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ABSTRACT	

 

We show how accurate rates of formation and dissociation of peptide dimers can be calculated using 

direct transition counting (DTC) for analyzing replica-exchange molecular dynamics (REMD) 

simulations. First, continuous trajectories corresponding to system replicas evolving at different 

temperatures are used to assign conformational states. Second, we analyze the entire REMD data to 

calculate the corresponding rates at each temperature directly from the number of transition counts. 

Finally, we compare the kinetics extracted directly, using the DTC method, with indirect estimations 

based on trajectory likelihood maximization using short-time propagators, and on decay rates of state 

autocorrelation functions. For systems with relatively low-dimensional intrinsic conformational 

dynamics, the DTC method is simple to implement and leads to accurate temperature-dependent rates. We 

apply the DTC rate-extraction method to all-atom REMD simulations of dimerization of amyloid-forming 

NNQQ tetrapetides in explicit water. In an assessment of the REMD sampling efficiency with respect to 

standard MD, we find a gain of more than a factor of two at the lowest temperature. 
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I. INTRODUCTION	

High performance computing hardware capacity has continued its remarkable growth in recent years 

with speeds rising by and large in accordance with Moore’s Law. From a software point of view, the 

developments have been equally dramatic. Molecular dynamics (MD) packages are now capable of 

reaching microsecond simulations routinely and millisecond simulations are accessible on machines 

specialized in MD simulations,1 and in aggregate through distributed computing projects such as 

Folding@Home2. Nevertheless, despite all the major advances, computational resources are still limited 

in what they can achieve in standard MD simulations with explicit solvent molecules on even modestly 

sized molecular systems, due to the complexity of their conformational dynamics. This has led to the 

development of more efficient ways to extract the thermodynamic properties of the system. 

The use of enhanced sampling methods has become commonplace when simulating proteins and 

biomolecules. Replica-exchange MD (REMD)3, 4 and simulated tempering5, 6 are some of the most 

popular modern methods used to cross high energy barriers, and to map the free energy landscape of 

biomolecular systems, available in most MD simulation packages. In practice, REMD simulations 

provide accurate estimates of the populations of conformational states of a molecular system. However, 

extracting quantitative kinetic information from REMD trajectories regarding the transitions between the 

various conformational states is generally more challenging.7-14 Previously proposed methods rely either 

on a priori assumptions on the functional dependence of the transition rates on temperature (e.g. 

Arrhenius-like15, 16), or on more complex statistical analysis of transition paths17 or algorithms using 

likelihood maximization and multi-dimensional optimization methods.7, 18  

 Here, we use the direct transition counting (DTC) of Refs. 11 and 12 in its simplest form as a 

method for calculating transition rates from REMD trajectories that is easier to implement and leads to 

similarly accurate temperature-dependent rates as compared to the alternative, more complex and indirect 

methods.7, 18 We compare the DTC results to those of the maximum likelihood propagator based (MLPB) 

http://dx.doi.org/10.1063/1.5004774
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method. We apply both methods (i.e., DTC and MLPB) to all-atom REMD simulations of dimerization of 

computationally and experimentally-relevant amyloid-forming NNQQ tetrapetides,8, 19 in explicit water – 

one of the smallest two-state-like systems featuring peptide-peptide interactions that is, nevertheless, 

challenging to analyze systematically using REMD.18 We validate the rates extracted using the DTC 

method both by comparison to the corresponding MLPB rates and by analyzing the decay rates of the 

state autocorrelation functions of the system.20-22 We assess the corresponding REMD efficiency,23 and 

we obtain remarkably good agreement with the theoretically predicted errors in estimating the dimer and 

dissociated populations. 

II. THEORETICAL	METHODS	

a. DTC	Method	

The following is a derivation of the DTC equations directly from a short time expansion of kinetic 

rate equations. In Ref. 12, it was shown that the resulting DTC estimators for the rate coefficients are 

statistically optimal (i.e., being the maximum likelihood solutions for a rate system satisfying detailed 

balance). 

We assume that the conformational space of a system can be discretized into N distinct states that 

obey a master equation, dp
m

(t) dt  [k
mn

p
n
(t) k

nm
p

m
(t)]

n1

N

 , where p
m

is the probability of being in 

state m at time t and nmk is the rate of transition from state m to state n.21, 24-34 In matrix notation, this is 

written as 
   

dp(t)

dt
 K(t)p(t), where K(t) is the N  N  rate matrix and p(t)  is the time dependent 

column vector of probabilities with elements such that p
n
(t)  0, n 1,..., N  . At equilibrium, 

Kpo  0 and the first right eigenvector of K (corresponding to the first eigenvalue
1
 0) is therefore 

given by po (i.e., the vector of equilibrium populations that has positive elements, p
n
o  0, n{1,..., N}, 
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and it is normalized according to the relation p
n
o  1

n1

N

 ). 

Central to the DTC method11, 12 for estimating rates is the assignment of conformational states of the 

system. Here, the states were assigned by following each replica at different temperatures, using a 

transition based assignment (TBA) method described and used in previous studies.18, 21, 22 Our analysis of 

the NNQQ dimer conformational dynamics follows the approach presented in Ref. 18, and is summarized 

also in Fig. S2. Briefly, two specific interatomic distances are used as initial reaction coordinates, as 

shown in Fig. S1, as they allow a good discrimination between the different peptide-peptide interaction 

modes. While these reaction coordinates need to be reasonably good, the subsequent state assignment step 

does not depend on their absolute quality, as the TBA method adds more specific information from 

analyzing the transition paths (i.e., time sequence of transition events) to the state assignment process. 

The method to determine the rate matrix K is as follows (see Fig. S2). Consider an REMD simulation 

of the system of interest with M replicas, for t
REMD

 simulation time for each replica. The atomistic 

trajectories for each replica i  1,� , M   are simplified by using the TBA method to project them onto 

states s
i

t   1,� , N   at times t  0,t
REMD

  . For deriving the rates of the corresponding master 

equation, the intrinsic system dynamics in each of the si states is assumed to be Markovian, an assumption 

that we test subsequently.18, 21 Here, we also define the temperature,   i t , at which the system is at time 

t for replica i, with values in the discrete interval 
i

t   T
1
,� ,T

M  . We can now count the number of 

transitions, C
nm
i , from state m to state n from all replicas, for each temperature iT  with i  1,� , M   

using 

[1] C
nm
i   s

j
qt ,m 

q0

tREMD /t1


j1

M

  s
j

qt  t ,n  
j

qt ,Ti
  , 

http://dx.doi.org/10.1063/1.5004774


 6

where t  is the frequency at which the coordinates of the system are saved and the states are assigned 

along the replica trajectories  is t .  a,b   is one if a  b   and zero otherwise. We assume that t  is 

small enough such that the number of additional transitions (including at different replica temperatures) 

occurring within the t  time interval is negligible. This approximation corresponds to truncating the 

Taylor expansion of the matrix exponential at the linear term: , where 

 is the column-normalized transition probability matrix (Markov matrix) with lagtime t . The 

truncation error can thus be assessed analytically and, as shown below, for typical MD simulations it is 

negligible. We also assume that a replica m remains at the same temperature 

T
i


i
qt    i

qt  t   after a transition (i.e., a replica does not change states during an exchange 

event). This is a very good assumption for REMD simulations where trajectories are saved frequently, at 

an interval t  that is typically smaller than the exchange attempt frequency. After assigning states (e.g., 

as done here by using the TBA method), the transition times cannot be resolved within the interval t  

between two data points along the trajectory.  

Finally, using the number of transitions C, the rate matrix K ( i)  at temperature iT  is determined by first 

symmetrizing the unnormalized transition matrix to enforce detailed balance C
nm
sym,i  (C

nm
i C

mn
i ) / 2, 

and then by using 

[2] K
nm
( i) 

C
nm
sym,i

P
m
( i)t

 for m  n , and 

[3] Kmm
( i)   Knm

( i)

n1(nm)

N

  , 

where P
m
( i)  is the unnormalized equilibrium probability of state m, calculated by simply counting the 

number of times the REMD trajectory is in each particular state m at temperature T
i  

[4] P
m
( i)   s

j
qt ,m  

j
qt ,Ti

 
q0

tREMD /t


j1

M

  C
nm
i

n1

N

  . 
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Note that ( )i
mP  can also be estimated using the symmetrized matrix, Pm

( i)  Cnm
sym

n1( nm)

N

 , which in practice 

leads to very small differences as compared to using Eq. [4]. Eq. [2] for the rates was obtained by Stelzl 

and Hummer12 using likelihood maximization. Symmetrized transition counts in Eq. [2] were obtained as 

a direct consequence of detailed balance. Note that Ref. 12 also considers the simultaneous estimation of 

equilibrium populations and rates in the kinetic model, and extends DTC to cases with transition paths 

that could be longer than the interval between replica exchanges by introducing fractional transition 

counts. 

We apply the DTC method to study the association and dissociation of a dimer system of two 

NNQQ monomers (Fig. 1) and compare the resulting rates to the ones calculated using an alternative, 

more complex indirect MLPB method.18, 21 The MLPB method uses Green’s functions to express the 

likelihood of a trajectory between Markov states. The conditional probability G n,t | m,0  for being in 

state n after a lagtime t  having been in state m at time 0 0t  is related to the rate matrix K using 

[5] G n,t | m,0   eKt nm
 . 

The likelihood of a Markovian trajectory,   is calculated using 

[6]   G n,t | m,0  
m1

N


n1

N


Cnm t 

,  

where  nmC t is the transition matrix corresponding to the lagtime t , as defined earlier (omitting the 

index i for the REMD temperatures), and N is the total number of states. In the MLPB method, the 

elements of the rate matrix K are found by using a multi-dimensional stochastic search (i.e., simulated 

annealing using a Metropolis Monte Carlo algorithm as described in Ref. 21) that uses the minimization 

of the  log  as the optimization function.18, 21 
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b. REMD	Simulations	

Our REMD simulations of NNQQ dimers were performed as described in Ref. 18, with the MD 

package Gromacs35, 36, using Langevin dynamics with a friction coefficient of 0.1 ps−1,37 an integration 

time step of 2 fs, Berendsen pressure coupling,38 and a particle-mesh Ewald method with a switching 

distance for nonbonded electrostatics and van der Waals interactions at 8.5 Å and a cutoff  distance of 10 

Å. The simulations were in the NPT ensemble with the Amber 99sb force field39 and explicit TIP3P40 

water molecules. The simulation box side was 40 Å, and contained 6525 atoms in total, including 2132 

water molecules. To enhance the sampling, REMD is used with 16 replicas running at temperatures 

spaced according to an optimized protocol41 in the range of 310.00 K to 369.08 K.18  

Coordinates were saved every 1 ps, and REMD exchanges were also attempted every 1 ps, with an 

average acceptance probability of ∼30%. Attempting an exchange as often as possible has been found to 

enhance the sampling even further.23, 42 Five initial conditions were run, each starting from a potential 

microcrystal structure as suggested by X-ray micro-crystallography experiments by Sawaya et al.19 The 

five initial conditions were simulated for 164 ns for each replica, giving a total REMD running time of 

820 ns and thus a total MD simulation time of 13.12 μs. As shown in Fig. S3 (and also in Figs. S2 and S3 

from Ref. 18), this is more than twice the amount of data needed for convergence of the relevant kinetic 

quantities. 

As an additional test for convergence we also investigated the “equal occupancy” of replicas at each 

temperature,43 as shown in Fig. S7 of Ref. 18) which is a useful method for assessing the performance of 

parallel tempering simulations.43, 44 

The trajectories were then analyzed using the workflow indicated in Fig. S2 and the corresponding rate 

matrices were extracted and compared. 

Measuring the decay of the autocorrelation function is another method to extract the slowest 

relaxation time of the system. For a two-state model with states denoted as A and B, the overall relaxation 

http://dx.doi.org/10.1063/1.5004774
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rate of an REMD simulation with M replicas can be given as the weighted sum of each of the relaxation 

rates of the per temperature data and weighted by the normalized product of the probabilities23 

[7]  
1


relax




i
1 p

A
i  p

A
i

i1

M



1 p
A
i  p

A
i

i1

M


 . 

where i
Ap  is the population of state A at temperature Ti, and λi is the relaxation rate of the system at 

temperature Ti. Therefore, κ is the overall relaxation rate of the entire REMD simulation, a weighted 

average of the relaxation rates at each temperature. This expression was derived in the fast exchange limit 

building a coarse-grained kinetic network model using the local equilibrium approximation. For this 

model, the solution for the relaxation rate and the populations of the total number of states in A (or B) is 

mathematically equivalent with the one-dimensional diffusive harmonic oscillator model for large number 

of replicas.23 

The normalized folding state correlation function c(t) is given at long times by  

[8] ci(t) 
s(t)s(0)

s2


1 pA
i  pA

i e t

1 p
A
i  p

A
i

i1

M


 , 

in the limit of fast exchange and for large M. Therefore, the slope of the natural logarithm of the 

autocorrelation function allows us to estimate the relaxation rate  . 

A similar formula was derived for simulated tempering (ST) simulations.45 A converged ST 

trajectory is essentially equivalent with a replica trajectory in an REMD simulation. Therefore, the 

following formula can be applied to the per replica data of the REMD simulations  

[9] replica
eff 

k
AB
i p

B
i

i1

M



p
B
i

i1

M




k
BA
i p

A
i

i1

M



p
A
i

i1

M


 , 
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where i
ABk  is the rate for transitions from B to A at temperature Ti. Eq. [9] can be rewritten in a similar 

way to Eq. [7] to give 

[10] replica
eff 

N  ik
A
i p

A
i 1 p

A
i 

i1

N



p
A
i

i1

N

 1 p
A
i 

i1

N


 . 

Thus, the effective relaxation rate for the per replica R-trajectories of the system is given by the weighted 

sum of the relaxation rates of each of the per replica trajectories, weighted by the product of the folding 

and unfolding probabilities and normalized by the product of the sums of the folding and unfolding 

probabilities, and multiplied by the number N of replicas. The differences between Eqs. [7] and [10] are 

the multiplicative factor of N, and that the normalization is the sum of the products and the product of the 

sums of the probabilities, respectively. 

The efficiency k at temperature kT of an REMD simulation is given by 

[11] 
k


k
Ui

p
Bi

i1

N


Nk

Uk
p

Bk

 . 

Here indices U and B refer to unbound and bound states, respectively. This relation can be thought of as 

the ratio of total number of transitions per unit time averaged over the N replicas compared to the number 

of transitions that occur at the temperature of interest kT (usually the lowest temperature). For all values 

of k  greater than 1 it is more efficient to run a REMD simulation as opposed to a standard MD 

simulation at that temperature (i.e., using the same total computer time). 

The variance 2 ( ) REMD simt  in the population estimates of the (un)bound populations in an REMD 

simulation at temperature kT  is given by23 
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[12] 
REMD
2 (t

sim
) 

2

t
sim

p
k
2q

k
2

p
i
q

i


ii1

N
 , 

where simt is the total simulation time (for each replica), and the unbound fractions are simply qi  1 pi .  

 

III. DISCUSSION 

 

Here, following the analysis in Ref. 18, the 7  7 rate matrix extracted for the NNQQ dimeric system 

is coarse grained to a two-state system with the associated dimer (states 1 to 6) as one macrostate and the 

dissociated state (state 7) the second macrostate.18 The equilibrium populations shown in Fig. 2(a) are 

extracted by counting the amount of time spent in each state. We see a linear increase in the population of 

the dissociated state with temperature. This behavior is consistent with the expectation that the unbound 

state has higher entropy and enthalpy. 

In the following, we analyze the rate matrices and compare them to the results found by the MLPB 

method. In a spectral analysis, the slowest relaxation times from the two methods agree well, as seen in 

Fig. 2(b). The profile of the relaxation rate is relatively flat across the temperatures. This can be 

understood when the individual koff and kon rates (i.e., for dimer dissociation and association, respectively) 

are plotted in Figs. 3(a) and 3(b) respectively. Again the match is remarkably good. The rate of 

dissociation koff does not depend on the concentration of the system. A clear trend is observed showing an 

increase in koff as the temperature increases, in keeping with an Arrhenius-like rate. By contrast, kon 

depends only weakly on temperature, with increased diffusion at higher temperatures compensated by an 

increased simulation box volume. The relaxation rate is proportional to koff + kon. Because kon is an order 

of magnitude larger than koff, the relaxation rate is nearly independent of temperature. 

Overall the DTC method11, 12 is much easier to implement than the MLPB method. Excellent 

agreement between the two methods is found. We thus recommend using DTC11, 12 as a simple and more 

direct way of extracting rates for an REMD system in cases where transitions between states can be 
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resolved and are fast. 

The decay of the state autocorrelation function is another method to estimate the slowest relaxation 

rate of a system, i.e., by estimating the inverse of the slope of the autocorrelation curve (e.g., see Fig. S4). 

Fig. 4(a) shows the slowest relaxation times (2) obtained from fits of the autocorrelation function 

calculated “per temperature” (red circles, ACF T) T-trajectories (see 18), and “per replica” R-trajectories 

(blue crosses, ACF R). Values obtained from formulas given above (Eqs. [9] and [10])23 for the effective 

relaxation rate of the REMD simulation are also shown (marked “eff remd”, and “eff rep”). The average 

values for ACF T and ACF R are added for reference as dashed lines. The effective relaxation rates can 

be seen to approximate very well the intrinsic timescales of the system. Interestingly, they are not only 

very close to each other, but fall definitely within the upper and lower bounds of the values extracted 

from the fitted autocorrelation functions (red and blue lines). 

In Fig. 4(b) we show the computational efficiency () of running a REMD simulation with M replicas 

(as compared to running an equivalent, M times longer, MD simulation at the target temperature). We see 

that it is approximately 2.2 times more efficient to run the REMD simulation with M replicas of the 

system at the lowest (i.e., our “target”) temperature of 310 K (Fig. 4(a)). We see a turnover point at 

340.49 K beyond which it becomes less efficient to run an REMD simulation using the current 

temperature range, as molecular transition rates generally increase with temperature. The variance σ2 of 

the equilibrium populations o
ip  (see Fig. 2(a)), can be calculated as described in Ref. 23 and illustrated in 

Ref. 11. 

In actual implementations of REMD calculations, one needs to choose a value for the time interval, 

t
REMD

, at which replica exchanges are attempted. In order to gain a more quantitative insight, and to 

examine the convergence of the 7-state rates calculated via the DTC method, a series of replica exchange 

Monte Carlo (REMC) simulations46, 47 were run for different t
REMD

 intervals. The Markov matrices used 

to propagate the system in the MC steps were analytically calculated using the (“exact”) rates obtained 

http://dx.doi.org/10.1063/1.5004774
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from the REMD simulations at each temperature ( ). From the resultant REMC simulation 

data, the populations were calculated from the simulation trajectories, and were compared with the exact 

populations using the Kullback-Leibler (KL) divergence48 measure  

[12] KL(t)  P
i
MC

i
 (t)log(

P
i
MC (t)

P
i
exact

). 

Figure 5(a) shows the convergence of the 7-state populations captured by the KL measure as a function of 

the simulation length.  

The DTC method was then used to calculate the corresponding rates from the REMC trajectories. In 

Fig. 5(b), the REMC rates are compared to the input, exact (REMD) rates by using a root mean square 

deviation (RMSD) measure defined as 

[13]  . 

The KL divergence can in theory tend to zero in the long time limit, whereas the rates are limited by 

our step size t  used in constructing the Markov matrices for REMC. In the DTC method, it is assumed 

that the higher order terms can be neglected, thus, for REMC simulations using the normalized counts, 

, the theoretically optimal rates can be estimated as  

[14]  . 

As shown in Fig. 5, the KL divergence of the populations converges towards zero for sufficiently 

long simulation times (Fig. 5a), and the corresponding error in calculating the rates from REMC data 

converges towards its theoretical minimum (Fig. 5b). In general, this convergence is faster for more 

frequent replica exchange attempts, an observation that agrees with previous studies on the error of 

equilibrium populations,23, 42 and shown here as well for the calculated kinetic rates. 
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IV. CONCLUSIONS 

 

In summary, we found that the DTC method11, 12 for extracting rates directly from REMD simulations 

is simple to implement, in comparison to previously proposed methods, which either use a more complex 

maximum likelihood approach,18, 21 statistical analysis of transition paths,17 or rely on a priori 

assumptions about the functional form (e.g. Arrhenius-like, 15, 16) of the temperature-dependence of the 

underlying transition rates. REMD simulations are increasingly popular options for achieving enhanced 

sampling, yet extracting routinely quantitative kinetic information from REMD trajectories regarding the 

transitions between the various conformational states is generally challenging.7-10, 12-14  

In the simple implementation used here to study peptide binding-unbinding, the DTC method11, 12 

proceeds in two major steps, requiring only the ability to assign Markovian states to REMD trajectories. 

In a first step (as illustrated by the workflow in Fig. S2), we use the continuous R-trajectories 

corresponding to system replicas evolving at the various temperatures to assign conformational states, 

using the trajectory-based state assignment (TBA) method introduced earlier.18, 21 In a second and final 

step, we analyze the entire REMD data to calculate the corresponding rates at each temperature, both 

directly, from the number of transition counts,11, 12 and also indirectly, from short-time propagators (using 

a maximum likelihood approach as in Refs. 18, 21) or from state correlation functions.20, 22 

Here, the DTC method11, 12 was applied to dimer formation of NNQQ peptides. We obtained excellent 

agreement between the rates extracted using the DTC method and our previous, more elaborate maximum 

likelihood-based method. We also tested theoretical predictions for the slowest relaxation time of the 

system by monitoring the decay of the autocorrelation function both in per temperature REMD space (i.e., 

using T-trajectories), and in the per replica space (i.e., using R-trajectories). We assessed the 

corresponding REMD efficiency, and we showed using REMC simulations that more frequent exchanges 
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decreased the error in determining the kinetic rates, in addition to leading to more accurate populations of 

the NNQQ dimers. 

The DTC method11, 12 should be useful in the increasingly broad range of replica exchange studies 

where there is a need for accurate calculations of transition rates between states, besides the more typical 

calculation of equilibrium populations and the associated free energy differences. For example, together 

with Hamiltonian replica exchange,49-53 simulated tempering,45, 54-56 lambda dynamics,57 generalized 

ensemble sampling,58, 59 or with other recent enhanced sampling methods,60-64 DTC may be used to extract 

more complete and accurate kinetic and thermodynamic data (e.g., possibly in conjunction with the 

DHAM method65 for relating biased to unbiased transition counts). In addition, the DTC method can also 

be combined with analysis methods that take advantage of additional information such as the automatic 

identification of Markovian transition states66 from MD trajectories.  

 

ABBREVIATIONS	

DTC = direct transition counting; MD = molecular dynamics; REMD = replica-exchange molecular 

dynamics; TBA = transition-based assignment; MLPB = maximum likelihood propagator-based; DHAM 

= dynamic histogram analysis method 
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SUPPLEMENTARY	MATERIAL 

See supplementary material for the four supplementary figures and their captions, Figs. S1 to S4, 

mentioned in the main text.	
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FIGURE	CAPTIONS 
 

Figure	1.	(a) Dimer formation of two tetrameric NNQQ amyloid peptides with association rate 
kon and dissociation rate koff. (b) Schematic illustration of a replica R-trajectory (black line) that 
visits several temperatures during an REMD simulation, while transitioning for example between 
two states S1 and S2.  The red line is the corresponding state R-trajectory obtained using a state-
assignment procedure (e.g., the TBA method, see text). An attempt to exchange temperatures is 
made every ΔtREMD and is either accepted (marked as “A”) or rejected (“R”). Note that R-
trajectories are continuous, even though they visit various temperatures, while the per-
temperature T-trajectories would be interrupted at times when exchange attempts are accepted. 
 
Figure 2. (a) Equilibrium population po of the dissociated state as a function of temperature (T0 
= 310.00 K, T15 = 369.08 K). (b) Slowest relaxation time τ of the system, as a function of the 
temperature, extracted for each temperature T using the MLPB method (blue, x marks) and the 
direct transition counting (red circles) method. Error bars report the standard error of the mean. 
 
Figure 3. Temperature dependence of the NNQQ dimer rates of (a) dissociation koff, and (b) 
association kon estimated from the REMD T-trajectories using MLPB method (blue, x marks) 
and the direct transition counting method (red circles). Note that no a priori assumption on the 
functional form of the T-dependence of the rates (e.g., Arrhenius-like or not) was necessary. 
 
Figure 4. (a) Slowest relaxation time τ, calculated by several different methods from the NNQQ 
REMD simulation data using the state autocorrelation function for each temperature (red circles, 
“ACF T”), and for each replica (blue x marks, “ACF R”). The effective relaxation rates of the 
system (“eff. remd” and “eff. rep”) are calculated using analytical formulas (see text). The 
average values of “ACF T” and “ACF R” (denoted as “avg. ACF T”, red dashes, and “avg. ACF 
R”, blue dashes, respectively) are also shown for comparison. The rates extracted directly from 
the “per replica” R-trajectory rate matrices are also shown (marked as “rates R”, green line). (b) 
Relative computational efficiency, η, of the REMD simulation at each temperature. Note that 
 1 at a certain temperature Ti  implies that REMD is more efficient than the corresponding 
standard MD (i.e., for N-times longer simulations, where N is the number of replicas) at that 
temperature. 
 
Figure 5. (a) The KL divergence of the REMC calculated populations as a function of 
simulation time, at replica exchange attempt time intervals of 10 ps, 100 ps, 1 ns, and 10 ns. (b) 
The error estimated using Eq. [14] for the REMC simulations rates with respect to the exact rates 
as a function of simulation time, for varying replica exchange attempt intervals. The inset shows 
the same data on a log-log scale.  
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