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Abstract 19 

Regional to global-scale biomass burning emissions inventories are primarily based on satellite-20 

derived burned area or fire radiative power (FRP), and most rely on conversions to fuel 21 

consumption prior to the emissions estimation stage. This is generally considered the step 22 

introducing greatest uncertainty, and some apparently discrete inventories are not fully 23 

independent, as they have been cross-calibrated to aid this stage. We present a novel emissions 24 

inventory approach that bypasses the fuel consumption step, directly linking geostationary FRP 25 

measures to emission rates of total particulate matter (TPM), via coefficients derived from 26 

observations of smoke plume aerosol optical depth (AOD). The approach is fully ‘top-down’, 27 

being based on spaceborne observations alone, is performed at or close to the FRP data’s original 28 

pixel resolution, and avoids the need to assume or model fuel consumption per unit area prior to 29 

the emissions calculation. Rates and totals of trace gas and carbon emission can be inferred from 30 

the TPM fluxes, and in combination with satellite burned area (BA) products the approach provides 31 

an innovative top down approach to mapping fuel consumption per unit area (kg.m-2) as a last step 32 

in the calculation. Using this innovative methodology, which we term ‘FREemissions’ (FREM), we 33 

generate a 2004 – 2012 fire emissions inventory for southern Africa, based on Meteosat FRP-34 

PIXEL data. We find basic annual average TPM emissions 45% higher than the widely used 35 

GFASv1.2 inventory, with our higher totals in line with independent assessments that necessitate 36 

a significant upscaling of GFAS TPM emissions to match observed AODs. Our estimates are also 37 

12% higher than GFEDv4.1s, which already includes a substantial upward adjustment for fires too 38 

small to be detected by the MODIS MCD64A1 BA product.  If we adjust the FREM-derived 39 

emissions for SEVIRI’s inability to detect the lower FRP component of the regions fire regime 40 

then the differences between FREM and GFAS / GFED grow further, to a mean of 64% with 41 

respect to GFED4.1s TPM emissions for example. These upwardly adjusted FREM estimates 42 
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agree very well with FEER, an FRP- and AOD-based inventory driven by polar-orbiting MODIS 43 

FRP ‘snapshots’ rather than geostationary observations. Similarly higher totals are seen for 44 

FREM’s fire-emitted trace gases, derived using the emission factor ratios of gases to particulates. 45 

Our exploitation of geostationary FRP requires fewer assumptions than use of polar orbiter FRP 46 

measures, avoids biases coming from incomplete sampling of the fire diurnal cycle, and enables 47 

the FREM approach to provide fire emissions and fuel consumption estimates at a higher spatio-48 

temporal resolution than any inventory currently available (e.g. 0.05°, and hourly averages or 49 

better), including per km2 of area burned. The approach offers great potential to generate very high 50 

resolution fire emissions datasets for the tropics, sub-tropics and potentially temperate zones, with 51 

updates available in near real-time from the global suite of geostationary meteorological satellites 52 

operated by organisations such as EUMETSAT (Meteosat), NOAA (GOES) and JMA (Himawari). 53 

  54 
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1. INTRODUCTION 55 

Accurate inventories of landscape fire emissions are required to assess influences on regional and 56 

global atmospheric composition, weather and climate (Andreae and Merlet, 2001; Akagi et al., 57 

2011). Biomass burning is amongst the greatest source of atmospheric fine particulate matter 58 

(PM2.5 and PM10; Reddington et al., 2016), resulting in significant impacts on human health (Pope 59 

et al. 2002). For certain air pollutants like carbon monoxide (CO), landscape fires are among the 60 

most dominant source (Andreae and Merlet, 2001), whilst for others (e.g. hydrogen cyanide; HCN) 61 

seemingly the only major source (Li et al., 2000). Every landscape fire emits CO2 as its main 62 

product (Andreae and Merlet, 2001; Wooster et al., 2011), even those dominated by smouldering 63 

combustion (e.g. Huijnen et al., 2016), and fires in tropical forests and peatlands contribute very 64 

significantly to the net growth of atmospheric CO2 (van der Werf et al., 2009; Huijnen et al., 2016).  65 

 66 

Landscape fire emissions show large variabilities across all timescales (e.g. Roberts and Wooster, 67 

2008; Roberts et al., 2009; van der Werf et al., 2011; Kaiser et al., 2012; Andela et al., 2016), and 68 

only satellite Earth Observation (EO) can drive large-scale, regularly updated emissions 69 

inventories. Thus far, no inventory delivers both relatively fine (e.g. ~ hourly or better) spatial and 70 

temporal (e.g. ~ 5 km or better) resolution, nor full agreement with independent atmospheric 71 

observations (e.g. see comparisons by Shi et al., 2015; Pereira et al., 2016; Reddington et al., 72 

2016). Differences stem from (i) limitations in the EO data and algorithms used for fire 73 

identification and characterisation (e.g. Boschetti et al., 2004; Freeborn et al., 2009; Randerson et 74 

al., 2012; Nogueira et al., 2016), (ii) difficulties in estimating fuel consumption per unit area 75 

(kg.m2) and total fuel consumption (kg) for the identified fires (e.g. Reid et al., 2009; Roberts et 76 

al., 2011; Kaiser et al., 2012), and (iii) uncertainties involved in estimating emissions of 77 

particulates and gases from fuel consumption totals (e.g. Vermote et al., 2009; Van Leeuwen et 78 
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al., 2011). Whilst EO data and algorithms for use in (i) have improved substantially based on polar 79 

orbiting MODIS and VIIRS (e.g. Boschetti et al., 2004; Giglio et al., 2013; 2016; Schroeder et al., 80 

2014), and second generation geostationary systems such as Meteosat SEVIRI (e.g. Wooster et 81 

al., 2005; 2015), and more detailed emissions factor databases have become available for use in 82 

(iii) (e.g. Akagi et al., 2011; Huijnen et al., 2016), there has been relatively less progress in (ii) 83 

with regards to converting satellite fire radiative power (MW) or burned area (m2) measures into 84 

fuel consumption estimates (Andela et al., 2016). This remains an area of key uncertainty (Reid et 85 

al., 2009), and for this reason we focus here on a new fire emissions methodology that bypasses 86 

the fuel consumption estimation step and directly relates fire emissions to FRP observations, the 87 

latter available at very high temporal resolution from geostationary orbit. This innovative approach 88 

significantly limits the number of assumptions required in the emissions calculation, particularly 89 

compared to burned area based methods, and reduces sources of uncertainty involved in the ‘fuel 90 

consumption estimation’ stage that pose difficulties even when combining burned area and FRP 91 

data together (e.g. Roberts et al., 2011; Andela et al., 2016). Our approach builds on research with 92 

polar orbiting satellite FRP and AOD data started by Ichoku and Kaufman (2005), but by using 93 

the near continuous geostationary FRP observations we limit the assumptions required. We term 94 

this new methodology ‘FREemissions’ (FREM), since use of temporally-integrated geostationary 95 

FRE data are key.  Fuel consumption (kg), including on a per unit area basis  (kg.m-2), can be 96 

estimated as a last step if required, based on either the inverse of the TPM emissions factor or the 97 

calculated total carbon in the emissions released. 98 

 99 

2. LANDSCAPE FIRES AND EMISSIONS INVENTORY METHODOLOGIES 100 

Landscape fires occur in most vegetated ecosystems. Most herbaceous biomes typically show finer 101 

fuels and more flaming combustion, along with lower fuel consumptions per unit area [kg.m-2] and 102 
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the strongest dominance of CO2 in their smoke (Akagi et al., 2011; Wooster et al., 2011; van 103 

Leeuwen et al., 2014). Fires in more wooded areas, along with those burning organic soils such as 104 

peat, typically show higher fuel consumptions per unit area, a tendency towards more smouldering 105 

combustion, and higher proportions of CO and total particulate matter (TPM) in their smoke (e.g. 106 

Andreae and Merlet, 2001; Huijnen et al., 2016). All current emissions inventories use emission 107 

factors [EFx, g.kg-1]) to specify how much of chemical species x is released per kg of fuel 108 

consumed. The biome-dependent summary EFs of Andreae and Merlet (2001) and its updates (e.g. 109 

as reported in Kaiser et al., 2012), and/or those in Akagi et al. (2011), are used in most cases. 110 

Therefore, the primary reason independent fire emissions inventories show not only spatial and 111 

temporal discrepancies, but also differences in magnitude, comes not from the deployed EFs but 112 

from the differing estimates of total fuel consumption (e.g. Roberts et al., 2011; Larkin et al., 2014 113 

Knorr et al., 2012; Kaiser et al., 2012). This is in part because fuel consumptions per unit area vary 114 

markedly, even within the same biome (e.g. Reid et al., 2009; Kukavskaya et al., 2012; Sommers 115 

et al., 2014; van Leeuwen et al., 2014; Weise and Wright, 2014; Andela et al., 2016), and this 116 

variability is difficult to track precisely.  117 

 118 

2.1 Burned Area Based Methodologies 119 

 Most ‘bottom up’ approaches to fire emissions estimation are currently driven by burned area 120 

(BA) measures [m2], mostly derived from daily 500 m spatial resolution MODIS data (e.g. Giglio 121 

et al., 2013). This highly successful approach delivers high quality BA mapping across many 122 

biomes, though smaller burns can remain undetected and lead to significant fire emissions 123 

underestimation in ‘small-fire’ dominated ecosystems (Randerson et al., 2012; Zhang et al., 2017). 124 

To estimate total fuel consumption, the BA data must be combined with fuel consumption per unit 125 

area [kg.m-2] estimates, themselves calculated from somewhat uncertain fuel load [FL; kg.m-2] and 126 
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‘combustion completeness’ [C; unitless] metrics (Reid et al., 2009; Vermote et al., 2009; van 127 

Leeuwen et al., 2014). Successful emissions inventories such as the widely used Global Fire 128 

Emissions Database (GFED; van der Werf et al., 2010) use this bottom-up formulation to deliver 129 

spatially explicit fuel consumption totals to which biome specific EFs are then applied, and GFED 130 

currently delivers monthly emissions estimates (0.25° grid cells) around a year after the MODIS 131 

MCD64A1 BA data become available. To account for unmapped ‘small fire’ BA, the most recent 132 

GFED v4.1s also applies a BA ‘boost’ based on active fire detections (Van der Werf et al., 2017), 133 

though the methodology (based on Randerson et al., 2012) remains to be fully validated.  134 

 135 

2.2 FRP Based Methodologies 136 

An alternative to BA-based fire emissions inventory methods are FRP-based approaches, where 137 

FRP observations integrated over a fire’s lifetime are used to estimate fire radiative energy (FRE) 138 

release. Since even fires covering 10-3 to 10-4 of a pixels area can be detected from polar or 139 

geostationary orbit, even rather small fires can be included in this integration (Roberts et al., 2005). 140 

However, some fires will remain below the sensors minimum FRP detection limit (Roberts et al., 141 

2015). Furthermore, whilst small-scale experiments show FRE is directly relatable to total fuel 142 

consumption with minimal dependence on vegetation type (Wooster et al. 2002; 2005; Kremens 143 

et al., 2012), the linear scalar between FRE and biomass burned may show a biome dependence 144 

when observing FRP from orbit, in part because different proportions of the fire-emitted FRP 145 

maybe missed across different biomes (e.g. because of variable tree canopy cover; Freeborn et al., 146 

2009). Nevertheless, FRP approaches can in theory (i) remove reliance on the more difficult-to-147 

estimate fuel load and combustion completeness metrics required by ‘bottom up’ methods, (ii) 148 

enable impacts of far smaller fires to be incorporated than when using burned area measures alone 149 

(Wooster et al., 2005; Kaiser et al., 2012), and (iii) provide much quicker information delivery, at 150 
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higher temporal resolutions, than BA-based methods (e.g. Kaiser et al., 2012; Hertwig et al., 2013; 151 

Roberts et al., 2015; Huijnen et al., 2016). However, the simple and consistent conversion between 152 

FRP and fuel consumption rate found in the laboratory (e.g. Wooster et al., 2005) may not hold 153 

between biomes when using satellite FRP measures, and if only polar orbiting FRP ‘snapshots’ 154 

are used then most burning occurs when fires are not being observed by the sensor.  155 

 156 

The most widely used FRP-based emissions inventory is delivered by the Global Fire Assimilation 157 

System (GFAS: Kaiser et al., 2012), operated as part of the Copernicus Atmosphere Monitoring 158 

Service (CAMS: https://atmosphere.copernicus.eu/). GFAS uses the FRP approach to map mean 159 

fuel consumption globally (daily, 0.1°) from weighted averages of MODIS’ FRP ‘snapshots’. 160 

GFAS’ conversion between FRP and fuel consumption is based on biome-specific conversion 161 

factors [, kg.MJ-1] derived from comparisons between GFAS’ monthly FRP totals and the 162 

matching GFED v3.1 dry matter fuel consumptions (Kaiser et al., 2012). This is a pragmatic and 163 

sensible solution to converting satellite-derived FRP data into fuel consumption estimates, but has 164 

the disadvantage of building back into the FRP-based approach uncertainties inherent in GFEDs 165 

pre-fire fuel load and combustion completeness parameters (Reid et al., 2009; Vermote et al., 166 

2009), as well as any biome-dependent biases in the MODIS BA product (e.g. Giglio et al., 2013). 167 

It also means that GFAS and GFED are driven to provide rather similar fuel consumption totals 168 

and thus fire emissions, limiting their independence (Kaiser et al., 2012). More independent FRP-169 

based methodologies are provided by the Fire Energetic and Emissions Research (FEER) system 170 

(Ichoku and Ellison, 2014), the Brazilian Biomass Burning Emission Model with FRP assimilation 171 

(3BEM_FRP) (Pereira et al., 2016) and IS4FIRES (Soares et al., 2015), which all relate MODIS 172 

FRP measures directly to fire emissions without recourse to a fuel consumption estimation stage. 173 

Our new FREM methodology builds on this type of formulation -  extending it to exploit the 174 
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advantages of geostationary FRP observations in order to avoid the many spatio-temporal 175 

sampling issues inherent in use of polar-orbiting FRP data alone (which can lead to FRE under- or 176 

over-estimation (Roberts et al., 2009; Freeborn et al., 2011; Wiedinmyer et al., 2011; Kaiser et al., 177 

2012; Andela et al., 2015). Use of multi-day MODIS FRP data can reduce such sampling biases, 178 

but creates only low temporal resolution FRE estimates (Vermote et al., 2009; Freeborn et al., 179 

2011). Combining FRP snapshots with diurnal cycle parameterisations may provide higher 180 

frequency estimates, assuming the early afternoon MODIS overpass roughly captures the daily fire 181 

activity peak (e.g. Ellicott et al., 2009; Vermote et al., 2009; Freeborn et al., 2011; Andela et al. 182 

2015), but as demonstrated in Fig. 1 the time difference between the maxima of the fire diurnal 183 

cycle and the afternoon MODIS overpass shows significant spatial variation, as does the fraction 184 

of the total daily fire pixel count that occurs during the MODIS overpass window (Fig. 2). Where 185 

the latter is particularly low, daily FRE (or average FRP) measures derived from MODIS are more 186 

prone to bias, potentially leading to spatially varying differences between such FRE totals and 187 

actual fuel consumptions.  This is likely to be a key driver of the need for GFAS’ biome-dependent 188 

conversion factors [] that link daily MODIS-derived FRE and fuel consumption (Kaiser et al., 189 

2012), with additional factors including biome dependent biases in the MCD64A1 BA data that 190 

drive GFED, to which GFAS is calibrated (Giglio et al., 2013). 191 
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  192 

 193 

Figure 1. Mapped difference (hrs) between the time of maximum active fire pixel count (i.e. daily 194 

fire activity peak) and the ± 1 hr window encompassing the MODIS local solar overpass time 195 

(which depends on changing location within the MODIS swath). Data are for 2010 and based on 196 

Meteosat Second Generation (MSG) SEVIRI FRP-PIXEL Product available from the 197 

EUMETSAT LSA SAF (Wooster et al., 2015), spatially aggregated into 0.5° grid cells. Subset 198 

graphs show example histograms of FRP-PIXEL active fire detections for three 0.5° grid cells 199 

located over eastern Central African Republic, Northern Mozambique, and southern Kenya, with 200 

a functional fit to these data and the four MODIS overpass windows per day also indicated. Only 201 

fire detections with confidences > 50% are included (Wooster et al., 2015). 202 
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 203 

 204 

Figure 2.  Spatial distribution of active fire detection opportunities offered by the MODIS 205 

sampling windows shown in Fig. 1. This is expressed as the ratio of the Meteosat SEVIRI FRP-206 

PIXEL active fire detections made within the ± 1 hr window surrounding the four daily MODIS 207 

overpass times (shown in Fig. 1) to the total number of daily detections. Source data are those of 208 

Fig. 1. 209 

 210 

Further factors challenging the use of spatially-invariant FRE to fuel consumption conversion 211 

factors, is that spaceborne FRP data are subject to geographically-varying measurement artefacts 212 

absent from laboratory-scale observations. These include (i) blocking of a proportion of surface 213 



12 
 

fire FRP by any overlying tree canopy (e.g. Freeborn et al., 2014; Mathews et al., 2016), (ii) FRE-214 

biases caused by the presence of different proportions of active fire pixels below the sensors FRP 215 

detection limit (e.g. Schroeder et al., 2008; Freeborn et al., 2009; Roberts et al., 2015), and (iii) 216 

varying flame depths and soot volume fractions leading to varying flame emissivity’s (Johnson et 217 

al., 2015). The magnitude of such artefacts depends on the ecosystems vegetation and/or fire 218 

regime (Edwards, 1984; Chuvieco et al., 2008), furthering the biome dependence of satellite-219 

derived FRP (or FRE) to fuel consumption relations. 220 

 221 

3. DETAIL ON THE FREEMISSIONS APPROACH TO FIRE EMISSIONS ESTIMATION 222 

FREM is designed to deal with a series of limitations that currently impact use of the satellite fire 223 

radiative power approach by; 224 

 225 

(i) Removing observation biases that stem from the incomplete sampling of the fire diurnal 226 

cycle provided by polar-orbiters. FREM uses geostationary FRP observations, and in 227 

addition to removing the type of biases shown in Fig. 1, further benefits of such near-228 

continuous FRP data in relation to smoke emissions transport modelling have been 229 

demonstrated by e.g. Baldassarre et al. (2015) and Roberts et al., (2015). 230 

(ii) Deriving relations that link FRP to fire emissions fluxes and fuel consumption rates 231 

that inherently account for gross, inter-biome variations in FRP measurement bias. 232 

Such biases include, the changing wavelength-dependent emissivity of flames that will 233 

vary between fire types dominating the different biomes (Johnson et al., 2015), and the 234 

changing degree of tree-canopy interception of surface fire FRP, highlighted as an issue 235 

by Freeborn et al. (2014) and demonstrated by Matthews et al. (2016).  236 
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(iii) Removing the need to link satellite FRP observations to fuel consumption rates using 237 

factors derived in small scale experiments that may not be fully representative when 238 

using satellite-FRP measures of landscape scale fires (e.g. Wooster et al., 2005), or 239 

which are based on landscape-scale fuel consumption metrics stemming from burned-240 

area based emissions inventories such as GFED. Use of the latter by e.g. Kaiser et al. 241 

(2012) removes the independence of the FRP-based emissions calculations and builds 242 

into the methodology issues affecting BA based inventories, such as current inabilities 243 

to detect many ‘small area’ and/or sub-canopy fires (Randerson et al. 2012) and 244 

uncertainties in the fuel load per unit area and ‘combustion completeness’ terms (Reid 245 

et al., 2009). 246 

 247 

FREM estimates emissions of total particulate matter (TPM) directly from geostationary FRP data 248 

via application of biome-dependent smoke emissions coefficients [Cbiome,], these being calculated 249 

from per-fire matchups of FRE and smoke plume aerosol optical depth (AOD). Freeborn et al. 250 

(2008) and Ichoku et al. (2008) already demonstrated strong relations between FRP and aerosol 251 

flux in the laboratory, and applying this approach to satellite derived FRP data removes many of 252 

the assumptions and interdependences discussed in Section 2.  Trace gas fluxes can be 253 

subsequently estimated from the TPM emissions via application of the appropriate emissions 254 

factor ratios. 255 

 256 

The FEER approach of Ichoku and Ellison (2014) already uses biome-dependent TPM ‘smoke’ 257 

emissions coefficients [Cbiome, [kg.MW-1]) to deliver a top down emissions methodology fully 258 

independent of fuel consumption-based methods. FEERs coefficients were derived from 259 

combinations of instantaneous MODIS FRP (MW or J.s-1) and TPM emission rate (Fe, [kg.s-1]) 260 
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data, the latter calculated from simultaneously timed MODIS AOD products combined with plume 261 

height and wind-speed estimates. Smoke plume heights are often rather uncertain (e.g. Sofiev et 262 

al., 2012; Paugam et al., 2016), and a single FRP measure may not reflect the time-integrated FRP 263 

characteristics a fire typically shows over the hours needed to generate the type of large-scale 264 

plume observable in the 10 km MODIS AOD data (Baldassarre et al., 2015; Roberts et al., 2015).  265 

Indeed, bias seems likely because some of the smoke present in these large plumes will have been 266 

generated earlier in the diurnal cycle than the MODIS FRP observation made simultaneously with 267 

the AOD assessment.  To help counteract this, Ichoku and Ellison (2014) match only part of the 268 

plume to the instantaneous FRP measure, which required assumptions on wind speed and direction 269 

at plume height.  A key advantage of FREM’s use of semi-continuous geostationary FRP data is 270 

that it allows each matchup to be based on the fire’s entire FRP time-series, and its entire smoke 271 

plume AOD recorded at the moment of the MODIS overpass, removing the sampling-time bias, 272 

reliance on smoke plume height and velocity, and the need to select only a fraction of each fire’s 273 

plume. 274 

 275 

4. SMOKE EMISSION COEFFICIENTS DERIVATION 276 

 277 

4.1 Geographic Area and Biome Delineation 278 

This first FREM implementation focuses on southern hemisphere Africa (0.0 - 34.0o S, 8.0 - 52o 279 

E), a region showing a prolonged annual dry season (July to Sept) during which herbaceous 280 

vegetation is either dry or dormant and deciduous leaves contribute to the preponderance of fire 281 

(Archibald et al., 2009). The regions wetter areas often sustain closed-canopy forests with 282 

prolonged moist conditions and heterogeneous vegetation structures that can constrain fire spread, 283 

whilst drier grasslands and more open forests and woodland savannas tend to host larger and more 284 
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spatially contiguous fires, albeit with reduced accessibility to higher fuel loads. We used the 285 

GLOBCOVER 2009 landcover map (validated by Bicheron et al., 2011), derived from 300 m 286 

spatial resolution ENVISAT MERIS observations, to derive our biome classification. Unlike the 287 

single ‘savanna’ class used by GFED and GFAS, we map grassland and woodland savanna biomes 288 

separately, as recommended by the Intergovernmental Panel on Climate Change (IPCC, 1997) 289 

guidelines for GHG emissions reporting (Korotzi et al., 2004). Our aggregated landcover classes 290 

are functions of the four main GLOBCOVER vegetation structure groups of Managed Lands 291 

(including Croplands), Shrubs & Herbaceous, Grasslands, and Trees & Woody (Sophie et al., 292 

2010), and we subdivided the latter into Closed Forest and Open Forest/Woodlands (also 293 

sometimes termed woodland savanna). The resulting final five biomes we term closed forest, 294 

managed lands, shrublands, and two types of savanna - Open Forest/Woodland (woodland 295 

savanna), and Grasslands/Savanna (grassland savanna). The spatial distribution of these five 296 

biomes (shown in Fig. 3) is in fact very similar to the independently-derived Southern African 297 

woodland-grassland classification of Korotzi et al. (2004), derived by thresholding the MODIS 298 

percentage tree cover product (Hansen et al., 2002).  We derived Cbiome coefficients for our five 299 

biomes via per-fire matchups of FRE and AOD-estimated plume mass of total particulate matter 300 

[TPM; kg]. 301 

 302 

4.2 Fire Radiative Power and AOD Datasets 303 

Geostationary FRP data came from the EUMETSAT Land Surface Analysis Satellite Applications 304 

Facility (LSA SAF: http://landsaf.meteo.pt) Meteosat SEVIRI FRP-PIXEL product (15-min, 3 km 305 

resolution at the sub-satellite point), fully described in Wooster et al. (2015). Comparison to 306 

simultaneous MODIS FRP data indicates low bias on a per-fire basis, though the lowest FRP fires 307 
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(FRP  40 MW) are typically under-counted by SEVIRI compared to MODIS due to the formers 308 

larger nadir pixel area (Roberts et al., 2015).  309 

 310 

Similar to Ichoku and Ellison (2014), we used MODIS 550 nm 10 km spatial resolution AOD data 311 

(Collection 6 MOD/MYD04_L2; Levy et al., 2013) to derive plume TPM. AOD’s from Terra 312 

MODIS (~ 10:30 am) and Aqua (~ 1:30 pm) are generated using two retrieval algorithms, Dark 313 

Target - developed to work over dense dark vegetation, and Deep Blue - developed originally to 314 

provide coverage over brighter surfaces but now expanded to all cloud-free land. A combined 315 

AOD data layer, based on a merge algorithm, is also provided to minimise coverage gaps. FREM 316 

uses the Deep Blue output because it only needs coverage around the selected matchup fires and 317 

because these shows best agreement with southern Africa AERONET AODs (Sayer et al. 2014). 318 

 319 

4.3 Fire Matchup Selection 320 

To aid matchup selection, cloud-cover information from the LSA SAF Meteosat SEVIRI FRP-321 

PIXEL Quality Product were used (Wooster et al., 2015), along with 10 m height mean zonal wind 322 

fields from ERA interim reanalyses (Balsamo et al., 2015). Cloud and wind velocity screening 323 

masks were applied to daily composites of SEVIRI FRP accumulated up to the local MODIS 324 

overpass time. Simple criteria were used to identify regions containing potential matchup fires: 325 

 326 

(i) Cloud free conditions, to provide the FRP record of an entire fire. 327 

(ii) Near surface winds  5 ms-1, to aid generation of substantial smoke plumes. 328 

(iii) A high total sum of SEVIRI-derived FRP (1000 MW) up to the time of the MODIS 329 

overpass, to ensure the presence of many potential matchup fires. 330 

 331 
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To help identify sufficiently isolated matchup fires, a series of morphological operations were also 332 

applied to the daily screened composites. These combined criteria allowed us to select a series of 333 

500 km  500 km target regions (Fig. 3), within which matchups were identified. 334 

 335 

 336 

Figure 3. FREM biome map of southern Africa, based on reclassification of the GLOBCOVER 337 

2009 landcover map and appearing similar to the woodland/grassland classification of southern 338 

Africa derived by Korontzi et al. (2004). Outlines show the thirty-one 500 km  500 km target 339 

regions from which matchup fires used to generate the biome-dependent FREM smoke emissions 340 

coefficients (Cbiome) of Fig. 7 were selected. Red outlined region has its FRP time-series shown in 341 

Fig. 4. 342 

Each of the target regions outlined in Fig. 3 were examined across a ten-day period around the date 343 

of the identified fire activity highlighted using tests (i) to (iii) and the morphological operations 344 
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described above. The FRP time-series of each region was used to identify the time of day at which 345 

fire activity was minimal, and this was used as the start time for each FRP temporal integration 346 

period to calculate the per-fire FRE, with the end time being the that of the respective Terra and 347 

Aqua MODIS AOD product used in the matchup (Fig. 4). The need to find fires whose plumes 348 

were spatially isolated from others did limit the search area/times somewhat – as some regions and 349 

periods that matched most of our criteria showed so much smoke it was difficult to isolate 350 

individual plumes. Future work will endeavour to improve on this by exploiting far higher spatial 351 

resolution AOD products, rather than the 10 km data used herein. 352 

 353 

 354 

 355 

 356 

Figure 4. Time series of SEVIRI hourly active fire pixel detections (grey bins) and hourly FRE 357 

(black line) for the 500 km  500 km region highlighted in red in Fig.3 in August 2011, located 358 

south of the Okavango Delta (see imagery in Fig. 5). Overpass times of Terra and Aqua MODIS 359 

are shown by green and blue vertical lines respectively, alongside daily solar noon (red) and the 360 

daily time of minimum fire activity minimum (magenta). Error bars on hourly FRE are calculated 361 



19 
 

from the FRP uncertainties delivered in the geostationary FRP-PIXEL product (Wooster et al., 362 

2015).  363 

 364 

Each of the thirty-one regions, identified between July 2011 and November 2011, shown in Fig. 365 

3, contained many candidate matchup fires, each composed of multiple active fire pixels (Fig. 5a, 366 

b).  Only those for which a single GLOBCOVER class represented more than 50% of the active 367 

fire pixel locations were retained, in order to avoid burns that showed too much consumption of 368 

mixed biome vegetation. This still left hundreds of candidate fires (Fig. 5a), and for each the smoke 369 

plume was outlined and the corresponding AOD data examined (Fig. 5b, c). Fires were removed 370 

where incorrect masking of smoke as cloud had clearly occurred in the AOD products, or where 371 

non-biomass burning aerosols or surface reflectance effects seemed likely to have erroneously 372 

contributed to AOD, for example at the Etosha Pan (Namibia) or Kalahari (Botswana). 373 
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Figure 5. Example region of southern Africa from which matchup fires were selected on the 375 

afternoon of 12th Aug 2011, 12:40 UTC (MODIS Aqua overpass). (a) Region outlined in red in 376 

Fig. 3, south of the Okavango delta, depicted as a colour composite using data from the Aqua 377 

MODIS afternoon overpass [RGB=1(0.6µm), 4(0.55µm), 3(0.47µm)]. Smoke plumes from 378 

candidate active fires are outlined with yellow vectors, and the centre locations of each SEVIRI 379 

active fire pixel detected from the time of the identified active fire minimum (shown in Fig. 4) up 380 

until this Aqua overpass time are shown as red dots. (b) Zoom around the bottom left fire and 381 

plume shown in (a) to indicate detail. The dark burn scar left by the fire can clearly be seen. (c) 382 

Matching MYD04_L2 AOD data derived from the Aqua MODIS overpass shown in (b). 383 

 384 

Each retained matchup fire had its FRE and column-integrated mass of emitted total particulate 385 

matter (TPM) estimated. The former from the temporal integration of FRP over the fire’s lifetime, 386 

and the latter from the summed excess AOD (∑AOD) of the outlined smoke plume, with any 387 

pixel partly or wholly encompassed by the vector included in the AOD summation (Fig. 5c and 388 

Fig. 6). All plumes were large enough to be covered by more than one 10 km AOD pixel, most by 389 

many pixels, as seen from the examples in Fig. 5 and 6. The column-integrated mass of emitted 390 

TPM was calculated following Ichoku and Ellison (2014) as the surplus 550 nm AOD above the 391 

(non-plume) AOD background (which varied over time due to e.g. smoke from prior or distant 392 

fires), multiplied by the ratio of the AOD product pixel area (m2) to the light extinction efficiency 393 

per unit of biomass burning aerosol mass (e, m².g-1).  e (550 nm) was selected as 3.5 ± 1.0 m².g-394 

1, based on values listed in Table 1 for ‘fresh’ smoke taken from studies conducted primarily within 395 

southern Africa (plus other savanna-type fires).  Ichoku and Kaufman (2005) and Ichoku and 396 

Ellison (2014) assumed a higher e of 4.6 m2.g-1, at the top end of our range, which was selected 397 

as a ‘global average’ applicable to plumes across all fire-affected global environments. A 398 
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substantially higher 7.6 +/- 1.9 m2.g-1 value was assumed by Vermote et al (2005) (based on Chin 399 

et al. 2002), again for global aerosols and in that case not only from ‘fresh’ smoke. Abel et al. 400 

(2005) indicate e typically increases as smoke ages. 401 

 402 

Table 1. Values of light extinction efficiency per unit of biomass burning aerosol mass (e, m².g-403 

1), also termed the smoke mass extinction coefficient, appropriate for 550 nm unless otherwise 404 

stated. A mean e of 3.5 ± 1.0 m².g-1 was used herein, based on these studies. 405 

 406 

e (m².g-1) Reference Notes 

2.22 (3.37) Abel et al. (2005) Fresh southern African biomass burning smoke (and 

value for ‘aged’ regional ‘haze) 

3.8 – 4.5 Reid et al. (2005a) Smoke from Zambian savanna burning  

4.5 Andrews et al. (1989) Computed mass extinction coefficient of ‘dry’ 

smoke. 

4.14 ± 1.06 Weinman et al (1981) Savanna fires (Australia), assessed at 500 nm and 

assumed ~ 10% lower for 550 nm. 

 407 

 408 
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 409 

Figure 6. MODIS Aerosol optical depth (AOD) data matching the MODIS image shown in Fig. 410 

5a.  The yellow outlines from Fig. 5 here encompass the set of 10 km  10 km MODIS AOD 411 

product pixels that are included in the plume-integrated AOD calculation for each fire. Any pixel 412 

partly or wholly encompassed by the vector is included in the AOD summation, which is then used 413 

to estimate the mass of total particulate matter in the plume. Some areas of apparently high AOD 414 

are unrelated to biomass burning and so are not outlined here, for example that immediately south 415 

of the Okavango Delta (cf. Fig. 5) neighbouring a highly reflective salt pan. 416 

 417 

4.5 Derivation and Interpretation of Smoke Emissions Coefficients (Cbiome) 418 
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Final smoke emission coefficients for each biome are shown in Fig. 7 and were derived from the 419 

per-fire FRE and plume TPM matchups using linear orthogonal distance regression, which takes 420 

into account uncertainties in both datasets (Reed, 1989).  Derived Cbiome values range from 13.03 421 

± 0.23 g.MJ-1 (Grasslands) to 65.63 ± 0.91 g.MJ-1 (Closed Canopy Forest). Our SEVIRI-derived 422 

𝐶௚௥௔௦௦௟௔௡ௗ value is very similar to the laboratory derived 14.4 ± 4.3 g.MJ-1 determined by Freeborn 423 

et al., (2008) using IR camera-derived FRP and filter-based aerosol measures, and lies towards the 424 

middle of the 10 – 19 g.MJ-1 range found for laboratory burns of southern African grasses (Ichoku 425 

et al., 2008). Our value for Open Canopy Forests/Woodlands (19.75 ± 0.49 g.MJ-1) is also similar 426 

to the 18 ± 5 g.MJ-1 calculated by Ichoku and Ellison (2014) for southern African savannas 427 

(Zambia), using MODIS FRP data and the FEER methodology, though our SEVIRI-derived value 428 

has significantly lower uncertainty – perhaps reflecting our more discrete land-cover classification 429 

that distinguishes Grassland Savanna from Open Forest/Woodland Savanna (Fig. 3). 430 

 431 

Ichoku and Ellison (2014) found the MODIS-derived Cbiome for southern African forests (D.R. 432 

Congo; 15 ± 6 g.MJ-1) to be lower than that of Grassland, which is perhaps surprising since FRP 433 

observations in forests would be expected to be more affected by canopy interception of the 434 

upwelling fire-emitted thermal radiation, and forest burns also typically show greater particulate 435 

matter emissions per kg of fuel burned than do grassland burns (Akagi et al., 2011). The smoke 436 

emissions coefficients for Closed Canopy Forest and Open Canopy Forest/Woodland Savanna we 437 

derive using SEVIRI and the FREM methodology (Fig. 7a, b) are, respectively, 5 and 1.5 what 438 

we find in Grassland Savanna (Fig. 7d), and we find this potentially more appropriate than values 439 

lower than for Grassland Savanna. We suggest similarly that tree canopy interception of upwelling 440 

surface-fire emitted FRP is likely also responsible for at least part of the higher FRE-to-fuel 441 

consumption ‘conversion factor’ derived for tropical forest biomes compared to savanna biomes 442 
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during the calibration of GFAS v1.2 with GFED v3.1 (Kaiser et al., 2012). Biome-dependent 443 

differences in the performance of GFED, for example in relation to burned area detectability 444 

(which can vary significantly between savannas, tropical forests and agricultural burning areas for 445 

example; Giglio et al., 2010; Randerson et al., 2012), may also play a part. By relating FRE directly 446 

to particulate matter release using emissions coefficients derived from the satellite observations 447 

themselves, FREM bypasses some of the issues affecting other fire emissions inventories, enabling 448 

it to be both fully independent of GFED and GFAS and to consider the observational 449 

characteristics of the satellite FRP measures of each biome (e.g. increasing amounts of canopy 450 

interception of upwelling fire emitted thermal radiation in biomes with a higher mean percentage 451 

tree cover). 452 

 453 

 454 

 455 

 456 
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 457 

458 

 459 

 460 



27 
 

 461 

 462 

Figure 7. Biome dependent smoke emissions coefficients (Cbiome, g.MJ-1) derived from the slope 463 

of the linear best fit made between the amount of total particulate matter in a plume (grams) and 464 

the amount of radiative energy released by the causal fire (FRE, MJ).  Red shaded area represents 465 

the 95% confidence interval on this slope (i.e. the uncertainty in Cbiome), whilst the grey shaded 466 

area represents the prediction interval (i.e. the interval encompassing to 95% probability the value 467 

of TPM given a single value of FRE). Coefficients are shown for the biomes of (a) Closed Canopy 468 

Forest, (b) Open Canopy Forest and Woodland (Woodland Savanna), (c) Shrublands, (d) 469 

Grasslands (Grassland Savanna), and (e) Managed lands (including Croplands).  For each biome, 470 

each data point represents a single fires FRE calculated from a series of Meteosat FRP-PIXEL 471 

products (Fig. 4), and specifically from the fire activity  minimum up until the time of the satellite 472 

overpass from which the matching smoke plume TPM was estimated from the MODIS AOD 473 

product (Fig. 5; Fig. 6). Uncertainties in FRE (1) are derived from the FRP-PIXEL uncertainty 474 

metrics (Wooster et al., 2015), whereas those in TPM are derived from the ±1.0 m².g-1 uncertainty 475 

in the assumed smoke aerosol extinction cross-section (Table 1) and the MODIS AOD uncertainty 476 

layer. MODIS AOD uncertainties estimates correspond to one-standard-deviation Gaussian 477 

confidence interval of the envelopes resulting from the comparison of retrieved AOD data and 478 

AERONET measures. These depend on the AOD, QA flag, and viewing geometry (Sayer et al., 479 

2013). 480 

  481 

 482 

5. APPLICATION TO EMISSIONS INVENTORY DEVELOPMENT 483 

 484 
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5.1 Emissions of Total Particulate Matter (TPM) 485 

The smoke emissions coefficients derived in Section 4 were applied to hourly averages of the 486 

Meteosat SEVIRI FRP-PIXEL products described in Wooster et al. (2015), thus calculating pixel-487 

based TPM emissions rates (g.hr-1). To account for the fact that each SEVIRI pixel can contain 488 

more than one biome – especially in fragmented areas and transition zones - the fractional coverage 489 

of each of our five biomes was calculated for each pixel, and the relevant area weighted average 490 

smoke emissions coefficient used.  Coefficients were in fact applied to three versions of the FRP-491 

PIXEL data - (i) the basic FRP observations made at the native SEVIRI spatial resolution, (ii) 492 

those adjusted by the cloud cover fraction (δ) stored in the matching FRP-GRID product (5° 493 

resolution), and (iii) those adjusted by cloud-cover fraction and an additional factor accounting for 494 

under-counted ‘small’ (i.e. low FRP) fires at or below the nominal SEVIRI FRP minimum 495 

detection limit. Each FRP dataset is fully detailed in Wooster et al. (2015).  Fig. 8 shows the 496 

resulting monthly FREM-derived time-series of TPM emissions, alongside those of GFEDv4.1s 497 

(Van der Werf et al., 2017; www.globalfiredata.org/), GFASv1.2 (Kaiser et al., 2012; www.gmes-498 

atmosphere.eu/about/project_structure/input_data/d_fire/) and FEERv1.0-G1.2 (Ichoku and 499 

Ellison, 2014; www.feer.gsfc.nasa.gov/data/emissions/). Differences between FREM monthly 500 

‘raw’ and ‘cloud adjusted’ TPM emissions are typically low and within the uncertainty of the ‘raw’ 501 

estimates alone throughout most fire seasons (except late season 2009), indicating that most fires 502 

in southern Africa typically burn far away from significant cloud cover. FREM’s mean cloud 503 

adjusted TPM emissions are (1.96 ± 0.39) x107 Tg.year-1, 45% higher than GFAS v1.2 and 12% 504 

higher than GFED v4.1s (which already includes a substantial upward adjustment for fires whose 505 

burned area is too small to be detected by MODIS; Van der Werf et al., 2017), but lower than 506 

those of FEER by a margin of ~ 30%. 507 

 508 



29 
 

The TPM emissions distribution between the different biomes is shown in Table 2, and for the 509 

peak fire months of July/August, mean FREM cloud-adjusted TPM emissions are 50% higher than 510 

GFAS, 27% lower than those of FEER, and 12% higher than GFED v4.1s.  The GFED burned 511 

area and/or fuel consumptions per unit area would overall therefore need to be increased by 512 

relatively minor amounts for the resulting emissions to match those of FREM – though when 513 

FREM emissions are adjusted for the low FRP component of the regions fire regime - which is 514 

undetectable by SEVIRI but detectable by MODIS (shown by e.g. Freeborn et al., 2009) – FREM’s 515 

mean annual TPM emissions increase more substantially above GFED v4.1s (to an average of 516 

64%), with an even higher difference when compared to GFAS v1.2 (Fig. 8). These cloud-adjusted 517 

FREM emissions of total particulate matter are, however, within 1% of those provided by the 518 

MODIS FRP-based FEER inventory. 519 

 520 

Figure 8. Monthly total particulate emissions estimates for southern African fires, derived from 521 

the FREemissions methodology (FREM) applied to the SEVIRI FRP-PIXEL product of Wooster et 522 

al. (2015) for 2004-2012. Three versions are shown, those based on ‘raw’ SEVIRI FRP 523 

observations, those adjusted for cloud cover, and those adjusted for ‘cloud cover and under-524 

detected low FRP fires’ (see Section 5.1 and 5.2). The associated uncertainties are shown in each 525 

case. Corresponding TPM emissions from the GFED v4.1s, GFAS v1.2 and FEER v1.0 inventories 526 
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are shown for comparison, and the cloud and low FRP fire adjusted FREM values calculated from 527 

SEVIRI lie very close to the MODIS-derived FEER estimates. 528 

 529 

 530 

Table 2.  Emissions of total particulate matter (TPM; Tg) per year across southern Africa, as 531 

calculated using the FREM approach (Cloud and low FRP adjusted version), along with the 532 

percentage contributed by the different biome types of Fig. 3.  533 

 534 
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200

4 14.7 23.4 14.0 11.3 45.3 5.9 

200

5 16.1 25.3 13.9 12.0 42.6 6.3 

200

6 14.4 25.5 13.1 11.5 43.5 6.3 

200

7 16.2 24.0 14.0 12.2 42.0 7.8 

200

8 17.4 25.6 13.4 12.4 40.4 8.2 

200

9 16.1 25.4 13.3 11.5 42.8 6.9 

201

0 19.3 25.1 13.2 12.5 39.5 9.8 

201

1 17.3 22.6 14.1 11.8 38.0 13.5 

201

2 15.6 25.0 13.8 11.5 39.9 9.9 

 535 

 536 

5.2 Low FRP Fire Adjustment 537 

As seen in Fig. 8, the ‘low FRP fire’ adjustment (Wooster et al., 2015) increases FREM’s TPM 538 

emissions substantially compared to the ‘cloud-adjusted’ values alone. Freeborn et al. (2009; 539 

2014) describe in detail the bias adjustments needed to be made to SEVIRI’s FRP data when 540 
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deriving total FRP or FRE metrics, which are required to account for low FRP fire pixels below 541 

the SEVIRI minimum FRP detection limit. At the scales used here, a simple 46% upscaling 542 

delivers a SEVIRI-derived FRP dataset with very low bias ( 2%) compared to simultaneous 543 

MODIS FRP observations (Roberts et al., 2015), and this adjustment is included here. However, 544 

with the FREM approach it is possible that the adjustment should be of a smaller magnitude. This 545 

is because, whilst the generally high FRE fires used for the smoke emissions coefficient derivation 546 

(Fig. 7) have their FRP very well measured by SEVIRI at the time of the afternoon MODIS 547 

overpass, with only a 3 MW mean bias seen in southern Africa (Roberts et al., 2015), earlier in 548 

their lifetime these fires will likely have included areas burning below SEVIRI’s minimum FRP 549 

detection limit but whose smoke will have contributed to the AOD of the matching plume.  Thus 550 

the resulting smoke emissions coefficient will already likely account for some of the impact of fire 551 

pixels burning below the SEVIRI sensors minimum FRP detection limit, though the extent of this 552 

is unknown at present. For now therefore, the 46% upward adjustment used in the FRP-GRID 553 

product (Wooster et al., 2015; Roberts et al., 2015) is also applied in FREM as the ‘low FRP fire’ 554 

adjustment  555 

 556 

5.3 TPM Emissions Interpretation 557 

Outputs from FREM (cloud- and low-FRP fire adjusted) agree very well with those of FEER, are 558 

very significantly higher than those of GFAS (factor of 2.2), and are also higher than GFED 559 

(against which GFAS is calibrated) (Fig. 8). The implication that GFAS may significantly 560 

underestimate of TPM emissions across southern Africa agrees with Kaiser et al. (2012), who 561 

found GFAS’s southern African aerosol emissions required a 3 upward scaling to replicate AOD 562 

observations. Those of GFEDv3.1 (whose carbon emissions for southern Africa are around 20% 563 

lower than GFEDv4.1s used here) are reported to require a 2 upscaling (Tosca et al., 2013), and 564 
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Reddington et al. (2016) report need for similar upscalings based on an alternative aerosol model.  565 

FREM cloud- and low-FRP fire adjusted emissions therefore appear more consistent with TPM 566 

emissions totals stated to reproduce satellite AOD’s in southern Africa than are those of GFAS 567 

and GFED.  568 

 569 

In addition to differences in magnitude, Fig. 8 also indicates timing differences between emissions 570 

inventories. Across the nine years, FREM shows maximum TPM emissions in July -  except for 571 

August in 2010 - and GFED an almost even split between these two months. FEER shows peaks 572 

in August (apart from 2008 in Sept), as does GFAS (apart from 2008 again in Sept, and in 2005 573 

July). To help explore the reasons, Fig. 9 depicts for 2012 the percentage of daily FRE measured 574 

by SEVIRI that is released (a) during the two-hour window surrounding the four daily MODIS 575 

overpasses, and (b) by fires in each of the five biomes. Daily FRE (grey line) is high throughout 576 

most of June to August, and the proportion of daily FRE released around the MODIS overpass 577 

time also remains reasonably constant (Fig. 9a), with both starting to decrease more significantly 578 

from mid-September onwards. The July and August differences in month of maximum TPM 579 

emissions between FREM (which uses geostationary FRP) and FEER and GFAS (which both use 580 

MODIS FRP) seem therefore not to be due to a significantly changing fire diurnal cycle with 581 

respect to MODIS’ sampling times. Fig. 9b indicates however that a significant shift in the biomes 582 

being most affected by fire occurs between July and August, with an increase in the proportion of 583 

total FRE released in Grassland Savannas with respect to Open Forest/Woodland Savannas. In 584 

FREM, the smoke emissions coefficient for Grasslands is significantly lower than that of the higher 585 

fuel load Open Forest/Woodlands (Fig. 7), which is identifiable only because our biome classes 586 

discriminate between these two savanna types as recommended by IPCC (1997). Other fire 587 

emissions inventories predominantly classify these as a single biome, and so are largely invariant 588 
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to the distinction. FREM’s more discrete biome mapping appears to be the primary reason that it 589 

reports TPM emissions decreasing from July to August, because more of the fires are burning in 590 

grassland savanna biomes dominated by finer fuels whose emissions contain, on average, less 591 

particulate matter per unit of fuel consumed compared to more wooded savanna areas. Going into 592 

September, a diurnal cycle change does appear to occur, as the percentage of total radiative energy 593 

released during the MODIS overpass times decreases more markedly than during the two prior 594 

months (Fig. 9a), and the proportion of fires in grasslands and managed lands increases (Fig. 9b). 595 

 596 

 597 
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Figure 9. Percentage of daily FRE calculated from the Meteosat SEVIRI FRP-PIXEL product for 598 

2012 that is released (a) during the ± 1 hr window encompassing the MODIS overpass time, and 599 

(b) in each biome. For comparison to the percentage values, fire activity expressed as daily FRE 600 

from MSG SEVIRI is also shown (grey line, scaled from 0 to 100%). 601 

 602 

5.4 Comparison to GFEDv4.1s 603 

To explore in more detail per-biome TPM emission differences between FREM and GFED4.1s, 604 

Figure 10 shows the cumulative sum of FREM’s emissions as a function of the ratio of those of 605 

FREM to GFED4.1s (calculated for GFEDs 0.25° grid cells and for both cloud adjusted FREM 606 

(Fig. 10a) and cloud and low FRP fire adjusted FREM (Fig. 10b)).  Discounting adjustment of the 607 

TPM emissions factor, this ratio describes the change required to the GFEDv4.1s burned area 608 

and/or or fuel consumption per unit area measure of a grid cell such that the cells TPM emissions 609 

would equal those of FREM. Taking the Open Forest/Woodland Savanna biome first (which is 610 

responsible for over half of the overall TPM emissions; Fig. 9b), Figure 10a shows that in the 611 

cloud-corrected FREM inventory, 26% of emissions are accounted for by grid cells where FREM’s 612 

emissions are lower than GFEDv4.1s (i.e. FREM-to-GFED TPM ratio < 1.0), with a further 33% 613 

having a ratio in the range 1.0 to 1.5. For these cells, GFED burned area  fuel consumption per 614 

unit area metric would need to decrease or increase by a maximum of 50% for their emissions total 615 

to equal that of FREM (noting that GFED will have classed some of the cells as different biomes 616 

compared to FREM, and using only a single savannah class). Open Forest/Woodland Savanna 617 

cells needing more than a doubling of GFED4.1s burned area  fuel consumption per unit area are 618 

responsible for only a small fraction (~ 10%) of the biomes FREM emissions. The equivalent 619 

figures for other biomes can be extracted from Fig. 10a, and in order of their overall TPM 620 

emissions totals, the biomes of Open Forest/Woodland Savanna, Grassland Savanna, Managed 621 
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Lands and Shrublands show FREM TPM emission estimates 1.1, 2.3, 1.2, and 1.4 higher than 622 

GFED4.1s respectively, whereas Closed Forests are lower (0.7). Overall, FREM’s cloud-adjusted 623 

TPM emissions are 12% higher than GFED4.1s, but adjustment for low FRP fires increases the 624 

above ratios by a factor of 1.46 and substantially increases overall FREM TPM emissions above 625 

GFED4.1s (see Section 5.1), resulting in a consequent increase in the per-grid cell ratios as well 626 

(Fig. 10b). 627 

 628 

 629 

 630 

 631 

 632 

Figure 10. Cumulative sum of FREM-derived TPM emissions (%), expressed as function of the 633 

per-grid cell FREM-to-GFED v4.1s emissions ratio. Calculations were performed using the 0.25° 634 

grid cells of GFED, and 85% of cells had non-zero values in both inventories. < 1% of cells had a 635 

non-zero Colours are the same as those mapped in Fig. 3. (a) shows the results using the cloud-636 

corrected FREM, and (b) the cloud and low FRP fire corrected FREM. 637 

 638 

5.4 High Spatio-Temporal Resolution Emissions Estimates 639 
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Fig. 11 shows FREM’s hourly TPM emission rate [kg.hr-1] for 2012, the corresponding daily mean 640 

rate [kg.day-1] and those of GAFSv1.2 and FEERv1.1, and the equivalent daily mean rate 641 

calculated from the GFEDv4.1s monthly values. Note that GFEDv4.1s day-by-day estimates are 642 

also available via scaling of the monthly GFED totals with numbers of active fire detections made 643 

per day across the month (van der Werf et al., 2017). As with monthly totals (Fig. 8), FREM’s 644 

daily TPM emission rates (cloud and low-FRP fire adjusted) are very similar to those of FEER, 645 

whilst those of GFED and GFAS are substantially lower - apparently unrealistically so as already 646 

discussed by Kaiser et al. (2012), Tosca et al. (2013) and Reddington et al. (2016). In addition to 647 

the apparently more representative magnitudes, the potential value of the very high temporal 648 

resolution emissions estimates offered by FREM is clear from the fact that hourly rates peak at 649 

more than 500% of the daily means. Fig. 12 provides more detail of this for August 2012, 650 

illustrating the very strong emissions diurnal cycle, and this temporal detail may become 651 

particularly important when linking emissions to atmospheric chemical transport models (e.g. Hyer 652 

et al., 2007; Baldassarre et al., 2015; Roberts et al., 2015).  653 

 654 

 655 

  656 
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Figure 11.  Emission rates of total particulate matter (TPM) coming from landscape fires in 2012 657 

across southern Africa, as derived from the FREM methodology applied to SEVIRI FRP-PIXEL 658 

data, and from GFEDv4.1s, GFASv1.2 and FEERv1.1. GFAS and FEER provide daily values, and 659 

GFED monthly values. All are shown as equivalent daily mean rates for comparison, but the 660 

FREM-derived values can be calculated at up to 15-min temporal resolution direct from the 661 

SEVIRI FRP observations. In addition to FREM daily means, FREM-hourly averages are therefore 662 

also shown (rhs y-axis), and these show far higher daytime peaks than the daily averages.  663 

 664 

 665 

  666 

Figure 12.  Data of Fig. 11 shown only for August 2012 to see more detail, particularly of the 667 

strong diurnal variability in TPM emissions enabled by the FREM approach.  668 

 669 
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In addition to its very fine temporal resolution, FREM can operate at the full spatial resolution of 670 

the original FRP observations, which for SEVIRI coarsens to around 0.05° over southern Africa. 671 

The 625, 25 and 25 smaller pixel area than the grid cells of GFED, GFAS and FEER 672 

respectively leads to far finer-grained definition of smoke emission sources (Fig. 13), though the 673 

overall spatial patterns of FREM’s emissions sources broadly agrees with the other inventories 674 

(Fig. 14).  675 

 676 

Figure 13.  Total particulate matter (TPM) emission density (g.m-2 equivalent averaged over each 677 

grid cell) for the 25,000 km2 area of southern Africa outlined in red in Fig. 3 for 2011, as depicted 678 

by (a) GFEDv4.1s (0.25° grid cells), (b) GFASv1.2 (0.1° grid cells), (c) FEERv1.1 (0.1° grid cells) 679 
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and (d) FREM inventory (0.05 ° grid cells). The coarser the grid resolution typically the lower the 680 

emission density values, since many of the fires typically do not cover entire cells, particularly for 681 

the coarser-scale inventories. Results for the FREM cloud and small fire adjusted inventory are 682 

shown in (d), with a different colour-bar than for the other inventories. Values for the cloud-683 

adjusted FREM inventory can simply be provided by using the colour bar shown in (a), (b) and (c) 684 

also for (d).  685 

 686 

 687 

Figure 14.  Total particulate matter (TPM) emission density (g.m2) across all of southern Africa 688 

in 2011, as depicted by (a) GFEDv4.1s (0.25 ° resolution), GFASv1.2 (0.1 ° resolution), FEERv1.1 689 

(0.1 ° resolution) and the SEVIRI FRP-derived FREM inventory (0.05 ° resolution). See Fig. 13 690 

and its caption for more detail, and note the differing colour bar of (d). 691 
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 692 

 693 

 694 

6. TRACE GAS & CARBON EMISSIONS, AND 695 

FUEL CONSUMPTION PER UNIT AREA 696 

 697 

6.1 Trace gas Emissions Methodology 698 

Trace gas emissions are estimated in FREM using standard gaseous emissions factors (EFGAS), but 699 

applied in a different way to in GFED and GFAS, where they are multiplied by the calculated total 700 

fuel consumption (or fuel consumption rate) to estimate total emissions (or emissions rates). 701 

Within FREM, trace gas fluxes are instead calculated via direct multiplication of the FRP data by 702 

a set of gaseous emissions coefficients, avoiding the intermediate fuel consumption step. These 703 

coefficients are calculated via multiplication of the TPM emissions coefficients (Fig. 7; Table 3) 704 

and the relevant particulate and trace gas emissions factor ratios (i.e. the ratio of EFGAS to EFTPM), 705 

similar to how Huijnen et al., (2016) estimated CO2 and CH4 releases from SE Asian fires from 706 

optimised estimates of fire-emitted CO. As with the EFs themselves, EF ratios vary markedly by 707 

biome, and here we used EF’s from Andreae and Merlet (2001) - as do GFED and GFAS - to 708 

calculate the gaseous emissions coefficients (g.MJ-1) listed in Table 3. 709 

 710 

  711 
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Table 3. Trace gas smoke emission coefficients (and their uncertainties), derived using the ratio 712 

of the relevant trace gas emissions factor to total particulate matter emissions factor (g.kg-1.g.kg-1) 713 

and the smoke emissions coefficients (g.MJ-1) for total particulate matter (TPM) shown in Fig. 7 714 

(repeated in the Table). The emissions factors used in the calculation, taken from updates to 715 

Andreae and Merlet (2001) presented in Kaiser et al. (2012) are also shown. Note the smoke 716 

emissions coefficient represents ‘emissions (g) per unit of SEVIRI-observed FRE (MJ)’.  Use of 717 

geostationary sensors, such as the forthcoming Meteosat Third Generation (MTG), that have a 718 

minimum FRP detection limit different than that of SEVIRI (Freeborn et al., 2009; 2014) may 719 

result in the need to derive updated coefficients. 720 

 721 

Species Emission Coefficient ± uncertainty (g.MJ-1) 

Species Emissions Factor (g.kg-1) 

Closed Canopy 

Forest 

Open Canopy 

Forest/Woodland 

Shrubland Savanna 

Grassland  

Managed 

Lands 

TPM 65.6 ± 0.9 

11.8 

19.8 ± 0.5 

8.5 

17.4 ± 1.0 

8.5 

13.0 ± 0.2 

8.5 

15.6 ± 0.3 

8.5 

CO2 9044 ± 2506 1626 3825 ± 1460 

1646 

3361 ± 1296 

1646 

2523 ± 962 

1646 

3024 ± 1154 

1646 

CO 562 ± 189 

101 

142 ± 71 

61 

125± 64 

61 

94 ± 47 

61 

112 ± 56 

61 

CH4 36.7 ± 19.4 

6.6 

5.1 ± 2.8 

2.2 

4.5 ± 2.5 

2.2 

3.4 ± 1.9 

2.2 

4.0 ± 2.2 

2.2 

 722 

 723 

6.2 Trace Gas Emissions Results 724 



43 
 

FREM’s CO2, CO and CH4 emissions estimates (Fig.14a) show the same seasonal characteristics 725 

as those of TPM, with temporal peaks in accordance with GFED. In terms of CO, Pechony et al. 726 

(2013) report that GFED appears to underestimate emissions in the southern hemisphere, and 727 

report the strong influence of the diurnal cycle, with afternoon CO emissions being around double 728 

those estimated from the morning overpass of MOPITT. This attests to a potential advantage of 729 

the high temporal resolution FREM inventory. Kopacz et al. (2010) also report a roughly factor of 730 

two difference between GFEDv2 CO emissions for southern Africa and those estimated from 731 

adjoint atmospheric inversion of satellite CO observations. Comparison of Van der Werf et al. 732 

(2010) and http://www.globalfiredata.org/) shows a decrease in CO emissions for southern Africa 733 

from GFEDv2 to GFEDv4.1s, so the latter appears still to deliver CO emissions lower than satellite 734 

CO data may imply. The cloud-adjusted FREM inventory indicates CO emissions 11% and 44% 735 

higher on average than GFEDv4.1s and GFASv1.2 respectively, with much larger differences 736 

when the low-FRP fire FREM adjustment is included and CO flux magnitudes become very similar 737 

to those of FEER (Fig. 14). Similar relationships are seen for CH4 and CO2, and the flux of any 738 

other trace gases can be easily derived within the FREM framework via the application of the 739 

relevant emissions factor ratios. 740 
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  741 

Figure 15.  Monthly emissions (Tg) of CO2, CO and CH4 for southern Africa (2004-2012) for 742 

the FREM inventory, along with those of GFEDv4.1s, GFASv1.2 and FEERv1.1. 743 

 744 

6.2 Total Carbon Emissions and Fuel Consumption 745 

Since CO2, CO and CH4 are responsible for  99% of carbon emitted by southern African 746 

landscape fires (Delmas et al., 1995; Keene et al., 2006), summation of their carbon allows for 747 

derivation of total C-emissions. By making the normal assumption that vegetation is 50 ± 5% 748 

carbon, landscape-scale total fuel consumption can then be estimated - for the first time from a 749 

fully ‘top down’ approach.  Temporal trends in total C emissions replicate those seen in CO2 (Fig. 750 

15a), with mean (± 1) annual C-emissions of 710 (± 61) Tg calculated for southern Africa across 751 

the nine years of study (range of 213 Tg), rising to 1038 (± 88) Tg when the low FRP fire 752 

adjustment is included. Total fuel consumption is simply calculated as twice the carbon emissions, 753 



45 
 

and is 12% higher than GFEDv4.1s and 48% higher than GFASv1.2 based on the cloud-adjusted 754 

FREM values, and substantially more when the low FRP fire adjustment is included. Fuel 755 

consumption rates (Tg biomass.sec-1) for a pixel or grid cell can also be directly estimated from 756 

the TPM emission rates via a simple division by the TPM emissions factors (Table 3), providing 757 

an estimate of the combustion rate required to produce the inferred TPM fluxes. These fuel 758 

consumption rates can be temporally integrated to provide a direct estimate of total fuel 759 

consumption if individual gaseous emissions totals are not required. A related approach can be 760 

used to derive the equivalent of the FRE-to-dry matter conversion factors () of 0.29, 0.78 and 761 

0.96 kg.MJ-1 respectively for agriculture, savannah and tropical forest biomes that Kaiser et al. 762 

(2012) generate via the GFASv1.0 calibration to GFEDv3.1. For low-FRP fire adjusted FREM, 763 

we find conversion factors of 1.3 kg.MJ-1 for managed lands, 1.1 - 1.6 kg.MJ-1 for the various 764 

savannah types, and 3.8 kg.MJ-1 for closed canopy forest, each derived via satellite observations 765 

and TPM EFs alone, rather than calibration against other inventories or independent fuel 766 

consumption estimates. These conversion factors are substantially higher than the 0.37 kg.MJ-1 767 

found by Wooster et al. (2005) during experiments which measured FRE close to laboratory fires, 768 

directly because they take into account the factors that affect FRE estimates derived from above 769 

the canopy and from Earth orbit discussed in Section 2.   770 

 771 

6.3 Extension to Fuel Consumption Per Unit Area 772 

A stated advantage of FREM is that it avoids requiring estimates of fuel consumption per unit area 773 

(Fc ; kg.m-2), which typically come from multiplying fuel load and combustion completeness 774 

metrics that are generally considered the most uncertain aspects of fire emissions calculations 775 

(Reid et al., 2009). However, if Fc is needed FREM can be used to estimate it via the inverse of 776 

the Seiler and Crutzen (1980) emissions methodology employed in GFED, i.e. by dividing the grid 777 
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cell TPM-derived fuel consumption (Section 6.2) by its burned area.  Assuming each fire-affected 778 

0.05° grid cell (i.e. those mapped in Fig. 14d) is completely burned, the mapped Fc values for 2011 779 

are shown in Fig. 16a, with magnitudes appearing broadly reasonable compared to the field 780 

database of Van Leeuwen et al. (2014) and model of Hély et al. (2003).  Higher Fc regions match 781 

closely the locations of greater burning reported in Archibald et al. (2009), predominantly in the 782 

southwest of southern Africa. However, numerous of the grid cells are likely to be only partly 783 

burned, so Fig. 16b adjusts for this using the ~ one hundred 500 m spatial resolution MCD64A1 784 

MODIS BA pixels falling in each 0.05° cell. Median Fc values now increase compared to Fig. 16a, 785 

to 2.6 (1.8) kg.m-2 for Closed Forests, 1.3 (0.9) kg.m-2 for Shrublands, 1.1 (0.8) kg.m-2 for Managed 786 

Lands, 1.9 (1.3) kg.m-2 for Open Forests/Woodland Savannah, and 1.0 (0.7) kg.m-2 for Grassland 787 

Savannah - with (and without) the FREM low FRP fire adjustment applied.  Difficulties in 788 

mapping small burns with 500 m data (Tsela et al., 2014) mean that some grid cells show zero BA, 789 

and so do not report data in Fig. 16b. Closed Forests show a 74% reduction in grid-cell count 790 

compared to Fig. 16a, with the other biomes 18 to 47%. Despite lower numbers of reporting cells 791 

compared to Fig. 16a, significant spatial variability in Fc is still seen in Fig. 16b, and since 792 

MCD64A1 typically underestimates BA (Tsela et al., 2014) Fc values likely tend to 793 

overestimation, whereas those of Fig. 16a likely tend to underestimation. Future enhancements to 794 

the FREM methodology discussed in Section 7, along with use of new 10 to 30 m spatial resolution 795 

BA datasets (e.g. Boschetti et al., 2015) should enable more precise future mapping of Fc via the 796 

approach introduced here. 797 
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 798 
 799 

Figure 16.  (a) Fuel consumption per unit area (Fc) totals, calculated from the TPM emissions 800 

(g.m-2) of Fig. 14d divided by the biome-dependent TPM emissions factor (g.kg-1). (b) These data 801 

adjusted for the fraction of the grid cell burned, according to the Collection 6 MCD64A1 MODIS 802 

burned area product of Giglio et al. (2013). Note colour bar differences between (a) and (b), and 803 

that whilst (a) contains data for all grid-cells the SEVIRI FRP-PIXEL Product and the FREM 804 

inventory denotes as fire-affected, due to some of these cells reporting zero burned area in the 805 

MCD64A1 GFED BA area product there are fewer cells where Fc values can be calculated in (b). 806 

 807 

 808 

7. CONCLUSIONS 809 

A new ‘FREemissions’ (FREM) methodology has been developed to estimate landscape fire 810 

emissions of total particulate matter (TPM), trace gases and carbon, based on a combination of 811 

geostationary fire radiative energy (FRE) retrievals, polar-orbiting satellite aerosol optical depth 812 

(AOD), and particulate and trace gas emissions factors (EFs). ‘Smoke emissions coefficients’ 813 

(which convert FRP into rate of TPM emissions) are derived from matchup FRE and AOD data of 814 

a tiny fraction (<< 0.001%) of fires present within the dataset, and these are then applied to the full 815 

satellite FRP record to derive TPM emissions, and via use of EF ratios to trace gas and carbon as 816 
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well. This fully ‘top down’ approach bypasses the fuel consumption step, which is generally 817 

considered the most uncertain aspect of fire emissions calculations (Reid et al., 2009; Vermote et 818 

al., 2009; van Leeuwen et al., 2014), and thus avoids requiring estimates of fuel load per unit area 819 

or combustion completeness. The FREM approach also circumvents use of static, laboratory-820 

derived FRE-to-fuel consumption conversion factors that may not take into account all issues faced 821 

when assessing FRE from above the canopy and from Earth orbit (Wooster et al., 2005), whilst 822 

also avoiding the need to base such conversion factors on calibrations against bottom-up fuel 823 

consumption measures (as is currently done for GFAS; Kaiser et al., 2012), thus providing a totally 824 

independent fire emissions estimate to e.g. GFED. If required, fuel consumption per unit area (Fc) 825 

measures can be derived a last step to the FREM calculations, based on the inverse of the Seiler 826 

and Crutzen (1980) methodology, providing an important new way of mapping this metric across 827 

landscapes. Primary uncertainties in FREM pertain to the conversion between AOD and TPM, 828 

which relies on the light extinction efficiency per unit of aerosol mass appropriate to biomass 829 

burning aerosols (e, [m2.g-1]), and the degree to which FRE totals need adjusting for undetected 830 

low FRP active fire pixels below the geostationary sensors minimum detection limit. These issues 831 

will be the subject of future methodological development. Other anticipated improvements relate 832 

to use of finer spatial resolution satellite AOD products, and to greater knowledge of the biome 833 

and temporal dependency of particulate matter and trace gas emissions factors, required by FREM 834 

as they are for all current fire emissions inventories.  835 

 836 

Southern African biomass burning emissions fields from 2004-2012 have been generated via the 837 

FREM approach applied to Meteosat SEVIRI FRP data available from the EUMETSAT LSA SAF 838 

at a far higher spatio-temporal resolution than existing emissions inventories (hourly; 0.05°).  Once 839 

adjusted for the low-FRP component of a regions fire regime, the monthly TPM, CO2, CO and 840 
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CH4 totals are similar to those of the MODIS FRP- and AOD-based FEER inventory (Ichoku and 841 

Ellison, 2014), though the geostationary FRP-based FREM methodology avoids assumptions 842 

regarding plume height and velocity required when using polar-orbiter FRP ‘snapshots’ (Ichoku 843 

and Ellison, 2014).  FREM and FEER show significantly higher emissions totals than GFASv1.2 844 

and GFEDv4.1s, with the TPM emissions appearing to align better with estimates provided for 845 

southern African biomass burning via remotely sensed AOD (e.g. Tosca et al., 2013) and thus 846 

which may agree better with atmospheric studies compared to GFED and GFAS. Whilst the 847 

representation of smoke aerosol ageing in atmospheric models will play a part in such 848 

comparisons, any confirmed GFED underestimation would stem either from additional undetected 849 

or low-biased burned areas, too low fuel consumptions per unit area, or inappropriately low 850 

emissions factors. Impacts from each will be transferred to GFAS via its calibration to GFED 851 

(Kaiser et al., 2012), but only the latter effect would impact FREM (and then only the trace gas 852 

estimates, not those of TPM alone). GFEDv4.1s does report a significant increase in carbon 853 

emissions from southern African landscape burning compared to GFEDv3, based on the type of 854 

‘small fire boosting’ methodology introduced by Randerson et al. (2012), suggesting substantial 855 

numbers of MODIS AF pixels are located outside of MODIS-mapped burned areas. We also find 856 

many areas where the FRP-based FREM reports emissions, but the 500 m MODIS MCD64A1 857 

burned area (BA) product maps zero burning (c.f. Fig. 16a and b), but where both provide non-858 

zero data we find calculated fuel consumption per unit area burned (Fc) appear broadly realistic, 859 

though with currently large uncertainties at the individual grid-cell level. These will in future be 860 

reduced by FREM methodological improvements and higher spatial resolution burned area 861 

mapping. Other future work will focus on lessening restrictions on the type of fire available for 862 

deriving the smoke emissions coefficients of Fig. 7, as use of the 10 km MODIS AOD product 863 

means that large, spatially isolated fires are currently preferred, restricting the number of fires 864 
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available. The appropriateness of the low-FRP fire adjustment will also be examined, including 865 

dependence on view-angle and time of day (Freeborn et al., 2009). The FREM approach will likely 866 

benefit from further improvements in the discrimination of fire-relevant biomes, and from 867 

enhanced specification of particulate matter emissions factors, something that has generally seen 868 

less work than the EFs of trace gases yet which in FREM does impact the trace gas emissions 869 

estimates. 870 

 871 

FREM provides biomass burning emissions estimates at the highest spatio-temporal scale currently 872 

available (i.e. hourly or better, 0.05°), and we believe the technique offers enormous potential to 873 

generate datasets suitable for driving detailed plume dispersion modelling that better takes into 874 

account fire temporal variability and the strong fire diurnal cycle (e.g. Baldassarre et al., 2015; 875 

Roberts et al., 2015).  The emissions coefficients necessary to apply the technique to real-time and 876 

archived Meteosat SEVIRI FRP-PIXEL data are planned to be made available through the 877 

Eumetsat LSA SAF, whilst the fact that Geostationary FRP data are now available from GOES 878 

(Xu et al., 2010) and Himawari (Xu et al., 2017) using the same baseline algorithm developed for 879 

Meteosat (Wooster et al., 2015; Roberts et al., 2015) means that a consistent, multi-satellite fire 880 

emissions dataset for the tropics, sub-tropics and potentially also mid-latitudes is able to  be 881 

generated using the FREM methodology. 882 
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LIST OF FIGURE CAPTIONS 1250 

 1251 

Figure 1. Mapped difference (hrs) between the time of maximum active fire pixel count (i.e. daily 1252 

fire activity peak) and the ± 1 hr window encompassing the MODIS local solar overpass time 1253 

(which depends on changing location within the MODIS swath). Data are for 2010 and based on 1254 

Meteosat Second Generation (MSG) SEVIRI FRP-PIXEL Product available from the 1255 

EUMETSAT LSA SAF (Wooster et al., 2015), spatially aggregated into 0.5° grid cells. Subset 1256 

graphs show example histograms of FRP-PIXEL active fire detections for three 0.5° grid cells 1257 

located over eastern Central African Republic, Northern Mozambique, and southern Kenya, with 1258 

a functional fit to these data and the four MODIS overpass windows per day also indicated. Only 1259 

fire detections with confidences > 50% are included (Wooster et al., 2015). 1260 

 1261 

Figure 2.  Spatial distribution of active fire detection opportunities offered by the MODIS 1262 

sampling windows shown in Fig. 1. This is expressed as the ratio of the Meteosat SEVIRI FRP-1263 

PIXEL active fire detections made within the ± 1 hr window surrounding the four daily MODIS 1264 

overpass times (shown in Fig. 1) to the total number of daily detections. Source data are those of 1265 

Fig. 1. 1266 

 1267 

 1268 
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Figure 3. FREM biome map of southern Africa, based on reclassification of the GLOBCOVER 1269 

2009 landcover map and appearing similar to the woodland/grassland classification of southern 1270 

Africa derived by Korontzi et al. (2004). Outlines show the thirty-one 500 km  500 km target 1271 

regions from which matchup fires used to generate the biome-dependent FREM smoke emissions 1272 

coefficients (Cbiome) of Fig. 7 were selected. Red outlined region has its FRP time-series shown in 1273 

Fig. 4. 1274 

 1275 

 1276 

Figure 4. Time series of SEVIRI hourly active fire pixel detections (grey bins) and hourly FRE 1277 

(black line) for the 500 km  500 km region highlighted in red in Fig.3 in August 2011, located 1278 

south of the Okavango Delta (see imagery in Fig. 5). Overpass times of Terra and Aqua MODIS 1279 

are shown by green and blue vertical lines respectively, alongside daily solar noon (red) and the 1280 

daily time of minimum fire activity minimum (magenta). Error bars on hourly FRE are calculated 1281 

from the FRP uncertainties delivered in the geostationary FRP-PIXEL product (Wooster et al., 1282 

2015).  1283 

 1284 

 1285 

Figure 5. Example region of southern Africa from which matchup fires were selected on the 1286 

afternoon of 12th Aug 2011, 12:40 UTC (MODIS Aqua overpass). (a) Region outlined in red in 1287 

Fig. 3, south of the Okavango delta, depicted as a colour composite using data from the Aqua 1288 

MODIS afternoon overpass [RGB=1(0.6µm), 4(0.55µm), 3(0.47µm)]. Smoke plumes from 1289 

candidate active fires are outlined with yellow vectors, and the centre locations of each SEVIRI 1290 

active fire pixel detected from the time of the identified active fire minimum (shown in Fig. 4) up 1291 

until this Aqua overpass time are shown as red dots. (b) Zoom around the bottom left fire and 1292 
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plume shown in (a) to indicate detail. The dark burn scar left by the fire can clearly be seen. (c) 1293 

Matching MYD04_L2 AOD data derived from the Aqua MODIS overpass shown in (b). 1294 

 1295 

 1296 

Figure 6. MODIS Aerosol optical depth (AOD) data matching the MODIS image shown in Fig. 1297 

5a.  The yellow outlines from Fig. 5 here encompass the set of 10 km  10 km MODIS AOD 1298 

product pixels that are included in the plume-integrated AOD calculation for each fire. Any pixel 1299 

partly or wholly encompassed by the vector is included in the AOD summation, which is then used 1300 

to estimate the mass of total particulate matter in the plume. Some areas of apparently high AOD 1301 

are unrelated to biomass burning and so are not outlined here, for example that immediately south 1302 

of the Okavango Delta (cf. Fig. 5) neighbouring a highly reflective salt pan. 1303 

 1304 

 1305 

Figure 7. Biome dependent smoke emissions coefficients (Cbiome, g.MJ-1) derived from the slope 1306 

of the linear best fit made between the amount of total particulate matter in a plume (grams) and 1307 

the amount of radiative energy released by the causal fire (FRE, MJ).  Red shaded area represents 1308 

the 95% confidence interval on this slope (i.e. the uncertainty in Cbiome), whilst the grey shaded 1309 

area represents the prediction interval (i.e. the interval encompassing to 95% probability the value 1310 

of TPM given a single value of FRE). Coefficients are shown for the biomes of (a) Closed Canopy 1311 

Forest, (b) Open Canopy Forest and Woodland (Woodland Savanna), (c) Shrublands, (d) 1312 

Grasslands (Grassland Savanna), and (e) Managed lands (including Croplands).  For each biome, 1313 

each data point represents a single fires FRE calculated from a series of Meteosat FRP-PIXEL 1314 

products (Fig. 4), and specifically from the fire activity  minimum up until the time of the satellite 1315 

overpass from which the matching smoke plume TPM was estimated from the MODIS AOD 1316 
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product (Fig. 5; Fig. 6). Uncertainties in FRE (1) are derived from the FRP-PIXEL uncertainty 1317 

metrics (Wooster et al., 2015), whereas those in TPM are derived from the ±1.0 m².g-1 uncertainty 1318 

in the assumed smoke aerosol extinction cross-section (Table 1) and the MODIS AOD uncertainty 1319 

layer. MODIS AOD uncertainties estimates correspond to one-standard-deviation Gaussian 1320 

confidence interval of the envelopes resulting from the comparison of retrieved AOD data and 1321 

AERONET measures. These depend on the AOD, QA flag, and viewing geometry (Sayer et al., 1322 

2013). 1323 

 1324 

 1325 

Figure 8. Monthly total particulate emissions estimates for southern African fires, derived from 1326 

the FREemissions methodology (FREM) applied to the SEVIRI FRP-PIXEL product of Wooster et 1327 

al. (2015) for 2004-2012. Three versions are shown, those based on ‘raw’ SEVIRI FRP 1328 

observations, those adjusted for cloud cover, and those adjusted for ‘cloud cover and under-1329 

detected low FRP fires’ (see Section 5.1 and 5.2). The associated uncertainties are shown in each 1330 

case. Corresponding TPM emissions from the GFED v4.1s, GFAS v1.2 and FEER v1.0 inventories 1331 

are shown for comparison, and the cloud and low FRP fire adjusted FREM values calculated from 1332 

SEVIRI lie very close to the MODIS-derived FEER estimates. 1333 

 1334 

 1335 

Figure 9. Percentage of daily FRE calculated from the Meteosat SEVIRI FRP-PIXEL product for 1336 

2012 that is released (a) during the ± 1 hr window encompassing the MODIS overpass time, and 1337 

(b) in each biome. For comparison to the percentage values, fire activity expressed as daily FRE 1338 

from MSG SEVIRI is also shown (grey line, scaled from 0 to 100%). 1339 

 1340 



70 
 

 1341 

Figure 10. Cumulative sum of FREM-derived TPM emissions (%), expressed as function of the 1342 

per-grid cell FREM-to-GFED v4.1s emissions ratio. Calculations were performed using the 0.25° 1343 

grid cells of GFED, and 85% of cells had non-zero values in both inventories. < 1% of cells had a 1344 

non-zero Colours are the same as those mapped in Fig. 3. (a) shows the results using the cloud-1345 

corrected FREM, and (b) the cloud and low FRP fire corrected FREM. 1346 

 1347 

 1348 

Figure 11.  Emission rates of total particulate matter (TPM) coming from landscape fires in 2012 1349 

across southern Africa, as derived from the FREM methodology applied to SEVIRI FRP-PIXEL 1350 

data, and from GFEDv4.1s, GFASv1.2 and FEERv1.1. GFAS and FEER provide daily values, and 1351 

GFED monthly values. All are shown as equivalent daily mean rates for comparison, but the 1352 

FREM-derived values can be calculated at up to 15-min temporal resolution direct from the 1353 

SEVIRI FRP observations. In addition to FREM daily means, FREM-hourly averages are therefore 1354 

also shown (rhs y-axis), and these show far higher daytime peaks than the daily averages.  1355 

 1356 

 1357 

Figure 12.  Data of Fig. 11 shown only for August 2012 to see more detail, particularly of the 1358 

strong diurnal variability in TPM emissions enabled by the FREM approach.  1359 

 1360 

 1361 

Figure 13.  Total particulate matter (TPM) emission density (g.m-2 equivalent averaged over each 1362 

grid cell) for the 25,000 km2 area of southern Africa outlined in red in Fig. 3 for 2011, as depicted 1363 

by (a) GFEDv4.1s (0.25° grid cells), (b) GFASv1.2 (0.1° grid cells), (c) FEERv1.1 (0.1° grid cells) 1364 
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and (d) FREM inventory (0.05 ° grid cells). The coarser the grid resolution typically the lower the 1365 

emission density values, since many of the fires typically do not cover entire cells, particularly for 1366 

the coarser-scale inventories. Results for the FREM cloud and small fire adjusted inventory are 1367 

shown in (d), with a different colour-bar than for the other inventories. Values for the cloud-1368 

adjusted FREM inventory can simply be provided by using the colour bar shown in (a), (b) and (c) 1369 

also for (d).  1370 

 1371 

 1372 

Figure 14.  Total particulate matter (TPM) emission density (g.m2) across all of southern Africa 1373 

in 2011, as depicted by (a) GFEDv4.1s (0.25 ° resolution), GFASv1.2 (0.1 ° resolution), FEERv1.1 1374 

(0.1 ° resolution) and the SEVIRI FRP-derived FREM inventory (0.05 ° resolution). See Fig. 13 1375 

and its caption for more detail, and note the differing colour bar of (d). 1376 

 1377 

 1378 

Figure 15.  Monthly emissions (Tg) of CO2, CO and CH4 for southern Africa (2004-2012) for 1379 

the FREM inventory, along with those of GFEDv4.1s, GFASv1.2 and FEERv1.1. 1380 

 1381 

Figure 16.  (a) Fuel consumption per unit area (Fc) totals, calculated from the TPM emissions 1382 

(g.m-2) of Fig. 14d divided by the biome-dependent TPM emissions factor (g.kg-1). (b) These data 1383 

adjusted for the fraction of the grid cell burned, according to the Collection 6 MCD64A1 MODIS 1384 

burned area product of Giglio et al. (2013). Note colour bar differences between (a) and (b), and 1385 

that whilst (a) contains data for all grid-cells the SEVIRI FRP-PIXEL Product and the FREM 1386 

inventory denotes as fire-affected, due to some of these cells reporting zero burned area in the 1387 

MCD64A1 GFED BA area product there are fewer cells where Fc values can be calculated in (b). 1388 
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