compiled
into our reward function. The imager has two modes: wide-
angle, used to increase the area being scanned when the target
is not currently observed at the cost of a lower probability
of successfully observing the target, and narrow-angle, used
during tracking, in which the viewing area is reduced, but
the probability of detecting the target is higher. The effect
of terrain is to reduce the probability of spotting the target
in urban, forested and mountainous areas, while in rough or
open rural areas the probability is higher.

The area of operations is a part of Scotland about 100
kilometres square. Terrain types were defined by hand, along
with an approximate RN for the major roads and rural minor
roads. The target follows a path acquired using Google Maps,
using a selected (configurable) origin and destination. This
information is also used to decide what speed is appropriate
for the target, based on distance between waypoints in the
route proposed by Google Maps and terrain type.

8.1.1 Simulation steps

During the tracking phase of the SaT mission, the UAV sim-
ulator follows the target by spiralling over it. Once the target
has been lost and during the 10 s in which the UAV tracks the
predicted location of the target at low confidence, the sim-
ulator runs MCS and synthesises a set of candidate search
patterns (Fig. 10a). Then, it runs the planner to generate a
plan (Fig. 10c, d), which is then dispatched to and executed
by the UAV (Fig. 10b).

The goal of our SaT simulation is to demonstrate how
planning can successfully underpin autonomous SaT mis-

sions. Given that, in this work, we do not tackle dispatching,
monitoring, executing and replanning issues. Our dispatcher
simply initiates the next action in the plan in simulation. We
assume that there are no failure in the control and execution
of the actions, so no replanning due to failures is needed. The
interested reader can refer to our previous work (Cashmore
et al. 2015) to see how dispatching, monitoring and executing
tasks can be integrated with planning within a ROS frame-
work.

As for the MCS, we follow the procedure presented in
Sect. 5, but incorporate in it additional assumptions that are
specific to our simulator. We assume that the RN is charac-
terised by three types of roads: motorways (the fastest roads),
A roads (the main routes between towns) and B roads (the
smallest of the three). The minimum speed on all these roads
is: νmin = 20 mph. The maximum speed νmax is 70 for motor-
ways, 60 for A roads and 30 for B roads. After running MCS,
the simulator visualises the most probable cells in the map at
the different time check points (Fig. 10a). In each time slice,
the cells that accumulate more than one particle are visu-
alised with the same colour. Different colours correspond to
different time slices. As expected, the particles follow the
main roads and cluster around cities.

After experimenting with different granularities, we now
adopt a grid square size of δ = 500 m. The graphs extracted
from the RN have around 30,000 nodes and 18,000 edges,
on average. We choose as the set of possible destinations the
first 15 most populated cities in Scotland and assign them
equal probability. We generate M = 10, 000 particles and,
since the total mission time for our application is about 1 h,
we consider 17 time check points spaced 150 s apart. Con-
sidering that the rate of approximation in the MCS is of
the order 1/

√
M (because of the central limit theorem), and

that the maximum value of the marginal distribution of each
X (tk) will be above 1/15, M = 10, 000 is a sufficiently large
ensemble for the simulation.

We have found that, on average, Optic produces around 6
plans in its 10 second time window per problem instance, and
the last of these plans is always selected for execution. The
plans contains on average 15 patterns and 15 fight actions to
route the UAV from one pattern to the next one.

The simulation tool offers various opportunities for inter-
action, including redirecting the target, repositioning the
observer, speeding and slowing the simulation and modify-
ing the parameters that govern spotting probabilities, flight
dynamics and the target behaviour.

8.1.2 Results and discussions

We conducted a series of experiments to assess the perfor-
mance of our hybrid approach to SaT by using the UAV
simulation. As we have seen in Sect. 7.1 and will further dis-
cuss in Sect. 9, it is difficult to directly compare our approach

123

Auton Robot (2017) 41:181–203 195

(d)(c)

(a) (b)

Fig. 10 Screenshot a shows a fragment of the initial state: circles are
the spirals that the planner will consider. Spirals are constructed around
the cells that carry the highest probability of rediscovering the target.
Small squares indicate the cells in the grid where the particles accumu-
lates during the MCS. Different colours represent particles at different

time check points. Screenshot b shows a few of the search patterns that
have been selected by the planner for execution. The intensity of red
used in the plan indicates repetitions of a search pattern (more intense
red implies more executions). c and d shows fragments of the problem
and the plan specifications respectively (Color figure online)

against purely probabilistic methods, as the assumptions
behind them are very different from ours. Here, then, we
assess our strategy against two comparable ones: a fixed pol-
icy, which is used as a baseline for evaluating the benefits of
a plan-based approach, and a plan-based approach that does
not use MCS.

Our industrial collaborators proposed the fixed policy,
which is used in several real-world applications. When the
UAV loses the target, it tracks its predicted location for 3 min.
If it has not found the target, it executes a fixed sequence of
patterns: first a spiral around the target LKP and then a large
lawnmower pattern (20 km square).

Though broadly similar, the plan-based policy (Bernardini
et al. 2013) differs from our strategy in one crucial way: the
target PD is not generated via MCS, but it is constructed

by hand based on the features in the environment, without
taking into account the target motion model. In particular, the
PD is based on the density of roads across the search area,
which is measured by using a fine-mesh grid and counting the
number of significant roads within each grid cell, the terrain
type and the distance from the target LKP. The distribution
decays linearly with distance from the origin and is weighted
by values for terrain type and RN density. Plan-based SaT
may find good policies for problems with predictable target
behaviours, but it struggles with serious inaccuracies when
the target acts in a more sophisticated way by neglecting its
physical motion in the environment.

Both for our strategy and for the plan-based one, we use a
configuration that tracks the predicted location of the target
for the same period as the fixed policy, before planning and

123

196 Auton Robot (2017) 41:181–203

executing a search plan. We generated 15 routes and executed
the simulation on each route 1000 times (the simulation has a
non-deterministic spotting model and target behaviour), for
each of the 3 strategies (a total of 45.000 runs). The simula-
tion begins with the target undetected, but in the search arc
of the observer. In a small number of runs the observer fails
to detect the target in the very early stage. Our simulation
does not use a search plan in this first stage, so failure at this
point leads to an early abort. We discount these runs (less
than 0.5 %) in our analysis.

Figure 11, which shows the proportion of runs in which
the target was tracked to its destination, demonstrates that our

hybrid strategy is consistently better than the other strategies.
The fixed policy has an overall success rate of around 42 %,
the plan-based policy without MCS has overall success rate
of around 56 %, while the plan-based policy with the MCS
yields better than 72 % success rate. Our hybrid approach
performs particularly well when the target drives towards
destinations far away from the origin as the MCS allows us
to make better predictions than the other strategies.

Figure 12a shows the average time that the observer tracks
the target plotted against journey duration for the three strate-
gies. It can be seen that the hybrid technique produces the best
performance, while the static policy is generally the weak-

Fig. 11 Proportion of
successfully tracked targets

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
at

io

Route

Ratio between number of runs where target is tracked to destination and where it is ever found

Fixed
Plan-based

Plan+MC

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 2000 4000 6000 8000 10000 12000 14000 16000

A
ve

ra
ge

 tr
ac

ke
d

pe
rio

d
(s

ec
)

Duration (sec)

Average journey duration against average tracked period

Fixed
Plan-based
Plan + MC

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 2000 4000 6000 8000 10000 12000 14000 16000

A
ve

ra
ge

 la
st

 lo
ss

 (
se

c)

Duration (sec)

Average journey duration against average last loss

Fixed
Plan-based
Plan + MC

(a) (b)

Fig. 12 a Plots the average time over which the target was tracked to destination against the average journey length for the 15 routes and the three
strategies. b Plots the average time of the last loss of the target against average journey length for the 15 routes and the three strategies

123

Auton Robot (2017) 41:181–203 197

est. Figure 12b shows the average time at which the target
is lost for the last time, plotted against the duration of the
journey. When the plan-based policy is used in combination
with the MCS, the time at which the target is lost for the last
time increases with the increase of the duration of the jour-
ney. This is because, on average, our strategy is capable of
tracking the target for a longer time.

Our results clearly demonstrate the benefit of using plan-
ning in combination with MCS both with respect to fixed
policies, currently being employed in real-world scenarios,
and with respect to a plan-based approach in which the PD
maps are not accurate enough to allow planning to express
its full power.

8.2 Real-world experiments

As a proof of concept that our approach can be success-
fully deployed in a real robotic platforms, we demonstrated
it on a quadrotor helicopter, the Parrot AR.Drone. This
demonstration is extensively described in Bernardini et al.
(2014), but we include a summary here for completeness.
The AR.Drone is a low-cost and light-weight quadcopter that
has been increasingly popular in research organisations as an
affordable test platform (Bills et al. 2011; Engel et al. 2012;
Graether and Mueller 2012). It is composed of a carbon-fibre
tube structure, plastic body, removable hulls, high-efficiency
propellers, four brushless motors, sensor and control board,
a high-resolution front facing camera and a bottom facing
camera used for stabilisation.

To allow the AR.Drone to carry out a SaT mission
autonomously, we combined the abstract deliberative skills
illustrated in Sect. 7 with low-level control and vision capa-
bilities. In particular, for the tracking phase, we implemented
tag recognition (we assume that our target is identified by a
specific tag) and tag following. For the search phase, since
the AR.Drone provides built-in low-level control for robust
flight, we focused on high-level control only. Our imple-
mentation provides capabilities for localisation, autonomous
navigation and compensation for drift. The navigation system
that we use is composed of: a monocular SLAM implemen-
tation for visual tracking, an Extended Kalman Filter (EKF)
for data fusion and prediction, and a PID controller for pose
stabilisation and navigation.

We implemented our application within the Robot Operat-
ing System (ROS) framework (Quigley et al. 2009) (Fig. 13).
We exploited existing packages for implementing our SaT
application, in particular: ardrone_autonomy,2 which is
a ROS driver for the Parrot AR.Drone, and tum_ ardrone3

(composed of drone_autopilot and drone_ state esti-
mation), which implements autonomous navigation and

2 http://wiki.ros.org/ardrone_autonomy.
3 http://wiki.ros.org/tum_ardrone.

/drone_stateestimation
/ardrone_driver

/drone_autopilot

/ar_planner

/ardrone/image_raw

/cmd_vel

/cmd_vel

/cmd_vel

/tum_ardrone/com

/tum_ardrone/com

/tum_ardrone/com

/tum_ardrone/com

/cmd_vel

/ardrone/navdata/tum_ardrone/com

Fig. 13 ROS nodes and topics for the search phase of a SaT mission

figure flying. We implemented the ROS node ar_planner,
which wraps the Optic planner and allows us to integrate
it with the rest of the system. This node is invoked by the
tag following node when the target is lost. Based on real-
time sensory data (current yaw, pitch, roll, altitude, battery
state and 3D speed estimates) and information on the target
motion model, the ar_planner: (i) runs MCS and builds a
planning problem; (ii) calls the Optic planner with a time
limit of 10 s; (iii) upon receiving the plan, translates the
actions of the plan into corresponding commands specified
by using the scripting language provided by the ROS node
drone_autopilot; and (iv) sends the translated plan to the
node drone_autopilot, which then imparts the commands
directly to the ardrone_driver node.

8.2.1 Flight tests

We conducted a series of real-world experiments to assess
whether the planner is capable of generating effective plans
for the drone and whether the drone is able to fly them accu-
rately to completion. Flight tests were performed indoors in
a room of dimensions 20.5 m (l) × 8.37 m (w) × 5.95 m (h).
The experiments pertain to the search phase of a SaT mission
only. They were carried out by using the ROS architecture
shown in Fig. 13 and the AR.Drone 2.0.

We employed the following procedure to run our tests:
we manually generated several planning problems and fed
each problem, together with the drone’s domain model, into
the ROS architecture shown in Fig. 13. Manually writing the
planning problems was a time-consuming task. The initial
state describes the candidate search patterns by assigning
them the following information: the time and battery needed
for flying the pattern, the drone’s degree of confusion after
executing the pattern, a time window in which the pattern
is active and a reward step function within this window.
To write realistic initial states, we manually created sev-
eral search patterns for the drone with suitable dimensions
for our room and ran extensive flight tests of such patterns
to gather reliable information about their duration and the
battery usage. We created several versions of each pattern

123

http://wiki.ros.org/ardrone_autonomy
http://wiki.ros.org/tum_ardrone

198 Auton Robot (2017) 41:181–203

Table 7 Characteristics of patterns PTS-1, CLS-1, ESS-1 and SS-1

PTS-1 CLS-1 ESS-1 SS-1

Area (m*m) 4*3 1*4 4*4 3*3

Perimeter (m) 19 9 20 29

Time (s) 50 40 45 95

Battery (%) 10 15 5 10

with different dimensions, ran each pattern ten times and
annotated the average time and energy consumed by the pat-
tern. The results obtained for one version of each patterns are
reported in Table 7. The take-off (1 m) and PTAM map ini-
tialisation take approximately 40 s and 10 % of battery, while
landing (1 m) takes 5 s and 2 % of battery.

Since we run our experiments indoors and in a rather
limited space, we did not have issues with the localisation
algorithm and, in consequence, we used the values of J = 1
and K = 0. In this case, although the objective function does
not take confusion into account, confusion remains impor-
tant in effectively solving the problem because it needs to
stay below the threshold for a pattern action to be applied. If
the confusion level drops under the threshold, re-localisation
is performed. If it fails, as well as if any other failure occurs
at execution time, the UAV abandons the mission and a new
plan is created from scratch. This choice reflects our focus
on planning in this work, rather than on dispatching, execu-
tion and replanning. Our previous work can be consulted for
these topics Bernardini et al. (2014), Cashmore et al. (2015).

As for the planning phase, on average, Optic produces 8
plans per problem instance in its 10 second window.

When we made the drone execute the plans produced by
the planner, we observed that the drone is able to fly all the
figures very accurately. Figure 14 shows, in the top row, the
execution of a SS pattern and an ESS pattern by the drone’s
simulator and, in the bottom row, the execution of two frag-
ments of a plan involving combination of patterns by the real
drone. By comparing these pictures, it appears that the drone
can execute the planned manoeuvres very precisely.

9 Related work

SaT has been extensively studied over the course of many
years and by different research communities. In this section,
we give an overview of the main approaches to SaT.

9.1 Theory of optimal search and SAROPS

he first practical issues relating to search for a lost target were
posed by B. Koopman in the US Navy during World War
II (Koopman 1946) and revolved around providing efficient

methods of detecting submarines. Search theory techniques
were then used by the US Navy to plan searches for objects
such as the H-bomb lost in the ocean near Palomares, Spain,
in 1966 and the submarine Scorpion lost in 1968 (Richardson
and Stone 1971). In the same years, theory of optimal search
emerged as branch of operations research and focused on
stationary targets (Stone 1975).

Since then, there has been extensive work in theory of
search and Coast Guards around the world currently use tools
based on it to plan SaR efforts. In particular, the systems
CASP (Computer Assisted Search Planning) (Richardson
and Discenza 1980) and its successor SAROPS (Search and
Rescue Optimal Planning System) (Kratzke et al. 2010) have
been used by the US Coast Guard since 1974 for SaR opera-
tions involving lost objects at sea and are based on theory of
optimal search as developed by Stone (1975).

SAROPS is composed of two main subsystems: (i) the
simulator, and (ii) the planner. The simulator produces a
time-dependent PD for the target location using MC parti-
cle filtering. The system fuses information about the object
in distress, provided by human operators, and environmen-
tal data, provided by the Environmental Data Server, which
gathers environmental data from government and private
sources concerning winds, currents, cloud cover, drifters,
weather and visibility conditions. Based on the target PD and
a collection of available search and rescue units (SRUs), the
planner assigns one rectangular search pattern (lawnmower)
to each SRU, which then proceeds to execute the pattern.
Each SRU executes only one pattern and there is no routing
of a vehicle from one pattern to another. The planner seeks
to maximise the probability of discovering targets by placing
the rectangles intelligently: using an iterative strategy, it tries
different combinations of rectangles for the SRUs until a pre-
determined period of time has elapsed and, then, reports the
best solution. If no SRU finds the target, the simulator gen-
erates a new PD by incorporating information about motion
(drift) and about the previous unsuccessful search and then
the planner generates a new set of rectangles. This loop is
not automated, but it involves the presence of a human who
always coordinates the two systems and supervises the entire
process.

The SAROPS system has a number of similarities with
our technique. As in SAROPS, we also use MCS to develop a
prior PD for the target’s location, although we do not regen-
erate the PD at each step. In contrast to our approach, the
SAROPS planner works with a one-step lookahead horizon,
has no notion of time-dependent reward and does not incor-
porate any long term strategic reasoning. While SAROPS
provides a method for carefully orientating the patterns
to cover the search area, we concentrate on organising a
sequence of patterns to be explored over time. It would be
interesting to compare our strategy against SAROPS, but at
the time being this comparison cannot be performed since

123

Auton Robot (2017) 41:181–203 199

Fig. 14 A comparison between
the figures in the above and
bottom rows shows that our
drone is able to execute the plans
generated by the planner very
accurately. a SS (simulator). b
ESS (simulator). c SS + ESS
(drone). d ESS + CLS (drone)

SAROPS is not in the public domain. However, we4 con-
jecture that, for stationary targets, the careful positioning of
patterns provided by SAROPS would pay off. On the other
hand, when only a limited number of vehicles are avail-
able, which need to be routed from one pattern to another,
and when the probability of detection over time needs to be
maximised, our approach would outperform SAROPS as it
benefits from ordering patterns over a long horizon and from
time-dependent rewards.

9.2 Probabilistic approaches

Originally, the two areas of searching and tracking were con-
sidered separately. Over the last 10 years, however, the field of
probabilistic SaT has evolved rapidly and a unified approach
to SaT has emerged (Furukawa et al. 2006).

The probabilistic approach to SAT relies on the use of
Recursive Bayesian Estimation (RBE) techniques that recur-
sively update and predict the PD of the target location over
time, under the assumption that the prior distribution and the
probabilistic motion model of the target are known (Bour-
gault et al. 2006). Although Bourgault et al. (2004) discuss

4 Personal communication with Lawrence D. Stone.

a number of possible constraints that can impact the target
motion model (obstacles, force fields and terrain), the target
is usually assumed to be subjected to external disturbances
and not to move on the basis of its own intentions.

RBE techniques work in two stages, the update and the
prediction. The update stage calculates the posterior distrib-
ution of the current state given a prior estimation of the state
and a new observation. The prediction stage calculates the
PD of the next state using the posterior distribution and the
target’s motion model. Since the implementation of these two
stages is computationally expensive, several approaches have
been explored to compute them efficiently, including grid-
based methods (Bourgault et al. 2006), particle filters (Chung
and Furukawa 2006), element-based techniques (Furukawa
et al. 2007) and hybrid particle-element approaches (Lavis
and Furukawa 2008).

The search control problem is solved in a greedy fash-
ion over a very short planning horizon (typically, a one-step
lookahead). This myopic planning approach is used to con-
trol the computational cost of the technique, which quickly
becomes intractable as the number of lookahead steps, the
size of the search area, or the number of dimensions of the
search space, increases. A unified objective function is used
for both search and tracking, allowing a vehicle to switch

123

200 Auton Robot (2017) 41:181–203

from one mode to the other while maintaining information
gained during the previous phases.

Probabilistic-based SaT has proven successful for prob-
lems involving stationary targets or targets moving in
small geographical areas, simple motion models, static
search spaces and short-term missions. However, when
these assumptions are not satisfied, RBE techniques per-
form poorly due to the high computational cost of accurately
maintaining a large state space that includes all the possible
positions of the moving targets.

Lately, modern approaches to planning with incomplete
state information, which are based on Partially Observable
Markov Decision Process (POMDP), have been applied to
SaT, both for single targets (Hsu et al. 2008) and multiple
targets (Bertuccelli and How 2006). In He et al. (2010), the
authors present an online, forward search, planning-under-
uncertainty algorithm for the road constrained target-tracking
problem. In this work, the agent’s belief of each target’s
pose is represented as a multi-modal Gaussian belief and
this parametric belief representation is exploited to com-
pute the distribution of posterior beliefs after actions are
taken. This analytic computation allows the planner to search
deeper by considering policies composed of multi-step action
sequences. Deeper searches are beneficial as they result in
keeping the targets well-localised for longer periods. This
technique has proven successful for small geographical areas,
but has not been tested yet on larger regions.

Considerable amount of work has been devoted to devis-
ing efficient path-planning methods for UAVs involved in
search-and-rescue operations. In Lin and Goodrich (2014),
for example, the authors consider the problem of wilderness
search and rescue where mini-UAVs are used to locate miss-
ing persons. They propose a new family of path-planning
algorithms that use a spatial representation, the task diffi-
culty map, to model the sensor detection probability and
reason about that during planning as well as a new heuristic,
the mode goodness ratio, to prioritise search sub-areas that
present an higher probability of rediscovering the target. This
work has a number of similarities with our approach. Both
techniques aim to produce efficient flight manoeuvres for
the UAV to maximise the probability of finding the target in
the face of sensor limitations and environmental constraints.
We use a spatial representation for the confusion level that
is similar in spirit to the task difficulty map and we also
exploit probabilistic reasoning to guide the planner to visit
most promising sub-regions first. However, our approach is
not devised specifically for path-planning, but it tackles the
entire decision-making process that underpins the drone’s
behaviour. As well as trajectories, we plan additional actions
for the drones, such as performing search patterns, refilling
depleted resources and avoiding localisation failures. In addi-
tion, we consider moving targets in wide spaces (hundreds
of square kms), while in Lin and Goodrich (2014) the target

is treated as stationary and assumed to be within a limited
space.

9.3 Orienteering problem

From a theoretical point of view, our formulation of SaT
as a planning problem resembles the Orienteering Problem
with Time Windows (OPTW) (Kantor and Rosenwein 1992).
In a classical orienteering problem (OP), a set of vertices
with associated rewards is given as well as a starting and
an ending vertex. For all the vertices, the amount of time ti j
needed to travel from vertex vi to vertex v j is known. Finally,
a maximum time budget Tmax is established. The goal of the
OP is to determine a path that visits a subset of the vertices
in the available time Tmax in order to maximise the total
collected reward. In the time-window variant of the OP, each
vertex is associated with a time window and a visit to that
vertex can only start during that window. The OPTW is a
hard combinatorial problem because three types of decisions
are involved in it: (i) allocation of vertices to be visited; (ii)
sequencing of vertices to be visited; and (iii) scheduling of the
visits to the chosen set of vertices. Considering our planning
problem, the set of search patterns corresponds to the set
of vertices of the OPTW problem, whereas the time slots in
which the search patterns are active correspond to the OPTW
time windows. As in the OPTW, we also want to maximise
the total reward in the available amount of time (limited by
the window of the latest possible search). However, in our
case and differently from the OPTW, the planner can choose
to visit each location more than once and, when a location
is covered by more than one pattern, it also needs to decide
which search pattern to use.

In the context of planning, the OP has been used to pro-
vide suitable heuristic advice on the goals and the goal order
that should be considered by a planner that deals with over-
subscription problems (Smith 2004).

10 Conclusions and future work

In this paper, we have presented a hybrid approach to
autonomous SaT that combines temporal planning with
Monte Carlo simulation. This approach affords a number of
benefits. Thanks to the use of sequences of search patterns,
which individually can be of any size and orientation, we are
able to inspect large and heterogeneous geographical areas.
At the same time, since we use automated planning to gen-
erate these sequences of patterns, our approach is capable
of building mission plans over long temporal horizons. Our
method can be easily adapted to a variety of target behaviours
and environments. This is because the generation of the ini-
tial set of candidate search patterns from which the planner
chooses those to execute is based on the target PD, which is

123

Auton Robot (2017) 41:181–203 201

obtained by running MCS. Whereas the planning mechanism
remains the same, several hypothesis can be incorporated in
MCS to reflect different characteristics of the target motion
model and the environment, which in turn will produce dif-
ferent initial distributions. Our method can also be easily
extended to deal with multiple searchers and multiple tar-
gets. In these scenarios, the initial PD will represent probable
locations of all the targets and the planning mechanism will
take care of assigning different patterns to different searchers
in order to maximise the probability of rediscovering the tar-
gets. For the sake of planning, search patterns performed by
one search unit can be treated as obstacles by the other search
units so as to avoid collisions between the searchers. Finally,
another advantage of a plan-based approach to SaT is that
the behaviour of the observer is predictable and well under-
stood. A plan can be used as a common medium of exchange
between the drones and the human observers, allowing safer
interaction between the drones and other air traffic.

Our approach to SaT can be easily modified to support
other robotics applications. In particular, it can be employed
to tackle any problem under uncertainty in which Monte
Carlo methods can help in formulating and weighting a
set of initial hypotheses and planning can be leveraged to
prove or disprove the validity of such hypotheses in an effi-
cient and robust way. Several surveillance operations present
this structure and can benefit from our method, for exam-
ple intelligence gathering, in which observers are mobile
and the targets correspond to interesting sites to be found,
recorded and communicated, as well as hazard identifica-
tion, in which observers are a mixture of mobile and fixed
assets and targets are physical flaws in components being
observed, or environmental readings that exceed safety lev-
els. In addition, our approach is useful not only in the aerial
domain, which is the focus of this paper, but also in dif-
ferent domains, such as for example underwater operations.
Currently, in collaboration with SeeByte Inc. and in the con-
text of the project “Planning Distributed Search Operations”
funded by the Dstl ASUR (Autonomous Systems Underpin-
ning Research) Programme,5 we are building on the SaT
method illustrated here to devise a hybrid technique for
underpinning the autonomous behaviour of multiple cooper-
ative underwater vehicles involved in reconnaissance tasks.

In future work, we intend to construct a different formu-
lation of the planning model, which will allow us to take
into consideration the results of unsuccessful searches when
choosing the sequence of patterns to execute. In particular,
we would like to be able to change the rewards of the pat-
terns based on information concerning which patterns have
failed to rediscover the target in the past. In addition, we
plan to implement a mixed-initiative framework in which a
human operator can modify or recommend a plan or inter-

5 Dstl Project Number: DSTLX-1000079686.

fere with the execution of a plan. In such a framework, our
approach could also be used to provide estimates of success
for user generated plans. Finally, we would like to run more
extensive experiments to compare our approach with other
methods, such as SAROPS.

Acknowledgements The authors gratefully acknowledge support from
EPSRC grant EP/J012157/1 and from BAE Systems Ltd. The authors
thank the anonymous reviewers for their helpful comments.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix

In what follows, we show the full specification of the UAV
domain in PDDL2.2. The quadcopter domain together with
examples of the problem specifications for both the UAV
and the quadcopter can be retrieved in the Supplementary
Material online, which also contains information about the
map and the destinations used in the experiments reported in
Sect. 8.

(define (domain UAV)
(:requirements :typing :durative-actions :fluents :timed-initial-literals)
(:types spiral smallLawnmower largeLawnmower patrol - pattern waypoint)
(:predicates (at ?p - waypoint) (active ?p - pattern) (beginAt ?w - waypoint
?p - pattern) (endAt ?w - waypoint ?p - pattern))

(:functions (reward) (rewardof ?p - pattern) (timefor ?p - pattern)
(distance ?p1 ?p2 - waypoint))
(:durative-action fly

:parameters (?from ?to - waypoint)
:duration (= ?duration (distance ?from ?to))
:condition (and (at start (at ?from)) (at start (not (= ?from ?to))))
:effect (and (at start (not (at ?from))) (at end (at ?to)))

)
(:durative-action doSpiral

:parameters (?from ?to - waypoint ?p - spiral)
:duration (=?duration (timefor ?p))
:condition (and (at start (beginAt ?from ?p)) (at start (endAt ?to ?p))
(at start (at ?from)) (at end (active ?p)))
:effect (and (at end (at ?to)) (at start (not (at ?from)))
(at end (increase (reward) (rewardof ?p))))

)
(:durative-action doSmallLawnmower

:parameters (?from ?to - waypoint ?p - smallLawnmower)
:duration (=?duration (timefor ?p))
:condition (and (at start (beginAt ?from ?p)) (at start (endAt ?to ?p))
(at start (at ?from)) (at end (active ?p)))
:effect (and (at end (at ?to)) (at start (not (at ?from)))
(at end (increase (reward) (rewardof ?p))))

)
(:durative-action doLargeLawnmower

:parameters (?from ?to - waypoint ?p - largeLawnmower)
:duration (=?duration (timefor ?p))
:condition (and (at start (beginAt ?from ?p)) (at start (endAt ?to ?p))
(at start (at ?from)) (at end (active ?p)))
:effect (and (at end (at ?to)) (at start (not (at ?from)))
(at end (increase (reward) (rewardof ?p))))

)
(:durative-action doPatrol

:parameters (?from ?to - waypoint ?p - patrol)
:duration (=?duration (timefor ?p))
:condition (and (at start (beginAt ?from ?p)) (at start (endAt ?to ?p))
(at start (at ?from)) (at end (active ?p)))
:effect (and (at end (at ?to)) (at start (not (at ?from)))
(at end (increase (reward) (rewardof ?p))))

)

)

References

Benton, J., Coles, A., & Coles, A. (2012). Temporal planning with pref-
erences and time-dependent continuous costs. In Proceedings of

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

202 Auton Robot (2017) 41:181–203

the twenty second international conference on automated planning
and scheduling (ICAPS-12).

Bernardini, S., Fox, M., Long, D., & Bookless, J. (2013). Autonomous
search and tracking via temporal planning. In Proceedings of the
23st international conference on automated planning and schedul-
ing (ICAPS-13).

Bernardini, S., Fox, M., & Long, D. (2014). Planning the behaviour
of low-cost quadcopters for surveillance missions. In Proceedings
of the 24st international conference on automated planning and
scheduling (ICAPS-14).

Bertuccelli, L. F., & How, J. P. (2006). Bayesian forecasting in multi-
vehicle search operations. In AIAA guidance, navigation, and
control conference (GNC).

Bills, C., Chen, J., & Saxena, A. (2011). Autonomous MAV flight
in indoor environments using single image perspective cues. In
2011 IEEE international conference on robotics and automation
(ICRA).

Bourgault, F., Furukawa, T., & Durrant-Whyte, H. F. (2004). Process
model, constraints, and the coordinated search strategy. In Pro-
ceedings of the 2004 IEEE international conference on robotics
and automation (ICRA 2004) (pp. 5256–5261).

Bourgault, F., Furukawa, T., & Durrant-Whyte, H. F. (2006). Optimal
search for a lost target in a Bayesian world. In Field and service
robotics, springer tracts in advanced robotics (Vol. 24, pp. 209–
222). Berlin: Springer.

Boutilier, C., Dean, T. L., & Hanks, S. (1999). Decision-theoretic plan-
ning: Structural assumptions and computational leverage. Journal
of Artificial Intelligence Research, 11, 1–94.

Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carrera,
A., Palomeras, N., Hurtos, N., & Carreras, M. (2015). ROSPlan:
Planning in the robot operating system. In Proceedings of the 25th
international conference on automated planning and scheduling
(ICAPS-15).

Chung, C. F., & Furukawa, T. (2006). Coordinated search-and-capture
using particle filters. In Proceedings of the 9th international con-
ference on control, automation, robotics and vision (ICARCV ’06)
(pp. 1–6).

Coles, A. J., Coles, A. I., Fox, M., & Long, D. (2010). Forward-chaining
partial-order planning. In Proceedings of the 20th international
conference on automated planning and scheduling (ICAPS-10).

CSAR. (2000). Canadian National Search and Rescue Manual. Depart-
ment of National Defence.

Edelkamp, S., & Hoffmann, J. (2004). PDDL2.2: The language for
the classical part of the 4th international planning competition. In
Proceedings of the 4th international planning competition (IPC-
04).

Engel, J., Sturm, J., & Cremers, D. (2012). Camera-based navigation
of a low-cost quadrocopter. In Proceedings of the international
conference on intelligent robot systems (IROS).

Fox, M., & Long, D. (2003). PDDL2.1: An extension to PDDL for
expressing temporal planning domains. Journal of Artificial Intel-
ligence Research, 20, 61–124.

Fox, M., Long, D., & Magazzeni, D. (2012). Plan-based policy-
learning for autonomous feature tracking. In Proceedings of the
twenty-second international conference on automated planning
and scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil, June 25–
29, 2012, AAAI.

Furukawa, T., Bourgault, F., Lavis, B., & Durrant-Whyte, H. F. (2006).
Recursive Bayesian search-and-tracking using coordinated UAVs
for lost targets. In Proceedings of the 2006 IEEE international
conference on robotics and automation (ICRA 2006) (pp. 2521–
2526).

Furukawa, T., Durrant-Whyte, H. F., & Lavis, B. (2007). The element-
based method—Theory and its application to Bayesian search
and tracking. In IEEE/RSJ international conference on intelligent
robots and systems (IROS 2007) (pp. 2807–2812).

Gerevini, A., Saetti, A., Serina, I., & Toninelli, P. (2004). Lpg-td: A fully
automated planner for pddl2.2 domains. InProceedings of the 14th
international conference on automated planning and scheduling
(ICAPS-04)—International planning competition abstracts.

Graether, E., & Mueller, F. (2012). Joggobot: A flying robot as jogging
companion. In CHI ’12 extended abstracts on human factors in
computing systems, ACM, CHI EA ’12 (pp. 1063–1066).

He, R., Bachrach, A., & Roy, N. (2010). Efficient planning under uncer-
tainty for a target-tracking micro-aerial vehicle. In 2010 IEEE
international conference on robotics and automation (ICRA) (pp.
1–8).

He, R., Prentice, S., & Roy, N. (2008). Planning in information space
for a quadrotor helicopter in a GPS-denied environments. In Pro-
ceedings of the IEEE international conference on robotics and
automation (ICRA 2008), Los Angeles, CA (pp. 1814–1820).

Hsu, D., Sun, W., & Rong, L. N. (2008). A point-based POMDP planner
for target tracking. In Proceedings of the 2008 IEEE international
conference on robotics and automation (ICRA 2008).

IMO. (2013). International aeronautical and maritime search and rescue
manual (IAMSAR). United States Federal Agencies.

Kantor, M. G., & Rosenwein, M. B. (1992). The orienteering problem
with time windows. Journal of the Operational Research Society,
43(6), 629–635.

Koopman, B. (1946). Search and screening—Operations research
evaluation group report 56. Technical report, Center for Naval
Analyses.

Kratzke, T., Stone, L., & Frost, J. (2010). Search and rescue optimal
planning system. In Proceedings of the 13th conference on infor-
mation fusion (pp. 1–8).

Lavis, B., & Furukawa, T. (2008). HyPE: Hybrid particle-element
approach for recursive Bayesian searching and tracking. In Pro-
ceedings of the 2008 robotics: science and systems conference (pp.
135–142).

Lin, L., & Goodrich, M. A. (2014). Hierarchical heuristic search using a
Gaussian mixture model for UAV coverage planning. IEEE Trans-
actions on Cybernetics, 44, 2532–2544.

NATSAR. (2011). Australian National Search and Rescue Manual. Aus-
tralian National Search and Rescue Council.

Piacentini, C., Alimisis, V., Fox, M., & Long, D. (2015). An extension of
metric temporal planning with application to AC voltage control.
Artificial Intelligence, 229, 210–245.

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J.,
Berger, E., Wheeler, R., & Ng, A. (2009). ROS: An open-source
robot operating system. In Proceedings of the international con-
ference on robotics and automation (IJCAI).

Richardson, H., & Discenza, J. (1980). The United States Coast
Guard computer-assisted search planning system (CASP). Naval
Research Logistics Quarterly, 27(4), 659–680.

Richardson, H. R., & Stone, L. D. (1971). Operations analysis during
the underwater search for Scorpion. Naval Research Logistics, 18,
141–157.

Smith, D. E. (2004). Choosing objectives in over-subscription planning.
In Proceedings of the 14th international conference on automated
planning & scheduling (ICAPS 2004).

Stone, L. D. (1975). The theory of optimal search. Operations Research
Society of America.

Takeda, H., & Latombe, J. (1992). Sensory uncertainty field for mobile
robot navigation. In Proceedings of the 1992 IEEE international
conference on robotics and automation (ICRA 1992).

Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory
and practice. Knowledge Engineering Review, 10(2), 115–152.

123

Auton Robot (2017) 41:181–203 203

Sara Bernardini is a Lecturer
in the Department of Computer
Science at Royal Holloway Uni-
versity of London. Previously,
Sara was a Research Associate
in the Department of Informat-
ics of King’s College London.
Sara received her PhD degree
in Artificial Intelligence from
the University of Trento (Italy)
and, during her PhD, she was
a research scientist at NASA
Ames Research Center (Califor-
nia, USA). Sara’s research inter-
est revolves around designing

and building intelligent and autonomous agent and multi-agent sys-
tems through automated decision-making techniques. In particular, Sara
has been conducting extensive research on automated planning for
temporal and metric domains, planning domain modelling languages,
domainindependent search control, intelligent control and probabilistic
reasoning.

Maria Fox is a leading resear-
cher in AI Planning and its
applications to robotics. Across
a number of funded projects
involving collaboration with
industry, she has investigated the
application of planning to under-
water surveying and inspection,
the future power system, aerial
and subsea search and tracking
and intelligent battery manage-
ment. Her main research interests
are in temporal and continuous
numeric planning, scaling plan-
ning methods to real problems

and integrating planning with execution on-board different autonomous
platforms.

Derek Long has worked in plan-
ning research for more than
20 years. His research has
led to foundational contribu-
tions to temporal and resource-
constrained planning, both in
modelling and in fundamental
algorithms for plan-construction.
He has been a leading practi-
tioner of planning applications
and much of his research has
been driven by an application-
led inspiration. He has studied
the roles of constraint reasoning,
optimisation and general prob-

lem solving techniques in planning systems and has led recent work
on extension of planning with external theories.

123

	Combining temporal planning with probabilistic reasoning for autonomous surveillance missions
	Abstract
	1 Introduction
	2 Search-and-tracking
	3 Plan-based approach to SaT
	4 Search operations
	5 Trajectory prediction via probabilistic modelling
	5.1 Graph construction
	5.2 Probabilistic motion model
	5.3 Approximation of marginal distributions

	6 Generation of candidate search patterns
	7 Search as planning
	7.1 Modelling using a non-stationary MDP
	7.2 Planning domain
	7.3 Modelling UAVs and quadcopters in PDDL2.2
	7.4 Planning problem
	7.5 Planning mechanism

	8 Experimental results
	8.1 Simulation experiments
	8.1.1 Simulation steps
	8.1.2 Results and discussions

	8.2 Real-world experiments
	8.2.1 Flight tests

	9 Related work
	9.1 Theory of optimal search and SAROPS
	9.2 Probabilistic approaches
	9.3 Orienteering problem

	10 Conclusions and future work
	Acknowledgements
	Appendix
	References

