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Oral epithelial cells orchestrate innate Type 17 responses to Candida albicans through the 

virulence factor Candidalysin 

Short title: Candidalysin drives innate Type 17 immunity 

One Sentence Summary: Innate IL-17 responses to Candida albicans is dependent on 
Candidalysin, a hypha-associated fungal peptide that drives production of IL-1 in oral epithelial 
cells. 
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Abstract  

The dimorphic fungus Candida albicans causes severe oral infections in immunodeficient 

patients. Invasion of C. albicans hyphae into oral epithelium is a key virulence trait. Although 

requirements for innate antifungal immunity remain poorly defined, IL-17 signaling is essential. 

In mice naïve to Candida, IL-17 is produced by several innate lymphocyte subsets, but the only 

cells that expand upon infection are a poorly understood innate TCRαβ+ population. Here, we 

show that expansion of these innate TCRαβ+ cells is due to local proliferation, not 

CCR6/CCL20-dependent recruitment. TCR signaling was not activated during infection, 

confirming that these TCRαβ+ cells are functionally innate. Activation of innate TCRαβ+ cells 

did not require signals from conventional PRR signals such as TLR2 or Dectin-1/CARD9. 

Rather, activation was dependent on the actions of Candidalysin, a hyphal-associated fungal 

peptide that damages oral epithelial cells (OECs) and triggers the production of DAMPs and 

inflammatory cytokines including IL-1α/β. Consistently, IL-1R signaling was essential for 

innate TCRαβ+ proliferation and immunity to OPC, acting in both hematopoietic and non-

hematopoietic compartments. Candidalysin-deficient C. albicans strains failed to upregulate 

Il17a or stimulate proliferation of innate TCRαβ+ cells. Moreover, Candidalysin signaled 

synergistically with IL-17 on OECs, further augmenting expression of proinflammatory 

mediators including IL-1 cytokines. Thus, IL-17 and C. albicans, acting through secreted 

Candidalysin, amplify inflammation in a self-reinforcing feed-forward loop. Our results 

challenge the current paradigm that hyphal formation per se is required for mucosal innate 

immunity, but rather demonstrate that establishment of IL-17-mediated antifungal immunity in 

the oral mucosa requires tissue-damaging invasion of hyphae. 
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Introduction 

 Candida albicans is a dimorphic commensal fungus that colonizes human mucosal 

surfaces. Changes in immune competency or the protective environment of the oral mucosa 

promote development of oropharyngeal candidiasis (OPC, thrush), a painful opportunistic 

infection prevalent in settings of HIV/AIDS, iatrogenic immunosuppression, head-neck 

irradiation, Sjögren’s Sydnrome and infancy. Additionally, C. albicans is a common cause of 

vaginal yeast infections, candidemia and disseminated candidiasis; the latter is a frequent 

hospital acquired infection, with an average 40% mortality rate (1, 2). Studies of immunity to 

fungi have lagged behind other classes of microbes, and to date there are no licensed vaccines for 

Candida species, or indeed to any fungal pathogens. Therefore, understanding the correlates of 

anti-fungal immunity is essential for informing development of rationale therapeutics and 

intervention strategies for fungal infections. 

The IL-17 signaling pathway is essential for preventing pathogenic C. albicans infections 

(3). Patients with IL-17 defects due to mutations in IL-17R signaling pathway components are 

extremely susceptible to chronic mucocutaneous candidiasis (CMC). Neutralizing antibodies 

against Th17 cytokines are also associated with CMC, occurring in AIRE deficiency and some 

thymomas (4). In this regard, antibodies targeting IL-17 or Th17-related pathways were recently 

approved for treating psoriasis and other forms of autoimmunity (5), and a major infection risk 

following IL-17 blockade is mucosal candidiasis, especially OPC (6). As use of anti-IL-17 

biologic drugs expands, the importance of understanding the role of IL-17 in opportunistic 

infections becomes increasingly compelling.  

Similar to humans, mice with IL-17R signaling deficits are susceptible to OPC (7, 8). We 

recently showed that protective IL-17R signaling in OPC is mediated primarily by superficial 

oral epithelial cell (OECs) (9). However, mice do not harbor C. albicans as a commensal 

microbe and are therefore immunologically naïve to this fungus (10, 11). Thus, experimental oral 

C. albicans infections in mice most accurately represent the initial encounter to this fungus, 

which in humans occurs shortly after birth (3, 12). Nonetheless, during recall infections with 

C. albicans, mice mount vigorous Th17 responses that significantly augment innate immunity, in 

keeping with  humans where the memory response to C. albicans is Th17-dominated (13). 

Consequently, mice provide an ideal model system in which to dissect the requirements for 

innate ‘Type 17’ immunity, as distinct from the adaptive Th17 response. In the naïve response, 
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IL-17 is produced by several innate lymphocyte subsets, but the only cells that expand upon 

infection belong to an oral-resident innate TCRαβ+ population, sometimes called ‘natural’ Th17 

cells (14).  

An essential virulence trait of C. albicans is its ability to form invasive hyphae. In 

systemic candidiasis, the transition to a hyphal state is sensed by a Dectin/Syk/CARD9 signaling 

cascade in DCs (15). Dectin-1 recognizes β-glucan components of the fungal cell wall that are 

exposed during the hyphal transition, which leads to Th17 cell skewing through DC production 

of IL-23 and IL-6 (16, 17). Surprisingly, neither CARD9 nor IL-6 is required for mounting a 

primary immune response to OPC (14, 18). Therefore, it is unclear how innate Type 17 cells are 

activated during oral C. albicans infection, and why this only occurs in response to invasive, 

tissue-damaging hyphae. 

The initiating event in OPC is exposure of OECs to C. albicans. Hyphae but not yeast 

trigger cell lysis and ‘danger’ responses in OECs, including production of cytokines (IL-6, IL-

1α/β, GM-CSF, G-CSF), antimicrobial peptides (β-defensins) and DAMPs (IL-1α, S100A8/9) 

(19, 20). This OEC activation program is triggered by a newly-discovered fungal virulence 

factor, Candidalysin (21). Candidalysin is a 31-residue amphipathic peptide derived from 

proteolytic processing of the ECE1 (Extent of Cell Elongation 1) gene product, and is 

homologous to pore-forming toxins such as melittin (honeybee) and magainin (African frog). In 

OECs, Candidalysin triggers a MAPK/c-Fos-dependent cell damage response pathway, 

concomitant with cellular lysis and upregulation of innate cytokines. Importantly, Candidalysin 

is secreted only by hyphae yet is not required for hyphal formation (21).  

Many of the cytokines induced by Candidalysin are associated with Th17 responses or 

recruitment, e.g., IL-1α/β, IL-6 and CCL20. Given its hypha-specific expression and capacity to 

induce innate cytokines in OECs, we postulated that Candidalysin might be required for the early 

IL-17-dependent events following oral C. albicans infection. Here we demonstrate that innate 

oral TCRαβ+ cells express IL-17 and proliferate in response to C. albicans infection without 

engagement of the TCR or a requirement for signals from Dectin-1, CARD9 or TLR2. Notably, 

in mice infected with Candidalysin-deficient C. albicans strains, innate TCRαβ+ cells fail to 

proliferate. This is associated with markedly reduced expression of IL-17, IL-17-dependent 

genes and IL-1α and IL-1β in the oral mucosa. Consistently, Il1r1-/- mice are susceptible to OPC, 

which was associated with impaired expansion of innate TCRαβ+ cells and reduced IL-17 
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expression. Moreover, Candidalysin and IL-17 signal synergistically in OECs to augment 

expression of antifungal immune response genes, thus amplifying host defense in a feed-forward 

activation loop. These data reveal that innate IL-17-induced responses are triggered specifically 

in response to Candidalysin secretion from C. albicans hyphae, and illuminate differences in 

how activation of innate versus adaptive IL-17-dependent immunity is controlled. 
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Results 

C. albicans induces proliferative expansion of innate oral IL-17+TCRαβ+ cells 

We previously showed that IL-17 is induced in the oral mucosa within 24 h of oral 

infection with C. albicans (strain CAF2-1). As the infection is cleared, typically in 3 days, 

expression of IL-17 concomitantly diminishes (7, 11). Using Il17aeYFP fate-tracking mice (22), 

we found that IL-17 produced during acute oral C. albicans challenge originated dominantly 

from tongue-resident γδ-T cells and an unconventional population of innate-like CD4+TCRαβ+ 

cells. Similar findings were reported in C. albicans-infected skin (23). IL-17 production by 

ILC3s has also been reported (24), though their frequency is below the limit of detection in our 

hands. These IL-17+TCRαβ+ cells are sometimes termed ‘natural’ Th17 cells (14, 25, 26), but 

here we refer to them as ‘innate TCRαβ+ cells’ per Kashem et al. (23). In the oral cavity, these 

innate IL-17+TCRαβ+cells reproducibly expand ~2-fold following encounter with C. albicans, 

whereas the frequency of IL-17+γδ-T cells is low and does not change during infection (14) 

(Fig 1a). C. albicans-dependent expansion of oral innate TCRαβ+ cells was similarly observed 

in non-fate tracking mice, starting at 1 day p.i. and peaking at day 2 p.i. (Fig 1b, c, Fig S1). By 

day 2, we consistently saw a 2-fold increase in both the percent and total cell number in 

C. albicans-infected mice compared to sham-infected controls harvested within the same 

experiment (Fig S1).  

The expansion of innate TCRαβ+ cells could be due to proliferation, survival, recruitment 

or a combination thereof. To assess proliferation, WT (C57BL/6J) mice were infected orally with 

C. albicans and intracellular Ki67 was measured by flow cytometry. On day 1, Ki67+TCRβ+ 

cells were more frequent in the infected oral mucosa compared to sham controls (Fig 1b, bottom 

panel). More profound proliferation was observed at day 2 p.i (Fig 1c, bottom). Proliferation was 

confirmed by intracellular staining for proliferating cell nuclear antigen (PCNA) (Fig 1d). 

C. albicans-induced proliferation of TCRαβ+ cells was limited to the local site of infection 

(tongue), as there was no change in the baseline frequency of replicating CD4+TCRαβ+ cells in 

the draining cervical LN (cLN) (Fig 1e). These observations confirm our previous findings 

demonstrating that IL-17 is detected in the oral mucosa but not in the cLN during a primary C. 

albicans infection (11). Notably, the expansion of TCRβ+ cells by C. albicans was similar 

regardless of whether mice were from The Jackson Laboratory or Taconic Farms (Fig S2a), and 
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the proliferating cells exhibited a diverse TCRvβ repertoire (Fig S2b). Thus, the 2-fold 

expansion of TCRαβ+ cells during OPC can be accounted for by local proliferation at the site of 

infection.  

Oral-resident TCRαβ+ cells express CCR6, a marker of Type 17 cells and the receptor for 

the mucosal-associated chemokine CCL20 (14). To determine if signaling through the 

CCL20/CCR6 axis was required for immunity to oral C. albicans infection, we analyzed 

responses in Ccr6-/- mice and mice given neutralizing anti-CCL20 Abs (27). Surprisingly, innate 

TCRαβ+ cells in Ccr6-/- mice showed a similar proliferation capacity to WT controls following 

C. albicans infection (Fig 2a). There was also no difference in the baseline population of 

TCRαβ+ cells in the tongue at baseline in Ccr6-/- and WT mice (Fig S3). Resistance to OPC was 

similar in Ccr6-/- and WT mice, with low oral fungal burdens at 4 days p.i., whereas Il17ra-/- 

controls were susceptible (Fig 2b). Similar results were obtained when mice were given anti-

CCL20 Abs (Fig 2c). Accordingly, the baseline recruitment and C. albicans-induced expansion 

of TCRαβ+ cells in the oral mucosa is independent of CCL20 and CCR6, though we cannot rule 

out possible involvement of other chemokines.  

 

Oral-resident innate TCRαβ+ cells drive anti-Candida immunity independently of TCR 

signaling or specificity 

Mice are naïve to C. albicans, and animals lacking lymphocytes (e.g., Rag1-/-, Il7ra-/- 

mice) are highly susceptible to OPC (11, 14). To determine whether C. albicans-induced 

expansion of innate TCRβ+ cells requires signals mediated through the TCR, we took advantage 

of Nur77eGFP reporter mice, which report the kinetics and magnitude of TCR signaling by 

upregulation of the immediate-early gene Nr4a1 promoter linked to GFP (28). As a positive 

control to verify that TCR activation could be visualized in T cells from the tongue, WT mice 

were administered agonistic anti-CD3 Abs to activate the TCR in all T cells. This treatment 

effectively induced GFP in oral TCRβ+ cells (Fig 3a). To assess TCR signaling during fungal 

infection, Nur77eGFP mice were challenged orally with C. albicans or PBS (sham), and GFP 

fluorescence in oral TCRβ+ cells was assessed at days 1 and 2 p.i. As expected, T cells from 

sham-infected mice showed a detectable baseline level of tonic GFP expression (28). In mice 

infected with C. albicans for 2 days (1° infection), there was the same baseline GFP fluorescence 

as seen in sham cohorts, indicating that there was no TCR signaling upon first encounter with 
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C. albicans and confirming the innate nature of these cells (Fig 3a).  

The Nur77eGFP reporter system can also be used to compare TCR signaling strength, so 

we assessed the frequency of GFPhi cells (i.e., T cells with more potent TCR signaling) in mice 

given a primary (1°) or a secondary (2°) C. albicans infection. Again, there were no differences 

between sham-treated mice or those receiving a 2 day (1°) challenge (Fig 3b). To verify that 

C. albicans-specific signaling through the TCR could be observed if present, we generated a 2° 

response by subjecting mice to infection and then re-challenge after 6 weeks; this regimen 

induces an Ag-specific Th17 response that enhances fungal clearance (11). Indeed, there was an 

increased frequency of GFPhiTCRαβ+ cells in tongues from re-challenged mice, demonstrating 

that Ag-specific responses can be visualized with Nur77eGFP mice in the context of a recall 

immune response (Fig 3b). Therefore, consistent with the naïve state of mice with respect to 

C. albicans, TCR signaling is not activated during expansion of TCRαβ+ cells in a 1° infection. 

 

Pattern recognition receptors required for the adaptive response to C. albicans are dispensable 

for activation of innate TCRαβ+ cells  

Dectin-1 (Clec7a) is a C-type lectin pattern recognition receptor used by phagocytes to 

sense β-glucan carbohydrates that are exposed on C. albicans during filamentation. Signaling by 

Dectin-1 causes APCs to produce IL-23 and IL-6, promoting a Th17 phenotype (16, 29). 

However, it was not known whether Dectin-1 signals would similarly activate innate IL-17-

producing cells. In Clec7a-/- mice there was rapid and robust proliferation of innate TCRαβ+ 

cells following oral C. albicans infection similar to WT mice, indicating that Dectin-1 is not 

required for innate TCRαβ+ cell expansion (Fig 4a). A similar proliferative response occurred in 

mice lacking CARD9, a key adaptor downstream of Dectin-1 and other Dectin family members 

(Fig 4b) (30-32). TLR2 has also been implicated in innate recognition of C. albicans through 

engagement of hyphae (29, 33). However, there was robust  proliferation of innate TCRβ+ cells 

in Tlr2-/- mice upon 1° C. albicans-challenge (Fig 4c), indicating that TLR2 is also dispensable.  

To determine whether these PRRs were necessary to clear C. albicans from the oral 

cavity during 1° infection, oral fungal loads were assessed 5 days p.i.. Resistance to OPC was 

not impaired in mice lacking Dectin-1 (Fig 4d-e), in agreement with our prior finding that 

CARD9 is dispensable for innate immunity to OPC (18). Similarly, resolution of C. albicans 

infection was not hindered in Tlr2-/- mice (Fig 4d-e). Hence, TLR2 or Dectin-1 signaling do not 
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trigger expansion of oral innate TCRαβ+ cells during innate immunity to OPC. 

 

The secreted peptide Candidalysin activates innate TCRαβ+ cell expansion  

Hyphal formation is a key virulence trait for C. albicans. Consistently, a C. albicans 

mutant that is “locked” in the yeast phase (efg1Δ/Δ (34)) did not induce Il17a expression or 

expression of downstream genes such as Defb3, Il1b or Ccl20 (Fig S4a). In its hyphal state, 

C. albicans secretes a short, amphipathic peptide called Candidalysin, which destabilizes 

epithelial membranes and triggers OEC production of cytokines such as IL-1α, IL-1β and IL-6 

(21). Since these cytokines are linked to Type 17 responses (35), we postulated that Candidalysin 

might serve as an activator of innate TCRαβ+ cell expansion and IL-17 production. To test this, 

Il17aeYFP reporter mice were infected with C. albicans strains lacking the Candidalysin-encoding 

gene ECE1 (ece1Δ/Δ) or an ECE1-revertant control strain (“Rev”). Mice infected with the 

ece1Δ/Δ strain exhibited markedly reduced expansion of IL-17+TCRαβ+ cells at day 2 p.i. In 

contrast, Il17aeYFP challenged with the ECE1-Rev strain showed robust expansion (Fig 5a). 

Similar results were obtained in WT mice (Fig 5b, c). The diminished innate TCRαβ+ cell 

response in ece1Δ/Δ-infected mice correlated with reduced proliferation, demonstrated by Ki67 

staining (Fig 5b, bottom), which was observed at both day 2 and day 3 p.i (Fig S4b). By day 5, 

the  infection was resolved and the T cell proliferative response returned to baseline. Importantly, 

at day 2 when cells were harvested, fungal loads were comparable, indicating that the altered 

TCRαβ+ cell proliferation was not due to reduced exposure to fungal components (Fig 5d). 

Therefore, Candidalysin is required for expansion of innate TCRαβ+ cells during acute oral 

C. albicans infection.  

Consistent with the reduced expansion of innate TCRαβ+ cells, mice infected with strains 

lacking ECE1 or just Candidalysin (ClysΔ/Δ) showed impaired induction of Il17a mRNA 

expression (Fig 5e) as well as IL-17-dependent genes, Defb3 (β-defensin 3) and S100a9 (Fig 5f). 

Also consistent with these data, neutrophil mobilization to the tongue, regulated in part by IL-17 

signaling (7, 9, 36), was reduced in ece1Δ/Δ-challenged mice (Fig 5g). We also verified 

activation of TCRαβ+ proliferation in response to a different C. albicans strain, HUN96 (37), a 

clinical isolate that expresses ECE1, induces c-Fos and damages OECs in vitro (Fig S4c). Thus, 

Candidalysin triggers an innate IL-17 response in the oral cavity. 
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C. albicans secretes multiple virulence factors, particularly secreted aspartyl proteinases 

(SAPs). To determine if the innate IL-17 response was specific to Candidalysin, we evaluated 

TCRαβ+ proliferation following infection with fungal strains lacking the hypha-associated SAP 

genes (SAP4-6) (38, 39). Strikingly, there was no defect in TCRαβ+ proliferation in response to 

infection with sap4-6Δ/Δ strains compared to the parent strain (Fig S4d). 

 

Innate TCRαβ+ cell proliferation in the oral mucosa is dependent on IL-1α/β  signaling  

Candidalysin elicits production of several cytokines known to impact differentiation or 

proliferation of some IL-17-producing cells, such as IL-6, IL-1α and IL-1β (21). In tongues of 

mice subjected to 1° C. albicans infection, expression of Il1b mRNA was induced in an ECE1-

dependent manner (Fig 6a). Expression of Il1a showed a similar trend, but Il6 was not induced 

in this time frame (Fig 6a).  Il6-/- mice are resistant to acute OPC (14), and here we verified that 

proliferation of innate TCRαβ+ cells occurred normally in the absence of IL-6 (Fig S5). In 

contrast, there was no expansion or proliferation of oral innate TCRαβ+ cells in infected Il1r1-/- 

mice (Fig 6b). Consistently, Il1r1-/- mice were more susceptible to OPC than WT, although 

fungal burdens were not as high as in mice with an IL-17R signaling defect (here, Act1-

deficiency (40)) (Fig 6c). We next used neutralizing Abs against either IL-1α or IL-1β (or both) 

to delineate the specific IL-1 family member needed to drive proliferation. As shown, blockade 

of either IL-1α or IL-1β impaired TCRβ+ cell proliferation, with a somewhat stronger effect 

under IL-1β blocking conditions (Fig 6d).  

IL-1 signaling can occur on most cell types, including both hematopoietic and non-

hematopoietic compartments. To identify the key cell type(s) that responded to IL-1, we 

irradiated congenically marked WT and Il1r1-/- mice and reconstituted them with the same or 

reciprocal bone marrow (BM). After 6 weeks, mice were infected orally with C. albicans and 

proliferation of donor TCRβ+ cells was assessed. As expected, Il1r1-/- mice given Il1r1-/-  BM 

showed impaired proliferation compared to WT counterparts (Fig 6e). Surprisingly, however, 

regardless of the source of bone marrow, C. albicans infection induced TCRαβ+ cell 

proliferation in both experimental chimera conditions (i.e., WT ! Il1r1-/- and Il1r1-/- ! WT). 

There was some variation in the percent of Ki67+ cells at baseline (Sham) among cohorts, but in 

all cases there was a clear increase in proliferation after C. albicans infection. This result 

suggests that there are redundant IL-1R-dependent signals in radio-sensitive and radio-resistant 
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compartments with respect to driving innate TCRαβ+ cell proliferation. To verify this 

unexpected finding, we created mixed chimeras, in which irradiated WT mice were reconstituted 

with a 50:50 mix of Il1r1-/- and WT bone marrow. Again, both WT and IL-1R-deficient cells 

proliferated robustly in response to infection (Fig S5b). As a third approach, we performed 

adoptive transfer experiments using BM from mice lacking Il1r1 specifically in TCRαβ+ cells 

(41). Again, TCRαβ+ cells proliferated following OPC (Fig S5c), indicating that IL-1 signals 

occur in both hematopoietic and non-hematopoietic cells. We also noted that the baseline Ki67 

staining in innate TCRαβ+ cells was reduced in Il1r1-/- cells compared to WT, which was most 

apparent in the mixed BM chimera. These results suggested that IL-1R-driven signals may 

directly support T cell proliferation under homeostasis. Nonetheless, only when there is a global 

deficiency in the IL-1R is there a failure of TCRαβ+ cells to proliferate during C. albicans 

infection.   

 

Candidalysin and IL-17 signal synergistically and amplify antifungal immunity in OECs 

Candidalysin signaling in OECs upregulates inflammatory cytokines such as IL-6, IL-1β, 

G-CSF and CCL20. Many of these genes are also targets of IL-17 in OECs (9). IL-17 is 

generally a modest activator of signaling and gene expression compared to other inflammatory 

stimuli, and instead mediates its activities by signaling synergistically or additively with 

cytokines such as TNFα. Accordingly, we hypothesized that IL-17 and Candidalysin might 

signal cooperatively in OECs to drive antifungal immune responses. To test this idea, we 

infected human buccal epithelial cells (TR146 cell line) in vitro with C. albicans (WT parent 

strain, ece1Δ/Δ or Rev) in the presence or absence of IL-17. After 24 h, conditioned supernatants 

were assessed for Candidalysin-inducible cytokines by Luminex. As shown, there was an 

additive or synergistic effect of IL-17 with Candidalysin in upregulating cytokines, including IL-

1β, IL-6, CCL20 and G-CSF (Fig 7a). To determine whether this synergy was mediated by 

Candidalysin directly, cells were treated with sublytic concentrations of Candidalysin (15 µM) 

together with IL-17 (200 ng/ml) for 24 h. Indeed, there was a synergistic or additive induction of 

cytokines in the presence of IL-17 (Fig 7b). TNFα showed a similar cooperation with 

Candidalysin (Fig S6). However, IL-22, which is also produced by Type 17 cells and is induced 

in the tongue during OPC (7), did not synergize with Candidalysin (Fig S6). Thus, IL-17 and 

TNFα and Candidalysin cooperatively enhance inflammatory signaling in OECs. 
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Another attribute of Candidalysin is the induction of cell damage, potentially facilitating 

fungal access to nutrients and invasion into deep tissue (21). Conversely, IL-17 has been shown 

to induce tissue-protective/repair pathways in lung, renal and intestinal epithelia (5). Therefore, 

we postulated that IL-17 might offset the cell-damaging effects of Candidalysin. To address this 

question, TR146 OECs were cultured with live C. albicans or lytic concentrations of 

Candidalysin (70 µM) with or without IL-17, and cell damage was measured by lactate 

dehydrogenase (LDH) activity in supernatants. There was no change in the extent of LDH 

induced by Candidalysin when cells were cultured with IL-17; and, as expected, a Candidalysin-

deficient strain did not induce cell damage (Fig 7c). These data indicate that IL-17 neither 

contributes to nor protects against Candidalysin-induced cell damage.  

To gain mechanistic insight into signaling cross-talk between IL-17 and Candidalysin, we 

assessed the downstream signaling pathways instigated by these factors. IL-17 activates NF-κB 

among other pathways (42), while Candidalysin-induced signaling is characterized by p38-

MAPK/c-Fos activation and phosphorylation of the MKP1 (Dusp1) phosphatase (19, 21). In 

TR146 cells, treatment with IL-17 induced phosphorylation of IκBα, an early step in the 

canonical NF-κB pathway, albeit more weakly than TNFα (Fig 7d, left). Candidalysin did not 

activate phosphorylation of IκBα, nor was there an additive impact of co-stimulating cells with 

IL-17 and Candidalysin. While Candidalysin stimulated c-Fos upregulation and phosphorylation 

of MKP1, there was no synergistic activation of c-Fos or MKP-1 in the presence of IL-17 (Fig 

7e). However, knockdown of c-Fos by RNA silencing blocked the synergistic activation of IL-17 

and Candidalysin (Fig 7f), confirming cooperative activation of these pathways. Together, these 

data support a model in which secretion of Candidalysin by C. albicans hyphae during infection 

induces an innate cytokine response from OECs, which leads to the activation of resident innate 

TCRαβ+ cells through the IL-1 receptor. These innate TCRαβ+ cells respond by secreting IL-17, 

which signals through its receptor on OECs to further amplify expression of innate immune 

effector genes in a feed-forward amplification loop, ultimately resulting in the resolution of 

infection (Fig S7). 
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Discussion  

Mucosal surfaces are continuously exposed to microbes and environmental challenges. In 

the oral cavity, OECs lining the tongue, palate and buccal mucosa provide an important physical 

barrier. These cells act as ‘first responders’ to microbial infection by producing cytokines, 

chemokines and antimicrobial peptides that mobilize immune defenses or act directly on 

pathogens. Although not expressed by OECs, IL-17 is a non-redundant anti-C. albicans host 

factor produced by lymphocytes during innate and adaptive responses. IL-17 signaling on OECs 

is critical for immunity to OPC by stimulating production of β-defensins and recruiting 

neutrophils (7, 9, 36). Here, we have identified a new mechanism by which OECs orchestrate 

innate Type-17 immunity during oral candidiasis. When C. albicans hyphae invade oral 

epithelial barriers, they secrete the pore-forming peptide Candidalysin, which destabilizes 

membranes and causes cell damage, thereby potentially providing access to host cell content and 

nutrients (21). Candidalysin activity on OECs prompts the release of cytokines and DAMPs 

including IL-1α/β, which are necessary to drive proliferation of tongue-resident innate TCRαβ+ 

IL-17-producing lymphocytes. Moreover, Candidalysin synergizes with IL-17 to further enhance 

proinflammatory signaling in OECs, thus establishing a feed-forward activation loop to mobilize 

antifungal host defense. Importantly, this scenario ensures that the protective IL-17-driven 

responses only manifest in the presence of tissue-damaging invasion of C. albicans hyphae (Fig 

S7).  

IL-17-dependent responses are pivotal for antifungal immunity in both humans and mice 

(3, 4). In the oral mucosa, innate TCRαβ+ cells and γδ-T cells constitute the main early sources 

of IL-17 (14). We found that IL-17+TCRαβ+ cells undergo rapid expansion during OPC, which 

was localized at the site of infection. The kinetics of replication and the potent response of oral 

TCRαβ+ cells are reminiscent of tissue-resident memory T cells described in skin and other 

mucosal sites (43, 44). These oral TCRαβ+ cells are immunologically naïve to C. albicans 

antigens, evidenced by the absence of reactive CD4+ or CD8+ T cells in the draining LN (10, 11) 

and a lack of signaling through the TCR as demonstrated with Nur77GFP mice (Fig 4). A similar 

population of innate TCRαβ+ cells was detected in an acute cutaneous candidiasis model (45). In 

contrast to the tongue, dermal γδ-T cells proliferated following C. albicans infection and were 

relatively more important than the innate TCRαβ+ cells in the skin (Fig 1) (14, 45). Nonetheless, 

γδ-T cells can express large quantities of IL-17 on a per-cell basis (46) and mice lacking either 
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γδ-T cells or αβ-T cells exhibit increased susceptibility to OPC (14). Therefore, both γδ-T cells 

and innate TCRαβ+ cells contribute to innate Type 17 immunity to OPC. Although ILC3s have 

also been implicated (24), Rag1-/- mice (which retain ILCs) are highly susceptible to acute OPC 

(11, 14), and therefore contributions of this cell type are apparently negligible. 

The prevailing paradigm in fungal immunology is that an IL-17 response is triggered 

upon sensing of hyphal cell wall carbohydrates through Dectin/Syk/CARD9 and/or TLR2 

signaling (47). While this model holds for adaptive responses, our data demonstrate this is not 

the case for oral innate immunity to C. albicans. Rather, in OPC the acute IL-17 response is 

triggered by Candidalysin, a pore-forming secreted toxin. Candidalysin-deficient C. albicans 

strains still form hyphae, adhere to and invade epithelial cells in vitro (21), but they fail to induce 

IL-17 efficiently in vivo (Fig 5). Consequently, the host exploits Candidalysin to discriminate 

between damaging and non-damaging hyphae and thus contain infection. In agreement with this 

model, neither Dectin-1 nor TLR2 (recognizing fungal β-glucans and mannans, respectively) 

was required for acute production of IL-17 or clearance of the fungus. These observations extend 

our report that CARD9 is dispensable for innate immunity to OPC but required for adaptive 

Th17 responses (18). We did not evaluate TLR4 in this study as it is known to be primarily 

involved in sensing yeast (48). Together, these data reveal distinct differences in activation of 

innate versus adaptive IL-17-dependent immunity in the oral cavity. 

While Candidalysin-deficient C. albicans strains fail to induce efficient Type 17 

responses (Fig 5), strains lacking ECE1 are less virulent in settings of immunodeficiency (21). 

This seeming paradox results from the fact that Candidalysin is needed for the successful 

transition to pathogenic infection. ECE1-deficient mutants are able to invade epithelial cells in 

culture, but colonization in vivo is more superficial, and they do not persist in immunocompetent 

mice (21) likely due to mechanical clearance by salivary flow and swallowing. We speculate that 

in healthy humans where C. albicans predominantly exists as a commensal, non-invasive 

colonization of barrier interfaces provides the fungus with a distinct survival advantage, as it 

does not activate host defense alarms through production of Candidalysin.	
   A recent report 

evaluating different C. albicans strains for their abilities to induce IL-17 in OPC found a similar, 

though not perfect, correlation of ECE1 levels with IL-17 production (49). C. albicans strains 

vary in cell wall composition or other properties, so it is possible that in some strains there are 

alternate virulence factors that can trigger IL-17 responses. Still, we found that the clinical 
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isolate HUN96 (50) induced TCRαβ+ proliferation similarly to CAF2-1 and Bwp17 strains (both 

derived from the SC5314 lab strain) (Fig S4). Additionally, we ruled out a role for hypha-

associated SAP virulence factors (Fig S4).  

TCRαβ+ cells with innate properties have been identified at many barrier tissues. In skin, 

heterologous protection against C. albicans can be conferred by IL-17-secreting CD8+ T cells 

that are specific for commensal bacteria (52). A recent report described gingiva-resident 

CD4+TCRαβ+IL-17+ cells that are induced upon mechanical damage from mastication (51). Like 

the cells described here, gingival TCRαβ+ cells expand by local and rapid proliferation, are 

activated upon tissue damage and are present in mice from different vendors. However, these 

populations differ in their requirements for IL-6 and IL-1, and we previously saw that germ-free 

mice appear to lack baseline innate TCRαβ+ cells in their tongues (14). Additionally, innate 

functions in pulmonary memory Th2 cells have been described that manifest effector responses 

without engaging the TCR, which depend on IL-33 (53). Analogous memory T cells with innate-

like functions have also been reported in human mucosae and skin (54). These convergent data 

indicate that tissue-resident TCRαβ+ cells can in some circumstances be co-opted to function in 

an innate capacity. It is tempting to speculate that the ability of adaptive cells to function as 

innate effector cells may be an evolutionary remnant of their role in controlling invasive 

pathogens at barrier sites. 

The combinatorial signaling of IL-17 and TNFα with Candidalysin was unexpected. IL-

17 is a promiscuous activator of inflammation and signals additively or synergistically with 

numerous cytokines, particularly TNFα (42). In vivo this property is highly relevant, since 

inflammatory environments contain multiple stimuli that have the capacity to interact in concert. 

Although not fully understood, synergy occurs through IL-17-induced transcription factors such 

as NF-κB and CCAAT/Enhancer binding proteins. IL-17 also extends the half-life of mRNA 

transcripts that are intrinsically unstable, a common property of cytokine transcripts (42). 

Candidalysin-induced cytokine expression occurs dominantly through the p38 MAPK pathway, 

particularly c-Fos (19), whereas epithelial damage is controlled by the PI3K/Akt pathway (20). 

In contrast, IL-17 is a poor activator of c-Fos and PI3K, and Candidalysin does not appreciably 

activate NF-κB (Fig 7). Thus, the cooperative action of IL-17 and Candidalysin appears to be 

through independent pathways (c-Fos and NF-κB). Consistently, IL-22, which does not activate 

NF-κB, did not synergize with Candidalysin (Fig S6).  
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IL-1 is important in directing the innate Type 17 anti-Candida response. IL-1R signaling 

is known to drive proliferation of polarized Th17 cells (55), induce IL-17 in γδ-T cells (46) and 

promote adaptive T cell responses to C. albicans (56). Surprisingly, BM chimeras revealed that 

IL-1R signaling can be operative in both the radio-sensitive and radio-resistant compartments 

(Fig 6). This result contrasts with the role of IL-1R in lung epithelium during Aspergillus 

infection (57), and points to a complex, tissue-dependent activity of this cytokine pathway. We 

also found a dual contribution of IL-1α and IL-1β in OPC, contrasting with reports of divergent 

functions for IL-1α and IL-1β in other fungal infections (57-59). An unexplored avenue is the 

Candidalysin-inflammasome-innate T cell axis. IL-1 family cytokines are processed by the 

inflammasome, and both NLRP3 and NLRC4 have been implicated in immunity to OPC (33, 

60). Hence, this nexus remains an active area of inquiry. 

In summary, our study reveals several attributes of host barrier defenses in the oral 

cavity, an under-studied mucosal tissue. OECs interact intimately with tissue resident 

lymphocytes to control invasion of C. albicans. Upon detecting a breach in barrier defenses 

indicated by Candidalysin-induced cell damage, cytokines and DAMPs are released that instigate 

innate Type-17 immunity, which keeps the dangerous form of this organism in check through 

expression of antimicrobial peptides and mobilization of neutrophils (Fig S7). Since oral 

candidiasis is a common disease of immunocompromise, it is plausible that this pathway might 

be harnessed for developing immune-modulatory strategies against microbial infections.  
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Materials and Methods 

Mice 

Mice were on the C57BL/6 background. Experiments were performed on both sexes with age- 

and sex-matched controls. Il17ra-/- mice were provided by Amgen (Thousand Oaks, CA). 

Nur77GFP mice were from K. Hogquist (University of Minnesota) (28). Card9-/- mice were from 

X. Lin (MD Anderson). Act1-/- mice were from U. Siebenlist (NIH) (61). CD4CREIl1r1fl/fl mice 

were described (41). Il17aCreRosa26eYFP fate reporters (22) and other mice were from JAX 

(except as noted for Taconic Farms, Albany NY) and housed at the University of Pittsburgh for 

at least 10 d prior to experimentation. For adoptive transfers, mice were irradiated and given 106 

femoral BM after 24 h. Mice were reconstituted for 6-9 weeks. Protocols were approved by the 

University of Pittsburgh IACUC. All efforts were made to minimize suffering, in accordance 

with recommendations in the Guide for the Care and Use of Laboratory Animals of the NIH. 

 

Oral Candidiasis  

OPC was performed by sublingual inoculation with a 2.5 mg cotton ball saturated in C. albicans 

(CAF2-1) for 75 min, as described (7). For re-challenge, mice were infected 6 weeks after the 

primary infection (11). Tongue homogenates were prepared on a GentleMACS (Miltenyi Biotec, 

Auburn, CA) and CFU determined by serial dilutions on YPD agar. Anti-CCL20 (R&D Systems, 

Minneapolis, MN), anti-IL-1α, anti-IL-1β or isotype control Abs (BioXCell, West Lebanon, 

NH) were administered on day -1 p.i. (100-1000 µg/mouse). 

 

Flow Cytometry  

Flow cytometry was performed as described (14). Tongues were pooled (2 per sample) and cell 

suspensions prepared with the Tumor Dissociation kit (Miltenyi). Abs were from eBioscience, 

BD Biosciences or BioLegend. Proliferation was assessed using the Foxp3/Transcription Factor 

Buffer Kit (eBioscience) with Ki67-APC (BD Pharmigen) or PCNA-PE (eBioscience). Data 

acquired on an LSR Fortessa  and analyzed with FlowJo (Ashland OR).  
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RNA and qPCR  

Frozen tongue was homogenized in RLT buffer (RNAeasy kit; Qiagen) with a GentleMACS 

Dissociator (Miltenyi). cDNA was synthesized with a SuperScript III first-strand synthesis 

system (Invitrogen, Carlsbad, CA). Relative quantification of gene expression was determined by 

real-time PCR with SYBR green (Quanta BioSciences, Gaithersburg, MD) normalized to Gapdh. 

Primers were from SA Biosciences (Qiagen). Results were analyzed on a 7300 real-time PCR 

system (Applied Biosystems, Carlsbad, CA). Knockdown of c-Fos was performed as described 

in (19); briefly, 3x105 TR146 cells were serum starved for 24 h, transfected with 37 nM c-Fos 

siRNA in HiPerFect Reagent (Qiagen) for 2 d. Cells were treated with Clys or IL-17 for 24 h and 

supernatants analyzed by ELISA. 

 

Cell culture, in vitro infections, cytokine stimulations, immunoblotting 

TR146 cells (ECAAC10032305) were cultured in DMEM-F12/15% FBS as described (19). For 

infections in vitro, 3-5x105 cells were seeded overnight and then cultured in serum-free DMEM 

with 1x105 CFU C. albicans yeast cells for 24 h. Recombinant human IL-17, TNFα and IL-22 

(R&D Systems) were used at 200, 20 or 100 ng/ml, respectively. Candidalysin peptide 

(SIIGIIMGILGNIPQVIQIIMSIVKAFKGNK) was from Peptide Protein Research Ltd (UK). 

Antibodies: Phospho-IκBα and IκBα (Upstate Biotechnology), c-Fos and phospho-MKP1 (Cell 

Signaling), Actin (clone C4, EMD Millipore).  

 

Luminex, ELISAs and LDH assays 

Conditioned media was analyzed for cytokines by Luminex (IL-1α, IL-1β, IL-6, GM-CSF, G-

CSF) or ELISA (CCL20), kits from R&D Systems. LDH assays were performed with CytoTox 

96 Assay System reagents (Promega).  

 

Statistics 

Data were analyzed on Prism (GraphPad Software), using ANOVA with posthoc Tukey’s test, or 

Student’s t test. Fungal loads data are presented as geometric mean and evaluated by ANOVA 
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with Mann-Whitney correction. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. NS = not 

significant. 

 

Supplementary Materials 

Figure S1. TCRαβ+ cells reproducibly expand 2-fold following oral infection with C. albicans.  

Figure S2. Expansion of innate TCRαβ+ cells during OPC.  

Figure S3. Baseline numbers of innate TCRαβ+ cells are similar in WT and Ccr6-/- mice.  

Figure S4. Virulence factors and TCRαβ+ cell expansion.  

Fig S5. Factors that activate TCRαβ+ cell expansion.  

Fig S6. Candidalysin signals synergistically with IL-17 and TNFα but not IL-22 

Figure S7. Model of Candidalysin-induced immunity to oral candidiasis.  
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Figure Legends 

Figure 1. Proliferation of oral TCRαβ+ cells following C. albicans infection. (A) Il17aeYFP 

mice (22) were challenged sublingually with PBS (sham) or C. albicans. Homogenates were 

prepared from pooled tongues (n=2). YFP+TCRαβ+ or YFP+TCRγδ+ cells in the CD45+CD4+ 

gate were assessed by flow cytometry. Data show fold-increase versus sham and analyzed by 

Student’s t-test. Data pooled from 3-4 independent experiments. (B-C) WT mice (C57BL/6J) 

were infected with C. albicans, and tongue homogenates prepared on days 1 or 2 p.i. Cells were 

gated on lymphocytes and staining of CD45 and TCRβ is shown (top). Proliferation of 

CD45+CD4+TCRβ+ cells was determined by staining for Ki67 (bottom). Data representative of 

15 experiments. Graph C: mean ± SEM of proliferating TCRαβ+ cells on days 1 and 2, analyzed 

by Student’s t-test. (D) WT mice were infected with C. albicans and tongue homogenates 

prepared on day 2 p.i. Proliferation was determined by PCNA staining. Data representative of 3 

experiments. (E) WT cervical LNs were harvested on day 2 p.i. Proliferation of 

CD45+CD4+TCRβ+ cells was determined by anti-Ki67 staining. Graph shows mean ± SEM of 

Ki67+ CD4+ cells in cLNs, analyzed by Student’s t-test. Data are representative of 2 experiments. 

  
Figure 2. CCR6 is dispensable for expansion of innate TCRαβ+ cells in oral candidiasis. 

(A) WT or Ccr6-/- mice were infected with C. albicans, and tongue homogenates prepared 2 days 

p.i. Proliferation of TCRαβ+ cells was determined by anti-Ki67 staining. Data representative of 3 

independent experiments. (B) Indicated mice were infected orally with C. albicans, and fungal 

burden was assessed by CFU enumeration on day 4 p.i.. Bars = geometric mean. Each point 

represents an individual mouse. Dashed line = limit of detection (LOD, 30 CFU) (62). Data are 

compiled from 4 independent experiments. Data analyzed by ANOVA with Mann-Whitney 

correction. (C) WT mice were injected with 100 ug anti-CCL20 Abs or isotype controls on day   

-1 relative to infection. Mice were infected with C. albicans, and proliferation of TCRαβ+ cells 

was determined by anti-Ki67 staining 2 days p.i. Data are representative of 2 experiments. 

  
  
Figure 3.  A primary C. albicans infection activates innate TCRαβ+ cells without engaging 

the TCR. (A) Nur77GFP mice were sham-treated (red line) or infected with C. albicans and 

tongue homogenates prepared on days 1 or 2 p.i (blue line). Controls were given agonistic anti-
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CD3 Abs (green line) to stimulate the TCR on all T cells. WT (“non-Tg”) mice were negative 

controls for GFP staining (grey line). Left: fluorescence intensity of GFP in oral 

CD45+CD4+TCRβ+ cells was assessed by flow cytometry. Right: Relative mean fluorescence 

intensity (MFI) of GFP in CD45+CD4+TCRβ+ cells was assessed and normalized to sham.  NS, 

not significant. Data are from 3 independent experiments. (B) Nur77GFP mice were infected with 

C. albicans. Tongue homogenates were prepared 2 d p.i. (“1° Inf”). In order to induce C. 

albicans-specific TCR signaling (“2° Inf”), mice were infected orally, rested for 6 weeks, and 

then re-challenged with a second oral infection, as described (11). Left: GFP fluorescence in oral 

CD45+CD4+TCRβ+ cells, with % GFPhi cells indicated. Green line shows staining in mice 

administered agonistic anti-CD3 Abs, as in panel A. Right: Compiled percentage of GFPhi cells 

in each cohort. Data representative of 3-4 independent experiments. Graphs show mean + SEM, 

analyzed by ANOVA and student’s t-test.  

  

Figure 4. TLR2 and Dectin-1 are dispensable for C. albicans-induced proliferation of 

innate TCRαβ+ cells. (A-C) Indicated mice were infected with C. albicans and tongue 

homogenates prepared 2 days p.i. Proliferation of CD45+CD4+TCRβ+ cells was determined by 

anti-Ki67 staining. Data representative of 2-3 independent experiments. (D) Indicated mice were 

infected with C. albicans, and fungal burden quantified on day 5 p.i. Bars = geometric mean. 

Dashed line = LOD. Data from 2 independent experiments. Data analyzed by ANOVA, Mann 

Whitney correction. (E) Average % weight loss is shown.  

  
Figure 5. Candidalysin drives proliferation of innate IL-17-producing TCRαβ+ cells. 

(A) Il17aeYFP mice were infected with C. albicans (ece1Δ/Δ or Revertant “Rev”) and 

homogenates prepared 2 d p.i. Staining of CD45 and YFP in lymphocyte gate is shown. Data 

representative of 2 experiments. (B) WT mice were infected with the indicated strains of 

C. albicans and homogenates prepared 2 days p.i. Staining of CD45 and TCRβ in lymphocyte 

gate is shown (top). Proliferation of TCRαβ+ cells was determined by Ki67 staining (bottom). 

Data representative of 3 experiments. (C) Fold-expansion of TCRβ+ cells following infection 

with ece1Δ/Δ or Rev strains. Data pooled from 4 experiments. (D) Fungal loads were assessed at 

day 2 p.i.. Bar = geometric mean. Data were analyzed by t-test with Mann-Whitney correction 

and are pooled from 2 experiments. (E-F) Tongue homogenates were prepared on day 2 p.i. 
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following infection with the indicated C. albicans strains. Total mRNA was subjected to qPCR 

for the indicated genes normalized to Gapdh, analyzed by ANOVA and student’s t-test. Graphs 

show mean + SEM normalized to sham. Data compiled from 7-8 mice per group from 2 

experiments. (G) Percentage of CD11b+Ly6Ghi cells in tongue was assessed at day 2 p.i. + SEM. 

Data analyzed by ANOVA and student’s t-test, from 3 experiments. 

  
Figure 6. IL-1 activates innate TCRαβ+ T cell proliferation and anti-fungal immunity in a 

T cell intrinsic and T cell extrinsic manner. (A) WT mice were infected with the indicated 

strains of C. albicans and tongue homogenates prepared on day 2 p.i. Total mRNA was subjected 

to qPCR, relative to Gapdh, analyzed by ANOVA and student’s t-test. Data show mean + SEM 

normalized to sham. Data from 7-8 mice/group from 2 experiments. (B) Expansion of TCRαβ+ 

cells in Il1r1-/- mice 2 days p.i. Proliferation of TCRαβ+ cells in the oral lymphocyte gate was 

determined by Ki67 staining. Data pooled from 3 experiments. (C) Fungal burdens in the 

indicated mice were quantified on day 5 p.i. Bars = geometric mean. Each point represents 1 

mouse. Dashed line = LOD. Data pooled from 2 experiments, analyzed by ANOVA with Mann-

Whitney correction. (D) WT mice were administered anti-IL-1α, anti-IL-1β or isotype control 

Abs (1.0 mg/mouse used alone or 0.5 mg each when used together) on day -1 p.i.. Proliferation 

of oral TCRαβ+ cells was determined by Ki67 staining 2 days p.i. Data representative of 2 

experiments. (E) Reciprocal adoptive transfers of femoral BM were performed in WT or Il1r1-/- 

mice. Proliferation of oral TCRαβ+ cells was determined by Ki67 staining 2 days p.i. 

Experimental chimera results are representative of 2 experiments; control chimera data are from 

1 experiment.  

  
Figure 7. Candidalysin and IL-17 signal synergistically or additively in oral epithelial cells. 

(A) TR146 OECs were untreated (“U”, grey bars) or stimulated with IL-17 (200 ng/ml, black 

bars). Cells were infected with WT C. albicans (Bwp17+CIp30, “Parent”), ece1Δ/Δ or the 

Revertant (Rev) for 24 h. Conditioned supernatants were analyzed by Luminex (IL-1β, IL-6, G-

CSF) or ELISA (CCL20). Graphs indicate mean + SEM. Data analyzed by ANOVA and 

Student’s t-test, representative of 2 experiments. (B) TR146 cells were untreated (“U”, grey bars) 

or treated with IL-17 (200 ng/ml, black bars) or Candidalysin peptide (Clys, 15 µM) for 24 h. 

Supernatants were analyzed by Luminex (IL-1β, IL-6, G-CSF) or ELISA (CCL20). Graphs 
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indicate mean + SEM, analyzed by ANOVA and student’s t-test. (C) TR146 cells were incubated 

with C. albicans ± IL-17 (200 ng/ml). LDH in supernatants was evaluated after 24 h, 

representative of 3 experiments. (D) TR146 cells were incubated with TNFα (20 ng/ml), IL-17 

(200 ng/ml) or Candidalysin (15 µM) for 5 min. Lysates were immunoblotted for phospho-IκBα 

or total IκBα. (E) TR146 cells were incubated with TNFα (20 ng/ml), IL-17 (200 ng/ml) or 

Candidalysin (15 µM) for 30 min or 2 h. Lysates were immunoblotted for c-Fos, phospho-MKP1 

or Actin. Data are representative of 2 experiments. (F) TR146 cells were transfected with c-Fos 

siRNA and stimulated for 24 h with PBS, Clys or IL-17. Supernatants were assessed for CCL20 

by ELISA. Data are representative of 2 independent experiments.  

  



Figure 1 

A. 

B. 
Sham 

Day 1 p.i 

OPC 

β-TCR 

C
D

45
 0.19 0.40 

K
i6

7 

β-TCR 

22.8 31.6 

D. E. 

19.0 42.3 

P
C

N
A 

β-TCR 

OPC Sham 
Day 2 p.i 	
  	
  	
  cLN 

3.56 3.10 

Sham OPC 

K
i6

7 

β-TCR 

αβ T cells γδ T cells
0.0

0.5

1.0

1.5

2.0

2.5

Fo
ld

 E
xp

an
si

on

***

Sham OPC
0

2

4

6

%
 P

ro
lif

er
at

in
g 

C
el

ls NS

C. 

K
i6

7 

β-TCR 

17.6 34.3 

Day 2 p.i 

0.63 
1.31 

OPC Sham 

β-TCR 

C
D

45
 

Sh
am
-d1

OP
C-
d1

Sh
am
-d2

OP
C-
d2

0

10

20

30

40

50

%
 P

ro
lif

er
at

in
g 

C
el

ls ****



B. A. 

K
i6

7 

β-TCR 

Sham OPC 

WT 

Ccr6-/- 

15.3 36.2 

40.0 18.6 

Figure 2 

WT Ccr6-/- Il17ra-/-
100
101

102

103

104

105

To
ng

ue
 C

FU
/g

NS

****
****

C. Sham OPC 

K
i6

7 

β-TCR 

Isotype 25 8.2 

10.1 23.2 
α-CCL20 



17.2% 

  5.3% 

7.6% 

α-CD3 

2° inf 

1° inf 

Sham 

Non Tg 

A. 

B. 

Figure 3 

Sham 1° 2°
0

5

10

15

20

P
er

ce
nt

 o
f G

FP
hi

 c
el

ls

NS

**
***

Sham Day 1 Day 2
0.0

0.5

1.0

1.5

R
el

at
iv

e 
M

FI

NS
NS NS

Nur77-GFP 

C
ou

nt
s 

Day 2 Day 1 

C
ou

nt
s 

Nur77-GFP 

Non-Tg 
Sham 
C. albicans 
Anti-CD3 



β-TCR 

K
i6

7 

Card9-/- 

Sham OPC 

14.8 29.1 

C. 

D. 

Clec7a-/- 

24.0 50.0 

20.9 37.0 

Tlr2-/- 

A. 

B. 

Figure 4 

Sham OPC 

Sham OPC 
W

T

TLR
2-

/-

Clec
7a

-/-

IL-
17

RA-/-
100
101

102

103

104

105

To
ng

ue
 C

FU
/g

**
**

**

E. 

0 2 3 4 5
70

80

90

100

110

Pe
rc

en
ta

ge
 

W
ei

gh
t C

ha
ng

e WT
TLR2-/-
Clec7a-/-

IL-17RA-/-

Day



A. 

B. 

C. 

F. G. 

D. 

Figure 5 

       ece1Δ/Δ         Rev 
100
101

102

103

104

105

To
ng

ue
 C

FU
/g

 NS

  Sham    ece1Δ/Δ  Rev 
0

5

10

15

20

P
er

ce
nt

 o
f P

M
N

s

**

***
***

Day-2 p.i 

IL17eYFP 
Sham ece1Δ/Δ    Rev 

0.11 0.19 0.98 

 YFP 

C
D

45
 

Sham ece1Δ/Δ  Rev 

2.07 2.22 3.85 

β-TCR 

C
D

45
 

WT 

β-TCR 

K
i6

7 

21.0 14.0 13.7 

   ece1Δ/Δ    Rev 
0.0

0.5

1.0

1.5

2.0

2.5

TC
R
β 

T 
ce

ll 
Fo

ld
 E

xp
an

si
on

*

0

10

20

30

40

50

D
ef
b3

 (R
el

at
iv

e 
E

xp
re

ss
io

n)

*
***

0

2000

4000

6000

8000

S1
00
a9

 (R
el

at
iv

e 
E

xp
re

ss
io

n)

*
***

E. 

0

10000

20000

30000

Il1
7a

 (R
el

at
iv

e 
E

xp
re

ss
io

n)

*
**



A. 

C. 

Figure 6 

B. 
Sham OPC 

Il1r1-/- 

β-TCR 

K
i6

7 

23.1 24.1 

WT Il1r1 -/-
0

1

2

3

Fo
ld

 E
xp

an
si

on

**

W
T

IL1
r1
-/-

Ac
t1
-/-

100101

102

103

104

105

To
ng

ue
 C

FU
/g

 

**

***

   Sham ece1Δ/Δ  Rev 
0

50

100

150

200

250

R
el

at
iv

e 
E

xp
re

ss
io

n Il1b *

0

10

20

30

R
el

at
iv

e 
E

xp
re

ss
io

n Il1a

0.0

0.5

1.0

1.5

R
el

at
iv

e 
E

xp
re

ss
io

n

Il6

   Sham ece1Δ/Δ  Rev    Sham ece1Δ/Δ  Rev 

D. 

β-TCR 

K
i6

7 

Sham-Isotype 
OPC 

Isotype anti-IL-1α + βanti-IL-1α anti-IL-1β

12.5 43.8 33.3 14.3 22.4 

E. 

β-TCR 

K
i6

7 

Sham 

OPC 

WT	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  WT	
   Il1r1-/-         WT	
   WT	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Il1r1-/- Il1r1-/-          Il1r1-/-	
  

6.7 20.0 13.5 12.5 

22.8 42.3 29.7 23.0 



2016.019D(

p-IκBα

IκBα

1 2 3 4 5

U T 17

D. 

A. B. 

C. 

Figure 7 

0

200

400

600

800

IL
-1
β 

(p
g/

m
l)

****
****

U 17
Pare

nt

ECE1Δ
/Δ Rev

Pare
nt

ECE1Δ
/Δ

Rev

No cytokine
IL-17

0

1000

2000

3000

4000

IL
-6

 p
g/

m
l

****
****

U 17
Pare

nt

ECE1Δ
/Δ Rev

Pare
nt

ECE1Δ
/Δ

Rev

0

200

400

600

800

C
C

L2
0 

(p
g/

m
l)

U 17
Pare

nt

ECE1Δ
/Δ Rev

Pare
nt

ECE1Δ
/Δ

Rev

*

***

U
IL-

17
 
Clys

Clys
+1

7
0

50

100

150

200

IL
-1
β 

(p
g/

m
l)

****

****
****

U
IL-

17
 
Clys

Clys
+1

7
0

500

1000

1500

2000

IL
-6

 p
g/

m
l

****
****

**

U
IL-

17
 
Clys

Clys
+1

7
0

500

1000

1500

2000

2500

G
-C

SF
 (p

g/
m

l)

***
****

Un
IL-

17
 
Clys

Clys
+1

7
0

5000

10000

15000

C
C

L2
0 

(p
g/

m
l)

**
***

****
****

0

200

400

600

LD
H

 m
U

/m
l IL-17

No cytokineNS
NS

U 17
Pare

nt

ec
e1
Δ/
Δ

Rev
Pare

nt

ec
e1
Δ/
Δ

Rev
0

2000

4000

6000

8000

G
-C

SF
 (p

g/
m

l)

****

****

U 17
Pare

nt

ec
e1
Δ/
Δ

Rev
Pare

nt

ec
e1
Δ/
Δ

Rev 2016.019C(
IL-17 Clys 17+ClysUn.

0.5 2 0.5 2 0.5 2 0.5 2

c-fos

1 2 3 4 5 6 7 8

β-Actin

p-MKP-1

Hrs:

c-Fos 

p-MKP1 

Actin 

F. E. 

0

500

1000

1500

2000

C
C

L2
0 

pg
/m

l

***

PBS

no siRNA

Cfos siRNA

Clys

Clys
+1

7
IL-

17
PBS

Clys

Clys
+1

7
IL-

17



Supplementary Figures (Verma et al.) 

 

Figure S1. TCRαβ+ cells reproducibly expand 2-fold following oral infection with C. 

albicans. WT mice (C57BL/6J) were infected and tongue homogenates prepared on days 

1 or 2 p.i. Proliferation of oral TCRαβ+ cells (CD45+CD4+TCRβ+) was determined by 

intracellular staining with anti-Ki67 Abs. Average percent of Ki67+ cells in Sham 

samples compared to matched C. albicans-infected samples (“OPC”) analyzed in the 

same experiment are indicated by connecting lines. Data are compiled from 2-4 

independent experiments. ****P<0.0001 by Student’s t-test. NS, not significant. 

 

Figure S2. Expansion of innate TCRαβ+ cells during OPC. A. Expansion of innate 

TCRαβ+ cells occurs in mice from different vendors. C57BL/6 mice from The 

Jackson Laboratory (JAX) or Taconic Farms (Tac) were infected orally with C. albicans 

(strain CAF2-1) and after 2 days p.i. tongue homogenates were stained for CD45, CD4, 

TCRβ and intracellular Ki67.  Data are representative of 2 independent experiments. 

B. Distribution of TCRvβ  expansion during OPC. WT mice were infected and tongue 

homogenates prepared on day 2 p.i. Proliferating oral TCRαβ+ cells (Ki67+) were stained 

for the indicated TCRvβ chains. Percentage of each subtype was assessed. Data are 

representative of 2 independent experiments.  

 

Figure S3. Baseline numbers of innate TCRαβ+ cells are similar in WT and Ccr6-/- 

mice. The indicated mice were treated with PBS (“sham”) and tongue homogenates 

prepared on day 2 p.i. Cells were stained for CD45, CD4 and TCRβ. Data are 

representative of 3 independent experiments. 

 

Figure S4. Virulence factors and TCRαβ+ cell expansion. A. Yeast-locked Candida 

albicans strains do not induce inflammatory responses in oral candidiasis. WT mice 

were infected with efg1Δ/Δ (37) or WT strains of C. albicans and tongue homogenates 

were prepared on day 2 p.i. Total RNA was analyzed for the indicated genes by qPCR, 

normalized to Gapdh. Bars indicate mean + SEM. N=3-4 mice per group. Data are from 

2 experiments. B. Expansion of TCRαβ+ cells is impaired at day 3 in response to 



C. albicans strains lacking ECE1. WT mice were infected with the indicated strains of 

C. albicans and tongue homogenates were prepared on day 3 p.i. Proliferation of oral 

TCRαβ+ cells (CD45+CD4+TCRβ+) was determined by intracellular staining with anti-

Ki67 Abs. Data are representative of 2 independent experiments.  C. The HUN96 strain 

of C. albicans triggers proliferation of oral TCRαβ+ cells. Left: WT mice were 

infected with C. albicans HUN96 and tongue homogenates were prepared on day 2 p.i. 

Proliferation of oral TCRαβ+ cells (CD45+CD4+TCRβ+) was determined by intracellular 

staining with anti-Ki67 Abs. Right: TR146 cells were incubated with the indicated 

C. albicans strains for 2 h (MOI=10) and expression of c-Fos, phospho-MKP1 and α-

actin were assessed by immunoblotting. Note: All data are from the same gel. Data are 

representative of 2 independent experiments. D. SAP4-6 proteases are not required for 

induction of TCRαβ+ T cell expansion. WT mice were infected with the indicated 

strains of C. albicans and tongue homogenates were prepared on day 2 p.i. Proliferation 

of oral TCRαβ+ cells (CD45+CD4+TCRβ+) was determined by intracellular staining with 

anti-Ki67 Abs. Data are representative of 2 independent experiments.  

 

Fig S5. Factors that activate TCRαβ+ cell expansion. A. IL-6 is not required for 

expansion of TCRαβ+ cells. WT or Il6-/- mice were infected with C. albicans and 

tongue homogenates were prepared on day 2 p.i. Proliferation of oral TCRαβ+ cells 

(CD45+CD4+TCRβ+) was determined by intracellular staining with anti-Ki67 Abs. Data 

are representative of 2 independent experiments.  B. Mixed BM chimeras indicate that 

there is not a T cell intrinsic requirement for IL-1R-driven T cell proliferation in the 

context of a WT host. WT mice were irradiated and 24 h later reconstituted with mixed 

BM from WT (CD45.1) and Il1r1-/- (CD45.2) mice in a 50:50 ratio. After 8 weeks of 

reconstitution, mice were infected orally with C. albicans and tongue homogenates were 

prepared on day 2 p.i. Left: FACS plots showing percentage of congenically marked 

CD45+CD4+TCRβ+ cells in tongue. Right: Proliferation of oral CD45.2 (Il1r1-/-) or 

CD45.1 (WT) TCRαβ+ cells after infection. Data are representative of 2 independent 

experiments C. Mice lacking IL-1R on CD4+ cells do not show impaired T cell 

proliferation after C. albicans infection. WT mice (CD45.1) were irradiated and 24 h 

later reconstituted with BM from CD4CREIl1r1fl/fl (CD45.2) mice. After 8 weeks of 



reconstitution, mice were infected orally with C. albicans, and proliferation of CD45.2 

(donor) TCRβ+ cells was assessed by Ki67 staining. Data are representative of 2 

experiments. 

 

Fig S6. Candidalysin signals synergistically with IL-17 and TNFα  but not IL-22. 

TR146 cells were untreated (“U”) or treated with IL-17 (200 ng/ml), TNFα (20 ng/ml), 

IL-22 (100 ng/ml) or a Candidalysin peptide (Clys, 15 µM) as indicated for 24 h. 

Conditioned supernatants were analyzed by Luminex. Graphs indicate mean + SEM, 

analyzed by ANOVA and student’s t-test. Data are representative of 2 independent 

experiments. 

 

Figure S7. Model of Candidalysin-induced immunity to oral candidiasis. When 

C. albicans undergoes morphotype switching to an invasive hyphal form, Candidalysin is 

secreted which damages the oral epithelium. This triggers the activation of c-Fos via 

MAPK signaling and the production of cytokines such as IL-1α and IL-1β. IL-1 induces 

the proliferation of resident innate TCRαβ+ cells through signals in both the 

hematopoietic and non-hematopoietic compartments, and these innate T cells in turn 

secrete IL-17. IL-17 induces NF-κB-dependent signals in the oral epithelium that further 

amplify production of IL-1 and other inflammatory effectors, establishing a feed-forward 

loop that serves to protect the host.	
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Figure S5 
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Figure S7 
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