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ABSTRACT 

 

This thesis exploits satellite remote sensing and in situ smoke measurement to estimate emissions from 

agricultural residue burning in Eastern China, a densely populated region with often poor air quality and 

which is one of China’s main agricultural burning regions. A new active fire (AF) detection and fire 

radiative power (FRP) retrieval algorithm is developed for use with the Suomi-NPP satellite’s VIIRS 

sensor, whose high spatial resolution band “I’ Bands provide an ability to detect the smaller (low FRP) 

fires missing from current satellite AF datasets. Daily fire radiative energy (FRE) – and thus fuel 

consumption - estimates are obtained by a link to diurnal cycle information from the Himawari 

geostationary spacecraft, and used to estimate emissions (CO2, CO, PM2.5 and BC) via multiplication by 

emissions factors derived from in situ measurements of smoke made by exploiting a new multi-sensor 

sampling design.  

Results show that VIIRS detects AFs with an FRP-minimum below 0.5 MW (cf. 6–8 MW for MODIS), 

and identifies typically 5 to 10 times more AF pixels across Eastern China. The resulting high spatio-

temporal resolution agricultural fire emissions inventory is compared to two state-of-the-art global fire 

databases (GFAS and GFED), and shows fuel consumption emissions estimates 1 to 4 times higher for 

the burning seasons, highlighting the significance of the formally undetected low FRP active fires. Mean 

annual emissions of CO2, CO, PM2.5 and BC range from 16932 to 31107, 562 to 1035, 70 to 130, 6 to 11 

Gg respectively (mean of 2012 – 2015), and the interannual variations seen appear potentially linked to 

changing farming activity and local fire management practices.  

This research has improved understanding and quantification of agricultural residue burning in Eastern 

China, and the new “small fire” detection capability could in future be extended to wider (even global) 

scales, particularly in agricultural burning regions, in order to reduce the low biases that have been now 

clearly exposed in current fire emissions estimates of those areas. 
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CHAPTER 1: INTRODUCTION 

 

This thesis describes work conducted to improve the understanding and quantification of agricultural 

residue burning in Eastern China, in particular focusing on the emissions to the atmosphere that result. 

Agricultural residues represent the ‘waste’ material left in a field after a crop has been harvested, for 

example the stubble left after wheat harvest. In still developing economies, such agricultural residues are 

often removed via in situ burning, which in the absence of well-developed large scale agricultural 

mechanisation is generally the quickest, simplest and cheapest way to get rid of them prior to the next 

planting (Liu et al., 2008). However, such burning releases smoke into the atmosphere, and this contains 

many types of gaseous and particulate air pollutants, including CO2, CO, CH4, NOx, black carbon and 

organic carbon. This thesis describes work with new satellite remote sensing data and field measurements 

of gases and aerosols to investigate and quantify this phenomenon. 

In global scale, open biomass burning is one of the major source of aerosols and gases in the atmosphere. 

For example, research suggests it contributes 6-12% to annual total non-CO2 emissions, and 40% to 

global black carbon (Bond et al., 2013; IPCC, 2014; Mieville et al., 2010). Earlier research has shown in 

Asian, the contribution of biomass burning to CO can be as high as 24% (Streets et al., 2003). Within the 

same study, Streets et al., (2003) used a crop yield based approach (see Section 2.6) to estimate that 

approximated 110 million tonnes of crop residue is burned in China ever year (calculated for the year 

2000), and this was almost half of that estimated to be burned across the whole of Asia at the time. This 

total also represented around 60% of the total biomass burned in China, the bulk of the remainder being 

due to forest fires which, when intense, can consume much more fuel per unit area than can crop residue 

burns.  

Eastern China is the region where the majority of the China’s population and agriculture is located, and 

where the vast majority of agricultural residue burning occurs (Liu et al., 2008). The seasonal burning of 

agricultural residues here is suspected to contribute significantly to annual air pollution events, including 

increased tropospheric ozone, particulate matter and public health impacts, visibility problems, and traffic 

accidents (Fig. 1.1, Chan and Yao, 2008; Li et al., 2010; Wang et al., 2013; Zhang et al., 2011).  In terms 

of forest fires occurring in the main provinces of Eastern China (Anhui, Shandong, Jiangsu and Henan, 

see Fig. 2.13 in Section 2.7), these represent less than 1% of all forest fires in China according to Street et 
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al. (2003), which confirms that agricultural fires appear to be by far the main type of open biomass 

burning found in Eastern China. 

 

Figure 1.1: NASA's Aqua satellite captured multiple plumes of smoke from agricultural fires and industrial pollution 

in China (centred at 35oN, 116oE, imagery size: 900 x 600 km). The smoke and haze stretches from Inner Mongolia, 

located north of Beijing, south and west including the provinces of Hebei, Shandong, Henan, Shanxi, Hubei, Hunan, 

and Chongqing. Image taken from NOAA website (https://www.nasa.gov/mission_pages/fires/main/world/20130604-

china-b.html#.WXCFhoQrIdU). 

 

In Eastern China, fields of crops represent over 10% of the total land area, and most are required to 

support at least two crop rotations per year (Huang et al., 2012; Pan et al., 2013). For example in the 

southern area of Eastern China, wheat is grown in the winter, harvested in June and the stubble burned, 

the fields then rapidly flooded via irrigation networks and rice planted, which is then harvested in 

September/October when the fields are then drained, the rice straw burned and the fields prepared again 

for wheat (Huang et al., 2012). Sometimes a third crop, particularly in southern China, is planted 

inbetween, and this cycle continues year on year. Confined to agricultural fields, the individual fires 

themselves may each be quite small (Fig. 1.2), but they occur in extremely large numbers (Huang et al., 

2012) and are generally ignited relatively closely spaced in time (e.g. perhaps within a few weeks) across 

a huge region (>23,000 km2) of Eastern China (Yan et al, 2006). This tends to amplify their effect in 

terms of changing the concentration of various atmospheric pollutants, albeit limiting this to a few periods 

of the year.  

https://www.nasa.gov/mission_pages/fires/main/world/20130604-china-b.html#.WXCFhoQrIdU
https://www.nasa.gov/mission_pages/fires/main/world/20130604-china-b.html#.WXCFhoQrIdU


23 

 

 

Figure 1.2: Small fires spreading along the Chinese agricultural land, taken by a local resident on airplane 

(http://blog.sina.com.cn/s/blog_49a143920102v1gi.html). 

 

So great is the scale of the agricultural burning activity, that recent studies have identified this type of 

widespread “small fire” as a significant contribution to global scale biomass burning totals (Fig. 1.3, 

Randerson et al., 2012). At present the overall impact is not well quantified due to the problems of 

detecting smaller fires from satellite remote sensing, even when they are highly numerous in one 

particular area (Randerson et al., 2012; van der Werf et al., 2017). 

 

Figure 1.3: Estimate of the ratio of small fire of burned area to total burned area in 0.25o grid cells, calculated during 

2001-2010 from a combination of active fire detections, spectral reflectance measures and burned area mapping made 

by MODIS (Figure 7d from Randerson et al., 2012). In regions of China (e.g. 120° W, 30°N), it is apparent that small 

fires that are undetected by standard MODIS burned area methods maybe responsible for the vast majority (80% or 

more) of total area burned, though the methodology used to estimate this is subject to large uncertainties. 

 

http://blog.sina.com.cn/s/blog_49a143920102v1gi.html


24 

 

The aim of the research described in this thesis is to develop and exploit new satellite earth observation 

(EO) data and techniques, along with ground-based measurements of fire emissions chemical and 

particulate makeup, to provide improved quantification of the agricultural residue burning emissions of 

Eastern China. A number of specific objectives designed to meet this aim are listed at the end of Chapter 

2. Ultimately this research may lead to future systems that can be used for monitoring the fire activity 

impacts on air quality in near real-time, and for the assessment of trends to support new management 

practices development, since current Chinese Government policies to limit the extent of agricultural 

burning are apparently of limited success (Liu et al., 2008; Jiang et al., 2012). If such work is successful, 

then these methods could be extended to wider (even global) scales, in order to reduce the biases in 

current fire emissions estimates (Randerson et al., 2012).  
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CHAPTER 2: BACKGROUND, AIMS AND OBJECTIVES  

 

2.1 INTRODUCTION 

This chapter provides a more detailed review of the background to this PhD research, and finishes with 

the list of specific objectives that are designed to meet the overall aim of providing improved 

quantification of the agricultural residue burning emissions of Eastern China. The background reviews the 

literature related to the issue of agricultural fires in Eastern China, summarises the primary remote 

sensing techniques using to date within this field of study, and describes the current state-of-the-art with 

respect to fire emission databases more generally. Such databases are later compared with results obtained 

with the methods developed within this study in Chapter 5.  

 

2.2 AGRICULTURAL FIRES IN EASTERN CHINA 

China is one of the oldest agricultural countries in the world, with in excess of 300 million farmers who 

cultivate a very large area of land to support a population of over 1.3 Billion (NBSC, 2007). This PhD 

research focuses on Eastern China, including the North China Plain and the Middle and Lower Reaches 

Plain of the Yangtze River (also known as the Yangtze Plain) which are two of the largest agricultural 

zones in China (Fig.2.1a). 

 

 

Figure 2.1: Physical and population maps of China. (a) Physical map showing main rivers and two of primary plains 

in China. (b) population distribution, which is highest in the primary plains along Yellow River and Yangtze River 

(Berglee, R. 2012). 



26 

 

The North China Plain accounts for approximated 20% of China’s farmland, holds 34% of the national 

rural population, and produces 35% of the countries crop yield, including 75% of national winter wheat 

and 33% of national summer corn production (NBSC, 2007). The Yangtze Plain only accounts for around 

19% of total farmland area, but provides 51% of the national rice yield to support its densely packed 

population, as well as people elsewhere in the country (Fig. 2.1b). Every year during harvest and pre-

planting periods, crop residues from the growth of the prior season’s agricultural crops are burned in 

many locations across Eastern China.  Sometimes the residues are burned directly after harvest (e.g. 

wheat stubble) and sometimes they are collected, piled and burned in 'bonfires' (Fig. 2.2), for example in 

the case of rice straw after the grains have been removed, or oil seed rape after the oil has been crushed 

from the plant.  

 

  

Figure 2.2: Examples of Chinese agricultural fires operated in (a) spreading (http://www.js.xinhuanet.com/2012-

10/18/c_113418924.htm), and (b) bonfire way (http://www.southcn.com/news/community/tpxw/200505250232.htm).  

 

Despite Chinese law prohibiting open agricultural burning since 1990, many farmers sill burn crop 

residues openly in fields, because it seems to be the easiest, quickest and cheapest way to allow 

subsequent cultivation. When agricultural residues are burned, it releases smoke – and this activity 

represents a significant source of atmospheric pollution in densely populated Eastern China (Chan and 

Yao, 2008, Huang et al., 2012).  The biomass burning is likely significant contribution to air pollution, 

which results in reduced visibility, public health problems and traffic accidents. Satellite remote sensing 

is the main method by which fire activity is assessed worldwide (Giglio et al., 2013, 2016; Ichoku et al., 

2008; Kaiser et al., 2012), however there are large uncertainties associated with the magnitudes ascribed 

to agricultural burning due to the fact that each of the agricultural residue fires are typically rather 'small' 

in area, limited in intensity, and often burn for a relatively short amount of time (Fig. 2.2), making them 

currently difficult to identify via satellite Earth Observation (EO). Larger and more intense forest fires are 

(a) (b) 

http://www.js.xinhuanet.com/2012-10/18/c_113418924.htm
http://www.js.xinhuanet.com/2012-10/18/c_113418924.htm
http://www.southcn.com/news/community/tpxw/200505250232.htm
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a much easier to detect target by satellite EO. This issue affects the representation of agricultural residue 

fires in current emissions inventories, and leads to low-biases in their emissions estimates, as well as 

possible errors in their timing and spatial distribution. These problems feed into the difficulties when 

modelling their smoke dispersion and assessing their impact on air quality (Huang et al., 2012; Street et 

al., 2003; Yan et al., 2006). A clear focus of this PhD research is therefore to improve the characterisation 

of the types of ‘small fire’ that dominate agricultural residue burning in order to lower the biases and 

uncertainties associated with this type of landscape burning in Eastern China. 

 

2.2.1 SPATIO-TEMPORAL PATTERNS OF AGRICULTURAL FIRES IN EASTERN CHINA 

In 2012, Eastern China was estimated to be responsible for 25% of China’s total crop production (NBSC, 

2012). However, due to geographical variations in crop cultivation, the timing and extent of crop residue 

burning varies in different areas of Eastern China. In northern areas, corn and wheat are the major crops, 

while rice dominates in the South, and this resulting different harvest time and post-harvest burning. The 

main burning period in Eastern China is from late May to early June, after the spring harvest of wheat, 

with a second intensive burning period in late September/early October after the summer harvest of rice 

(Huang et al., 2012).  Fires may also occur in the southern part of Eastern China related to a third harvest 

of late rice (Huang et al., 2012). Therefore, most previous studies that have explored the spatial 

distribution and magnitudes of China’s agricultural fires have found that the central provinces of 

Shandong, Jiangsu, Anhui and Henan (mainly in North China Plain, Fig. 2.13), along with some other 

provinces in north-eastern and southern China, are the strongest emitting regions (Huang et al., 2012; Qin 

and Xie, 2011; Streets et al., 2003).  

One of the key constituents of the smoke emitted by the agricultural fires is Particulate matter (PM2.5), 

and this is especially important to the human health and visibility impacts, as can be seen in Fig. 2.2. 

Merged satellite and ground based aerosol optical depth (AOD) data, which quantifies the extinction of 

the solar beam by atmospheric aerosols, shows that Henan, Jiangsu and Anhui are three main provinces 

responsible for aerosol emissions during the period of agricultural fires that occurs immediately after the 

summer harvest (Xue et al., 2014). In this area, which is located within the Eastern China study area of 

this thesis, crop residue burning frequently occurs in June after the winter wheat harvest (Fig. 2.3a).  

Based on MODIS active fire detections (Fig. 2.3a), Huang et al. (2012) believe that these June fires 

represent around 75% of the total number of annual agricultural fires occurring in Eastern China, with the 
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bulk of the remainder confined to a second fire period on early October (after the summer corn/rice 

harvest that occurs in September). 

 

 

 

Figure 2.3: (a) Distribution of active fires in China in June 2013, as detected by the MODIS active fire 'hotspot' 

products (MOD14 and MYD14; Giglio et al., 2003). Each red circle represents a single active fire pixel detection. 

The main burning region of Eastern China, including the North China Plain and the Yangtze Plain (see Fig. 2.1), is 

outlined in red. Most fires are located within here, though it is apparent that substantial numbers of fires occurring to 

the south and further west. (b) 2.5x2.5o gridded MODIS active fire counts in Eastern China only in June 2013. (c) 

Small fire ratio from GFED4.1s in Eastern China only in June 2013. 

 

As stated in Chapter 1, Randerson et al. (2012) has found that the widespread “small fire” is a significant 

contribution to global scale biomass burning totals (Fig. 1.3). Fig. 2.3c shows the small fire ratio of 

Eastern China from GFED4.1s (see Section 2.6.4), which was calculated using the same methodology 

from Randerson et al. (2012), representing the ratio of small fires in this area. Though many fires can be 

detected by MODIS AF product (Fig. 2.3b), the high values of small fire ratio in Eastern China (0.8-1.0) 
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shown in Fig. 2.3c suggested the potential of more small fires existing in this area, which hasn’t been well 

quantified in current fire datasets yet. 

Whilst agricultural burning occurs every year in similar locations and at similar times, due to its recurrent 

nature, some estimates of China’s crop residue burning suggest a decrease over the last decades, with for 

example 40 Tg of biomass being reported as burned in 2006 but 110 Tg in 2000 (Huang et al., 2012; 

Streets et al., 2003). Such differences may be solely related to differences in methodology and data source, 

and not fully reflective of reality. The Chinese government enacted a series of regulations to prohibit 

open-air burning from the 1990’s onwards (Liu et al., 2008), so it is possible that burning really is 

becoming more limited in its application.  This has been doubted by some studies, even those based on 

official Chinese statistical data. Crop yields and cultivated areas appear to have grown quite significantly 

in parts of China over the past few decades, for example annual statistics issued by the Chinese 

government (NBSC), show the annual corn yield increased by one third from 2007 to 2012 (see Table 

2.1). Estimates of agricultural residue burning based primarily on annual crop yield estimates will be 

significantly impacted by such reported changes in yield, though there is limited formal reporting of 

uncertainty bounds so it is unclear whether the reported increases are within the limits of uncertainty. 

Nevertheless, for example a survey of carbonaceous aerosol emissions based on annual crop yields 

reported a growth rate of 26% for black carbon between 1990 and 2000 (Qin and Xie, 2011).   

Furthermore, whilst agricultural fires are normally ignited by humans to clear the crop residues after 

harvest, some researchers have pointed out that climatic variations may have some impact as well (van 

Wilgen et al., 1997).  These issues help to highlight the importance of developing a unified method for 

developing fire emissions inventories in crop growing regions, able to cover long time periods and large 

regional scales and take into account even the types of ‘small fire’ which dominate in agricultural 

landscapes. Developing and applying such an approach, based on satellite EO methods and data, is the 

primary target of this PhD. 

 

Table 2.1: Chinese annual major crop yields from 2007 to 2012 (×103 Gg yr-1). Data source: Yearly annual report 

from 2007-2012 by National Bureau of Statistics of China (NBSC, 2007-2012). 

  2007 2008 2009 2010 2011 2012 

Rice 186 192 195 196 201 204 

Wheat 109 112 115 115 117 121 

Corn 152 166 164 177 193 206 
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2.2.2 CHINESE SOCIO-ECONOMIC AND RURAL MANAGEMENT PRACTICES 

There exist a number of socio-economic factors that may have influenced the growth or reduction of crop 

residue burning in Eastern China over the past few decades, beyond simply the introduction of polices 

that were aimed at limiting the practice from the early 1990’s onwards. China is currently undergoing 

rapid economic development, and this has increased rural access to commercial energy, leading for 

example to the decreasing use of crop residues as biofuel (Cao et al., 2006, Zhang et al., 2008).  

Mechanized harvesting has quickly spread among Chinese farmers, and this fast and convenient 

harvesting method has helped to offset the loss of much of the young agricultural labour force who have 

increasingly moved into more urban regions (Heinemann and Shepherd, 2011). However, such 

mechanized harvesting methods typically leave larger amounts of crop residues on the ground compared 

to manual harvesting approaches, and this can lead to increasing collection cost and a greater incentive to 

burn instead. So, even though application of mechanized harvesting in some other countries has 

apparently successfully limited the burning of residues, for instance the sugarcane in Brazil and South 

Africa (Arraes et al., 2010; Smith et al., 2008), a similar situation has not occurred in China. In fact, 

according to a report provided by the Survey Office of the National Bureau of Statistics in China (NBSC, 

2008), the immature designs and still-developing techniques used by some new wheat harvesting 

machines meant that harvested land could not be used directly for the next round of cultivation due to the 

length of the stubble left behind (too long to decompose quickly in the field and consequently stopping 

newly sown seed from growing efficiently). This lead to burning becoming even more necessary to 

remove the crop residue prior to seed planting, making space for the next round of cultivation in order to 

ensure yield and income is maintained. 

Research has pointed out the bioenergy potential of crop residues (Jiang et al., 2012), however with a lack 

of reliable and effective overall management plan for this alternative use, the undesired scenario of 

intensive burning across huge areas of farmland in Eastern China still exists (Fig. 2.3). The "top down" 

prohibition instigated by the Chinese government in the 1990’s might, to some extent, have failed to fully 

consider and deal with all the issues faced by farmers. Liu et al. (2008) report that a maximum of only 30% 

of crop residues are used for biogas generation (bioenergy), along with forage (animal feed) and other 

industrial uses, with probably ~ 15% lost during collection. This leaves an estimate of around 20% being 

directly burnt in the field, and some researchers conclude that, despite many socio-political resources 

being consumed by efforts aimed at prohibiting open air crop residue burning, such measures cannot  

reduce the activity by the extent desired (Yang et al., 2008).  Thus, despite Government efforts, crop 
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residue burning remains a significant issue, and one whose importance may be increasing rather than 

decreasing with time, albeit the current truth of the situation is rather uncertain.  Using the new data and 

approaches developed in this PhD, this thesis will attempt to identify trends in crop residue burning in 

Eastern China over the last few years (2012-2015). 

 

2.3 GASEOUS/PARTICULATE EMISSIONS FROM RESIDUE BURNING 

Smoke emission from agricultural fires contribute to air pollution and to the radiative forcing of the 

climate in several ways (see Section 2.4). This section will summarize gaseous/particulate emissions from 

agricultural burning, and will assess the aspects potentially impacting the smoke emission factors (i.e. the 

amount of a particular smoke constituent (either as gas or aerosol) released per unit of fuel burned; [g.kg-

1]). 

 

2.3.1 COMBUSTION PROCESSES 

The combustion of vegetation releases a plume of gases and aerosols, commonly called ‘smoke’ (Andreae 

and Merlet, 2001).  In fires where the "combustion completeness" (the proportion of the available fuel 

that is actually burned) is close to 100%, almost all of the solid fuel is converted into smoke and released 

into the atmosphere, with only a small amount of 'mineral ash' left behind from the incombustible 

components of the plants (minerals such as silica, calcite etc; Yusiharni and Gilkes, 2012). Fires with 

lower combustion completeness by definition leave a higher proportion of unburned and partly burned 

vegetation/char behind, but can still emit very significant amounts of material into the atmosphere. 

The emissions factor of a particular chemical species [x] (expressed as [EFx]) represents the amount [g] 

of that species that is emitted per kg of dry fuel burned. Carbon dioxide is the dominant species present in 

smoke, and EFCO2 is for example around 1600 – 1900 g.kg-1. By contrast, the emission ratio of two 

particular chemical species [x and y] (i.e. [ERx/y] represents their relative abundance in the smoke plume, 

and is typically expressed in units of mol.mol-1. The emissions factors [g.kg-1] vary significantly between 

different biomes and vegetation types (e.g. Andreae and Merlet, 2001; Akagi et al., 2011), and also 

between different combustion phases such as flaming and smouldering (Wooster et al., 2011). For non-

CO2 species, the EF variation can be many hundreds of percent between smouldering and flaming for 

example. Indeed, it is possible that different proportions of smouldering and flaming activity in fires that 
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occur in different vegetation types maybe responsible for a substantial proportion of the difference in fire 

emissions makeup seen between biomes (as reported in emissions factor databases such as Andreae and 

Merlet, 2001). This causes differences between emission factors when derived from measurements 

conducted in situ at fires in the field, or in combustion chamber experiments conducted in the laboratory 

(Delmas et al., 1995; Wooster et al., 2011). Most often a single "fire averaged" emission factor is 

calculated to represent the whole fire lifecycle, encompassing both the initial flaming and subsequent 

smouldering phase (and the initial pyrolysis phase as well; though this typically does not consume much 

fuel).  

Normally, the ratio of excess CO2 above background (ppmv or mol-1) in the emitted smoke to that of CO 

plus CO2 is used to characterise smoke as being produced primarily by smouldering or flaming activity, 

and this metric is known as the modified combustion efficiency (MCE). A high MCE (> 0.92) is 

generally classed as predominately flaming, whilst a lower MCE (< 0.75) predominately smouldering 

(Miyanishi, 2001). In part due to the dominance of finer (e.g. straw) material within their fuel (which is 

generally more easy to ignite and burn provided it is dry enough), agricultural residue fires are generally 

believed to show higher MCE values than are typical of most forest fires, with values more similar to 

those of grassland or savannah burning (Pan et al., 2013; Zhang et al., 2008). If so, this indicates that 

much of the residue combustion is likely to occur in the flaming phase, which maximises emissions of 

CO2 and minimises emissions of CO, CH4 and particulates compared to the pure smouldering phase. 

However, before flaming combustion starts, the fuel experiences a drying and distillation process, first 

releasing vapour and then some volatiles. This phase is termed pyrolysis (Reid et al., 2005), and involves 

the formation of organic materials such as char, tar and volatiles (visible as white smoke rising from the 

heated fuel).  Typically the temperature of the mixture gradually increases until around 800 K, when the 

flammable mixture of tar, volatile gases and air can be ignited and flaming combustion starts.  During this 

flaming stage, a variety of soot-like species including some organics like polycyclic aromatic 

hydrocarbons (PAHs) are released, alongside copious amounts of CO2 but also some CO and many other 

gaseous species in lesser quantities. Laboratory studies suggest that the rate of particle production during 

the flaming stage is empirically related to flame size via a power law (Glassman, 1988), which if 

confirmed could perhaps be used for the estimation of particulate emission factors.  Currently, particulate 

EFs are mainly derived via the capture of emitted aerosol particles on filters (Cao et al., 2008; Li et al., 

2007; Zhang et al., 2008). 
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After the flaming phase has released most of the volatiles, smouldering combustion typically begins with 

temperatures reducing to below 850 K (Chandler et al., 1983). The formation of PAHs is less possible at 

this stage, since such processes are favoured by higher temperatures (Reid et al., 2005). Instead, the 

organic materials formed during smouldering combustion are largely the result of the condensation of 

other volatilized organics (Ward, 1990). The product emitted in greatest quantity during the smouldering 

phase is still by far CO2, just with an emissions factor that is somewhat (perhaps up to around 20%) lower 

than in the flaming phase. Most other smoke constituents are emitted with much higher EFs in the 

smouldering phase compared to the flaming phase, and this means that per unit of fuel burned 

smouldering combustion typically is much more polluting (Hosseini et al., 2013; Reid et al., 2005). 

 

2.3.2 GASEOUS EMISSIONS 

Agricultural activity (including crop residue burning) is generally considered to contribute significant 

amounts of the greenhouse gases CO2, CH4 and N2O to the atmosphere (Smith et al., 2008). In total, 

agricultural activity is estimated to account for over 10% of total global anthropogenic GHG emissions, 

of which agricultural fires have been estimated to contribute around 7% (Smith et al., 2007).  However, 

such a figure maybe biased low if current estimates of agricultural burning are significantly 

underestimated (Randerson et al., 2012). For China, annual total emissions of CO2, CO, and N2O based 

on the burning of crop residues from the three main grain crops were 38677, 3137 and 88 Gg respectively, 

with corn straw contributing around 50% of these totals, followed by wheat and then rice (Zhang et al., 

2008). These estimates are based on national annual crop yield statistics, which will be discussed further 

in Section 2.6. However, large uncertainties (perhaps over 90%) are considered to exist in the results such 

methods, making them of limited value (Yan et al., 2006). 

The typical modified combustion efficiency (MCE) of agricultural residue burns conducted in laboratory 

studies is measured to be around 0.90 (Turn et al., 1997; Qie and Xie, 2011), which is consistent with 

mostly flaming combustion and smoke that has 90% or more of its carbon released as CO2  (Li et al., 

2007; Qie and Xie, 2011). Sugar cane is an exception, with an MCE reported to be generally 

approximated 0.68 in laboratory burns, though this is not a significant crop type in Chinese cultivation 

(Qie and Xie, 2011). CO contributes the second most dominant emitted compound, often 5 - 6%, 

compared to perhaps double this for pure smouldering combustion, and with only 1% or less CH4 (Li et 

al., 2007). 



34 

 

During in situ (field) burning, it maybe that the MCE is lower than that typically seen during laboratory 

combustion, due to the possibility of higher fuel moistures than are used for fuels burned in the laboratory. 

Higher moistures are associated with more smouldering combustion, and this will result in a increase in 

the proportion of non-CO2 gaseous compounds such as CO and CH4 in the smoke (i.e. a higher ERCO/CO2 

and ERCH4/CO2). 

With respect to CO2 emissions in general, assuming the same crops are grown in roughly the same 

amounts during the next growing season, then the CO2 released by the burning of the residues left after 

harvest will in any case effectively be reabsorbed by the new crop growth in the following season (Smith 

et al., 2008). In this way, the other emitted carbonaceous compounds (e.g. CO), gaseous hydrocarbons 

and reactive nitrogen compounds are potentially more important to consider than CO2, particularly as 

many are considered significant air pollutants.  These include active volatile organic compounds (VOCs) 

and ozone precursors (Mellouki et al., 2015), for example toluene and isoprene, which can be involved in 

the formation of secondary aerosols. 

 

2.3.3 PARTICULATE EMISSIONS 

Vegetation is typically composed of around 50% carbon (Yokelson et al., 1999), and when burned most is 

oxidized to CO2 or CO. Typically less than 5% of the carbon is released in the form of particulate matter 

(Reid et al., 2005), but it is this PM that is one of the key air pollution impactors of biomass burning, and 

the major health risk (Seinfeld and Pandis, 2012). 

When characterising airborne particles, size distribution is a very important parameter. Most particulates 

released from crop residue fires are fine (PM2.5) or submicron (PM1) particles, with diameters of less than 

2.5 µm and 1 µm respectively. For comparison, a human hair is about 100 µm wide, so roughly 40 PM2.5 

particles could be placed across a hairs breadth. Such fine particles are capable of being inhaled deep into 

the human respiratory system, whereas much larger particles tend to be trapped in the nose, mouth or 

throat, and this explains why they pose a significant health risk (Englert, 2004). 

PM2.5 has been reported to contribute over 93% of the PM mass emitted from wheat straw burning, and 

98% of corn stover burning (stover being the stalks, leaves and cobs that remain in fields after the corn 

harvest; Li et al., 2007).  These fine particles can be formed by different processes, and as shown by 

Fig.2.4, the gas to aerosol conversion process takes place by essentially three processes: condensation, 

nucleation, and coagulation. Therefore, the mode of the size distribution (i.e. its peak), as well as their 
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chemical composition, can provide information on how the particles were formed, helping to trace the 

source (e.g. in areas where PM may come from a variety of other sources as well as biomass combustion). 

 

 

Figure 2.4: A schematic summary of how gases are converted into aerosols of various sizes. Condensation, 

nucleation, and coagulation are three essentially processes taking place in difference sizes of aerosols as shown 

(source: http://mtweb.mtsu.edu/nchong/pm-atm3.htm). 

 

Since in situ real-time particle size distributions based on mass are very difficult to determine, most 

studies use the particle size distributions based on particle counts. In a variety of studies on crop residue 

burning, accumulation mode size distributions (modal peaks in the 0.1 - 1.0 µm range) were reported to 

predominant in such particle count distributions (da Rocha et al., 2005; Hays et al., 2005; Zhang et al., 

2011). This is partly because particle formation, no matter whether from flaming or smouldering 

combustion, is essentially a condensation process, mostly condensation nuclei limited (Reid et al., 2005). 

In a Chinese crop residue burning test, Zhang et al. (2011) report that the prominent particle number size 

distribution accumulation mode peaked at 0.1, 0.15 and 0.15 µm during measurement of fresh smoke 

from rice, wheat and corn residue fires respectively. Such distributions slightly shifted towards larger 

particle diameters after 4-hour aerosol aging processes were allowed to occur, with peaks increasing to 

0.24, 0.23 and 0.27 µm respectively (Zhang et al., 2011). The highest particle numbers were found to be 

http://mtweb.mtsu.edu/nchong/pm-atm3.htm
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just after the peak flaming stage, with a number-modal mean < 0.120 µm (Hays et al., 2005), indicating 

that decomposition processes during the flaming stage can produce the largest amounts of particles. In 

terms of particle mass size distribution, single mode values have been reported as 0.26 - 0.38 µm (Li et al., 

2007), similar to the particle number size distributions introduced above. Such distributions have also 

been found at the individual compound level, for example, results from Li et al. (2009) showed that size 

distribution of both BC (black carbon) and OC (organic carbon) peaked at 0.26-0.38 µm.  

In terms of chemical composition, carbonaceous aerosols were found to account for about 46% of the 

PM2.5 mass emitted from wheat straw burning, and 37% of that from corn stover burning (Li et al., 2007). 

Amongst this particulate carbon, BC is an important component and significant in the global budget (see 

details in Section 2.4.2). BC is normally formed primarily in flames, and directly emitted into the 

atmosphere (Bond et al., 2013).  Street’s et al. (2003) estimated that BC emissions from agricultural fires 

account for around 10% of all sources in China annually (Cao et al., 2006). However, large (50-160%) 

underestimates were found in relation to the modelling of BC when compared to remote sensing 

observations in south and Southeast Asia (Bond et al., 2013). New estimates of agricultural fire emitted 

BC could potentially improve on such quantifications in the future, and this PhD project will aim to 

develop these.  

Organic carbon aerosols (OC), are emitted alongside BC, and can be efficient cloud condensation nuclei. 

These aerosols are considered to have an important role in the aerosol indirect effect (IPCC 2011). OC 

has been assessed is crop residue burning smoke, and accounts for a significant fraction of the total 

particle mass, ranging from 29 to 55% depending on different size categories (Li et al., 2009). In situ 

aerosol measurements in Beijing also show significant contributions from biomass burning OC, as high as 

10 - 32% of the total OC aerosol burden (Duan et al., 2004). Furthermore, during the incomplete 

combustion of organic matter, some toxic organic compounds were also found in the smoke from 

agricultural fires, such as PAHs (Polycyclic aromatic hydrocarbons). The emission factor of PAHs is 

reported as being between 0.12 to 4 mg.kg-1 (Jenkins et al., 1996), while an estimate of 1.09 Gg of 

emissions for the year 2004 was calculated based on Chinese crop residue consumptions estimates (Zhang 

et al., 2011). Though OC or PAHs estimation is not included in this thesis, it can benefit from the aim of 

this study to provide better qualifications of FRP and dry matter emissions in Eastern China. 
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2.4 IMPLICATIONS OF AGRICULTURAL FIRE EMISSIONS FOR AIR 

QUALITY AND GLOBAL CHANGE  

 

2.4.1 IMPLICATION OF AGRICULTURAL FIRE EMISSIONS ON AIR QUALITY 

China is one of the largest agricultural nations in the world, and its crop residue totals are the highest in 

the world, at 17.3% of global production (Bi et al., 2009). Much of this residue is burned in the fields, as 

outlined in Section 2.2, and whilst each individual fire might be quite small there can be huge numbers 

occurring simultaneously or near-simultaneously across agricultural regions. Fig. 2.5 shows a MODIS 

image collected at a time of severe agricultural burning (11th June 2015). June is typically the most severe 

month of burning in this region, and significant amounts of smoke can be seen in the image.  Their huge 

number means they contribute significantly to the development of air quality problems – including 

visibility reductions that can result in serious traffic accidents (Fig. 2.5 inset). The smoke is often termed 

‘haze’ once it spreads away from the source area and potentially mixes with other sources of air pollution, 

leading to a more regionally spread air pollution event that can extend far away from the casual fires 

themselves. 

 

Figure 2.5: MODIS image taken on Jun 11th, 2015 of agricultural fires (red “hotspots”) spreading haze in Eastern 

China, causing serious traffic accidents (locations shown as yellow triangles and same colour line pointing to the 

pictures taken in situ) and public health problem. The number of MODIS active fire pixels reached highest on this 

day (time-series plot in Jun, 2015 shown right down, highlighted with yellow circle). However, the 1 km MODIS 

data fails to detect many of the relatively small but likely numerous fires that are clearly producing large amounts of 

smoke pollution. 
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It is clear –from Fig, 2.5 - that air pollution impacts from crop residue burning are not limited to the local 

area immediately surrounding the fires, and in fact the haze can have impacts at the regional scale, for 

example the Asian Brown Cloud (Bond et al., 2013; Desyaterik et al., 2013; Pan et al., 2013; Zhang et al., 

2013). Under the influence of the monsoon system, which in China blows from northwest to southeast 

during winter, and is reversed in the summer months, smoke from agricultural fires can easily be 

transported far downwind, into "mega-cities" like Beijing and Shanghai (Cheng et al., 2013; Du et al., 

2011; Li et al., 2010). Fig. 2.6 shows data and results from a study by Ding et al., (2013), indicating how 

the smoke from north of Anhui and Jiangsu Province appears to be transported across approximated 500 

km, leading to haze impacts along the whole transport path and affects as far away as Shanghai. A 

concurrent modelling study (Huang et al., 2012b) suggests that crop residue fires in June 2012, mainly of 

wheat and rapeseed straw, are likely to have been responsible for this intensive regional air pollution 

episode. The modelling suggested that PM10 concentrations in Xuzhou City were increased by an order of 

magnitude by the fire-induced haze, to around 158 µg m-3, while for the PM10 in Bozhou City (much 

closer to the crop burning area) the simulated PM10 reached in excess of 600 µg m-3. 

 

Figure 2.6: A study case from Ding et al., (2013). (a) is a MODIS-Terra true color imagery taken of Eastern China 

on 10 June, 2012, and (b) shows the emission inventory of carbon monoxide and fire events on 9 June, 2012 at same 

region. Agricultural fire emissions from Anhui and Jiangsu Province can be transported to Shanghai City, locating 

over 500 km away from fire source area. 

 

Fig. 2.7 provides a further example of the apparent link between intensive agricultural burning and large 

scale air quality reductions in Eastern China, where severe instances of air pollution appear spatially and 

temporally co-located with active fire detections from MODIS. However, the actual contribution of crop 

residue burning to the air pollution present in large urban regions of China, including its mega-cities, 

remains quite uncertain. This is partly at least because the remain significant uncertainties in the amounts 

of particulate matter released into the atmosphere by the fire activity. Based on studies of Asian regional 

air pollution transport, the large range of values that currently characterises open biomass burning 

(a) (b) 
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emissions estimates (> 450% uncertainty) could be the main reason for the noted discrepancy in observed 

and modelled particle concentrations (Streets et al., 2003).  

In situ measurements of air pollutants provide further evidence of the contribution of agricultural burning 

to urban air pollution. In the northern area of Eastern China, using the potassium content of total 

suspended particle samples as an indicator of biomass burning (also see in Section 2.3.3), samples 

collected in Beijing during the burning season was found to be three times higher than during non-

burning periods, indicating the regional influence of agricultural fire emissions and the presence of long 

range transport (Duan et al., 2004). During such periods, OC/K+ concentration ratio values indicate that 

overall agricultural fire emissions may contribute around half of the organic carbon PM present in the 

atmosphere of urban areas (Duan et al., 2004). Based on chemical composition analysis and positive 

matrix factorization (PMF), the contribution of biomass burning to aerosol samples collected in Beijing 

was similarly found to be as high as 50% with regard to both OC and BC (Cheng et al., 2013).  

Recent studies using the WRF/CMAQ modelling system (Weather Research and Forecasting/ 

Community Multiscale Air Quality) indicated that in the Yangtze River delta region, around 37% of 

PM2.5 (and 70% of OC and 61% of EC) were attributable to agricultural fire emissions (Cheng et al., 

2014), though towards the southern area in the Pearl River Delta Region the contribution decreased to 3.3 

- 6.5% of PM2.5 (along with 1.8-3.2% of VOCs) (Zhang et al., 2013). Furthermore, during atmospheric 

inversions, such air pollution tends to stay in the mixing layer and accumulates, resulting in even higher 

observed particle concentrations close to the ground (Cheng et al., 2014).  
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Figure 2.7: Imagery (a) MODIS-Aqua taken on June 9th, 2014 with the next day national air quality index map (b). 

The red spots in (a) refer to hot spots from MODIS active fire product, which has similar spatial distribution to the 

orange/red spots area refers to bad air quality in (b). Imagery and data source: http://www.noaa.gov/,  

http://aqicn.org/map/world/.  

 

The smoke from agricultural fires doesnot generally get injected directly into a totally "clean" atmosphere, 

but rather mixes with polluted air containing emissions from fossil fuel combustion, local dust etc. This 

mixing can lead to the formation of haze having a more complex physio-chemical makeup than the 

original smoke (Li et al., 2010), including further secondary organic and inorganic aerosols (Chen et al., 

2016; Cheng et al., 2014; Yamaji et al., 2010; Zhang et al., 2016).  Via a comparison of different types of 

haze generation in Beijing, Li et al. (2010) suggest that agricultural fire emissions approximately double 

the aerosol optical depth (AOD) on particularly haze days, and a similar situation was also found in 

Shanghai, where the haze can be attributed to either biomass burning plumes alone or to significant 

mixing with urban anthropogenic pollution (Du et al., 2011). In the latter case, precursor gases such as 

SO2 and NO2 could convert into sulphate and nitrate on the surface of pre-existing KCl particles emitted 

from agricultural residue fires (Du et al., 2011). 

 

2.4.2 IMPLICATION OF AGRICULTURAL FIRE EMISSIONS FOR GLOBAL CHANGE 

The contribution of agricultural fire gas emission to global change is discussed by, for example, Chen et 

al. (2016), Reid et al. (2005), and Smith et al. (2008). Whilst the equivalent of the emitted CO2 is 

(a) (b) 

http://www.noaa.gov/
http://aqicn.org/map/world/
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generally re-absorbed during the next growing season (see Section 2.3.2), the CO, CH4 and VOCs 

(volatile organic compounds) for example can react with OH radicals in the troposphere, affecting the 

oxidation capacity of the layer where the vast majority of non-aquatic life on Earth resides (Koppmann et 

al., 2005). Besides, the emitted nitric oxide and VOCs may also lead to the formation of ozone and other 

photo oxidants which are known air pollutants and toxic to both humans and plants (Koppmann et al., 

2005). Furthermore, the emitted organic matter and some soluble species such as potassium increase their 

size during atmospheric transport, resulting in more hygroscopic aerosol particles downwind and the 

possibility of more cloud condensation nuclei (CCN, Li et al., 2010). Formation of increased amounts of 

CCN was already observed during one field burning experiment (Dusek et al., 2006). 

The global open burning of biomass contributes about 40% of black carbon (Bond et al., 2013), which is 

likely to be the second most important individual climate-forcing agent after carbon dioxide, though with 

a high uncertainty of about a factor of two (Bond et al., 2013; Streets et al., 2003). For example, “brown” 

carbon, known as certain fractions of organic aerosols also absorb solar radiation effectively, has been 

found in such biomass burning. “Asian Brown Cloud” is created by brown carbon like this, which has 

potentially big impact on regional weather by changing the rainfall patterns and amount (Nakajima et al., 

2007). Generally, BC aerosol strongly absorbs solar radiation (IPCC, 2013), though exact particle 

composition, concentration, lifetime, and size distribution will all impact on the of aerosol to climate 

change (Bond et al., 2013). What’s more, the mixing of open burning emissions with local pollutants is 

not well understood thus far and may alter the impacts. Some mixing cases have reportedly resulted in 

dramatic temperature drops by 10 K and changes in rainfall (Ding et al., 2013), though this kind of 

indirect effect is not well qualified in global scale yet. Research also suggested, as a result of BC 

emissions from open biomass burning, and the changing optical depths and thus incoming solar irradiance 

reaching Earth’s surface, crop yields themselves maybe affected (Chameides et al., 1999). 

 

 

 

2.5 REMOTE SENSING OF AGRICULTURAL FIRES  

Satellite remote sensing can be used to map the burned area left by a fire, and can also be used to detect 

the thermal emissions from the fire whilst it is still burning (Giglio et al., 2006, 2013; Roy et al., 2005, 
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2008; Wooster et al., 2005).  Generally with burned area products, a substantial part of the entire pixel 

would need to be burned to perform a confident detection (perhaps 20% or more), whereas active fires 

potentially filling only 0.01-0.1% of the pixel can be detected by thermal remote sensing methods (Giglio 

et al., 2006, 2008; Schroeder et al., 2014).  However, despite their benefit in terms of 'small fire 

detectability', a key disadvantage of active fire remote sensing approaches is that the satellite must be 

collecting data whilst the fire is burning, and the short-lived nature of many agricultural fires means that 

many may burn outside of the time when the appropriate satellite instrument is overhead and collecting 

imagery and data.  Most quantification of biomass burning activity is therefore still performed using so-

called 'burned area' products, though active fire products are increasingly being used (e.g. Kaiser et al., 

2012). 

On average, nearly 3.4% of Earth's terrestrially vegetated area is estimated to burn annually according to 

analysis of the MODIS burned area product (Giglio et al., 2010).  However, many small fires often occur 

in agricultural settings, as well as other environments such as tropical forests, and many of these are likely 

to be well below the minimum detection limit of the 500 m spatial resolution MODIS burned area product 

(Giglio et al., 2006; Roy et al., 2008).  Recently this type of "normally undetected" fire was estimated by 

Randerson et al. (2012) to account for at least 35% of total global burned area, with a sharp increase of 

143% in central Asia (Fig. 2.3, including most areas of China according to the classification used in the 

study). However, the procedure used by Randerson et al. (2012) to estimate the size of the 'undetected 

burned area' is indirect, and based on an empirical relationship between burned area, spectral reflectance 

change, and the locations of the thermally detected hotspots representing the presence of an active fire 

(data which is at a different spatial resolution to the burned area itself). The accuracy of the resulting 

estimates of 'undetected burned area' is therefore highly uncertain, and the method is currently without 

any formally published validation. Nevertheless, whilst the absolute magnitudes reported by Randerson et 

al. (2012) for 'undetected burned area' and the resulting upward adjustments of fuel consumption are of 

uncertain reliability, the work does indicate that substantial fire activity is missed by the most commonly 

used burned area product that underlies the most widely used global fire emissions database (GFED; 

Randerson et al., 2012). 

Prior to this work by Randerson et al. (2012), an earlier study using a prior version of the MODIS burned 

area product concluded that fires in croplands constituted approximately 8-11% of all global active fire 

detections mapped during 2001-2003 (Korontzi et al., 2006). This number increases to 30 - 40% when 

considering just mainland China. All these figures should be treated with caution however, since many 
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(perhaps most) agricultural fires are small fires, smaller than the minimum burned area detectable via 

MODIS and possibly also smaller than the minimum thermal hotspot detectable by MODIS. For this 

reason, the proportion of total fire activity that agricultural burning represents is likely to be currently 

underestimated. 

 

2.6 CURRENT FIRE EMISSIONS DATABASES COVERING CHINA 

The large uncertainties that characterise assessments of agricultural burning in China, and which limit our 

understanding of its impact on air quality and global change, have been described in Section 2.4. Despite 

these limitations, reasonably high spatial and temporal resolution emission inventories are available, and 

their methods and characteristics are summarised in this Section.  

 

2.6.1 CROP YIELD BASED APPROACHES 

Approaches based on yield statistics are a long-standing, relatively traditional way to estimate fire 

emissions from agricultural residue burning, and can be traced back to times before satellite remote 

sensing was applied (e.g. Cao et al., 2006; Huang et al., 2012). The crop yield based approaches (CYBA) 

calculate the amount of crop residue burned in a region from a combination of crop production statistics 

and related additional parameters: 

𝑀 = ∑ 𝑃𝑖  𝑅𝑖  𝐹𝑖   𝐶
𝑛
𝑖=0                                                                                                 (2.1) 

Where i stands for each of n different crops; Mi is regional mass of residue from crop i burned in the field 

(kg); Pi is the regional production of crop i (kg), and is usually derived from annual agricultural statics 

reports; Ri is the proportion of dry matter residue-to-crop production (unitless proportion between 0 and 

1), which depends on the crop type i; Fi is the proportion of residue burned in the field for crop type i in 

the region under study (unitless proportion between 0 and 1); and C is crop combustion completeness 

(unitless proportion between 0 and 1, Huang et al., 2012). 

Certain of the parameters of Eqn. 2.1 are not so easily determined. For example, in the region under study, 

the proportion of the crop residue burned in the field for crop type i (Fi) is normally estimated via a 

limited investigation of the uses of crop residues, which varies between different regions/provinces 

(Huang et al., 2012). Because of strong variations in socio-economic development across the huge 

expanse of mainland China, large differences in the estimates of Fi exist, indicating large uncertainties 
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(Jiang et al., 2012; Liu et al., 2008; Wang et al., 2013; Yamaji et al., 2010). The proportion of residue 

burned in the field (Fi) used in above study was based on few questionnaires or investigations on the use 

of crop residues conducted over 10 years ago with a limited number of farmers (Gao et al., 2002; Wang 

and Zhang, 2008). Fi may however change years since it is hugely impacted by the level of local 

economic development, the availability of alternative uses for crop residues in the region, and the regional 

governance of fire prohibition (Chen et al., 2016). Moreover, considering the official prohibition of open 

air burning, it is possible to question the reliability of data based on surveys that are asking farmer how 

much residue they burn. Despite this, most studies that include agricultural fire emissions estimation in 

Eastern China have relied on the Crop Yield Based Approaches (Cao et al., 2006; He et al., 2011; Huang 

et al., 2011, 2012; Li et al., 2007, 2009; Qin and Xie, 2011; Wang et al., 2008; Yan et al., 2006; Zhao et 

al., 2011). 

 

2.6.2. SATELLITE-DERIVED BURNED AREA METHODS 

Since croplands in China are mostly run by individual households, satellite-based estimates of area 

burned have often been considered inappropriate for use in agricultural regions of China, due to the small 

burned areas being outside of the satellite products detection limits. For example, Yan et al., (2006) used 

the Global Burned Area 2000 (GBA2000) data set that was derived from 1 km satellite EO data to 

calculate a total of only 4.7 Tg of crop residues had been burned in that year, accounting for less than 1% 

of the total crop residue production. This is unlikely to be correct, and is the result of most burned area in 

croplands remaining undetected in the GBA2000 dataset. However, with the development and increasing 

sophistication of satellite remote sensing tools and techniques, direct observation of burned areas is 

becoming a much more common and relied up approach in fire emission studies (e.g.: Giglo et al., 2006, 

2010, 2013; van der Werf et al., 2010). Based primarily on satellite-derived estimates of the area burned 

in fires, the mass of fuel burned (M) is derived by combining information on fuel load and the proportion 

of this fuel that actually burns (i.e. the combustion completeness): 

M= A B C                                                                                                                               (2.2) 

Where A is the burned area (m2); B is the available biomass per unit area, also termed fuel load (kg km-2); 

and C is the crop combustion completeness the same as in Eqn. 2.1 (unitless proportion between 0 and 1). 

The original Eqn. 2.2 appeared in Seiler and Crutzen (1980), and is widely used in studies of biomass 
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burning emissions, for example within the Global Fire Emissions Database (GFED) of van der Werf et al. 

(2010, see details in Section 2.6.4). 

Burned areas for use in Eqn. 2.2 are now routinely estimated from the MODIS spaceborne sensors.  For 

example, the MODIS burned area product (MCD45, Figure 2.8) provides global 500 m spatial resolution 

burned area information dated to the best estimated day of burn, and works by locating the occurrence of 

rapid changes in daily surface reflectance in MODIS time series (Roy et al., 2005, 2008). An alternative 

'direct broadcast' MODIS burned area product (MCD65) uses a somewhat similar approach, but with a 

lower requirement for the length of the time-series but a dependence on active fire data in addition to 

surface reflectance information (Giglio et al., 2009).  More spatially detailed burned area information 

than can be obtained with MODIS is able to be derived from higher spatial resolution sensors, such as 

Landsat Thematic Mapper and Landsat OLI (e.g. Smith et al., 2007; Stroppiana et al., 2012), and more 

recently Sentinel-2 MSI (MultiSpectral Instrument), albeit not yet routinely at global scales. Many burned 

area algorithms, including the MODIS approaches introduced above, are based on differences seen during 

the observation of the before and after the apparently fire.  

One issue with the MODIS burned area products is that they are known to miss smaller burns, as outlined 

in Section 2.5 and detailed in Randerson et al. (2012). Roy et al (2008) also show that there are many 

"small fire" situations where active fire methods may detect a fires presence that cannot be easily 

identified using the MODIS burned area product, in that case MCD45. Therefore, the MODIS burned 

area product may not be a very reliable nor appropriate tool for use in agricultural residue burning regions. 

Randerson et al. (2012) estimated the amount of burned area missing from the MODIS burned area 

datasets, i.e. that due to small fires, to be as high as 35% as detailed in Section 2.5. Amounts were even 

higher in some cropland areas, including in China (> 80%). Beyond this potential bias, when using Eqn. 

2.2, the fuel load and combustion completeness terms can be quite difficult to assess, and must generally 

be measured during field studies, be taken from prior literature estimates, or can come from the output of 

vegetation growth models (van der Werf et al., 2010). The fuel load and combustion completeness terms 

vary widely between and across different biomes, and between different times of year, and are considered 

to be the key uncertainties in the burned area method of fire emissions calculation (Reid et al., 2005).  
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Figure 2.8: Time series of NIR (near-infrared) surface reflectance from MODIS 500m data (Roy et al., 2002). Data 

fluctuation before day 260 is due to Bidirectional Reflectance Distribution Function (BRDF). The pixel burned 

around day 261, showing a distinct fall in NIR surface reflectance. 

 

2.6.3 ACTIVE FIRE DETECTIONS AND RADIATIVE POWER (FRP) METHODS 

Flaming fires emit significantly in the shortwave infrared (SWIR) atmospheric window (1.6 - 2.5 µm). 

However, strong daytime solar reflections at these wavelengths has steered the development of active fire 

detection towards use of the middle infrared (MIR) atmospheric window (3 - 5 μm). Here, levels of solar 

reflected radiation are lower than in the SWIR (Fig. 2.9), while thermal energy emission rates from fires 

are very much higher than from the ambient temperature background.  By detecting these emitted IR 

energy signatures, actively burning fires can be detected using satellite remote sensing (Wooster et al., 

2003, 2005). Since at MIR wavelengths the spectral radiance (W m-2 sr-1 µm-1) emitted from flaming 

vegetation can be up to four orders of magnitude higher than from the surrounding ambient background 

(Fig. 2.9), areas of combustion occupying even a very small fraction of the pixel area (e.g. 0.1 to 1.0%) 

can result in significant increases in the pixel-integrated signal (Wooster et al., 2013; Schroeder et al., 

2014).   

However, the detections of active fires cannot be used to estimate burned area directly for use in Eqn. 2.2, 

since an identified active fire pixel is not necessarily all ultimately burned. There are, however, a number 

of demonstrated cases where the number of active fire pixels has been shown to be well correlated to the 

burned area produced over the same time period, and indeed this method has been employed to estimate 

burned area in the widely-used GFED database prior to the availability of the MODIS burned area 

product (e.g. Giglio et al., 2013).  
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Another approach to directly quantify biomass burning from active fire detections uses the amount of 

radiant energy released by a fire. This is known as the Fire Radiative Power [FRP] approach (Wooster et 

al., 2005), and compared to burned area method may in theory work well for smaller fires, since active 

fire detection methods can detect fires far smaller than can burned area based methods (Kaiser et al., 2012; 

Wooster et al., 2003, 2005).   

 

 

Figure 2.9: Emitted spectral radiant energy distribution across different wavelengths (Fuller, 2000), for objects with 

different temperatures (300 K = Ambient Earth; 1000 K = vegetation fire). The huge difference of spectral radiance 

from hot (fire) and cool (Earth) is most apparent in the SWIR to MWIR spectral region (highlighted by the green 

rectangle) and this region is key for active fire detection from satellite EO data, even when fires are filling far less 

than the entire pixel. 

 

Nevertheless, since agricultural fires are small and are known to be better detected by active fire methods 

from MODIS than by the MODIS burned area products (Randerson et al., 2012), it is appropriate to try 

them here, and in particular to determine whether the FRP approach to emissions estimation can be 

properly exploited in this "small fire" agricultural environment.  The VIIRS sensor is potentially able to 

detect fires around 10× smaller than those of MODIS due to its much finer pixel area (Schroeder et al., 

2014), potentially offering a very useful attribute in agricultural burning regions where small field sizes 

and limited fire intensities are likely to lead to relatively small active fire signals. One limitation is, 

however, that VIIRS only images an area twice per day – and this limited sampling alone is unlikely to be 

able to capture the full picture of an areas fire activity in order to estimate it’s FRE.  



48 

 

 Multiple FRP observations made at different times during a fire can be integrated to provide an estimate 

of Fire Radiative Energy (FRE, Wooster et al., 2005), either using a model of the fires diurnal cycle, 

multiple FRP observations, or some other assumption related to the changing nature of fire activity over 

the day (Ellicott et al., 2009; Freeborn et al., 2008; Kaiser et al., 2012). Then, a direct estimate of total 

fuel consumption can be obtained using the FRE estimate and a "radiative energy combustion factor", i.e. 

an empirical ratio between FRE and fuel consumption (such as the one developed from experiments by 

Wooster et al., 2005). One thing that should be noted is that not all the radiative energy from the active 

fire pixel is necessarily recorded by the remote sensing device. Some may be absorbed or obscured by 

overlying vegetation or by smoke, vapour or cloud existing between the fire and the sensor, and ideally 

this change should be corrected for in the estimate of FRE (Wooster et al., 2005). Also, the adjustments 

and corrections needed when integrating FRP to FRE, including accounting for gaps created by clouds 

and orbital geometry, estimating the diurnal cycle of FRP during periods in between satellite overpasses, 

and adjusting for any "bow-tie" type viewing geometry effects all ideally need to be taken into account 

(Freeborn et al., 2009, 2011; Randerson et al., 2012).  

 

2.6.4 INTRODUCTION OF TWO STATE-OF-THE-ART GLOBAL FIRE EMISSIONS DATABASES 

The Global Fire Emissions Database (GFED) is one of the most widely used global fire databases 

available (van der Werf et al., 2010). It was built to combine remotely sensed data on burned area with 

the CASA (Carnegie Ames Stanford Approach) biogeochemical model of vegetation growth, producing 

global, spatially explicit, burned area and pyrogenic carbon emissions estimates. Monthly emissions 

estimates are delivered at a 0.25o grid cell resolution globally, though active fire data is available to 

improve the temporal resolution by distributing the emissions according to active fire count. Monthly 

burned area data currently extends back to July 1995, though for the first 5 or 6 years this is derived from 

ERS-ATSR and TRMM-VIRS active fire detections rather than directly from burned area mapping with 

the 500-m MODIS MCD64A1 product as is the case for subsequent years. Fig. 2.10 provides an example 

of GFED4.0 dry matter burned (shown as an areal density map) for 12 months in Eastern China (year 

2013). 
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Figure 2.10: Spatial distribution (0.25 × 0.25o grid) of monthly total grid-cell dry matter burned areal density of 

agricultural fires occurring in Eastern China in 2013 retrieved from GFED4.0.  

 

The most recent version of the Global Fire Emissions Database, GFED4.1s, is used in this study, and has 

an adaptation for the underestimation of small fires in the MODIS burned area product. This bias 

correction is based on the work of Randerson et al. (2012) and is calculated using: 

𝐵𝐴𝑡𝑜𝑡𝑎𝑙(𝑖, 𝑡, 𝑣) = 𝐵𝐴𝑀𝐶𝐷64𝐴1(𝑖, 𝑡, 𝑣) + 𝐹𝐶𝑜𝑢𝑡(𝑖, 𝑡, 𝑣)×𝛼𝑟,𝑠,𝑣,𝑦×𝛾𝑟,𝑠,𝑣,𝑦                                (2.3) 

Where the total burned area (𝐵𝐴𝑡𝑜𝑡𝑎𝑙) in each grid cell (i), month (t) and vegetation class (v) is the sum of 

original MCD64A1 burned area (𝐵𝐴𝑀𝐶𝐷64𝐴1), as used in the prior GFED4.0 system, and a ‘small fire 

component’ calculated from three factors (Eqn. 2.3). These are the total number of MOD14A1 active fire 

pixels found outside of burned areas in each 0.25o grid cell (𝛼), the ratio of 𝐵𝐴𝑀𝐶𝐷64𝐴1 to active fire 

counts, and a scalar (𝛾). Fig. 2.11 gives the example of the dry matter burned areal density as contained in 

the GFED4.1s database for 12 months during 2013 in Eastern China. Compare to Fig. 2.10, GFED4.1s 

holds higher values of dry matter burned areal density in most grid cells, and shows a wider fire 

distribution across Eastern China. The GFED4.1s database is stored as HDF5 format files and can be 

downloaded from http://www.falw.vu/~gwerf/GFED/GFED4/.  

http://www.falw.vu/~gwerf/GFED/GFED4/
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Figure 2.11: Spatial distribution (0.25 × 0.25o grid) of monthly total grid-cell dry matter burned areal density of 

agricultural fires occurring in Eastern China in 2013 retrieved from GFED4.1s. This version contains small fire boost 

based on Randerson et al., (2012), which therefore holds higher value of dry matter burned areal density with wider 

fire distribution compare to GFED4.0 from Fig. 2.10. 

 

The main global alternative to GFED is the Global Fire Assimilation System (GFAS), developed by 

Kaiser et al. (2012) and based on the FRP method (see Section 2.6.3). MODIS supplies the FRP data, up 

to 4 times per day at most latitudes, and the emissions of 40 species are calculated every 24 hours at a 0.1o 

spatial resolution from daily averaged FRP areal density values and a conversion coefficient relating this 

to the fuel consumption. This coefficient is biome-dependent and was derived from comparisons between 

GFAS-calculated FRP totals and GFED specified fuel consumptions for the same biomes. Hence GFED 

and GFAS are forced to agree somewhat, though an apparent underestimation of smoke aerosol emissions 

by a factor of 2-4 is one of the as yet unexplained characteristics of GFED (Kaiser et al., 2012). Within 

the GFAS calculation, the diurnal cycle is currently being introduced via a Gaussian function that peaks 

in early afternoon, the exact characteristics of the function being based on geo-stationary satellite 

observations (Andela et al., 2015). Fig. 2.12 shows the monthly total grid-cell dry matter burned areal 

density retrievals provided by GFAS1.2 at a grid cell resolution of 0.1°, including in near real time (which 

is not the case with GFED; that lags around a year behind real-time).  The newest GFAS1.2 data can be 

retrieved from the ECMWF-hosted Copernicus Atmosphere Monitoring Service (CAMS) website 

(http://www.gmes-atmosphere.eu/d/services/gac/nrt/fire_radiative_power/). 

http://www.gmes-atmosphere.eu/d/services/gac/nrt/fire_radiative_power/
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Figure 2.12: Spatial distribution (0.1 × 0.1o grid) of monthly total grid-cell dry matter burned areal density of 

agricultural fires occurring in Eastern China in 2013 retrieved from GFAS.  

 

2.7 OBJECTIVES 

This PhD research focuses on agricultural residue burning in Eastern China (see Fig.2.13), a densely 

populated area of China which is also one the countries primary agricultural regions and which includes 

both the North China Plain and the Yangzi Plain. Agricultural fires are known to be widespread in this 

area, as Fig. 2.13 indicates using fire radiative power (FRP) data introduced in Section 2.6. Intensive 

double cropping cultivation dominates in Eastern China, with open-air residue burning widely used to 

prepare the ground before one or both planting periods (late-May to mid-June and late-September to 

early-October; Huang et al., 2012). Other parts of China show different patterns, with triple cropped areas 

in the south and later harvesting times in the northeast, but these will not be studied here. Within the 

Eastern China region, in addition to the rural population and those in urban areas, two mega-cities 

(Beijing and Shanghai, shown in Fig. 2.13, containing a population of 11.5 and 14.3 million citizens each) 

are potentially impacted by the transported agricultural fire emissions. 
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Figure 2.13: Map of research domain in this PhD study, including main provinces and mega-cities in Eastern China 

(111-123° E, 27-40° N). The red circles depict total FRP observed by MODIS between 2002 and 2015 per 1° grid 

cell (see legend lower right).  

 

Based on the literature reviewed in Sections 2.2 to 2.4, it is clear that currently there exists some 

uncertainty about (i) the magnitude of agricultural fire activity in the Eastern China region (Cao et al., 

2006; Huang et al., 2012; Li et al., 2007; Zhang et al., 2008), where small fires dominate and many of 

them might not be included in current satellite fire products yet (Randerson et al., 2012). (ii) whether 

there exists a significant interannually variability or not, and if so whether this has any relation to e.g. 

Chinese Government policy initiatives (Pan et al., 2013; Wang et al, 2013) or climatic variations, and (iii) 

the actual chemical and particulate totals that are released to the atmosphere as a result of the residue 

burning activity (Cao et al., 2006; Huang et al., 2012; Li et al., 2007). This PhD study aims to address 

each of these issues using a combination of satellite remote sensing (see review of Section 2.5-2.6) and 

ground-based field measurements of in situ burning. A series of key objectives targeted at meeting the 

overall aims are listed below: 
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Obj (i): Quantify the spatio-temporal distribution of agricultural residue burning using active fire 

satellite Earth Observation approaches that take into account “small fires” more effectively than 

currently done. 

Here the primary task will be to exploit observations from the relatively new VIIRS sensor onboard the 

Suomi NPP satellite, along with those from the long-standing MODIS sensor onboard the TERRA and 

AQUA satellites. Whilst actively burning fires that cover only 10-4 of the satellite pixel area are 

potentially detectable with these systems, the very small size of the (highly numerous) agricultural fires 

means many (perhaps the majority) are missed by MODIS. It is expected that the 375 m spatial resolution 

"I-band" imagery provided by VIIRS will allow active fires to be detected that are ~ 10× smaller than 

those that can be detected by MODIS, due to the 10× smaller pixel area of the VIIRS I-Band (Schroeder 

et al., 2014). This "small fire" detectability is very attractive in Eastern China, where field sizes less than 

1/6 ha (1670 m²) are commonplace (NBSC, 2012). Using VIIRS, the theoretical minimum detectable 

active fire size at night is ~ 5 m2 (Schroeder et al., 2014), and by day perhaps twice this, which should 

easily be small enough for the detection of a very significant fraction of the agricultural fires that are 

burning when the Suomi NPP satellite passes overhead. To undertake the work related to this objective, a 

new active fire detection algorithm will be developed for application to VIIRS, and the result will be 

validated using higher spatial resolution satellite data and/or data collected by UAVs and on the ground. 

Schroeder et al. (2014) have already demonstrated an early “small fire” active fire detection algorithm 

based on VIIRS I-band imagery, but reported very large proportion (>40%) low confidence fires in 

Eastern China – suggesting that many of the detections may actually be false alarms.  One task under this 

objective will be to understand the causes of these apparent "false fire detections", and attempt to 

significantly reduce them in the newly developed algorithm output, whilst still maintaining a “small fire” 

detection sensitivity ideally beyond that obtained by Schroeder et al. (2014).  Once a validated active fire 

detection methodology is developed and validated, it will be used to examine the location, timing, 

interannual and seasonal variability and trends in agricultural residue burning occurrence across the 

Eastern China study area.  

 

Obj (ii): Estimation of biomass consumption in agricultural residue burning. 

Here the task will be to build on the work done under Obj (i) and use VIIRS to assess the FRP (fire 

radiative power) of the actively burning fires, based on the approach of Wooster et al. (2003).  This has 
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not yet been done using VIIRS, and very rarely has Chinese agricultural burning been specifically 

targeted for FRP estimation even with MODIS (Huang et al., 2012). A key task will be to combine the I-

Band active fire detection results with data from the VIIRS M-Band, which unlike the I-Band, is low risk 

to saturate over agricultural fires. The combination of I-Band and M-Band can thus be used for FRP 

retrieval over both small and large agricultural fire events. However, since VIIRS can only measure FRP 

twice per day, and thus fuel consumption rate at the same temporal interval, further information is most 

likely required to properly estimate the FRE (fire radiative energy) and total biomass consumed (Freeborn 

et al., 2011; Roberts et al., 2009).  Himawari-8, a Japanese geostationary meteorological satellite 

launched in 2014 will provide this additional information. The Himawari series of geostationary satellites 

carries a new instrument called the Advanced Himawari Imager (AHI), offering far improved capabilities 

in terms of spatial resolution, spectral bands and temporal resolution than the previous MTSAT 

(Multifunctional Transport Satellites) system. AHI data should allow full diurnal characterisation of the 

rapidly changing, extremely numerous but typically rather relatively small and short-lived fires that are 

common in agricultural landscapes, albeit in areas with a lower density of fires there may not be enough 

of a thermal anomaly signal for AHI to detect. The information derived from VIIRS and Himawari-8 will 

be combined to estimate FRE and thus daily agricultural burning fuel consumption. 

 

Obj (iii): Confirmation of the emissions factors of Chinese crop residue fires. 

Biomass burning emission factors for Chinese crop residues have been most commonly derived from 

laboratory tests (as outlined in Section 2.3). These values need to be confirmed via in situ fieldwork on 

real fire events, to ensure the derivation of EFs that are representative of real-world conditions, and this 

will be done during this component of the research programme. 

 

Obj (ix): Estimate daily agricultural residue burning emissions for Eastern China fire seasons 

throughout 2013-2015. 

Here the fuel consumption and EF measures described above will be combined to estimate the mass of 

key gaseous and particulate species released into the atmosphere.  The spatio-temporal distribution of 

these emission will be analysed and compared to those present in state-of-the-art databases (see Section 

2.6.4), focusing on the potential changes that have been introduced via the new ability to include “small 

fires” within the active fire detection process.  
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CHAPTER 3: AGRICULTURAL FIRE DETECTION AND FRP 

ASSESSMENT USING VIIRS 

 

3.1 INTRODUCTION 

This Chapter focuses on work conducted to meet Obj. (i) of this research (Section 2.7), that is to 

‘Quantify the spatio-temporal distribution of agricultural residue burning using active fire satellite 

Earth observation approaches that take into account “small fires” more effectively than currently 

done’. 

The chapter primarily describes the development of a ‘small active fire’ detection algorithm for 

application to 375 m spatial resolution VIIRS I-Band data. This algorithm has been developed to improve 

the detection of small, low-intensity agricultural fires occurring in Eastern China. This chapter also covers 

part of Obj. (ii) by building the methodology for assessing the FRP of the actively burning fires, again 

using data from VIIRS but this time both from the I- and M-Bands. 

Section 3.2 of this Chapter presents a published paper (Zhang et al., 2017: Remote Sensing of 

Environment) that describes the development, application, and evaluation of the ‘small active fire’ 

detection algorithm, as well as the FRP retrieval method. The author of this PhD thesis is the first author 

of this paper, and designed the algorithm with advice from M. Wooster, conducted all the data processing, 

analysis and field verification. She also drafted the paper. Wooster also provided advice with respect to 

data analysis and editing, whilst Xu calculated the terms of the atmospheric correction procedure.  

 

 

 

3.2 APPROACHES FOR SYNERGISTICALLY EXPLOITING VIIRS I- 

AND M-BAND DATA IN REGIONAL ACTIVE FIRE DETECTION AND 

FRP ASSESSMENT: A DEMONSTRATION WITH RESPECT TO 

AGRICULTURAL RESIDUE BURNING IN EASTERN CHINA 
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We demonstrate a new active fire (AF) detection and characterisation approach for use with the VIIRS
spaceborne sensor. This includes for the first-time joint exploitation of both 375 m I-Band and 750 m M-Band
data to provide both AF detections and FRP (fire radiative power) retrievals over the full range of fire and FRP
magnitudes. We demonstrate the value of our VIIRS-IM ‘synergy’ product in an area of eastern China dominated
by numerous small agricultural residue burns, which contribute significantly to regional air quality problems but
which are often difficult to identify via standard (e.g. MODIS 500 m resolution) burned area mapping. We show
that the highly ‘fire sensitive’ VIIRS I-Band data enables detection of the ‘small’ active fires (FRP ≤ 1MW), but this
sensitivity can lead to false alarms, often associated with manmade structures. We help avoid these via use of
30 m resolution global land cover data and an OpenStreetMap mask. Comparisons to near-simultaneous Aqua-
MODIS AF detections, and the existing VIIRS I-Band AF global product, highlight our VIIRS algorithm's ability to
more reliably detect the lowest FRP pixels, associated with the type of agricultural burning dominating eastern
China. Our algorithm delivers typically 5 to 10× more AF pixels than does simultaneous-collected MODIS AF
data (notwithstanding differences in spatial resolution), and importantly with a AF detection sensitivity that re-
mains much more constant across the swath due to VIIRS' unique pixel aggregation scheme. The VIIRS I4-Band
saturates over higher FRP fires, but by combining use of I- and M-Band data our algorithm generates reliable
FRP records for all fires regardless of FRP magnitude. Using the VIIRS-IM methodology we find regionally
summed FRP's up to 4× higher than are recorded by MODIS over the same fire season, highlighting the signifi-
cance of the formally undetected low FRP active fires and indicating that current MODIS FRP-based emissions in-
ventories for areas dominated by agricultural burning may be underestimating in a similar way to burned-area
based approaches. FRP generation from VIIRS that takes into account both low- and high-FRP fires via use of
both the I- and M-Band data should therefore enable significant improvements in global fire emissions estima-
tion, particularly for regions where smaller types of fire are especially dominant.
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1. Introduction

Satellite remote sensing is widely used for mapping burned area
(Giglio et al., 2010; Roy et al., 2008) and for detecting and characterising
actively burning fires (Giglio et al., 2006, 2008; Roy et al., 2005, 2008;
Wooster et al., 2005). Burned area (BA) products generally require a
substantial fraction of the pixel to be fire-affected for a confident detec-
tion to be made, whereas active fires only need cover 0.01–0.1% of the
pixel area (Giglio et al., 2006, 2008; Robinson, 1991; Roberts et al.,
2005; Schroeder et al., 2014). Randerson et al. (2012) compared
500 m spatial resolution (MCD64A1) MODIS BA data to 1000 m spatial
. This is an open access article under
resolution (MOD14/MYD14) MODIS AF (active fire) data to highlight
the fact that a large proportion of the typical ‘small’ fires found in agri-
cultural and tropical deforestation landscapes appear to remain unde-
tected in the BA data, but do appear in the AF products. Burned area is
therefore significantly underestimated in such areas, with the most se-
vere impacts (N50% underestimation) apparently located in parts of
central Asia where agricultural residue burning across huge numbers
of individually small fires dominates. This estimate of the degree of un-
derestimation is itself very uncertain, and maybe a minimum estimate
because the MODIS AF product itself often fails to detect active fires
whose FRP is significantly below~8MW(Zhukov et al., 2006). Thismin-
imum detection threshold becomes even higher away from the MODIS
swath centre (Freeborn et al., 2011). In most biomes and for most times
of year, such low FRP fires seem likely to dominate (e.g. Wooster and
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Zhang, 2004; Ichoku et al., 2008), so in addition to their potential use in
improving the estimation of burned area, low FRPAF detectionmay also
be very significant for regional fire regime characterisation (Freeborn et
al., 2014) and for FRP-based smoke emissions assessments (e.g. Kaiser
et al., 2012).

Here we present a new AF detection approach, based on data from
the Visible Infrared Imaging Radiometer Suite (VIIRS) carried on the
Suomi-NPP satellite. The approach is aimed specifically at including de-
tection and characterisation of low FRP fires as well as themuch easier-
to-detect high FRP fires. Via this approach, we aim to much more fully
record regional FRP characteristics at the time of the satellite overpass
than hitherto possible.

VIIRS has twomiddle-wave infrared (MWIR) bands offering (at nadir)
375m(I-Band) and750m(M-Band) spatial resolutions, representing sig-
nificantly smaller pixel areas and thus an improved active fire detection
capability than offered by MODIS (with its 1000 m spatial resolution
nadir pixels). Whilst the experimental Hotspot Recognition Sensor
(HSRS) on-board the BIRD satellite has previously been used to demon-
strate a low-FRP detection capability based on sub-400 m spatial resolu-
tion data (Zhukov and Oertel, 2001; Zhukov et al., 2006), unlike BIRD-
HSRS, VIIRS offers global twice daily observations. This includes an over-
pass in the early afternoon, at around the peak of the usual fire diurnal
cycle (Freeborn et al., 2011).We apply our analysis of VIIRS data to detect
and quantify active fires burning in the agricultural region of eastern
China, which Randerson et al. (2012) demonstrate is an areawhere omis-
sion of ‘small’ crop residuefires by theMODIS (MCD64A1) BAproduct ap-
pears among the most significant worldwide.

Schroeder et al. (2014) have already demonstrated an improved abil-
ity to detect ‘small fires’ using the VIIRS I-Band. Fires down to an FRP
around an order of magnitude lower than the minimum detection limit
of MODIS can in theory be detected, due to the I-bands 10× smaller
(nadir) pixel area. The resulting VIIRS AF product from Schroeder et al.
(2014) (VNP14IMGTDL_NRT) indeed shows a generally much more sen-
sitive ‘small fire’ active fire detection performance compared to the
MODIS MOD14/MYD14 product, though the implementation described
in Schroeder et al. (2014) did not include FRP retrieval itself. The generally
strong performance of the Schroeder et al. (2014) global-I-Band algo-
rithm has inspired our regional algorithm, in which we combine VIIRS I-
and M-Band data to generate AF detections and FRP retrievals for both
low- (“small”) and high-FRP (“large”) fires. We optimise our algorithm
for eastern China, an area of agricultural burning where the Schroeder
et al. (2014) global implementation still has some difficultly, showing a
high rate of low confidence AF detections. We compare outputs from
our VIIRS I-M synergy product scheme to those from the global algorithm
of Schroeder et al. (2014), and toMODIS, illustrating the impact of our en-
hancements related to both AF detection and FRP characterisation.

2. The VIIRS sensor, scan and data characteristics

2.1. VIIRS sensor

VIIRS currently operates onboard Suomi-NPP (launched October
2011), and is the first of a set of 22-band scanning radiometers designed
to fly on the Joint Polar Satellite System (JPSS) over the coming decades
Table 1
VIIRS spectral bands used herein, along with the closest bands of MODIS for reference (from C

VIIRS band Spectral range (μm) Spatial resolution @ nadir (m)

I1 0.600–0.680 375
I2 0.846–0.885 375
I3 1.580–1.640 375
I4 3.550–3.930 375
I5 10.500–12.400 375

M13 3.973–4.128 750
(Wolfe et al., 2013). VIIRS offers one set of multi-spectral channels (five
“I-Bands”) providing 375m spatial resolution data (at nadir), and a fur-
ther set (sixteen “M-Bands”) recorded simultaneously at 750 m spatial
resolution (at nadir). OneM-Band pixel thus contains four I-Band pixels.

Table 1 shows the VIIRS bands used herein, and the two I-Bands
bands centred on middle and longwave infrared wavelengths (3.74
and 11.45 μm respectively) make it possible to quite easily adapt
existing AF detection algorithms (e.g. Giglio et al., 2003) for use with
VIIRS I-Band data. In theory, because the I-Band's pixel areas are 10×
smaller than MODIS (at nadir), active fires around 10× smaller in area
(or with ~10× lower fire intensity FRP), are detectable with VIIRS com-
pared to MODIS.

2.2. VIIRS scan and data characteristics

In addition to its higher spatial resolution, a key difference between
VIIRS andMODIS is the former's ‘pixel aggregation’ schemewhich limits
pixel area increase with scan angle to a maximum of ×4 compared to
MODIS' × 10 (Wolfe et al., 2013). Via this scheme, the standard
ungeocoded VIIRS SDR (Sensor Data Record, equivalent to MODIS
Level 1b) data (Fig. 1a) is separated into different aggregation zones,
with each pixel in ‘Aggregation Zone 3’ being the signal average of
three along-scan sub-pixels, those in ‘Aggregation Zone 2’ being the av-
erage of two sub-pixels, and those in the ‘No Aggregation Zone’ being
the original observations (Wolfe et al., 2013). This greatly lessens
VIIRS pixel area increase across the swath, but the data still suffer a
MODIS-like “bow tie effect” towards the swath edge due to overlap be-
tween consecutive scans (Wolfe et al., 2013). To counteract this, the
VIIRS SDR has the four outermost sampling rows of an individual scan
line filled with zeros across Aggregation Zone 2, and eight across the
outermost “No Aggregation Zone” (Fig. 1). This removes the “bow-tie”
effect seen in ungeocoded MODIS level 1b data, where near swath-
edge pixels appear replicated along-track due to their dimensions
being far larger than the satellites along-trackmovement during a single
scan (Wolfe et al., 2013).

Schroeder et al. (2014) identified a series of key issues to address
prior to confident use of VIIRS data for AF detection and fire characterisa-
tion. Of utmost relevance to FRP retrieval is that the I-Band covering the
MWIR spectral region (I4) saturates at 367 K, and because of the small
ground footprint of the pre-aggregation I-Band detectors - such a bright-
ness temperature can be reached at the locations of even rather low-to-
moderate FRP fires (e.g. ~20 MW or less). Unfortunately, the VIIRS data
Quality Flag (QF) currently only shows instanceswhere all the pre-aggre-
gation VIIRS pixels going into the signal averaging calculation are saturat-
ed, which is a far less common situation than only a subset of them being
saturated. Thus, it is a non-straightforward task to unambiguously identi-
fy all I4 Band pixels affected by pre-aggregation saturation, and we ad-
dress this issue via synergistic use of the 750 m MWIR M13 band data
at all such potential locations, as explained in Section 6.

3. Study area

Our 1.1 million km2 eastern China study region includes the North
China Plain and the Yangtze Plain (Fig. 2), encompassing around one
ao et al., 2013).

MODIS band Spectral range (μm) Spatial resolution @ nadir (m)

1 0.620–0.670 250
2 0.841–0.876 250
6 1.628–1.652 500
20 3.660–3.840 1000
31 or 32 10.780–11.280

11.770–12.270
1000
1000

21 or 22 3.929–3.989
3.929–3.989

1000
1000



Fig. 1. VIIRS data of eastern China, covering the area outlined in yellow in Fig. 2. (a) VIIRS I-Band false colour composite image (RGB= I3, I2, I1) with the region selected and shown as (c),
(d), and (e) outlined in red. (b) cloud/water/candidate thermal anomaly pixel/confirmed thermal anomaly pixel (white/blue/orange/red) derived from I-Band data using the techniques
detailed herein. (c) shows the same false colour composite as in (a), but now zoomed on the highlighted region. These data are subset from the first 85-second granule of VIIRS SDR
npp_d20150613_t0503225_e0509028. (d) shows the MWIR (Band I4) and LWIR (Band I5) brightness temperature difference image matching (c), and (e) shows the matching cloud/
water/candidate fire/confirmed active fire pixel mask output from our active fire detection scheme outlined in Fig. 3. The image is an ascending node scene, with north towards the
bottom. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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third of the Chinese population and the area responsible for an estimated
25% of China's crop production (~51% of the national rice yield; NBSC,
2012). Burning typically remains the quickest, simplest and cheapest ap-
proach to removing agricultural residues left after harvest of rice, wheat,
and other crops, and remains commonplace even though discouraged
or forbidden since the late 1990's (Huang et al., 2012). Until recently
such crop residues were China's second largest industrial waste product
(Qu et al., 2014), and thiswidespread burning is suspected of contributing
significantly to China's air quality problems (Qu et al., 2014). Previous
studies show most fields in eastern China support at least two crops per
year (Huang et al., 2012; Pan et al., 2013), with winter wheat harvested
in June, the stubble burnt shortly after, and the fields then rapidly flooded
and rice planted. This rice is harvested in September or October when the
fields are also drained, the rice straw burned, and the fields prepared
again for wheat planting (Huang et al., 2012).

Being almost solely confined to agricultural fields, the individual crop
residue fires themselves may each be quite small, but they occur in ex-
tremely large numbers (Huang et al., 2012). Mostly ignited within a few
weeks in anyparticular area (usually twiceper year), their cumulative im-
pact on air pollution at these times can seemingly be very high (Huang et
al., 2012; Yan et al., 2006). However, whilst 1 kmMODISMOD14/MYD14
AF data indicate their spatial patterns (Fig. 2), and perhaps allow im-
proved quantification compared to MODIS 500 m burned area data
alone (which seems to miss large fractions of the activity; e.g.
Randerson et al., 2012), the typically small individual size (and thus low
FRP) of the fires means that many still remain unaccounted even when
using the MODIS AF data (Schroeder et al., 2014). The higher spatial res-
olutiondata fromVIIRS,which should enable the detection of significantly
lower FRP fires, can thus very likely significantly aid their quantification.

4. Active fire detection methodology

4.1. Datasets

We based our algorithm development and testing on VIIRS SDRs
covering eastern China between 1st June 2014 and 30th June 2015



Fig. 2. Eastern China agricultural area (111–123° E, 27–40° N), outlined by thewhite dashed box. The approximate area of the North China Plain and the Yangtze Plain are demarcated by
the solid white boxes. The red circles depict numbers of MODIS active fire pixels detected between 2002 and 2015 per 1° grid cell (see legend lower right). Whilst most fires in the study
region are agricultural fires, those towards the north of the wider region include forest fires. Yellow markers show locations of the data of Figs. 4, 5, 6, 8 and 9 (see legend upper right).
Yellow outline shows the footprint of the VIIRS swath taken during the 85 s VIIRS SDR used to produce Fig. 1. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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(13 months, covering three burning seasons) and between 12:00 and
15:00 h local solar time by day, and 00:00 to 3:00 by night. An extra
VIIRS SDR set for 28th August 2016was also processed to facilitate com-
parison of our outputs to the VIIRS global product, which was unavail-
able for the earlier periods. HDF5 files including all co-registered SDRs
were downloaded from NOAA CLASS (https://www.class.ncdc.noaa.
gov/), alongwith the Quality Flag information and common geolocation
file. Each 5-min SDR contains four 85-second VIIRS granules (e.g. Fig. 1).
For comparison to our VIIRS outputs we used Collection 6 Aqua MODIS
MYD14 AF products (Giglio et al., 2016), which closely match VIIRS'
overpass time, along with the VNP14IMGTDL_NRT VIIRS I-Band global
‘small fire’ product based on the algorithm of Schroeder et al. (2014),
obtained from https://worldview.earthdata.nasa.gov/ (the Algorithm
Fig. 3. Workflow of the regionally optimised VIIRS I-Band
Theoretical Basis Document and Users' Guide is now available at
https://viirsland.gsfc.nasa.gov/Products/FireESDR.html). All data were
processed using the UK's JASMIN super-data-cluster (Lawrence et al.,
2013).

4.2. VIIRS I-Band regional “small active fire” detection algorithm

Our optimised VIIRS I-Band regional AF detection algorithm has five
major steps (Fig. 3), based on a combination of principles taken from the
following algorithms: MODIS AF (Giglio et al., 2003, 2016), global VIIRS
I-Band (Schroeder et al., 2014), BIRD-HSRS (Wooster et al., 2003;
Zhukov and Oertel, 2001; Zhukov et al., 2006), and theMeteosat SEVIRI
Fire and Thermal Anomaly (FTA) (Roberts andWooster, 2008;Wooster
active fire (AF) detection algorithm developed herein.

https://www.class.ncdc.noaa.gov/
https://www.class.ncdc.noaa.gov/
https://worldview.earthdata.nasa.gov/
https://viirsland.gsfc.nasa.gov/Products/FireESDR.html
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et al., 2015). In common with these, our VIIRS algorithm first identifies
‘candidate thermal anomaly pixels’ whose signals suggest they may
possibly contain a fire, and then confirms this via signal comparisons
to their surroundings, creating a set of confirmed thermal anomaly
pixels. We rely primarily on the VIIRS I4 (MWIR) and I5 (LWIR) spectral
channels, with the other three I-Bands used to support cloud/water
masking and sunglint discrimination.

Our AF detection algorithm runs at granule level rather than whole
VIIRS SDR. In the following description, ρi refers to reflectance in VIIRS
band i (0 to 1.0), BTi the brightness temperature (BT) in VIIRS band i
(Kelvin), ΔBTij the BT difference between bands i and j (Kelvin), and
QFi the pixel quality flag in VIIRS band i. VIIRS bands are listed in
Table 1.

i) Initial data screening

Using its solar zenith angle (θs), each VIIRS pixel is classed as day (θs
b 90°) or night (θs ≥ 90°), with water and cloud-contaminated pixels re-
moved to reduce computational time in subsequent stages (Schroeder
et al., 2014).

For daytime observations, pixels passing six tests taken from Piper
and Bahr (2015) are classified as cloud:

ρ1N0:08 ð1Þ

ρ1−ρ3
ρ1 þ ρ3

b0:7 AND ρ2N0:11 ð2Þ

BT5b300 K ð3Þ

max ρ3ð Þ−ρ3ð Þ � BT5b410 K ð4Þ

ρ2=ρ1b2:0 ð5Þ

ρ2=ρ3N1:0 ð6Þ

where the max(ρ3) is the maximum reflectance of VIIRS I3 within the
processing scene. The threshold value in (3) is kept at 300 K (cooler
than the original implementation) to minimise instances of smoke
being classified as cloud.

During night-time passes, a simpler thermal channel cloud thresh-
old is used (Schroeder et al., 2014):

BT4b265 K AND BT5b295 K ð7Þ

It is useful to remove water body pixels by day to minimise sunglint
impacts, and we use the Schroeder et al. (2014) rapid water mask, with
an extra limitation that the I5 BTmust lie below 300 K.Without this ad-
dition, we found recently burned areas (which are often of low albedo
due to their covering of black ash and char) could be incorrectly classed
aswater, particularly if covered by smoke, asmentioned by Schroeder et
al. (2014):

ρ1Nρ2 AND ρ2Nρ3 AND BT5b300 K ð8Þ

By day, following Schroeder et al. (2014) we also exclude certain ra-
diometrically bright but still fire-free targets, such as sand banks along
riverbeds, using:

ρ1 þ ρ2N0:6 AND BT5b285 K ð9Þ

AND

ρ3N0:3 AND ρ3Nρ2 AND ρ2N0:25 AND BT4≤335 K ð10Þ

VIIRS I4 band suffers from saturation over stronger FRP fires, and
Schroeder et al. (2014) indicate that complete folding of the digital
count (DC) can sometimes occur with recording starting again from a
digital count equivalent to 208 K. However, this is far less common
than simple saturation is, particularly so over the type of small agricul-
tural fires focused on here. Our algorithm implements the same tests as
Schroeder et al. (2014) to identify saturated I4-band pixels:

BT4 ¼ 367 K AND QF4 ¼ 9 both day and night½ � ð11Þ

AND

BT5N290 K AND QF5 ¼ 0 daytime½ � AND ρ1 þ ρ2N0:7 daytime½ � ð12Þ

Whilst instances of DC “folding” are identified by:

fΔBT45b0 both day and night½ � ð13Þ

AND

ðBT5N325 K AND QF5 ¼ 0 daytime½ � OR ð14Þ

BT5N310 K AND QF5 ¼ 0 night−time½ �Þg ð15Þ

OR

BT4 ¼ 208 K AND BT5N335 Kf g ð16Þ

The saturated pixels are excluded from the later contextual analysis
tests, but join other confirmed thermal anomaly pixels for step (v) -
‘Daytime False Alarm Filter’.

To exclude potential fire affected pixels from inclusion in the back-
ground information used in subsequent stages, the pixels most likely
to contain fires are identified by:

BT4N325 K AND ΔBT45N20 K daytime½ � ð17Þ

BT4N295 K AND ΔBT45N5 K night−time½ � ð18Þ

ii) Imagery partitioning

This stage excludes ‘bowtie deleted’ pixels (i.e. the stripes seen in
Fig. 1a) from inclusion in the later contextual analysis background
windows, ensuring that enough pixels always exist to calculate the
background-window statistics nomatter where the candidate potential
AF pixel lies within the swath. Each granule is partitioned into six sec-
tions (the three different aggregation zones either side of nadir shown
in Fig. 1a), and in the outermost two sections either side of nadir,
‘bowtie deleted’ pixels are removed and six new sub-granules con-
structed. The dimensions of the ‘No aggregation Zone’ and ‘Aggregation
Zone 2’ are thus changed from 1280 × 1536 and 736 × 1536 pixels to
1280 × 1152 and, 736 × 1344 pixels respectively via this process.

iii) Candidate thermal anomaly pixel (CATAP) identification

This stage selects the candidate pixels to go through the computa-
tionally demanding contextual analysis stage.Whilst the low thresholds
set in the early algorithm tests enable the maximum number of poten-
tial pixels to be included in this set, to avoid unnecessary computational
time it is also desirable to remove those extremely unlikely to contain
fires. This trade-off is conducted using a combination of spectral and
spatial filtering of each sub-image.

To enable maximum sensitivity to low FRP fires, the spectral filter
thresholdsare basedon statistics calculated fromblocks of 50×50pixels
within each sub-granule (Wooster et al., 2012). Themix of dynamically-
adjusted tests, along with fixed thresholding, has also been used in the
SLSTR, VIIRS and MODIS Collection 6 AF detection algorithms
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(Wooster et al., 2012; Giglio et al., 2016; Schroeder et al., 2014). Within
each block (b), the mean brightness temperature of BT4 and the differ-
ence of BT4 and BT5 brightness temperature signals (BT4b and ΔBT45b)
are used, and each pixel tested against these to identify it as a candidate
thermal anomaly pixel CATAP. For blocks with ≤1% clear land pixels, the
fixed threshold of Schroeder et al. (2014) was used but lowered to en-
able the detection of lower FRP active fires:

BT4NBT4b OR 320 K
� �

AND ΔBT45NΔBT45b OR 10 K
� �

daytime½ � ð19Þ

OR

BT4NBT4b OR 290 K
� �

AND ΔBT45NΔBT45b OR 5 K
� �

night‐time½ � ð20Þ

Roberts andWooster (2008) introduceduse of a spatial highpass (HP)
filter to reduce numbers of candidate thermal anomaly pixels unnecessar-
ily selected from larger areas of solar-heated bare ground or other
warmed surfaces, reducing computational cost and false alarms. We use
a kernel filters (δfilter), growing from size 3 × 3 to 25 × 25 pixels, and loca-
tions with filter output exceeding (P) from any kernel filter is retrained.

P ¼ HPfilter ≥DT � δfilter ð21Þ

where DT is a function of the solar zenith angle (θs):

DT ¼ 2:5−0:012� θs ð22Þ

As with the FTA algorithm of Wooster et al. (2015), pixels passing
both the spectral and spatial contextual filters are included in the final
candidate thermal anomaly pixel set.

iv) Contextual analysis

The contextual analysis stage tests each candidate thermal anomaly
pixel against its own background pixel set, in order to confirm whether
its signal is sufficiently elevated for it to be considered a confirmed ther-
mal anomaly pixel (COTAP). Background windows sizes extend from 11
× 11 pixels up to a maximum of 31 × 31, until at least 25% of them are
considered valid for inclusion and are not themselves cloud covered,
water bodies, potential fire pixels or bad quality data. The mean BT of I4
(BT4w) and I5 (BT5w), themean BT difference (ΔBT45w) and corresponding
standard deviations (δ4w ,δ5w ,δ45w) are then calculated for the selected
background window. The absolute I4 and I5 spectral threshold test of
Schroeder et al. (2014) have been removed in our regional algorithm, in
order to avoid excluding the smallest (lowest FRP) active fires.

Using its background window statistics, a CATAP is confirmed as a
COTAP when it meets the criteria below:

Daytime:

ΔBT45NΔBT45w þ 2�δ45w ð23Þ

BT4NBT4w þ 3:5�δ4w ð24Þ

BT5NBT5w þ δ5w−4 OR δ04N5 ð25Þ

where δ4′ refers to the standard deviation of I4 BT of potential fire affect-
ed pixels within background window identified using function
(17)–(18).

The daytime complementary contextual test from Schroeder et al.
(2014), designed to avoid false alarms at desert boundaries is also ap-
plied:

ρ2N0:15 AND BT04b345 AND δ04b3 AND BT4NBT
0
4 þ 6� δ04 daytime½ � ð26Þ

where BT04 refers to the average temperature of potential background
fires.
A first sun glint rejection test (taken from Roberts and Wooster,
2008), is used to remove any sun-glint induced false alarms, where L4
and L1 refer to the spectral radiance of I-Bands 4 and 1.

L4=L1b0:018 for cloud pixels exist within nearby 15 pixels
31� 31 windowsð Þ;

ð27Þ

OR

L4=L1b0:01 for cloud pixels not exist within 31� 31 windows: ð28Þ

For the night-time pixels, the criteria for a COTAP changes to:

ΔBT45NΔBT45w þ 3� δ45w ð29Þ

BT4NBT4w þ 3� δ4w ð30Þ

The CATAPs passing all the contextual tests outlined above are set as
COTAPs, and passed to the next stage.

v) Daytime false alarm filter

It is possible that the COTAP set contains sunglint-related false
alarms, so pixels satisfying the following condition are removed
(Schroeder et al., 2014):

θgb15 ° AND ρ1 þ ρ2N0:35 ð31Þ

OR

θgb25 ° AND ρ1 þ ρ2N0:4 ð32Þ

where θg is the ‘glint angle’ calculated from:

cosθg ¼ cosθv cosθs− sinθv sinθscosΦ ð33Þ

where θg and θs are the view zenith and solar zenith angles respectively,
and ϕ is the relative azimuth angle (Giglio et al., 2003).

4.3. Cloud mask performance

An appropriate cloud mask is critical for accurate active fire detec-
tion (Giglio et al., 2003). As shown in Fig. 1b, our adaptation of Piper
and Bahr (2015) successfully identifies pixels with clear cloud-contam-
ination, including over land on the right hand scene edge and over the
oceanon the left. Our approach also avoidsmasking smoke-contaminat-
ed pixels in themiddle of the land (Fig. 1b–c), where quite a few candi-
date AF pixels are detected that are most likely real as they accompany
large burned areas (Fig. 1c). Fig. 1 also shows that our daytime water
mask successfully identifies water bodies, but does not incorrectly
mask burned area as water – which was a potential problem identified
by Schroeder et al. (2014).

5. Active fire detection output and evaluation

Fig. 4 presents example output from our final, regionally optimised,
‘small’ active fire detection algorithm (notice these are COTAPs which
pass the daytime false alarm filter). In this case, our algorithm identifies
almost all (96%) of the AF pixels identified by the global I-Band algo-
rithm of Schroeder et al. (2014), but also a further set of additional de-
tections (15% more). Some clear smoke plumes are associated with
the AF pixels detected by both algorithms, but in the imagery alone it
is difficult to confidently identifywhether our additional detections rep-
resent actual active fire locations or not. We therefore employed field
validation to gain further understanding and confidence in the AF detec-
tion results.



Fig. 4. Active fire pixel detections made on 28 August 2016 from VIIRS, with the scene centre 48.99°N, 126.89°E and a VIIRS true colour composite is used as the basemap. Yellow crosses
indicate those AF pixels generated using the regionally optimised VIIRS I-Band AF detection algorithm developed herein, whilst red circles are those output from the global I-Band
algorithm of Schroeder et al. (2014) (available from the GIBS/Worldview database). White stars indicate which AF pixel detections were identified only by our regionally optimised I-
Band algorithm, and not by the Schroeder et al. (2014) global algorithm. Light blue triangles indicated AF pixels only detected by the global algorithm of Schroeder et al. (2014). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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5.1. Field validation

Field validation (October 2015) involved deploying a small UAV
within a few days of a VIIRS confirmed thermal anomaly pixel
(COTAP) detection, in order to check for evidence of burning. Thirty
COTAPs were examined in total in the Northern China Plain, and for
each one recent char and ashwere identified clearly in the UAV imagery.
Fig. 5 shows one example,whereGoogle Earth Imagery of an agricultural
area (34.73° N 114.67° E) taken on 1st October 2015 is shown (Fig. 5a),
alongwith the same scene but with orthomosaiced and geolocated UAV
imagery collected six days later overlain (Fig. 5b). Red circles denote the
VIIRS I-Band pixel centreswhich our AF detection algorithm identified as
containing fires burning on 5th Oct 2015, and which match recently
burned locations in the UAV imagery. Fig. 5d shows more detail, with
three different burning patterns seen in the UAV imagery. The large
fields on the left show a rather homogeneous covering of black ash
and char, indicating a fire that traversed the whole field to burn away
crop residues and roots left in the ground (wheat stubble left after har-
vest is often burned like this). Otherfields showa sometimes semi-linear
pattern of ash and char, indicating areas where farmers likely gathered
up crop residues and burned them in long piles. The rightmost field
showsmore scattered areas of ash and char, interspersedwith apparent-
ly unburned areas, indicating perhaps that the farmers had only burned
crop roots here. The very patchy and generally quite small nature of the
fire-affected areas highlights the great difficulty in mapping burned
areas in such agricultural regions, particularly when using relatively
coarse spatial resolution imagery of the type provided by MODIS, as
pointed out by Randerson et al. (2012).
5.2. False alarm filtering

Schroeder et al. (2014) reported that in eastern China, the global
VIIRS I-Band ‘small fire’ AF detection algorithm shows a high rate of
low confidence daytime AF pixels (~40%). This is among the highest
proportion seen worldwide, and analysis has shown that many of
these low confidence AF pixel detections are in fact false alarms associ-
ated with large industrial buildings, having highly reflective and/or
warm rooftops and surrounded by more rural landscapes (Fig. 6).
Hence, for our regionally optimised algorithmwe developed landcover-
and hotspot persistence-based spatial filters to identify and remove
such occurrences from our algorithm output.

Our landcover-based filter was derived from a combination of 30 m
spatial resolution GlobeLand30 global landcover mapping (having an
80% classification accuracy and is derived from 2009 to 2011 Landsat
and Chinese land monitoring satellite imagery (http://glc30.tianditu.
com/; Chen et al., 2015) and OpenStreetMap (http://www.
openstreetmap.org/) data derived from manual surveys, GPS devices,
aerial photography, and other free data sources, with layers that include
‘places’, ‘buildings’, ‘landuse’ and ‘roads’ used here to identify urban
areas. We combined GlobeLand30 and OpenStreetMap to generate a bi-
nary landcovermask for eastern China at a 0.005° spatial resolution, ap-
proximating that of the VIIRS I-Band (Fig. 7a). Cells having a
GlobeLand30 crop landcover class cover of ≤40%, or in which any of
the four OpenStreetMap ‘urban’ layers were tagged as ‘true’, were
used to create a spatial mask within which no classified AF pixel detec-
tion was allowed to occur. In addition, we also masked as false alarms
the thermal anomaly pixels persistently (and unrealistically) detected

http://glc30.tianditu.com/
http://glc30.tianditu.com/
http://www.openstreetmap.org/
http://www.openstreetmap.org/


Fig. 5. Validation example taken in Eastern China (34.73° N, 114.67° E). (a) Google Earth imagery dated 1 Oct 2015, with base imagery supplied by CNES/Astrium. (b) mosaiced and
geocorrected imagery from our UAV flight (outlined by blue dashed curve) conducted over the area shown in (a) on 7 Oct 2015, one week later than the Google Earth imagery, and
with red circles superimposed to show the pixel centres of VIIRS I-Band pixels which our regionally optimised VIIRS I-Band AF detection algorithm detected COTAPs on the afternoon
of 5 October 2015. (c) Magnification of the pre-burn area highlighted in (a). (d) Magnification of the post-burn area highlighted in (b), which is the location of a COTAP seen in (a).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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as multiple times in the same locations, and found these again were
mostly related to the type of industrial buildings shown in Fig. 6. For
this we used a 0.001° spatial resolution mask based on locations
where I-Band AF detections were made outside of the burning season
four or more times in a single year (Fig. 7b). Fig. 7c illustrates this tem-
poral masks spatial detail for a mixed landuse area, where the mask
seems to match up quite well to either urban areas/water bodies
(which are assumed to be the sites of repeated false alarms). COTAPs
that pass both the spatial and temporal filters are finally classed as AF
pixels, and are those used for further analysis and discussion in this
study.

Fig. 8 shows an example where confirmed thermal anomaly pixels
(COTAPs) identified as ‘false alarms’ using the masks of Fig.7 are
shown in red, and these classified as AF pixels (i.e. that lie outside the
masked areas) are in yellow. Classified in this way are both the output
from our regional VIIRS I-Band algorithm (smaller polygons reflecting
the size of the I-Band pixels), and those generated on the same day
and at almost the same time from theMODIS Collection 6MYD14 prod-
uct (Giglio et al., 2016). Towards the bottom left of the scene, two clus-
ters of thermal anomaly pixels are detected by both VIIRS and MODIS
(along with several more spatially isolated pixels detected only by
VIIRS) and each are classified as AF pixels since they are in an agricultur-
ally-dominated area, not one identified as being the location of repeated
false alarm detections based on ourmasking scheme. To the right of the
scene centre there are three thermal anomaly pixels initially detected
by VIIRS, but classified as confirmed false alarms via our masking and
thus not included in thefinal output AF pixel set. These are all associated
with more urbanised landcovers, and whilst not in urban centres they
are located at the edges and/or in the suburbs and contain buildings
similar to those of Fig. 6. Our procedures correctly remove such thermal
anomaly pixels from the final active fire pixel set.

5.3. Comparison to MODIS Aqua active fire detections

OurVIIRS toMODIS AF comparisonswere expanded to cover a larger
area of eastern China (Fig. 9; 12th June 2015). Herewe show the VIIRS I-
Band AF detections superimposed on the coarser spatial resolution M-
Band imagery. Classified AF pixel locations are indicated by crosses,
coloured by FRP (discussed later in Section 6.3). Our VIIRS scheme de-
tects 76 classified AF I-Band pixels,matching to 55 largerM-Bandpixels.
Far fewer AF pixels (19 in total) are detected byMODIS, andwhilst a sin-
gle MODIS AF pixel may cover multiple I-Band AF pixels, it seems very
unlikely that this is the sole cause of the far greater number of VIIRS I-
Band AF pixels detections. Rather, the ~10× smaller I-Band pixel area
is enabling our algorithm to detect the lower FRP fire pixels that often
remain undetected by MODIS, such as in those circled in Fig. 9a.

For the study region of Figs. 2, 10 shows the full 1st June 2014 to 30st
June 2015 time-series of classified AF pixel counts made from the VIIRS
I-Band (top), along with the AF pixels recorded by MODIS-Aqua (bot-
tom) (day and night-time overpasses). Three burning seasons are cov-
ered (June 2014, October 2014 and June 2015), with daytime maxima
of ~4000, ~ 2000 and ~3000 AF pixel counts respectively from our
VIIRS I-Band scheme and ~700, ~ 500 and ~400 from MODIS. Night-
time data show a clear AF peak only in the June burning seasons, with



Fig. 6. Google Earth imagery (33.873° N, 118.294°E) showing the footprints of five false alarm pixels recognized by our I-Band active fire detection algorithm from VIIRS SDR
20140605_t0458444_e0504248 (red polygons with yellow push pins at centre) over large industrial buildings surrounded by a mixture of agricultural lands and rural residential areas.
Our false alarm masking approach successfully removes such false detections. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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maxima of ~5000 and ~2000 I-Band AF counts, but only ~140 and ~30
MODIS AF counts. Night-time VIIRS I-Band data of October do still
show ~500 AF pixel counts per day, whilst MODIS shows almost none.
Overall, our VIIRS I-Band scheme often identifies 5× to 10× more
daily AF pixel counts than does MODIS.

6. Fire radiative power (FRP) assessment from VIIRS

Beyond AF pixel detection, fire emissions calculations generally re-
quire quantification of the fires radiative power (FRP) output
(Wooster et al., 2003, 2005). To minimise impacts from VIIRS I-Band
pre-aggregation detector saturation discussed in Section 2.2, we devel-
oped an FRP-retrieval scheme to estimate FRP synergistically using both
the I-Band and M-Band data.

6.1. FRP estimation

FRP is calculated using the MIR radiance method of Wooster et al.
(2003, 2005):

FRP ¼ A

106 � τMIR

σ
a

Lf−Lb
� �

MW½ � ð34Þ

where A is the pixel size inm2,σ is the Stefan–Boltzmann constant (5.67
× 10−8 Wm−2 K−4), Lf is the VIIRS I4 spectral radiance of the fire pixel
(W m−2 sr−1 μm−1) and Lb is the mean background radiance (of the
background window), a (3.2146 × 10−9 W m−2 sr−1 μm−1 K−4) is
the FRP constant taken from the power-law linking I4 band spectral ra-
diance to the 4th power of emitter temperature (determined using the
approach in Wooster et al., 2005), and τMIR is the VIIRS I4 band atmo-
spheric transmission calculated using the MODTRAN-5 radiative
transfer code, standard atmospheric trace gas profiles, and space/time-
variable ECMWF total column water vapour and temperature values
(http://apps.ecmwf.int/datasets/) as in Wooster et al. (2015).

FRP is estimated for every classified I-Band AF pixel, but because the
VIIRS pixel aggregation scheme detailed in Section 2.2 may result in am-
biguous I-Band saturation effects, it was also estimated using the M13-
Band signal at M-Band pixels within which an I-Band AF detection was
made. Due to the 4× larger M-Band pixel area, and greatly increased dy-
namic range of this channel, only a very fewM13 pixel are found to be af-
fected by saturation over active fires (Polivka et al., 2015), and we found
none in our study areawhere thefires are generally relatively small andof
low intensity, albeit some can certainly saturate the I4 band.

For the M-band FRP calculation, Lf in Eq. (34) simply uses the M13
spectral radiance, and Lb then becomes that of the M13 band back-
ground window, which was allowed to grow from a minimum of 5
× 5 up to 17× 17pixels until at least 8 pixels or 1/4 of thewindowpixels
were considered valid for inclusion in the background window set
(assessed with a valid M-Band pixel being one where all four constitu-
ent I-Band pixels were considered valid via their I-Band classification).
The FRP constant a (2.8667 × 10−9 Wm−2 sr−1 μm−1 K−4) was calcu-
lated as 10.6% lower for M13 than for I4, whilst τMIR was typically 15%
lower for M13 compared to I4 for the same atmospheric profile.

Per-pixel FRP uncertainty (σFRP; MW)was calculated using standard
error propagation as in Wooster et al. (2015):

σFRP ¼ FRP
∝a
a

� �2
þ ∝τMIR

τMIR

� �2

þ ∝Lb
L f−Lb

� �2

þ ∝L f

L f−Lb

� �2
" #1=2
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This combines the absolute uncertainties (∝a, ∝τMIR
, ∝Lf and ∝Lb) pres-

ent in the values of the four terms (a, τMIR, Lf and Lb) of Eq. (35). (∝a/a) is

http://apps.ecmwf.int/datasets/


Fig. 7. False alarm mask derived from (a) a binary landcover mask (black pixels) created for eastern China at 0.005° resolution using the GlobeLand30 and OpenStreetMap datasets
discussed in the main text, and (b) a map of persistent confirmed thermal anomaly pixel (COTAP) detections, where black pixels indicate locations having four or more COTAP
detections in the July 2014 to Sept 2014 and Nov 2014 to May 2015 periods (i.e. outside of the June and October burning seasons), caused by undetected sunglints and industrial heat
sources. (c) Google Earth background image (39.588° N, 118.420° E) with locations of mask pixels from (a) and (b) overlain in yellow and red respectively. The white circle outlines
an area of urban landuse not included in the current mask, indicating that imperfections still exist in the landcover data and thus that higher quality ancillary data will benefit the
algorithm in future. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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equivalent to a 10% uncertainty across the fire temperature range of
650–1350 K (Wooster et al., 2015). ∝τMIR

contains contributions from
both the uncertainty on the actual total atmospheric vertical compo-
sition (apart from water vapour), and the water vapour concentra-
tion itself (Wooster et al., 2015) (full equations are listed in
Appendix A; Eqs. (A1)–(A4)). The absolute uncertainty in the back-
ground radiance (∝Lb) is set to the standard deviation of the back-
ground window signal in the MWIR band, and the absolute
uncertainty in the fire pixel radiance (∝Lf) is set to the sensors
radiometric noise in the MWIR channel (0.05 for the VIIRS I4 and
0.007 for M13; Oudrari et al., 2016).

6.2. Comparison of VIIRS and MODIS FRP frequency distributions

Fig. 11 shows the FRP frequency distribution for the study region
(June 2014 to June 2015) as calculated from (a, b) the VIIRS I-Band clas-
sified AF pixel set, (c, d) the matching VIIRS M-Band data, and (e, f) the
correspondingMODIS products (Giglio et al., 2016), which now also use



Fig. 8. Locations of confirmed thermal anomaly pixel detectionsmade by our VIIRS I-Band scheme (small polygons) and byMODIS Collection 6 (large dashed polygons). Those classified as
false alarms on the basis of themasks shown in Fig. 7 are coloured red, whereas those confirmed as AF pixels are yellow. VIIRS granule is from SDR 20150610_t0555514_e0601318, along
with MODIS AF detections from granule A2015161.0545 and a background image from Google Earth. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Eq. (34) developed byWooster et al. (2003, 2005) to generate their FRP
estimates. We atmospherically corrected the MODIS FRP values using
the same MODTRAN-5 based scheme as used with VIIRS.

Data of Fig. 11 approximate a log-normal distribution, being domi-
nated by lower FRPAF pixels andwith a long tail of higher FRP AF pixels.
For MODIS, the mode (i.e. frequency histogram peak) of the daytime/
night-time FRP distributions is 11.8 MW and 7.7 MW respectively,
whilst those for VIIRS I-Band are 4.7 MW and 1.5 MW respectively,
and for the M-Band 6.3 MW and 2.5 MW respectively. It is important
to state that from theM-Band data alone it would often not be generally
possible to conclusively detect an AF pixel with an FRP of 2 or 3 MW, as
it would raise the 750m pixels MWIR brightness temperature by only a
few Kelvin above background. However, here we are using the I-Band
375 m AF detections to identify the M-Band pixels within which there
are actively burning fires, and only using the M-Band data to calculate
their FRP and its uncertainty.

Fig. 11 clearly highlights our regional algorithms sensitivity to low
FRP fires. However, the VIIRS I-Band observations produce almost no
FRP exceeding 30 MW, whereas those from MODIS often extend to
around 50 MW and have a highest single-pixel FRP of 1008 MW.
These differences result from the VIIRS I-Band pre-aggregation satura-
tion at the higher FRP AF pixels (Section 2.2; and Schroeder et al.,
2014), but fortunately the VIIRS M-Band FRP retrievals are unaffected
by such saturation and thus extend to the correct FRP maxima.

6.3. Scan angle impacts

In addition toMODIS' difficulty in detecting low FRP AF pixels (b6 to
8MW) due to its 1 km2 nadir pixel area (Fig. 11), Freeborn et al. (2011)
also demonstrate that becauseMODIS' pixel areas are ~10× larger at the
scan edge than at nadir, so roughly is theminimum FRP detection limit.
VIIRS' pixel aggregation scheme (Section 2.2) results in pixel areas vary-
ingmuch less across the swath (Wolfe et al., 2013), which should make
the FRP detection limit also more consistent. Fig. 12 confirms this,
where for MODIS the minimum but also the maximum, mean and me-
dian FRP strongly increase away from nadir, but where the VIIRS I-Band
and M-Band derived FRPs show much more uniformity.

Taking the three VIIRS I-Band aggregation zones in turn, a total of
38%, 24% and 38% of all detected AF pixels were found in these regions
respectively; far more uniform thanwithMODIS - where 77% are locat-
ed close to the swath centre (within ±32° scan angle) and only 10% at
scan angles N45° (and the latter is actually an overestimate because of
across-track AF pixel duplication caused by the bow-tie effect;
Freeborn et al., 2011). Similar bow-tie effect impacts with VIIRS are ab-
sent due to the aforementioned SDR zero filling (Fig. 1a).

6.4. Direct VIIRS to MODIS FRP comparisons

As a last step, we directly compared VIIRS and MODIS FRP outputs
with 10-min time difference or less, both on a fire pixel cluster basis
(i.e. a group of 1 to 11 spatially adjacent MODIS AF pixels, and the
matching VIIRS pixels covering the same geographic area), and on a 1°
grid-cell basis. The former required manually matching up individual
fires, sowas applied to a single day only (10th June2015), whilst the lat-
ter was applied across the entire 13-month study period. Given MODIS'
FRP scan angle dependence (Fig. 12), we limited comparisons to a max-
imum MODIS scan angle of 32°, but no limit was placed on VIIRS since
Fig. 12 shows no significant VIIRS scan-angle dependencies.

Fig. 13a shows the per-fire cluster comparison, where the VIIRS I-
Band typically underestimates FRP compared to ‘close-to-swath-centre’
MODIS (slope of linear best fit = 0.19) as a result of I4-Band saturation
(Section 2.2). This is the same reason the VIIRS I-Band FRPs of Fig. 11 fail



Fig. 9.Activefire (AF) detectionsmade near simultaneously over a 26 km×26 km region of the study area of Fig. 2 based on differentmethods and data. Highlighted by the ‘×’ symbols are
(a) the VIIRS I-Band AF pixel detections based on the scheme developed herein, superimposed on the source I4-Band MWIR imagery; (b) the VIIRS M-Band pixels containing I-Band
detected AF pixels, superimposed on the M13-Band MWIR imagery; and (c) MODIS AF detections, based on the scheme of Giglio et al. (2016). The colour of the crosses depicts the FRP
of the detected AF pixel, considered later in Section 6.3. Example active fire pixels detected by our VIIRS I-Band scheme but not by MODIS are circled in (a).
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to exceed ~30MW. VIIRSM-Band FRPsmade at the site of the I-BandAF
detections (Fig. 13b) show a far better agreementwith those from these
same MODIS data (slope of linear best fit = 1.01). Those slopes will in-
crease to 0.55 (I-Band) and 1.21 (M-Band)when limiting the data input
to those total cluster FRP under 300MW, indicating the lower impact of
I4-Band saturation for smaller fires, as highlighted in Fig. 13a–b.

Fig. 13d and e show, respectively, results of the 1o grid cell based
comparisons of VIIRS I-Band FRP's and VIIRS M-Band FRPs (made at
the site if the I-BandAF detections) compared to ‘close-to-swath-centre’
MODIS FRP's. FRP's from VIIRS I-Band andMODIS show a slope increase
from 0.19 at the cluster level (Fig. 13a) to 0.64 at the grid-cell level (Fig.
13d). The I-Bands ability to detect many more AF pixels in a grid cell
than does MODIS (even close to its swath centre) somewhat counter-
acts the impact of the I-Band saturation with regard to the grid cells
total FRP. However, higher FRP AF pixels will be affected by I-Band sat-
uration, and Fig. 13e shows that when the VIIRSM-Band FRPsmeasured
at the location of the I-BandAF detections are used in place of the I-Band
FRPmeasures themselves, the slope of the linear-best-fit with respect to
MODIS increases dramatically (to 1.87). This indicates that nearly half of
the study regions' FRP is being emitted by low FRP (“small”) fires, unde-
tectable by even ‘relatively close-to-swath-centre’ MODIS data (i.e.
MODIS scan angle ≤32°), a fact also evidenced by the data of Fig.11. Ex-
tending the grid-cell comparison to the entire MODIS swath (not
shown) increases the slope of the linear-best-fit between the VIIRS M-
Band FRPs (assessed at the I-Band-detected AF pixel locations) and
MODIS FRPs even more dramatically (to 3.11), because MODIS fails to
detect a greater proportion of AF pixels towards the scan edge due to
the greatly elevated minimum FRP detection limits away from nadir
(shown in Fig. 12). By contrast, Fig. 12 shows that VIIRS AF pixel detec-
tion sensitivity is much more constant across the swath due to its
unique pixel aggregation scheme.

6.5. Combining VIIRS I- and M-Band FRP measures to optimise FRP retrievals

Though VIIRS I-Band data is clearly extremely useful for detecting
low FRP fires, the data of Fig. 13a and d demonstrate that higher FRP
fires often saturate the I4-Band, leading to an underestimated FRP com-
pared to simultaneously recorded M-Band data (see Section 2.2). Satu-
ration affecting all pre-aggregation I4-Band measurements is
identifiable from the VIIRS SDR Quality Flag data, but that affecting
only some pre-aggregation pixels is more difficult to identify (see
Appendix B). The VIIRS 750 m spatial resolution M13 data apparently
does not suffer saturation effects in our agriculturally-dominated
study region, unlike in other areas where much higher FRP fires are
more common (e.g. Polivka et al., 2015), and so it can be used for unsat-
urated FRP retrievals at the location of I-Band detected active fire pixels
(as in Figs. 9, 11, 12 and 13). However, where unsaturated I-Band data
exist it is better to retrieve FRP from them, because (for the same sub-
pixel sized fire) the AF pixel spectral radiance (Lf) is raised more
above the background radiance ( Lb) in the I-Band than the M-Band,
making σFRP (Eq. (35)) generally much lower for the I-Band FRP than
the M-Band FRP. The optimum strategy is thus to combine I-Band and



Fig. 10. Daily time-series of AF pixel counts made across the eastern China agricultural region (Fig. 2) between 1st June 2014 and 31st June 2015. Top row shows the daytime and night-
time AF pixel detectionsmade using the VIIRS I-Band scheme developed herein, whereas the bottom row shows those from AquaMODIS Collection 6 (MYD14). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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M-Band FRP outputs, which we do here to produce a final ‘VIIRS-IM’
synergy FRP product that selects to record the following FRPs:

(i) For low FRP AF pixels (M-Band FRP ≤ 8 MW), where calculations
indicate pre-aggregation I4-Band saturation is almost totally
avoided, the algorithm selects whichever of the M-Band and
combined I-Band FRPs show lowest FRP uncertainty (according
Fig. 11. Frequency distribution of the atmospherically corrected FRP of AF pixels detected over the
werederived (a) using theVIIRS I-Band schemedevelopedhereinduring theday, and (b) the same
Band activefire detections by day, and (d) by night, and (e) fromMODIS C6MYD14 by day and (f)
text, and the dashed lines show log-normal fits to the distribution. The maximum, 75% and 25% p
to Eq. (35)). These lowest FRP retrievals, which can extend
below 1 MW for the smallest detectable fires, are generally
higher for the I-Band than the M-Band, suggesting the likely ab-
sence of I4 saturation. This rule selects the FRP output from the
VIIRS I-Band data in N90% of cases examined.

(ii) For higher FRPAF pixels (M-Band FRP N 8MW)whichever I-Band
and M-Band FRP is larger is selected for inclusion, because pre-
study region using different data andmethods (June 2014–June 2015). AF detections and FRP
schemebut applied at night, (c) from theVIIRSM-Banddata recorded at the locations of our I-
by night. All datawere atmospherically corrected usingMODTRAN-5 as described in themain
ercentiles, mode, and minimum of each distribution are also shown.



Fig. 12.Variation ofmaximum,mean,median andminimumper-pixel FRPwith scan angle, for the VIIRS I-Band, VIIRSM-Band (calculatedusing the coincidentM-Band radiance for I-Band
AF pixels) andMODIS data recorded over our study region (1st June 2014 to 30th June 2015). The blue dashed vertical lines indicate the transition between aggregation zones in VIIRS, and
we show them superimposed also on MODIS. The aggregation scheme used by VIIRS to minimise pixel area variations across the swath has very significantly reduced the along-scan
variability of these FRPmetricswith VIIRS compared toMODIS. (For interpretation of the references to colour in this figure legend, the reader is referred to theweb version of this article.)
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aggregation I4 saturation will artificially depress the FRP re-
trievals at certain higher FRP pixels. The clear majority of these
AF pixels have their FRP retrieved via the M-Band.

Overall in the ‘VIIRS-IM’ synergy FRP product developed here, in the
13-month period sampled across the eastern China study area, I-Band-
derived FRP contributes 95% of the total FRP in case (i) and M-Band-
Fig. 13. Direct VIIRS-to-MODIS FRP intercomparisons, conducted using both VIIRS I-Band andM
individual active fire clusters (a–c), and 1° degree grid cells (d–f). Error bars representing the
difficult to see, especially in d-f. The best fit linear relationships are shown, along with its equ
The red windows in panels a–c show the highlighted b300 MW data points of main plot with
colour in this figure legend, the reader is referred to the web version of this article.)
derived FRP contributes 75% of total FRP in case (ii). Furthermore, in
case (ii), the I-Band retrieved FRP's were dominated by FRP's just
above the 8 MW limit, because at FRPs much higher than this the I-
Band pre-aggregation saturation almost always limits the retrieved
FRP to be below the M-Band retrieved FRP.

Across the entire FRP range, the total FRP contributed by small fires
(≤8 MW) accounts for around 16% of the total assessed FRP, whereas
-Band FRP retrievals, and VIIRS-IM ‘synergy’ FRP product (Section 6.5) at both the scale of
FRP uncertainty calculated using Eq. (35) are shown in x and y, albeit they are small and
ation, and the grey shaded area represents the 95% confidence limit on the relationship.
best fit linear relationships and their equations. (For interpretation of the references to
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that from larger fires (N8MW) accounts for the around 84%. As shown in
Fig. 13c and f, the slopes of the linear best fits between the VIIRS-IM FRPs
and ‘close-to-swath centre’MODIS FRPs are similar to those derived with
the VIIRS M-Band and MODIS data alone (Fig. 13b and e). Clearly higher
FRP AF pixels detected by VIIRS are responsible for the majority of total
FRP release, and many of these can in fact also be detected by MODIS
when imaged relatively close to the MODIS swath-centre. However, as
Fig. 12 indicates, away from the MODIS swath centre the minimum FRP
detection limit of MODIS rises dramatically, whereas that for VIIRS does
not, meaning that differences between simultaneous VIIRS and MODIS
total FRP observations made at the grid cell level increase substantially
when more edge-of-swath MODIS data are included in the comparison.
Unfortunately for users of MODIS AF data, such edge-of-swath observa-
tions are required to be used if daily observations are required.

Fig. 14 compares the spatial pattern of our VIIRS-IM synergy FRP
product with that of MODIS FRP data at 0.1° resolution, with all
MODIS data now being included rather than just that from close to the
Fig. 14. Spatial distribution and total grid-cell FRP of agricultural fires in eastern China observed
assessed using the VIIRS-IM synergy FRP scheme developed here (left column) andMODIS (righ
significantly higher.
swath centre. There is no obvious major difference in the broad spatial
distribution, with a large fire-affected area seen bounded by 32–36° N
and 114–118° E, and with mostly higher per grid cell FRPs during June
than October. This agrees with past suggestions that the central prov-
inces of Shandong, Jiangsu, Anhui and Henan (mainly in the North
China Plain) are the source areas of most agricultural fire emissions
(Huang et al., 2012; Qin and Xie, 2011; Streets et al., 2003). During
June, the most fire-affected areas extend further west and north than
in October, including to the west of Henan Province and south of
Hebei Province. There are far fewer fires in the Yangtze Plain than in
the North China plain, perhaps due to different landscape management
practices and increased abilities for agricultural residues to be used in
local industries (Liu et al., 2008). Within each grid cell, total FRP is gen-
erally higher when assessed using our VIIRS-IM synergy product than
when using MODIS, due to VIIRS' greater ability to detect the (very nu-
merous) low FRP fire pixels, and total FRP observed across the study re-
gion is larger than that ofMODIS by 500% in June 2014, 600% in Oct 2014
during June 2014 (upper row), October 2014 (middle row) and June 2015 (lower row), as
t column). Total summed regional FRP for eachmonth is also indicated, with VIIRS always
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and 100% in June 2015. In the latter case, one particular day (11th June)
shows unusually high FRP values, responsible for 62% of the total VIIRS-
IM FRP of the whole of June 2015. On this date, the fire-affected area is
imaged close to the MODIS swath edge, with large MODIS pixels ap-
proaching 10× their area at nadir. Many individual VIIRS AF pixels fall
in these largeMODIS pixels, and becausemany are also strongly burning
a lot of them trigger MODIS AF detections, even though the MODIS FRP
detection limit is significantly raised at near swath edge locations (see
Fig. 12). These MODIS AF pixels and their FRP are then replicated
along-track due to the MODIS ‘bow-tie’ effect, which can lead to very
significant overestimation of the MODIS-measured. The effect seen on
this day therefore contributes very significantly to the total FRP from
MODIS for June 2015 being much closer to that from VIIRS-IM than is
the case for the other two months, where such burning conditions and
sensor viewing geometries were not as fortuitously aligned.

7. Summary and conclusions

We have developed a regional active fire (AF) detection scheme for
use with NPP VIIRS, optimising it in this case for the eastern China agri-
cultural region where small (i.e. lower fire radiative power [FRP]) fires
dominate due to widespread agricultural residue burning. We have fo-
cused primarily on exploitation of 375 m VIIRS I-Band data to detect
even very low FRP fires (FRP b 1 MW), and have included detailed pro-
cedures to dealwith the false alarms that can tend to increasewhen try-
ing to detect lower FRP fire pixels, and which appear to have been
particularly problematic in this area of China during development of
the global VIIRS I-Band active fire detection scheme (Schroeder et al.,
2014). A small number of AF pixel detections have been validated
using pre- and post-fire high spatial resolution imagery, which showed
burned areas appearing around the time of the AF detection.

Our VIIRS-based approach shows significant advantages when
compared to the simultaneously recorded Collection 6 MODIS
MYD14 AF products. The VIIRS approach detects active fires with
an FRP-minimum below 0.5 MW, compared to around 6–8 MW for
MODIS, and identifies typically 5 to 10× more AF pixels (notwith-
standing differences in spatial resolution that mean that sometimes
multiple VIIRS AF pixels may be represented by a single MODIS AF
pixel). Many studies, including Wooster and Zhang (2004) and
Ichoku et al. (2008) have shown that low FRP fires are by far the
most common type, indicating that the ability to detect fires below
the MODIS FRP detection limit may have a dramatic effect on the
total amount of FRP quantified in an area.

It is worth pointing out that combining use of any particular active-
fire capable EO data source with an algorithm that includesmore liberal
thresholds than applied previously does come at the risk of introducing
a higher false alarm rate, since a greater range of lower magnitude non-
fire phenomena can perhaps exceed the set detection thresholds. This
has been countered here via the addition of extra tests, beyond those
typically applied in most polar orbiting active fire detection algorithms
(for example the spatial filter test), alongside very detailed false alarm
screening based on (i) screening out thermal anomalies that are detect-
ed in landcover types typically associated with false alarms in this re-
gion (i.e. urban areas and manmade structures surrounded by rural
landscapes), and (ii) identifying signatures thought largely incompati-
ble with real active fire behaviour (i.e. repeated active fire detections
made in the same location, including at times outside of the agricultural
burning seasons). The accuracy and representativeness of the ancillary
dataset used for the landcover screening is clearly important for the re-
liability of such approaches, and as further very high spatial resolution
data and landcover mapping becomes available to identify such land-
forms - the accuracy of the approach will improve further. At the pres-
ent time, it is the case that some urban/industrial areas still fail to be
depicted in the current landcover data (Fig. 7c).

Our scheme includes FRP retrieval from the VIIRS M-Band when I-
Band data are suspected of being affected by pre-aggregation saturation.
Our resulting VIIRS-IM ‘synergy’ FRP product blends the advantages of-
fered by the VIIRS I-Band sensitivity to small fires with M-Band FRP re-
trieval over higher FRP fires, and includes appropriate consideration of
the waveband and atmospheric transmittance differences between the
VIIRS I4 and M13 bands. Over three burning seasons in eastern China,
our VIIRS-IM synergy FRP product captures on average 400% more
total FRP than does near simultaneous MODIS Collection 6 AF data,
even without adjustment for the MODIS ‘bow-tie’ effect that duplicates
MODIS AF pixels towards the swath edge (Freeborn et al., 2011). Our
work demonstrates the importance of both VIIRS' ability to detect low
FRP fires with the I-Band (see Fig. 11), and its ability to detect active
fire pixels with a sensitivity that does not degrade markedly across
the swath as does that of MODIS' (see Fig. 12). Our results also prove
the key importance of ‘small’ (i.e. low FRP) fires when quantifying fire
emissions in agricultural biomes, but also show the importance of
using high quality ancillary data to help mask false alarms. In the most
recent implementation of the Schroeder et al. (2014) global 375 m
VIIRS active fire product (https://viirsland.gsfc.nasa.gov/Products/
FireESDR.html), FRP retrievals for 375 m I-Band pixels are also now
made, based on coincident M-Band radiances, and the full data record
can be expected soon. We believe our VIIRS-IM Band synergy FRP ap-
proach will be highly valuable when applied in other biomass burning
regions, particularly those more dominated by low FRP fires, and that
working with VIIRS will enable significant improvements in global fire
emissions estimation in the coming years.
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Appendix A. Variability of atmospheric transmissivity

The uncertainty in atmospheric transmissivity (∝τMIR
) comes

from both the transmission uncertainty due to atmospheric vertical
composition apart fromwater vapour (∝b), along with the transmis-
sion uncertainty associated with the water vapour concentration
(∝H20):

∝τMIR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∝2b þ ∝2H2o

q
ðA1Þ

We combined the three equations below, taken from Wooster et al.
(2015), to estimate these variables:

∝b ¼ 10−5τMIR 710:51117−8:37751θv þ 0:92238θ2v−0:2525θ3v þ 0:00027θ4v
� �

ðA2Þ
∝H20 ¼ ∂τMIR

∂UH20
∝UH20 ðA3Þ

∝UH20 ¼ 0:24287þ 0:11172UH20−0:00090U2
H20 ðA4Þ

https://viirsland.gsfc.nasa.gov/Products/FireESDR.html
https://viirsland.gsfc.nasa.gov/Products/FireESDR.html
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Appendix B. FRP underestimation of VIIRS I-Band

Fig. 13c and f (main paper) demonstrate the very significant FRP
underestimation that results from use of only the VIIRS I-Band to
generate the FRP information, as opposed to both the I-Band and
M-Band, and here we discuss the main reasons for these I-Band
effects.

A VIIRS I4 pixel has an associated saturation flag set in the VIIRS
Quality Flag (QF) data only if all pre-aggregation pixels are them-
selves saturated. By day, such pixels only account for 3% of the active
fire pixel detectionsmade with our I-Band scheme, and by night b1%.
However, the summed FRP of these pixels accounts for as high as 9%
of the total FRP calculated using the matching VIIRS M-Band pixels,
attesting to the significance of dealing with the saturation issue.
However, it is also the case that there may be many more cases
where saturation only affects some (as opposed to all) the pre-aggre-
gation I4-Band pixels, and these cases are not identified in the QF
data (Polivka et al., 2015).

To investigate this, we compared FRP retrievals made from
matching I-Band and M-Band pixels. Since each M-Band pixel con-
tains four I-Band pixels, the former might sometimes capture some
FRP from I-Band pixels containing fires but which were not detected
as such by our I-Band active fire detection algorithm. Therefore, we
first selected only those M-Band pixels for which all four constituent
I-Band pixels were also identified as containing active fires, but for
which no saturation flag was set. We summed the FRP from these I-
Band fire pixels and compared them to the matching VIIRS M-Band
FRP measure (Fig. A1). For detections made in the VIIRS ‘No Aggrega-
tion Zone’, the linear best fit between the I-Band andM-Band derived
FRPs has a slope of 0.69, decreasing to 0.49 for Aggregation Zone 2,
and 0.27 for Aggregation Zone 3. The reduction in slope from ‘NoAggre-
gation Zone’ to ‘Aggregation Zone 2’ indicates that perhaps 20% ((0.49-
0.69)/1) of the FRP underestimation might be due to some (but not all)
of the constituent I-Band pixels being saturated before aggregation, a sit-
uation that becomes even worse in Aggregation Zone 3 where twelve
original I-Band pixels contribute to the I-Band FRP measure to be com-
pared to that from the M-Band (as opposed to the eight I-Band observa-
tions in Aggregation Zone 2). However, results for Aggregation Zone 3
can be separated into two groups, whose linear best fits to the matching
M-Band FRP data have slopes of 0.1 and 0.84 respectively (likely
representing matchups with and without significant I-Band pre-aggrega-
tion detector saturation). FRP underestimation due to I-Band pre-aggre-
gation saturation could seemingly therefore be as high as 74% in VIIRS
Aggregation Zone 3. Therefore, this comparison shows in Fig. A1 high-
lights the importance of implement a dual FRP retrieval using both I-
Band and M-Band.
Fig. A1.Comparisonof FRP values derive frommatchingVIIRS I-Band andM-Bandobservations o
line are also shown. In Aggregation Zone 3 two different patterns are seen and linear best fits are
does not occur or is minimal (slope of 0.84) and where it does (slope of 0.1).
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3.3 DATA VALIDATION 

This Section provides details of two periods of fieldwork conducted to help assess the performance of the 

active fire detection algorithm described in the paper included in this Chapter (Zhang et al., 2017, Section 

3.2). The first field campaign was performed during the early stage of algorithm development (June 2014) 

at a time when the smoke emissions sampling was being conducted in China (Chapter 4), whereas the 

second was performed during the algorithm testing phase (October 2015).  

 

3.3.1 FIELDWORK IN JUNE 2014 

During fieldwork in June 2014 (also see Section 4.2, Methodology: Sampling Approach and Data 

Analysis Methods), field visits were conducted to confirm whether a subset of active fire detections made 

using the developing VIIRS I-band active fire detection algorithm were real or not, and if not what 

potentially maybe causing the presumed false alarms. Since this was not main purpose of this particular 

field visit, only three locations close to the site of the ongoing smoke measurement campaign were 

actually examined. 

Prior to visiting the field, an early version of the active fire detection algorithm described in Section 3.2 

was augmented with an e-mailing function that sent out the results from each VIIRS overpass. With the 

help of this enhancement, the code containing the algorithm could automatically download new VIIRS 

imagery from the previous day, process it to identify the location of actively burning fires, and then email 

those fire detections that were within a set distance of the field site to the field team. A GPS (Trimble 

Juno) was then used by the field team to locate the detected active fire positions on the ground, which 

enabled confirmation as to whether a fire had or had not taken place to be made (based on a visual 

assessment of the location). 

Three fire locations named 140607_A, 140610_A, 140610_B (Fig. 3.1), detected in two separate VIIRS 

overpasses captured over two days were checked in the field via the procedure described above. The latter 

two fire locations from imagery collected on 10th June 2014 were found to be false alarms, caused most 

likely by large scale factories having the type of blue metal roof seen in Fig. 6 of the published paper 

included in this Chapter. However, local farmers did confirm that with regard to 140607_A, an 

agricultural fire had indeed been conducted on 7th June 2014 to clear wheat residue from a field.  Due to 

the ongoing field activities related to smoke emissions sampling (see Section 5.2), it was not possible to 
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check this location until five days later (12th June 2014), and ground photographs collected then and 

shown in Fig. 3.2 indicate that the field had already been ploughed and partly flooded by that time, thus 

providing limited information with which to confirm the area had been recently burned. Though it seems 

likely this was the case based on the farmers reports and the fact that a small part of the unflooded area 

showed apparent evidence of burning (Fig. 3.2). 

 

  

Figure 3.1: Three locations near Changzhou City (31.811° N, 119.974° E), Eastern China, where fires have been 

identified by the implemented VIIRS active fire detection algorithm (yellow pins, algorithm details see in Section 3.2) 

but where two of these are expected to be false alarms. Detection 140607_A is located inside an agricultural area, but 

140610_A and 140610_B appear to both be industrial areas with large buildings whose roofs which might be causing 

sunglint induced false alarms. 

 

The most useful information resulting from this very limited "field validation" exercise was the increased 

awareness of how important a landcover map could be to help discriminate false alarms from true active 

fire detections. Simply by checking whether a detected active fire pixel was located on agricultural land 

or not was considered a good strategy to perform this discrimination. Google Earth was used to perform 

the first tests, in order to gain an idea of the relative proportion of 'true' and 'false' active fire detections. 

This test was performed for fires on 26th September 2013, the date of highest active fire occurrence in the 

September 2013 burning period. Visual checks, considering the size of the VIIRS I-Band pixels (so only 

identifying an area as "farmland" when all land in a radius of 200 m from the detected fire pixel centre is 

agricultural land) led to the results shown in Table 3.1. A similar procedure was also performed for the 
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MODIS-Aqua active fire product of the same day, increasing the radius to 500 m to account for the larger 

MODIS pixel area.  

 

 

Figure 3.2: Photo taken five days later in site 140607_A after active fire detection by VIIRS. Red rectangle shows 

the small burned scar while most part of this field has already been ploughed and flooded. 

 

For VIIRS I-Band-detected active fire pixels, Table 3.1 shows that only around half are considered to be 

fully located on agricultural land. False alarm rates are at least 10%, since 10% of active fire detections 

are located fully in industry/village/urban areas. This level of commission error is approximately similar 

to that of other active fire detection algorithms (e.g. Wooster et al., 2015; Roberts et al., 2015), but in 

addition to this around 40% of the VIIRS AF detections were located in areas where there is a mix 

between agricultural and industry/village/urban landscovers, and these AF detections may or may not be 

false alarms.  It is almost certain that some of them are, so the true commission error is very likely to be 

higher than 10%. However, despite the apparently quite high false alarm rate, VIIRS still appears to 

perform better than MODIS-Aqua.  Only 15% of the AF pixels detected by MODIS-Aqua are located on 

fully agricultural land, whereas over 80% are located in mixed areas or in industry/village/urban areas. 

Furthermore, MODIS also detected far fewer AF’s overall than VIIRS due to its much coarser pixel area 

(Table 3.1) 
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Table 3.1: Identification of landcover using Google Earth for hot spots detected by VIIRS and MODIS-Aqua on 

Sep.26, 2013. 

 
VIIRS MODIS-Aqua 

 
Samples Percentage (%) Samples Percentage (%) 

Agricultural land 396 49 25 15.2 

Forest 2 0.3 1 0.6 

Industry 69 8.6 3 1.8 

Village or Urban area 9 1.1 - - 

Mixed above 325 41 136 82.4 

Total 801 
 

165 
 

 

The early version of the VIIRS AF detection algorithm assessed during the June 2014 fieldwork did not 

include most of the false alarm screening described in the published paper (Section 3.2), only that which 

attempts to remove sunglint affected pixels. What was concluded from the June 2014 fieldwork and the 

testing using Google Earth was that in China's agricultural areas there exist many more opportunities for 

false alarms than just sunglints from clouds and water, a fact actually highlighted (but not solved) by 

Schroeder et al. (2014). The main reason for the high rate of false alarms appears to be the rooftops of 

large industrial buildings, which either heat up by day and/or reflect sunlight preferentially in one 

direction leading to possibly stronger sunglint-induced false alarms that are not picked up by the sunglint 

tests (perhaps because the roofs are not flat and so the glints are not occurring at the expected angles). 

These findings indicated the need for a false alarm discrimination procedure based on landcover 

information, the details of which will be introduced in Section 3.4 and the evaluation of conducted in 

Section 3.5.   

 

3.3.2 FIELDWORK IN OCTOBER 2015 

The purpose of the fieldwork performed in October, 2015 (also see in Section 3.2, Active Fire Detection 

Output and Evaluation: Field Validation) was to help confirm the final performance levels of the 

completed AF detection algorithm used with the VIIRS I-Band, via the detection of evidence of burning 

at identified AF pixel locations. By this time, the AF detection algorithm already included a landcover-

based false alarm filter based on the findings in Section 3.3.1. False alarm occurrences related to the 

aforementioned industrial buildings were therefore expected be reduced. 

During this fieldwork, the main evidence was collected by deploying a small UAV carrying a digital 

camera at the sites of the AF detections made by VIIRS. Fig. 5 in Section 3.2 shows one such validation 
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example, with areas of black ash and char seen on the land surface shortly after the VIIRS-based AF 

detection (they were not there in the Google Earth imagery captured a few days before). A magnification 

of part of the previous Fig.5 (Section 3.2) is shown here as Fig. 3.3, and the red polygon shown in the left 

is the footprint of a VIIRS AF pixel. At right are two zoomed images in the areas highlighted with yellow 

polygons at left, and both lie within the VIIRS AF pixel area. Both these highlighted areas show large 

black burn scars where ash and char have been laid down by recent fires. They also show the three 

different burning patterns discussed in Section 3.2, homogeneous covering, semi-linear and scattered 

patterns of ash and char. 

 

Figure 3.3: Zoomed example of Fig. 5 in Section 3.2. At left show a red polygon which is the footprint of the VIIRS 

AF pixel (it is the AF detection shown at the bottom right of the original Fig. 5b). At right are two zoomed images in 

the areas highlighted with yellow polygons at left. 

 

Though some studies have found that low-albedo, burned areas created by fires that occurred previously 

can trigger false active fire detections (Li et al., 2000), this was not the case for the agricultural fires 

shown in Fig. 3.3. At the sites imaged by the UAV, active fires were only detected on one day (5th Oct 

2015), and there were no repeat detections. The Google Earth imagery (that showed the areas as unburned) 

was taken on 1st Oct 2015, and the UAV deployed on 7th Oct 2015 when clear ‘burn scars’ showing 

fresh ash and char were visible. If the active fire detections were false alarms caused by the presence of 

the low-albedo burn scars (rather than actively burning fires themselves) then they would very likely be 

seen more than once in the same place over this time.  Furthermore, due to the relatively low fuel loads 

usually associated with agricultural residue fires, the ash represents a very thin and non-continuous layer 
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on top of the soil (Fig. 3.4), and would therefore not be expected to get particularly hot via solar heating.  

Thus the VIIRS-based AF detections definitely appear to have been correct identifications, related to fires 

that occurred during the 1st -7th October period.  

 

Figure 3.4: Image of ash and char taken right after corn residue burning. The ash represents a very thin and non-

continuous layer on top of the soil, indicating relatively low fuel loads associated with agricultural residue fires. 

 

As indicated in Section 3.2, a total of 30 detected AF pixels were checked during this October 2015 

fieldwork. Recent char and ash were identified close to the pixel centre of each of the 30 AF detections, 

confirming these as likely correct identifications and highlighting the advantages of the landcover filter in 

greatly reducing the false alarms that would likely have been present should such a filter not have been 

developed and applied subsequent to the June 2014 field campaign.  

It is worth to note that a full active fire detection omission and commission statistics will need to be based 

on independent validation data, which requires large scale ground-based fieldwork, higher spatial 

resolution satellite or airborne data, or simultaneous active fire data from a sensor operating at even 

higher spatial resolution whose detection accuracy is already know. This is not covered by this thesis, and 

these kind of data at the moment are lacking, not only for the VIIRS regionally optimised active fire 

detection algorithm but also the global algorithm of Schroeder et al. (2014). Currently in this very limited 

field validation, thirty of the “classified active fire pixels” have been checked, and very recent burn scars 

found for all of them – indicating that the active fire pixel detections were correct. However, errors of 

omission potentially still exist in the dataset produced by this study, as they do in most active fire datasets.  
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3.4 SRF WEIGHED LANDCOVER PROPORTION CALCULATION 

This Section provides the full details of the land-cover based method used in both the estimation of the 

agricultural area ratio of each detected fire pixel, and the false alarm discrimination used to classify some 

of these fire detections as being caused by non-fire phenomena in Section 3.2 (published as Zhang et al., 

2017). The primary aim of this land-cover based procedure was to calculate the proportion of agricultural 

land within each VIIRS pixel initially detected as an active fire, based on a 30-m spatial resolution 

landcover map (Fig. 3.5).  

The manual examination conducted using the VIIRS-detected active fire pixels and Google Earth in 

Section 3.3.1 indicated the need for false alarm checks, probably based on landcover information because 

the false alarms were not identified by sunglint tests and appeared to be associated with large industrial 

buildings surrounded by more rural landscapes. A 30-m spatial resolution global land cover data map 

derived from Landsat ETM+ and Chinese land monitoring satellite data was used (GlobeLand30, 

http://www.globallandcover.com/, Fig. 3.5; Chen et al., 2015). These data have 10 classes, and were 

derived from imagery collected in 2009-2011. Within each VIIRS-detected active fire pixel, the 

calculated agricultural land proportions, as well as the spatial and temporal mask shown in Fig. 7 (Section 

3.2), were used together to identify every active fire pixel as a false alarm or true fire pixel. 

 

 

Figure 3.5: Global view of GlobeLand30-2010 product (Chen et al., 2015), includes 10 land cover types, namely 

cultivated land, forest, grassland, shrubland, wetland, water bodies, tundra, artificial surfaces, bareland, permanent 

snow and ice. 

 

http://www.globallandcover.com/
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Satellite imager pixels do not typically have top-hat response functions, and the spatial response function 

(SRF) maps out the sensitivity of the detector to spectral radiance signals coming from different locations 

within the pixel footprint (Huang et al., 2002; Lin et al., 2011; Wolfe et al., 2013). These SRFs therefore 

need to be considered when providing a metric that denotes the effective landcover fraction of any 

particular pixel, since for example a patch of “urban” land lying towards the edge of a pixel that is mostly 

covered by agricultural landcover is likely to have less impact on the overall pixel-integrated spectral 

radiance than if it lay at the pixel centre. This was shown by Townshend et al. (2000) in the context of 

landcover mapping, and it was shown there that consideration of the sensor SRF can reduce by half the 

standard error of landcover mapping procedures. Clearly then, a more reliable metric of the contribution 

of a particular landcover type to the pixels signal can be provided if the SRF is considered compared to if 

it is not. 

In whiskbroom systems like VIIRS and MODIS, a scan mirror sweeps out the projection of the detector(s) 

onto the Earth's surface, and this signal is integrated for a finite period of time to provide each pixels 

output signal. This typically results in a spatial response function (SRF) that peaks at the pixel centre and 

lowers to zero at the two pixel edges (i.e. where the integration time for that pixel starts and stops; Wolfe 

et al., 2013).  According to the full width at half maximum height (FWHM) definition, with MODIS and 

VIIRS this SRF pattern causes approximately 25% of the radiance of any particular pixel to contribute 

also to the neighbouring pixels in the along scan direction, half to the left and half to the right hand pixel 

(Huang et al., 1998; Wolfe et al., 2013). In the along-track direction however the SRF is almost top-hat in 

nature, and with VIIRS there is no along-track overlap as overlapping pixels (due to the ‘bow tie effect’) 

have been deleted in the level 1b product (see Fig.1 of Section 3.2). 

Use the SRF with the 30m landcover map shown in Fig. 3.5 allows for a more detailed consideration of 

the response of pixels to the particular landcovers that lies within them, taking account of where the 

landcover is located within the pixels. To do this, the SRF map for VIIRS I-Band pixels was calculated 

from the appropriate along-scan and across-track line spread function (LSF), available on the NOAA 

National Calibration Centre website (http://ncc.nesdis.noaa.gov/VIIRS/index.php). For VIIRS, the LSFs 

in the along-track direction can be considered squares (Robert et al., 2013), with their width the same as 

the horizontal sampling interval (HIS), while the LSF values in the along-scan direction for the 32 

detectors of each I-band cannot. Separate LSF values were obtained for each of the 32 detectors, and 

averaged to get a mean LSF in this direction (Fig. 3.6a) since the standard error of the mean LSF 

compared to the actual LSF at all points was within 1%. The SRF map shown in Fig. 3.6b gives the 
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spatial response for the area covered by the equivalent of 2×2 VIIRS pixels, where the red rectangle is the 

central pixel location (FWHM). The ground cover in the pixel on the scan line subsequent to and prior to 

that of the central pixel does not impact on the signal of the central target pixel, but that within the left 

and right pixels along the scan does. Therefore, only these central, left and right pixels are used for the 

landcover proportion calculation within any particular pixel. 

The area of each VIIRS-detected active fire pixel to be examined is projected onto the 30m spatial 

resolution landcover map to perform the calculation. At the edge of a VIIRS pixel potentially only part of 

some landcover map grids are covered during projection. Therefore, a sub-pixel strategy is used whereby 

the area covered by each non-georectified VIIRS pixel is split into a series of 10 m × 10 m cells, and each 

cell treated as a point (using central latitude/longitude) in the next step of the landcover identification 

procedure. The number of subpixel cells varies as the VIIRS pixels move away from nadir such that the 

pixel size grows, from 370 m × 388 m at nadir to 789 m × 800 m at edge of swath. This growth is far less 

than with MODIS, due to VIIR’s unique pixel-averaging scheme (Section 3.2). The MODIS Geolocation 

Algorithm Theoretical Basis Document (ATBD) provides a method of interpolation to determine the 

location of any point [Z(x,y)] inside a nominal pixel, using a bi-quadratic equation: 

 z(x, y) = ∑ 𝑎𝑖𝑗𝑥𝑖𝑦𝑖2
𝑖,𝑗=0                                                                                               (3.1) 

This method can be applied to calculate the latitude/longitude of a point location (x,y) given its nominal 

pixel location (i, j) within a 3 x 3 grid block. The coefficients aij are generated using the matrix provided 

by ATBD. 

 

 

Figure 3.6: Information related to the VIIRS spatial response function (SRF). (a) VIIRS I4 band spatial response data 

in the along-scan and across-track directions. The details of three aggregation zones (along scan agg 1 *1/2/3 ) can be 

(a) (b) 
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seen in Section 3.2. (b) SRF map based on along and across-track spatial response for the area covered by the 

equivalent of 2×2 VIIRS pixels, where the red rectangle is the central pixel location (FWHM). 

 

Fig. 3.7 illustrates the final process applied to determine land cover metric for each detected active fire 

pixel. The geographic location of any sub-pixel location can be calculated as long as the geolocation 

information for the 3×3 pixels surrounding that pixel are known. The model developed for MODIS can be 

applied to VIIRS as long as the 3×3 pixel block is within a single scan line and the same aggregation 

scheme region (either Aggregation zone 2, 3 or no aggregation zone, Fig. 1 of Session 3.2; but not at a 

location that crosses two regions) (Nishihama, pers. comm.). When applying the scheme to the vast 

majority of VIIRS pixels, the target pixel is selected as the central pixel of the 3×3 pixel array. However, 

for pixels at the edge of scan or at the boundary of an aggregation scheme region, a nearby pixel is chosen 

to ensure that the 3×3 pixel array is located within one scan line and one aggregation scheme only. Note 

the 3×3 pixel array here is only to calculate the geolocation of those sub-pixels, and is not used in the 

later landcover proportion estimation. 

 

Figure 3.7: Schematic illustration of the procedure developed herein for determining the landuse metric for help in 

identifying true active fires and false alarms. The original pixel is split to obtain a series of 10 m × 10 m sub-pixels 

(only a few are shown in this illustration for clarity). The geolocation of each sub-pixel with respect to the landcover 

map is then calculated at the observation level from a 3×3 pixel array. Finally, at the "ground" level, the land cover 

data are found for each sub-pixel. Figure is taken from Tan et al., (2006). 

 

Then for each 10 m sub-pixel cell, the land cover type (for example, agricultural land) is taken from the 

30 m landcover map. Fig. 3.8 illustrates how the inclusion of the SRF information impacts on the final 

metric of ‘land cover proportion’ in a pixel. Suppose the original land cover map simply provides the 
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information as to whether each sub-pixel is agricultural land or not, where 0 (blue) is ‘False’ and 1 (red) 

is ‘True’. Clearly, the central set of 10 m sub-pixels are more important in determining the final output 

than are the sub pixels more distant from the centre, and the SRF weights gradually decrease away from 

the centre to reflect this.  After classification of all sub-pixels, a weighted average metric is calculated 

from the multiplication of the resulting land cover array and the normalized spatial response function 

(SRF) map. For each pixel, the sum of all the weighted land covers within the pixel should still be 1. 

 

 

Figure 3.8: Illustration of the spatial response function (SRF) approach to determining the land cover metric for a 

pixel in this study, with the 30 m land cover map shown at top for the area of the (central) target pixel and its two 

neighbouring along scan pixels, and the multiplication of the SRF by the land cover map at bottom.  

 

3.5 FALSE FIRE ALARM RATIOS 

This Section provides details of the performance of the spatial and temporal ‘false alarm’ masking 

procedure introduced in Section 3.2 (Fig. 7ab). The filtered results of this study were compared with that 

from the global VIIRS algorithm of Schroeder et al. (2014) to assess the potential benefit of using high 

quality ancillary data to help mask out what appear to be false fire detections resulting from primarily 

industrial buildings. The same method has also been applied to data from MODIS-Aqua to evaluate the 

potential ratio of false fire detections within the official MOD14 MODIS active fire product across 

Eastern China. The metric used was the percentage of detected active fire pixels being filtered out from 
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the total number of original AF detections). When applyed to other two products, only spatial ‘false alarm’ 

mask are used. 

 

3.5.1 FALSE FIRE RESULTS IN THIS STUDY 

As shown in Fig. 3.9, the total monthly VIIRS I-Band detected AF pixel counts that are believed to be 

false alarms can be 20000 - 50000 during the summer burning seasons (note that forest or grassland fires 

have been excluded from false alarms, as is also the case for Fig. 3.12), similar to the number of AF 

detections believed to truly represent real active fires. The ratio of false alarms to total confirmed thermal 

anomaly pixels is thus 40% to 79%, with a mean of 62 ± 10%. 41 ± 18% of those false alarms were 

identified by spatial filter and the rest were identified by temporal filter as shown in Fig. 3.9. The false 

alarms ratio decreases a little (57 ± 16%) when using the total FRP instead of pixel counts to calculate the 

false alarm contribution. Take the summer burning seasons as an example, the contribution of false 

alarms in terms of FRP was 16 - 30%, compared to 43 - 52% when calculated using fire pixel counts from 

2012-2015. This comparison indicates that most false alarms show relatively low FRP measures. Fig. 7c 

from Section 3.2 showed that some urban/industrial areas still fail to be depicted in the current landcover 

data, and thus these areas can still generate AF detections that are not screened out as false alarms. Better 

quality ancillary landcover data are expected in the future to minimise this occurrence, but since most 

false alarms show low FRPs the impact of failing to screen out a relative few is not considered hugely 

significant. 
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Figure 3.9: Time series of VIIRS monthly pixel count (upper) and FRP (bottom) in Eastern China, break down by 

false alarm filtered by spatial mask (red), temporal mask (yellow), and classified active fire (blue) using the spatial 

and temporal mask introduced in Section 3.2 (Fig. 7ab). 

 

3.5.2 COMPARISON TO VIIRS GLOBAL ALGORITHM RESULTS 

The regional VIIRS I-Band AF detection algorithm developed here has been show to be sensitive to false 

alarms generated by urban/industrial features (and these represent 63 ± 10% of the detected AF pixel 

counts as shown in Fig. 3.4). This phenomena is not unique to VIIRS, but most existing AF detection 

algorithms do not include such high spatial resolution false alarm masking procedure based on landcover 

information (Giglio et al., 2016; Schroeder et al., 2014). For comparison to the VIIRS I-Band data 

produced here, the global I-Band active fire detection algorithm results of Schroeder et al. (2014) were 

used (obtained from the data stored in NASA Worldview). 

Fig 3.10 shows a comparison of outputs from the algorithm developed herein (Section 3.2) to those from 

VIIRS global I-Band algorithm (using imagery taken on 2nd August 2016, with the centre scene located 

in Beijing). The red dots refer to the VIIRS global algorithm output, which shows a total of 24 AF 

hotspots (some of them are very close to each other, and perhaps might be a single detection in the 

original data but split into two in the PNG data downloaded from Worldview).  The regional VIIRS 

algorithm output is shown as the coloured pins, with 35 of the identified thermal anomalies discounted by 

the masking procedure developed here as false alarms, and 8 classified as true active fires. Since the 

imagery is taken outside of the agricultural burning season, and in a high density, populated urban area, in 

fact all the AF pixels detected by both algorithms shown in Fig. 3.5 are likely to be false alarms.  
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This direct comparison shows that the regionally optimized algorithm developed in this PhD – which 

included use of more liberal thresholds in order to detect the lowest FRP fires, did indeed lead in this case 

to the detection of more false alarms in the initial thermal anomaly detection stage compared to the global 

algorithm of Schroeder et al. (2014, 11 more in the case shown in Fig. 3.5; assuming all the detections are 

in fact false alarms). However, the error of commission (8 out of 42 detections = 19%) is in fact lower 

than that of the global algorithm of Schroeder et al. (2014, 24 out of 24 detections = 100%) with the help 

of the spatial and temporal masking procedure developed herein. 

 

 

Figure 3.10: Active fire (AF) pixel detections made on 2nd August 2016 from VIIRS, with the scene centre 

40.098°N, 116.362°E near Beijing City and a google earth imagery is used as the basemap. Yellow and green pins 

indicate those masked false alarm and classified AF pixels generated using the regionally optimized VIIRS I-Band 

AF detection algorithm developed herein (Section 3.2), whilst red circles are those output from the global I-Band 

algorithm of Schroeder et al. (2014, available from the GIBS/Worldview database). 

 

3.5.3 COMPARISON TO FALSE FIRE ALARM RATIO OF MODIS-AQUA  

Similar to the VIIRS global I-band product of Schroeder et al. (2014), investigations showed that the 

widely-used, and more spatially coarse, MODIS active fire product of Giglio et al. (2016) was also found 

to be impacted by a high rate of unscreened false alarm. Fig. 3.11 shows an example recorded on the 12 th 

August 2015 using the 1 km MODIS-Aqua MYD14 AF product close to Shanghai (different date and 

location from the VIIRS case showed in Fig. 3.10 since those relatively small false alarms in Fig. 3.10 

have not been detected by MODIS). A total of 16 AF pixels were detected by the MODIS algorithm, all 
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of which are likely to be false alarms linked with industrial areas and manmade structures, similar the 

false alarms shown in Fig.6 of Section 3.2 and in Fig 3.10.  

 

 

Figure 3.11: Active fire (AF) pixel detections made on 12st August 2015 from MODIS-Aqua, with the scene centre 

30.875 °N, 121.350°E near Shanghai City and a google earth imagery is used as the basemap.  

 

The spatial and temporal mask used in this study was also applied to the MODIS MYD14 AF detection 

data, in order to evaluate its potential false alarm rate and compare them to those found with VIIRS in this 

study. Since the pixel size of MODIS-Aqua is significantly coarser than the VIIRS I-Band (giving a 10 

larger pixel at nadir), MODIS was expected to be less sensitive to the signatures of the industrial 

buildings that appear commonly responsible for the VIIRS false alarm detections (Fig. 6 in Section 3.2). 

However, the monthly time-series shown in Fig. 3.12 produced using the same landcover-based filtering 

approach (without the temporal filter as that should be generated using MODIS long time series data in 

this case) as used with VIIRS but now applied to MODIS indicate that false alarms accounted for 48 ± 18% 

(mean ± 1sd) of total detected MODIS AF pixels in this area, a value only 14% lower than that from the 

VIIRS regional I-Band algorithm developed here and applied to the same location and period (62 ± 10%; 

though note that these false alarm detections with VIIRS are then filtered out using the landcover and 

temporally-based filtering scheme). Both VIIRS and MODIS show false alarms, expressed as total pixel 

counts or FRP, are higher in May to August than the rest of the year. This seasonal pattern implies 

perhaps that the phenomena causing the false alarms are related to solar position (warm weather, and/or a 
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stronger solar beam of a particular direction), which favours heating of the large industrial building roofs 

(Fig. 6; Section 3.2). However, the ratio of MODIS’ suspected false alarms to total AF detections during 

June, the most intensive burning month, was relatively low - ranging from 24 - 31% for pixel count and 

16 - 22% for FRP, similar to what is observed in the VIIRS regional algorithm results. This is because 

many more true fires have been detected during more intensive burning period. 

 

Figure 3.12: Time series of MODIS-Aqua (Collection 6) monthly pixel count (upper) and FRP (bottom) in Eastern 

China, break down by false alarm and classified active fire using the spatial mask introduced in Section 3.2 (Fig. 7a).
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CHAPTER 4: IN SITU MEASUREMENTS OF SMOKE EMISSION 

FACTORS ASSOCIATED WITH AGRICULTURAL RESIDUE 

BURNING IN EASTERN CHINA 

 

4.1 INTRODUCTION 

Estimates of fuel consumption derived from FRP-based (or burned area based) measurements need to be 

combined with emission factors (EFs) if they are to be converted into smoke emission estimates. 

However, as described in Chapter 2, there have been a relatively limited number of in situ measurement 

of crop residue burning EFs in China. The goal of the research reported in this Chapter was therefore to 

perform the in situ measurements needed to calculated the EFs of key species associated with crop 

residue burning in Eastern China, and to report these EFs and compare them to those in the existing 

literature. 

The Chapter is comprised of the following section (Section 4.2) which is a published paper describing the 

first in situ measurement campaign and its results, focusing on trace gas, PM2.5 and black carbon. This 

paper also describes the design and deployment of a bespoke sampling system use for in situ 

measurements of smoke, with further building and testing details of this system described in Section 4.3. 

A second in situ measurement campaign and its results are then described in Section 4.4, which included 

use of an improved measurement system.  Finally, a mathematical model deployed within the procedure 

used to calculate the EF’s from the smoke concentration measurements is introduced in Section 4.5. 

The author of this thesis is the first author of the published paper, and designed and conducted the 

fieldwork experiment along with M. Wooster and B. Main. D. Green was involved in designing and 

testing the smoke sampling system, whilst B. Main helped in its construction. The thesis author undertook 

all the data analysis and drafted the first version of the paper, to which the co-authors then suggested edits. 

 

4.2 NEW FIELD-BASED AGRICULTURAL BIOMASS BURNING 

TRACE GAS, PM2.5, AND BLACK CARBON EMISSION RATIOS AND 

FACTORS MEASURED IN SITU AT CROP RESIDUE FIRES IN 

EASTERN CHINA 
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Despite policy attempts to limit or prevent agricultural burning, its use to remove crop residues either
immediately after harvest (e.g. field burning of wheat stubble) or after subsequent crop processing (e.g.
“bonfires” of rice straw and rapeseed residues) appears to remain widespread across parts of China.
Emission factors for these types of small but highly numerousfire are therefore required to fullyassess their
impact on atmospheric composition and air pollution. Here we describe the design and deployment of a
new smoke measurement system for the close-range sampling of key gases and particles within smoke
from crop residue fires, using it to assess instantaneous mixing ratios of CO and CO2 and mass concen-
trations of black carbon (BC) and PM2.5 from wheat stubble, rice straw, and rapeseed residue fires. Using
data of our newsmoke sampling system,wefind a strong linear correlation between the PM2.5mass andBC,
with very high PM2.5 to BC emission ratios found in the smouldering phase (up to 80.7mgm�3.(mgm�3)�1)
compared to the flaming phase (2.0mgm�3.(mgm�3)�1).We conclude that the contribution of BC to PM2.5

mass was as high as 50% in the flaming phase of some burns, whilst during smouldering it sometimes
decreased to little over one percent. A linear mixing model is used to quantify the relative contribution of
each combustion phase to the overall measured smoke composition, and we find that flaming combustion
dominated the total emission of most species assessed. Using time series of trace gas concentrations from
different fire cases, we calculated ‘fire integrated’ trace gas emission factors (EFs) for wheat, rice and
rapeseed residue burns as 1739 ± 19 g kg�1, 1761 ± 30 g kg�1and 1704 ± 27 g kg�1 respectively for CO2, and
60± 12 g kg�1, 47± 19 g kg�1 and 82± 17 g kg�1 respectively for CO.Where comparisonswere possible, our
EFs agreed well with those derived via a simultaneously-deployed open path Fourier transform infrared
(OP-FTIR) spectrometer. These EFs, and the linear best fit relationships between both PM2.5 and BC mass
and the CO2 and CO measurements, were used to generate particulate EFs, which varied over the 5.8
e20.3 g kg�1 and 0.25e2.89 g kg�1 range respectively. We note a particularly high 2.89 g kg�1 BC emission
factor for the rapeseed bonfires, reflective of intenseflaming combustion that gave off visible clouds of soot.
These field-measured EFs offer a different perspective than is obtained when burning in laboratory com-
bustion chambers, and are suitable for combining with landscape-scale fuel consumption estimates to
provide atmospheric modelling inputs of emissions from these types of crop residue fires.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
arth and Environmental Dy-
rand, London, WC2R 2LS, UK.
ooster).

r Ltd. This is an open access article
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.�0/
mailto:martin.wooster@kcl.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atmosenv.2015.05.010&domain=pdf
www.sciencedirect.com/science/journal/13522310
www.elsevier.com/locate/atmosenv
http://dx.doi.org/10.1016/j.atmosenv.2015.05.010
http://creativecommons.org/licenses/by/4.�0/
http://dx.doi.org/10.1016/j.atmosenv.2015.05.010
http://dx.doi.org/10.1016/j.atmosenv.2015.05.010


T. Zhang et al. / Atmospheric Environment 121 (2015) 22e34 23
1. Introduction

1.1. Agricultural residue burning

Agricultural residues (sometimes called agricultural waste)
represent the by-products of crop production, for example the
wheat stubble remaining after harvest, the rice straw cut at grain
harvest, or the rapeseed material remaining after harvest and
pressing. Methods to remove or dispose of these residues prior to
the next harvest include their use as mulch for the succeeding crop,
a substrate for composting, fuel for biogas or power generation, and
use as animal feed or bedding (Ponnamperuma, 1984). However,
the viability of these uses depend on local circumstances, and in
many still developing economies agricultural residues are often
removed via in situ burning, which in areas without well-developed
large scale agricultural mechanisation is generally the quickest,
simplest and cheapest approach, and also possibly provides some
nutrients back into the soil prior to the next planting (Jiang et al.,
2012; Smith et al., 2007). Though each individual crop residue
burn may be quite limited in area, their widespread nature across
extremely high numbers of fields worldwide means that such fires
actually contribute significantly to the overall global landscape-
scale burning totals (Akagi et al., 2011; Andreae and Merlet, 2001;
Randerson et al., 2012). Korontzi et al. (2006) for example esti-
mated that agricultural fires may constitute 30e40% of all fire de-
tections made using the MODIS burned area products, though the
true amount is highly uncertain since many of the individual
agricultural burns maybe too small to detect using this particular
Earth observation approach (Randerson et al., 2012). Smoke emis-
sions from these agricultural fires have significant impacts how-
ever, particularly in areas such as East Asia where such burning
appears extremely commonplace (Streets et al., 2003).

China has the largest agricultural enterprise worldwide
(Frolking et al., 1999) and Xiao et al. (2003) estimate around 1.4
million km2 of the country is given over to crop production. Until
recently, crop residues have been the second largest industrial
waste product produced in China (Qu et al., 2014). Whilst field
burning of these residues has been largely forbidden in China
since the late 1990's, and there are state-sponsored efforts to
collect and burn the material in power stations or otherwise
recycle it, much of the material is still burned in situ. Indeed, such
field-based burning of crop residues remains extremely wide-
spread across large parts of China (Huang et al., 2012; Zhang et al.,
2008). Streets et al. (2003) used total crop production figures to
estimate that perhaps 110 million tonnes of agricultural residue is
burned annually in China. This represents around 60% of the total
biomass burned in the country (the remainder being primarily
grassland and forest fires), and around half of all the agricultural
burning believed to occur across Asia. However, all these figures
remain very tentative estimates, due to uncertainties in the
quantities of dry matter left after harvest, and the relatively poor
current understanding of how much residue material is burnt in
the field per unit of dry matter residue produced via the different
agricultural practices (since, as stated above, some residues are
used for other purposes). Whilst very accurate assessments of
overall agricultural biomass burning totals may remain elusive
therefore, inventories based on satellite remote sensing are
continually improving (van der Werf et al., 2010) and it is clear
that China remains one of the countries in which agricultural
burning is most widespread.

The majority of China's agriculture is located in Eastern China,
where the vast majority of crop residue burning also apparently
occurs (Huang et al., 2012; Streets et al., 2003). Merged satellite and
ground based aerosol optical depth (AOD) data show that Henan,
Jiangsu and Anhui provinces are the three main sources of smoke
soon after the spring harvest (e.g. Huang et al., 2012; Xue et al.,
2014, Fig. 1). In these areas, most fields support at least two crops
per year, for example with wheat being grown over winter, har-
vested in June and the stubble often burned before the fields are
rapidly flooded via irrigation networks and rice is planted. The rice
is harvested in October, and the fields are then drained, the rice
straw often burned, and the fields prepared again for wheat (Huang
et al., 2012). The intensity of this agricultural cycle, the difficulties
and costs associated with crop residue collection in the many non-
mechanised farming areas, the lack of other significant uses for
certain of the residues types in many parts of the country, together
with a sometimes unclear overall management plan to guide the
large-scale alternative crop residue utilisation, leads to many
farmers burning the residues in situ, as demonstrated in Fig. 1 (Qu
et al., 2014).

1.2. Agricultural residue fire emissions

Agricultural residue burning releases smoke containing a wide
variety of trace gases (e.g. CO2, CO, CH4, NH3 and NOx), along with
BC and organic carbon (OC) aerosols. These can have significant
environmental effects both locally and at large distances down-
wind, even affecting densely populated urban areas well outside of
the agricultural areas themselves (Chan and Yao, 2008; Zhang et al.,
2011). Simulation modelling of emissions transport in the Yangtze
River Delta region attributed up to 37% of PM2.5, 70% of OC and 61%
of BC to the smoke from agricultural residue fires in neighbouring
provinces, hundreds of km away (Cheng et al., 2014), and in Beijing
for example, severe episodes of crop residue burning are estimated
to contribute perhaps 50% of the OC aerosols making up the city-
wide haze (Duan et al., 2004), worsening the existing air quality
problems (Li et al., 2010; Du et al., 2011). There remains, however,
an increasing need to better understand the exact gaseous and
aerosol species makeup of smoke emitted from crop burning fires,
so that their contributions can be better quantified in emissions
inventories, and such impacts better assessed.

To estimate the total emissions of each smoke constituent,
estimates of crop residue fuel consumption must be multiplied
by an emissions factor (EF; g kg�1) for each emitted species,
representing the amount of that species emitted per unit of dry
fuel burned (Andreae and Merlet, 2001). As with other biomass
fires, the EFs of crop residue burns most likely depend on the
physical properties of the fuel (e.g. packing density, fuel diam-
eter, moisture content) and the fire characteristics (e.g. the
relative proportions of flaming or smouldering phase combus-
tion) (Andreae and Merlet, 2001; van der Werf et al., 2010;
Wooster et al. 2011). Current knowledge regarding agricultural
residue burning emissions factors has primarily been based on
laboratory studies (e.g. Andreae and Merlet, 2001; Zhang et al.,
2008), where fire behaviour can be somewhat different to
those of real landscape-scale fires (Delmas et al. 1995; Wooster
et al., 2011). Furthermore, field-based EFs measured in one re-
gion, for example a largely mechanized harvesting area in
Mexico, may differ markedly from those appropriate to the more
manually farmed areas in another country, even if the actual crop
type (e.g. wheat) is the same (Akagi et al., 2011). Due to their
major impact on air quality, there is a special concern on emitted
particles, including the amount of black carbon as opposed to
other aerosols (Cheng and Lin, 2013). Particulate emission from
fires appears quite dependent on the amount of flaming and
smouldering combustion occurring (Reid et al., 2005), so field
measurements of emitted particles should ideally be performed
in parallel with CO and CO2 measurements in order to better
quantify particulate emission factors during different fire phases
(in which the ratio of these two key gases can vary markedly).



Fig. 1. Fire activity in China during the period of the fieldwork, with the sites close to the cities of Changzhou and Tongling marked. (a) Aqua MODIS true colour composite of part of
eastern China taken on 11 June 2014, with MOD14/MYD14 Terra and Aqua active fire detections of that day overlain in red and the fieldwork sites circled (Giglio et al., 2003). Smoke
from the fires can be clearly seen in this image, which is adapted from the NASAWorldview system (b). Distribution of actively burning fires detected across China throughout June
2013, as detected by the same MODIS active fire products, and with the area imaged in (a) outlined along with the two fieldwork sites. The widespread nature of burning in both the
fieldwork area and throughout much of China at this time is readily apparent. (For interpretation of the references to colour in this figure caption, the reader is referred to the web
version of this article.)
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The work described here reports our recent work in developing
and deploying a field-based smoke emissions measurement
approach in eastern China, using this to assess the trace gas and
particulate makeup, and ultimately the emissions factors, of
smoke from the burning of wheat stubble, rice straw, and rape-
seed residues, three of the most frequently burned crop residues
in China. We compare results to simultaneous measurements
obtained from an open path Fourier transform infrared (OP-FTIR)
spectrometer, first used to derive such EFs in savannah regions
(Griffith et al., 1991; Wooster et al., 2011). To our knowledge this
is the first time these approaches have been used together on
agricultural residue fires, and if proved viable such field-derived
datasets representative of real in situ burning conditions can be
expanded to other areas of agricultural burning.
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2. Methodology

2.1. Sampling box design, build and test

For this work, we designed and deployed a new smoke sampling
system for the close range, in situmeasurement of the mixing ratios
of CO and CO2 and the mass and BC content of PM2.5 in smoke from
agricultural fires. The aimwas that these measurements could then
be used to calculate the emission ratios (ERs) and EFs of these
species, disaggregated by combustion phase (flaming/smoul-
dering), and also these could be combined to deliver a ‘fire inte-
grated’ EF measure appropriate for the entire burn and for use with
measures of fuel consumption to provide new estimates of the total
emissions released (e.g. Andreae and Merlet, 2001; Wooster et al.,
2011). Details of sampling system design and test are presented
in the Supporting Information, and summarized below.

A single inlet design using a PM2.5 size selective impaction inlet
(BGI miniPM® inlet 5011, 5 l min�1) provided both gas and aerosol
samples to a range of different instruments all housed in a wheeled
peli case (see Fig. 2). A flow splitter (TSI 3708) isokinetically divided
the airstream and aerosols into three pathways. Pathway 1 was
drawn by a TSI Dustrak; and the eluent flow, now particle-free, was
used to provide the CO and CO2 gas sensors with an ambient
sample. Pathway 2 was drawn by a Casella Apex Pro pump; and
PM2.5 then collected on a filter. Pathway 3 was drawn by a com-
bination of a Casella Apex pump and a microAeth AE51 (Cheng and
Lin, 2013) to measure black carbon.

Electrochemical and NDIR sensors are typically characterised by
non-zero response ‘lag’ times, generally specified via a T90 metric
(Roberts et al., 2012), and these details are provided in the Sup-
porting Information. To minimise measurement impacts from the
combination of lag times and the rapidly changing trace gas mixing
ratios experienced during in situ smoke plumemeasurements (Reid
et al., 2005), the outputs from the gas sensors were averaged over
20s for trace gas emission ratio (ER) derivation. This averaging
period was further increased to 120s when comparing the gas and
aerosol measurements, and such averaging is commonly used in
plume investigations when relying on different instruments to
Fig. 2. Design of the smoke sampling system developed and deployed herein with (a)
target diverse species whose concentrations will later be used to
derive emissions ratios (e.g. Reid and Hobbs (1998); Roberts et al.,
2014).
2.2. Sampling approach

Fieldwork took place in Eastern China in June 2014, coinciding
with the main harvest and burning time in this part of China
(Fig. 1a), which the MODIS Active Fire product (Giglio et al., 2003)
confirms (Fig. 1b). Smoke emissions from in situ burning were
measured in four different fields close to the two cities marked in
Fig. 1, Changzhou City (31.75�N, 128.11�E) and Tongling City
(30.84�N, 117.65�E). Wheat, rice and rapeseed residues were used,
burned in their most common way (spreading fires for wheat and
bonfires for the other two fuels; Fig. 3). Each burn took 6e30min to
complete, depending on the field size and shape, fuel load, and
wind velocity (Table 1). Though wheat is normally burned as
stubble in spreading fires, samples of wheat stubble of ~5 kg mass
were also burned as a bonfire to help assess the specific emissions
related to the flaming and smouldering phases of its combustion
(see Table 1, Fire 3a and Fire 3b).

During the spreading fires, smoke was mostly advected hori-
zontally, allowing the sampling system described in Section 2.1 to
appropriately capture the ground-level plume. For the bonfires, the
inlet of the sampling box was fit into one end of a 100 mm pipe
attached to a pump that drew smoke into the pipe a significant
distance ahead of the sampling box inlet. The pipe inlet end was
linked to a >5 m long lightweight pole that was easily controlled to
allow the pipe to capture smoke from the vertically rising smoke
(Fig. 3b).

A portable MIDAC open-path Fourier transform infrared (OP-
FTIR) spectrometer and IR emitting lamp was deployed co-incident
with the smoke sampling system on some of the fires, in order
provide comparison trace gas assessments based on the methods
described in Wooster et al. (2011). Further details of all measure-
ment approaches employed are provided in the Supporting
Information.
flow rates, and (b) completed sampling system contained in its pelicase shown.



Fig. 3. Photographs of two of the agricultural fires studied herein. (a) was taken during Fire No. 4, which is a spreading wheat stubble fire. The wind was blowing from west to the
east (left to right in the photo), the smoke sampling box is standing downwind inside the ground level smoke plume, whilst the FTIR spectrometer was located north of the fire
viewing southward to measure the spectra of the IR lamp that was behind the smoke plume and around 20 m away. (b) was taken during Fire No. 9 on a rapeseed residue bonfire.
The inlet of the smoke sampling box was fitted into one end of the large diameter sampling pipe, and a pump used to pull the smoke into the pipe so that it could be captured by the
sampling system inlet. Visible clouds of soot can be seen in the smoke plume emanating from the top of the flames.

Table 1
Detail of the fires and their mean excess CO, CO2 mixing ratios and excess BC, PM2.5 mass concentrations as measured in China during the June 2014 field campaign.

Mean gas/particle measurement

Fire no. Fire code Sitea Fuel Fire type June Fire duration (minutes) DCO (ppm) DCO2 (ppm) DBC (mg m�3) DPM2.5 (mg m�3)

1 0610run1 A Wheat Spreading 10th 6 25 493 0.25 2.1
2 0610run2 A Wheat Spreading 10th 28 8 138 0.15 1.7
3 0610run3 A Rice Bonfire 10th 8 22 374 0.20 3.2
4 0613run1 B Wheat Spreading 13th 23 28 452 0.39 4.9
5 0614Run1 B Wheat Spreading 14th 22 28 641 0.63 5.5
6a 0614Run2_f B Wheat Bonfire 14th 5 1 e 0.15 0.4
6b 0614Run2_s B Wheat Bonfire 14th 10 51 e 0.06 8.6
7 0615run1 B Wheat Spreading 15th 22 34 928 0.46 6.9
8 0615run2 B Wheat Spreading 15th 29 8 171 0.05 2.9
9 0616Run1 C Rapeseed Bonfire 16th 10 33 605 0.54 3.9
10 0616Run2 C Rapeseed Bonfire 16th 7 8 264 0.19 1.1
11 0616Run3 C Rapeseed Bonfire 16th 9 65 622 0.37 3.8
12 0616Run4 C Rice Bonfire 16th 14 7 197 0.06 1.5
13 0616Run5 C Rice Bonfire 16th 16 20 532 0.22 4.5
14 0618run1 D Rice Bonfire 18th 24 23 1117 0.20 12
15 0619run1 D Rapeseed Bonfire 19th 14 89 1317 0.89 13

a Site A was close to Changzhou City, whilst sites B, C and D were close to Tongling City (Fig. 1).
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2.3. Emission factor calculation methodology

The EFs (g kg�1) of the trace gases present in the smoke were
calculated using the carbonmass balance method used by Yokelson
et al. (1999) and many others:

EFx ¼ 1000Fc
MMx

MMc

Cx
Ct

(1)

Where Fc is the mass fraction of carbon in the fuel (0.5 ± 0.05;
Yokelson et al., 1999), MMx is the molecular mass of trace gas
species x (limited to CO and CO2 when considering data from the
small gas sensors present in the smoke sampling system of Fig. 2,
but expandable to other gases when considering the data from the
FTIR system [as per Wooster et al., 2011]). MMc is the molecular
mass of carbon (0.012 kg mol�1), and where Cx

Ct
is the ratio of the

number of moles of species x divided by the total number of moles
of carbon (assessed over key emitted carbon containing species).
Further details of this calculation are provided in the Supporting
Materials. We also calculated the modified combustion efficiency
(MCE), commonly used as an indicator of the relative magnitude of
flaming and smouldering phase combustion (Ward and Radke,
1993):

MCE ¼ 1�
1þ ERCO=CO2

� (2)

To derive the EFs of the aerosol components (EFPM2.5 and EFBC; g
kg�1) we developed a new approach using the EF of a reference gas
and the abundance ratio of the aerosol and gas in question (Sparticle/
gas; mg m�3 ppm�1), derived from the slope of the linear best fit
between the excess mass concentration measures of the aerosol
species (PM2.5 or BC) and the excess mixing ratio of the reference
gas (either CO2 or CO) recorded in the same sample over the same
averaging period:

EFaerosol ¼ aSaerosol=gasEFgas (3)

where a is a factor included for unit conversion (having the value of
0.909 ppm (mg m�3)�1 when using CO2 as the reference gas, and
0.556 ppm (mg m�3)�1 when using CO).
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3. Results

3.1. Gas and aerosol measurements

The mean trace gas and aerosol abundances in the smoke
recorded by the sampling system for each fire are listed in Table 1,
expressed as excess measures via subtraction of the pre-fire values.
The recorded excess trace gas mixing ratios, DCO2 and DCO, varied
between 138e1317 ppm and 1e89 ppm respectively, whist the
mean excess mass concentrations of PM2.5 and BC varied between
1.1e13 mg m�3 and 0.06e0.89 mg m�3 respectively. Since the inlet
of the sampling system was always located within 20 m of the fire
emissions source, these values are directly representative of the
agricultural burning, uninfluenced by any other emissions source
and without any major atmospheric processing. The abundances
appear significantly higher than those obtained at greater distances
from the source fire (e.g. Yang et al., 2008; Zhang et al., 2013).

We use time series of measurements from two fires (Fire No. 4
and Fire No. 11) to demonstrate the performance of our smoke
sampling system. In spreading wheat Fire No. 4 (Table 1), Fig. 4
indicates multiple peaks in the gas and aerosol time series,
caused by the contributions of several discrete ‘plumes’ being
sampled over the course of the fire (e.g. as the wind changed, the
fire front spread across the field, and the sampling box was moved
to keep well within the smoke). A clear difference in the width of
the peaks between the gas and aerosol measurements can be seen
in these time series, with the aerosol signals being noticeably
sharper. As an example, several peaks can be seen before 17:14 h
(local time) for all constituents, but are more distinguishable in the
PM2.5 and BC data than in the CO2 and CO records. This difference is
reflective of the significant lag times of the gas measurements
compared to the particulate measurements, resulting from the
combination of the T90 sensor response times and the placement of
the gas sensors in the smoke sampling system measurement tube
array (see Section 2.1 and Supporting Information). This lag effect
delays the CO2 and CO measurement peaks, changing their shape
somewhat relative to the matching aerosol measures. For example,
Fig. 4. Time series of excess CO2 and CO mixing ratio (ppmv), and PM2.5 and BC mass c
contributing to the BC mass concentrations being measured also shown (RF[BC] from Equat
around the times of the multiple plumes sampled by the system in
the last third of the time series, the PM2.5 and BC data show five
discrete spikes, ending around 17:25:13 h. By contrast, the CO
electrochemical sensor shows a less well resolved response, with
the individual plumes less discernible, whilst the faster response
NDIR CO2 sensor (K30) more clearly discerns at least three indi-
vidual peaks. Thus the instantaneous aerosol and trace gas data
cannot simply be combined as is, but rather must be time-averaged
for use in ER and EF estimation, as discussed in Section 2.1. A
somewhat similar approach was recently demonstrated by Roberts
et al. (2014) when using different electrochemical sensors to derive
emission ratios of volcanic plumes.

The second example, Fire No. 11 (piled rapeseed residue
‘bonfire’) at first showed intense flaming activity similar to that
seen in Fig. 3b, and then smouldered for some time (changing its
dominant combustion phase around 17:32 h local time in Fig. 5,
when COmixing ratios started to substantially increase). During the
flaming phase of this burn, the modified combustion efficiency
(MCE) is� 0.95, indicating efficient and near complete combustion.
The first four DPM2.5 measurement peaks are 39, 22, 21 and
39 mg m�3, which each contain 7%, 10%, 12% and 6.6% of black
carbon (peaks of 2.2e2.9 mg m�3). After 17:32 h, BC abundance
substantially reduces, with only a single plume exceeding 1mgm�3

after that time. However, PM2.5 abundance shows increasing peak
magnitudes after this time, up to 54 mg m�3, and consequently the
BC to PM2.5 ratio of the smoke decreases to around 1% over this
period. This indicates that high BC to PM2.5 ratios are seen in the
flaming stage, and generally much lower ratios characterise the
smouldering phase, a finding which agrees with prior research
indicating that the BC fraction of emitted aerosol differs between
the phases of crop residue burns (Li et al., 2009). Reid and Hobbs
(1998) report this effect more generally for biomass fires, and we
find the effect to be more apparent in this crop residue bonfire
(Fig. 5) than in the spreading fire (Fig. 4), since in the latter case
whilst flaming combustion dominates in the moving headfire, a
trailing ‘smoking zone’ is typically also present that is dominated by
areas of still smouldering combustion (Wooster et al., 2011). Thus,
oncentrations (mg m�3) for Fire No. 4, with the proportion of flaming combustion
ion 8). Wheat stubble was used as the fuel for this spreading fire, as shown in Fig. 3a.



Fig. 5. Time series of CO2 and CO mixing ratio (ppmv), PM2.5 and BC mass concentrations (mg m�3) for Fire No. 11, with the proportion of flaming combustion contributing to the BC
mass concentrations being measured also shown (Rf[BC] from Equation 8). Rapeseed residue was used as fuel for this burn, burned in a bonfire similar to that shown in Fig. 3b.
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whilst the ground-level plume of a spreading fire typically contains
a mix of smoke from both combustion phases (Lacaux et al., 1996;
Wooster et al., 2011), the bonfire style of burning may more
clearly commence with almost fully flaming combustion and end
with almost solely smouldering activity.
3.2. Emission ratios and combustion phases

Section 3.1 has highlighted that different PM2.5 to BC emission
ratios are seen during the flaming and smouldering phases of the
sampled agricultural residue fires. During the wheat residue
bonfire (Fire No. 6) the abundances of BC and PM2.5 during the
flaming (Fire No. 6a) and smouldering (Fire No. 6b) phases of this
fire were thus analysed individually (Fig. 6).
Fig. 6. Linear relationship between PM2.5 and BC mass concentrations for (a) pure flaming ph
Fire details are listed in Table 1, and wheat stubble is the fuel in both cases, burned as a bonfi
PM2.5 to BC emission ratio for the ‘pure’ combustion phases in this fuel type, along with the 9
line). These slopes are thus taken as the emission ratio for wheat undergoing flaming comb
respectively. (For interpretation of the references to colour in this figure caption, the reade
In both the flaming and smouldering phases (Fig. 6a and 6b
respectively), we find strong positive correlations between PM2.5
and BC. In the flaming phase, a PM2.5 to BCmass concentration ratio
of 2.0 mg m�3 (mg m�3)�1 is seen (r ¼ 0.97), whilst for the
smouldering phase the ratio is much higher at 80.7 mg m�3

(mg m�3)�1. The smouldering phase correlation coefficient is
slightly lower (r ¼ 0.92), possibly contributed to by the relative
difficulty in sampling smoke from purely smouldering activity,
since small pockets of flaming combustion still often exist close to
the fuel surface during smouldering-dominated periods (Hays
et al., 2005). This comparison of flaming and smouldering domi-
nated burning presented in Fig. 6 nevertheless further highlights
the very large difference in the emission ratio of PM2.5 to BC for
these two combustion phases, which can be also found in the
ase combustion (Fire No. 6a) and (b) pure smouldering phase combustion (Fire No. 6b).
re. The blue line represents the least squares linear best-fit, which is then taken as the
5% confidence intervals on the slope (grey filled polygon) and on the prediction (dashed
ustion [Sf; mg m�3 (mg m�3)�1 and smouldering combustion [Ss; mg m�3 (mg m�3)�1]
r is referred to the web version of this article.)



Fig. 7. Scatterplot showing PM2.5 and BC mass concentrations from all wheat fire
samples, with the emission ratios from pure flaming and smouldering phase com-
bustion shown in Fig. 6 (Sf and Ss respectively) overlain.
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spreading fire data shown in Fig. 4 as discussed above. Our data
indicate that the contribution of BC to PM2.5 rises high as 50%
during the flaming phase, whilst during smouldering phase it can
decrease to little over one percent. Prior studies have indicated that,
in general, vegetation fires with more intense flaming combustion,
generating higher temperatures, are more likely to be oxygen
limited and can thus produce much larger amounts of soot-based
(BC) aerosols than does smouldering dominated burning (Martins
et al., 1998; Reid and Hobbs (1998); 2005; Chakrabarty et al.,
2006). Our findings imply that, even though total PM2.5 abun-
dances appear higher in the smouldering phase plume, most of the
BC maybe emitted from agricultural residue fires during the
flaming phase, particularly so since in these types of fine fuels most
of the fuel consumption often occurs during flaming activity when
combustion rates are much higher than in the (perhaps longer
duration) smouldering phase (as discussed for savannahs by e.g.
Wooster et al., 2011).

Using our finding of a very significantly different PM2.5 to BC
emission ratio for flaming combustion [Sf; mg m�3 (mg m�3)�1,
from Fig. 6a] and smouldering combustion [Ss; mg m�3 (mg m�3)�1

from Fig. 6b] allows us to develop a simple linear mixing model to
quantify the relative amounts of each combustion phase contrib-
uting to the smoke being sampled. We assume that the ratios
represented in Fig. 6a and b represent that from the pure flaming
and pure smouldering phase activity respectively, and that these
ratios are valid for all thewheat residue fires assessed. Details of the
mixing model can be found in the Supporting Information, and are
summarized below.

For both BC and PM2.5, we assume that the total excess mass
concentration measured (DMt; mg m�3) is a linear combination of
the instantaneously measured excess mass concentration due to
flaming (DMf; mg m�3) and smouldering (DMs; mg m�3) phase
combustion:

DMtðPM2:5Þ ¼ DMf ðPM2:5Þ þ DMsðPM2:5Þ (4)

and

DMtðBCÞ ¼ DMf ðBCÞ þ DMsðBCÞ (5)

And we relate the excess mass concentration of each aerosol
type produced from flaming and smouldering combustion using
the emission ratios Sf and Ss taken from Fig. 6a and 6b:

DMf ðPM2:5Þ ¼ SfDMf ðBCÞ (6)

DMsðPM2:5Þ ¼ SsDMsðBCÞ (7)

Then, for BC, the instantaneous flaming phase fraction Rf (BC)
[mg m�3. (mg m�3)�1] representing (at any particular time) the
proportion of total sampled BC mass that has come from flaming
phase combustion [i.e. DMf ðBCÞ

DMtðBCÞ ] can be expressed as a function of
four known quantities, namely the total sampled excess mass
concentration of PM2.5 and BC, DMt(PM2.5) and DMt(BC) respec-
tively, and the PM2.5 to BC emission ratios for flaming and smoul-
dering combustion (Sf and Ss respectively):

Rf ðBCÞ ¼
Ss � ½DMtðPM2:5Þ=DMtðBCÞ��

Ss � Sf
� (8)

Where the term in square brackets equates to the instantaneous
ratio of the excess amount of PM2.5 and BC, which can easily be
derived from the measured timeseries (e.g. those shown in Figs. 4
and 5 for Fire No. 4 and 11 respectively for example). Exactly
same approach can be used to derive the PM2.5 instantaneous
flaming phase fraction, Rf (PM2.5), and also the flaming phase frac-
tions of the gases CO and CO2.

However, when analysing rice and rapeseed fires, unlike for
wheat we did not directly collect samples of pure flaming and pure
smouldering smoke for these fuels from which we could directly
obtain the flaming and smouldering emission ratios, Sf and Ss.
However, Fig. 7 plots the excess mass concentration of PM2.5 and BC
for our spreading wheat fires, and based on the observation of clear
flaming and smouldering boundaries in these data, which appear
quite well characterised by the PM2.5 to BC flaming and smoul-
dering ERs (Sf and Ss respectively) derived from the wheat bonfire
data shown in Fig. 6a and 6b (and plotted on Fig. 7 as red and blue
lines respectively), we applied a ‘boundary detection’ approach to
the spreading wheat fire measurements. The idea here is to pilot
use of this approach for the derivation of Sf and Ss, such that it can
be applied in cases where obviously “pure” samples of flaming and
smouldering smoke are unavailable, for example in the case of the
rice and rapeseed residue burns sampled here. Based on 95% con-
fidence intervals, the highest and lowest 2.5% of the PM2.5 to BC
ratio shown in Fig. 7 were selected, and a linear best fit applied to
these ‘boundary’ data to estimate the PM2.5 to BC emission ratios
for flaming and smouldering combustion of wheat, at 1.9 mg m�3

(mg m�3)�1 and 58.1 mg m�3 (mg m�3)�1 respectively (yielded
with correlation coefficients (r) of 0.82 and 0.88 respectively;
Table 2). These particulate ERs are close to those obtained via our
sampling of explicit flaming and smouldering smoke (with a scaling
factor of 1.3) fromwheat combustion separately (i.e. those shown in
Fig. 6a and 6b respectively), thus demonstrating the viability of the
‘boundary detection’ approach (See Supporting Information for
more details of this comparison). The same ‘boundary detection’
approach was then applied to the rice and rapeseed residue aerosol
data (Fig. 8), andwas also usedwith the CO2 and CO data of all three
agricultural residue fuels (Fig. 9) to derive a flaming and smoul-
dering phase emission ratio (ppmv.(ppmv)�1) for each trace gas
(reported in Table 2). An averaging period of 120 s was selected to
compare the aerosol and trace gas data, as discussed in Section 2.1,
and the derived flaming phase fractions, Rf (x), of the two flaming-
dominated compounds (CO2 and BC) were found to show similar
trends (Fig. 10).

Based on the time-series of Rf (x) calculated for each sampled gas
and aerosol species, the fire-integrated flaming-fraction F(x) was
also estimated, for each type of fire and each combustion product.
For example, for wheat the fire-integrated fraction of black carbon



Table 2
Trace gas (CO/CO2) and particulate (PM2.5/BC) emission ratios (ERs) for discrete flaming and smouldering phase combustion, as derived from the 95% confidence interval
‘boundary detection’ approach applied to the data of each fuel type (see Section 3.2). The correlation coefficients (r) for each linear best fit used in the calculation of the
emissions ratios are also reported.

Fuel PM2.5/BC CO/CO2
a

ER
(mg m�3. mg m�3)

r ER
(ppmv.ppmv�1)

r

Wheat Flaming 1.9 0.82 0.0184 1.00
Smouldering 58.1 0.88 0.46 0.98

Rice Flaming 7.3 0.88 0.0043 0.85
Smouldering 66.3 0.81 0.21 0.81

Rapeseed Flaming 0.50 0.90 0.0186 0.95
Smouldering 47.5 0.74 0.17 0.97

a Calculated from 20s averages to account for the different response times of the two trace gas sensors (Table 2).

Fig. 8. Scatterplot of PM2.5 and BC mass concentrations from (a) all rice, and (b) all rapeseed fires, with the PM2.5 to BC emission ratios for ‘pure’ flaming and ‘pure’ smouldering
overlain (as derived from the 95% confidence interval method discussed in Section 3.2).

Fig. 9. Scatterplot of CO and CO2 mixing ratio measures from (a) all wheat, (b) rice, and (c) rapeseed fires, with the CO and CO2 emission ratios for ‘pure’ flaming and ‘pure’
smouldering overlain (as derived from the 95% confidence interval method discussed in Section 3.2).
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Fig. 10. Time series of flaming phase fraction (Rf) for the two flaming-dominated compounds (BC and CO2), representing the estimated proportion of the samples of these
compounds measured by the smoke sampling system that has come from flaming phase combustion, derived as discussed in Section 3.2.
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emitted by flaming combustion was calculated as:

FðBCÞ ¼
P

MtðBCÞRf ðBCÞP
MtðBCÞ (9)

WhereMt(x) is the mass concentration (for aerosol), or mixing ratio
(ppmv) for gas, of the target species recorded over the 120 s aver-
aging period. The corresponding fire-integrated fractional contri-
bution of the smouldering phase to the production of the same
species was then calculated as [1 e F(x)]. Table 3 presents the re-
sults of this calculation, where the flaming stage is confirmed to
dominate in terms of BC (and CO2) production.
3.3. Emission factor determination

3.3.1. Trace gases
The trace gas time series for each burn, discussed in Section 3.2

and consisting of n discrete measurements after the 120 s aver-
aging, were used to calculate a timeseries of instantaneous emis-
sion ratios, ERt(x) and then emission factors, EFt(x). ‘Fire integrated’
EFs were then calculated by weighting each instantaneous EF by
the corresponding instantaneous excess abundances
(DCO2 þ DCO)t of the two primary trace gases that make up more
than 95% of the emitted carbon, used as a measure of the amount of
smoke being produced by the fire at measurement time t. This
weighting approach has been used previously in laboratory burns,
and was recently applied by Paton-Walsh et al. (2014) in an open
Table 3
Fire-integrated flaming (F) and smouldering (1-F) fractions defining the relative contribu
PM2.5 and BC sampled by the smoke sampling system for each of the three fuel types. Se

Fuel CO2

Wheat Flaming (F) 0.93
Smouldering (1-F) 0.07

Rice Flaming (F) 0.88
Smouldering (1-F) 0.12

Rapeseed Flaming (F) 0.60
Smouldering (1-F) 0.40
burning situation. See Lacaux et al. (1996) andWooster et al. (2011)
for previous examples of such ‘Fire integrated’ trace gas EFs
calculations):

Fire integrated EFðspecies xÞ ¼
Pn

t¼0EFtðxÞðDCO2 þ DCOÞtPn
t¼0ðDCO2 þ DCOÞt

(10)

Our ‘fire integrated’ EFCO2
(Table 4) for the spreading wheat

residue fires is 1739 ± 19 g kg�1, somewhat higher than the
1470 g kg�1 and 1558 g kg�1 reported previously for Chinese wheat
residues (Li et al., 2007; Zhang et al., 2008), though these latter
measures are based on laboratory fires rather than field sampling.
The difference may reflect the fact that laboratory fires usually
comprise of piles of fuel that burn initially in flaming combustion,
but which may have a longer and most significant smouldering
phase than does a typical spreading fire measured in the field, and
this supports the view that laboratory fires may behave differently
to more ‘natural’ in situ combustion cases, and that care must be
taken when combining and comparing these different types of
measurement (Delmas et al., 1995; Wooster et al., 2011; Yokelson
et al., 2013). Our field-measured fire integrated CO2 emissions
factors for wheat are, however, very close to the 1787 g kg�1 for
wheat also measured in the field in an Indian agricultural area by
Sahai et al. (2007). We also find that the fire integrated EFCO2 for our
field-measured rice and rapeseed burns are similar to that of our
wheat burns, at 1761 ± 30 and 1704 ± 27 g kg�1 respectively. By
contrast, our fire integrated carbon monoxide emissions factor
varies quite widely amongst the three crop residues studied, with
tion of flaming and smouldering phase combustion to the total amounts of CO, CO2,
e Section 3.2 for details.

CO PM2.5 BC

0.36 0.59 0.91
0.64 0.41 0.09
0.13 0.36 0.79
0.87 0.64 0.21
0.14 0.75 0.96
0.86 0.25 0.04



Table 4
Trace gas (CO2 and CO) emission factors (EFs) with uncertainties, calculated from the data of the smoke sampling system for the three agricultural residue fuels, using the time
series of EFs weighted by the excess CO2 þCO abundances (see Section 3.3.1). Shown for comparison are the equivalent EF values calculated from the OP-FTIR data using the
techniques of Wooster et al. (2011) (from Fire No. 7).

Sampling box species emissions factor (g kg�1) OP-FTIR

Fuel EFf EFf uncertainty EFFTIR

Wheat CO2 1739 19 1723
CO 60 12 66

Rice CO2 1761 30 e

CO 47 19 e

Rapeseed CO2 1704 27 e

CO 82 17 e
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wheat (60 ± 12 g kg�1) and rice (47 ± 19 g kg�1) having a lower EFCO
than rapeseed (82 ± 17 g kg�1). From the information discussed in
Section 3.2, and from Table 3, the CO from the rapeseed residue
bonfires indeed appears to be sourced from a higher proportion of
smouldering combustion (0.86) than does that from the spreading
wheat fires (0.64), which may help explain the higher EFCO of
rapeseed compared to wheat. However, the rice residue bonfires
have an even lower EFco than rapeseed residue, but are reported to
have had a very similar smouldering combustion contribution
(0.87). The explanation for this requires further study, but may
result from differences in combustion rates between the same
combustion phase of different burns, and a similar pattern was
observed in previous research (Zhang et al., 2008). Overall, our fire
integrated EFCO values appear comparable to the 60 g kg�1 obtained
for wheat (laboratory combustion) by Li et al. (2007), but signifi-
cantly lower than those reported by some another laboratory
studies (141 g kg�1 for wheat and 64 g kg�1 for rice; Zhang et al.,
2008).

Our FTIR data allowed the determination of EFs for one of the
spreading wheat residue fires using a completely independent
approach to the smoke sampling system (Fire No. 7, with Equation
(2) adjusted to take in account of the increased number of carbo-
naceous gases (CO2, CO, methane [CH4] and formaldehyde [CH2O])
easily available to be probed using the IR spectroscopy). The OP-
FTIR method samples a transect through the plume, representing
at any one time a significantly larger proportion of the total smoke
production compared to the point based smoke sampling system
(Fig. 3a), and also suffers no lag time effects between the mea-
surements of different gases (Wooster et al., 2011). The OP-FTIR
derived fire integrated EFs of 1723 g kg�1 for CO2 and 66 g kg�1

for CO, included in Table 4, are close to the values derived from the
smoke sampling system for the same wheat fuel and well within
the reported uncertainty ranges derived from those data.We obtain
fire integrated EFs for CH4 and CH2O as 2.1 and 1.2 g kg�1 respec-
tively using the OP-FTIR method, with these gases accounting for
less than 1% of all gaseous emitted carbon and thus indicating the
validity of deriving CO2 and CO EFs from measurements of only
those two gases when using the smoke sampling system and
Equation (2). The FTIR method can be used to probe many more
gaseous species than just these four, though the relatively short
pathlengths and thus low abundances of lesser species make this
more difficult in this case, and we focus here on the main carbo-
naceous gases only.
3.3.2. Particulates
To estimate aerosol EFs, linear best fit relationships between

both PM2.5 and BC and CO2 and CO were derived from two minute
averages of the smoke sampling system measures, as discussed in
Section 2.1. Fig. 11 shows the results for wheat (and Figs. S2 and S3
in the Supporting Information for rice and rapeseed residues), and
these aerosol-to-trace gas ERs were used alongside the EFs of the
relevant gases in Equation (3) to derived the particulate emissions
factors.

The particulate EF calculations were undertaken based on both
the aerosol-to-CO2 and aerosol-to-CO emission ratios shown in
Fig. 11. We determine EFPM2.5 for wheat as 10.0 ± 1.2 g kg�1 when
using CO2 as the reference gas, and 6.1 ± 1.3 g kg�1 when using CO.
For comparison to other measurements derived using a similar
technique to that used here, Cachier et al. (1995) recorded simul-
taneous CO2 and total particulate matter (TMP) abundances in
smoke from savannah fires, and using these data estimated EFTPM
for flaming processes as 5.7 ± 2.3 g kg�1, with more than 90% of the
mass of TPM being sub-micron in size. This value is comparable
with our findings. Cachier et al. (1995) found a considerably higher
smouldering phase EFTPM (34.5 ± 12.5 g kg�1), but note that most
fuel is burned in the flaming phase, as is the case with our
spreading wheat fires.

We suggest our EFPM2.5 based on the CO measurement maybe
more representative, since the correlation of PM2.5 was higher
with CO rather than CO2 (see Fig. 11). However, as discussed in
Section 3.2, the flaming phase fraction (Rf) of BC correlates better
with CO2 (Fig. 10) as they were both flaming phase dominated, and
so the EFBC based on CO2 (0.70 ± 0.09 g kg�1 for wheat) is
considered a potentially better estimate. The US Environmental
Protection Agency (EPA) quote EFPM2.5 for wheat burning in the US
as 6e10 g kg�1, depending on burning conditions, as previous
research found that PM2.5 emissions would decrease by over 80% as
MCE increased from 92% to nearly 98% (Dhammapala et al., 2007).
This EPA suggested range almost exactly brackets the EFPM2.5

findings we report from our Chinese wheat residue field burns in
Table 5. Akagi et al. (2011) summarizes global crop residue burning
EFs from a variety of past studies, calculating an average EFPM2.5 of
6.26 g kg�1, and an average EFBC of 0.75 g kg�1 for different agri-
cultural crop species, values again quite close to those reported
here. Our EFBC for wheat straw is, though, somewhat higher than
that from some prior laboratory studies conducted in China
(0.43e0.49 g kg�1; Li et al., 2007; Zhang et al., 2008), and againmay
reflect the increased amount of flaming combustion seen in
spreading field-based fires than in the typical ‘piled fuel’ situations
used within laboratories. Our field-based burns show an EFBC of
0.56 g kg�1 for rice residue, a little lower than for the spreading
wheat fires, but the rapeseed residue fires developed a very high
EFBC of 2.89 g kg�1 with a fraction of 0.96 contributed by flaming
(Table 3), reflective of the intense flaming combustion processes
involved (Fig. 3b) that gave off visible clouds of soot in the plume.
4. Summary and conclusions

Crop residue fires in eastern China are believed to contribute
significantly to regional air pollution (Chan and Yao, 2008). To study
closely the gas and particle emissions from these burns in the field
during agricultural burning periods, we have developed and



Fig. 11. Scatterplot of PM2.5 and BC mass concentrations to excess CO2 and CO measures from all wheat residue fires, with data presented as 120 s averages. The blue line represents
the least squares linear best-fit to the data, taken as the relevant particulate to gas emission ratio for this fuel type, along with the 95% confidence intervals on the slope (grey filled
polygon) and on the prediction (dashed line). (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.)
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deployed a new portable smoke sampling system for the simulta-
neous close range measurement of trace gases (CO and CO2) and
aerosols (PM2.5 mass and BC). We have used the system to derive
gas and particle emission ratios and emissions factors for a series of
crop residue fires sampled in eastern China in June 2014. Most prior
research on smoke from these types of fuels have either been based
on laboratory measurements, and/or have relied on filter-based
sampling that provides only the total sampled mass from whole
combustion. Our system offers the advantage of allowing contin-
uous in situ measurements of smoke generated by naturally
behaving agricultural fires (e.g. fires spreading across agricultural
fields and field-measured ‘bonfires’), which is important as field-
burns may well behave quite differently to burns conducted un-
der laboratory conditions (Delmas et al., 1995). Our sampling sys-
tem allows us to study both inter and intra-fire variability between
combustion phases and between different fires and fuels, and we
use the data collected along with a new approach (summarised in
Eq. (4)) to obtain ‘fire-integrated’ emission factors for particulates
as well as gases.

We studied the combustion of three types of common Chinese
agricultural residues (wheat, rice and rapeseed), both spreading
fires and bonfires. For all we found quite different trace gas emis-
sion ratios during flaming and smouldering periods, and also
Table 5
Particulate emission factors of PM2.5 and BC (with uncertainties), derived separately
from the ratio of particles to the twomeasured trace gases (i.e. data of Figure 11) and
the CO2 and CO emission factors listed in Table 4.

PM2.5 emissions factor (g kg�1) BC emissions factor (g kg�1)

Based on CO2 Based on CO Based onCO2 Based on CO

Wheat 10.0 ± 1.2 6.1 ± 1.3 0.70 ± 0.09 0.43 ± 0.10
Rice 20.3 ± 1.5 9.6 ± 4.3 0.56 ± 0.04 0.25 ± 0.11
Rapeseed 16.9 ± 2.6 5.8 ± 1.3 2.89 ± 0.70 1.01 ± 0.27
different BC to PM2.5 mass ratios. BC represented a much higher
proportion of the total PM2.5 generated by these burns during the
flaming combustion phase, up to 10�more in the case of rapeseed,
and the CO to CO2 emission ratio was significantly lower, up to
50 � less in the case of rice residue. The full set of ERs are shown in
Table 2, and using the carbon mass balance method we calculated
the individual CO2 and CO trace gas ‘Fire integrated’ EFs for each
fuel type (Table 4). Using these, and the measured ratios of aerosols
(BC and PM2.5) to trace gases (CO2 and CO), we estimated the EFs for
each type of particulate as well (Table 5). We also probed the wheat
fires using open path FTIR spectroscopy (Wooster et al., 2011), and
confirmed a very similar set of trace gas EFs for this fire type
compared to those derived using our smoke sampling system
(Table 4). We find our emission factors to be reasonably similar to
those reported by prior studies, but our results from spreading
wheat fires are characteristic of more flaming-dominated burning
than are most previously reported laboratory measurements (Li
et al., 2007; Zhang et al., 2008). This may reflect the increased
amount of flaming combustion seen in more ‘natural’ spreading
fires than in typical ‘piled fuel’ laboratory burns. Our rapeseed
residue bonfires showed a very high EF for BC, at up to 2.89 g kg�1,
reflective of the intense flaming combustion processes involved
that gave off visible clouds of soot.

All our EFs are derived from measures made within 10e20 m of
the fires themselves, which were burnt in the field as Chinese
farmers do. They are therefore representative of fresh smoke
without photochemical processing, and can be regarded as primary
EFs for these types of fire. For the aerosols, chamber-based exam-
ination of photochemical processing is suggested for future work,
since higher EFs maybe expected after hours of atmospheric pro-
cessing (Akagi et al., 2011). We anticipate combining our EFs with
estimates of the amounts of the various residues burned, producing
updated agricultural emissions inventories for use in air quality
modelling (e.g. Li et al., 2010; Cheng et al., 2014).
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4.3 SMOKE SAMPLING SYSTEM BUILD, TESTING AND FIELD 

DEPLOYMENT 

 

This Section provides further details of the smoke sampling system used in the fieldwork described in the 

published paper included as Section 4.2.  

 

4.3.1 SAMPLING SYSTEM DESIGN 

The principal measurement objectives of the smoke sampling system shown in Fig. 2 of Section 4.2 was 

to quantify the mixing ratios of CO and CO2 in the sampled smoke, along with the mass concentrations of 

PM2.5 and the amount of that mass which was composed of black carbon. This was designed to cover the 

full lifetime of the field-scale fires, at a relatively high temporal resolution in order to both be able to 

derive ‘fire averaged’ emissions factors and look at EF differences over time due, potentially, to changes 

in fire behaviour or phase (e.g. flaming to smouldering). The system needed to be sufficiently robust and 

portable and with an internal power supply to allow effective mobile use in the field. 

A summary of instruments/sensors used within the smoke sampling system can been seen in Table 4.1, 

along with some of their key characteristics such as the sensor response time. A single inlet design was 

used to provide both gas and aerosol samples to a range of different instruments, all housed in a wheeled 

peli case (see Figure 2, Section 5.2). A single PM2.5 size selective impaction inlet (BGI miniPM® inlet 

5011, 5 l min-1) was used, since the majority of aerosols from agricultural crop burning are predominantly 

those sized in the accumulation mode or smaller, with a size range reportedly of 100 to 1000 nm (da 

Rocha et al., 2005; Hays et al., 2005; Zhang et al., 2011). This design also helped minimise interference 

from soil and mineral dust re-suspension, which certainly was observed at some measurement sites on 

windier days. A flow splitter (TSI 3708) isokinetically divided the airstream and aerosols in up to four 

pathways, though here only three pathways were used (one pathway was blocked), entailing a flow rate of 

1.67 l.min-1 through each (5.0 l.min-1 total flow). This setup is configurable such that one to four 

pathways can be used as long as the total flow remains at 5 l.min-1 to ensure an accurate separation of 

PM2.5 in the inlet. Conductive tubing with a minimum of bends was used to connect all aerosol 

instrumentation; all tubing was also kept as short as possible to minimise residence times. All flows were 
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calibrated in the laboratory using a flowmeter (BIOS Defender 530, MesaLabs) traceable to national 

standards; flows were further checked before and after every sample using a portable flowmeter (TSI 

4040) in the field.  

Table 4.1: Summary of instruments/sensors used within the smoke sampling system. 

Instrument / Sensor Targeted 

Species 

Measurement 

Range 

Sampling Rate (Hz) Response* Time (s) 

TSI Dusktrak DRX 8533 PM2.5  1 1 

MicroAeth AE51 BC  1 1 

Alphasense CO-AX  CO 0 – 400 ppm 1 < 30 

Alphasense CO-AF CO 0 – 400 ppm 1 < 23 

Alphasense H2-AF H2 0 – 200 ppm 1 < 35 

Alphasense CO2-NDIR CO2 0 - 5000 ppm 1 < 40 s 

SenseAir CO2-K30 CO2 0 - 5000 ppm 1 2 

 * Obtained from lab measurements made using stable target gas concentrations 

Pathway 1 was drawn by a TSI Dusrtrak, set to 1.67 l min-1; and the eluent flow, now particle-free, was 

directed to the gas sensors. Pathway 2 was drawn by a Casella Apex Pro pump set to 1.67 l min-1; and 

PM2.5 was collected onto a 25 mm TissuequartzTM (PALL Life Sciences) filter. This filter was stored at 4° 

C after sampling and subsequently analysed using thermal/optical analysis (Sunset Labs) to allow later 

analysis of elemental and organic carbon composition. Pathway 3 was drawn by a combination of a 

Casella Apex pump (1.57 l min-1) and a microAeth AE51 black carbon meter (0.1 l min-1). As the flow 

rate required for the microAeth was lower than that required to maintain the isokinetic separation, a 

second Casella pump was mounted next to draw the bypass flow away as excess flow. 

Each individual instrument was chosen to be compact and battery powered, able to operate for several 

hours without charging. The TSI (Dusttrak DRX Aerosol Monitor 8533) was used to measure PM2.5 mass 

concentrations, since its broad measurement range (0.001-150 mg.m-3) could cope with close proximity to 

the fire without an obvious requirement to pre-dilute the smoke being sampled. As size selection was 

undertaken using the size selective inlet, only the Dusttrak DRX PM2.5 measurements were used, and 

indeed the higher size PM values were almost identical to these as the larger particles had been filtered 

out in the inlet.  Measurements were made at 1 Hz and stored in the on-board logger, with the 

manufacturers documentation stating a measurement resolution ±0.1% of the reading at 0.001 mg.m-3. All 

raw Dusttrak DRX measurements of smoke PM2.5 mass concentrations were adjusted to be relevant to 

smoke using the equation provided by Preble et al. (2014) and reported in published paper included as 

Section 4.2, the calibration equation (PMcorrected = 1.10×PM0.78) being calculated from cookstove smoke 
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and being necessary because the ‘raw’ Dusttrak factory calibration is conducted with Arizona road dust, 

having a density, size distribution and shape very different to smoke particles.  Further fieldwork and 

laboratory testing was conducted later to enhance the calibration for smoke, which will be introduced in 

Section 4.4. 

A microAeth AE51 was used to measure BC, with measurements also made at 1 Hz and stored onboard. 

The AE51 pump was set at a constant 0.1 l.min-1, and the measurement range was 0-1 mg BC m-3 at a 

resolution of 0.001 μg BC m-3. The microAeth AE51 filter strip was replaced every second fire, though 

this actually resulted in the filter saturating on a small number of occasions and in the second field 

campaign replacement after every fire was used. Hagler et al., (2011) reported microAeth AE51 

instrument noise at this sampling frequency, and developed an optimized noise-reduction procedure 

(https://aethlabs.com/dashboard) to reduce the occurrence of negative values and which was applied here 

to all AE51 data. 

CO was measured using two small sensors supplied by Alphasense Ltd, the CO-AF and CO-AX 

electrochemical sensors. Similar sensors have been used previously for example to characterise volcanic 

plumes (e.g. Roberts et al., 2012; 2014). The CO-AF has some cross sensitivity to H2, which is also a 

potential product released during biomass burning (Cofer et al., 1998), and so this gas was consequently 

also measured using an H2-AF sensor (also from Alphasense Ltd), and these measures used to adjust 

those of the CO-AF sensor (Roberts et al., 2012). The CO-AX, has much less of a H2 sensitivity, but a 

more significant temperature sensitivity, and so the output from this sensor adjusted for gas temperature 

using data from thermocouples placed in the internal sample airstream of the sampling system. All these 

sensors have associated circuitry which produces a current between 4 (0 ppm) and 20 (maximum ppm) 

mA, corresponding to the mixing ratio of the target gases and logged as voltages by two Hobo data 

loggers (U12-006) across a 100 ohm resistor (one for each sensor). To ensure that the gas sensors were 

exposed to a homogenous sample, and to simplify the physical and electrical connections inside the 

pelicase, the gas sensors were fitted into a tube shape container so that the top of each sensor was exposed 

to the smoke-contaminated airstream passing across the array of sensors. A filter membrane fitted to the 

top of each sensor allowed gas molecules to diffuse across into the sensor interior. In addition to the CO 

and H2 measurements made using the electrochemical sensors, an Alphasense nondispersive infrared 

(NDIR) sensor was used to assess CO2, whilst a second NDIR sensor (K-30 from SenseAir, Sweden) was 

placed downstream of the Alphasense sensors to provide a second CO2 measure (logged using a third 

hobo logger). This downstream setting of the K-30 was necessary because of its larger size and irregular 

https://aethlabs.com/dashboard
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shape compared to the Alphasense sensors, which makes it very difficult to fit into the same tube as these 

other sensors. Power to all these trace gas sensors was supplied by a single 12V sealed lead-acid battery. 

 

4.3.2 TRACE GAS SENSOR PERFORMANCE ANALYSIS 

Electrochemical and NDIR sensors are typically characterised by a T90 response time (also called 'lag 

time') (Roberts et al., 2012). This represents the time (in seconds) it takes for the sensor to respond to a 

change in target species concentration, and reach an recorded output of 90% of the new true concentration. 

A low T90 is of course expected for a fast response sensor. By testing the lag time of the sensors inside 

and outside of the sensor array tube used in the field, two lag effects were identified - the first associated 

with the T90 times of the sensors themselves (with the manufactures reported values shown in Table 4.1) 

and the second associated with their placement in the smoke sampling system and the particular exposure 

to the sample airflow.  

The T90 response time effect of the individual sensors, as reported by Roberts et al. (2012), was assessed 

outside of the smoke sampling system using CO and CO2 calibration gases at a range of mixing ratios; 

and the results shown in Table 4.2.  Secondly, when the gas sensors were fitted into the single tube array 

inside the sample box, similar use of calibration gases showed the sensors taking significantly longer than 

these initial T90 time to respond to changes in the incoming concentration. Despite designing a relatively 

compact tube to hold the gas sensor array, the volume of the tube was found to be quite large for the flow 

setting of 1.67 l min-1, and the exchange volume time calculated at 14 seconds.  

The combined impact of the volume exchange times and the basic T90 sensor response time was further 

investigated using simulations based on the equations of Roberts et al. (2014), which describe how such 

sensors respond to changes in the relevant trace gas mixing ratio (see Eqn. 4.2 of Section 4.5).   

 

Table 4.2: Volume exchange times for the smoke sampling box, along with T90 response times of the trace gas 

sensors deployed here, derived during laboratory testing. 

 Time (secs) 

Tube Array Volume 

Exchange Time 
14 

CO2_NDIR 12 

CO2_K30 8 

CO_AF 23 

CO_AX 40 
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Figure 4.1 shows one such simulation for the Alphasense CO-AF sensor, using a 14 second exchange 

time for the array volume and a 23 second T90 sensor response time (as reported in Table 4.2). Here, the 

simulation is for a target gas with a mixing ratio of 2000 ppmv being fed into the system for 100 seconds, 

followed by 250 seconds of "clean air" with zero target gas presence. The time series of the actual 

instantaneous concentration of the target gas within the tube containing the gas sensor array is shown, 

along with the lagged concentration reported by the sensor. From this simulation, the overall response 

time for the modelled sensor system can be calculated as 40 seconds, even longer than the sum of the 

exchange volume time and the measured sensor T90 time (shown in Table 4.2 for all sensors).  Fig. 4.1 

shows the reported concentrations lagging behind the true concentrations, and since the different sensors 

had different T90 response times (Table 4.2), this had to be taken into account during any emissions ratio 

calculation where data from different sensors was combined. 

 

Figure 4.1: Demonstration of the sensor lag time effect in relation to the carbon monoxide CO_AF sensor used 

herein. Red line shows a simulated input of CO gas, green dash line shows the simulated time series of the gas mixing 

ratio within the tube holding the array of sensors inside the smoke sampling system, and the blue dotted line shows 

the detected mixing ratio as measured by the CO_AF sensor. The tube containing the sensors takes time to fill 

completely with the gas, whilst the CO_AF sensors non-zero T90 response time (Table 4.2) means its reported trace 

gas mixing ratio lags somewhat behind the true mixing ratio present in the tube.    

 

4.3.3 LABORATORY TESTING SENSORS LAG TIME EFFECTS AND IMPACTS 

Laboratory tests were conducted to further investigate the lag time effect. In this test, two different sensor 

containers are used, together with five different sensors (Table 4.3) to check the relation of total lag time, 

gas exchange time, and basic sensor lag time. A new sensor box with a smaller exchange volume, and 

consequently, smaller exchange time, was also investigated for deployment in a second field campaign, 
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building on that of the first campaign detailed in Section 4.2. Three scenarios were envisioned for the 

sensor box to be deployed in this second campaign: (i) fit sensors in the large tube from original sampling 

box used in the fieldwork of Section 4.2, (ii) fit sensors in the new smaller box and, (iii) directly expose 

each (one by one) to the gas flow. For the former two scenarios, five different sensors were fitted inside 

the sampling system, including three CO2 sensors (one Alphasense NDIR, and two K30 NDIR) and two 

CO sensors (CO_AF and CO_AX). The total lag time of the different scenarios tested for the different 

sensors is summarised in Table 4.3. The results show that the total lag time is close to the sum of 

exchange time and sensor lag time, but usually a little higher. For example, the CO_AX total lag time in 

large tube is as high as 57s, 7s higher than the sum (50s) from the two individual lag time contributions. 

 

Table 4.3: Total lag time derived during laboratory tested, using three fittings with different volume exchange time 

(large tube from sampling box, small box and directly exposure to gas flow) and five different sensors with different 

T90 response times. 

Fitting Sensor Exchange time (s) Sensor lag time (s) Total lag time (s) 

Large tube NDIR 10 12 23 

K30 10 8 18 

K30_2 10 8 18 

CO_AF 10 23 37 

CO_AX 10 40 57 

Small box NDIR 5 12 17 

K30 Sensor Error (contact with box edge)  

K30_2 5 8 13 

CO_AF 5 23 29 

CO_AX 5 40 47 

Directly exposure NDIR 0 12 12 

K30_2 0 8 8 

CO_AF 0 23 23 

 CO_AX 0 40 40 

 

The experimental results reported in Table 4.3 were also compared to the simulated lag times of the kind 

shown in Fig. 4.2. The simulated results indicated that for tests with exchange times and sensor lag times 

below 20 secs, the total lag time is close to the sum of the two individual lag times. However, the total lag 

time increases by significantly more when the exchange time and/or sensor lag time is higher than 20 secs, 

similar to the findings of the laboratory testing. This the laboratory testing confirmed that use of a smaller 

tube to minimise the exchange volume times might help lessen the lag time issues associated with these 

data (see Section 4.4), and further analysis and discussion are included in Section 4.5. 
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Figure 4.2: Simulated total lag time using different exchange time and sensor lag time (see Eqn. 4.2 and details in 

Section 4.5). 

 

4.3.4 AVERAGING METHOD FOR REMOVING LAG TIME EFFECT 

Roberts et al. (2014) previously used a sensor response model to evaluate the impact of different sensor 

T90's on emissions ratio calculations, based on sensors very similar to those deployed in this study. By 

inverting this model, it is theoretically possible to recover the instantaneous 'actual' target gas mixing ratio 

the sensor is exposed to using the measured outputs, and these actual mixing ratios could then be used to 

calculate instantaneous emissions ratio from measurements of sensors having different T90 times. When 

testing this approach with real data however, the output time-series was found to contain significant and 

unrealistic fluctuations ('noise'), so the method was not used for the analysis herein. Further lag time 

model simulation will be introduced in Section 4.5, but in the first field campaign described in Section 4.2 

the measured signals from the sensors were simply averaged over set periods of time, which has been 

suggested as a simple but effective way to combine data impacted by different lag times in order to 

calculate emissions ratios (Roberts et al., 2014).  

The investigation of the sampling systems performance with respect to the trace gas measurements 

concluded with the fieldwork data analysis focusing on the CO and CO2 datasets recorded by the sensors 



111 

 

showing the shortest lag times (Table 4.1: CO_AF, CO2_K30). To minimise the impact of the 

combination of the remaining lag times and the rapidly changing trace gas mixing ratios experienced 

during in situ plumes measurement (Reid et al., 2005), the outputs from the gas sensors in Section 4.2 

were in the end averaged over 20 seconds for derivation of trace gas emission ratios, and this averaging 

period increased to 120 seconds when comparing gas and aerosol measurements. 

 

4.3.5 SAMPLING APPROACH FOR FIRST FIELD CAMPAIGN  

In the fieldwork described in Section 4.2, fires close to Changzhou City (31.75N, 128.11E) and 

Tongling City (30.84N, 117.65E) were conducted primarily in the afternoons, and the ambient air 

temperature during the daytime measurements was 20 - 35 C, with 40% to 60% relative humidity. 

Emissions from the post-harvest residues of wheat, rice and rapeseed were targeted, and fuel moisture 

prior to burning was assessed using a Moisture Analyser Balance (Ohaus MB23) that weighs a small 

sample of the vegetation whilst it is heated to drive off water. Five samples were measured for each fire, 

and all were found to be very dry. The moisture content of the wheat and rice residue was 9 - 10%, and 

that of rapeseed was even drier at 8 - 9 %.  

The agricultural residue fires were burned in different ways, in areas of up to 10 m × 15 m. Local people 

helped to ensure the burning was conducted in the way normally undertaken by Chinese farmers. The 

majority of the wheat stubble residue was burned in situ in the field as a spreading fire, since June is the 

time that this crop type is normally harvested and burned in this way in Eastern China. The field 

containing the wheat stubble was ignited in the upwind corner as is done normally, and the headfire 

allowed to spread across the whole field generating flame lengths of a few tens of cm to around 1.5 m 

(Figure 3a, Section 4.2). These burns took between 6 and 30 minutes to complete, depending on the field 

size and shape, wind speed and direction (Table 1, Section 4.2). Samples of wheat of ~ 5 kg mass were 

also gathered from the same area and burned as a bonfire, to help better assess the specific emissions 

related to the separate flaming and smouldering phases of its combustion (see Table 1, Fire 6a and Fire 6b, 

Section 4.2). The other two crop residues types (rice, rapeseed) were burned in similar, albeit larger, 

bonfires as the residues of these fuels are normally collected, piled and burned in this way by local 

farmers (Figure 3b, Section 4.2). Flames reached ~ 8 m high in some of these intensely burning bonfires, 

helped by the dry, fine nature of the rice and rapeseed residues, and the high fuel loads contained in the 

piles that were designed to replicate what is seen normally in these types of field fire (e.g. Knapp, 2009).  
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Eighteen fires were conducted in all, and in all but one was significant smoke sampled and the 

measurements used for further analysis as reported in Table 1 of Section 4.2. 

The smoke from the spreading agricultural residue fires had relatively little thermal buoyancy, probably 

due to the low fuel loads, generally slow fire spread rates and thus low fire intensities (Figure 3a, Section 

4.2). In these cases the smoke was mostly advected horizontally, allowing the sampling system to 

appropriately capture samples from the ground-level plume. The system could be easily moved if the 

flames came too close, or when the wind direction changed and prevented smoke being sampled 

effectively. If the sampling system was very close to the smoke source, the likelihood of saturation of one 

or more of the measurement instruments was substantially increased, so the system was kept at least 5 m 

away from the fire front at all times, and mostly 10 - 20 m away (see Fig. 4.3).  Since we are primarily 

interested in trace gas and particulate emission ratios, rather than absolute concentrations, the different 

dilutions of the plume experienced at different distances from the fire had no significant impact on our 

results.  Our main requirement for the measurements was to obtain unsaturated, but significantly elevated, 

concentrations of each smoke constituent studied – whose measurements could later be combined into 

emissions ratios. 

 

Figure 4.3: Illustration of instruments display during in-situ spreading fire measurements in China. The smoke 

sampling system was kept downwind but at least 5 m away from the fire front. The FTIR and lamp were displayed at 

two ends outside of the smoke affected downwind area but with the path in-between crossing the smoke sampling 

system. 
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For the bonfires, smoke usually rose fairly vertically above the fires, which burned much more intensely 

and with much higher flame lengths than for the spreading fires (e.g. Figure 3b, Section 4.2). To capture a 

sample of this vertically rising smoke, a larger suction pump was connected to a ~10 m long, ~ 50 cm 

diameter flexible aluminium pipe. The inlet of the sampling box was fit into one end of the pipe a 

significant distance ahead of the pump location, and the other end linked to a > 5 m long lightweight pole 

which could be easily controlled to move in and out of the vertically rising smoke (Figure 3b, Section 4.2). 

The pump was then used to pull smoke from the vertically rising plume down the sampling line and 

across the inlet of the smoke sampling system. A distance of one or two meters between the fire and the 

end of the sampling line was found necessary to keep the aerosol concentration in the unsaturated 

measurement range. Nevertheless, during some of the most strongly burning fires (e.g. Fire No. 9, see 

Figure 5, Section 4.2), saturation was found in the TSI dusttrak, microAeth and K30 measurements, and 

these observations were therefore excluded from emission ratio (and EF) calculations. 

A second remote sensing based measurement approach focused on trace gas assessment was deployed co-

incident with the smoke sampling system on some of the agricultural residue fires (see Fig 4.3). The 

method was based on a portable MIDAC open-path Fourier transform infrared (OP-FTIR) spectrometer 

and an IR emitting lamp, with the use of the same system in biomass burning trace gas assessment being 

described in detail by Wooster et al. (2011). The only difference between the deployment described by 

Wooster et al. (2011) and that used here is the much shorter (10 to 30 m) path lengths used in China 

(Figure 3a), which allowed use of a lightweight and more portable IR source. Yokelson et al. (2013) 

describe recent use of a similar approach, using it as part of an integrated ground-based, laboratory and 

airborne measurement campaign to probe numerous compounds emitted by biomass fires in north 

American fuels, whilst Smith et al. (2011) performed an accuracy assessment of the approach covering 

the primary gases investigated here using OP-FTIR (CO2, CO and CH4) and found estimates of 5% 

uncertainty on the final trace gas mixing ratio retrievals. 

Prior to each agricultural residue fire targeted via the OP-FTIR spectroscopy, the spectrometer was turned 

on at least 30 minutes before ignition, allowing time for the Stirling cycle cooler to stabilise the system 

temperature at a sufficiently low level to provide low-noise spectra. The spectrum from the IR lamp was 

then measured by the spectrometer every second at 0.5 cm-1 spectral resolution, across a 600 – 5000 cm-1 

wavenumber range. IR absorbing trace gases in the smoke caused absorption features in the spectra that 

were later used to identify both the chemical species involved and their path averaged volume mixing 

ratios, according to the optimal estimation retrieval techniques described in Wooster et al. (2011). Pre-fire 



114 

 

spectra without the presence of the IR lamp were subtracted from the fire measurement spectra prior to 

the trace gas retrieval procedure, in order to ensure they were adjusted for the impact of instrument self-

emission, as described in Müller et al. (1999) and Wooster et al. (2011). This OP-FTIR based approach 

was found to be very well suited to the analysis of the ground-level emissions from the spreading 

agricultural residue fires (Figure 3a, Section 4.2), but the vertically rising smoke from the bonfires (e.g. 

Figure 3b, Section 4.2) proved difficult to target, and the path-averaged volume mixing ratios on those 

fires were generally considered too low to provide reliable OP-FTIR retrievals. 

 

4.3.6 MIXING MODEL 

The simple linear mixing model was based on the Eqn. 4 to 7 of Section 4.2. Eqn. 8 was then used for 

spreading wheat residue fires to examine variations in the flaming phase fraction (Rf). Taking Fire No. 4 

as an example (0613run1; Table 1, Section 4.2) Fig. 4 (Section 4.2) presents the time series of PM2.5 and 

BC mass concentrations along with the output of the mixing model. From the former we can see that the 

first few plumes arriving from this fire (around 17:14 hrs) BC contributed more to the sampled PM2.5 

mass than the for later plumes. The mixing model shows the flaming phase fraction of BC mostly lies 

between 0.5 and 1.0 for the earlier plumes that existed around 17:14 hrs, indicating that 50 - 100% of the 

sampled BC are from flaming combustion. This is realistic, since at the start of these spreading fires the 

vast majority of the smoke is being generated by the headfire, whilst the 'smoking zone' behind the fire 

front is relatively limited in area since the headfire has not yet had significant time to spread.  For the later 

plumes, between 17:22 hrs and 17:27 hrs, the flaming phase fraction of BC (Rf) tends to be somewhat 

lower, with a reduced maximum of ~ 0.8. This is consistent with a larger area 'smoking zone' having been 

generated behind the spreading headfire, and this larger area contributing more to the overall smoke being 

sampled at these later times.  These results confirm that during these spreading burns, apart from a period 

right at the start of the fire when flaming phase combustion is very dominant, as with savannah fires the 

sampled smoke is a mixture of that generated by the flaming front and the smouldering 'smoking zone' 

(Lacaux et al.. 1996). However, even in the smouldering dominated plumes, flaming phase combustion 

appears to still account for over 20% of the overall BC contribution, which agrees with our observations 

that smouldering-only combustion is very limited in this type of spreading agricultural residue burning, in 

which fuels are fine, not closely packed, and of low moisture content, thus supporting an efficient and 
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rapid combustion process. Once the headfire is extinguished therefore, it is not long before combustion 

totally ceases. 

We did not collect samples of pure flaming and pure smouldering smoke for the rice and rapeseed 

residues, but based on the observation of clear flaming and smouldering boundaries in the spreading 

wheat fire data of Figure 7 (Section 4.2) we applied a boundary detection approach to the spreading fire 

measurements of the wheat fires in order to pilot its use in the derivation of emission ratios before 

application to the rice and rapeseed residue burns, as described in Section 4.2.  Based on the 95% 

confidence interval, the highest and lowest 2.5% of the PM2.5 to BC ratio shown in Figure 7 (Section 4.2) 

was selected, and a linear best fit applied to only these 'boundary' data.  The resulting PM2.5 to BC 

emission ratio for flaming combustion [1.9 mg m-3.(mg m-3)-1 ] is within 5% of that derived from the 

bonfire case of a wheat burn (Sf , Figure 6a), whilst the result for smouldering PM2.5 to BC emission ratio 

[58.1 mg m-3.(mg m-3)-1] is 30% lower than the emission ratios (Ss ) derived from the bonfire case of 

smouldering wheat. The latter difference can again perhaps be related to the relative difficulty in 

sampling pure smouldering combustion during the spreading fires, since as discussed above the spreading 

fires do not really support smouldering-only combustion.  A scaling factor of 1.3 was therefore used to 

adjust the value of the PM2.5 to BC ratio derived from this confidence interval methodology when used in 

the flaming phase fraction calculations for the other fuels. The equivalent values of Sf  and Ss (mg m-3. (mg 

m-3)-1 for the rice and rapeseed residues are shown in Figure 8 in Section 4.2, plotted onto the 

instantaneous PM2.5 and BC mass concentrations. As expected, in a similar manner to the measurements 

from the spreading wheat fire, the derived emission ratio boundaries correctly bracket the limits of the 

instantaneous measurements. 

The same methodology applied to the aerosol measurements to derive the flaming phase fraction (Section 

4.2) was also used with the CO2 and CO data of all three agricultural residue fuels to derive the same 

metric, but now for the trace gas rather than aerosol measures. Unlike the data provided by the aerosol 

systems however, due to the lag times of the CO and CO2 sensors noted in Section 4.3.3, the 

instantaneous measurements from the two gas sensors cannot be considered as simultaneous records of 

the true trace gas mixing ratio. We therefore calculated and compared 20 second averages as discussed in 

Section 4.3.4, with this averaging period selected as a compromise between the response times of the 

CO_AF and K30 CO2 sensors (Table 4.2) and the requirement to keep a significant number of data points 

for the ER derivation. For the wheat fuels, the CO to CO2 emission ratio for flaming phase combustion 

was calculated as 0.018 (ppmv.ppmv-1), and 0.46 (ppmv.ppmv-1) for the smouldering phase combustion 
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(representing an MCE of 0.98 and 0.68 respectively). The derived emission ratios quite appropriately 

represent the boundaries seen on the CO to CO2 scatter plots, be it from wheat, rice or rapeseed fires 

(Figure 9 of Section 4.2).  

 

4.3.7 EMISSION FACTOR CALCULATION 

The EFs in g.kg-1 of the trace gases present in the smoke were calculated using the carbon mass balance 

equation of Yokelson et al., (1999, Equation 1, Section 4.2). 

The ratio of the number of moles of species x divided by the total number of moles of carbon ( 
𝐶𝑥

𝐶𝑡
 ) for use 

in Eqn.1 was calculated as (Ward and Radke, 1993): 

𝐶𝑥

𝐶𝑡
=

𝐸𝑅𝑥
𝐶𝑂2

⁄

∑ (𝑁𝐶𝑗𝐸𝑅 𝑗
𝐶𝑂2

)𝑛
𝑗=1

                                                                                                                              (4.1)                                                                                                                          

Where the summation is over the carbon containing gases and the [ERx/y] is the so-called emission ratio 

[ER] of two compounds that is derived from the gradient of the linear best fit to the measured excess 

abundance of species [x] when plotted against the excess abundance of reference species [y] measured in 

the same sample (Yokelson et al.; 1999). In terms of trace gas measurements, CO2 is commonly the 

reference species for ‘flaming dominant’ compounds, and CO for ‘smouldering dominant’ compounds 

(Andreae and Merlet, 2001).  

Wooster et al. (2011) and Yokelson et al., (2013) recently describe the use of the carbon mass balance 

technique with data from OP-FTIR systems, and we use it here with both those data and that from the 

smoke sampling system described above. The main gaseous carbon containing compounds in vegetation 

fire smoke are CO2, CO, methane (CH4) and non-methane hydrocarbons (NMHC). Since aerosols 

comprise only a few percent of the emitted carbon (Andreae and Merlet, 2001), and methane and NMHCs 

are reported to account only around 2% for all carbonaceous gases emitted from wheat or maize straw 

combustion in China (Li et al., 2007), we conclude that the vast majority of the carbon is present in the 

form of CO2 and CO and so is measured by the trace gas sensors of our smoke sampling system. Delmas 

et al. (1995) also show that CO2 and CO account for the vast majority of the total gaseous carbon flux 

from agricultural residue burning, a median of 99%, whilst Yokelson et al. (1999) confirm that EFs are 

underestimated by only 1 or 2 % when neglecting the aerosol components. We therefore conclude that the 
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measurements of CO2 and CO made using our smoke sampling system can provide the information 

necessary for calculating the emissions factors of these two gases via the carbon mass balance approach 

outlined above. A comparison of the EFs derived using this CO2 and CO measurement approach to those 

derived from the OP-FTIR system, where further carbon-containing species can be accounted, is also 

possible using the same carbon mass balance approach, but now considering these additional gaseous 

constituents (see Section 4.2). 

The particulate EFs are calculated from the aerosol/gas emissions ratios shown in Fig. 4.4 and 4.5 (as well 

as in Fig. 11 from Section 4.2) using Eqn.3, and the results summarised in Table 5 of Section 4.2. 

 

 

Figure 4.4: Scatterplot of PM2.5 and BC mass concentrations to CO2 and CO mixing ratio measures from all rice 

residue fires listed in Table 1 (Section 4.2), with data presented as 120 s averages. The blue line represents the least 

squares linear best-fit to the data, taken as the relevant particulate to gas emission ratio for this fuel type, along with 

the 95% confidence intervals on the slope (grey filled polygon) and on the prediction (dashed line). 
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Figure 4.5: Scatterplot of PM2.5 and BC mass concentrations to CO2 and CO mixing ratio measures from all rapeseed 

residue fires (listed in Table 1 of Section 4.2), with data presented as 120 s averages. The blue line represents the 

least squares linear best-fit to the data, taken as the relevant particulate to gas emission ratio for this fuel type, along 

with the 95% confidence intervals on the slope (grey filled polygon) and on the prediction (dashed line). 

 

4.4 UPDATED SMOKE SAMPLING SYSTEM CALIBRATION AND 

EXTRA FIELDWORK RESULTS 

This section introduces further laboratory testing and fieldwork testing of the smoke sampling system, 

conducted after the first field deployment detailed in Section 4.2. 

 

4.4.1 UPDATED SMOKE SAMPLING SYSTEM 

With the issue of the sensor lag time discussed in Section 4.2 and 4.3, improvement of smoke sampling 

system was considered important subsequent to its first field deployment. This was conducted in two 

ways. Firstly minimisation of the gas exchange time, in this case by limiting the volume of the box 

containing the sensors. The other was to introduce a parallel sampling system with a quicker and uniform 

response time for all trace gases, since the lag time can vary a lot for the different low-cost small sensors, 

and this can cause some difficulties (see Table 4.1, Section 4.3).  
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Fig 4.6 shows the updated smoke sampling system, which consists of two main sampling boxes rather 

than the single one used for the first fieldwork. The first box is an updated version of previous smoke 

sampling box used for the fieldwork described in Section 4.2. The fitted gas sensor system inside has 

been designed to have a less than five second gas exchange time, replacing the old tube with its 14 second 

gas exchange time (Section 4.3.3). An aluminium and glass frame has also been fitted into the sampling 

box, providing better support to all the equipment inside. The filter holder has also been moved to outside 

of the sampling box, though the link to the sampling system follows original flow (see Fig. 2a, Section 

4.2). This change is to reduce the need to open the box when changing filters during fieldwork, which is 

much more convenient. The second sampling box (yellow one in Fig 4.6) is actually an ultra-portable 

analyser working on the principle of the absorption of laser radiation in an IR cavity, and is an adapted 

Los Gatos Research (LGR) ultra-portable greenhouse gas analyser (GGA) that provides CO as well as 

CO2, CH4 and H2O mixing ratios. It delivers data at 1 Hz, though the flow time through the internal 

measuring cell will introduce an approximately 10 second response time for the analyser (but which is the 

same for all species measured). An external pump with a higher flow rate can be used to reduce the 

response time to less than 2 seconds when required (the silver pump next to the keyboard in Fig. 4.6).  

 

Figure 4.6: Deployment of updated smoke sampling system in the field, including two main parts, LGR ultra-

portable greenhouse gas analyser which provided CO2, CO, CH4 and H2O measurements (closed yellow box at top) 

and the new smoke sampling box which provided CO2, CO, PM2.5 and BC measurements (opened orange box in the 

middle). 
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4.4.2 TEST IN A NORTHUMBERLAND MOORLAND FIRE 

The first test of this updated sampling system occurred in May 2015 at an experimental moorland fire 

conducted in Northumberland, UK. Fig. 4.7 shows the time series of the four trace gas mixing ratios 

recorded by the LGR analyser downwind of the fire, which lasted around 20 min. All mixing 

ratios/concentrations show here are excess measures, calculated via subtraction of pre-fire ambient 

background values. The whole burning process is been divided into 7 plumes (P1 to P7) identified by 

different colours in Fig. 4.7. It is very clear the plumes 1-2, which occurred at the beginning of fire, were 

dominated by flaming process with both high concentrations of CO2, CO and CH4. After the mixing stage 

shown as plume 3, the fire appears to be dominated by smouldering emission in plumes 4-7. The time 

series of particulate mass concentrations are also shown in Fig. 4.7. In Section 4.2, a very large difference 

in the PM2.5 to BC ratio was noted between flaming and smouldering combustion of wheat residue 

burning (2.0 vs 80.7 respectively). Similar patterns are seen here, for example in plumes 1 and 2, which 

are considered as being generated by primarily flaming stage combustion, high PM2.5 and BC values are 

observed. Whilst during the plumes expected to have been generated by primarily smouldering stage 

combustion (plumes 4 - 7), only high mass concentrations of PM2.5 are observed (with peak values 

ranging from 30 - 60 mg m-3), whilst BC mass concentrations were all below 1.0 mg m-3 in these 

smouldering stage plumes. 

 

Figure 4.7: Time series of gas mixing ratios (CO2, CO, CH4 and H2O; ppmv) measured by LGR analyser and 

particulate mass concentrations of PM2.5 and BC (mg.m-3) from smoke sampling box, coloured by time. The time 

series data have been divided into 7 plumes (P1-P7), which status were gradually changing from being dominated by 

flaming to smouldering process.   
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Fig 4.8 shows the correlation of CO, CH4, PM2.5, and BC with CO2, with the same colour scheme used as 

in Fig 4.7 for the different plumes. Fig 4.8 a-b shows clearly two different fire stages based on the trace 

gas data alone, with the uppermost (higher slope) CO/CO2 and CH4/CO2 ratios coming from smouldering 

phase smoke and the lower from flaming stage smoke. However, introduction of the particulate mass 

concentration measures (Fig 4.7 c-d) makes the scatterplots show less of a clear relationship, though with 

some potential indication still of two patterns that may match those shown in the trace gas scatterplots of 

Fig 4.7 a-b.  This lack of a clear scatterplot linear relationship in Fig 4.7 c-d is put down to the fact that 

the internal pump of the LGR analyser was used, which as mentioned in Section 4.4.1 delivers a long 

exchange time (of 10 sec). This appears to cause significant problems when matching the LGR-measured 

trace gas data to the particulate data (PM2.5 or BC) coming from the other sampling box. 

 

Figure 4.8: Directly comparison of CO2 mixing ratio to (a) CO and (b) CH4 mixing ratios, and (c) PM2.5, (d) BC 

mass concentrations using the same data from Fig. 4.7, coloured by time (seconds count from the start of fire).  

 

This test highlighted the great advantage of LGR analyser for the trace gas measurements, which reduced 

the difference in lag times between the CO2, CO and CH4 time-series down to zero and thus enabled very 

effective determination of the trace gas emission ratios from the relevant scatterplots (Fig. 4.8a, b). 
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However, the internal pump of the LGR appears insufficient when delivering trace gas data to be 

combined with the particulate matter data from the second sampling system. It appears a faster, external 

pump is needed to speed up the flow rate through the LGR.  

 

4.4.3 TESTING USING CROP RESIDUE COLLECTED IN CHINA 

Though a filter holder has been designed to fit in the smoke sampling box (Fig.2, Section 4.2), and this 

was used to collected a few filter samples during the first period of fieldwork in China, the total mass on 

those filter samples was insufficient for accurate quantification. This is because the flow (1.67 l.min-1) 

used for sampling lead to insufficient particles being collected during each fire that was sampled. 

Therefore, as already stated, the PM2.5 mass concentrations taken from the DustTrak in Section 4.2 were 

calibrated using the equation provided by Preble et al (2014), calculated from (biomass) cookstove smoke 

emissions. However different aerosols may scatter the laser light used by the DustTrak in different ways, 

and cookstove smoke may have some different characteristics to landscape fire smoke, and so calibration 

of the Dusttrak for the smoke of crop residue fires was considered desirable for future field campaigns. 

To provide this, a test was conducted using crop residues collected in China and burned in the UK, and 

the results were also compared to smoke from other fuel (Indonesian peat) to determine how transferrable 

the calibration factors determined using one type of landscape fire fuel are to very different types. Similar 

to the method of deployment used for the bonfire measurements in Eastern China (described in Fig. 3b, 

Section 4.2), we fitted the inlet of the smoke sampling box into the end of an aluminium laminated pipe 

which attached to a pump (Fig. 4.9). Instead of piling all the fuel at bottom of the burn container and then 

igniting it, the fuel was fed to the fire continually to better simulate the smoke from a spreading fire in the 

field which has access to continual new fuel and sufficient oxygen for sustained flaming combustion. 

Alongside the DustTrak, for this test a Thermo Fisher Partisol Sequential Air Sampler was deployed, 

which collects filter samples at a high flow of 16.7 l.min-1, ten times the flow of our smoke sampling 

system. This potentially allows us to collect sufficient particles on the filters to perform the calibration. 

The LGR analyser was also deployed so it can be used to collect trace gas data from the smoke. 
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Figure 4.9: Deployment of Partisol Sequential Air Sampler, smoke sampling box and LGR analyser in crop residue 

bonfire tests, designed primarily to provide a DustTrak calibration for this type of smoke. 

 

Fig. 4.10 shows the results from this calibration test, with two samples unfortunately contaminated by 

rain drop when opening the Sampler to check the filter. That happened during the first two wheat burns 

and therefore those results being removed (see Table 4.4). With the limited samples, results from wheat 

and corn were categorised as same group “crop residue”. The slope of the linear best fit calibration line 

through the data is y = 4.6x + 0.62 with r2 = 0.43. The relatively high variation is probably due to mixing 

status of flaming and smouldering during sampling. The slopes of crop residues samples are, however, 

much higher than that for the peat burn (1.45), probably because the more flaming dominated crop 

residue burns produced more black carbon (as discussed in Section 4.2), whereas the smouldering 

dominated peat fires produce larger organic aerosols. The DustTrak sensitivity to particles below 300 nm 

in size is likely to be less than that at larger particle diameters, and sensitivity stops at 100 nm particles. 

Much of the black carbon produced by flaming combustion maybe below 100 nm in diameter, and so will 

be missed by the DustTrak but will be present on the filter, thus increasing the ratio of PM2.5 mass 

captured on the filter to that measured by Dusttrak compared to the peat-fire smoke where larger OC 

aerosols dominate.   
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Figure 4.10: Correlations of PM2.5 mass measured by Dusttrak and filter from Chinese crop residue (wheat and corn) 

and peat burning samples. The best fit linear relationships are shown, with the shaded area representing the 95% 

confidence limit on the relationship.   

 

Table 4.4: Emission ratios and emission factors estimates calculated from the tests using the setup shown in Fig 4.9. 

The emissions factors of PM2.5 have been calculated two ways using the same method of Table 5, Section 4.2.  

 Fuel Duration(s) 

Emission Ratio Emission Factor (g.kg-1) 

PM25/CO2*1000 PM25/CO CO2 CO CH4 
PM_ 

CO2 

PM_ 

CO 

1 Wheat 307 42±3.2 1.1±0.039 2147±176 53±6 1.9±0.35 50±6 50±6 

2 Wheat 456 37±17 0.81±0.15 2121±175 69±12 1.7±0.27 43±20 49±13 

3 Wheat 312 8.6±0.62 1.1±0.14 2218±182 11±1 0.12±0.02 11±1 10±2 

4 Wheat 241 16±1.3 0.49±0.17 2177±179 36±11 0.66±0.11 19±2 15±7 

5 Corn 409 15±3.2 0.42±0.098 2194±180 25±9 0.65±0.29 18±4 9±4 

6 Corn 298 9.9±2.9 0.74±0.023 2208±181 17±5 0.37±0.14 12±4 11±5 

7 Corn 317 11±0.69 0.56±0.16 2198±180 23±5 0.41±0.13 13±1 11±4 

8 Corn 464 14±3.4 0.41±0.16 2195±180 24±7 0.84±0.23 17±4 9±4 

9 Corn 342 14±0.58 0.49±0.12 2189±180 28±5 0.44±0.08 17±2 12±4 

 

Using the CO2, CO, CH4 measurements from LGR analyser and the particulate information from smoke 

sampling system, the emission ratios and emission factors were calculated for these test fires using the 

methods explained in Section 4.2. Table 4.4 shows the resulting EFs, with the wheat EFCO2 (2121-2218 

g.kg-1) being significantly higher than that reported in Section 4.2 based in the in situ field measurements 

of smoke made in China (1739 g.kg-1, Table 4). This likely indicated that the burning conditions in these 

tests were more favourable for flaming combustion compared to those seen with spreading fires in the 

field. Section 4.2 stated the importance of measuring emission factors by deploying instruments in situ in 

real field burns, due to the fact that the burning conditions and this the smoke characteristics can be quite 

different from those of laboratory or other forms of ‘atticful’ burning situations, and that is exactly is 

found here. The other important finding is the similarity of EFPM2.5 calculated from the emission ratio of 

PM2.5 with CO2 (and EFCO2) as explained in Section 4.2, and PM2.5 with CO (and EFCO). This 
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improvement is believed to compared to results shown in Figure 4-5, Section 4.2, stems from the high 

performance of the introduced LGR analyser.  

 

4.4.4 FIELDWORK IN JUNE 2016 

Further to the developments described above, an extra period of fieldwork in June 2016 was performed 

around Tongling city, Eastern China – the same city used for the first fieldwork described in Section 4.2. 

The main purpose was to re-investigate the crop residue burning emissions factors now using the LGR 

analyser at an in situ burning site in China, to compare the results with those obtained using the low-cost 

small sensors of the smoke sampling box described above and in Section 4.2. Due to local fire prohibition 

policy enforcement operating at the time, only bonfire burning was able to be studied at this time, not 

spreading fires.  

This fieldwork was initially planned to collect the gas concentrations of smoke from wheat, corn and rice 

residue burning. However, the LGR analyser failed after the first day and only samples from wheat 

residue fires were able to be collected.  

The time series of excess gases mixing ratios (i.e. after ambient background concentrations have been 

deducted) can be seen in Fig. 4.11. Very high mixing ratios were found for CO2 (up to 6000 ppmv), CO 

(up to 1000 ppmv) and CH4 (up to 175 ppmv) using the LGR. MCE varied from 0.75-0.92 during main 

burning process from 14:29-14:35 pm, indicating this burning is more smouldering compared to the 

samples collected in Section 4.2 (Table 1), which is likely to be caused by the different style of burning in 

bonfires compared to spreading fires. 
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Figure 4.11: Time series of CO2, CO and CH4 mixing ratios measured by LGR analyser during June 2016 fieldwork 

in China. 

 

Scatter plots of CO/CO2 and CH4/CO2 are shown in Fig. 4.12, along with the best fit linear relationships. 

Using the emission ratios (mol.mol-1), which are the slopes of the CO/CO2 (0.130) and CH4/CO2 (0.017) 

linear best fires, emission factors were calculated using the Eqn. 4.1 from Section 4.3.7. These are 1593, 

135 and 9.3 g.kg-1 for CO2, CO and CH4 respectively. The emission factor of CO2 is 8.4% lower than that 

for the most similar fuel burnt in the first fieldwork period (Table 4, Section 4.2), which is likely a result 

of the wheat sample here being burned in a bonfire rather than a spreading fire, as described above. 

Smouldering dominated burning leads to somewhat lower CO2 emissions than flaming fires, and much 

higher CO emissions.  In fact, the CO to CO2 emission ratio of 0.130 mol.mol-1 lies between the pure 

smouldering (0.46) and flaming (0.018) emission ratios for wheat burning we proposed in Fig. 9, Section 

4.2. Therefore, we believe the results reported in Section 4.2 have been shown to be somewhat repeatable 

here, using the updated and more capable sampling system. The emission factors calculated in Section 4.2 

will therefore be used in Chapter 5 for production of the final emissions inventory of Eastern China. 
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Figure 4.12: Directly comparison of CO2 to CO (left) and CH4 (right) mixing ratios using samples from June 2016 

fieldwork. The best fit linear relationships are shown, along with its equation, and the grey shaded area represents the 

95% confidence limit on the relationship. The slopes of the equations, which are emission ratios, will be used for 

emission factor estimation. 

 

4.5 LAG TIME MODEL 

4.5.1 LAG TIME EFFECT 

The problems introduced by having sensors characterised by different lag times when measuring trace gas 

concentrations for the calculation of emission ratios and emission factors has been introduced in both 

Section 4.2 and 4.3. There it was shown that electrochemical and NDIR sensors are typically 

characterised by significant response 'lag' times, generally specified via a T90 metric (Roberts et al., 

2012) as below. 

)()1()1(][)( tIFtIFsXtI lineSensorBaseSensorSensorSensor                                 (4.2) 

Where sensor’s 1Hz output, ISensor(t) (ppmv), is a function of the actual gas mixing ratio, [X(t)], the sensor 

sensitivity (SSensor, ascertained by the final sensor reading after 600 s exposure), the ‘slowness factor’ (F), 

the sensor output of the previous second (ISensor(t-1), ppmv), and the sensor baseline (ISensorBaseline(t), 

ppmv). The sensor baseline was found to be typically constant and near-zero for sensors used in this study 

(Table 4.1, Section 4.3). 
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The slowness factor is the function of T90, which is response time for the sensor to reach 90% signal is 

simply related to the exponential time-constant. This can normally be obtained from the sensor manual, or 

assessed in the laboratory using standard gas with a known mixing ratio (Section 4.3.3). 
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Many studies have used a simple temporal shift between the measurements from the different sensors to 

try to match them up for the emissions ratio calculation (e.g. Chen et al., 2007; Hörtnagl et al., 2010). 

Even though such a temporal shift could potentially allow an improved correlation coefficient to be 

obtained than existed without such a shift, and thus the fitting of an improved linear best fit with a lower 

uncertainty, recent work by Roberts et al. (2014) shows that this can come at the expense of introducing 

incorrect changes in the slope of the relationship from which the emissions ratio is calculated. Roberts et 

al. (2014) show that averaging or integrating over particular time-periods of data is likely a better 

approach to take.  

To compare the results from the temporal shifting and temporal averaging approaches, a simulation was 

conducted - illustrated in Fig. 4.13 and based on Eqn.4.2-3. In this example, ‘Environmental’ refers to the 

true concentrations in the environment, with several Gaussian distribution modes (with added noise) to 

simulate a few plumes being assessed by the sampling system during fieldwork. ‘Detected’ refers to the 

measured concentration recorded by the sampling system. A slope of 1.0 is expected in the ideal case 

when lag time equals to zero. Here a 40-sec lag time was introduced to simulate the CO_AX sensor 

(Table 4.1, Section 4.3) In the bottom plots we show the scatterplot of the 'environmental' vs. detected 

datasets, with original data(b), and output from temporal shifted method (c, ‘modified’) and averaging 

method (‘average’). In the modified plot the ‘detected’ data has been temporally shifted to maximise the 

correlation coefficient (r).  

Subsequent to the temporal shift (Fig 4.16b), an improved correlation is seen and the slope of the linear 

best fit to the data is around 1.16, nearly 20% higher than the true slope of 1.0 that we would hope to gain 

(i.e. with the temporal shift perfectly correcting for the sensor lag effect). In contrast to this, the slope of 

the data processed with the temporal averaging method is almost equal to 1.0 (Fig. 4.16c). Whilst the 

concentrations are lowered by the temporal averaging, as long as the slope is correct then the estimated 

emission factors results will also be correct. This supports the use of temporal averaging to minimise the 

measurement impacts from the combination of different sensor lag times and the rapidly changing trace 
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gas mixing ratios experienced during in situ smoke plume measurements (Reid et al., 2005). This 

supports the use in Section 4.2 of the temporal averaging method for trace gas emission ratio and 

emissions factor derivation, albeit with the price of sacrificing the number of data points. 

 

Figure 4.13: (a) Time series of environmental and detected gas concentrations from simulation results. Bottom row 

of scatter plots show the correlations of environmental and detected gas concentrations under different calculation 

scenarios, with (b) original data, (c) output modified by temporal shift and (d) averaging results. 

 

4.5.2 FORWARD LAG TIME MODEL 

The average interval used in the averaging method of Section 4.2 is 20s to different gas, up to 120s for 

gas and aerosol, which will lead to a problem of insufficient data for emission ratio calculation when the 

fire duration is below 10min (at least 5 points for linear fit). Also, as shown in Fig. 4 and 5 in Section 4.2, 

each plume in the rapid change in situ fieldwork can be as short as tens of seconds. In the averaging 

method, a few plumes will be potentially averaged as one point, losing the information of fire phases 

(flaming or smouldering). 

An alternative way is desirable for such short sampling with rapid gas/aerosol concentration change. In 

this section the function 4.3-4.4 are used to explore the possibility of deriving the ‘real’ concentrations 

from sensor output which has been impacted by lag time effect, which is to use a slow response sensor 

results to simulate its performance without the lag time effect.  
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The CO2 data from burning case 1 of UK tests (Table 4.4, Section 4.4.3) is used in this study. As shown 

in Fig. 4.14a, the time series curve of NDIR data is more smooth compare to that from LGR analyser. 

Three main peaks can be found during whole 300s sampling period of NDIR results while more small 

peaks show up in LGR results. The main difference can be seen at the peak(s) during 50-100s, where 

LGR shows a bi-mode and NDIR only shows single mode with wider width. This comparison shows 

NDIR results are highly impacted by lag time effect, leading to the mixture of this bi-mode into one 

mode. 

 

Figure 4.14: Time series of CO2 mixing ratios: (a) Comparison of results from LGR analyser and NDIR sensor of 

smoke sampling box; (b) Comparison of results from LGR analyser and NDIR sensor output from forward lag time 

model. Data is from the burning case 1, Table 4.4. 

 

In the forward lag time model, the T90 derived in lab test (12s, Table 4.3) is applied to NDIR. 

The simulated results from NDIR (NDIR_forward) is compared with LGR output in Fig. 4.14b. Though 

not perfect, the curve of simulated results is much closer with LGR output. For example, in the 50-100s 

period, the modelled results show a flat curve before reaching the near 5000 ppmv peak, indicating the 

big mode is combining two modes as what we found in LGR output. The flat distribution between 140-

250s in the original results also change towards a few modes as those in LGR results. However, such 

forward simulation also introduces large unrealistic noise in those CO2 mixing ratios, making it almost 

impossible to directly compare with CO data and calculate the emission ratio. Therefore, the forward lag 

time model of using slow response data to simulate fast response data is not a practical way. 
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4.5.3 REVERSED LAG TIME MODEL 

Instead, smooth data can be derived when using fast response data to simulate the sensor’s ‘slow’ output 

if a larger T90 is given. Though absolute values of output data series will change here, the emission ratio 

between two species will stay same if they are being simulated at the same slowness level. 

When simulating the slow output, the T90 should be the T90 of slow response sensor deduct that of quick 

response sensor. Fig. 4.14 gives the example of reversed lag time model using the same dataset of Fig. 

4.13. In this case, the T90 is 9s, using that of NDIR (12s) deduct by LGR CO2 laser (3s). Unlike the noisy 

results from forward lag time model (Fig. 4.14b), the output of reversed lag time model using LGR data 

showing here is very smooth. The shapes of two big modes between 50-150s from these two set of data 

are almost same except the modelled LGR results are a bit lower. The linear correlation can be found 

between NDIR data and modelled LGR data with a function of y = 0.839x-156 and the R square is as 

high as 0.92. The slope not equals to 1 and the intercept value could be the result of equipment’ different 

response to certain gas concentrations. 

 

Figure 4.15: Time series of CO2 mixing ratios: (a) Comparison of results from NDIR sensor of smoke sampling box 

and LGR analyser; (b) Comparison of results from NDIR sensor of smoke sampling box and modified output of 

reversed lag time model using LGR analyser data. Data is from the burning case 1, Table 4.4. 

 

For the sensors with unknown T90, a ‘best linear fit’ method is used for generating the difference of two 

sensors. Here two sets of equipment/sensors are used as example. One is CO and CO2 from LGR analyser 

used as reference, assuming they don’t have any lag time effect when using the external pump with larger 
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flow (see Section 4.4.1). The other one is CO and CO2 from AQ sensors, which CO2 is known as a slow 

sensor with unknown T90. Four different gas samples have been fed into these two sampling sets. The 

scatter plots, as well as best fit lines with functions of CO2 and CO for different gas samples measured by 

LGR and AQ can be seen in Fig. 4.16a-b. The LGR results have shown four linear fit lines with R squares 

all over 0.9. Meanwhile AQ results have shown very strong lag time effect. 

In the computation experiment, the fast response data (CO from AQ sensor in this case) will be used. The 

simulation ran for fast sensor data using T90 from 1s to 120s and calculate the correlation coefficient of 

each output plume (each gas sample in this case) with slow sensor plume data. The mean value of 

correlation coefficient of all plumes was recorded. The lowest T90 of mean correlation coefficient which 

is higher than 0.9 was chosen as simulated T90, if it exists. Otherwise T90 with highest mean correlation 

coefficient was used. Using the simulated T90, the corresponded ‘slow’ output of fast sensor can be 

calculated, which could be directly compare with the slow sensor data for emission ratio calculation. 

The modelled results can be seen Fig. 4.16c. A very high T90 of 74s has been generated from the ‘best 

linear fit’ method, which explained the serious lag time effect shown in Fig. 4.16b. However, the 

emission ratios (slopes of the linear fit equations) from four gas samples are -3.4, 7.3, 19.2 and -8.4, very 

close to those from LGR analyser (-3.6, 8.4, 20.3, -7.9).  

 

Figure 4.16: Directly comparison of CO2 and CO mixing ratios from, (a) LGR analyser, (b) original AQ sensors’ 

measurements, (c) reversed lag time model output using AQ sensors’ measurements. The best fit linear relationships 

are shown, along with its equation. 
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4.5.4 SUMMARY OF LAG TIME MODEL 

The reversed lag time model has proved its potential of improving data quality from sensors which are 

suffering lag time effect due to their slow response. The simulation example from Fig. 4.16 further shows 

this model could still work well without knowing the exact sensor lag time by introducing a ‘best linear 

fit’ method. For studies only focusing on the relative ratio of two species rather than their actual 

concentration, similar like the emission factors estimation in this study, this model could potentially have 

been applied. However, when applying it to rapid change data collected from field, bad performance 

might occur for mixed plumes. This is because different plumes could have different emission ratio 

depending on the mixture status of flaming and smouldering, which might cause confusion in the ‘best 

linear fit’ method. Here it is recommended to let the equipment/sensors expose under ambient air for a 

few seconds to create breaks of each plume when trying to use the lag time model for future research. 

 

  



134 

 

CHAPTER 5: ESTIMATING AGRICULTURAL RESIDUE 

BURNING FUEL CONSUMPTION AND SMOKE EMISSIONS IN 

EASTERN CHINA USING NEW REMOTE SENSING 

 

5.1 INTRODUCTION 

This Chapter combines outputs from Chapters 3 and 4 related to agricultural residue burning fires in 

Eastern China, firstly to generate a gridded daily biomass consumption product (meeting Objective 2 

from Section 2.7), and then to produce a smoke emissions inventory (meeting Objective 4 from Section 

2.7). It does this via a combination of active fire locations and FRP retrievals, mapped across the region 

using data from the NPP VIIRS sensor (Chapter 3), and fire emission factors derived from in situ 

measurements of smoke using the newly developed smoke sampling system (Chapter 4). 

 

5.2 METHODOLOGY FOR FIRE RADIATIVE ENERGY, FUEL 

CONSUMPTION AND SMOKE EMISSIONS ESTIMATION 

 

5.2.1 VIIRS-IM FRP PRODUCT AND OTHER INPUT DATASETS 

The gridded daily biomass consumption product for Eastern China was generated primarily using the 

VIIRS-IM FRP product developed in Chapter 4. Fig 5.1 shows the FRP time series derived from this 

product for Eastern China (the area shown in Fig. 2, Section 3.2), using the earliest VIIRS data currently 

available at the time of writing (February 2012 - December 2015).  Since January 2012 is outside the 

local agricultural burning season, these data essentially cover 4 full years of fire season(s), and should be 

sufficiently long-term to allow meaningful comparisons to be made with other biomass combustion 

datasets. This includes the GFAS and GFED global inventories reviewed in Chapter 2. 
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Figure 5.1: Time series of total daily FRP recorded from fires across Eastern China using the VIIRS-IM FRP product 

algorithm developed in Chapter 3, shown here from Feb. 2012 to Dec. 2015. The seasonality of fire activity is clearly 

seen, with FRP peaks of around 50 and 300 GW respectively corresponding to the times of agricultural burning in 

this region (Huang et al., 2012). 

 

FRP is well related to fuel consumption rate, as shown in Wooster et al. (2005) and detailed in Chapter 3.  

As described in Chapter 3, VIIRS provides observations of any particular location twice per day, and thus 

the VIIRS-IM FRP product can be used to estimate fuel consumption rates at these times only. A key 

benefit of VIIRS compared to MODIS is that the performance degradation in the FRP retrievals made far 

away from nadir appears far less for VIIRS than for MODIS, due to the VIIRS pixel aggregation (see 

Figure 12, Section 3.2).  Thus the full swath of VIIRS can be used to obtain good quality, twice daily FRP 

retrievals and thus fuel consumption rates. Further information is required to estimate the fire radiative 

energy (FRE) however, because this is the temporal integral of the FRP over a particular time-period 

(Wooster et al., 2015).  FRE has been shown proportional to the total biomass burned (Freeborn et al., 

2011; Roberts et al., 2009), building on the fact that FRP is proportional to biomass combustion rate 

(Kaiser et al., 2012; Wooster et al., 2005). Wooster et al., (2005) show the linear FRE-to-fuel 

consumption relationship for the type of ‘small straw fire’ representative of those involved in agricultural 

residue burning in Eastern China. This relationship (fuel consumption [kg] = 0.37 [±0.015]  FRE [MJ]) 

will be applied to FRE-estimates derived from the temporal integration of the VIIRS-IM FRP dataset in 

order to estimate daily biomass consumption. 

However, to perform the conversion between the twice daily VIIRS-IM FRP data and daily-integrated 

FRE, information on the fire diurnal cycle is required (Ellicott et al., 2009; Roberts et al., 2005). This 

information was obtained from Himawari-8, a Japanese geostationary meteorological satellite launched 

on 7th October 2014. These data have recently been used to derive active fire detections and FRP across 
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Asia by Xu et al., (2017) upon which the thesis author was a co-author (including in Appendix A of this 

thesis).  Himawari-8 cannot be used directly to calculate the FRE for each day of the 3 years of the study 

period however, because (i) it only provides data from early 2015 onwards, and (ii) its relatively coarse 

spatial resolution (2 km at the sub satellite point) means it misses many smaller agricultural fires, which is 

a significant issue as the comparison between MODIS and VIIRS showed in Section 4.2. Xu et al. (2017) 

included in Appendix A details further how the Himawari-8 active fire detection processes misses a 

significant number of fires compared to simultaneous MODIS observations, due to its coarser pixel size. 

However, where such fires are concentrated in sufficient numbers, Himawari-8 does detect their signature 

and can map their changing total FRP output over the day to derive the fire diurnal cycle, as explained 

below. 

 

5.2.2 BENEFITS OF HIMWARI-8 

Himawari-8 is the first of a new generation of three axes stabilised geostationary weather satellites, and is 

located above the equator at 140° east to view primarily Asia (Kurihara, Murakami & Kachi, 2016; Xu et 

al., 2017). Himawari-8 carries the Advanced Himawari Imager (AHI), which scans the full disk of Asia 

and Australia every 10-minutes. The active fire detection and FRP algorithm whose output is used here is 

described fully in Xu et al. (2017) (included as Appendix A). 

For the Eastern China region during the June 2015 burning season, Fig. 5.2 shows the times series of FRP 

derived from Himawari-8 and from VIIRS-IM (Chapter 3). The similar trends seen in the two datasets 

derived from these different systems provide confidence that they are responding to the same (or at least 

similar) fire activity. However, the Himawari-8 FRP values are many times lower than those of the 

VIIRS-IM FRP product because of its much coarser pixel area (4 km2 pixels at nadir, and coarser at these 

latitudes) means that it will typically fail to detect isolated agricultural fires and will only detect those that 

are burning alongside many others within the same pixel. 

This same issue affects all geostationary fire products (e.g. that derived from Meteosat SEVIRI; Wooster 

et al., 2015) and means that such datasets typically need to be combined with other remotely-sensed FRP 

data to bias adjust them for the impact of the ‘undetected’ small fires (Freeborn et al., 2009). The fire 

situation in Eastern China makes this particularly important, because in such agricultural regions the vast 

majority of fires are small, and of rather low intensity (as shown in Fig. 11, Section 3.2).  This type of 

active fire detection bias can also be seen in the differences in the total FRP of the region measured at 
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approximately the same time by MODIS and VIIRS-IM (Fig. 11, Section 3.2), where VIIRS-IM measures 

an FRP often around four times greater than MODIS – thus indicating that many agricultural fires lie even 

below the MODIS active fire detection limit (but are detected by the higher spatial resolution VIIRS 

product).  

 

 

Figure 5.2: Time series of spatially summed FRP in Eastern China retrieved from Himawari-8 (blue lines) and 

VIIRS (red points) in June, 2015. VIIRS provides typically two observations per day, and Himawari 144 observations 

per day at 15-min frequency. 

 

Whilst the FRP retrievals made from Himawari-8 may not be that representative of the total FRP of the 

region due to this issue, the detections made in areas where many fires are burning at the same time 

(which enables a confident detection to be made) can be used to derive the regionally representative 

diurnal cycle of fire activity. This represents the relative variation in fire activity of a region over a 24 

hour cycle (Kaiser et al., 2012; Roberts et al., 2005).  When this diurnal cycle is combined with the total 

FRP estimates coming from the high spatial resolution VIIRS-IM FRP product twice a day, the 

combination can be used to provide an estimate of the total FRE being emitted by the agricultural burning 

across the whole day. Converting this FRE estimate to total fuel consumption is expected to provide the 

best estimate of daily fuel consumption currently available for the region. 
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5.2.3 USAGE OF HIMWARI-8 AND VIIRS-IM 

Two months of Himawari-8 data were used to specify the fire diurnal cycle, collected in June 2015 and 

October 2015 (i.e. across two burning seasons), and these data were combined with the four years of 

VIIRS-IM FRP data shown in Fig. 5.1.  

 

5.2.4 DATA GRIDDING AND CLOUD CORRECTION 

The data from the VIIRS-IM product were aggregated into 0.1° grid cells for the analysis. Unlike the 

daily average FRP calculation of GFAS, which weights the individual FRP observations by their view 

zenith angle to downgrade the importance of far off-nadir MODIS observations (Kaiser et al., 2012), the 

VIIRS-IM FRP data were used directly since Chapter 3 showed a very limited view zenith angle 

dependence of the FRP values (Section 3.2). For a VIIRS observation, the total observed FRP (F) within 

each 0.1° grid cell j was calculated from the FRP sum of all active fire pixels (i) within the grid cell: 

𝐹𝑗 = ∑ 𝐹𝑖𝑖∈𝑗                                                                                                                (5.1) 

Total agricultural area (A) within the grid is calculated similarly: 

𝐴𝑗 = ∑ 𝐴𝑖𝑖∈𝑗                                                                                                               (5.2) 

 

The VIIRS-IM product has been shown to be relatively insensitive to smoke because such plumes are 

relatively transparent at MWIR wavelengths (Section 3.2). However, adjustment for meteorological cloud 

cover is required to take into account actively burning fires hidden from view of the sensor. For partially 

cloud covered grid cells, it is assumed that the active fire distribution under cloud is the same as under 

clear sky areas, as has been assumed by Kaiser et al. (2012) in GFAS and in previous research (Streets et 

al., 2003).  However, since agricultural fires will only occur on or close to agricultural land, a factor 

(𝜔𝑗−𝑎𝑐) was introduced to avoid over-compensating for cloud-cover in non-agricultural areas. This factor 

is calculated from:  

𝜔𝑗−𝑎𝑐 = 1 +
𝑅𝑗−𝑎𝑔𝑟𝑐

𝑅𝑗−𝑎𝑔𝑟𝐿
×

𝑅𝑗𝑐

1−𝑅𝑗𝑐
                                                                                      (5.3)                                               
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Where 𝑅𝑗−𝑎𝑔𝑟𝑐  and 𝑅𝑗−𝑎𝑔𝑟𝐿  refer to the ratio of agricultural area covered and not covered by cloud 

respectively, and 𝑅𝑗𝑐 refers to the cloud coverage of grid j expressed as a fraction (0 to 1.0). This cloud 

cover information is obtained from pixels classified as cloud by the VIIRS I-Band active fire detection 

algorithm (see details in Section 3.2). 

Subsequently, the gridded and cloud corrected FRP areal density (𝐹𝑅𝑃𝑗, MW.km-2) was calculated using: 

𝐹𝑅𝑃𝑗 = 𝜔𝑗−𝑎𝑐

𝐹𝑗

𝐴𝑗
                                                                                                        (5.4)    

Note that grids covered by cloud with a fraction of 0.99 or more are removed from contributing any FRP 

areal density in order to avoid anomalies resulting from large 𝜔𝑗−𝑎𝑐 ratios. 

Fig. 5.3 shows for a single day of the fire season (4 June 2013) the spatial distribution of FRP areal 

density calculated from the VIIRS-IM product, before and after the cloud cover adjustment. On this day, 

intensive agricultural fire activity was detected across a large region of Eastern China, but there is also 

significant cloud cover. Cloud cover fractions in some grid cells exceed 0.3 (30%), and some reach 0.5. 

After cloud cover adjustment, the mean (and total) grid-cell FRP across the area increased by 11.5%.   
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Figure 5.3: An example of the gridded FRP areal density processing conducted using VIIRS SDR (Sensor Data Record) 20130604_t0553424. This shows the spatial distribution of FRP 

areal density before (left) and after (right) the cloud cover correction. The middle plot shows the fraction of each grid cell covered by cloud. The mean FRP recorded across Eastern China 

before and after cloud correction is also shown in the blue text. 
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Fig. 5.4 shows a comparison of the total VIIRS-IM FRP 4-year time-series before cloud correction, along 

with the mean cloud cover fraction, mean correction ratio (𝜔𝑗−𝑎𝑐 , Eqn. 5.3) and total additional FRP 

added after cloud-correction. A few FRP peaks are seen in the latter time-series, with values ranging from 

2000 - 8000 MW, during which total FRP reaches around 20,000 – 160,000 MW and mean cloud 

coverage ranges from 0.5% - 1.5%  per grid cell. The additional FRP accounts for only 4.4% of total post-

cloud corrected FRP, indicating the impact of the cloud-correction procedure is small but significant over 

the time series. 

 

Figure 5.4: Time series of daily total FRP before cloud correction, mean cloud coverage, mean correction ratio 

(𝜔𝑗−𝑎𝑐 calculated using Eqn. 5.3), and additional FRP after cloud correction per VIIRS scene in Eastern China from 

2012-2015.  

 

5.2.5 DIURNAL CYCLE AND DAILY FRE GENERATION 

FRP data from the Himawari-8 FRP product of Xu et al., (2017) were gridded to the same 0.1o grid cell 

resolution as the VIIRS-IM dataset, and converted to normalised FRP values in order to minimise the 

impact of day-to-day variations in the amount of fire activity. The hourly normalised FRP (𝐹𝑅𝑃𝑛ℎ,𝑗) of 

grid cell j was then calculated from the hourly FRP (𝐹𝑅𝑃ℎ,𝑗 ) using: 

𝐹𝑅𝑃𝑛ℎ,𝑗 =
𝐹𝑅𝑃𝑚𝑎𝑥,𝑗−𝐹𝑅𝑃ℎ,𝑗 

𝐹𝑅𝑃𝑚𝑖𝑛,𝑗−𝐹𝑅𝑃ℎ,𝑗 
                                                                                       (5.5) 

𝐹𝑅𝑃𝑚𝑎𝑥,𝑗 and 𝐹𝑅𝑃𝑚𝑖𝑛,𝑗 refer to the maximum and minimum hourly FRP observed in a day (MW). Note 

the h here is local solar hour (UTC/GMT +8 hours). The durnal cycle runs from 0 to 23 local solar hour 
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everyday. When applied to the data of June 2015, a number of diurnal cycles can be generated for 

different days in different grid cells. Instead of using the simple mean of these diurnal cycles, a FRP-

weighting method was applied to calculated the weighted mean via the sum of the daily FRP values 

(𝐹𝑅𝑃𝑠𝑢𝑚,𝑗 ), such that the days showing most fire acitvity provided the greatest contribution to the 

calculation: 

𝐹𝑅𝑃𝑛𝑤
=

∑ 𝐹𝑅𝑃𝑠𝑢𝑚,𝑗∗𝐹𝑅𝑃𝑛ℎ,𝑗

∑ 𝐹𝑅𝑃𝑠𝑢𝑚,𝑗
                                                                                       (5.6) 

Fig. 5.5 shows the results of this processing, where in Eastern China the weighted mean fire diurnal cycle 

can be seen to have a a bi-modal distribution. The first peak occurs around 13:00 local solar time, and 

extends from around 08:00 to 18:00 (daytime), while a smaller second night-time peak is apparent at 

around 21:00 local time (and shows a height of only around 20% of the normalised FRP value of the first 

peak).  

 

Figure 5.5: Time series of hourly normalised FRP derived from Himawari-8 FRP data generated from the algorithm 

of Xu et al. (2017) over Eastern China for the 0.1-degree date of June 1st to 30th, 2015. The blue curve shows the best 

fit of sum of two Gaussian distributions. 

 

Whilst the first FRP peak shown in Fig. 5.5 occurs around the time of the afternoon VIIRS overpass, 

facilitating in principle the relatively easy blending of the VIIRS-IM and Himawari-8 FRP data, the bi-

modal nature of the fire diurnal cycle distribution raises a problem, since the nighttime VIIRS overpass 



143 

 

occurs around 01:00 – 03:00 am local solar time, far later than the second peak seen in the Himawari-8 

derived data of Fig. 5.5. To tackle this issue two approaches were considered. 

The first approach was to generate a VIIRS-to-Himawari-8 ratio using observations from the two sensors 

made within a short time period of one another (e.g. 15-min). This ratio could then be multiplied by the 

Himawari-8 FRP time-series in order to bias-correct it for the omission of small isolated agricultural fires. 

Fig. 5.6 provides an example of this approach applied to the 0.1o grid cell data of June 2015. Two 

different linear functions were used, one for the daytime (y = 1.67x + 100) and one for the nighttime (y = 

4.38x – 68.6) data. The slope of the latter is higher than the former, indicating more small fires were 

missed at night.  This makes sense, as fewer fires are burning at night and they are this more dispersed 

and more likely to fail to be detected by Himawari-8 compared to VIIRS. 

 

Figure 5.6: Direct VIIRS-to-Himawari-8 FRP data intercomparisons for 0.1o grid cells observed over Eastern China 

during June 2015, separated into daytime (left) and nighttime (right). The best fit linear relationships are shown, with 

the grey shaded area representing the 95% confidence limit on the relationship.  Both relations are strongly driven by 

a single high FRP point. 

 

The fact that the relationships shown in Fig. 5.6 are each largely driven by a single high FRP point 

reduces confidence in its applicability, and the fact that Himawari-8 data are only available from January 

2015 anyway and thus unavailable for the period of most of the VIIRS record makes the approach of 

perhaps limited use.  

The second approach tested to blend the Himawari-8 FRP diurnal cycle and the instantaneous twice-daily 

VIIRS-IM FRP data followed the method detailed in Andela et al. (2015). This introduced an approach to 
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fit the diurnal cycle with an optimally fitted Gaussian fuction to represent the FRP variation across the 

day, with a fitted baseline to represent the nighttime fire activity: 

𝜌̃(𝑡) = 𝜌𝑏𝑎𝑠𝑒 + (𝜌𝑝𝑒𝑎𝑘 − 𝜌𝑏𝑎𝑠𝑒)𝑒
−

(ℎ𝑡−ℎ𝑝𝑒𝑎𝑘)2

2𝜎2                                                     (5.7) 

Where 𝜌𝑝𝑒𝑎𝑘  and 𝜌𝑏𝑎𝑠𝑒  refer to the nighttime and daytime observed FRP (MW), ℎ𝑝𝑒𝑎𝑘 (h) is the hour in 

the day when FRP reaches maximum in the diurnal cycle, and 𝜎 (h) is the width of the main diurnal peak. 

Using this method, given a certain time of day (ℎ𝑡) it is a simple process to estimate the resulting FRP 

value (𝜌̃(𝑡), MJ). The advantage is that the nighttime FRP observations from VIIRS that are located far 

outside of the main diurnal peak can be directly treated as a constant baseline value (𝜌𝑏𝑎𝑠𝑒), and this can 

be used to counteract the problem of not being able to obtain any information around the time of the 

second FRP peak seen in Fig. 5.5 from VIIRS. 

To evaluate the daily FRE generated using the FRP time-series produced using this methodology, a 

simulation was conducted to compare results from using Eqn. 5.8 to that from a full consideration of a 

bimodal distribution. In the first simulation (S1), the FRP derived from Himawari-8 at the VIIRS daytime 

and nighttime overpass times are used as 𝜌𝑝𝑒𝑎𝑘  and 𝜌𝑏𝑎𝑠𝑒in Eqn. 5.7, whilst in the second simulation (S2) 

the bimodal distribution shown in Fig. 5.5 is described as the sum of two Gaussian fuctions:  

𝜌̃𝑆2(𝑡) = ∑ 𝜌𝑝𝑒𝑎𝑘𝑖𝑒
−

(ℎ𝑡−ℎ𝑝𝑒𝑎𝑘𝑖)2

2𝜎𝑖
2

                                                                             (5.8) 

Where 𝜎𝑖 from each peak i in Fig. 5.5 (2.39±0.053 for 𝜎1 and 1.24±0.12 for 𝜎2 during June, 1.63±0.041 

for 𝜎1  and 0.60±0.077 for 𝜎2  during October) are used here, ℎ𝑝𝑒𝑎𝑘𝑖  (h) is the hour in day when FRP 

reaches maximum of two peaks in the diurnal cycle (14.0 for ℎ𝑝𝑒𝑎𝑘1 and 21.2 for ℎ𝑝𝑒𝑎𝑘2 during June, 14.2 

for  ℎ𝑝𝑒𝑎𝑘1  and 18.4 for ℎ𝑝𝑒𝑎𝑘2  during October). The 𝜌𝑝𝑒𝑎𝑘𝑖  are the daily Himawari-8’s observations 

during those two peak maximum time. 

Fig. 5.7 and 5.9 show the results of the simulations using data from two burning seasons in Eastern China: 

June and October 2015, whilst Fig. 5.8 shows the details of a week long simulation in June from 9 th to 

16th. 
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Figure 5.7: Hourly time series of FRP from two simulations: S1 (top row, blue line) and S2 (middle row, green line), 

along with observed FRP values from Himawari-8 (red dots) during June 2015. The bottom two scatter plots show a 

direct comparison of the summed daily FRP values from S1 (blue, left) and S2 (green, right) to those from Himawari-

8. The best fit linear relationship is shown in each case, along with its equation and the coefficient of determination 

between the two datasets. 
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Figure 5.8: Zoomed version of time series plots shown in Fig. 5.7. Hourly time series of FRP from the two 

simulations: S1 (top row, blue line) and S2 (middle row, green line), along with observed FRP values from 

Himawari-8 (red dots) during 9th-16th June 2015. 
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Figure 5.9: Hourly time series of FRP from two simulations: S1 (top row, blue line) and S2 (middle row, green line), 

along with observed FRP values from Himawari-8 (red dots) during October 2015. The bottom two scatter plots show 

a direct comparison of the summed daily FRP values from S1 (blue, left) and S2 (green, right) to those from 

Himawari-8. The best fit linear relationship is shown in each case, along with its equation and the coefficient of 

determination between the two datasets. 

 

In Fig. 5.7, the upper time-series shows a comparison of the simulation results from S1 and S2 with the 

original FRP data from Himawari-8 in June. Fig. 5.8 shows only one week data from Fig. 5.7, which 

gives zoomed view of the genereal similar distributions of S1 and S2 from 9th to 16th, June 2015. S1 

shows a slightly overestimated baseline on 10 June and underestimation of values near the second peak 

on 13 June. Meanwhile S2 shows good correlation with original observations on 13 June but a slight 

overestimation on 11 June. Nevertheless, the main purporse of this simulation is to compare FRE rather 

than hourly FRP change across the dirnual cycle. In Fig. 5.7 and 5.9 the summed hourly FRP derived 

from the simulation is compared to the sum of direct observations from Himawari-8, at same temporal 

frequency. The slopes of the linear best fit to these data, of 1.06 and 1.15 for S1 and S2 in June, and 0.97 

and 0.94 in October, suggesting that S1 is performing better in both June and October. The absolute errors 
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of S1 and S2 are however within 10% of each other. Since simulation S1 demonstrated the best results in 

this comparison, Eqn. 5.8 taken from Andela et al. (2015) was finally used to combine the Himawari-8 

and VIIRS-IM FRP data in this study. 

The daily FRE generated from the combination of VIIRS FRP data and the Himawari-8 derived diunal 

cycle was compared with that generated from the Himawari-8 FRP data and the VIIRS-to-Himawari-8 

FRP ratio shown in Fig. 5.6. These two FRE time-series are shown in Fig. 5.10a, and show very similar 

distributions, with three peaks on 11th, 13th and 17th June 2015. A strong linear correlation exists between 

these two FRE datasets, seen in Fig. 5.10b, with a linear best fit of y = 0.85x - 19.0. The similar results 

generated using the two different approaches to calculate the daily FRE confirm their robustness, and 

support the use of Eqn. 5.8 for the remainder of the study. 

 

 

Figure 5.10: Time series of daily FRE (a) generated from VIIRS (using VIIRS FRP and Himawari-8 diunal cycle 

from Eqn. 5.8) and Himawari-8 (using Himawari-8 FRP and VIIRS-to-Himawari-8 ratio from Fig. 5.6) of Eastern 

China in Jun, 2015. Scatter plot (b) shows a directly daily FRE intercomparison using the same data. The best fit 

linear relationships are shown, along with its equation, and the grey shaded area represents the 95% confidence limit 

of the relationship. 

 

Fig. 5.11 gives examples of mapped daily FRE areal density, ouput from use of the appraoch of Andela et 

al. (2015) with inputs of the daytime and nighttime cloud adjusted FRP from the VIIRS-IM product as the 

peak value and baseline values in Eqn. 5.8 respectively. The width of the main peak of the diunual cycle 

(𝜎 = 2.48 hrs) is taken from the Himawari-8 derived diurnal cycle, shown in Fig. 5.5. If there are 

multiple VIIRS-IM Product observations for a particular 0.1o grid cell during either the day or night, the 

maximum FRP is used in the implemenation. 
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Figure 5.11: Spatial distribution of daily gridded FRE areal density (left) calculated for 13 June 2015 across Eastern China, using Eqn. 5.8 with daytime areal density (middle) and nighttime FRP areal 

density (right, both cloud corrected).  
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5.2.6 COMBUSTION RATE 

The 0.368 (±0.015) kg MJ-1 conversion factor between fuel consumption and FRE reported by Wooster et 

al. (2005) from outdoor experimental tests with small straw fires is used here, because these fires are 

similar to those present in Chinese agricultural fields (Section 2.2). In the GFAS system described by 

Kaiser et al. (2012) a constant but much higher rate was initially used (1.37 kg MJ-1 in GFASv0), though 

this was later adjusted in GFASv1.0 to a landcover dependent factor ranging between 0.13 and 5.87 

kg.MJ-1 to improve consistency between GFAS’ combustion estimates with those of the burned-area 

based GFED inventory (Kaiser et al., 2012). In agricultural landcover types the GFAS conversion factor 

derived via this comparison to GFED was 0.29 kg.MJ-1, indicating that the conversion factor between 

FRE and biomass combustion derived via comparison between GFAS FRP and GFED fuel consumptions 

is a little lower than the factor derived via small-scale experiments. However, the GFED inventory is 

based on the MODIS burned area product, which is not very effective in capturing small are agricultural 

fires (see Section 2.5-2.6).  Furthermore, undetected ‘small fires’ in the MODIS active fire based GFAS 

inventory will cause underestimation of FRP in such regions (Ichoku and Kaufman, 2005). By contrast, 

the VIIRS-IM product can detect active fires down to around 1-2 MW, compared to MODIS’ 8 MW 

minimum, as detailed in Chapter 3. Thus using the VIIRS I-band data as the main driver of the active fire 

detection process here, is likely to provide a far more truthful FRE measure for use in producing the 

biomass consumption product than is obtained by using MODIS.  

 

5.2.7 CONVERSION TO SMOKE EMISSIONS 

As detailed in Chapter 2, bottom-up biomass burning emissions calculations aiming to quantify the 

amount of a particular species [x] released to the atmosphere require use of an emission factor [EFx] that 

represents the amount [g] of chemical species [x] emitted per kg of dry fuel burned. Though the 

differences in fire emission characteristics, and thus in emissions factors, occur during the different 

combustion stages of a fire have long been recognised, most commonly a single "fire averaged" emission 

factor is used to represent the typical EF of fires in particular landcover types (Wooster et al., 2011).  

The emission factors used herein were calculated from the series of in situ measurements conducted in 

agricultural areas of Eastern China during this research (see Table 4 & 5 in Chapter 4).  The EFs are 

reported in Table 5.1, and do not include those of corn because the fieldwork occurred in summer and 

corn waste burning is conducted in the autumn. Therefore, the emission factors of agricultural fires taken 
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from Andreae and Merlet (2001), as used in GFAS (Kaiser et al., 2012), were used to represent the corn 

emissions factors. In fact, the EFs for CO2 and CO (1308 and 92 g.kg-1 respectively) present in Andreae 

and Merlet (2001) are not totally dissimilar to corn EFs based on fieldwork conducted in a rural area in 

Shandong, China (1350 and 53 g.kg-1, Li et al., 2007) (at least in terms of the CO2 EF).  

 

Table 5.1: Emission Factors from agricultural residue burning in Eastern China used in this study (unit: g kg-1) and 

derived from measurements conducted for this research, apart from that of corn, which was taken from Andreae and 

Merlet (2001), as used in GFAS (Kaiser et al., 2012). 

 Emissions Factor (g.kg-1) 

 Wheat Corn Rice 

CO2 1739±19 1308±14 1761±30 

CO 60±12 92±18 47±19 

PM2.5 6.1±1.3 8.3±1.8 9.6±4.3 

Black Carbon 0.70±0.09 0.42±0.05 0.56±0.04 

 

5.2.8 CULTIVATION HARVESTING MAP 

To identify the fuel type (wheat, corn or rice residue) of the agricultural residue fires being detected, a 

“cultivation rotation” map was used. This was generated from a global monthly crop area dataset 

(MIRCA2000, Portmann et al., 2010) representing monthly irrigated and rainfed crop areas assessed 

around the year 2000. The dataset covers all major food crops, and is stored at a spatial resolution of 0.08o, 

equivalent to 9.2 km  9.2 km at the equator. The three main grain crops in China are rice, corn and wheat, 

and this was used with the MIRCA2000 dataset to generate the cultivation harvesting map used for the 

fuel type classification (Fig. 5.12). This map was then used with the EFs from Table 5.1 to select the 

appropriate emissions factor for use at a particular location and time of year. 

The monthly cultivation rotation map was converted from its original spatial resolution to that of the 0.1o 

grid cells matching the biomass combustion product developed in Section 5.3.7. Where there was more 

than one crop type in a grid cell for a particular month, the crop type with the maximum cultivated area 

was used. During data processing, once a monthly cultivation rotation map grid cell changed from 

“growing” to “empty”, the cell is flagged as “harvested”. After initial processing of the entire dataset, the 

algorithm finds all cells flagged as “harvested” and extends the same flag for the particular grid cell one 

month earlier and after this date. This is done because harvest time varies from year to year, depending on 

the weather. For example, grid cells in the south of Eastern China have been flagged as “rice harvested” 

in October during the first algorithm pass, but the actual harvest time could potentially be in September or 

even beyond the end of October - and so active fires detected between September to November in these 
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grid cells seem likely to be burning rice straw. Thus those grid cells in south of Eastern China are flagged 

as “rice harvested” for all three of these months. 

The final 0.1o monthly cultivation rotation map is shown in Fig. 5.12, and shows that during the summer 

harvesting season (May - July), wheat dominates across Eastern China, while in the autumn harvest 

season (September - October), rice dominates in the southern area, while rice and corn can both be found 

in the north. When using this map to identify the fuel type being burned, some grid cells (dark blue in Fig. 

5.12) have no crop information because of no record from MIRCA2000 database. In these cases, the 

spatially closest pixel with a crop type is be used to define the crop type, which accounts for between 26% 

to 34% of total yearly FRE from 2012 to 2015. During January and December, there is certainly no 

harvesting, in which case the identified fires might be false alarms, and these are omitted from the final 

fire emissions calculation. However, false alarms during December are not always the case, which will be 

further discussed in Chapter 6. 
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Figure 5.12:  Monthly harvest map (0.10.1o map) of Eastern China generated from MIRCA2000 rotation cultivation datasets, which will be used to identify the fuel type of each grid 

cell and apply corresponding emission factors from Table 5.1 during fire emission estimations. 
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5.3 RESULTS 

This Section examines the characteristics of the FRE generated using the combined VIIRS-IM and 

Himawari-8 FRP data, as described in Section 5.2. In addition, it will examine the dry matter combustion 

estimates produced from the FRE data, and compare it to the GFED and GFAS inventories (see the 

review in Section 2.6). Both GFEDv4.0 and GFEDv4.1s (with small fire burned area boosting) will be 

used for this comparison, as well as the up-to-date GFAS version 1.2.  

 

5.3.1 TEMPORAL AND SPATIAL DISTRIBUTION OF FRE IN EASTERN CHINA  

Fig. 5.13 shows an example of the spatial distribution of daily gridded FRE areal density present during 

the most intensive day of burning for each of the four summer burning seasons examined (2012 - 2015). 

The mean values of those grids with detected active fires range from 0.023 to 0.081 MJ.m-2. This is of a 

similar magnitude to GFAS, which has mean values ranging from 0.003 - 0.015 MJ.m-2. The higher 

values present in the VIIRS-IM derived FRE data are very likely the result of the better small fire 

sensitivity of VIIRS sensor compared to the MODIS sensor used in GFAS (Chapter 3), a subject further 

discussed in Section 5.3.2. 
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Figure 5.13: Example of spatial distribution of daily FRE areal density (calculated per 0.1o grid cell) from the day 

with highest total daily FRE of the four summer burning seasons in 2012-2015.  
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Figure 5.14: Estimated daily FRE areal density (MJ.m-2) from GFAS on the same days shown in Fig. 5.13 (Kaier et 

al., 2012). 

 

Fig. 5.15a shows the time series of daily mean FRE areal density (0.1o grid cell resolution) in Eastern 

China from February 2012 to December 2015. A very strong seasonal variation is seen, with major peaks 

in May-June and much smaller peaks in September-October. In fact, the smaller peaks are a combination 

of a few fluctuations lasting from October until December, and this will be further discussed in Chapter 6. 

Fig. 5.15b shows the same data, but broken down by crop residue type using the mapped information 

shown in Fig. 5.12. This breakdown shows that the strong seasonal difference comes from the harvesting 

of the different crop types (also see in Fig. 5.12 and Section 5.2.8). Wheat residue burning dominates the 

May - June burning season, whilst corn and rice are the primary contributors in September - October. 

Over the whole 4 year period, wheat crop residues contributed 65 % of total FRE, whilst corn and rice 

residues contributed 17 % and 18 % respectively.  
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Figure 5.15: Time-series of mean daily FRE areal density (calculated per 0.1o grid cell) from 2012-2015. (a) Total 

FRE, and (b) break down by crop residue type (wheat, corn and rice) according to the method described in Section 

5.2.8.  

 

A distinct pattern showing two individual burning seasons can also been seen in the spatial distribution of 

FRE (Fig. 5.16). During the summer burning season (May - June), most burning is located along a 

latitudinal line around 34o N, extending from 112o E to 120o E near the coast. In the autumn burning 

season, the area of burning is much smaller and more evenly distributed. There is still a focus located 

between 32o N and 34o N, starting from 112o E and stopping close to 119o E longitude. However, in the 

southwestern direction within 112 - 114o E and 29 - 32o N we see a region that only appears to undergo 

substantial burning in the autumn. This is located in the centre of Hubei Province, a province that 

contributes around 12% of the total rice yield of the whole of China (NBSC, 2015). The FRE contributed 

from this area also accounts for between 10 and 18% of the total FRE seen in the autumn burning season 

of different years, and according to the breakdown by residue burning type as much as 26 to 39% of total 

FRE related to rice residue fires during this season. 
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Figure 5.16: Spatial distribution of grid-cell FRE areal density (MJ.m-2, 0.1 deg grid cells) for agricultural fires in Eastern China from 2012 to 2015 (top to bottom rows) split by fire 

season: summer (May-June, left column), autumn (Sep-Oct, middle column) and winter (Nov-Dec, right column). Mean regional FRE for each season is indicated in blue text, and the 

capital city location of each province is shown as a green star. 
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5.3.2 COMPARISON WITH GFAS FIRE RADIATIVE ENERGY 

A comparison was conducted between the VIIRS-generated FRE data produced herein and that output 

from the Global Fire Assimilation System (GFAS) of Kaiser et al. (2012). Both these are based on an 

active fire detection/FRP methodology and have the same output grid cell size (0.1o latitude and 

longitude). Fig. 5.17 shows a comparison of one month of daily mean FRE areal density, generated from 

this study and from GFAS. Since the grid cell size is the same, and thus the amount of landmass in each 

matching grid cell, the FRE areal density values from MODIS and VIIRS have the same ratio as the 

original FRE values (i.e. those not divided by the grid cell area). 

The two time-series shown in Fig. 5.17 demonstrate similar trends, but with generally lower values for 

GFAS than for the VIIRS-IM product developed here. During the two highest FRE days (11th and 13th 

June 2015) GFAS shows a very clear underestimation compared to VIIRS, with values 2 to 4 lower. 

The large uncertainty is from averaging all grid cells within Eastern China. 

 

Figure 5.17: Comparison of daily mean FRE areal density (with standard deviation) generated from the VIIRS-IM 

product developed in this study and the global fire assimilation system (GFAS) described in Kaiser et al. (2012). 

Daily data for June 2015 over Eastern China (0.1o grid cells).  

 

Building on the type of comparison shown in Fig. 5.17, a scatterplot of the mean FRE areal density per 

grid cell calculated from the four years of data is compared between VIIRS and GFAS in Fig. 5.18. 

VIIRS and GFAS show a positive correlation in their FRE areal density values, though with varying 

coefficients of variation (r2) ranging from 0.30 to 0.77. This variability is likely to be contributed to by 



160 

 

various aspects of the methodologies used to produce the two inventories, including (i) the satellite 

overpass time differences (up to over an hour difference) which will mean the data are recorded at 

different points on the diurnal cycle; (ii) the fact that GFAS weights the FRP measures by viewing angle 

which is unnecessary for VIIRS (Section 3.2); (iii) the use in GFAS of the weighted mean of all MODIS 

overpasses available per day (multiplied by the number of seconds in 24 hours) to enable a representative 

FRE to be captured, whilst the VIIRS-IM based approach developed here uses the real fire diurnal cycle 

characteristic for the region (taken from Himawari-8). The differences may also of course be related to 

the different minimum FRP detection limits of the NPP-Suomi VIIRS and Aqua/Terra MODIS sensors, 

and the proportion of the residue fires that fall below these limits at different times. 

The mean slope of the FRE areal density data coming from VIIRS and from GFAS is 3.19 ± 0.90 J.m-

2/J.m-2, indicating that GFAS provides substantially lower estimates of FRE areal density than does the 

VIIRS-IM product developed here. The lowest slope occurs for 2015, with a value of 2.04. This is 

significantly influenced by one high FRE areal density value from GFAS, suspected to be anomalously 

due to duplicated active fire detections coming from MODIS’ edge-of-swath observations made on this 

particularly fire-affected day during the summer burning season, a point already discussed in Section 3.2 

in relation to this particular observation. 
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Figure 5.18: Direct VIIRS-to-GFAS FRE areal density intercomparisons retrieved from the two datasets at 0.1o 

degree grid cells from 2012-2015 (a-d). The best fit linear relationships are shown, along with its equation, and the 

grey shaded area represents the 95% confidence limit on the relationship.  

 

5.3.3 COMPARISONS TO GFAS AND GFED DRY MATTER BURNED METRICS 

Dry matter burned (DMB) is used as a metric here, which is a common and direct output of all three fire 

emissions inventories being compared (GFAS, GFED and the VIIRS-IM method developed herein). The 

version of GFED used here is version 4.1, as described in Giglio et al. (2013) which is the most current 

version at the time of writing (May 2017). The version of GFAS used is version 1.2, which is an updated 

version of that described in Kaiser et al. (2012, updated mainly in terms of the spatial resolution [0.1°]) 

which is the most recent version at the time of writing (May 2017).  The use of the DMB as the 

comparison variable removes differences that could come from the different inventories use of varying 

gaseous or particulate emission factors in the final fire emissions calculation, and enables a directly 

comparable metric to be used. Comparisons between the monthly DMB estimates are shown in Fig. 5.19. 

All three inventories (GFAS, GFED and VIIRS-IM) show a clear peak during the summer burning season, 

but GFAS and VIIRS show a much sharper peak in June, while GFED’s summer burning season extends 

one month earlier (May) and later (July). VIIRS-IM shows a DMB peak during June ranging from 3.30 to 
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11.2 Tg, whilst GFED shows lower values of 1.89 - 5.34 Tg and GFAS rather similar to GFED at 2.00 to 

4.30 Tg.  It should be remembered that GFAS’ FRE to dry matter burned (DMB) calculation is calibrated 

using GFED, and so these two databases are essentially driven to give similar monthly totals, as explained 

in Kaiser et al. (2012). It can be seen from Fig 5.19 that VIIRS’ DMB estimates are in general 

approximately 100% to 400% higher than those of the same period reported by GFAS and GFED. As 

detailed in Chapter 3, VIIRS has the ability to detect far smaller (and lower FRP) fires than can MODIS, 

due to its fine spatial resolution I-band observations that are based on much smaller area thermal channel 

pixels (375 m x and y pixel sizes at nadir) than those of the MODIS sensor (1000 m x and y pixel sizes at 

nadir). This results in often significantly higher per-scene FRP totals being generated by VIIRS-IM 

compared to MODIS, due to additional active fires being detected by VIIRS that are below the MODIS 

detection limit (see Fig. 13, Section 3.2).  This feeds into far higher FRE estimates from the VIIRS-IM 

inventory than come from the use of MODIS within GFAS for the same time period, again as a result of 

VIIRS’ ability to detect lower FRP fires, and also because the near-nadir minimum FRP detection limit is 

more consistently maintained across the VIIRS swath than with MODIS due to the VIIRS unique pixel 

aggregation scheme (see Section 3.2). 

 

Figure 5.19: Monthly time-series of total dry matter burned (DMB) retrieved using the VIIRS-IM FRP product 

developed in Chapter 3 (with standard deviation shown as red error bar), along with comparable GFAS and 

GFEDv4.1s/GFEDv4.0 data (2012-2015). 

 

For the autumn burning season of Eastern China, the peak in the GFAS and GFED inventories is much 

less obvious than that of the summer burning season (Fig. 5.19). Dry Matter Burned (DMB) in October 

ranges from 0.57 - 1.74 Tg for GFED, significantly higher than the 0.31 - 0.61 Tg reported by GFAS, but 
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much lower than the 1.62 - 3.05 Tg reported using the VIIRS-IM inventory developed here. The VIIRS-

IM derived dry matter burned estimates for Eastern China are therefore 1 to 2 times higher than GFED 

and 3 to 4  higher than those of GFAS, and these represent larger differences between VIIRS-IM and the 

other two inventories than exist for the earlier summer burning season. This indicates that fires burning 

during the autumn burning season might be on average smaller and/or more isolated from other fires than 

in the summer burning season, and thus are more likely to be missed by MODIS’ active fire (Giglio et al., 

2016) or GFED burned area (Giglio et al., 2013) detection algorithms (compared to those in the summer). 

Though the figures from GFED lie closer to those of VIIR-IM than those of GFAS, this is likely to be 

significantly contributed to by the ‘small fire’ adjustment present in GFEDv4.1s, based on the 

methodology of Randerson et al., (2012). This will be further discussed in the following Section. This 

small fire addition used in GFEDv4.1s was not present in the version of GFED used previously to 

calibrate GFAS (Kaiser et al., 2012), and so is very likely the reason that the GFEDv4.1s and GFAS 

DMB values diverge quite considerably over Eastern China. In the previous GFED version (e.g. 

GFEDv4.0) the DMB estimates of Eastern China from GFED were generally lower, rather than current 

version which is higher than GFAS (Fig 5.19).  

Since GFED uses 0.25° grid cells compared to the 0.1° of the VIIRS-IM and GFEAS inventories, a 

common re-gridding to 0.5° cells was conducted in order to ease product intercomparison. This balanced 

consideration of keeping spatial resolutions as high as possible, whilst avoiding uncertainty introduced by 

subdividing the original cells.  The metric is also altered slightly from DMB (kg) to DMB per unit area of 

the grid cell (g.m-2), which is the DMB in grams divided by the grid cell area (adjusted for any water or 

cloud cover). This metric cannot be directly compared to the fuel consumption per unit area in a fire 

(which typically ranges from perhaps around some 10’s to some 1000’s g.m-2 in diverse types and 

intensities of landscape fire) because in general only a small fraction of the grid cell will have been 

burned. In agricultural residue burning types of fire, fuel consumption per unit area burned may range 

from less than 100 g.m-2 in stubble burning of wheat residue (see pictures shown as Fig. 3a in Section 4.2) 

to perhaps more than a few kg.m-2 in piled ‘bonfires’ (Fig. 3b in Section 4.2 and Li et al., 2007).  

However, if a grid cell is only 5% burned in fires that consume a mean of 1 kg.m-2 of fuel across the 

burned areas, then the DMB per unit area of the cell would be reported as 50 g.m-2.   

Fig. 5.20 shows the spatial distribution of the 12 months of dry matter burned areal density data for 2013 

for all three datasets, re-gridded to this common 0.5° grid cell size. Though only one year data is shown 
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here in Fig. 5.20 as an example, the spatial distribution of each dataset was quite similar of a particular 

month in different years. For the summer burning season (that occurred only in June in 2013), all three 

datasets show an area of extensive burning extending from 31o N to 35o N, and 113o E to 120o E. However, 

the values of DMB areal density are far lower towards the outermost edges of this area for GFAS and 

GFED than they are for VIIRS-IM. Given the extensive examination of the raw VIIRS data of the area 

and the careful false alarm masking of the resulting VIIRS-IM data product (Chapter 3), it is assumed that 

the VIIRS-IM active fire record is composed of reliable detections for the area. However, in comparison 

to VIIRS-IM whose DMB areal density estimates for a cell extend up to 70 g.m-2 for the autumn burning 

season (September to October in 2013), GFAS barely observed any grid cell having a DMB higher than 

10 g.m-2. It also failed to capture the southwestern area of intensive rice residue burning close to 30o N, 

113o E. By contrast, GFED proves apparently better at quantifying the fires of this autumn season, 

showing relatively strong fire signals in the southwestern area.  However, GFED shows a very wide time 

span of burning in the summer months, starting in May and ending in August. An especially strong area 

of burning reported by GFED near 30o N, 120o E shows a strong fire signal during July and August, which 

is suspicious since it is outside of the normal burning season. Furthermore, the agricultural area ratio (see 

Fig.7 of Section 3.2) is quite low in this area, and comparisons to Google Earth showed that this location 

includes a high density urban area close to Shanghai, along with a few other cities of over a million 

people. It thus seems very unlikely that strong agricultural burning happened at this location, and the high 

DMB areal density estimates reported by GFED seem suspicious. 
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Figure 5.20: Spatial distribution of monthly total grid-cell dry matter burned areal density of agricultural fires 

occurring in Eastern China in 2013 retrieved from VIIRS, GFAS, and GFED4.1s.  
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5.3.3 EVALUATION OF THE IMPACT OF SMALL FIRE BOOSTING ON GFEDV4.1S 

The purpose of the GFEDv4.1s ‘small fire’ adjustment is to bias correct the GFED inventory for the 

impact of ‘small’ undetected fires that are missed by the GFED burned area product described in Giglo et 

al. (2013). This burned area product is based on 500 m MODIS pixel measurements, and since many 

agricultural residue burns have areas far smaller than this (indeed very much smaller typically; as detailed 

in Section 3.2) a series of such fires would typically need to be present in a MODIS 500 m pixel for it to 

be detected as burned by the MODIS GFED burned area algorithm.  The ‘small fire boost’ present is 

GFEDv4.1s is aimed at correcting for this deficit, based on the method of Randerson et al. (2012) that 

uses MODIS active fire, burned area and optical band vegetation index data to identify a relation between 

these, and then applies this to MODIS active fire detections in areas where no burned area was detected in 

order to provide the bias correction for the impact of undetected smaller burned areas (using the fact that 

the MODIS active fire product might quite often still be able to see their active fire signature; Eqn 2.3 of 

Section 2.6.4; Randerson et al., 2012). In Section 5.3.2, the apparent improvement in the fire emission 

estimates brought about by ‘small fire boost’ for the autumn burning season has been made apparent, but 

the unusually long summer burning season lasting from May till July appears contradictory to other data 

(Fig. 5.17). This Section further explores the reason for these two phenomena and evaluates the efficacy 

of the ‘small fire boosting’ applied within GFEDv4.1s. 

GFEDv4.0, the closest GFED product available that has no ‘small fire boosting’ applied, is used here, 

along with GFEDv4.1s from which the small fire boosting can be subtracted if desired. Fig. 5.21 shows 

the spatial distribution of burned area reported in GFEDv4.0 and GFEDv4.1s, along with the small fire 

fraction reported in GFEDv4.1s during June, August and October 2015. These three months represent the 

summer burning season, the non-burning season and the autumn burning season of the study area. 

Comparison of burned areas from GFEDv4.0 and GFEDv4.1s show that the small fire boosting has 

greatly increased the burned area in Eastern China, contributing both to a growing area of fire existing in 

fire affected grid cells in GFEDv4.0 and expanding the spatial extent of the fire affected grid cells. This 

can be confirmed by the distribution of the small fire fraction metric. For example, the total observed 

burned area in GFEDv4.0 is 710 km2 during June 2015, but increased to 3586 km2 in GFEDv4.1s, with 

2389 km2 of this in cells with existing fire in GFEDv4.0 and 1197 km2 from cells that had no fire in 

GFEDv4.0. 
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However, a suspiciously large area of burning is also found in GFEDv4.1s around 29-33o N, 119-122o E 

GFEDv4during June and August, but not October (Fig. 5.21). As mentioned in Section 5.3.2, this is a 

high density urban area with limited agricultural land. Section 3.2 described that large numbers of VIIRS 

active fire detections made in industrial areas or close to manmade structures of particular types are false 

alarms caused by highly reflective and/or warm rooftops (Fig. 6, Section 3.2). The temporal and 

landcover based filters described in Section 3.2 were developed to mask such false alarms from the final 

VIIRS-IM active fire product. The MODIS active fire product does not use such false alarm filtering, 

leaving suspicion that similar false alarms as affect VIIRS prior to the filter application also may affect 

MODIS (but are not filtered out). This could potentially be the cause of the suspicious burning areas in 

GFEDv4.1s, because from the MODIS AF product the ‘small fire boost’ to burned area is generated 

(Randerson et al., 2012). 

 

Figure 5.21: Spatial distribution (0.25 × 0.25o grid) of burned area from GFEDv4.0 (left column), GFEDv4.1s 

(middle column) and small fire fraction used in GFEDv4.1s during June (upper row), August (middle row) and 

October 2015 (lower row). Small fire fraction is a metric used in GFEDv4.1s to correct the impact of ‘small’ 

undetected fires that are missed by the GFED burned area product. 
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The landcover mask used in the VIIRS active fire false alarm screening process developed herein (Fig. 7, 

Section 3.2; also seen in Section 3.5) was applied to the MODIS active fire product, and used to classify 

all MODIS-detected active fire pixels into “suspected true active fires” and “suspected false alarms”. 

Each pixel was then gridded to a 0.25 o grid, the same spatial resolution as GFED (Fig. 5.22), and the 

number of each type of active fire examined. High numbers of suspected true active fires were found in 

June and October 2015 (Fig. 5.22), which are the expected fire seasons. In June (top row) detected fires 

appear to be occurring in areas that are realistic and where the landcover mask shows the land is 

agricultural in nature, but there are also substantial numbers of fires present in areas that the landcover 

mask suggests maybe false alarms related to industrial or urban features. In October (bottom row) 

detected fires appear to be occurring in areas that are realistic, and where the landcover mask shows the 

land is agricultural in nature, and there are fewer fires that the landcover mask suggests maybe false 

alarms.  However, in August 2015 there are very large numbers of false alarms located in the area 29-33o 

N, 119-122o E, which has been identified as a suspicious area of GFED-reported burned area earlier, 

which could be caused by stronger sunglint during summer.  
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Figure 5.22: Spatial distribution of MODIS active fire pixel counts (for 0.25 × 0.25o grid), classifying as suspected 

true active fire (left column), and suspected false alarm (right column) using landcover filter from Section 3.2 (Fig.7a, 

details seen in Section 3.5.3) observed during June (upper row), August (middle row) and October 2015 (lower row).  

 

The classified MODIS active fire pixel counts were then used to evaluate the contribution from suspected 

true active fires and false alarms in GFEDv4.1s’ estimate of DMB. For a 0.25 o grid cell, if the suspected 

count of true active fire pixels is larger than the count of false alarms, the burned area from this whole cell 

was considered to be contributed by active fires that are true active fire detections. If the count of false 

active fires was larger than the count of true active fires, then the burned area from this whole cell was 

considered to be contributed by active fires that are false alarms.  Fig. 5.23a shows the comparison of 

DMB from GFEDv4.0 and from the small fire boost only in GFEDv4.1s, and Fig. 5.23b shows the 

breakdown of contributions from suspected true active fires and false alarms. Apart from June, most 

months are dominated by DMB that comes from ‘small fire boosted burned area’ that comes from grid 
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cells suspected of being dominated by false alarms rather than correct active fire detections. For example, 

in 2015, total DMB from GFEDv4.0 is 1.28 Tg and the suspected true active fire boost adds a further 2.37 

Tg (an additional 185%).  However, the total DMB from grid cells dominated by suspected false alarms is 

5.03 Tg, more than twice as much that coming from grid cells dominated by suspected true active fire 

detections. 

 

Figure 5.23: Monthly time-series of total dry matter burned from GFED, 2012-2015. (a) comparison of GFEDv4.0 

results and small fire boost only results from GFEDv4.1s (already exclude GFEDv4.0), and (b) break down of small 

fire boost results by suspected true active fires and suspected false alarms using the MODIS active fire counts map 

shown in Fig. 5.20. 

 

5.3.4 AGRICULTURAL FIRE EMISSIONS INTERCOMPARISON 

Fig. 5.20 has demonstrated the much higher dry matter burned estimate (expressed per m2 of agricultural 

land in a grid cell) from VIIRS-IM compared to GFAS or GFED. Taking the year 2013 as an example, 

the total yearly DMB from VIIRS-IM, GFAS and GFED is 19.0, 6.2 and 15.2 Tg respectively. Previous 

research tends to suggest that satellite based methods of fuel consumption estimation will lead to very 

large underestimations in agricultural burning regions, due to the presence of numerous small fires that 

are difficult to detect from EO satellites (Yan et al., 2006). However, our results show DMB totals far 

higher than those for the existing GFED and GFAS databases, and whilst GFEDv4.1s is closer to our total, 

the previous Section has placed considerable doubt on the efficacy of the “small fire boosting” approach 

used to increase the DMB totals beyond the far lower values found in GFEDv4.0 (which is 2.44 Tg from 
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this region; much closer to the value of GFAS).  The differing performance of the VIIRS-IM inventory is 

a direct result of the method combine the small fire detection sensitivity of VIIRS and the diurnal cycle 

information generated from Himawari-8 - which together deliver a fire radiative energy (FRE) estimate 

that takes into account small fires and which can be converted into an estimate of DMB using the 

conversion factor of Wooster et al. (2005). This synergy of VIIRS and geostationary data appears to offer 

a substantial development in relation to EO-based quantifying agricultural burning.  

To compare with other reported agricultural fires emissions inventories for China, the DMB estimates 

were converted to fire emissions estimates using the emissions factors and methods described in Section 

5.3.5 and 5.3.6. Results are shown in Fig. 5.24. The total emissions of CO2 during 2012 - 2014 period 

cover a narrow range of 27,069 - 31,107 Gg (Table 5.2), but decrease to 16,932 Gg during 2015, mainly 

due to the fact that CO2 emission of wheat residue fires of that year is only 11,198 Gg, 48%, 55% and 53% 

of that in 2012, 2013 and 2014 respectively. This is because less fires occurred in the wheat growing 

region during the time of the landcover crop map shown in Fig. 5.12. Similar patterns are found for CO, 

PM2.5 and BC (see Fig. 5.24). 

 

 

Figure 5.24:  Total CO2, CO, PM2.5 and BC emissions (with standard deviation shown as coloured error bar) from 

three main crop residues burning types (wheat, corn, rice) during 2012-2015.  
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The primary contributor to the fire emissions of Eastern China is found to be wheat residue burns, which 

in general accounts for over 50% of the emissions of any particular species from year to year. The 

contributions of wheat residue burns are 66-77% (CO2), 69-80%(CO), 55-69% (PM2.5) and 71-81% (BC). 

However, the wheat crop yield is 10% lower than rice yield, and only 20% higher than corn yield 

according to the yearly National Bureau of Statistics of China (NBSC, 2012). The dry matter production-

to-residue ratio of wheat is not higher than any other crop (Wang and Zhang, 2008; also see Table 6.2 in 

Chapter 6). A higher burning ratio for wheat residue is the only explanation for its dominant contribution 

to the fire emissions, which might be linked with local management practices and stakeholders’ decisions 

and will be further discussion in Chapter 6.   

The emissions estimates derived in this work have been compared with those from previous research 

conducted in China using satellite-based method or crop yield based approaches (CYBA, Table 5.2), 

originally reviewed in Section 2.6. Note that a few CYBA methods have more recently tried to use 

satellite-derived active fire detections to allocate total estimated crop residue burning and create high 

spatial resolution fire emissions datasets (Huang et al., 2012, Li et al., 2016). However, these are 

fundamentally still estimates based on the CYBA approach, as shown in Table 5.2. Considering the size 

of different regions, the results from this study are comparable with those found by Huang et al. (2012) 

who used CYBA methodology, but are around 1-2 times lower than those derived from other CYBA 

based methodologies. However, this is not because there is a clear underestimate of the fire emissions 

using the VIIRS-IM and Himawari-8 based satellite method developed herein. On the contrary, it is 

possible that the CYBA based studies may have overestimated the emissions from corn and rice residue 

burning by applying very high burning ratios (i.e. the amount of residue burned compared to the total 

amount generated by farming) in their studies. This will be further discussed in Chapter 6. 

Another satellite-based research conducted by Liu et al., (2015) used the FRP product from MODIS, with 

a modified Gaussian function to simulate a diurnal cycle, to generate daily FRE and then convert it into 

emissions. Results from Liu et al. (2015) for 2012-2014 are more comparable to, but not for all emissions, 

than those generated by the VIIRS-IM and Himawari-8 products used in this study. The fact they are 

lower than from VIIRS-IM can be explained by the tendency of MODIS to miss small active fires in 

comparison to VIIRS, as demonstrated in Chapter 3. Liu et al. (2015) also estimated a higher CO2 

emission total for 2012 (26,000 Gg) compared to 2013 (9800 Gg) and 2014 (13,000 Gg). However, the 
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study did not provide any adjustment for the impact of the MODIS scan geometry ‘bow-tie’ effect 

(Chapter 3), which leads to duplicated active fire detections towards the edge of the MODIS swath, which 

was highlighted as a serious problem by Freeborn et al. (2008) and also by the current study (Chapter 3). 

This problem has been addressed to some extent in GFAS using a weighing factor for the MODIS FRP 

data related to the view zenith angle (Kaiser et al., 2012), and for GFAS CO2 emissions from 2012 are 

only 24% and 10% higher than that from 2013 and 2014, a much lower increase compared to in Liu et al. 

(2015) (also see similar change of DMB in Fig. 5.19).  

Table 5.2: Comparison of the agricultural emissions calculated in this study with those of previous studies.  

Region Year Method 
Emissions (Gg.yr-1) 

Reference 
CO2 CO PM2.5 BC/EC 

Eastern China 2012 Satellite 31066±1960 1035±327 124±43 11±1.8 This study 

 2013  31107±1748 1025±320 130±44 11±1.7  

 2014  27069±1421 904±279 107±36 10±1.5  

 2015  16932±1044 562±177 70±24 6±0.95  

NCP1 2012 Satellite 26000 1700 102 13 Liu et al., 2015 

 2013  9800 630 39 5  

 2014  13000 820 50 6  

Eastern China 2013 CYBA2 72071 2549 445 42 Qiu et al., 2016 

NCP 2012 CYBA 68675 5983 452 23 Li et al., 2016 

China 2006 CYBA 68000 4000 270 30 Huang et al., 2012 

China 2000 CYBA 160000 10000 - 70 Street et al., 2003 

China 2000 CYBA 184000 11000 470 80 Yan et al., 2006 
1 NCP refers to the North China Plain, which has a geographic extent similar to that of this study (32-41oN, 113-

121oE).  

2 CYBA refers to Crop Yield Based Approaches, see Section 2.6.1 

 

 

Compare the emissions calculated from this study with other emission sources in Eastern China (Li et al., 

2015), the contribution was not significant. All the four species (CO2, CO, PM2.5, BC) contribute 

between 0.56%-2.0%, much lower than the main pollution contributed by industry and residential 

emissions. However, when limited the study time and area to summer burning season in intensive burning 

area (32-36o N, 112-122o E) only, contribution from above four species can go up to 8.1%, 18%, 22% and 

20%. This comparison confirmed the likely strong seasonal impact of agricultural fire emissions on air 

quality and global change (see Section 2.4). 
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Figure 5.25:  Comparison of CO2, CO, PM2.5 and BC from agricultural fire emissions (using 2013 as example) with 

those from other emission sources (residential, industry, power, transport, data source: Li et al., 2015) in intensive 

burning area (32-36o N, 112-122o E) of Eastern China. 

 

5.4 SUMMARY 

This chapter has combined the newly developed VIIRS-IM FRP product described in Chapter 3, a newly 

derived agricultural fire diurnal cycle from the geostationary Himawari-8 satellite, and the smoke 

emission factors measured in situ in Eastern China from Chapter 4. The output from this process is a high 

spatio-temporal resolution agricultural burning emissions product for Eastern China that take into account 

the type of small agricultural residue fire which dominates the region. A cultivation rotation map has been 

used to help identify the fuel type of the fires being burned, which is necessary when allocating the 

emission factors in the most accurate manner for emission estimation (since the EF’s from the different 

fuel types differ somewhat; Section 5.2.7).  

The output from this processing has been compared with two state-of-the-art global fire emissions 

inventories, GFAS and GFEDv4.1s. Dry matter emissions from this study are 1 to 4 times higher than 

GFAS/GFED 4.1s during two burning seasons, which indicates the very substantial contribution that 

“small” fires, unable to be detected by the MODIS active fire product or by the MODIS burned area 

product, make to emissions of the region. An additional comparison to GFEDv4.0 as well as GFEDv4.1 
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shows that the “small fire boosting” methodology developed by Randerson et al., (2012) and applied in 

GFEDv4.1s may well have increased the DMB totals to amounts more in line with those from the VIIRS-

IM-based inventory, but that very significant amounts of these additional emissions are located in places 

that appear unlikely to host biomass fires, and overall the additional emissions are mostly based on 

suspected false alarm active fires than true active fire detections. The efficacy of the ‘small fire boost’ 

methodology is therefore called into question, at least in this agricultural burning region. 

Using the new fire emissions data based on the VIIRS and Himawari-8 datasets, wheat residue has been 

found to be the main contributor to agricultural burning emissions in Eastern China for all the species we 

estimated in this study (representing 55 to 81%), which could be explained by the higher burning ratio of 

wheat residue compared to other residues. Historical data using the CYBA methodology might have 

overestimated the burning ratio of corn and rice, leading to overestimation by a factor of 1-2 of the final 

emission totals. This will be further discussed in the next Chapter. 
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CHAPTER 6: EO-BASED EXAMINATION OF SOCIETAL 

BEHAVIOUR WITH RESPECT TO BURNING 

 

6.1 INTRODUCTION 

Based on the analysis from Chapter 5, the agricultural burning smoke emissions from fires in Eastern 

China are further discussed in this Chapter, focusing on their relationship to local and national 

management practices.  

 

6.2 DISCOVERY OF A WINTER BURNING SEASON 

As detailed in Chapter 5, small peaks in the dry matter burned (DMB) time-series are apparent in 

November-December of each year studied with the VIIRS data (Fig. 5.13). A magnification of these parts 

of the time-series from 2013 are shown below in Fig. 6.1. 

 

 

Figure 6.1: Time series of daily total DME (dry matter burned) in Eastern China from September 1st to December 

31st, 2013, with standard deviation shown as black error bar. 
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These were initially considered to be false alarms that had failed to be excluded by the landcover or 

persistent detection filters detailed in Chapter 3 (e.g. white circle outlined area in Figure 7c of Section 

3.2), because mention of a winter burning season was not found in any of the literature reviewed in 

Chapter 2 (e.g. Chen et al., 2016; Huang et al., 2012; Zhang et al., 2008), and only burning around 

summer and autumn seasons have been reported. Furthermore, according to the mapped time of 

harvesting derived from the MIRCA2000 data (Fig. 5.12), there is no obvious harvesting of any of the 

three studied crop types (wheat, corn, rice) in this winter period. However, close examination of the 

original VIIRS data and the VIIRS-IM FRP product generated from it shows that most of the active fires 

detected in Nov and Dec are in fact located in or close to agricultural land (Fig. 6.2), and are in general 

not located close to industrial areas of the type known to cause false alarms that need to be screened out 

(Section 3.2; Fig. 6), and nor do they appear multiple times in the same month at the same location as 

would be expected to be the case if they were false alarms generated by land-based features. Therefore, it 

seems highly probable that these active fire detections in fact represent identifications of true sites of 

agricultural burning. 
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Figure 6.2: Google Earth imagery (centred at 33.210°N, 119.043°E) shows the VIIRS active fire pixels (red pin, fire detection algorithm details seen in Section 3.2) from Nov. 20th to 

Dec. 10th, 2013. 
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If the Nov-Dec active fire detections are real, as is believed to be the case, the most reasonable 

explanation appears to be that the crop residues being burned come from the most recent Sept-Oct harvest 

season, but that these were not burned at the end of the harvest but rather were left for a few months and 

burned further into the winter period. Local newspapers, online media and other information sources were 

checked to find evidence to support or refute this explanation. 

After some investigation, sources were found that supported residue burning episodes happening during 

the winter period in Eastern China. For example, on 5 December 2013 Jiangsu Province TV station 

reported a huge crop residue burning episode in Hongze, Jiangsu Province, nearby the location shown in 

Fig. 6.2. Fig. 6.3 shows screenshots from one of the news reports made at the time, where flames and 

thick smoke can be seen resulting from the crop residue burning (also described in Chinese subtitles). The 

visibility decrease was such that the TV presenter almost disappears in the smoke by the end of the news 

report. Similar reports were found in different websites/newspapers from across much of Eastern China 

area (e.g. Wang and Zhang, 2016; Za, 2015; Zuo, 2015). 

 

 

Figure 6.3:  Evidence for agricultural burning in the winter season (2013). During a live TV news report related to 

intensive burning of agricultural residues in Hongze, Jiangsu Province (33.2942° N, 118.8731° E) on 5th December 

2013, the reporter disappears into the thick smoke 

(http://www.weibo.com/1301904252/AlVcm8jZ2?type=comment#_rnd1499031542147). 

 

http://www.weibo.com/1301904252/AlVcm8jZ2?type=comment#_rnd1499031542147
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Subsequent to the confirmation that a late winter burning season did indeed occur – at least in 2013 (Fig, 

6.1) - and that the Nov-Dec small peak seen in the timeseries of Fig. 5.15 and Fig. 6.1 indeed represent a 

real event in 2013 (and most likely in the other years as well), an explanation as to why this activity may 

have occurred outside of the normal burning season was sought. According to Yun Xia, a local Govenor 

of the Environmental Department in Hefei (interview conducted by Anhui News; Zuo, 2015), fire 

prohibition in the local area started at beginning of September up until the 20th November. At this time, 

the local government more strongly enforced its polices that aim to restrict agricultural residue burning, 

and established almost continuous patrols to identify areas likely to host fires in order to prevent them 

from occurring. However, without an alternative, cost-effective way to dispose of their crop residues, it 

seems likely that local farmers simply stored the residue material and burned them soon after the 

prohibition period and intensive patrols had ceased. The end of the prohibition period therefore coincides 

with this new winter burning season. 

To identify the likely crop residue type being burned in Nov-Dec required a slight alteration of the 

previous methodology detailed in Section 5.2.8. Because the fires observed with VIIRS during November 

and December are related to ‘left over’ material from the autumn harvest season, instead of using the 

harvest map derived from the MIRCA2000 data in those two months (Fig. 5.11), the October data was 

instead used.  The results have, in fact, already been shown in Fig. 5.13b, where the daily FRE areal 

density time-series is shown by crop residue type.  The winter season accounts for between 19 and 36% 

of the sum of the autumn and winter FRE from 2012-2015. During the “artificially induced” winter 

burning season, only corn and rice residues appear to have been burned, and their relative contributions to 

the total are 49% and 51% respectively. Despite the spatial distribution of fires varying from winter to 

autumn, this pattern is in fact rather similar to that of the autumn burning season, where corn and rice 

residues accounted for 54% and 46% of the total FRE released respectively. The reason for the spatial 

shift of winter fires will be discussed in Section 6.4.  

 

6.3 BURNING RATIOS 

The ratio of crop residue burning in the field used to be considered as a key parameter when producing 

agricultural burning emission estimates via the crop yield based approaches (CYBA, see Section 2.6.1). 

This metric represents the total annual percentage of crop residue burned in the field compared to total 
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crop residue amount produced after harvesting (Fig. 6.4; Chen et al., 2016; Gao et al., 2002; Huang et al., 

2012; Li et al., 2016). 

Compared to a constant ratio (17%) based on 1970s data used in Streets et al., (2003)’s research, more 

detailed regional values have been used in many more recent studies. Generally, three datasets have been 

used in CYBA research in China over the last decade:  

i) That from Wang and Zhang (2008), who divided all provinces in China into six zones 

according to their geographical distribution.  A questionnaire based survey among farmers 

within these regions was used to elucidate burning activity, and using the responses it was 

determined that burning ratios for the different categories ranged from 11% to 33%. This 

research output has subsequently been cited and applied in a series of fire emission studies 

(He et al., 2011, Qin and Xie 2011, Zhang et al., 2016).  

ii) A set of province-dependent burning ratio datasets adopted from a large-scale investigation 

of the use of crop residues made across different Chinese provinces (Gao et al., 2002). This 

work has been used and cited by Huang et al. (2012), Yan et al. (2006), Zhang et al. (2008), 

as shown in Fig. 6.4. 

iii) A derived value based on farmers’ income levels, based on the fact that Cao et al., (2006) 

found a linear correlation between the income of farmers and burning ratio (r = 0.81). This 

result has been applied within several fire emission studies (Zhao et al., 2015; Sun et al., 

2016; Zhang et al., 2017) and will be examined in Section 6.4. 

 

 

Figure 6.4: Spatial distribution of province-specific burning ratios in Eastern China from results of Gao et al. (2002). 

This metric represents the percentage of crop residue burned in the fields compare to the total amount of crop residue 

amount produced after harvesting per year. 
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Using the data in this study, it is straight forward to reverse the CYBA methodology and calculate the 

burning ratio from the crop-dependent DMB data (as shown in Fig. 5.19, Section 5.3). This procedure can 

help check whether the outputs derived herein are comparable with those of the existing literature, as well 

as enabling the advantages offered by the time series data available from satellite remote sensing to be 

fully exploited. The burning ratios are calculated from: 

𝐹𝑖𝑗 =
𝑀𝑖𝑗

𝑃𝑖𝑗𝑅𝑖𝐶
                                                                                                                        (6.1) 

Where i stands for crop type and j stands for the province; Mi is dry matter from VIIRS (kg); Pij is the 

crop yield (kg); Ri is the proportion of dry matter production-to-residue ratios and C is crop combustion 

completeness.  

The province level crop yield Pij is derived from annually published statistical reports, which can be seen 

in Table 6.1. Ri and C are from literature, and are shown in Table 6.2. 

 

Table 6.1: Province-specific crop yield of three main grains in Eastern China (101 Gg, National Bureau of Statistics 

of China, 2012-2015)  

Province 
 

2012 
  

2013 
  

2014 
  

2015 
 

 

Wheat Corn Rice Wheat Corn Rice Wheat Corn Rice Wheat Corn Rice 

Shanghai 24 3 89 23 3 89 18 3 87 19 3 84 

Beijing 28 90 0 27 84 0 19 75 0 12 50 0 

Tianjin 54 94 11 56 93 11 57 102 13 59 101 12 

Anhui 1216 363 1387 1294 428 1394 1332 426 1362 1394 466 1395 

Shandong 2104 1979 104 2180 1995 103 2219 1967 104 2264 1988 101 

Shanxi 240 855 1 259 904 1 231 956 1 259 938 1 

Jiangsu 1023 226 1864 1049 230 1900 1101 216 1922 1160 239 1912 

Jiangxi 2 11 1950 2 13 1976 3 12 2004 3 12 2025 

Hebei 1276 1640 60 1338 1650 50 1387 1704 59 1430 1671 54 

Henan 3123 1697 475 3177 1748 493 3226 1797 486 3329 1732 529 

Zhejiang 27 15 649 27 29 608 28 27 580 31 30 590 

Hubei 345 276 1617 371 283 1651 417 271 1677 422 294 1730 

Hunan 10 189 2575 9 197 2632 11 185 2562 10 189 2634 
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Table 6.2: Proportion of dry matter production-to-residue ratios (Ri) and crop combustion completeness (C, de 

Zarate et al., 2010; Huang et al., 2012; Turn et al.,1997; Wang and Zhang, 2008) from burning of wheat, corn and 

rice residues. Combustion completeness is high for fine fuels such as these. 

 Production-to-residue Ratio Combustion Completeness 

Wheat 1.0 0.86 

Corn 2.0 0.92 

Rice 1.0 0.89 

 

The crop and province dependent residue burning ratios calculated in this study are shown in Fig. 6.5. 

The yearly mean wheat burning ratios are generally highest (7.8-12%), followed by corn (1.7 - 2.3%), and 

rice (0.9 - 2.0%). Comparing these figures to the data from Gao et al. (2002, see in Fig. 6.4), in which the 

mean burning ratios of wheat, corn and rice are 9.8%, 5.9%, 8.5% respectively we see that the wheat 

burning ratios are of similar levels of past work, whilst the rice and corn burning ratios are much lower. 

Though previous research tends to indicate that satellite based methods underestimate agricultural fire 

emissions (Yan et al., 2006), this study has confirmed that during the summer burning season wheat 

residue fires dominate, and that the estimates of the burning ratio derived from satellite remote sensing 

with VIIRS and Himawari-8 are similar levels to those of ground-based measures of Gao et al. (2002). 

The smaller ratios we see from rice and corn imply potential error of prior studies on agricultural fire 

emissions in Eastern China based on the CYBA, because of overestimated burning ratios. 
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Figure 6.5: Spatial distribution of province-specific percentages of crop residues burned in the fields (burning ratio 

metrics) of Eastern China using VIIRS results from 2012-2015. 

 

Fig. 6.5 also indicates that burning ratios are not only influenced by crop type or province, but also vary 

from year to year. For example, the wheat burning ratios of key provinces in 2012, including Anhui 

(30%), Shandong (11%), Jiangsu (24%) and Henan (11%) are closest to those (20%, 8%, 10%, 7% 

respectively) from Gao et al., (2002). However, during 2015 values in this study dropped to 6% (Anhui), 

4% (Shandong), 4% (Jiangsu) and 6% (Henan) calculated via Eqn. 6.1. This interannual variation might 

be linked with changing farming activity and local prohibition policies as explained in Section 6.2 (Yang 

et al., 2008, Li et al., 2016). 
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6.4 IMPLIED SOCIAL EFFECTS 

Rates of agricultural residue burning in the fields have been proposed to vary with the local farmers 

income level (Cao et al., 2006; Qin and Xie, 2011), with the assumption that higher income areas have 

better access to electricity or other energy sources and thus have less need to utilise crop residues for 

heating and cooking – leading to higher ratios of open burning. However, this is not what is observed in 

the current study.  

As shown in Fig. 6.6, the provinces with the highest total DMB estimates (Anhui and Henan; 53 and 38 

kg.m-2.yr-1 respectively; Fig. 6.4a) have lower GDP values per capita (5580 and 5335 US$ per capita, Fig. 

6.4d), while lower provinces showing lower amounts of DMB, Shandong and Jiangsu (28 and 27 kg.m-

2.yr-1 respectively) show higher GDP per capita (9882 and 13311 USD$ respectively). Across the whole 

Eastern China, DMB is in fact inversely correlated with GDP per capita (y = -204x+15700, r2 = 0.72; at a 

level significant at the 95% confidence interval; Fig. 6.7).  

Furthermore, DMB appears also to be correlated with agricultural area (y = 1950x + 8240, r2 = 0.49) and 

population (y = 1.23x + 19, r2 = 0.47; Fig. 6.7). Huang et al., (2012) suggested that the lower crop 

residue burning amounts seen in 2006 compared to 2000 (deduced on the basis of CYBA methodology) 

might be contributed to the policy of encouraging farmers to use the residues as fertiliser. This policy 

appears to be perhaps a more reasonable explanation of the spatial and temporal trends we observe in this 

study, compared to the assumption of Cao et al. (2006) that the amount of crop residue burning is 

proportional to farmers’ income level.  
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Figure 6.6: Spatial distribution of province-specific: (a) mean yearly dry matter burned retrieved from this study, (b) 

population (Data source: Fu et al., 2014a), (c) agricultural land area (Data source: GlobeLand30, 

http://www.globallandcover.com/, see details in Section 3.4) and (d) mean GDP per capita (Data source: Fu et al., 

2014b). 

 

The reason that the DMB in a Province is inversely correlated to its DMB might be explained by the 

variation in action to prohibit burning. This can be explained in two parts: 

1. The direct cost of promoting agricultural machinery. For example, the local government of 

Jiangsu Province released a regulation in 2009 stating that by the end of 2012, over 35% of crop 

residues should been incorporated into the soil after mechanised harvesting. The regulation also 

indicated that the local government should include a budget for improving the efficiency of 

agricultural machinery and subsidise farmers who follow this regulation.  

2. The allocation of a budgetary allowance for utilisation of crop residues, which is unfortunately 

very expensive. For example, research on residue burning power generation shows the 

government needs to pay at least 20% of the total cost of the operation to keep the plants running, 

partly because of high cost of residue collection and transportation from the fields (Li and Hu, 

2009).  

http://www.globallandcover.com/
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Figure 6.7: Direct comparisons of province-specific mean yearly DMB (dry matter burned) retrieved from this study 

with (a) population, (b) agricultural land area and (c) mean GDP per capita. The best fit linear relationships are shown, 

along with its equation, and the grey shaded area represents the 95% confidence limit on the relationship.  

 

The impact of these societal effects on crop burning ratios is seen both at the inter-province level, and at 

more granular levels such as the 0.1o grid cells. The work presented in Section 6.2 suggests that the winter 

burning season (Nov-Dec) is caused by delayed burning of residues left over from the autumn harvest 

season, because of prohibition policies related to burning being more robustly enforced earlier in the 

season. Fig. 5.14 (show here again as Fig. 6.8) also showed that the spatial distribution of FRE areal 

density during winter is different from the normal autumn burning season that occurs in Sep-Oct. 

Generally, the areas of strongest burning are further from the Capital Cities (green stars) during autumn. 

For example, fires in Anhui Province are mainly distributed in the north during autumn, whilst locations 

change to south (closer to the Capital Hefei city) during the delayed winter burns. A similar example can 

also be seen in Hubei Province, where fires are shifting from west to east during the delayed winter burns 

in Nov-Dec.  
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Figure 6.8: Same as Fig. 5.16. Spatial distribution of total grid-cell FRE per m2 (0.1 deg grid cells) for agricultural fires in Eastern China from 2012 to 2015 (top to bottom rows) split by 

fire season: summer (May-June, left column), autumn (Sep-Oct, middle column) and winter (Nov-Dec, right column). Mean regional FRE for each season is indicated in blue text, and 

the capital city location of each province is shown as a green star. 
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The distance of each 0.1o grid cell centre in Fig. 6.8 to their province capitals was calculated for further 

examination. Fig. 6.9 shows the normalised frequency distribution of the distance from the highest FRE 

grid cells (top 10% in each Province) across the three burning seasons. The first and third quartiles of 

distance values during autumn season are 109 km and 214 km respectively. However, during the delayed 

winter burning season, the distribution shifts to far shorter distances, with the first and third quartiles 70 

km and 153 km respectively. The mean distance to capitals of the high FRE grid cells also deceased to 

124 km (winter) from 165 km (autumn). A Kolmogorov–Smirnov (K-S) was performed to evaluate the 

difference between the distributions of the distances seen in the autumn and winter season. A high K-S 

statistic value (0.30) and low p-value (5.9×10-24) is generated from this test indicates that the distribution 

of distances during the winter months is substantially different to those seen during summer and autumn. 

This geographical shift might also be linked with the prohibition policy. The capital cities may get better 

access to resource for enforcing the prohibition, while these resources are likely to decrease when 

expanding into areas more distant from the Capital. 

 

 

Figure 6.9: Normalised frequency distribution of distance from province capital of the top 10% of high FRE fire 

pixels during the three burning seasons: Summer - May to June (top, blue), Autumn – September to October (middle, 

green), and Winter - November to December (bottom, orange). A clear shift towards of the origin can be observed in 

Nov-Dec compared with Sep-Oct. 
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6.5 SUMMARY AND CONCLUSIONS 

This chapter has used the results from Chapter 5 to analyse aspects of societal behaviour in relation to 

agricultural burning in Eastern China. The burning ratios, which are metrics representing the percentage 

of crop residue burned in the field compared to total residue yield, are calculated using total DMB from 

VIIRS results and crop residue yields from national statistics. The burning ratios are key parameters 

required when producing agricultural burning emission estimates via the CYBA (crop yield based 

approach). The comparable values of wheat burning ratios obtained here in comparison with past work 

based on field data (Yan et al., 2006) demonstrates the potential maturing of satellite based methods in 

recent years. This is in a large part due to the VIIRS sensor’s far improved sensitivity to small fires 

compared to earlier sensors such as MODIS. The lower values of corn and rice burning ratios from this 

study indicated that past inventory may have overestimated the emissions from these two crop types by 

using too high a burning ratio. 

This study has confirmed that the newly identified winter burning season (Nov-Dec) is likely caused by 

the delayed burning of parts of autumn harvest due to local fire prohibition policies. The DMB of winter 

season accounts for 19 - 36% of the total DMB in autumn and winter, indicating the temporal transfer of 

this amount of agricultural burning to a later than normal date. A spatial transfer has also been found by 

comparing the location of fires in the winter to autumn burning seasons, and this might be driven by the 

lower enforcement of prohibition policies away from political centre of each province. 

The close link between the agricultural fire emissions and societal behaviours indicate that, despite some 

past research suggesting that aggressive emission controls (driven by governmental policy 

implementation and enforcement) could lead to a 50% fall in premature deaths due to improved air 

quality by 2030 (Saikawa et al., 2009), more thoughtful management practices than simply prohibiting 

fires for a set period after harvest time may be needed if the magnitude of burning is really to be reduced 

rather than just delayed. 
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CHAPTER 7: DISCUSSION AND CONCLUSION 

 

7.1 INTRODUCTION 

This Chapter reviews the findings of this Thesis in relation to the Objectives detailed in Section 2.7. 

Based on these, a set of conclusions and implications have been summarised in Section 7.4, and 

suggestions for future work made in the final section. 

 

7.2 REVIEW OF FINDINGS IN RELATION TO THESIS OBJECTIVES 

7.2.1 OBJECTIVE (I): QUANTIFY THE SPATIO-TEMPORAL DISTRIBUTION OF AGRICULTURAL RESIDUE 

BURNING USING ACTIVE FIRE SATELLITE EARTH OBSERVATION APPROACHES THAT TAKE INTO 

ACCOUNT “SMALL FIRES” MORE EFFECTIVELY THAN CURRENTLY DONE. 

The work to accomplish this objective is contained primarily in Chapter 3. An improved quantification of 

agricultural residue burning in Eastern China was derived, based on the use of data from the new VIIRS 

(Visible Infrared Imaging Radiometer Suite) sensor carried on the Suomi-NPP satellite, launched in 

October, 2011. The I-Band of VIIRS provides global observations twice daily at a spatial resolution of 

375m (at nadir). A new regional optimised active fire (AF) detection algorithm was developed to use the 

VIIRS I-Band data, based on a combination of past algorithms including the MODIS active fire detection 

algorithm (Giglio et al., 2016), the global VIIRS I-Band AF detection algorithm (Schroeder et al. 2014), 

the BIRD-HSRS  active fire and FRP algorithm (Wooster et al., 2003; Zhukov & Oertel, 2001; Zhukov et 

al., 2006), and the Meteosat SEVIRI Fire and Thermal Anomaly algorithm (Roberts and Wooster, 2008; 

Wooster et al., 2015). A few of the AF pixels detected using this algorithm have been validated in the 

Northern China Plain using pre- and post-fire high spatial resolution imagery (taken from Google Earth 

and a UAV deployment). This validation confirmed the existence of burned areas appearing around the 

time of the AF detection (Section 3.2).  

The regionally specialised AF detection algorithm developed in this study enables detection of an 

increased proportion of ‘small fires’ compared to the results from VIIRS global algorithm that also uses 
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the VIIRS I-Band to attempt their detection (Schroeder et al. 2014). However, the regional algorithm 

developed here includes use of more liberal detection thresholds which comes at the risk of introducing a 

higher false alarm rate (Section 3.5). The identified false alarms were often associated with large 

industrial buildings, having highly reflective and/or warm rooftops and being surrounded by more rural 

landscapes (Section 3.3). Such occurrences were removed with the help of a spatial and temporal mask, 

deriving from combination of 30 m spatial resolution GlobeLand30 global landcover mapping, 

OpenStreetMap with abundant urban area information, and a temporal filter that identified repeated fire 

detection signatures at the same location that is thought largely incompatible with real active fire 

behaviour. 

The results from the VIIRS-IM AF detection algorithm developed here were also compared with the long-

standing MODIS AF detection data. The comparison shows the VIIRS regional algorithm delivers 

typically 5 to 10 × more AF pixels than does simultaneously-collected MODIS AF data (notwithstanding 

differences in spatial resolution), and importantly with an AF detection sensitivity that remains much 

more constant across the swath due to VIIRS pixel aggregation scheme.  

 

7.2.2 OBJECTIVE (II): ESTIMATION OF BIOMASS CONSUMPTION IN AGRICULTURAL RESIDUE BURNING. 

This objective was again addressed with the work reported in Chapter 3 (with the construction of a 

‘synergy’ FRP retrieval scheme), and Chapter 5 (building of daily FRE and fire emissions methodology). 

The ‘synergy’ FRP retrieval scheme was built based on the regionally optimised AF detection algorithm 

derived to meet Obj. (I). Though VIIRS I-Band data is clearly extremely useful for detecting small fires, 

the higher FRP fires often saturate the I4-Band, leading to an underestimation in FRP retrieval. Therefore 

the VIIRS-IM ‘synergy’ FRP product blends the advantages offered by the VIIRS I-Band detection 

sensitivity to small fires with M-Band FRP retrieval over higher FRP fires, and includes appropriate 

consideration of the waveband and atmospheric transmittance differences between the VIIRS I4 and M13 

bands. The ‘synergy’ product captured on average 400% more total FRP than near simultaneous MODIS 

data, even without downward adjustment of the MODIS results for the MODIS ‘bow-tie’ effect that 

duplicates MODIS AF pixels towards the swath edge (Freeborn et al., 2011).   
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The output from VIIRS-IM ‘synergy’ FRP product was aggregated to 0.1 × 0.1° grid cells and adjusted 

for partly cloud-covered pixels. A fire diurnal cycle was then needed to convert the FRP data to estimates 

of daily fire radiative energy (FRE). This was achieved using FRP data derived from Himawari-8, a 

Japanese geostationary meteorological satellite launched on October, 2014. The FRP data from 

Himawari-8 was gridded to 0.1 × 0.1° grid cells, then converted to normalised FRP values to minimise 

the impact of day-to-day variations in the amount of fire activity, and then approximated using an 

optimally fitted Gaussian function to generate the diurnal cycle (Andela et al. 2015). The FRE results 

calculated from a combination of the VIIRS FRP retrievals and the Himawari-8 diurnal cycle were 

converted to daily dry matter burned (DMB) using the conversion factor from Wooster et al. (2005). 

 

7.2.3 OBJECTIVE (III): CONFIRMATION OF THE EMISSIONS FACTORS OF CHINESE CROP RESIDUE FIRES. 

This objective was met by the successful construction and deployment of a new portable smoke sampling 

system for the simultaneous close range measurement of trace gases (CO and CO2) and aerosols (PM2.5 

mass and BC). This system was used to study trace gas and particle emissions from field burns in China 

conducted during agricultural burning periods (Section 4.2-4.3).  

Most prior research on smoke from these types of fuels have either been based on laboratory 

measurements, and/or have relied on filter-based sampling that provides only the total sampled mass from 

whole combustion rather than higher temporal resolution information. The system developed and 

deployed herein offers the advantage of allowing continuous in situ measurements of smoke generated by 

agricultural fires burning naturally in the field, which is important as field burns may well behave quite 

differently to burns conducted under laboratory conditions (Delmas et al., 1995, also see Section 4.4). 

 

The sampling system has been deployed in Eastern China in June 2014 for collecting the measurements 

necessary to derive gas and particle emission ratios and EFs for a series of crop residue fires (Section 4.2). 

Different relationships between fine particle mass (PM2.5) and black carbon mass (BC) were found for 

smoke produced in the smouldering phase (mass ratio = 80.7) compared to the flaming phase (mass ratio 

= 2.0), which inspired the generation of a linear mixing model to quantify the contribution of each 

combustion phase to the smoke being measured at a particular time. Using time series of trace gas 
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concentrations from different fire cases, instead of a single "fire averaged" EF, ‘fire integrated’ trace gas 

EFs were calculated by weighting each instantaneous EF by the corresponding CO2 and CO excess 

abundances, (Wooster et al., 2011). The ‘fire integrated’ EFs were calculated for wheat and rice residue 

burns as 1739 ± 19 g kg-1,1761 ± 30 g kg-1, respectively for CO2, and 60 ± 12 g kg-1, 47 ± 19 g kg-1 

respectively for CO. The output from this smoke sampling system agreed well with the results derived via 

a simultaneously-deployed open path Fourier transform infrared (OP-FTIR) spectrometer. Particulate EFs 

have also been generated using the gas EFs and the linear best fit relationships between particulate mass 

and gaseous measurements.  

Enhancement of the smoke sampling system was conducted after the first field deployment in June 2014 

in China, with the purpose of improving certain performance metrics (Section 4.4). The updated system 

was briefly deployed once more in China, but also in UK tests, and the confirmed EFs for fires in the fuel 

types used in Eastern China were later used in the Chinese agricultural fire emissions estimation (Section 

5.2). 

 

7.2.4 OBJECTIVE (IV): ESTIMATE DAILY AGRICULTURAL RESIDUE BURNING EMISSIONS FOR EASTERN 

CHINA FIRE SEASONS THROUGHOUT 2013-2015. 

This objective was addressed in Chapters 5 and 6, with the final result a new high spatial-temporal 

resolution agricultural fire emissions inventory for Eastern China, along with the analysis and results 

below. 

This agricultural fire emission inventory was generated based on daily biomass consumption from 

agricultural residue burning recorded at a 0.1 × 0.1° grid spatial resolution (Obj. ii), emission factors 

deducted for Chinese residue burning (Obj. iii), and a cultivation rotation map derived from the 

MIRCA2000 global crop area dataset to identify the fuel type at the grid level (Section 5.2). The yearly 

total emissions of CO2, CO, PM2.5, BC during 2012-2015 calculated from this inventory were 12716-

22611, 343-619, 45-80, 4-7 Gg, respectively (Section 5.3). The output has been compared with two state-

of-the-art global fire databases, GFAS and GFED4.1s (introduced in Section 2.6). Dry matter emissions 

from this study were 1-5 times higher than GFAS/GFED 4.1s during summer season, and 2-7 times 

higher during autumn season, due to the improved small fire sensitivity of VIIRS compare to MODIS 

(Section 5.3).  
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In Eastern China, the wheat residue was found to be the main contributor (49-80%) to total agricultural 

burning emissions. Historical data (e.g. Huang et al., 2012; Qiu et al., 2016; Yan et al., 2006) calculated 

from crop yield based approach (CYBA, see Section 2.6) was compared with results from this study. The 

comparison found an overestimation of a factor of 2 in total emissions from CYBA research, mainly due 

to the likely overestimated corn and rice burning ratios used in those studies (Section 6.3). This study also 

discovered winter burning months (Nov-Dec) in Eastern China, which appear likely to be caused by the 

delayed burning of parts of the autumn harvest materials due to a strongly enforced fire prohibition policy 

in the earlier months.  

The fire prohibition policy led to 19 to 36% (depending on the year) of the material of the autumn harvest 

being burned later on in the winter, after the policy enforcement had been relaxed, and thus 

gaseous/particulate emissions were also moved from the autumn to this new winter burning season 

(Section 6.2). A spatial transfer was also noted, which might be driven by weaker enforcement of 

prohibition policies at locations further away from the political centre of each province (Section 6.4). 

Compare to other emission sources in Eastern China (Li et al., 2015), the contribution of agricultural fire 

emissions was not significant across the whole year. All the four species (CO2, CO, PM2.5, BC) 

contribute between 0.56%-2.0%. However, contribution from above four species can go up to 8.1%, 18%, 

22% and 20% when limiting the study time and area to summer burning season in intensive burning area. 

This comparison confirmed the likely strong seasonal impact of agricultural fire emissions on air quality 

and global change. 

 

7.3 CONCLUSIONS AND IMPLICATIONS  

As described in the beginning of Chapter 1, this PhD project aimed at improving the understanding and 

quantification of agricultural residue burning in Eastern China, in particular focusing on the emissions to 

the atmosphere that result. To achieve this, a high spatial-temporal resolution smoke emission inventory 

covering CO2, CO, PM2.5 and BC has been constructed, with the help of a regionally optimised small 

active fire detection algorithm based on data from the VIIRS satellite instrument (Chapter 3). A new 

smoke sampling system has been built and deployed to provide smoke emission factors based on in situ 

data from field burning (Chapter 4). The problems of VIIRS I-Band saturation over larger fires, and the 

conversion of instantaneous measurements of FRP to time-integrated measurements of FRE, have both 



197 

 

been carefully dealt with using a ‘synergy’ FRP retrieval scheme based on the VIIRS I- and M-Band data 

and a Gaussian diurnal cycle generated from data on a geostationary satellite, Himawari-8 (as described 

in Chapters 3 and 5). The results and comparisons to other fire inventories presented in Chapters 5 - 6 

have shown the advantage of this new inventory compared to existing datasets.  

The large uncertainties in the magnitude of the agricultural burning activity, as well as its exact timing 

and specific geographic spread, have limited the understanding of the related emissions and their 

dispersion (Street et al., 2003; Yan et al., 2006; Huang et al., 2012). By constructing a new agricultural 

fire emission inventory for Eastern China, which more accurately accounts for the type of ‘small fire’ that 

dominates agricultural landscapes, provides a strong potential for improving the assessment of the degree 

to which such burning contributes to air quality in Eastern China, and more widely to regional 

atmospheric pollution. The methodology could also potentially be applied near real-time and linked to 

regional air quality model to improve the forecasting of smoke dispersion from the agricultural fires.  

Comparing the results from this study to those from two state-of-the-art MODIS-based global fire 

emission databases (GFAS and GFED), highlights the advantage of the small fire detection capability of 

VIIRS. This comparison also proved the importance of such small fires in agricultural burning regions 

such as Eastern China. The methodology developed here could be applied to other agricultural burning 

areas such as in India, and to different biomes dominated by smaller or lower FRP fires, for example 

underground peatland burning in SE Asia (Parker et al., 2016). The methodology could potentially be 

integrated into existed global fire emission databases such as GFAS, which would enable significant 

improvements in global fire emission estimation in these ‘small fire’ dominated regions. 

 

7.4 SOME SUGGESTIONS OF FUTURE WORK 

The active fire detections generated from VIIRS and shown in the results of Chapter 3 are those that have 

passed the spatial and temporal filters introduced to screen out false alarms. The full AF detection 

omission and commission statistics of this final dataset are not, however, yet available – since there is 

little independent data to gauge what proportion of the final AF detection set are in fact correct detections, 

nor what fires are still missed by the methodology.  Such assessments should be based on independent 

validation data, and that requires large scale ground-based fieldwork, or even higher spatial resolution 

satellite or airborne datasets collected at the same time as VIIRS. These kind of data at the moment are 
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lacking, not only for our VIIRS regionally optimised active fire detection algorithm but also the global 

algorithm of Schroeder et al. (2014). Even the long-standing MODIS active fire product has only had the 

Terra version (not the Aqua version) properly accuracy assessed in terms of errors of omission and 

commission, because only Terra-MODIS is collected simultaneously with data from a high resolution 

imaging instrument (ASTER; mounted on the same platform). Validating active fire detections is very 

difficult because of such limitations, but this will ideally form part of the future work envisaged for this 

region and for the VIIRS and MODIS AF datasets that cover it.   

Another aspect of future work that needs to be examined are the smoke emission factors of corn, which 

are lacking at this moment from the results of Section 4.2.  Due to the restricted local fire prohibition 

policies, it was very difficult to conduct in situ spreading fire measurements after the first fieldwork in 

June 2014. Though extra experiments were performed using the crop residues collected in China, 

different burning conditions (i.e. bonfires rather than spreading fires) led to different emission factors 

resulting, based on using wheat residue as reference (Section 4.4). For now, published EFs for corn are 

used in the emission estimation procedures reported here (Section 5.2), further fieldwork to estimate the 

corn residue burning emissions factors should be conducted. A related issue is that the ability to provide a 

PM2.5 calibration for the DustTrak PM2.5 measurements was limited by the short burning time of the 

agricultural fires and the low flow of the smoke sampling system (Chapter 4). This limited the amount of 

PM2.5 that could be collected on the calibration filter, leading to a large uncertainty in the deposited PM2.5 

mass. In the experiments using collected Chinese crop residues as fuel, an extra PM2.5 filter batch sampler 

has been deployed to collect simultaneous PM2.5 samples with the Dusttrak at much higher flow rates 

(10 that of the Dusttrak), and this was designed to fix the problem. However, the burning conditions in 

these fires appeared rather different to those seen in true in situ burning conducted in Eastern China, thus 

the calibration function generated from this experiments wasn’t used in this study. It is recommended that 

experiments are performed in situ in Eastern China in the future to provide a trustable calibration. 

 

The methodologies developed and applied in this study are expected to be highly applicable to other 

agricultural residue burning areas. For example, intensive burning seasons are seen in India every year 

(Vadrevu et al., 2013), and the State-wise inventory shows ~ 16% of a total of 620 Tg of residue is burnt 

on farms (Jain et al., 2014). This is reported to be 40% rice straw, 22% wheat straw and 20% sugarcane 

leaves and bagasse. These figures are of the same magnitude as those detailed by Venkataraman et al. 
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(2006), which suggests that annual biomass burning totals could be as high as 138 – 350 Tg in India, with 

a large contribution from agricultural fires. The impact of such burning is unlikely to be limited to 

regional air pollution and short-term climate adjustment (due e.g. to black carbon radiative forcing), but 

may extend to impacts on crop growth and final yield through e.g. tropospheric ozone effects (a 36% 

reduction could result according to Burney and Ramanathan, 2014). However, current estimates in India 

are often calculated using crop yield based approach [CYBA] (Jain et al., 2014),whereas the satellite 

based methodology developed in this PhD should be able to provide higher spatio-temporal information 

based on direct observations of the fires themselves.  

  



200 

 

REFERENCES 

Akagi, S., Yokelson, R., Wiedinmyer, C., Alvarado, M., Reid, J., Karl, T., Crounse, J. & Wennberg, P. 2011. 

Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric 

Chemistry and Physics, 11(9), pp 4039-4072. 

Andela, N., Kaiser, J.W., Van der Werf, G.R. and Wooster, M.J., 2015. New fire diurnal cycle characterizations to 

improve fire radiative energy assessments made from MODIS observations. Atmospheric Chemistry and 

Physics, 15(15), pp.8831-8846. 

Andreae, M. O. & Merlet, P. 2001. Emission of trace gases and aerosols from biomass burning. Global 

biogeochemical cycles, 15(4), pp 955-966. 

Arraes, C. L., Camacho-Tamayo, J., Pissarra, T. T., Bueno, C. P. & Campos, S. 2010. Temporal analysis of the 

reduction in gas emission in areas of mechanically-harvested sugarcane using satellite imagery. Ciencia e 

Investigación Agraria, 37(1), pp 113-121. 

Berglee, R., 2012. World Regional Geography: People, Places and Globalization (No. 2012). The Saylor Foundation. 

Bi, Y., Gao, C., Wang, Y. and Li, B., 2009. Estimation of straw resources in China. Transactions of the Chinese 

Society of Agricultural Engineering, 25(12), pp.211-217. 

Bond, T. C., Doherty, S. J., Fahey, D., Forster, P., Berntsen, T., DeAngelo, B., Flanner, M., Ghan, S., Kärcher, B. & 

Koch, D. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of 

Geophysical Research: Atmospheres, 118(11), pp 5380-5552. 

Cao, G., Zhang, X. & Zheng, F. 2006. Inventory of black carbon and organic carbon emissions from China. 

Atmospheric Environment, 40(34), pp 6516-6527. 

Cao, G., Zhang, X., Wang, Y. and Zheng, F., 2008. Estimation of emissions from field burning of crop straw in China. 

Chinese Science Bulletin, 53(5), pp.784-790. 

Chameides, W. L., Yu, H., Liu, S. C., Bergin, M., Zhou, X., Mearns, L., Wang, G., Kiang, C. S., Saylor, R. D., Luo, 

C., Huang, Y., Steiner, A. & Giorgi, F. 1999. Case study of the effects of atmospheric aerosols and regional 

haze on agriculture: An opportunity to enhance crop yields in China through emission controls? Proceedings 

of the National Academy of Sciences, 96(24), pp 13626-13633. 

Chan, C. K. & Yao, X. 2008. Air pollution in mega cities in China. Atmospheric Environment, 42(1), pp 1-42. 

Chandler, C., Cheney, P., Thomas, P., Trabaud, L. & Williams, D. 1983. Fire in forestry. Volume 1. Forest fire 

behavior and effects. Volume 2. Forest fire management and organization: John Wiley & Sons, Inc. 

Chen, S.J., Hovde, D.C., Peterson, K.A. and Marshall, A.W., 2007. Fire detection using smoke and gas sensors. Fire 

Safety Journal, 42(8), pp.507-515. 

Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M. and Zhang, W., 2015. 

Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS Journal of 

Photogrammetry and Remote Sensing, 103, pp.7-27. 

Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M.S., Wang, S., Hao, J., Zhang, H., He, C. and Guo, H., 2016. 

A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of 

the Total Environment. 

Cheng, Y., Engling, G., He, K. B., Duan, F. K., Ma, Y. L., Du, Z. Y., Liu, J. M., Zheng, M. & Weber, R. J. 2013. 

Biomass burning contribution to Beijing aerosol. Atmos. Chem. Phys., 13(15), pp 7765-7781. 

Cheng, Z., Wang, S., Fu, X., Watson, J. G., Jiang, J., Fu, Q., Chen, C., Xu, B., Yu, J., Chow, J. C. & Hao, J. 2014. 

Impact of biomass burning on haze pollution in the Yangtze River delta, China: a case study in summer 2011. 

Atmos. Chem. Phys., 14(9), pp 4573-4585. 

Cofer, W. R., Winstead, E. L., Stocks, B. J., Goldammer, J. G. & Cahoon, D. R. 1998. Crown fire emissions of CO2, 

CO, H2, CH4, and TNMHC from a dense Jack pine boreal forest fire. Geophysical Research Letters, 25(21), 

pp 3919-3922. 

da Rocha, G. O., Allen, A. G. & Cardoso, A. A. 2005. Influence of agricultural biomass burning on aerosol size 

distribution and dry deposition in Southeastern Brazil. Environmental science & technology, 39(14), pp 5293-

5301. 

de Zarate, I.O., Ezzacurra, A., Lacaux, J.P., Dinh, P.V., 2000. Emission factor estimates of cereal waste burning in 

Spain. Atmospheric Environment 34, 3183–3193 

Delmas, R., Lacaux, J.P. and Brocard, D., 1995. Determination of biomass burning emission factors: Methods and 

results. Environmental Monitoring and Assessment, 38(2-3), pp.181-204.  



201 

 

Desyaterik, Y., Sun, Y., Shen, X., Lee, T., Wang, X., Wang, T. & Collett, J. L. 2013. Speciation of “brown” carbon 

in cloud water impacted by agricultural biomass burning in Eastern China. Journal of Geophysical Research: 

Atmospheres, 118(13), pp 7389-7399. 

Ding, A. J., Fu, C. B., Yang, X. Q., Sun, J. N., Petäjä, T., Kerminen, V. M., Wang, T., Xie, Y., Herrmann, E., Zheng, 

L. F., Nie, W., Liu, Q., Wei, X. L. & Kulmala, M. 2013. Intense atmospheric pollution modifies weather: a 

case of mixed biomass burning with fossil fuel combustion pollution in Eastern China. Atmos. Chem. Phys., 

13(20), pp 10545-10554. 

Du, H., Kong, L., Cheng, T., Chen, J., Du, J., Li, L., Xia, X., Leng, C. & Huang, G. 2011. Insights into summertime 

haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols. 

Atmospheric Environment, 45(29), pp 5131-5137. 

Duan, F., Liu, X., Yu, T. & Cachier, H. 2004. Identification and estimate of biomass burning contribution to the 

urban aerosol organic carbon concentrations in Beijing. Atmospheric Environment, 38(9), pp 1275-1282. 

Dusek, U., Frank, G., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S., Chand, D., Drewnick, F., Hings, S. & 

Jung, D. 2006. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science, 

312(5778), pp 1375-1378. 

Ellicott, E., Vermote, E., Giglio, L. & Roberts, G. 2009. Estimating biomass consumed from fire using MODIS FRE. 

GEOPHYSICAL RESEARCH LETTERS, 36(L13401. 

Freeborn, P. H., Wooster, M. J., Hao, W. M., Ryan, C. A., Nordgren, B. L., Baker, S. P. & Ichoku, C. 2008. 

Relationships between energy release, fuel mass loss, and trace gas and aerosol emissions during laboratory 

biomass fires. Journal of Geophysical Research: Atmospheres, 113(D1), pp D01301. 

Freeborn, P.H., Wooster, M.J., Roberts, G., Malamud, B.D. and Xu, W., 2009. Development of a virtual active fire 

product for Africa through a synthesis of geostationary and polar orbiting satellite data. Remote Sensing of 

Environment, 113(8), pp.1700-1711. 

Freeborn, P. H., Wooster, M. J. & Roberts, G. 2011. Addressing the spatiotemporal sampling design of MODIS to 

provide estimates of the fire radiative energy emitted from Africa. Remote Sensing of Environment, 115(2), 

pp 475-489. 

Fu, J. Y., Jiang, D., Huang, Y. H., 2014a. 1-km grid population dataset of China, Global Change Research Data 

Publishing & Repository, DOI:10.3974/geodb.2014.01.06.V1  

Fu, J. Y., Jiang, D., Huang, Y. H., 2014b. 1-km grid GDP dataset of China, Global Change Research Data Publishing 

& Repository, DOI:10.3974/geodb.2014.01.07.V1 

Fuller, D.O., 2000. Satellite remote sensing of biomass burning with optical and thermal sensors. Progress in Physical 

Geography, 24(4), pp.543-561. 

Gao, X., Ma, W., Ma, C., Zhang, F., Wang, Y., 2002. Analysis of the current status of utilization of crop straw in 

China. Journal of Huazhong Agricultural University 21, 242–247 (in Chinese). 

Giglio, L., Descloitres, J., Justice, C. O. & Kaufman, Y. J. 2003. An enhanced contextual fire detection algorithm for 

MODIS. Remote sensing of environment, 87(2), pp 273-282. 

Giglio, L., Csiszar, I. & Justice, C. 2006. Global distribution and seasonality of active fires as observed with the Terra 

and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J. Geophys. Res, 111(G02016. 

Giglio, L., Loboda, T., Roy, D. P., Quayle, B. & Justice, C. O. 2009. An active-fire based burned area mapping 

algorithm for the MODIS sensor. Remote Sensing of Environment, 113(2), pp 408-420. 

Giglio, L., Randerson, J. T., van der Werf, G. R., Kasibhatla, P. S., Collatz, G. J., Morton, D. C. & DeFries, R. S. 

2010. Assessing variability and long-term trends in burned area by merging multiple satellite fire products. 

Biogeosciences, 7(3), pp 1171-1186. 

Giglio, L., Randerson, J.T. and Werf, G.R., 2013. Analysis of daily, monthly, and annual burned area using the fourth

‐generation global fire emissions database (GFED4). Journal of Geophysical Research: Biogeosciences, 

118(1), pp.317-328. 

Giglio, L., Csiszar, I. & Justice, C. 2006. Global distribution and seasonality of active fires as observed with the Terra 

and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J. Geophys. Res, 111(G02016. 

Hagler, G. S., Yelverton, T. L., Vedantham, R., Hansen, A. D. & Turner, J. R. 2011. Post-processing method to 

reduce noise while preserving high time resolution in aethalometer real-time black carbon data. Aerosol and 

Air Quality Resarch, 11(5), pp 539-546. 

Hays, M. D., Fine, P. M., Geron, C. D., Kleeman, M. J. & Gullett, B. K. 2005. Open burning of agricultural biomass: 

Physical and chemical properties of particle-phase emissions. Atmospheric Environment, 39(36), pp 6747-

6764. 

He, M., Zheng, J., Yin, S. & Zhang, Y. 2011. Trends, temporal and spatial characteristics, and uncertainties in 

biomass burning emissions in the Pearl River Delta, China. Atmospheric Environment, 45(24), pp 4051-4059. 



202 

 

Hosseini, S., Urbanski, S.P., Dixit, P., Qi, L., Burling, I.R., Yokelson, R.J., Johnson, T.J., Shrivastava, M., Jung, H.S., 

Weise, D.R. and Miller, J.W., 2013. Laboratory characterization of PM emissions from combustion of 

wildland biomass fuels. Journal of Geophysical Research: Atmospheres, 118(17), pp.9914-9929. 

Huang, C., Kalluri, S.N., Townshend, J.R. and Yang, K., 1998, July. Assessing and deconvolving the impacts of the 

point spread function on satellite remote sensing. In Geoscience and Remote Sensing Symposium 

Proceedings, 1998. IGARSS'98. 1998 IEEE International (Vol. 4, pp. 2035-2037). IEEE. 

Huang, C., Townshend, J.R., Liang, S., Kalluri, S.N. and DeFries, R.S., 2002. Impact of sensor's point spread 

function on land cover characterization: assessment and deconvolution. Remote Sensing of Environment, 

80(2), pp.203-212. 

Huang, X., Li, M., Friedli, H. R., Song, Y., Chang, D. & Zhu, L. 2011. Mercury Emissions from Biomass Burning in 

China. Environmental Science & Technology, 45(21), pp 9442-9448. 

Huang, X., Li, M., Li, J. & Song, Y. 2012. A high-resolution emission inventory of crop burning in fields in China 

based on MODIS Thermal Anomalies/Fire products. Atmospheric Environment, 50(0), pp 9-15. 

Ichoku, C. & Kaufman, Y. J. 2005. A method to derive smoke emission rates from MODIS fire radiative energy 

measurements. Geoscience and Remote Sensing, IEEE Transactions on, 43(11), pp 2636-2649. 

Ichoku, C., Giglio, L., Wooster, M. J. & Remer, L. A. 2008. Global characterization of biomass-burning patterns 

using satellite measurements of fire radiative energy. Remote Sensing of Environment, 112(6), pp 2950-2962. 

Jenkins, B. M., Jones, A. D., Turn, S. Q. & Williams, R. B. 1996. Emission factors for polycyclic aromatic 

hydrocarbons from biomass burning. Environmental Science & Technology, 30(8), pp 2462-2469. 

Jiang, D., Zhuang, D., Fu, J., Huang, Y. & Wen, K. 2012. Bioenergy potential from crop residues in China: 

Availability and distribution. Renewable and Sustainable Energy Reviews, 16(3), pp 1377-1382. 

Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J. J., Razinger, M., 

Schultz, M. G., Suttie, M. & van der Werf, G. R. 2012. Biomass burning emissions estimated with a global 

fire assimilation system based on observed fire radiative power. Biogeosciences, 9(1), pp 527-554. 

Khalil, M. & Rasmussen, R. 2003. Tracers of wood smoke. Atmospheric Environment, 37(9), pp 1211-1222. 

Koppmann, R., von Czapiewski, K. & Reid, J. S. 2005. A review of biomass burning emissions, part I: gaseous 

emissions of carbon monoxide, methane, volatile organic compounds, and nitrogen containing compounds. 

Atmos. Chem. Phys. Discuss., 5(5), pp 10455-10516. 

Korontzi, S., McCarty, J., Loboda, T., Kumar, S. & Justice, C. 2006. Global distribution of agricultural fires in 

croplands from 3 years of Moderate Resolution Imaging Spectroradiometer (MODIS) data. Global 

Biogeochemical Cycles, 20(2), pp GB2021. 

Kurihara, Y., Murakami, H. and Kachi, M., 2016. Sea surface temperature from the new Japanese geostationary 

meteorological Himawari‐8 satellite. Geophysical Research Letters, 43(3), pp.1234-1240. 

Li, J.F. and Hu, Y.S., 2009. Analysis on investment and operation of straw-fired power plants in Jiangsu province. 

Electric power technologic economics, 5, p.005 (in Chinese). 

Li, Z., Nadon, S., Cihlar, J. and Stocks, B., 2000. Satellite-based mapping of Canadian boreal forest fires: evaluation 

and comparison of algorithms. International Journal of Remote Sensing, 21(16), pp.3071-3082. 

Li, X., Wang, S., Duan, L., Hao, J., Li, C., Chen, Y. & Yang, L. 2007. Particulate and Trace Gas Emissions from 

Open Burning of Wheat Straw and Corn Stover in China. Environmental Science & Technology, 41(17), pp 

6052-6058. 

Li, X., Wang, S., Duan, L., Hao, J. & Nie, Y. 2009. Carbonaceous Aerosol Emissions from Household Biofuel 

Combustion in China. Environmental Science & Technology, 43(15), pp 6076-6081. 

Li, W., Shao, L. & Buseck, P. 2010. Haze types in Beijing and the influence of agricultural biomass burning. 

Atmospheric Chemistry and Physics, 10(17), pp 8119-8130. 

Li, M., Zhang, Q., Kurokawa, J., Woo, J.H., He, K.B., Lu, Z., Ohara, T., Song, Y., Streets, D.G., Carmichael, G.R. 

and Cheng, Y.F., 2015. MIX: a mosaic Asian anthropogenic emission inventory for the MICS-Asia and the 

HTAP projects. Atmos. Chem. Phys. Discuss, 15(23), pp.34-813. 

Li, J., Li, Y., Bo, Y. and Xie, S., 2016. High-resolution historical emission inventories of crop residue burning in 

fields in China for the period 1990–2013. Atmospheric Environment, 138, pp.152-161. 

Lin, G., Wolfe, R.E. and Nishihama, M., 2011. NPP VIIRS geometric performance status. 

Liu, H., Jiang, G. M., Zhuang, H. Y. & Wang, K. J. 2008. Distribution, utilization structure and potential of biomass 

resources in rural China: With special references of crop residues. Renewable and Sustainable Energy 

Reviews, 12(5), pp 1402-1418. 

Mellouki, A., Wallington, T.J. and Chen, J., 2015. Atmospheric chemistry of oxygenated volatile organic compounds: 

Impacts on air quality and climate. Chemical reviews, 115(10), pp.3984-4014. 



203 

 

Mieville, A., Granier, C., Liousse, C., Guillaume, B., Mouillot, F., Lamarque, J.F., Grégoire, J.M. and Pétron, G., 

2010. Emissions of gases and particles from biomass burning during the 20th century using satellite data and 

an historical reconstruction. Atmospheric Environment, 44(11), pp.1469-1477. 

Nakajima, T., Yoon, S.C., Ramanathan, V., Shi, G.Y., Takemura, T., Higurashi, A., Takamura, T., Aoki, K., Sohn, 

B.J., Kim, S.W. and Tsuruta, H., 2007. Overview of the Atmospheric Brown Cloud East Asian Regional 

Experiment 2005 and a study of the aerosol direct radiative forcing in east Asia. Journal of Geophysical 

Research: Atmospheres, 112(D24). 

NBSC (National Bureau of Statistic of China) China Statistical Yearbook, 480 2003–2015, China Statistics Press, 

Beijing (2004–2016) (in Chinese). 

Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., Church, J.A., Clarke, L., Dahe, Q., 

Dasgupta, P. and Dubash, N.K., 2014. Climate change 2014: synthesis report. Contribution of Working 

Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (p. 151). 

IPCC. 

Pan, X. L., Kanaya, Y., Wang, Z. F., Komazaki, Y., Taketani, F., Akimoto, H. & Pochanart, P. 2013. Variations of 

carbonaceous aerosols from open crop residue burning with transport and its implication to estimate their 

lifetimes. Atmospheric Environment, 74(0), pp 301-310. 

Portmann, F. T., Siebert, S. & Döll, P. 2010. MIRCA2000—Global monthly irrigated and rainfed crop areas around 

the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global 

Biogeochemical Cycles, 24(1), pp n/a-n/a. 

Preble, C. V., Hadley, O. L., Gadgil, A. J. & Kirchstetter, T. W. 2014. Emissions and Climate-Relevant Optical 

Properties of Pollutants Emitted from a Three-Stone Fire and the Berkeley-Darfur Stove Tested under 

Laboratory Conditions. Environmental science & technology. 

Qin, Y. & Xie, S. D. 2011. Historical estimation of carbonaceous aerosol emissions from biomass open burning in 

China for the period 1990–2005. Environmental Pollution, 159(12), pp 3316-3323. 

Randerson, J., Chen, Y., Werf, G., Rogers, B. & Morton, D. 2012. Global burned area and biomass burning emissions 

from small fires. Journal of Geophysical Research: Biogeosciences (2005–2012), 117(G4), pp. 

Reid, J., Koppmann, R., Eck, T. & Eleuterio, D. 2005. A review of biomass burning emissions part II: intensive 

physical properties of biomass burning particles. Atmospheric Chemistry and Physics, 5(3), pp 799-825. 

Roberts, G., Wooster, M. J., Perry, G. L. W., Drake, N., Rebelo, L. M. & Dipotso, F. 2005. Retrieval of biomass 

combustion rates and totals from fire radiative power observations: Application to southern Africa using 

geostationary SEVIRI imagery. Journal of Geophysical Research: Atmospheres, 110(D21), pp D21111. 

Roberts, G., Wooster, M. J. & Lagoudakis, E. 2009. Annual and diurnal african biomass burning temporal dynamics. 

Biogeosciences, 6(5), pp 849-866. 

Roberts, T. J., Braban, C. F., Oppenheimer, C., Martin, R. S., Freshwater, R. A., Dawson, D. H., Griffiths, P. T., Cox, 

R. A., Saffell, J. R. & Jones, R. L. 2012. Electrochemical sensing of volcanic gases. Chemical Geology, 

332(74-91. 

Roberts, T.J., Saffell, J.R., Oppenheimer, C. and Lurton, T., 2014. Electrochemical sensors applied to pollution 

monitoring: Measurement error and gas ratio bias—A volcano plume case study. Journal of Volcanology and 

Geothermal Research, 281, pp.85-96. 

Roberts, G., Wooster, M.J., Xu, W., Freeborn, P.H., Morcrette, J.J., Jones, L., Benedetti, A., Jiangping, H., Fisher, D. 

and Kaiser, J.W., 2015. LSA SAF Meteosat FRP products–Part 2: Evaluation and demonstration for use in 

the Copernicus Atmosphere Monitoring Service (CAMS). Atmos. Chem. Phys, 15, pp.13241-13267. 

Roy, D., Lewis, P. & Justice, C. 2002. Burned area mapping using multi-temporal moderate spatial resolution data—

A bi-directional reflectance model-based expectation approach. Remote Sensing of Environment, 83(1), pp 

263-286. 

Roy, D. P., Frost, P. G. H., Justice, C. O., Landmann, T., Le Roux, J. L., Gumbo, K., Makungwa, S., Dunham, K., Du 

Toit, R., Mhwandagara, K., Zacarias, A., Tacheba, B., Dube, O. P., Pereira, J. M. C., Mushove, P., Morisette, 

J. T., Santhana Vannan, S. K. & Davies, D. 2005. The Southern Africa Fire Network (SAFNet) regional 

burned‐area product‐validation protocol. International Journal of Remote Sensing, 26(19), pp 4265-4292. 

Roy, D. P., Boschetti, L., Justice, C. O. & Ju, J. 2008. The collection 5 MODIS burned area product—Global 

evaluation by comparison with the MODIS active fire product. Remote Sensing of Environment, 112(9), pp 

3690-3707. 

Heinemann, E., Prato, B. and Shepherd, A., 2011. Rural Poverty Report 2011. International Fund for Agricultural 

Development (IFAD), Rome. 

Saikawa, E., Naik, V., Horowitz, L.W., Liu, J. and Mauzerall, D.L., 2009. Present and potential future contributions 

of sulfate, black and organic carbon aerosols from China to global air quality, premature mortality and 

radiative forcing. Atmospheric Environment, 43(17), pp.2814-2822. 



204 

 

Schroeder, W., Oliva, P., Giglio, L. & Csiszar, I. A. 2014. The New VIIRS 375&#xa0;m active fire detection data 

product: Algorithm description and initial assessment. Remote Sensing of Environment, 143(0), pp 85-96. 

Seinfeld, J. H. & Pandis, S. N. 2012. Atmospheric chemistry and physics: from air pollution to climate change: John 

Wiley & Sons. 

Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, 

B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U. & Towprayoon, S. 

2007. Policy and technological constraints to implementation of greenhouse gas mitigation options in 

agriculture. Agriculture, Ecosystems & Environment, 118(1–4), pp 6-28. 

Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F. & Rice, C. 2008. 

Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B: Biological 

Sciences, 363(1492), pp 789-813. 

Streets, D.G., Yarber, K.F., Woo, J.H. and Carmichael, G.R., 2003. Biomass burning in Asia: Annual and seasonal 

estimates and atmospheric emissions. Global Biogeochemical Cycles, 17(4). 

Stroppiana, D., Bordogna, G., Carrara, P., Boschetti, M., Boschetti, L. and Brivio, P.A., 2012. A method for 

extracting burned areas from Landsat TM/ETM+ images by soft aggregation of multiple Spectral Indices and 

a region growing algorithm. ISPRS Journal of Photogrammetry and Remote Sensing, 69, pp.88-102. 

Sun, J., Peng, H., Chen, J., Wang, X., Wei, M., Li, W., Yang, L., Zhang, Q., Wang, W. & Mellouki, A. 2016. An 

estimation of CO2 emission via agricultural crop residue open field burning in China from 1996 to 2013. 

Journal of Cleaner Production, 112, Part 4(2625-2631. 

Townshend, J., Huang, C., Kalluri, S., Defries, R., Liang, S. & Yang, K. 2000. Beware of per-pixel characterization 

of land cover. International Journal of remote sensing, 21(4), pp 839-843. 

Turn, S., Jenkins, B., Chow, J., Pritchett, L., Campbell, D., Cahill, T. & Whalen, S. 1997. Elemental characterization 

of particulate matter emitted from biomass burning: Wind tunnel derived source profiles for herbaceous and 

wood fuels. Journal of Geophysical Research: Atmospheres (1984–2012), 102(D3), pp 3683-3699. 

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. 

S., Jin, Y. & van Leeuwen, T. T. 2010. Global fire emissions and the contribution of deforestation, savanna, 

forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys., 10(23), pp 11707-11735. 

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, 

M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates 

during 1997–2016, Earth Syst. Sci. Data, 9, 697-720, https://doi.org/10.5194/essd-9-697-2017, 2017. 

van Wilgen, B. W. and Scholes, R. J.: The vegetation and fire regimes of southern hemisphere Africa, in: Fire in 

Southern African Savannas: Ecological and Atmospheric Perspectives, edited by: van Wilgen, B. W., 

Andreae, M. O., Goldammer, J. G., Lindesay, J., et al., 27–46, Witswatersrand Univ. Press, Johannesburg, 

South Africa, 1997. 

Wang & Zhang, 2016, http://news.chengdu.cn/2016/1106/1829718.shtml,Chengdu Business Daily 

Wang, S. & Zhang, C. 2008. Spatial and temporal distribution of air pollutant emissions from open burning of crop 

residues in China. Sciencepaper online, 3(5), pp 329-333. 

Wang, X., Yang, L., Steinberger, Y., Liu, Z., Liao, S. & Xie, G. 2013. Field crop residue estimate and availability for 

biofuel production in China. Renewable and Sustainable Energy Reviews, 27(0), pp 864-875. 

Ward, D. E. & Radke, L. F. 1993. Emissions measurements from vegetation fires: A comparative evaluation of 

methods and results. Fire in the Environment: The Ecological, Atmospheric and Climatic Importance of 

Vegetation Fires, 13(53-76.  

Wolfe, R.E., Lin, G., Nishihama, M., Tewari, K.P., Tilton, J.C. and Isaacman, A.R., 2013. Suomi NPP VIIRS 

prelaunch and on‐orbit geometric calibration and characterization. Journal of Geophysical Research: 

Atmospheres, 118(20). 

Wooster, M. J., Zhukov, B. & Oertel, D. 2003. Fire radiative energy for quantitative study of biomass burning: 

derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sensing of 

Environment, 86(1), pp 83-107. 

Wooster, M. J., Roberts, G., Perry, G. L. W. & Kaufman, Y. J. 2005. Retrieval of biomass combustion rates and totals 

from fire radiative power observations: FRP derivation and calibration relationships between biomass 

consumption and fire radiative energy release. Journal of Geophysical Research: Atmospheres, 110(D24), pp 

D24311. 

Wooster, M. J., Freeborn, P. H., Archibald, S., Oppenheimer, C., Roberts, G. J., Smith, T. E. L., Govender, N., 

Burton, M. & Palumbo, I. 2011. Field determination of biomass burning emission ratios and factors via open-

path FTIR spectroscopy and fire radiative power assessment: headfire, backfire and residual smouldering 

combustion in African savannahs. Atmos. Chem. Phys., 11(22), pp 11591-11615. 

http://news.chengdu.cn/2016/1106/1829718.shtml


205 

 

Wooster, M.J., Roberts, G., Smith, A.M., Johnston, J., Freeborn, P., Amici, S. and Hudak, A.T., 2013. Thermal 

remote sensing of active vegetation fires and biomass burning events. In Thermal Infrared Remote Sensing 

(pp. 347-390). Springer Netherlands. 

Wooster, M. J., Roberts, G., Freeborn, P. H., Xu, W., Govaerts, Y., Beeby, R., He, J., Lattanzio, A., Fisher, D. & 

Mullen, R. 2015. LSA SAF Meteosat FRP products – Part 1: Algorithms, product contents, and analysis. 

Atmos. Chem. Phys., 15(22), pp 13217-13239. 

Xu, W., Wooster, M.J., Kaneko, T., He, J., Zhang, T. and Fisher, D., 2017. Major advances in geostationary fire 

radiative power (FRP) retrieval over Asia and Australia stemming from use of Himarawi-8 AHI. Remote 

Sensing of Environment, 193, pp.138-149. 

Xue, Y., Xu, H., Guang, J., Mei, L., Guo, J., Li, C., Mikusauskas, R. & He, X. 2014. Observation of an agricultural 

biomass burning in central and east China using merged aerosol optical depth data from multiple satellite 

missions. International Journal of Remote Sensing, 1-13. 

Yamaji, K., Li, J., Uno, I., Kanaya, Y., Irie, H., Takigawa, M., Komazaki, Y., Pochanart, P., Liu, Y., Tanimoto, H., 

Ohara, T., Yan, X., Wang, Z. & Akimoto, H. 2010. Impact of open crop residual burning on air quality over 

Central Eastern China during the Mount Tai Experiment 2006 (MTX2006). Atmos. Chem. Phys., 10(15), pp 

7353-7368. 

Yan, X., Ohara, T. & Akimoto, H. 2006. Bottom-up estimate of biomass burning in mainland China. Atmospheric 

Environment, 40(27), pp 5262-5273. 

Yang, S., He, H., Lu, S., Chen, D. & Zhu, J. 2008. Quantification of crop residue burning in the field and its influence 

on ambient air quality in Suqian, China. Atmospheric Environment, 42(9), pp 1961-1969. 

Yokelson, R. J., Goode, J. G., Ward, D. E., Susott, R. A., Babbitt, R. E., Wade, D. D., Bertschi, I., Griffith, D. W. T. 

& Hao, W. M. 1999. Emissions of formaldehyde, acetic acid, methanol, and other trace gases from biomass 

fires in North Carolina measured by airborne Fourier transform infrared spectroscopy. Journal of Geophysical 

Research: Atmospheres (1984–2012), 104(D23), pp 30109-30125. 

Yokelson, R. J., Burling, I. R., Gilman, J. B., Warneke, C., Stockwell, C. E., de Gouw, J., Akagi, S. K., Urbanski, S. 

P., Veres, P., Roberts, J. M., Kuster, W. C., Reardon, J., Griffith, D. W. T., Johnson, T. J., Hosseini, S., Miller, 

J. W., Cocker Iii, D. R., Jung, H. & Weise, D. R. 2013. Coupling field and laboratory measurements to 

estimate the emission factors of identified and unidentified trace gases for prescribed fires. Atmos. Chem. 

Phys., 13(1), pp 89-116. 

Yusiharni, E. & Gilkes, R. 2012. Minerals in the ash of Australian native plants. Geoderma, 189–190(0), pp 369-380. 

Za, 2015, http://www.chinanews.com/sh/2015/11-04/7606112.shtml, Legislative Evening Newspaper 

Zhang, H., Ye, X., Cheng, T., Chen, J., Yang, X., Wang, L. & Zhang, R. 2008. A laboratory study of agricultural crop 

residue combustion in China: Emission factors and emission inventory. Atmospheric Environment, 42(36), pp 

8432-8441. 

Zhang, H., Hu, D., Chen, J., Ye, X., Wang, S. X., Hao, J. M., Wang, L., Zhang, R. & An, Z. 2011. Particle size 

distribution and polycyclic aromatic hydrocarbons emissions from agricultural crop residue burning. 

Environmental science & technology, 45(13), pp 5477-5482. 

Zhang, T. R., Shi, J. H., Gao, H. W., Zhang, J. & Yao, X. H. 2013. Impact of source and atmospheric processing on 

Fe solubility in aerosols over the Yellow Sea, China. Atmospheric Environment, 75(0), pp 249-256. 

Zhang, L., Liu, Y. and Hao, L., 2016. Contributions of open crop straw burning emissions to PM2. 5 concentrations 

in China. Environmental Research Letters, 11(1), p.014014. 

Zhang, H., Hu, J., Qi, Y., Li, C., Chen, J., Wang, X., He, J., Wang, S., Hao, J., Zhang, L., Zhang, L., Zhang, Y., Li, R., 

Wang, S. & Chai, F. 2017. Emission characterization, environmental impact, and control measure of PM2.5 

emitted from agricultural crop residue burning in China. Journal of Cleaner Production, 149(629-635. 

Zhao, J., Zhang, G. & Yang, D. 2011. Estimation of Carbon Emission from Burning of Grain Crop Residues in China. 

Journal of Agro-Environment Science, 30(4), pp 812-816. 

Zhao, Y., Nielsen, C.P. and McElroy, M.B., 2012. China's CO 2 emissions estimated from the bottom up: recent 

trends, spatial distributions, and quantification of uncertainties. Atmospheric environment, 59, pp.214-223. 

Zhao, H., Tong, D. Q., Gao, C. & Wang, G. 2015. Effect of dramatic land use change on gaseous pollutant emissions 

from biomass burning in NorthEastern China. Atmospheric Research, 153(429-436). 

Zuo 2015, http://www.chinanews.com/gn/2015/12-11/7666514.shtml, Anhui News 

  

http://www.chinanews.com/sh/2015/11-04/7606112.shtml
http://www.chinanews.com/gn/2015/12-11/7666514.shtml


206 

 

Appendix A 

This section includes a published paper, which the thesis author was a co-author, describing the active fire 

detection and FRP algorithm using Himawari-8, a Japanese geostationary meteorological satellite. The 

output of this paper has been used to generate diurnal cycle in this study (Chapter 5). 
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Characterising the highly variable temporal dynamics of landscape-scale fire activity is best achieved using geo-
stationary satellites, and the Himawari-8 Advanced Himawari Imager (AHI) now provides views of Asian and
Australian fires at an unprecedented 10min temporal resolution and 2 km nadir thermal channel spatial resolu-
tion. We here develop the first processing system to identify active fires and retrieve their fire radiative power
(FRP) fromAHI data, based on the geostationary Fire Thermal Anomaly (FTA) algorithm and FRP retrievalmethod
originally developed for use with Meteosat SEVIRI over Africa and Europe. This scheme detects active fires cov-
ering as little as 10−3 to 10−4 of an AHI pixel, and we compare performance to the same scheme applied to
data from the forerunner geostationary MTSAT imager and the FengYun-2 (FY-2) Stretched Visible and Infrared
Spin Scan Radiometer (S-VISSR), and also to 1 km (at nadir) polar-orbitingMODIS active fire data.We findmajor
benefits of Himawari-8 AHI over both MTSAT and FY-2, being able to detect a substantially greater proportion of
fire activity andwith little impact from sensor saturation. AHI-derived FRP retrievals of detected fires show a very
strong agreement and a low (3MW) bias with respect to near-simultaneous MODIS retrievals, though fires hav-
ing FRP ≤ 40 MW are undercounted by AHI due to its 4× larger pixel area (at nadir) than MODIS. Large parts of
Asia are characterised by smaller/lower FRP fires associatedwith e.g. agricultural residue burning,meaningmany
are at or below this AHIminimum FRP detection limit, and during June 2015 AHI fails to detect around 66% of the
hotspots that MODIS detects when both sensors view the same area simultaneously. However, AHI provides 144
observation opportunities per day compared to 4 typical observations fromMODIS, and shows a low (8%) active
fire detection error of commission. We demonstrate the unique value of the geostationary FRP retrievals made
from AHI data for full fire diurnal cycle assessment and for Fire Radiative Energy (FRE) calculations. We conclude
that these FRP data demonstratemajor benefits for studies of activefires over Asia andAustralia, and expect them
to become an important component of the global geostationary active fire observation system.

© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Keywords:
Biomass burning
Fire radiative power
Himawari-8
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1. Introduction

Landscape fires are frequent across much of Asia and Australia, and
EO satellites are vital to assessing their terrestrial and atmospheric im-
pacts in this globally important biomass burning region (e.g. Williams
et al., 1998; Wooster et al., 2012; Li et al., 2016). Many fires in Asia are
associated with agricultural residue burning and/or tropical forest deg-
radation and deforestation, and are often individually small and so quite
difficult to detect via moderate spatial resolution burned area mapping
approaches. Active fire products offer improved sensitivity to such
‘small’ fires (Roy et al., 2008), though the typically short-lived nature
of agriculgtural residue burning fires still poses a challenge, and such
artment of Geography, Strand,

er).

nc. This is an open access article und
observations can be accompanied by retrievals of a fires radiative
power (FRP) output that relates directly to its fuel consumption and
smoke emission (e.g. Wooster et al., 2005). Here we develop for the
first time a new very high temporal resolution capability for active fire
detection and FRP characterisation over Asia and Australia, using the
first of a new generation of geostationary Earth imaging satellites -
Himawari-8 (Bessho et al., 2016; Kurihara et al., 2016; JMA, 2014),
whichwill be followed by theGeostationaryOperational Environmental
Satellite-R Series (GOES-R) over the America's and by Meteosat Third
Generation (MTG) over Africa and Europe. We demonstrate the signifi-
cant advantages of this new technology for active fire characterisation
and FRP assessment, evaluating performances against near-simulta-
neously acquired MODIS active fire data available a few times per day
over the same regions.

Geostationary active fire detection has previously been provided
over Asia and Australia using the Japanese Multifunctional Transport
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Satellite (MTSAT) imager and the Korean Communication, Ocean and
Meteorological Satellite (COMS) (Zhang et al., 2012), though FRP assess-
ment has typically not been available. Himawari-8 offers potential for
much improved performance due to its enhanced sensor characteristics,
and we use an adaptation of the geostationary Fire Thermal Anomaly
(FTA) algorithm of Wooster et al. (2015) to provide this capability, ap-
plying the same FTA algorithm to data from MTSAT and the Chinese
FengYun-2 (FY-2) geostationary satellite for comparison. We compare
results from each system to those from MODIS, and briefly explore the
landscape fire characteristics of a variety of key biomes in Asia and Aus-
tralia using these new active fire data, pointing the way to what the
forthcoming GOES-R system in particular should deliver over the
Americas from 2017.

2. Asian andAustralianfire activities and the potential of geostation-
ary data

Fires in Asia and Australia appear responsible for around a quarter to
a third of annual global burned area (Giglio et al., 2006; Van derWerf et
al., 2010), resulting from e.g. annual savannah and forest fires in Austra-
lia (Stephenson et al., 2013), the burning of agricultural residues across
much of Asia (e.g. Zhang et al., 2012; Zhang et al., 2015 and Li et al.,
2016), and fires in drained peatlands and often already degraded forests
in SE Asia that show particular activity peaks during El Niño-related
droughts (Van der Werf et al., 2004; Van der Werf et al., 2010;
Huijnen et al., 2016). This fire activity affects landcover and terrestrial
ecosystem functioning, contributes significantly to modification of the
regional atmosphere, and can impact concentrations of atmospheric
greenhouse gases in globally significant ways (Bowman, 2000;
Johnston et al., 2011; Reid et al., 2013; Huijnen et al., 2016).

Landscape fires are highly dynamic, often changing their nature in a
matter of minutes and typically showing very strong diurnal cycles
(Giglio, 2007; Roberts et al., 2009a). Such details can only be directly re-
vealed from geostationary satellites, which provide multiple observa-
tions every hour that enable identification of even short-lived fires
provided they are not too small to be detected, full fire radiative energy
(FRE) characterisation over the diurnal cycle, and better recognition of
fires burning in cloudy areas since cloud gaps can be fully exploited
(e.g. Roberts et al., 2005; Roberts and Wooster, 2008). Using Meteosat
data of Africa and Europe, the value of geostationary FRP information
for fire emissions and smoke plume transport modelling has been dem-
onstrated byWooster et al. (2005), Roberts et al. (2005); Baldassarre et
al. (2015) and Roberts et al. (2015), and forfire diurnal cycle assessment
and characterisation by e.g. Roberts et al. (2009a). However, evenwhen
using detection algorithms capable of identifying fires covering as little
as 10−4 of a pixel (Roberts et al., 2005;Wooster et al., 2015), a limitation
of geostationary active fire remote sensing has been its inability to de-
tect the lowest FRP fires due to the typically large pixel areas involved
(Roberts and Wooster, 2008; Hyer et al., 2013). However, new genera-
tions of geostationary satellites offer increasing spatial fidelity, reducing
the importance of this issue over time and offering the best opportunity
to detect fires at an early stage via their high imaging frequency
(Roberts et al., 2015).

3. Geostationary satellites operating over Asia and Australia

3.1. MTSAT and Himawari-8

MTSAT carrying theMTSAT Imager was operated from 2008 to 2015
by the JapanMeteorological Agency (JMA)over the equator at 140° East.
Himawari-8 is the first of the third generation of geostationary weather
satellites, launched on 7th October 2014 carrying the new AHI instru-
ment to replace MTSATs capability. We used Himawari-8 AHI data
from June 2015, the month when agricultural fire activity in eastern
China typically peaks and fire activity in South Asia and Australia starts
to intensify (Zhang et al., 2012; Li et al., 2016; Chand et al., 2007;
Williams et al., 1998).

Prior to Himawari-8 AHI, the MTSAT imager provided 10-bit, full
disk imagery at half past every hour in five spectral bands at a spatial
sampling distance of 1 km (visible channel) and 4 km (Infrared chan-
nels) at the sub-satellite point (SSP) (Table 1), along with a half disk
(northern hemisphere) image every hour. Himawari-8 AHI significantly
improves on this, providing full disk 10-bit, radiometrically and geo-
metrically calibrated data in 16 spectral channels every 10 min, with
the potential updates every minute over sub-regions (Bessho et al.,
2016). Fig. 1 shows an example AHI full disk colour composite image,
along with detail over fires in northern Australia. We were not able to
access MTSAT data of June 2016, so we instead used Feb. 2009 to coin-
cide with the Australian ‘Black Saturday bushfires’ and the date of the
FengYun-2 satellite data discussed next.

3.2. FengYun-2

FengYun-2 (FY-2) is the first generation of Chinese geostationary
spin stabilized meteorological satellite (Guo et al., 2009), and carries
the five channel Stretched Visible and Infrared Spin Scan Radiometer
(S-VISSR) operating at an SSP spatial sampling distance of 1.25 km for
the visible band and 5 km for the thermal infrared channels (Table 1).
S-VISSR provides a single full disk, 8-bit image every hour, and Fig. 2
shows a rendition of near simultaneous FY-2 and MTSAT imagery.

4. FTA algorithm application to Asian geostationary satellites

To detect active fire pixels we use the geostationary Fire Thermal
Anomaly (FTA) algorithm (Roberts andWooster, 2008) and theMIR ra-
diance FRP retrieval method (Wooster et al., 2003), originally designed
for usewithMeteosat SEVIRI (Wooster et al., 2005; Roberts et al., 2005),
and now used to generate the real-time Meteosat FRP-PIXEL products
within the EUMETSAT Land Surface Analysis Satellite Application Facil-
ity (LSA SAF; Wooster et al., 2015). The active fire detection and FRP
characterization process occurs over three stages: Firstly, identification
of pixels having signals suggestive of actively burning fires; secondly a
more detailed contextual set of multi-spectral tests used to confirm
whether or not these ‘potential fire pixels’ do indeed contain fires; and
thirdly derivation of atmospherically corrected FRP estimates and asso-
ciated uncertainties for each confirmed active fire pixel. Full algorithm
details are provided in Roberts and Wooster (2008) and Wooster et al.
(2015). Since AHI has a higher spatial resolution than SEVIRI, and slight-
ly different waveband coverage, certain of the FTA algorithm thresholds
required optimization use with Himawari-8. The initial thresholds were
checked for suitability via visual inspection of the output and compari-
son to MODIS active fire detections. Thresholds were adjusted to maxi-
mize detection of true fires while minimizing false alarms, as per
Roberts and Wooster (2008) and Wooster et al. (2015). Application of
the FTA algorithm toMTSAT and FY-2 proceeded similarly, and all adap-
tations were found relatively straightforward, as was previously the
casewhen using the FTAwithGOES-E and -Wdata (Xu et al., 2010). Un-
like Meteosat, neither Himawari-8, MTSAT nor FY-2 data come with a
dedicated cloud mask, so we adapted the image based cloud masking
procedure described in Xu et al. (2010). Finally, the power law scaling
coefficient a (mW·m−2·sr−1·(cm−1)−1·K−4) used in the FRP retrieval
algorithm for each sensor (Eq. 1) was calculated according to Wooster
et al. (2005), and the MWIR band atmospheric transmission (τMIR) cal-
culated according to Wooster et al. (2015).

FRPMIR ¼ Asampσε
aεMIR

LMIR

τMIR

� �
ð1Þ

where Asamp is the pixel sampling area (m2), σ is Stefan-Boltzman con-
stant (5.67E-8 Js−1·m−2·K−4), ε is thefire emissivity and εMIR the spec-
tral emissivity in the MIR (and fires are assumed to be grey bodies so



Table 1
Basic characteristics of the imagers carried by Himawari-8, MTSAT and FY-2. Notice only the channels used herein are listed, alongside their use in the active fire detection and character-
ization algorithm.

Satellite &
imager

Spectral
channel

Wavelength
range (μm)

Spatial sampling
distance at SSP (km)

Primary use in active fire detection & FRP derivation scheme

Himawari-8
AHI

3 0.63–0.66 0.5 Cloud masking
7 3.74–3.96 2 Active fire detection & FRP derivation (MWIR band saturates at high BT of 400 K)
14 11.1–11.3 2 Active fire detection

MTSAT
Imager

1 0.55–0.80 1 Cloud masking
2 10.3–11.3 4 Active fire detection
5 3.5–4.0 4 Active fire detection & FRP derivation (though MWIR band saturates at relatively low BT of 320 K,

leading to extensive saturation over even warm backgrounds).
FY-2 S-
VISSR

1 0.55–0.75 1.25 Cloud masking
2 10.3–11.3 5 Active fire detection
4 3.5–4.0 5 Active fire detection & FRP derivation (MWIR band saturates at moderate temperature of 340 K).
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that ε= εMIR), and LMIR is the contribution of the fire to the total MWIR
band spectral radiance of the active fire pixel
(mW·m−2·sr−1·(cm−1)−1).

5. Asian geostationary FTA algorithm evaluation

5.1. Methodology

Our performance evaluation of the resulting geostationary active fire
datasets was based on comparison to MODIS Collection 5 MOD14 and
MYD14 active fire products from the Terra and Aqua satellites (Giglio
et al., 2003). With a nadir spatial resolution of 1 km, MODIS is capable
of detecting sub-pixel sized fires having an FRP significantly lower
than the minimum detectable from geostationary imagers (Roberts et
al., 2015). We followed the intercomparison procedure recently used
between MODIS and the LSA SAF Meteosat SEVIRI FRP-PIXEL product
(Roberts et al., 2015), making comparisons only when data were col-
lected within ±6 min of one other and within a MODIS scan angle of
±30° to limit MODIS' pixel area growth to a factor of ~1.7 compared
to nadir (Freeborn et al., 2011, 2014).

5.1.1. Active fire detection evaluation methodology
Following Roberts et al. (2015), MODIS imagery and active fire data

were first spatially remapped to the relevant geostationary imaging
grids to deal with the varying pixel sizes (Wolf and Just, 1999), and if
two or more MODIS active fire pixels fell within one grid cell their FRP
valueswere summed. The original MODIS imagery aided interpretation,
and the remappedMODIS active fire data (termed here MODIS-R) were
quantitatively compared to the geostationary data, with active fire
Fig. 1. Example data from theHimawari-8 AdvancedHimawari Imager (AHI), collected at 03:00
and (b) subset of northern Australia highlighted in (a) and shown as the difference between th
pixels containing sub-pixel active fires are highlighted as high values, as explained inXu et al. (2
of 10−3 to 10−4 of a pixel typically increase this BT difference metric to 5–10 K or greater, wh
detection errors of omission occurring when a MODIS-R grid cell con-
taining at least one active fire pixel was matched to a location imaged
within±6min by the geostationary sensor butwhich showed no actual
geostationaryfire detectionwithin a 5×5 pixelwindow (Freeborn et al.,
2014). Geostationary errors of commission occurred when an actually
detected geostationary active fire pixel had no matching MODIS-R ac-
tive pixel within the corresponding 5×5 pixel window.

Fig. 3 indicates themethodology applied to a singlematchedAHI and
MODIS subscene of China. Comparison of Fig. 3d and e demonstrates
that certain active fires detected in the MODIS data fail to be detected
by the lower spatial resolution AHI data, but that many other fires are
successfully identified in both. Overall, in this example, MODIS detects
1246 active fire pixels, equivalent to 859 MODIS-R pixels after
remapping to the AHI grid. Among these 859 remapped fire pixels,
602 (~70%) had no corresponding AHI detection in the matching 5×5
window, an error of omission very similar to the 73% reported recently
for the Meteosat SEVIRI FRP-PIXEL product that uses the same FTA de-
tection algorithm (Roberts et al., 2015). This is reasonable performance
given that the fire affected region of Fig. 3 is quite far from the AHI sub-
satellite point and thus has a ground pixel area around 4× to 8× larger
thanMODIS, depending onMODIS scan angle. At the same time, AHI de-
tected 162 individual active fire pixels, with 152 (~94%) having a corre-
spondingMODIS active fire pixel, demonstrating a low (6%) false alarm/
error of commission rate. Results akin to those from this singlematchup
scene were accumulated across one month of data from each geosta-
tionary sensor (June 2015 for Himawari, Feb.2009 forMTSAT and FY-2).

For Himawari-8 AHI, the June 2015 full disk imagery included fires
mainly located in China, Thailand, Indonesia and Australia. For the
MTSAT and FY-2 evaluation, the full disk Feb. 2009 data saw fires across
UTC on 7th June 2015. (a) Colour composite full disk image (RGB=AHI Channels 3, 2, 1),
e recorded MWIR and LWIR brightness temperatures (Channels 7 and 14; Table 1) so that
010) andWooster et al. (2013, 2015). Areal coverage of actively burning fires down to sizes
ich is generally sufficient to enable active fire detection to occur (Wooster et al., 2005).

Image of Fig. 1


Fig. 2.Near simultaneousMWIR brightness temperature imagery from theMTSAT imager (top row) and FY-2 S-VISSR imager (bottom row), collected on 7th February 2009. (a) Full disk
MTSAT image (5:30 UTC)with areas inAustralia andMyanmar highlighted in red and green respectively; (b)MTSAT sub-image overMyanmar outlined in (a)where a fewfires are circled
in blue are visible but which are not apparent in the almost simultaneous FY-2 VISSR imagery shown in (e); (c) MTSAT sub-image covering parts of New South Wales and Victoria
(Australia) during the ‘Black Saturday bushfires’ (circled in yellow) – of which only a small part can be discerned due to MWIR channel saturation affecting large areas; (d) full disk
FY-2 S-VISSR scene collected at 5:00 UTC; (e) S-VISSR sub-image outlined by the green rectangle in (d) and matching the MTSAT sub-image in (c); (f) S-VISSR sub-image covering
parts of New South Wales and Victoria of Australia matching the MTSAT sub-image shown in (c) and where the ‘Black Saturday bushfires’ do appear as a group of high MWIR BT
pixels circled in yellow.
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parts of Australia and Thailand. It was not possible to directly intercom-
pare MTSAT and FY-2 active fire detection outputs on a point-by-point
basis, because of the different imaging times of each system – further
supporting use of the MODIS active fire detection data as the standard
against which the geostationary sensors are assessed. The number of
MOD14/MYD14 products matching within ±6 min of each Asian geo-
stationary satellite dataset, and which of these had active fires present
within them, are listed in Table 2. Of course, since landscape burning
is highly dynamic, active fire detection performances typically vary
somewhat across locations, times of day and season (e.g. Roberts and
Wooster, 2008; Freeborn et al., 2014). The differences we report here
between the errors of omission and commission of the three geostation-
ary sensors are likely to be somewhat influenced by this, but our broad
findings regarding the general performance are considered
representative.

5.1.2. FRP evaluation methodology
Following the type of active fire pixel clustering procedure used in

Zhukov et al. (2006), Roberts and Wooster (2008), Xu et al. (2010),
wefirst compared the FRP recorded byHimawari-8 AHI to that recorded
by MODIS on a ‘per fire’ basis, defined as a contiguous or near-contigu-
ous group of active fire pixels detected near-simultaneously. MODIS re-
trievals were made using the same Wooster et al. (2003, 2005) MIR
radiance approach as with the geostationary datasets (Eq. 1), which is
now also used to generate MODIS' Collection 6 FRP data (Giglio et al.,
2016).MODIS FRPwas atmospherically corrected using the sameproce-
dure as with AHI (described in Wooster et al. (2015)).

Whilst per-fire comparisons between geostationary and MODIS FRP
retrievals have previously reported low bias (e.g. Roberts andWooster,
2008; Xu et al., 2010; Roberts et al., 2015), there typically remains sig-
nificant regional-scale FRP underestimation because of the inability of
geostationary data to detect the lowest FRP fires (e.g. Roberts and
Wooster, 2008; Xu et al., 2010; Roberts et al., 2015). To assess this, the
Himawari-8 and MTSAT active fire data were subset to cover the same
geographic area as each MODIS scene (within a ±30° MODIS scan
angle) and each datasets total FRP compared to assess the importance
of fires missed by the geostationary sensors but detected by MODIS.

5.2. Results

5.2.1. FY-2 evaluation
Taking FY-2 first, MODIS-R data contemporaneous with FY-2

showed 2035 active fire grid cells, but only 9 were matched by active
fire pixels detected by FY-2, indicating a near total failure by FY-2 to de-
tect them (Table 3). Such a high omission error rate results from a com-
bination of the S-VISSR sensors lower spatial resolution and decreased
radiometric sensitivity compared to the MTSAT imager and Himawari-
8 AHI (as well as compared to MODIS), and the apparently relatively
poor quality of the S-VISSR MWIR spectral band measurements (see
Fig. 2).

FY-2 S-VISSR does have a better vantage point for observing certain
Asian-Pacific areas compared to MTSAT, due to its orbital position (e.g.
the region of Myanmar highlighted in green, where FY-2 has pixel spa-
tial sampling distance of ~5.4 km and MTSAT ~6 km, Fig. 2). Neverthe-
less, MTSAT often appears to better identify actively burning fires than
FY-2 even in such areas (e.g. compare Fig. 2b showing MTSAT with
the near simultaneous FY-2 S-VISSR imagery of Fig. 2e). However,
where large fires and high ambient background temperatures lead to

Image of Fig. 2


Fig. 3. Examplemethodology used for geostationary active fire detection performance evaluation. Here, Himawari-8 AHI data andmatchingMODIS data are shown over China (03:10 UTC
on 11th June 2015; for location see top left inset). (a)MODISMWIR-LWIR Band Brightness temperature (BT) difference image, and (b)matching active fire detections (red) superimposed
with a one pixel offset for clarity. Areas of cloud and standing water are masked out in these MODIS subscenes. (c) and (d) show from Himawari-8 the same MWIR-LWIR BT difference
metric (now calculated using the AHI imagery), alongwith the corresponding AHI-detected active fire detections (blue). (e)MODIS active fire detectionsmadewithin a±30°MODIS scan
angle (red), mapped to the AHI image projection.

Table 3
Active fire detection errors of omission and commission for the FTA algorithm applied to
Himawari-8 AHI, MTSAT imager and FY-2 S-VISSR data, calculated via comparison to
near-simultaneous MODIS active fire pixels detected (MOD14 and MYD14).

Asian geostationary satellite Himawari-8 MTSAT FY-2
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saturation of the MTSAT MWIR spectral band FY-2 can still show some
advantage. An example is during the extreme ‘Black Saturday bushfires’
that burned intensely across the Australian state of Victoria on 7th Feb-
ruary 2009 (Engel et al., 2013). Clearly seen in FY-2 data, albeit
appearing somewhat ‘blurred’ (Fig. 2f), in MTSAT they appear far less
clearly (circled yellow in Fig. 2c). This results from the comparatively
low 320 K saturation temperature of the MTSAT MWIR band (Channel
5; Table 1). Due to the high environmental temperatures seen at this
time, MTSAT Channel 5 saturation is occurring over many of the back-
ground pixels as well as almost all the fire pixels, severely hampering
discrimination of the latter. This is not the case with FY-2 S-VISSR, and
Fig. 4 shows a comparison between the FRP timeseries from MODIS,
Table 2
Number of Collection 5 MOD14 and MYD14 active fire products used in comparisons to
our Himawari-8 AHI, MTSAT and FY-2 active fire data.

Himawari-8 MTSAT FY-2

MODIS products coincident with the geostationary
data (±6 min)

4243 672 664

MODIS products coincident with the geostationary
data (±6 min) and in which the MODIS products
showed the presence of active fires

204 58 34
FY-2 and MTSAT, where the latter shows a particular inability to detect
these large fires duringmuch of the day (as in Fig. 2c). However, though
FY-2 can detect the fires after ~11:00 h local solar time, their FRP re-
trieval closest to the ~14:00 h daytime MODIS overpass is only around
one third of that of MODIS, again partly due to MWIR band saturation
- but in the case of S-VISSR only over the fires themselves (Fig. 4).
No. of fire pixels present at times coincident with a
MODIS overpasses

1974 140 8

Fire pixels detected by MODIS at these times 1825 124 6
Geostationary active fire detection error of
commission

8% 11% 25%

No. of MODIS fire pixels 12,229 3279 3468
No. of MODIS fire pixels after remapped to
geostationary projection

8575 1830 2035

No. of MODIS fire pixels after remap detected by
geostationary satellite

2895 259 9

Geostationary active fire detection error of omission 66% 86% 99%

Image of Fig. 3


Fig. 4. FRP time series data of the Australian ‘Black Saturday bushfires’ for 7th Feb 2009.
MTSAT and FY-2 show very significant FRP underestimation compared to the
simultaneous MODIS observations, though with FY-2 performing in this case apparently
better than MTSAT due to the latter's extreme levels of MWIR band saturation during
the early afternoon diurnal fire peak (see main text). X-axis shows local solar time. Fig. 5.Details of AHI active fire pixel omissionswith respect toMODIS, binned into 10MW

intervals. Blue line shows the relative frequency (expressed as a percentage) of remapped
MODIS (i.e. MODIS-R) pixels at each FRP level. Red line shows the percentage of MODIS-R
pixels at each FRP level that remained undetected by AHI (i.e. the omission rate at that FRP
value). Green line shows the relative importance of the undetected fire pixels at each FRP
level, expressed as a percentage of the FRP of the total undetected fire pixel set. See main
text for a full explanation of MODIS-R data.
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After around 18:00 h, background brightness temperatures typically fall
below 320 K in MTSAT's MWIR band, and MTSAT once again becomes
preferable to use (Fig. 4). We conclude therefore that whilst FY-2 S-
VISSR does offer some limited benefit for detection of very large fires
burning in high ambient temperature conditions, in general they appear
to be poorly suited to the active fire application and their use was not
pursued further herein.

5.2.2. AHI and MTSAT active fire detection evaluation
Table 3 reports results of the active fire detection evaluation for both

Himawari-8 AHI and the MTSAT imager. For the AHI, 66% of MODIS-R
fire pixels made within the AHI full disk had no corresponding AHI-de-
tected active fire pixel, an omission error higher than the 53–59% found
when the FTA algorithm prototype was applied to limited amounts of
Meteosat SEVIRI data (Roberts and Wooster, 2008), but lower than
the 73% reported with the operational FTA algorithm (Roberts et al.,
2015). Errors of omission rates differ over time for SEVIRI, due in part
to different seasons (and thusfire affected areas and locations) being in-
cluded in the comparisons. Those for AHI lie in between, though since
the AHI ground pixel area at same view zenith angle is smaller than
that of SEVIRI, the omission error for AHI might be expected to be
lower. However, the domination of small (low FRP) agricultural residue
burning fires across much of Asia provides a set of targets likely to be in
general more difficult to detect than the larger grassland fires dominat-
ingmuch of Africa (Giglio et al., 2016; Li et al., 2016). Therefore, though
the geostationary data do offer the advantage of capturing almost con-
tinuous imagery for better detection of short-lived agricultural residue
fires, their typically low FRP can make them a challenge to detect if
only a few are burning simultaneously in a particular AHI pixel. This is
exacerbated here, because in June 2015 most of the fire-affected areas
within the AHI disk are actually quite far from the sub-satellite point,
resulting in increased AHI pixel areas and a higherminimum FRP detec-
tion limit compared to closer to nadir (see Fig. 10). Simultaneous AHI
and MODIS data make it clear that AHI misses some fire pixels that
MODIS can successfully detect, though Fig. 5 indicates that the AHI ac-
tive fire detection omission rate decreases sharply with increasing
FRP, being around80% forMODIS-R activefire pixels of ~15MW, around
50% at ~40 MW, and below 40% in excess of 80 MW. Performance be-
yond an FRP of 90 MW is not considered due to the limited number of
high FRP MODIS-R fire pixels available.

Fig. 5 also shows the number of MODIS-R fire pixels coincident with
an AHI image at each FRP level (expressed as a percentage of the entire
MODIS-R coincident fire pixel set), along with the proportion AHI fails
to detect (expressed as a percentage of the total number of omissions).
MODIS-R fire pixels having an FRP of ~15 MW or less are those most
commonly missed by AHI, comprising ~20% of the total MODIS-R fire
pixel set, and as their aforementioned 80% omission rate attests to
they represent a large proportion (45%) of the MODIS-R fire pixels
that AHI fails to detect. As FRPs increase, those fire pixels omitted by
AHI become a smaller fraction of the overall AHI omitted pixel set.
These data confirm that themajority of active fire pixels that AHImisses
but MODIS detects are ‘small’ low FRP fires, as would be expected from
the formers larger (nadir) pixel area. Of course, other effects also impact
the rate of omission, such as the quality and sensitivity of the cloud
masks applied to each data type (Freeborn et al., 2014).

Fig. 6 displays the spatial distribution of AHI's errors of omission
compared to MODIS-R using 0.5° grid cells. Because lower FRP fires
dominate those missed (Fig. 5), the percentage of grid-cell MODIS-R
fire counts that are missed by AHI (Fig. 6a) is typically higher than the
percentage of theMODIS-R grid-cell FRP that these non-detections rep-
resent (Fig. 6b). AHI tends to miss higher proportions of MODIS-detect-
ed active fire pixels in areas where fires are less common and/or are
more dominated by smaller/lower FRP events (e.g. in June 2015 in
China, Indonesia and Thailand) and lower proportions in areas like
Northern Australia where individual fires are larger and often burn
more intensely.

In terms of active fire errors of commission, 8% of the AHI-detected
active fire pixels had no matching MODIS detection, a similar commis-
sion error to the 6–8% reported using the FTA algorithm with Meteosat
over Africa (Roberts and Wooster, 2008) and the 8% found with GOES
across South America (Xu et al., 2010).

In terms ofMTSAT, its active fire data showhigher errors of omission
(86%) and commission (11%) than Himawari-8 AHI, most likely
reflecting the formers larger pixel area and thus lower sensitivity to ac-
tivefires, and also the impact ofMTAT'sMWIR band saturation problem
overwarmer backgrounds (as discussed in Section 3.2 and shown in Fig.
2).

5.2.3. AHI and MTSAT FRP characterisation

5.2.3.1. Per-fire FRP intercomparison. Fig. 7 presents results of the per-fire
AHI to MODIS FRP intercomparison, showing high correlation (r2 =
0.98) and a slope of 0.99 for the linear-best fit. AHI shows a low bias
of 3 MW compared to MODIS, a standard deviation of 156 MW (32%),

Image of Fig. 4
Image of Fig. 5


Fig. 6. Regional distribution (0.5° resolution) of Himawari-8 AHI active fire omissions relative to near simultaneousMODIS-R data. (a) Percentage ofMODIS activefire pixelsmissed by AHI
in each grid-cell, and (b) percentage of grid cell total FRP as measured by the MODIS-R data that is represented by fire pixels remaining undetected by AHI. AHI sub-satellite point is
indicated by the white star above Papua New Guinea/West Papua, whilst white circles indicate contours of AHI pixel area (labels are area in km2).
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and 79% of the FRP retrievals have a difference b50%, with 39% b20%.
Considering that almost exactly simultaneous MODIS FRP measures of
the same fire pixel indicate an FRP uncertainty of 27% (1σ) for MODIS
alone (Freeborn et al., 2014), the degree of AHI toMODIS FRP agreement
seems very reasonable and comparable to that betweenMODIS and the
LSA SAF Meteosat SEVIRI FRP product (Roberts et al., 2015).

MTSAT and MODIS matchups from Feb. 2009 are also shown on Fig.
7. Due to relatively fewer fires being present at this time compared to
June 2015, to the reduced temporal resolution of MTSAT compared to
AHI, and to the aforementioned problem MTSAT has detecting fires
against warm backgrounds, there were far fewer MTSAT-to-MODIS
matchups than there were AHI-to-MODIS. Furthermore, MTSAT fire
Fig. 7. Per-fire FRP intercomparison made using FRP retrievals from the MTSAT imager,
Himawari-8 AHI and MODIS. Matching MODIS and AHI data are from June 2015, and
those from MTSAT and MODIS from Feb 2009. Each symbol represents data from a
single active fire cluster, representing a spatially contiguous or near-continuous group of
active fire pixels detected near simultaneously by both sensors. In total, 168 AHI fire
clusters and 35 MTSAT fire clusters are used, with the latter particularly low in part
because the much higher active fire omission error and MWIR channel saturation of that
sensor (Table 3) makes it more challenging to identify suitable matchups (see main text).
clusters were only usedwhen all constituent fire pixels were unsaturat-
ed (BTMWIR b 320 K). Despite the limited number of matchups, the FRP
data of MTSAT and MODIS still show a reasonable correlation (r2 =
0.74) and slope of the linear best fit (0.89), with a bias slightly higher
than AHI to MODIS (14 MW; 6%), though a smaller standard deviation
(86 MW, 33%). All matchups have an FRP difference b50%, with 46%
b20%. Overall MTSAT shows a strong degree of agreement with
MODIS provided its data are unsaturated, but the performance in
terms of active fire detection is far worse than that of AHI.

5.2.3.2. Per-area FRP intercomparison. When AHI and MODIS simulta-
neously detect the same active fire, AHI provides a reliable FRPmeasure
(Fig. 7), but AHI doesmiss 66% of theMODIS-R fire pixels (Section 5.2.2)
– primarily those at or below the nominal AHI FRP detection limit (Fig.
5). Many of these undetected low FRP fires are likely to be due to agri-
cultural residue burning, which represents a very substantial fraction
of fire activity in Asia (Zhang et al., 2012; Zhang et al., 2015; Li et al.,
2016), and this ‘small fire’ detection bias demonstrably leads to signifi-
cant regional-scale FRP underestimationwhen using AHI (Fig. 8) aswell
as other geostationary sensors (e.g. Freeborn et al., 2009; Roberts et al.,
2015; Wooster et al., 2015; Xu et al., 2010). Of course, MODIS only ob-
serves an area a few times per day,whereas AHI provides almost contin-
uous observations opportunities, andWooster et al. (2015) show that in
the case of the LSA SAF Meteosat SEVIRI active fire data, most fires
missed by the geostationary observation made at the time of the
MODIS overpass are detected by the geostationary data at other points
during the fires lifetime.

Freeborn et al. (2014) used the ratio between the total cumulative
FRP (∑FRP) measured simultaneously in the same geographic region
byMeteosat SEVIRI and byMODIS to quantify the impact of the (primar-
ily low-FRP) fires not detected by the former. We found the ratio of
∑FRPAHI to ∑FRPMODIS as 0.54, and ∑FRPMTSAT to ∑FRPMODIS as
0.31, with the former higher because of AHI's lower active fire detection
omission error compared to MTSAT (Section 5.2.2) and because of the
MWIR band saturation problems of MTSAT that result in FRP underesti-
mation for stronger fires (Fig. 2). Hyer et al. (2013) already report that
MTSAT data processed with the WF_ABBA active fire detection algo-
rithm developed show a rather lower overall active fire detection effi-
ciency, particularly around local noon due to MWIR channel
saturation. Our work confirms MTSAT's tendency to miss very many
fires that MODIS can detect, even if they are burning rather strongly,
but we see significant improvement in this situation using AHI.

Image of Fig. 6
Image of Fig. 7


Fig. 8. Comparison of total FRP measured in spatially matched regions imaged
contemporaneously by Himawari-8 AHI and MODIS throughout June 2015 at a MODIS
scan angle of less than ±30°. The least squares linear best-fit passing through the origin
is shown (dot dash line), and AHI tends to generally underestimate total FRP primarily
due to the non-detection of most fires burning below its minimum FRP detection limit.
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5.2.4. FRP frequency magnitude analysis
Following the kind of analysis shown in Freeborn et al. (2011) for

Meteosat SEVIRI, Fig. 9 shows the frequency of all activefire pixels of dif-
ferent FRPs recorded by AHI and byMODIS over the AHI full disk region
in June 2015, alongwith those detected by both sensors almost simulta-
neously. The Collection 5 MOD14/MYD14 MODIS active fire products
have a minimum FRP detection limit of ~8–10MW, and in most fire af-
fected regions there are typically many more fire pixels approaching
Fig. 9. Frequency density vs. FRP magnitude distributions of active fire pixels detected by
MODIS andHimawari-8AHI, constructed from (i) thenumber of activefire pixels detected
by all scenes collected in June 2015, and (ii) the number of those in only collocated scenes
takenwithin±6min of one another. Fire pixels with an FRP N 500MWare not showndue
to their rarity.
this limit than there are than higher FRP fire pixels. AHI can detect
some fire pixels approaching the FRP detection limit of MODIS, but fre-
quency of detection peaks at ~30 MW. Below this, AHI fails to detect
many fire pixels that MODIS can detect, due to the larger pixel areas.
Above 40 MW, the frequency distributions of the near simultaneous
AHI and MODIS data are very similar, confirming that the majority of
AHI active fire pixel omissions are low FRP (Fig. 5). Also demonstrated
is the fact that AHI does not show an upper FRP breakpoint, such as
the one exhibited by SEVIRI (Roberts and Wooster, 2008; Freeborn et
al., 2011), largely because MTSAT's 400 K MWIR band maximum mea-
surable signal (c.f. 335 K for SEVIRI) largely prevents saturation. In
data of June 2015, only 0.06% (173 pixels) of the AHI-detected active
fire pixels are saturated.

6. Asian and Australian fire activity records

Section 5's performance assessment indicates that Himawari-8 AHI
offers major advantages over FY-2 and MTSAT for geostationary active
fire detection and FRP characterisation, and we now turn our attention
to briefly demonstrating the utility of the AHI fire radiative power re-
trievals. Future work will exploit longer datasets to build upon the lim-
ited analyses presented herein.

6.1. Large scale spatial patterns

Fig. 10 summarises MODIS' active fire data of June 2015 at 0.5° reso-
lution, and compares it side-by-side to that of AHI. Substantial burning
across parts of Asia is common at this time (Li et al., 2016), with similar
patterns seen from the two sensors. Grid cells showinghigh total FRP re-
sult from either large numbers of active fire pixels, individual fires of
particularly high FRP, or persistent or re-occurring fires in the same
grid over the month. Areas showing concentrations of high FRP grid
cells include eastern China, resulting from numerous agricultural resi-
due fires (Randerson et al., 2012; Zhang et al., 2015; Li et al., 2016),
southeast Asia which hosts a mixture of agricultural burning, forest
clearance and peatland fires (Gaveau et al., 2013), and northern Austra-
lia that sees savannah burns (Williams et al., 1998).

Some clear differences between theAHI- andMODIS-derived FRP re-
cords can also be seen, for example in northern India where Chand et al.
(2007) reported heavy burning in Uttaranchal State, and in Russia
(Western from 120°E) and Kazakhstan, where MODIS typically shows
increased fire signatures compared to AHI – probably related to the
large view zenith angle of AHI at these higher latitudes (with AHI
pixel areas N4× larger than at the SSP).

6.2. Diurnal cycles

The most unique aspect of geostationary imaging satellites is their
ability to provide almost continuous observations (cloud cover permit-
ting), and thus highly detailed temporal information on the daily cycle
of fire activity (Roberts et al., 2009a, 2009b). Fig. 11 shows the hourly
mean FRP recorded in June 2015 across the AHI full disk in the three
main regional land cover types (based on the IGBP 1 km resolution
land cover map; Loveland and Belward, 1997). Savannah fires are gen-
erally responsible for the highest total FRP, whilst agriculture typically
shows the least - apart from on 11th June 2015 when an anomalously
large group of crop residue fires are observed in eastern China (Fig.
11c), discussed further below. Fig. 11 also demonstrates that forest
burning apparently showed a significant increase in the second half of
June, mostly related to fires in Indonesia and Australia.

In Fig. 11, themiddle and right columns show themonthlymean and
standard deviation of FRP and normalised diurnal cycle (DC), calculated
using the approach of Roberts et al. (2009a, 2009b). Smooth cycles are
seen for each landcover, with a nighttimeminimum, a daytime peak oc-
curring around 13:00 h local solar time (though themean DC of agricul-
ture peaks slightly earlier), and generally weakening afternoon fire

Image of Fig. 8
Image of Fig. 9


Fig. 10. Total fire count and total FRP of actively burning fires detected within 0.5° grid cells in June 2015 using all observation opportunities from AHI and MODIS. (a) Fire count from
Himawari-8 AHI; (b) FRP from AHI; (c) Fire count from MODIS; (d) FRP from MODIS. AHI sub-satellite point is indicated by the white star above Papua New Guinea/West Papua,
whilst the white circles indicate the pixel area variations (labels are area in km2).
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activity. Whilst savannah shows a continuously decreasing trend into
the night, forest and agriculture show small local FRP peaks around
20:00–21:00 h local solar time, possibly due to timings of anthropogenic
burning practices in areas where the authorities formally outlaw burn-
ing and thus somefires are purposely conducted after nightfall. Also, the
standard deviation shown in the diurnal cycle (DC) plots is significantly
smaller and more consistent across the day than is the standard devia-
tion of FRP. Agriculture shows the largest variability and savannah the
smallest, perhaps due to agricultural fires bring solely anthropically-
driven.

Overall, the diurnal cycles in Fig. 11 for Asia and Australia appear
broadly similar to those reported by Roberts et al. (2009a, 2009b) over
Africa for the same landcovers. The peaks around 13:00 h local solar
time seem a little earlier than the 13:00 h (Kalimantan) to 15:00 h
(Northern Australia) peaks reported by Giglio (2007), though we have
used only a single month of AHI data compared to the seven years of
MODIS and TRMM VIRS data in Giglio (2007), and have focused over
the full AHI disk rather than regionally as did Giglio (2007). As the
AHI active fire data record lengthens, we will perform more nuanced
analyses to determine whether the near continuous observations pro-
vided from geostationary orbit do indeed alter conclusions so-far
made largely from polar orbiters.

Fig. 12 provides more detail on the diurnal variation in FRP for 11th
June 2015 in Henan province (North China Plain), which Fig. 11c shows
demonstrates an unusually large FRP peak. AHI and MODIS both indi-
cate its existence, but the former shows much more temporal detail
and captures the FRP maximum just before 14:00 h local solar time,
whereas the sparser MODIS record provides an artificial peak time of
at 11:10 h (as shown in Fig. 3a, where multiple fires are clearly seen)
due to the early afternoon Aqua MODIS overpass recording the area at
a very large view zenith angle and thus coarse pixel area (6.4 km2; larg-
er than the AHI pixels)whilst resulted inmany fire pixels remaining un-
detected by MODIS. MODIS' difficulties in detecting fires at larger view
angles are detailed in e.g. Freeborn et al. (2011). Clearly, when using
polar obiter data alone (e.g. Vermote et al., 2009) care must be taken
not to allow far-off nadir observations to introduced unwanted impacts
(as identified by Freeborn et al., 2011), not only regarding FRP magni-
tude but also the timing of diurnal peaks. This clearly demonstrates

Image of Fig. 10


Fig. 11. Active fire information derived across the Himawari-8 AHI full disk in June 2015 for the three key IGBP land cover types; (a) Savannah, (b) Forest, and (c) Agriculture. Shown are
(left column) hourly mean FRP, (middle) monthly mean (±1σ) of FRP, and (right) normalised diurnal cycle. Local solar time is shown rather than UTC. Fires typically peak in the early
afternoon, and activity is generally low at night.
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the value of geostationary observations, and also very likely additional
benefits can be gained by combining them with polar orbiting data to
better understand the fire diurnal cycle (e.g. Freeborn et al., 2009;
Freeborn et al., 2011; Roberts et al., 2011; Andela et al., 2015). Such di-
urnal cycle information remains important when linking fire emissions
estimates to atmospheric transport models (e.g. Wang et al., 2006) and
in converting ‘snapshot’ FRPmeasures from sensors such asMODIS into
Fig. 12.Diurnal cycle of agricultural residue burning fires in Eastern China on 11th June 2015, w
same as the map inserted on the top left of the Fig. 3 as indicated by the red rectangle.
estimates of temporally integrated FRE (e.g. Vermote et al., 2009;
Andela et al., 2015).

7. Summary and conclusions

Wehave developed algorithms for active fire detection andfire radi-
ative power (FRP) retrieval across Asia and Australia, based on data
hose signatures were recorded by Himawari-8 AHI and MODIS. Note this study area is the

Image of Fig. 11
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from the FY-2 S-VISSR, MTSAT imager and Himawari-8 AHI, the geosta-
tionary Fire Thermal Anomaly (FTA) active fire detection algorithm of
Roberts and Wooster (2008) and Wooster et al. (2015), the cloud
masking procedures of Xu et al. (2010), and the MIR radiance method
of FRP retrieval (Wooster et al., 2003, 2005, 2013). For the first time
we have intercompared active fire data generated from each of these
geostationary data sources, and compared each to simultaneous active
fire data from MODIS. FY-2 misses almost all active fires, mainly due
to poor MWIR channel image quality and a low spatial resolution
(5 km at the SSP). MTSAT (SSP spatial resolution of 4 km) shows a rea-
sonable ability to detect active fires and retrieve their FRP, as long as
ambient background temperatures are low enough and the fire not
too large so thatMWIR channel saturation is avoided.Himawari-8 offers
much better capability than the other two sensors, with an ~8% active
fire detection error of commission and ~66% of error of omission com-
pared to MODIS, a performance similar to the FTA algorithm applied
to data from Meteosat SEVIRI and the GOES imager (Roberts and
Wooster, 2008; Roberts et al., 2015; Xu et al., 2010). When AHI and
MODIS detect the same fire at the same time we see a very low 3 MW
bias between their FRP retrievals, though regionally AHI underestimates
FRP by around 50% compared to the simultaneous MODIS view because
it cannot easily detect the (rather common) fires whose FRP lies below
~40 MW.

We have used AHI to provide the first genuine diurnal cycle deriva-
tion for Asian and Australian fires available from a geostationary satel-
lite. Diurnal patterns are similar to those of the same landcovers found
in Africa (e.g. Roberts et al., 2009a, 2009b), with early afternoon peaks
fairly comparable but not identical to those reported by Giglio (2007)
using data from polar orbiters (MODIS and TRMM). Despite limitations
imposed by their relatively coarse spatial resolution, the high temporal
resolution offered by geostationary satellites is a key advantage for ac-
tive fire applications, and highly valuable when driving smoke emis-
sions estimates for use in atmospheric transport models (Reid et al.,
2009; Baldassarre et al., 2015; Roberts et al., 2015). We find that the
Himawari AHI system offers major advantages over the prior geosta-
tionary systems operating over Asia, andwe expect that the scheme de-
tailed herein will enable real-time processing of AHI data to join that of
GOES (Xu et al., 2010) and Meteosat SEVIRI (Wooster et al., 2015) and
becoming an important component of a consistent global geostationary
FRP characterisation system. Furthermore, since the Advanced Baseline
Imager (ABI) sensor onboard the forthcoming GOES-R spacecraft is
extremely similar to AHI (Schmit et al., 2005), the optimised FTA
algorithm evaluated here should be easily applicable to the GOES-R
mission.
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