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Abstract: While β-catenin has been demonstrated as an essential molecule and 
therapeutic target for various cancer stem cells (CSCs) including those driven by 
MLL-fusions, here we show that transcriptional-memory from cells-of-origin predicts 
AML patient survival and allows β-catenin independent transformation in MLL-
CSCs-derived from hematopoietic stem cells (HSCs)-enriched LSK population but 
not myeloid-granulocyte progenitors. Mechanistically, β-catenin regulates expression 
of downstream targets of a key transcriptional-memory gene, Hoxa9 that is highly 
enriched in LSK-derived MLL-CSCs and helps sustain leukemic self-renewal.  
Suppression of Hoxa9 sensitizes LSK-derived MLL-CSCs to β-catenin inhibition 
resulting in abolishment of CSC transcriptional program and transformation ability.   
In addition, further molecular and functional analyses identified Prmt1 as a key 
common downstream mediator for β-catenin/Hoxa9 functions in LSK-derived MLL-
CSCs.  Together, these findings not only uncover an unexpectedly important role of 
cells-of-origin transcriptional memory in regulating CSC self-renewal, but also reveal 
a novel molecular network mediated by β-catenin/Hoxa9/Prmt1 in governing 
leukemic self-renewal. 
 
Keywords: β-catenin, canonical Wnt, MLL leukemia, Hoxa9, Prmt1, AML, cells-of-
origin, cancer stem cells 
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Introduction 
 

Self-renewal is a critical feature of stem cells, but is diminshed upon 

differentiation into their progenitors.   During the differentiation process, gene 

expression programs responsible for self-renewal are downregulated, and frequently 

replaced by lineage specific transcriptional programs.   Increasing evidence suggest 

that genes involved in promoting normal stem cell self-renewal are commonly 

hijacked in cancer stem cells (CSCs), which are believed to sustain the disease and be 

responsible for relapse of various cancers including acute myeloid leukemia 

(AML)(Fung, Leung et al., 2013, Zeisig, Kulasekararaj et al., 2012). Among them, 

one of the most striking molecules is β-catenin, which is required for leukemic stem 

cells (LSCs) driven by MLL-fusion proteins or their downstream targets, 

Meis1/Hoxa9(Wang, Krivtsov et al., 2010, Yeung, Esposito et al., 2010).  

Suppression of β-catenin reversed MLL-LSC to pre-LSC stage(Yeung et al., 2010), 

and its complete inactivation prevented development of leukemia driven by MLL-

fusions or Meis1/Hoxa9(Wang et al., 2010, Yeung et al., 2010).   While β-catenin is 

critical for embryonic and a number of somatic stem cells including fetal 

hematopoietic stem cells (HSCs)(Malhotra & Kincade, 2009, Zhao, Blum et al., 

2007), it is largely dispensable for adult HSCs, which can function normally when β-

catenin alone or even together with γ-catenin are deleted(Cobas, Wilson et al., 2004, 

Jeannet, Scheller et al., 2008, Koch, Wilson et al., 2008), highlighting the therapeutic 

potentials of targeting β-catenin for eradication of LSCs.   

 

In spite of the fundamental difference between stem cells and their progenitors 

in self-renewal ability, others and we have shown that phenotypically and genetically 

indistinguishable cancers, including MLL-rearranged leukemia, can arise from not 

only stem cells, but also their immediate downstream short-lived progenitors with 

distinctive transcriptional programs(Blanpain, 2013, Cozzio, Passegue et al., 2003, 

Huntly, Shigematsu et al., 2004, Krivtsov, Twomey et al., 2006, So, Karsunky et al., 

2003, Visvader, 2011).  Consistently, gene expression signatures associated with stem 

cells and progenitors correlate with different clinical outcomes in AML(Eppert, 

Takenaka et al., 2011, Krivtsov, Figueroa et al., 2013).  MLL leukemia derived from 

mouse HSCs enriched Lin-Sca1+ckit+ (LSK) populations can be more aggressive and 

less responsive to standard chemotherapy than those derived from granulocyte-
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myeloid progenitors (GMPs)(Krivtsov et al., 2013).  In line with this, a more recent 

study also reveals that HSC-derived leukemia drives an invasive EMT-related gene 

expression program, which may partly account for the aggressive nature of the 

disease(Stavropoulou, Kaspar et al., 2016).  In spite of these recent evidence 

indicating the importance of cancer cells-of-origin in disease pathogenesis, we still do 

not know if and how they may govern the ultilization of molecular pathways for self-

renewal, which is a defining feature of CSC and has been a major focus for 

development of effective cancer therapeutics in the past decade.    

 

Given the important function of β-catenin in CSC biology, we carried out 

detailed functional biology and molecular studies examining β-catenin requirement in 

MLL-CSCs originated from different cells-of-origin. Here we report that 

transcriptional-memory from cells-of-origin that robustly predicts AML patient 

survival can govern and help to override the β-catenin requirement in MLL-CSCs.  

Mechanistically, we identify a novel transcriptional network mediated by 

Hoxa9/Prmt1 in sustaining leukemic self-renewal in the absence of β-catenin in 

HSCs-derived MLL-CSCs. These findings reveal previously unrecognized functions 

and molecular networks from cancer cells-of-origin that allow override of β-catenin 

dependent leukemic self-renewal, adding a new dimension to the ongoing research 

efforts in developing effective therapeutics for eradication of CSCs.  
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Results 

 

LSK- but not GMPs-derived MLL-CSCs can override β-catenin requirements 

for leukemic self-renewal 

 To determine the functional requirement of β-catenin in MLL-CSCs derived 

from different cells-of-origin, we employed the previously described retroviral 

transduction/transformation assays (RTTA)(Yeung & So, 2009, Zeisig & So, 2009) 

using HSCs-enriched Lin-Sca-1+c-Kit+ population (LSK), granulocyte/macrophage 

progenitors (GMPs), and control c-Kit+ cells (mixed population consisting of mostly 

progenitors) from Ctnnb1fl/fl CreER (Brault, Moore et al., 2001) conditional knockout 

mice (Figure 1A, Appendix figure S1A, B). Consistent with previous findings(Yeung 

et al., 2010), β-catenin was not required for MLL-ENL in vitro transformation of c-

Kit+ cells (Appendix figure S1C-E), but essential for in vivo development of CSCs 

(Figure S1F). Similarly, MLL-ENL could transform LSK and GMPs independently of 

β-catenin in vitro, and formed compact colonies with early myeloid phenotypes 

(Figure 1B-D, Appendix figure S1G, H). However, while β-catenin deletion in GMP-

MLL-ENL abolished its leukemogenic potentials in vivo (Figure 1E), β-catenin 

deletion had little impact on LSK-MLL-ENL, which could still induce leukemia with 

indistinguishable phenotypes and largely similar latencies as compared with the wild-

type controls (Figure 1F-H).  More importantly, LSK-MLL-ENL β-catenin deficient 

cells could competently induce AML upon secondary transplant (Figure 1F-H, 

Appendix figure S1I, J), which readout the self-renewal property of CSCs and 

indicate the largely uncompromised CSC property in the absence of β-catenin in 

LSK-derived but not GMPs-derived MLL-CSCs. The results could also be reproduced 

using a different MLL-ENL construct carrying the minimal transformation 

domain(Slany, Lavau et al., 1998) and MLL-AF9(Smith, Yeung et al., 2011), and 

were not due to different expression levels of the MLL fusions in these populations 

(Appendix figure S1K-M).    

To gain further insights into the role of β-catenin in disease development, we 

followed the in vivo kinetics of the MLL transformed cells derived from different 

cellular origins with or without β-catenin. The results showed a similar percentage of 

engraftment across all samples of different cellular origins and genotypes at 16 and 96 

hours post transplant (Figure 1I), suggesting that β-catenin deletion did not 

significantly affect homing and early in vivo proliferation abilities. In contrast to 
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LSK-derived MLL-CSCs that continued to expand and induced leukemia in the 

absence of β-catenin, the expansion of GMP-MLL-ENL Ctnnb1del/del cells slowed 

down at 15 days and were gradually lost in vivo over a 4-months period (Figure 1I), 

consistent with an impaired self-renewal.    

 

β-catenin is also not required for leukemia maintenance by LSK-derived MLL-

CSCs 

To explore the function of β-catenin in the maintenance of leukemia derived 

from different origin-specific CSCs, full-blown leukemic cells harvested from 

primary leukemic mice carrying Ctnnb1-floxed alleles were then treated with either 

EtOH or tamoxifen prior to transplantation into secondary recipients (Figure 1A). As 

expected, both EtOH-treated LSK- and GMPs-derived MLL leukemic cells could 

competently induce leukemia. Inactivation of β-catenin in GMP-MLL-ENL totally 

abolished their leukemogenic potential (Figure 1J), while β-catenin deficient LSK-

MLL-ENL still efficiently induced leukemia and even with a slightly shorter latency 

in secondary recipients (Figure 1K). In contrast to the absolute requirement of β-

catenin for development of various LSCs (Wang et al., 2010, Yeung et al., 2010, Zhao 

et al., 2007), the finding of largely dispensable function of β-catenin in LSK-derived 

MLL-CSCs reveals an unexpected and previously unrecognized role of cells-of-origin 

in governing leukemic self-renewal for both cancer initiation and maintenance. 

 

Genomic variations do not account for contrasting β-catenin dependence in 

MLL-CSCs from different cells-of-origin 

 

To assess if the observed cell-type specific differences could be explained by 

random genetic changes associated with particular cell types, nucleotide variations 

were called from all actively transcribed genes using RNA-Seq. Among 23,766,084 

high quality base pairs (depth≥10 and quality≥30), the vast majority of sites 

(23,747,763) were invariant in all our primary cell lines, and identical to the reference 

genome GRCm38, while a very small proportion, 4663 SNPs (single nucleotide 

polymorphisms) were invariant and different from GRCm38.   In depth variance 

analysis revealed that the difference between the LSK-MLL-ENL and GMP-MLL-

ENL cells was not larger than between normal cells (Figure 2A, Dataset EV1A-C), 

and there were no fixed differences between the samples that could have caused the 
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observed phenotypic differences. To further profile the non-coding genomes, whole 

genome sequence analysis on LSK-MLL-ENL and GMP-MLL-ENL cells covering 

918,583,518 high quality base pairs revealed 917,764,811 invariant sites, and a very 

small number of variants in the samples; 39,846 variants were different between the 

two biological replicates (mice), and only 17,225 were found different between the 

two cell types (Figure 2B, Dataset EV1C). Interestingly, the distribution of SNPs 

differing between cell types or mice was comparable for both comparisons in non-

coding and coding regions (Appendix figure S2A). Consistently,  SNPs in coding 

regions occurred in similar proportions in exon, intron and UTR regions in both 

comparisions (Appendix figure S2B). Moreover, the number of derived SNPs in 

GMP-MLL-ENL (9309) was higher than those in LSK-MLL-ENL cells (7916) that 

exhibited β-catenin-independent phenotypes (Dataset EV1C). Additionally we 

examined and compared the copy number variances (CNVs) between the LSK-MLL-

ENL and GMP-MLL-ENL genomes (Figure 2C-D).  As a result, we observed very 

little CNVs in both genomes.  There is only a very small genomic region of about 1kb 

showing CNV between same cell types (i.e., LSK-MLL-ENL vs GMP-MLL-ENL), 

whereas multiple chromosomal regions of about 50kb exhibiting CNV were detected 

between samples (i.e., mouse Exp60 vs mouse Expt69 in Dataset EV1D).  

Importantly, there is also no known coding gene in the 1kb CNV region shared 

between cell types (Figure 2D), consistently indicating  insignificant genomic 

difference between LSK-MLL-ENL vs GMP-MLL-ENL cells which could accout for 

their contrasting  β-catenin dependence. Together, this data reveals relatively few 

genomic variation in LSK-MLL-ENL  compared with GMP-MLL-ENL and the 

controls, suggesting that non-genomic influence from the cells-of-origin can be a key 

factor in governing the self-renewal property of genetically and phenotypically 

indistinguishable cancers. 

  

Transcriptional memory from cells-of-origin governs self-renewal pathways and 

predicts AML patient survival 

 

As self-renewal in normal stem cells is maintained by specific transcriptional 

programs, we hypothesized that the transcriptional memories from LSK and GMPs 

would be partially preserved even after transformation, resulting in transcriptional and 

functional differences observed in the respective CSCs(Zeisig et al., 2012).  Thus 
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RNA-seq analyses of normal LSK, GMPs and their MLL-ENL transformed 

counterparts were carried out. There were, as expected, large transcriptional 

differences between normal LSK and GMPs with 4768 significantly differentially 

expressed genes, including Hox genes, Meis1 and Evi1 (Figure 2E, Appendix figure 

S2C,  Dataset EV2A-B), while overall gene expression differences between cells of 

different origin decreased after MLL-ENL transformation (Figure 2E, Appendix 

figure S2D). Nevertheless, a significantly larger than expected by chance number of 

genes remained differentially expressed between LSK and GMP even after 

transformation (Figure 2F, Appendix figure S2C, Dataset EV2C), indicating the 

presence of “transcriptional-memory” retained from the cells-of-origin.  Toppgene 

functional annotation revealed genes associated with AML are consistently present in 

both signatures (Appendix figure S2F-I, Dataset EV2D).    

To further investigate the relevance of this cells-of-origin transcriptional-

memory gene signature in human leukemia, we employed it to stratify 1290 human 

AML patients from multiple independent centers(Cancer Genome Atlas Research, 

2013, Metzeler, Hummel et al., 2008, Raponi, Harousseau et al., 2007, Raponi, 

Lancet et al., 2008, Valk, Verhaak et al., 2004, Wouters, Lowenberg et al., 2009) 

(Dataset EV2E). AML patients with LSK-transcriptional memory signature had much 

worse prognosis with a median survival 14.5 months as compared to patients with 

GMP-transcriptional memory signature with median survival 22.7 months (Figure 

2G), even though the two groups had similar WBC count (means=40.3, 45.3, t-test 

p=0.30), age distributions (means= 48.0, 50,0, t-test p=0.07) and cytogenetic risk 

(cytogenetic risk (1/2/3)=71/199/85, 82/165/66, Chi-square test p=0.16). When 

compared with the previously identified human HSC signature(Eppert et al., 2011) 

and MLL leukemic-GMP (LGMP) signatures from different cells-of-origin(Krivtsov 

et al., 2013), the current transcriptional memory signature represents a stronger 

predictor to stratify patients into different prognostic subgroups based on both 

resultant median survivals and p-values (Appendix figure S2J). Moreover, 

multivariate analyses consistently resulted in significant Cox proportional hazards 

ratios >1; z-score < 0.1 with both human HSC signature and transcriptional memory 

signature (Dataset EV2F). Together, these data indicate functional and pathological 

relevance of the newfound cells-of-origin transcriptional memory in governing human 

cancer biology beyond known cytogenetic/genetic risk factors.  
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Hoxa9 as a key transcriptional memory gene phenocopies β-catenin function in 

development of origin-specific MLL leukemia 

 

Given the largely dispensable function of β-catenin in LSK-derived MLL-

CSCs, we hypothesize that some self-renewal programs from normal stem cells may 

persist after transformation, and can sustain self-renewal in the absence of β-catenin. 

In the transcriptional-memory signature, there were a small number of self-renewal 

genes such as Hoxa9, Hoxa10 and Meis1 (Figure 2E, F), which are known 

downstream targets of MLL fusions(Huang, Sitwala et al., 2012, Milne, Briggs et al., 

2002, Zeisig, Milne et al., 2004), indicating that their degrees of activation are in part 

also determined by the cellular origins. Strikingly, RNA-sequencing analysis on 

MLL-ENL transformed cells upon β-catenin inactivation revealed a specific up-

regulation of targets genes suppressed by Hoxa9/Meis1, suggesting a critical function 

of β-catenin in regulation Hox/Meis1 axis for leukemic self-renewal (Figure 3A, 

Dataset EV3A-C). Moreover, various stem cell related gene sets were positively 

enriched in β-catenin deleted LSK-MLL-ENL cells as compared with β-catenin 

deleted GMP-MLL-ENL (Figure 3B, Appendix figure S3A, Dataset EV3C). β-catenin 

deleted LSK-MLL-ENL not only expressed higher levels of Hoxa9 (Figure 3C, D) but 

also showed a negative enrichment for genes repressed by Hoxa9 (Figure 3E, Dataset 

EV3C). Together, the data consistently suggests a potential Hoxa9 complementation 

function in replacing β-catenin in LSK-derived MLL-CSCs.  

Similar to β-catenin, activation of Hoxa9 enhances self-renewal, while its 

deletion does not have significant impact on HSCs(Lawrence, Christensen et al., 

2005, Smith et al., 2011, So, Karsunky et al., 2004), consistent with the existence of 

multiple complementary self-renewal pathways in HSCs. We hypothesize if there is 

indeed a functional complementation between Hoxa9 and β-catenin, Hoxa9 

requirement for MLL transformation may also be influcenced by cells-of-origin.  To 

address this issue, we used purified hematopoietic populations from Hoxa9 knockout 

mice for RTTA. While MLL-ENL could competently transform wild-type LSK and 

GMPs in vitro, only LSK but not GMPs could be transformed by MLL-ENL in the 

absence of Hoxa9 (Figure 3F, Appendix figure S3B). More importantly, LSK-MLL-

ENL Hoxa9-/- similar to wild-type LSK-MLL-ENL could induce serially 

transplantable leukemia in recipient mice (Figure 3G, Appendix figure S3C), strongly 

suggesting that Hoxa9 requirement, similar to β-catenin, is also largely determined by 
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cancer cells-of-origin. These results not only assert the critical function of the 

newfound cells-of-origin transcription-memory in governing the biology of the 

resultant disease, but also suggest that LSK-MLL-CSCs may be able to utilize the 

Hoxa9-mediated self-renewal pathways as a molecular mechanism to overcome 

targeted disruption of β-catenin function. 

 

Suppression of Hoxa9 abolishes β-catenin independent transformation in LSK-

derived MLL-CSCs 

 

To gain further molecular insights into the functional interplay between β-

catenin and Hoxa9 in mediating self-renewal in origin-specific CSCs, we generated a 

novel compound Hoxa9-/-Ctnnb1fl/fl Rosa-CreER Rosa-YFP mouse by crossing 

Hoxa9-/- mice (Smith et al., 2011) with Ctnnb1fl/fl Rosa-CreER Rosa-YFP mice for 

RTTA and RNA-sequencing analysis. While MLL-ENL transduced LSK and GMPs 

isolated from compound Hoxa9-/-Ctnnb1fl/fl Rosa-CreER Rosa-YFP mice produced a 

similar number of first round colonies (Appendix figure S4A), a further β-catenin 

inactivation significantly compromised their transformation ability resulting in 

reduced number and size of colonies with early myeloid phenotypes (Figure 4A-B, 

Appendix figure S4B-D).  

LSK-MLL-ENL Hoxa9-/-Ctnnb1-/- displayed a higher percentage of apoptosis 

(Figure 4C), and an increase in G2/M arrest at the expense of S-phase (Figure 4D), 

which might help explain their reduced numbers and colony sizes (Figure 4A). Upon 

transplantation, both LSK-MLL-ENL Hoxa9-/-Ctnnb1fl/fl and Hoxa9-/-Ctnnb1del/del 

engrafted in comparable levels into the bone marrow and were able to proliferate and 

transiently expand (Figure 4E). However, inactivation of β-catenin in LSK-MLL-ENL 

Hoxa9-/- led to a gradual loss of their self-renewal property and failed to induce 

leukemia (Figure 4E-F). Further in vivo limiting dilution analysis revealed similar 

frequency of CSCs found in wild-type, Hoxa9-/-, or Ctnnb1-/- LSK-MLL-ENL, 

ranging from 1/3381 to 1/8625 (Figure 4G and Appendix figure S4E-G), indicating a 

rather limited impact of single inactivation of Hoxa9 or β-catenin on LSK-derived 

MLL-CSCs. In contrast, deletion of both proteins in LSK-MLL-ENL resulted in a 

drastic reduction of CSC frequency (estimated to be below 1/1669041) (Figure 4G 

and Appendix figure S4H), consistent with a critical functional crosstalk between 
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Hoxa9 and β-catenin, in which a high level of Hoxa9 expression allows β-catenin 

independent transformation in LSK-derived MLL-CSCs.  

 

β-catenin and Hoxa9 co-regulate Prmt1 in LSK-MLL-ENL cells 

 

To gain further insights into the molecular pathways underlying β-catenin and 

Hoxa9 mediated leukemic self-renewal, we sought to define common gene sets that 

were deregulated upon the loss of leukemic self-renewal (i.e.,  β-catenin inactivation 

in Hoxa9-/- LSK-MLL-ENL, Hoxa9 inactivation in Ctnnb1-/- LSK-MLL-ENL cells). 

As a result, 38 gene sets were commonly upregulated (Figure 5A) and 33 were 

commonly downregulated (Figure 5B, Dataset EV4A-B) in compound Hoxa9-/-

Ctnnb1-/- LSK-MLL-ENL cells. Consistent with the loss of leukemic self-renwal, 

LSC_maintenance signatures (Somervaille, Matheny et al., 2009)  were inverserly 

enriched. Moreover, the Hoxa9/Meis1 targets(Hess, Bittner et al., 2006) were also 

inversely enriched, supporting the hypothesis that β-catenin and Hoxa9 may co-

regulate common sets of genes critical for self-renewal.  

In order to specifically identify β-catenin and Hoxa9 co-regulated targets in 

LSK-MLL-ENL, we performed global quantitative expression analyses using RNA-

Seq, and revealed a small fraction of genes ~1% (n=525) showing a synergistic 

pattern in the double knockout compared to single knockouts alone (Figure 5C, 

Appendix figure S5, Dataset EV4C). Different protein classes are present in the 321 

synergistically up- and 204 synergistically down-regulated gene lists. While hydrolase 

and cysteine protease inhibitors were enriched in the up-regulated list, 

methyltransferases amongst others were enriched in the down-regulated list (Figure 

5D). These methyltransferases were arginine-specific Prmt1, Prmt5 and Prmt7.  

Consistently, H4-R3 specific histone methyltransferase activity was amongst the 

enriched GO:Molecular functions (Figure 5E, Dataset EV4D), suggesting that 

arginine methylation may be co-regulated by Hoxa9 and Ctnnb1. Indeed, when the 

targets of Hoxa9/Meis1 gene sets were overlapped with the synergistically up- and 

down-regulated genes, 19 out of 111 (17%) genes from the Hoxa9/Meis1 targets 

(Figure 5F, Dataset EV4E), were synergistically regulated by β-catenin and Hoxa9 in 

LSK-MLL-ENL (χ2, p=1.4e-22). Moreover, among them is again Prmt1, which had 

also been independently confirmed by RT-qPCR (Figure 5F).  Strikingly, Prmt1 is a 

key epigenetic modifying enzyme known to be recruited by various fusion proteins 
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involved in AML pathogenesis (Cheung, Chan et al., 2007, Cheung, Fung et al., 2016, 

Shia, Okumura et al., 2012), leading us to examine its role in mediating β-

catenin/Hoxa9 functions in LSK-MLL-ENL cells.  

 

Prmt1 regulates similar and overlapping transcriptional programs mediated by 

β-catenin in Hoxa9-/- LSK-MLL-ENL cells 

 

To investigate the transcriptional functions and potential molecular crosstalk 

between Prmt1 and β-catenin, global transcriptional analyses by RNA sequencing 

were performed in Hoxa9-/- LSK-MLL-ENL cells in the presence or absence of 

shRNA-mediated Prmt1 knockdown using previously validated shRNAs (Cheung et 

al., 2007).  As a result, we identified 1416 differentially expressed genes, including 

686 differentially up- and 730 differentially down-regulated genes from two 

biological replicates upon Prmt1 inactivation (Figure 6A, Dataset EV5A).  Similar 

transcriptomic analyses were then performed between Hoxa9-/- LSK-MLL-ENL and 

Hoxa9-/-Ctnnb1-/- LSK-MLL-ENL, where we identified 342 differentially up-

regulated genes and 134 differentially down-regulated genes from two biological 

replicates (Figure 6A).   To assess if Prmt1 and β-catenin may regulate common 

transcriptional targets, we compared the differentially expressed genes from both 

analyses. As a result, we revealed similar and highly significant overlapping gene 

expression signatures associated with the loss of Prmt1 vs β-catenin in Hoxa9-/- LSK-

MLL-ENL cells (Figure 6A, Dataset EV5A).  While 24 genes were commonly down-

regulated by β-catenin and Prmt1 (p<2.4E-7), 68 genes showed the opposite pattern  

(p<2.7E-22) upon their individual inactivation (Figure 6A). Funtional annotation 

analysis revealed increased myeloid differentiation and apoptosis but reduced histone 

binding, chromatin silencing and negative regulation of gene expression as dominant 

GO:Molecular fiunctions and GO:Biological processes upon Prmt1 knockdown and 

β-catenin knockout (Figure 6B).  Strikingly, GSEA revealed that about 75% of the 

gene sets/pathways affected by Prmt1 knockdown were also regulated by β-catenin 

knockout in Hoxa9-/- LSK-MLL-ENL cells (Figure 6C, Dataset EV5B) including 

those involved in leukemic/normal stem cell functions and stemness (Figure 6D), 

consistent with the hypothesis that Prmt1 mediates β-catenin functions in Hoxa9-/-

 LSK-MLL-ENL cells.  Together, these results strongly suggest a molecular and 
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functional overlap between Prmt1 and β-catenin in regulating critical transcriptional 

programs in LSK-MLL-ENL cells.   

 

Suppression of Prmt1 abolishes Hoxa9 independent transformation in LSK-

derived MLL-CSCs 

 

To finally evaluate the biological function of Prmt1 as a critical mediator for 

β-catenin/Hoxa9 functions, we first assessed its requirement in mediating Hoxa9-/- 

LSK-MLL-ENL transformation. Prmt1 expression was independently down-regulated 

in Hoxa9-/- LSK-MLL-ENL by two different shRNAs, which also resulted in 

reduction of H4R3 asymetric dimethylation mark (H4R3me2as) specifically conferred 

by Prmt1 (Appendix figure S6A,B).  Inhibition of Prmt1 expression compromised in 

vitro MLL-ENL transformation of Hoxa9-/- LSK cells (Figure 7A, Appendix figure 

S6C) and mimic in vivo inactivation of β-catenin in LSK-MLL-ENL. Similar to 

Hoxa9-/-Ctnnb1-/- LSK-MLL-ENL cells (Figure 4G), Hoxa9-/-Prmt1 KD LSK-MLL-

ENL cells were able to engraft and proliferate short-term, but gradually lost their self-

renewal ability (Figure 7B).  Crucially,  Prmt1 knockdown suppressed oncogenic 

potential of Hoxa9-/- LSK-MLL-ENL cells, which could otherwise induce leukemia 

within a month (Figure 7C).  

To further determine if Prmt1 as a key mediator for β-catenin/Hoxa9 can also 

replace the function of Hoxa9, Prmt1 expression was suppressed in Ctnnb1-/- LSK-

MLL-ENL (Appendix figure S6A-B). As a result, Prmt1 inhibition mimic Hoxa9 

inactivation leading to suppression of colony formation ability of Ctnnb1-/- LSK-

MLL-ENL cells (Figure 7D), abolished their self-renewal potentials (Figure 7E) and 

oncogenic ability in vivo (Figure 7F). Together with the comprehensive global gene 

expression network analyses, these results consistently indicate Prmt1 as a key player 

and novel downstream target mediating β-catenin/Hoxa9 functions in LSK-derived 

MLL-CSCs. 

 

Discussion 

Self-renewal as a defining feature of normal and cancer stem cells is tightly 

regulated by complex transcriptional networks.  Most of the current targeted therapies 

and their intended clinical utility are developed without considering the cancer cells-

of-origin, which can have distinctive self-renewal and transcriptional properties. This 
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traditional view has been challenged by the identification of phenotypically 

indistinguishable leukemia from different cells-of-origin(Cozzio et al., 2003, Huntly 

et al., 2004, So et al., 2003), which exhibit different responses to standard 

chemotherapy treatment(George, Uyar et al., 2016, Krivtsov et al., 2013, 

Stavropoulou et al., 2016). However until now, very little is known about impact of 

cells-of-origin on cancer self-renewal and the molecular pathways underpinning this 

defining feature of CSCs. By performing comprehensive genomic and transcriptomic 

analyses on origin-specific CSCs in combination with various in vitro and in vivo 

functional genomic assays, here we provide the experimental evidence for the 

presence of cells-of-origin transcriptional memory governing molecular pathways 

available for CSC self-renewal, urging that both genetic mutations and transcriptional 

memory inherited from cells-of-origin determine the resultant CSC biology and 

heterogeneous responses to treatment.   Key components of the canonical Wnt/β-

catenin signaling pathway are recurrently deregulated in various human cancers, and a 

number of inhibitor are in early phase clinical trials(Anastas & Moon, 2013).  This is 

particularly relevant to leukemia as normal HSCs remain largely intact upon a 

complete inactivation of β-catenin and targeting β-catenin represents a promising 

venue for eradication of LSCs(Fung et al., 2013).  However, our results reveal an 

added dimension of cancer heterogeneity conferred by cells-of-origin transcriptional 

memory, and predict that pharmacological targeting of β-catenin is unlikely to be 

effective in MLL leukemia originated from HSCs.  We would like to point out that all 

the published literatures including our studeis related to cancer cells-of-origin were 

performed using mouse cells, which could have different features from the human 

counterparts.  Given the recent evidences from mouse models indicate the importance 

of the cells-of-origin in governing the resultant cancer biology, future relevant studies 

in human cell systems are paramount to give necessary insights and to improve our 

understanding of the cancer cell biology and designing effective therapeutics in the 

human diseases. 

In contrast to its essential function in embryonic and other somatic stem cells, 

β-catenin is dispensable for adult HSCs, suggesting the presence of residual canonical 

Wnt signaling for normal HSC function(Malhotra & Kincade, 2009) or an alternative 

molecule/pathway compensated for β-catenin in adult hematopoiesis. Interestingly, 

most of the known molecules/pathways involved in canonical Wnt signaling 

predominately identified in epithelial cells or ES cells are not significantly affected 
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upon β-catenin deletion in MLL leukemia in regardless their cells-of-origin (Dataset 

EV2A, EV3C). In contrast, we identified a number of novel β-catenin targets 

including those downstream of Meis1/Hoxa9 that are critical for HSC self-renewal, 

consistently indicating co-regulation of common self-renewal pathways by β-catenin 

and Hoxa9 in hematopoietic cells. Hoxa9 recently proposed as a key component of 

human LSC signature in AML(Jung, Dai et al., 2015) can mediate Bmi-1 independent 

leukemic self-renewal(Smith et al., 2011) and resistance to PARPi treatment in 

AML(Esposito, Zhao et al., 2015).   In line with this finding, others and we have also 

reported the ability of β-catenin or Hoxa9 in promoting HSC self-

renewal(Argiropoulos & Humphries, 2007, Malhotra & Kincade, 2009, Zeisig et al., 

2012), but deletion of either one of them yields only mild hematopoietic 

phenotypes(Cobas et al., 2004, Jeannet et al., 2008, Koch et al., 2008, Lawrence et al., 

2005, Smith et al., 2011, So et al., 2004), suggesting their overlapping function in 

HSC self-renewal.  This is further supported by identification of Prmt1 as a key 

common downstream target that mediates their transcriptional and self-renewal 

functions. However, the lack of good quality ChIP-grade antibodies against Hoxa9 

and β-catenin makes it unfeasible to reliably determine if they might directly bind to 

Prmt1 regulatory regions.  While the lack of known consensus binding sites of Hox or 

β-catenin/Tcf by in silico analysis (data not shown) suggests an intermediate instead 

of direct regulation, future investigation is critical to gain further insights into any 

potential direct functional interactions and regulations. Nevertheless, our 

comprehensive transcriptomic analyses in combined with functional genomic studies 

have revealed the novel molecular networks mediated by β-catenin/Hoxa9/Prmt1 in 

regulating leukemic self-renewal in LSK-derived MLL-CSCs, and exemplify the 

intricate diversity in molecular pathways utilized by cancer cells to evade therapies, 

and underscores that simultaneous targeting of multiple self-renewal pathways may 

be required for successful elimination of certain CSCs.  

Intriguingly, activation of canonical Wnt/β-catenin in MLL-CSCs has also 

recently been identified as a major mechanism for development of resistance to 

pharmacological inhibition of BET(Fong, Gilan et al., 2015, Rathert, Roth et al., 

2015), a targeted therapy at its early clinical phase for MLL leukemia, further 

highlighting the importance of adequately targeting β-catenin in the context of cells-

of-origin for future targeted cancer therapies.  Given the challenges involved in 

developing clinically effective inhibitors to β-catenin(Fung et al., 2013), the 
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identification of Prmt1 as a nexus for mediating leukemic self-renewal in LSK-MLL-

ENL transformed cells not only provides novel mechanistic insights into the 

downstream targets and molecular networks regulated by β-catenin, but also suggest 

an alternative avenue for targeting β-catenin in MLL-CSCs. 

 
Material and Methods 
 
Animals and transplantation studies 
 
All experimental procedures were approved by King’s College London ethics 
committees and conform to the UK Home Office regulations. For all in vivo 
experiments, mice were distributed into their respective groups randomly. 
Investigators were not blinded to the sample identity. Mice were considered leukemic 
when an engraftment of donor cell (>30%) was detected in the bone marrow. 
Ctnnb1fl/fl mice (Brault et al., 2001) were crossed with Rosa26-CreER Rosa26-YFP 
mice to generate Ctnnb1fl/fl RosaCre-ER RosaYFP mice. These mice were crossed 
with Hoxa9-/- knockout mice (Smith et al., 2011, So et al., 2004) to generate Hoxa9-/- 
Ctnnb1fl/fl RosaCre-ER RosaYFP mice. Compound homozygous animals were used 
for experiments. C57BL/6 or SJL mice were given 11Gy total body γ-irradiation and 
injected via tail vein with test cells mixed with C57BL/6 or SJL bone marrow nuclear 
cells. Mice were culled when sign of sickness appeared. Survival curves were 
produced using GraphPad Prism software, and survival differences tested with the 
log-rank test. For leukemia development experiments, up to 500,000 test cells mixed 
with 200,000 C57BL/6 or SJL bone marrow nuclear cells were transplanted. For 
primary transplants n=5-18 mice/cohort and for secondary transplants n=3-10 
mice/cohort were used. For in vivo limiting dilution assays, varying numbers of cells 
from indicted populations were transplanted into n=5 sublethally irradiated syngeneic 
mice/cohort and monitored for disease development. ELDA was used for statistical 
analysis (Hu & Smyth, 2009). For in vivo homing experiments, 5 million test cells 
were transplanted into n≥4 (when studying genetic ablation) and n=2 (when studying 
shPRMT1 knockdown) sublethally irradiated syngeneic mice/cohort/time point. 
Homing differences were statistically tested using a two-tailed t-test in Excel. 
 
 
Hematopoietic stem and progenitor purification 
 
Mouse femur and tibias were prepared and c-kit+ (CD117) cells isolated (Zeisig & 
So, 2009) using MACS (Miltenyi Biotech Technology, Germany). LSK and GMP 
populations were isolated as previously described (Yeung & So, 2009). Briefly, LSK 
(lin-, Sca-1+, c-Kit+) and GMP (lin-, Sca-1-, c-Kit+, CD34+, CD16/32lo) were 
isolated from lineage negative cells after lineage (Gr-1, Mac-1, B220, Ter119, CD3e, 
CD4, CD8) (Biolegend/eBiosciences) depletion using a BD FACS ARIA cell sorter. 
Post-sort purity of greater than 97% was routinely achieved. For functional analysis, 
sorted LSK and GMP were plated in Methocult M3434 (Stem Cell Technologies, 
Canada) and after 7-10 days of incubation different colony types were scored. 
 
Retroviral transduction and transformation (RTTA) assays 
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RTTA were performed as previously described with some modifications (Zeisig & 
So, 2009). The MSCV-MLL-ENL construct has been described previously. The two 
independent shRNAs against murine Prmt1 have been reported previously (Cheung et 
al., 2007). Briefly, isolated c-Kit+, LSK or GMP cells were cultured overnight in 
RPMI+10%FBS supplemented with 20ng/ml SCF, 10ng/ml IL3 and 10ng/ml IL6 
prior to viral transduction with virus particles carrying MLL-ENL by centrifugation at 
800xg at 32C for 2hr. Cells were plated in M3234 Methylcellulose medium 
supplemented with 20ng/ml SCF, 10ng/ml of each IL3, IL6 and GM-CSF and 
appropriate antibiotic selection on the following day. Colonies were scored after 7 
days and replated every 7 days. To induce the deletion of Ctnnb1, 20nM tamoxifen 
(Sigma, US) was added to the Methylcellulose medium in the second round of plating 
and YFP positive were sorted after the second round of plating using a BD FACS 
ARIA and plated into the 3rd round. After the 4th round of plating, cells were cultured 
in R20/20 to establish cell lines as previously described (Yeung et al., 2010). 
Differences in colony numbers were statistically tested using a two-tailed t-test in 
Excel. 
 
Phenotypic analysis  
 
Immunophenotypic analysis was performed by FACS using fluorochrome-conjugated 
monoclonal antibodies to murine c-Kit (2B8 clone), Mac-1 (M1/70) and Gr-1 (RB6-
8C5) (eBiosciences). Staining was generally performed on ice for 15mins and washed 
once before analysis using a BD LSR II system. Differences in surface marker 
expression were statistically tested using a two-tailed t-test in Excel.  
 
Western blot  
 
Cell lysates from primary transformed cells or sorted leukemic cells were isolated and 
subjected to western blot as described (Yeung et al., 2010).  
 
Histone extraction and detection 
Histone proteins were prepared by acid extraction (Abcam 
protocol, http://www.abcam.com/protocols/histone-extraction-protocol-for-western-
blot). Briefly, cells were lysed for 10 minutes on ice in TEB buffer (PBS/0.5%Triton 
X 100/protease inhibitors) at a cell density of 107 per ml. The nuclei were harvested 
by centrifugation, and washed in half the volume of TEB. Pellets were resuspended in 
0.2N HCl at a density of 4x107 nuclei per ml and histones were extracted overnight at 
4C. Samples were centrifuged to pellet debris and the supernatant containing the 
histones were transferred into a new Eppendorf tube. 10ul histones were mixed with 
40ul PBS and 50ul 2xSDS loading buffer and incubated at 95C for 8minutes. 25ul of 
the denatured histones were subjected to western blot using a 10% Next gel 
(AMRESCO LLC). Antibodies against H4R3me2a (Active Motif) and Histone H3 
(Abcam) were used.         
 
Genotyping PCR 
 
Genomic DNA was isolated and β-catenin genotyping PCR was performed as 
described previously (Brault et al., 2001). Primer sequences for Hoxa9 are available 
on request. Differences in gene expression were statistically tested using a two-tailed 
t-test in Microsoft Excel.  
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q-RT-PCR 
 
q-RT-PCR was performed on StepOne qPCR machine (Applied Biosystems) using 
Taqman or SYBR green chemistries. See Appendix Table S1 for the primer sequences 
used throughout the paper for validation.  
 
Apoptosis and cell cycle analysis 
 
MLL-ENL transduced Hoxa9-/-Ctnnb1fl/fl cells were treated for 72hours with or 
without tamoxifen and stained with AnnexinV for apoptosis. Cell cycle was analyzed 
using the BRDU Flow kit (BD Pharmingen) according to manufacturer’s instructions. 
Cells were analyzed using a BD LSR II system (BD, USA) and differences were 
statistically tested using a two-tailed t-test in Excel.  
 
RNA sequencing 
 
300ng to 1ug of mirVANA (Ambion) isolated total RNA was used for RNA-Seq 
library preparation using TruSeq Stranded Total RNA kit (Illumina) and sequenced on 
HIseq2000 platform (Illumina) as per manufacturers recommendations. All samples 
are listed in Dataset EV1A. 
 
Whole genome sequencing 
 
Genomic DNA was isolated with the QIAamp DNA Micro kit (Qiagen) according to 
the manufacturer’s instructions, and 30ng of genomic DNA was used as input for 
each library preparation. Whole-genome sequencing libraries were generated using 
the tagmentation method as previously described (Wang, Gu et al., 2013), but without 
bisulfite treatment and with minor modifications. Briefly, genomic DNA was 
subjected to tagmentation with a hyperactive Tn5 transposase (Epizyme), which 
fragmented the DNA and appended sequencing adaptors in a single step. After PCR 
amplification of libraries, DNA fragments of 200-800bp were double-side selected 
using SPRI Ampure XP beads, with left-right ratios of 1.5-0.55. Purified libraries 
were subjected to 125-bp paired-end sequencing on an Illumina HiSeq2500 machine. 
 

Bioinformatic analyses 

Mapping and read counts 
The FASTQ files were de-tagged, and the quality of the FASTQ files inspected using 
FastQC v.0.11.2 (Andrews, 2015). Remaining adapters were trimmed using 
TRIMGalore! v.0.3.7 (Kreuger, 2015). Whole genome sequencing reads were mapped 
to the Ensembl mouse genome GRCm38 (Aken, Ayling et al., 2016) using Bowtie2 
v.2.2.5 (Langmead & Salzberg, 2012). RNA-Seq reads were mapped to the Ensembl 
mouse genome using TopHat2 v2.0.13 (Kim, Pertea et al., 2013), reads were filtered 
for quality and counted using samtools v.0.1.18 and bedtools v2.23.0-10-g447cb97 
(Li, Handsaker et al., 2009, Quinlan & Hall, 2010) (Dataset EV1B). 
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SNP calling 
SNP calling (for both RNA-Seq and WGS) was performed using samtools v.0.1.18 
mpileup and bcftools v.1.2 (using htslib v.1.2.1) (Li, 2011), SNPs were leniently 
filtered only for quality >=Q30, and custom scripts used to produce summary stats 
(Dataset EV1C). To summarize the regions in which SNPs fell, variant call files and 
Ensembl GTF annotation (Mus_musculus.GRCm38.82.gtf) were converted to bed 
format using custom scripts and compared using bedtools intersect v2.23.0. Bedtools 
complement v2.23.0 (Quinlan & Hall, 2010) was used to extract intronic and 
intergenic coordinates. 

Gene differential expression 
Differential expression was determined either using DESeq2 v.1.10.1 (Love, Huber et 
al., 2014), negative binomial GLM fitting and Wald statistics; or with limma v.3.26.9 
(Ritchie, Phipson et al., 2015) using voom to normalize read counts, and eBayes to 
determine differential expression (as detailed in Expanded View Datasets). Functional 
enrichment analysis was conducted using the GSEA software, using various 
Molecular Signature Databases (c2 set version 5.0, version 6.0 and all_gene_sets) 
(MSigDB) (Subramanian, Tamayo et al., 2005) appended with a custom made gene 
set for LSC stem cell maintenance (Somervaille et al., 2009) (Dataset EV3B), 
comparing log2-fold changes in gene expression as the ranking metric. For the GSEA 
analysis, human-mouse gene orthologues were identified using MGI list of 
orthologous genes (Blake, Bult et al., 2014), and Ensembl bioMart used to transfer 
MGI IDs to Ensembl gene IDs (Kinsella, Kahari et al., 2011). In order to find genes 
which showed a synergistic effect of simultaneous knockout of Cbnnt1 and Hoxa9, 
differential expression was tested with DESeq2 Negative Binomial GLM fitting and 
Wald statistics. The data was subjected to five DE analyses, which served to 
categorize the genes into 78 different classes. These comparisons are 1. LSK WT to 
Ctnnb1 KO, 2. LSK WT to HoxA9 KO, 3. Additive effect LSK WT to Ctnnb1 KO 
and Hoxa9 KO, 4. LSK Ctnnb1 KO to Ctnnb1:HoxA9 interaction, 5. LSK HoxA9 KO 
to Ctnnb1:HoxA9 interaction. For overlapping significantly differentially expressed 
genes, heatmaps were plotted using the function heatmap.2 from the R-package gplots 
v3.0.1 (Warnes, Bolker et al., 2016) with Z-score scaling of rows and/or columns. 

Survival analysis 
Statistical analysis and data visualization was performed using R (R Core Team, 
2014). Survival and Cox proportional hazards ratio analysis was conducted using R-
packages survival v.2.39.5 (Therneau, 2015) and survcomp v.1.20.0 (Schroder, 
Culhane et al., 2011) on all patients which had complete survival and expression data 
from the following datasets; GSE1159 (n=293), GSE12417; GPL570 (n=79), GPL96 
(n=163), GSE14468 + GSE6891 (n=602), GSE5122 (n=58), GSE8970 (n=34) 
available from the Gene Expression Omnibus database ncbi.nlm.nih.gov/geo/ and The 
Cancer Genome Atlas AML dataset (n=183) (Cancer Genome Atlas Research, 2013). 
Summary data for patient cohorts are presented in Dataset EV2D. Samples were 
normalized using the GENENORM algorithm from the R-package inSilicoMerging 
v.1.15.0 (Taminau, Meganck et al., 2012) with prior DESeq2 Vst transformation of 
RNA-Seq samples used in this study to derive the cell-of-origin specific signature 
(Love et al., 2014). All probe intensities were translated into human genes and 
averaged prior to merging. MLL patients in the datasets were identified from 
associated karyotyping and PCR diagnosis.  
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Data availability 
 
All WGS has been submitted to the ENA study PRJEB14461. RNA-Seq is available 
on ArrayExpress E-MTAB-3647.  
 
Statistical analysis 
 
All the experimental results were analysed using two-tailed Student’s t-test, χ2 test, 
hypergeometric test, as indicated in the figure legends and Expanded View Datasets. 
Groups that were statistically compared shared a similar variance, as shown in the 
figures. P<0.05 was considered as statistically significant. For GSEA analysis, FDR-q 
values <0.25 were considered as statistically significant(Subramanian et al., 2005).  
The log-rank test was used to compare survival curves. 
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Figure 1. MLL-ENL leukemic stem cells derived from LSK or GMP populations 
have contrasting functional requirements of β-catenin for their initiation and 
maintenance of disease. (A) Schematic overview of the experimental procedures. 
Keys and colour codes in the legend box indicate the cells-of-origin and the β-catenin 
status of MLL-ENL transduced cells in the following experiments (B-K). (B) Colony 
numbers in serial replating assay of the different MLL-ENL transduced cells. Data are 
represented as mean ± SD (C, G) PCR validation of Ctnnb1 deletion on genomic 
DNA isolated from the indicated MLL-ENL transduced GMP and LSK cells (C) or 
leukemic cells (G). L, 100bp ladder; W, wild type control, F, Ctnnb1 floxed allele, D, 
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Ctnnb1 deleted allele, N, negative control. (D, H) Cell lysates from indicated MLL-
ENL transduced GMP and LSK cells after the fourth round of plating (D) or from 
indicated leukemic mice (H) were blotted with anti-β-catenin (top) and anti-actin 
(bottom) antibodies. (E, F) Kaplan-Meier survival curves of indicated MLL-ENL 
transduced cells transplanted into primary recipient (solid lines) and secondary 
recipient mice (dotted lines). N=10 mice per group were used in primary transplants 
(solid lines) in (E). N=15 mice were used for Ctnnb1fl/fl (blue solid line) and n=10 
mice were used for Ctnnb1del/del (green solid line) in (F). For all secondary 
transplants (dotted lines) n=5 mice were used per group. (I) Percentage of CD45.2+ 
donor cells in the bone marrow of recipient mice at the indicated time points post-
transplantation of the indicated GMP-MLL-ENL and LSK-MLL-ENL transduced 
cells. Data are represented as mean ± SD. N=4, two-tailed t-test was performed. (J-K) 
Kaplan-Meier survival curves of secondary transplanted GMP-MLL-ENL (J) and 
LSK-MLL-ENL (K) primary leukemia bone marrow cells treated with DMSO as 
floxed controls or tamoxifen for β-catenin deletion prior to secondary transplantation 
(n=3 per group). See also Appendix figure S1. 
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Figure 2. Cells-of-origin transcriptional-memory predicts survival in AML 
patients. (A-B) Number of identified genomic variants in indicated MLL-ENL 
transformed cells using RNA-Seq (A) and genomic sequencing (B). A two-tailed t-
test was performed in (A). LSK, wildtype LSK cells; GMP, wildtype GMP cells. (C, 
D) Manhattan plots indicating estimated length of CNVs (C) or number of genes in 
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CNV areas (D) on the y-axis in the respective chromosomal positions shown in the x-
axis. (E)  MA-plots showing the log2-fold gene expression changes in the normal (left 
panel) and MLL-ENL transformed (right panel) cells as indicated. (F) Transcriptional 
memory signature; the overlap of differentially expressed genes in GMP-LSK in 
normal vs MLL-ENL transformed cells is significantly enriched using a 
hypergeometric test. (G) Survival differences between patients clustered using 
transcriptional memory signatures with a log-rank test. See also Appendix figure S2. 
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Figure 3. Key transcriptional-memory gene Hoxa9 may help to overcome β-
catenin dependent transformation in LSK-derived MLL-CSCs. (A) Gene set 
enrichment analysis (GSEA) shows “Targets of Hoxa9/Meis1, down” (Hess et al., 
2006) for the indicated comparison. (B) Log10-fold FDR q-values of the indicated 
gene sets positively enriched in β-catenin deleted LSK-MLL-ENL compared to β-
catenin deleted GMP-MLL-ENL. (C-E) RNA-seq log2-fold change of key self-
renewal genes (C), RT-qPCR validation of Hox/Meis1 expression represented as 
mean ± SD of 3 independent experiments. Two-tailed t-test was performed (D), and 
GSEA showing “Hoxa9_dn.v1_up” (Faber, Krivtsov et al., 2009) for the β-catenin 
deleted LSK-MLL-ENL to β-catenin deleted GMP-MLL-ENL comparison (E).  (F) 
Colony numbers in serial replating assay of indicated MLL-ENL transduced cells. 
Data are represented as mean ± SD. (G) Kaplan-Meier survival curve of mice 
transplanted with Hoxa9-/- (n=18) or WT LSK-MLL-ENL (n=13) transformed cells 
(solid lines) and secondary recipient mice (n=5 for Hoxa9-/- and n=4 for wt, dotted 
lines) as indicated.  Comparisons between Hoxa9 WT and Hoxa9-/- were not 
significantly different (ns). See also Appendix figure S3. 
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Figure 4. Deletion of both β-catenin and Hoxa9 abrogates leukemia development 
in LSK-MLL-ENL cells. Keys and colour code in the left top corner indicate the 
origin and the β-catenin and Hoxa9 status of MLL-ENL transduced cells. (A) Colony 
numbers in serial replating assay of MLL-ENL transduced cells. Images of typical 4th 
round colonies shown above. Data are represented as mean ± SD. (B) Summary of 
immunophenotypic analysis (Figure S4D) of LSK-MLL-ENL Hoxa9-/-Ctnnb1fl/fl with 
or without 72h Tamoxifen treatment. Data are represented as mean ± SD. N=3, two-
tailed t-test was performed. (C-E) % of apoptotic cells (AnnexinV assay) (E), cells in 
the indicated cell cycle phases (BrdU assay) (F) and CD45.2+ donor cells in the bone 
marrow of recipient mice at the indicated time points post-transplantation (G) of 
LSK-MLL-ENL transduced cells. Data are represented as mean ± SD. N=4, two-
tailed t-test was performed. (F) Kaplan-Meier survival curve of mice transplanted 
with LSK-MLL-ENL carrying different Hoxa9 and Ctnnb1 genotypes. N=5 per 
genotype was used. (G) Summary of the LSC frequencies obtained from the in vivo 
limiting dilution experiments (Figure S4E-H) using the LSK-MLL-ENL leukemic 
cells with different genotypes. See also Appendix figure S4. 
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Figure 5. β-catenin and Hoxa9 co-regulate Prmt1 in LSK-MLL-ENL cells. (A, B) 
Venn diagram showing the overlap of 33 commonly enriched upregulated (A) and 38 
commonly enriched downregulated (B) highly significant (FDR<0.05) gene sets 
between indicated comparisons (i.e., β-catenin inactivation in Hoxa9-/- LSK-MLL-
ENL, Hoxa9 inactivation in Ctnnb1-/- LSK-MLL-ENL cells), including 
“Hoxa9/Meis1_DN” (Hess et al., 2006), “LSC_mainentence_down” (Somervaille et 
al., 2009), “Hoxa9/Meis1_UP” (Hess et al., 2006) and “LSC_maintenance_up” 
(Somervaille et al., 2009) as indicated.  (C) A small set of genes is synergistically 
regulated by β-catenin and Hoxa9 (the effect of knockout of both genes is smaller or 
larger than could have been predicted from their single knockouts). Example sets of 
genes synergistic up-regulated (top), down-regulated (bottom) and non-significantly 
regulated (bottom right) are shown (all sets are in Figure S5). Keys and colour code in 
the top corner indicate the origin and the β-catenin and Hoxa9 status of MLL-ENL 
transduced cells. (D) Pantherdb protein classes (http://pantherdb.org/) are shown for 
the 321_synergistic_up and 204_synergistic_down genes as indicated. P-value was 
obtained after Bonferroni correction. (E) The FDR qvalues of the top5 Toppgene 
GO:Molecular function (https://toppgene.cchmc.org/enrichment.jsp) are shown for 
the synergistic up and downregulated genes as indicated.  (F) Statistically significant 
directionality in the overlap of the synergistic genes with the Hox/Meis1_DN gene set 
(Dataset EV5B) including Prmt1, which has also been independently validated by 
RT-qPCR (right panel). See also Appendix figure S5. 
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Figure 6: Prmt1 regulates similar and overlapping transcriptional programs 
mediated by β-catenin in LSK-MLL-ENL cells. (A) Heatmap analysis and Venn 
diagram showing the commonly regulated genes after the loss of function of Prmt1 
and β-catenin in Hoxa9-/- LSK-MLL-ENL cells. (B) The FDR q-values of the top 
GO:Molecular function (top panel) and GO:Biological process (bottom panel) 
(https://toppgene.cchmc.org/enrichment.jsp) for the indicated up- and down-regulated 
genes is shown. (C) Venn diagrams showing the total, positively and negatively 
regulated genesets identified by GSEA upon the loss of function of Prmt1 and β-
catenin in Hoxa9-/- LSK-MLL-ENL cells.  (D) Examples of stem cell and stemness 
signatures which were commonly higher expressed in the single knockout Hoxa9/- 
LSK-MLL-ENL cells compared to Prmt1 down-regulated or β-catenin inactivated 
Hoxa9-/- LSK-MLL-ENL cells. 
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Figure 7.  Suppression of Prmt1 abolishes β-catenin or Hoxa9 independent 
transformation in HSC-derived MLL-CSCs. (A) The relative number of colonies 
from Hoxa9-/- LSK-MLL-ENL leukemic cells with empty vector or shPRMT1. Data 
are represented as mean ± SD. (B) The % of CD45.2+ donor cells in the bone marrow 
of recipient mice at the indicated time points post-transplantation of Hoxa9-/- LSK-
MLL-ENL leukemic cells with empty vector or shPrmt1. Data are represented as 
mean ± SD. (C). Kaplan-Meier survival curve of secondary recipient mice 
transplanted with Hoxa9-/- LSK-MLL-ENL leukemic cells with vector control or 
shPrmt1. (D) The relative number of colonies from Ctnnb1-/- LSK-MLL-ENL 
leukemic cells with empty vector or shPRMT1. Data are represented as mean ± SD. 
(E) The % of CD45.2+ donor cells in the bone marrow of recipient mice at the 
indicated time points post-transplantation of Ctnnb1-/- LSK-MLL-ENL leukemic cells 
with empty vector or shPrmt1. Data are represented as mean ± SD. (F). Kaplan-Meier 
survival curve of secondary recipient mice transplanted with Ctnnb1-/- LSK-MLL-
ENL leukemic cells with vector control or shPrmt1.  See also Appendix figure S6. 
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