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ABSTRACT  

We recently reported that resting hippocampal, basal ganglia and midbrain perfusion 

is elevated in people at ultra-high risk (UHR) for psychosis. The present study sought 

to replicate our previous finding in an independent UHR cohort, and examined the 

relationship between resting perfusion in these regions, psychosis and depression 

symptoms, and traumatic experiences in childhood. Pseudo-Continuous Arterial Spin 

Labelling (p-CASL) imaging was used to measure resting cerebral blood flow (rCBF) 

in 77 UHR for psychosis individuals and 25 healthy volunteers in a case-control 

design. UHR participants were recruited from clinical early detection services at three 

sites in the South of England. Symptoms levels were assessed using the 

Comprehensive Assessment of At Risk Mental States (CAARMS), the Hamilton 

Depression Scale (HAM-D), and childhood trauma was assessed retrospectively using 

the Childhood Trauma Questionnaire (CTQ). Right hippocampal and basal ganglia 

rCBF was significantly increased in UHR subjects compared to controls, partially 

replicating our previous finding in an independent cohort. In UHR participants, 

positive symptoms were positively correlated with rCBF in the right pallidum. CTQ 

scores were positively correlated with rCBF values in the bilateral hippocampus and 

negatively associated with rCBF in the left prefrontal cortex. Elevated resting 

hippocampal and basal ganglia activity appears to be a consistent finding in 

individuals at high risk for psychosis, consistent with data from preclinical models of 

the disorder. The association with childhood trauma suggests that its influence on the 

risk of psychosis may be mediated through an effect on hippocampal function. 

Keywords: Schizophrenia, Ultra high-risk, Cerebral blood flow, Childhood trauma 
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 4 

INTRODUCTION 

Alterations in hippocampal anatomy and function are among the most robust 

biological findings in schizophrenia 
1, 2

, and have also been reported in people at ultra 

high risk (UHR) of developing psychosis 
3-7

. These observations are consistent with 

preclinical models, which posit a key role for the hippocampus in the development of 

psychosis. Such models also suggest that resting hippocampal activity is increased 

prior to illness onset and linked to elevated activity in regions involved in dopamine 

signalling in the striatum and midbrain 
8
. Resting cerebral activity in these regions can 

be assessed in vivo by measuring resting cerebral blood flow (rCBF), which is closely 

correlated with the level of local neural function due to neuro-vascular coupling 
9, 10

, 

and can be measured using a Magnetic Resonance Imaging technique called pseudo-

Continuous Arterial Spin Labelling (p-CASL).  In a previous study using this 

approach, we found that subjects at UHR for psychosis exhibited increased rCBF in 

the bilateral hippocampus/subiculum, basal ganglia and midbrain, relative to controls 

11
. These data, along with independent findings using a different method for 

measuring cerebral perfusion 
5
, provided the first evidence that the increased resting 

activity evident in preclinical models of psychosis 
12
 was also evident in humans at 

high risk for psychosis. 

However, initial findings in psychosis research have not always been replicated, and 

recently this has become a particular issue for neuroimaging studies because of 

concerns about image analysis methods 
13,

 
14

. The present study sought to address this 

issue by aiming to replicate our previous finding of elevated hippocampal, basal 

ganglia and midbrain rCBF in UHR individuals. We repeated the study using the 

same neuroimaging methods in a second, and completely independent sample of UHR 

subjects and healthy controls. We tested the hypothesis that the UHR group would 
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 5 

again show elevated hippocampal, basal ganglia and midbrain rCBF relative to the 

controls. We then tested if elevated rCBF in these regions was associated with 

psychotic symptoms.  Because depressive symptoms are also prevalent in about 40% 

of UHR subjects 
15

, and major depressive disorder is associated with alterations in 

hippocampal volume and function 
16, 17

, we also tested if elevated rCBF in the 

hippocampus was specific to psychosis, or was also associated with depressive 

symptoms scores.  

We then sought to examine the relationship between rCBF in hippocampal, basal 

ganglia and midbrain regions and childhood trauma in UHR subjects. Childhood 

adversity is an important risk factor for psychosis 
18
 
19-21

, and for other psychiatric 

disorders 
22
. Exposure to environmental risk factors for psychosis may be especially 

influential during developmentally sensitive periods such as childhood 
23
. However, 

the mechanisms through which environmental factors such as trauma in childhood 

alter brain development and increase risk for psychosis in adulthood remains unclear. 

One approach that can be used to address this issue is to examine the relationship 

between neuroimaging findings in adults and a measure of the extent to which they 

experienced trauma in childhood.  A recent Positron Emission Tomography (PET) 

study employing this approach found that adversity in childhood was linked to 

elevated striatal dopamine function in adulthood 
24
.  However, whilst volumetric 

25, 26
 

and functional neuroimaging studies 
27
 in adults with a history of childhood trauma 

report alterations in hippocampal and other regions,  no studies have examined the 

relationship between rCBF and childhood trauma in an UHR cohort. Experimental 

studies in rodents have shown that peri-pubertal stress 
28
  can lead to alterations in 

striatal and cortical development and function  
29, 30

. Based on these rodent studies and 
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 6 

findings in human subjects, we predict that in UHR subjects, childhood trauma will be 

associated with increased rCBF in hippocampal, basal ganglia and midbrain regions.   

 

METHODS 

Participants and Assessment  

The study had National Research Ethics Service (NRES) approval and all participants 

gave written informed consent to participate. One hundred and two participants (25 

healthy controls (CTRL) and 77 participants at UHR of psychosis) participated in the 

study. UHR subjects were recruited through clinical early detection services at three 

sites: OASIS (Outreach and Support in South London) 
31

, part of the South London 

and Maudsley NHS Trust; the West London Early Intervention Service, part of the 

West London Mental Health NHS trust; and CAMEO, part of the Cambridge and 

Peterborough NHS trust. All of the neuroimaging data were acquired at the Centre for 

Neuroimaging Sciences, King’s College London. Diagnosis of the UHR state was 

made according to PACE criteria, using information acquired from the 

Comprehensive Assessment of At Risk Mental States (CAARMS 
32

). Briefly, this 

required that participants had one or more of the following: a) attenuated psychotic 

symptoms (APS) b) brief limited intermittent psychotic symptoms (BLIP: a history of 

one or more episodes of frank psychotic symptoms that resolved spontaneously within 

1 week in the past year) or c) a recent decline in function, together with either the 

presence of schizotypal personality disorder or a family history of psychosis in a first 

degree relative. All UHR participants met criteria for APS, 5 additionally met criteria 

for a BLIP and 2 for a recent decline in function/family history.  Social and 

occupational functioning was measured using the GAF 
33
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 7 

 

Eight of the UHR participants were being treated with low doses of antipsychotic 

medications (Quetiapine n=4, Olanzapine n=2, Risperidone n=2) and 19 with 

antidepressant medications (Mirtazapine = 3, Citalopram = 2, Sertraline = 9, 

Fluoxetine = 3, Amitriptyline = 1, Venlafaxine = 1). Healthy controls were recruited 

from the local community.  Control participants with a history of psychiatric disorders 

or who were receiving prescription medications were excluded. None of the control 

subjects had a history of neurological illness, or met DSM-IV criteria for drug or 

alcohol dependence. All participants (in both groups) had an estimated pre-morbid IQ 

in the normal range (i.e. 80-110), as assessed using the National Adult Reading Scale 

(NART)
34

. Depression was assessed using the Hamilton Depression Scale (HAM-D) 

35
. Hamilton Anxiety (HAM-A) 

35
 scores were also obtained for use as a covariate in 

statistical models (see below).  Subjects were asked to provide information on tobacco 

(number of cigarettes per day) and cannabis use (0 = no use, 1 = experimental use, 2= 

occasional use, 3 = moderate use, 4 = heavy use). Subjects who met DSM-IV criteria 

for a substance use disorder were excluded.  Childhood trauma was assessed using the 

Childhood Trauma Questionnaire (CTQ) 
36
. This widely used instrument provides a 

retrospective measure of physical, emotional and sexual abuse that occurred before 

the age of 17 years. CTQ data were available in 38 UHR participants but not in 

CTRL.  

  

p-CASL protocol and Image preprocessing  

Arterial spin labelling allows the quantification of resting cerebral blood flow (rCBF) 

measures in units of ml/100g of tissue/per second. To optimise the sensitivity to 

regional tissue perfusion and neural activity, p-CASL images were acquired after a 
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 8 

long (1.5s) post-labelling delay, to ensure that the data reflected perfusion at the level 

of capillary micro-circulation, which is most closely associated with neural function 
9
.  

p-CASL acquisition parameters and p-CASL image pre-processing procedures are 

detailed in the Supplementary Information document and elsewhere 
11
. 

Statistical analysis  

Analyses of demographic and global rCBF data were performed in SPSS version 22 

using appropriate parametric and non-parametric tests. Statistical analyses of regional 

rCBF data were performed using Statistical Parametric Mapping Version 8 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8). We tested for significant group 

effects in rCBF quantities in CTRL and UHR using a region of interest (ROI) 

approach. ROIs were specified using coordinates from our previous rCBF study in a 

completely independent sample of UHR and CTRL subject (based on the contrast 

UHR > CTRLS 
11

)  (MNI coordinate system). ROIs were specified in the bilateral 

hippocampus/subiculum region (right ROI x, y, z = 20, -28, -8 and left ROI x, y, z = -

22, -28, -8), the bilateral basal ganglia (right pallidum/putamen ROI x, y, z = 22, -12, 

-4, and the left pallidum/putamen ROI x, y, z = -18, -8, -4), and the left midbrain (ROI 

x, y, z  = -10, -32, -18). Spheres (6mm) were then constructed to form a mask 

containing all ROIs. Statistical inferences were made at p < 0.05 with Family Wise 

Error (FEW) correction for multiple comparisons at the voxel-level after applying 

small volume correction (SVC).  Regional (ROI) group effects were tested using 

independent t-tests in SPM-8 including nuisance covariates (see below). Mean global 

rCBF was extracted from each individual subject to assess global effects and an 

independent t-test was performed in SPSS. rCBF values (ml/100g/min) x10) were 

extracted from peak activations for use in the plots shown in figures 1 and 2 (for 

illustrative purposes and to check for outliers).   As antipsychotic (AP) medication is 
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 9 

known to affect rCBF 
37
, additional analyses were conducted after UHR subjects 

receiving AP medication (n=8) had been excluded.  To ensure group tests were 

conducted in the same way as our previous study 
11

 the following covariates were 

included in statistical models: age, gender, global rCBF, anxiety (HAM-A scores) and 

cigarettes per day.  

 

To establish the effect of symptoms and childhood trauma scores on regional rCBF 

values, we used CAARMS positive symptom, HAM-D and CTQ scores (available in 

38 UHR subjects) as regressors in separate statistical models. Cigarettes per day and 

cannabis use were included as covariates of no interest in the regression model as 

both have been reported to affect rCBF 
38, 39

. Statistical inferences were made at 

p < 0.05 with FWE correction for multiple comparisons at the voxel-level after 

applying SVC. For completeness an exploratory whole brain analysis was also 

conducted to assess wider effects of symptoms and childhood trauma on rCBF.  

Significant results are reported at a FWE cluster level (p <.05) using a cluster 

detection threshold of p < .001 
14, 40

  to reduce likelihood of false positive results.  

 

RESULTS  

Demographic, clinical and medication data   

These data are summarised in Table 1. CTRL and UHR participants did not differ 

significantly in terms of age, gender, handedness, premorbid IQ or cigarettes smoked 

per day. However UHR participants were less educated and used more cannabis, and 

as would be expected, UHR participants had higher levels of anxiety and depression.  
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 10 

All of the UHR participants met the Attenuated Psychotic Symptoms criteria for 

inclusion in the study. A minority also met criteria for BLIPS (n=5) or the 

schizoptypy/familial risk criterion (n=2). The mean CTQ score for UHR participants 

was 56 meaning that as a group these UHR participants reported moderate to severe 

levels of childhood trauma 
36
.   

 

TABLE 1 HERE 

 

Global rCBF 

Mean global rCBF (grey and white mater) did not differ significantly between the two 

groups (35.6 (s.d = 8.1) vs. 36.1 (s.d = 6.61) ml/100g/min respectively)  (t(101) = 0.63, 

p =.94).  

FIGURE 1 HERE 

 

Regions of Interest 

Hippocampal/subiculum rCBF: Relative to the CTRL group, UHR participants 

showed increased rCBF in the right hippocampal ROI (hippocampal body extending 

to the subiculum/parahippocampal gyrus (x, y, z = 24, -24, -6; Z = 2.99; KE = 42; 

pFWE = 0.021; cohen’s d = .62)) (Figure 1A). The group effect in the left hippocampal 

ROI (x, y, z = -30, -32, -4; Z = 2.14; KE = 15; pFWE = 0.15; cohen’s d  = .40) was non-

significant. There were no hippocampal regions in which the UHR group showed 

reduced rCBF relative to the CTRL group.  When the 8 UHR using antipsychotic 
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 11 

medication were removed from the model the result in the right hippocampal ROI 

remained significant (x, y, z = 24, -24 -6; Z = 3.00; KE = 38; pFWE = 0.024; cohen’s d 

= .63).  

Basal Ganglia rCBF: Relative to the CTRL group, UHR participants showed 

increased rCBF in the right basal ganglia ROI (in the pallidum/putamen (x, y, z = 22, 

-8, -2; Z = 2.85; KE = 16; pFWE = 0.03; cohen’s d = .65)) (Figure 1B). The group effect 

in the left basal ganglia ROI (x, y, z = -22, -12, -6; Z = 1.69; KE = 4; pFWE = 0.25; 

cohen’s d  = .30) was non-significant. There were no basal ganglia regions in which 

the UHR group showed reduced rCBF relative to the CTRL group. When the 8 UHR 

using antipsychotic medication were removed from the model the result in the right 

basal ganglia ROI remained significant (x, y, z = 22, -8 -2; Z = 2.98; KE = 38; pFWE = 

0.021; cohen’s d  = .68).  

 

Midbrain ROI rCBF: There were no suprathreshold group effects within the midbrain 

ROI.  

 

FIGURE 2 HERE 

 

rCBF associations with symptoms and childhood trauma 

CAARMS Positive symptoms:  There was no association between CAARMS positive 

symptom scores and rCBF in the bilateral hippocampal or midbrain ROIs. There was 

a significant positive correlation between CAARMS positive scores in the right basal 
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 12 

ganglia ROI  (globus pallidus/putamen (x, y, z = 28, -12, -4; Z=3.32: KE = 29:  pFWE = 

.008) (Figure 2 A and D). Exploratory whole brain analysis was non-significant. 

Depressive symptoms (HAM-D): There were no significant associations between 

HAM-D scores and rCBF in any ROI.  Exploratory whole brain analysis was also 

non-significant. 

Childhood Trauma and rCBF: ROI analysis revealed a positive association between 

CTQ scores and rCBF in right hippocampus/subiculum  (right: x, y, z =  24, -30, -12;  

Z = 3.82; KE = 59; pFWE = 0.034) and the left parahippocampal gyrus extending to the 

thalamus (left: x, y, z =  -18, -28, -4; Z = 3.00; KE = 60; pFWE = 0.021 ) (Figure 2 B 

and D).  The association between CTQ scores and rCBF in basal ganglia and midbrain 

ROIs was non-significant. Whole brain analysis revealed that CTQ scores were 

negatively associated with rCBF in a large cluster spanning the left inferior frontal 

gyrus (x, y, z =  -58, 18, 22; Z = 4.42; KE = 308; pFWE  < 0.01) and superior/medial 

prefrontal cortex (x, y, z =  -4, 6, 70;  Z = 4.33; KE = 209 ; pFWE < .001). 

FIGURE 3 HERE 

 

DISCUSSION 

The first aim of the present study was to replicate our previous finding of elevated 

hippocampal, basal ganglia and midbrain rCBF 
11
 in a larger, independent cohort of 

UHR individuals. We were unable to replicate our previous finding of elevated rCBF 

in the midbrain. Furthermore, elevated hippocampal and basal ganglia rCBF were not 

seen bilaterally, but were instead restricted to the right hemisphere.  It is unclear why 

elevated midbrain and left hippocampal/basal ganglia rCBF were not observed in this 
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 13 

second cohort.  Both cohorts presented with similar levels of UHR symptoms 

although the current group of UHR subjects were better matched to their control 

group in terms of IQ and cigarette smoking. However, elevated rCBF in the right 

hippocampus/subiculum and basal ganglia does appear to be a robust finding in UHR 

subjects (effect sizes in these regions were similar to those seen in our previous study 

i.e. in the small to medium range). This finding remained significant after excluding 

the minority of UHR participants taking antipsychotic medication, and was not 

attributable to a difference in global rCBF levels, which were not significantly 

different between groups.  Elevated hippocampal rCBF is also consistent with 

evidence from studies using other MRI techniques reporting that UHR subjects show 

increased resting hippocampal perfusion 
5, 41

, reductions in hippocampal grey matter 

volume 
3
 and activation during cognitive tasks 

7,
 
6
.  Findings are also in line with data 

from preclinical models of psychosis that indicate that hippocampal neuronal activity 

is increased, leading to altered activity in striatal/basal ganglia regions involved in 

dopamine regulation 
8
.  Consistent with our previous study however, elevated 

hippocampal rCBF was not associated with levels of attenuated positive symptoms. 

Neither, in this second cohort, were hippocampal rCBF levels associated with 

depressive symptoms. Interestingly, rCBF levels in the right pallidum were associated 

with attenuated positive symptoms.  The pallidum is part of the basal ganglia and a 

network of subcortical regions involved in the regulation of striatal dopamine function 

8
, which, has been shown to be aberrant in UHR subjects 

42, 43
.  

We also aimed to investigate the relationship between rCBF levels and childhood 

trauma in UHR subjects. We found that CTQ scores in our UHR subjects were in the 

moderate to severe range 
36

,  consistent with previous reports of increased levels of 

childhood trauma in UHR cohorts 
24

 
20

 
19

, and the well-established link between 
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childhood adversity and psychotic disorders in adulthood 
18
.  Within our UHR 

sample, CTQ scores were positively correlated with rCBF levels in the bilateral 

hippocampus extending to the thalamus and parahippocampal gyrus (left ROI). Whole 

brain analysis showed that CTQ scores were also negatively associated with rCBF in 

the left inferior and superior frontal gyrus. Previous neuroimaging studies in UHR 

subjects have reported alterations in rCBF 
11

 
5
, activation 

6, 7, 44
 and volume 

3, 4
 in 

hippocampal and prefrontal regions. However, surprisingly few studies have 

examined the relationship between neuroimaging measures in UHR subjects and a 

history of childhood trauma. The only previous study of this kind in subjects at UHR 

for psychosis reported that childhood adversity was linked to increased striatal 

dopamine synthesis capacity in adulthood, although this effect was evident across 

both UHR subjects and controls 
24

. In patients with psychosis, one study described an 

association between childhood trauma and reduced prefrontal volume 
45
, but another 

failed to find an association between childhood trauma and hippocampal volume 
46
.  

However the sample sizes in the studies to date have been relatively small; 

investigations involving larger samples are needed, particularly given the 

heterogeneity of the UHR category 
47

.  

A recent meta analysis of volumetric imaging studies across psychiatric diagnoses 

found a robust relationship between a history of childhood trauma and reduced 

hippocampal and dorsolateral prefrontal volumes in adulthood 
25
. It is possible that 

alterations in volume and function in hippocampal and prefrontal regions, due to 

childhood trauma, underlie vulnerability to a range of psychiatric disorders. Indeed, 

within UHR cohorts there are high levels of comorbidity, particularly with depression 

15
.  A previous perfusion study reported altered prefrontal and hippocampal rCBF in 
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 15 

patients with depression 
53
. However, in the present study, we did not observe an 

association between rCBF levels and depressive symptoms. 

Interestingly, the results of the present study show that elevated hippocampal rCBF, 

whilst associated with childhood trauma, was not directly related to levels of 

attenuated psychotic symptoms. It seems reasonable to speculate that elevated 

hippocampal rCBF in UHR subjects may be associated with a general psychiatric 

vulnerability. Accordingly, it is well established that the majority of UHR subjects do 

not go on to develop a psychotic disorder 
48
 and a significant proportion have 

additional clinical needs 
49

. 

Mechanistically, interactions between the prefrontal cortex, hippocampus (and 

amygdala) are thought to be critical for normal emotional and stress regulation 
50

, and 

these regions have well-established roles in cognitive and mnemonic processing, 

which are known to be impaired across a range of psychiatric diagnoses.   

Hippocampal and prefrontal regions seem to be particularly susceptible to effects of 

environmental stressors, particularly in early life 
25
. Adverse environmental 

experiences can lead to stress sensitisation and increased stress responsivity, which is 

thought to reflect disruption of hippocampal-prefrontal interactions 
51
.  

Limitations 

Although our sample was a good size, UHR and CTRL participants were not matched 

for education levels, cannabis use or anxiety levels. Whilst, this is not uncommon in 

case control studies comparing psychosis or psychosis risk populations to healthy 

controls we accounted for these group differences by including these factors in our 

analyses. Because CTQ data were not available from our healthy control participants, 

we could not assess whether the relationship between childhood trauma and 
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 16 

hippocampal rCBF that we identified is specific to UHR subjects. The relationship 

between childhood trauma and rCBF in healthy populations has not been examined 

before, but a recent meta-analysis found that childhood adversity was associated with 

reduced hippocampal volume in non-clinical and general population samples 
26
. 

Further, CTQ scores were not available for all of the subjects in the UHR sample, and 

this may have limited our power to detect significant associations between childhood 

trauma and rCBF in other brain regions. Some participants were unwilling to 

complete a questionnaire on this sensitive topic, while others were unable to provide 

accurate or complete information, thus reducing the number of participants in which 

CTQ data were available.  It is also worth noting that a recent study reported that 

young adults that retrospectively recalled having been being maltreated (i.e. using the 

CTQ) had a particularly elevated risk for psychopathology. However, when 

prospective informant-reports from caregivers and clinicians are used instead, the 

relationship between childhood trauma and later psychiatric problems appears to be 

less robust 
54

. Nevertheless, the number of subjects in whom these data were available 

was comparable to that in previous studies of this type 
24, 25

. Although most of our 

UHR subjects were medication-naïve, a minority (8 of 77) had been treated with low 

doses of antipsychotic drugs which could have altered both the severity of psychotic 

symptoms and rCBF 
37

. However, the main findings remained significant after 

exclusion of these subjects.  UHR subjects typically go on to have diverse clinical 

outcomes, with some developing psychotic or other Axis-I disorders, others having 

persistent attenuated symptoms, and some improving such that they no longer meet 

the inclusion criteria for the UHR state 
52

. The UHR sample we studied remains to be 

followed up, at which point it will be possible to examine the relationship between 

baseline rCBF and these different outcomes. 
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 17 

 

Conclusions  

Elevated resting activity in the right hippocampus and pallidum appears to be a 

consistent finding in people at UHR for psychosis. Increased rCBF in the 

hippocampus may be related to the severity of traumatic experiences in childhood.  
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 22 

 

 
UHR mean (n=77) 

UHR  

sd 

CTRL  

Mean  

(n=25) 

CTRL  

sd 
Statistics p 

Age (yrs) 22.6 3.64 23.9 2.85 t = 1.77 .09 

NART IQ (estimated) 102.15 14.89 102.83 13.33 t = .20 .84 

Years of Education 14.59 2.22 15.84 3.56 t =2 .13 .04 

Cigarettes per day 6.28 8.18 3.72  5.50 t = -1.46 .14 

Cannabis use (Median) 
a 2 -- 1 -- Z = -1.91 .05 

GAF 59.8 9.23 92.68 5.02 t = 15.24 <.001 

Symptoms 58.61 11.70 92.40 5.11 t = 14.98 <.001 

Disability 61.66 12.43 92.60 4.97 t = 14.93 <.001 

CAARMS Total 42.17 21.96 -- -- 

  

CAARMS Pos 10.08 4.32 -- -- 

  

CAARMS Neg 4.97 4.11 -- -- 

  

 

HAM-A  

 

18.34 

 

9.54 

 

3.04 

 

3.83 

t = -7.79 <.001 

 

HAM-D 

 

 

16.88 

 

 

10.35 

 

 

1.33 

 

 

2.93 t = - 6.73 <.001 

 

CTQ 
b 

 

56.00 

 

8.10 

 

-- 

 

-- 

  

 N % N % 

Statistics p 

Past or Present 

MDD/Anxiety Disorder 

24 31   

  

Antipsychotic Medication  8 10.3% -- --   

Antidepressant Medication 19 24.6%     

Gender (Male) 44 57 13 52 0.66 0.72 
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Handedness (Right) 63 81 23 92 5.09 0.08 

 

Table 1: Participant characteristics for UHR and CTRL groups. sd = standard 

deviation, NART = National Adult Reading Test, GAF = Global Assessment of 

Function, CAARMS = Comprehensive Assessment of At Risk Mental State. HAM-A 

= Hamilton Anxiety scale, HAM-D = Hamilton Depression Scale, MDD + Major 

Depressive disorder.  
a 
= data missing in 5 cases, 

b
  
 
= data available in 38 UHR.   
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FIGURE LEGEND 

FIGURE 1 A) Coronal sections through the medial temporal lobe showing elevated 

rCBF in UHR relative to CTRL subjects (pFWE = .021) and scatter plot showing 

rCBF levels in each case. B) Coronal sections through basal ganglia regions showing 

elevated rCBF in UHR relative to CTRL subjects (pFWE =.03) and scatter plot 

showing rCBF levels in each case. rCBF levels are quantified in (ml/100g/sec) x 10.  

 

FIGURE 2 A) Coronal sections and scatter plot, basal ganglia regions where rCBF 

is significantly correlated with CAARMS positive symptom scores (pFWE = .008). B) 

Coronal section and scatter plot, medial temporal lobe regions where rCBF is 

positively correlated with CTQ scores (pFWE = .024 (left) and .031 (right)).      

FIGURE 3.  Render and scatter plot, left prefrontal regions where rCBF is 

negatively correlated with CTQ scores (whole brain analysis) (pFWE <.001) 
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METHODS 

Neuroimaging protocol 

Subjects were scanned with their eyes open using a General Electric Signa HDX 3.0T 

scanner, fitted with a receive only 8-channel phased array head coil at the Department 

of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience. For image 

registration both a high resolution T2-weighted Fast Spin Echo (FSE) image 

(0.468x0.468x4mm, TE=54.58ms, TR=4380ms, Flip angle 90deg, FoV=240) and a 

high-resolution T1-weighted Spoiled Gradient Recalled (SPGR) image 

(1.1x1.1x1.1mm, TE=2.848, TR=7.144ms, Flip angle=20deg, FoV=280) were 

acquired. 

 

Resting Cerebral Blood Flow (rCBF) was measured using Continuous Arterial Spin 

Labelling (CASL) scans acquired with a 3D Fast Spin Echo (FSE) spiral multi-shot 

readout, following a post-labelling delay of 1.5s. This delay has been appropriate for 

investigations in participants of a similar age range as the ones included in this study. 
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The spiral acquisition used a short (4ms) TE, and 8 spiral-arms (interleaves) with 512 

points in each arm. (FSE TE 32ms/TR = 5500ms; ETL = 64). Images were 

reconstructed to a
 
256

2
 matrix, giving a final spatial resolution of 1x1 mm in plane.  

60 slices of 3mm thickness were obtained.  Three pairs of tagged-untagged images 

were collected.  Background suppression included selective saturation of the image 

slab at 4.3s before acquisition, selective inversion 3s before acquisition and non-

selective inversions at 1.5s, 764ms, 334ms and 84ms before imaging.  This repeated 

inversion achieved successful suppression of the background static tissue signal, 

maximizing the sensitivity to blood perfusion. 

 

Calibration images were collected with the same imaging sequence but with inversion 

recovery preparation instead of CASL. One sequence with saturation of 4.3s and then 

an inversion at 1650 ms before imaging was used to create a fluid suppressed image.  

A second sequence with saturation at 4.3s and then inversion at both 2408ms and 

511ms was also acquired to create a fluid and white matter suppressed image.  For 

both these sequences, the receiver gain was automatically lowered by 21 dB relative 

to the ASL sequence to avoid receiver saturation. These images were used to quantify 

blood flow in physiological units (ml blood/100gm tissue/min).  

 

The sensitivity of the image to water was calibrated at each voxel 
1-3

.  When multi-

channel coils are employed, the spatially non-uniform sensitivity complicates this 

calibration. Often the underlying tissue signal is used as an indicator of water 

sensitivity, but a water density in each voxel, or partition coefficient, must then be 

assumed.  We observed that the signal intensity in the inversion-prepared fluid-

suppressed image was relatively constant for different tissues. This is likely because 
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more complete recovery occurs for shorter T1 tissues, which tend to have lower water 

density. Using a neighborhood maximum algorithm to avoid regions with partial 

volume of suppressed fluid, a low-resolution sensitivity map was created. This map 

was calibrated for water sensitivity by assuming the tissue was white matter with a 

water concentration of 0.735 gm/ml 
4
 and a T1 of 900ms, and using the equations for 

inversion recovery signal attenuation.  By assuming gray matter with a water 

concentration of 0.88 gm/ml and a T1 of 1150 there was only a 5% calibration 

difference.  This calibration produced a sensitivity map, C, equal to the fully relaxed 

MRI signal intensity produced by 1gm of water per ml of brain tissue.  

 

With this co-registered sensitivity map C, we calculated cerebral blood flow (CBF) 

using the equation: 

 

Where ρb is 1.05g/ml (the density of brain tissue;
4
, α is the labeling efficiency 

(assumed to be 95% for labeling times 75% for background suppression; 
5
, w is 1.5s 

(the post-labeling delay;
2
, tl is 500ms (the labeling duration), T1a is  1.4 ms, ωa 0.85 

g/ml (the density of water in blood; 
4
, Sl and Sc are the signal intensities in the labeled 

and control images, respectively).  

 

The whole ASL pulse sequence, including the acquisition of calibration images, was 

performed in 6:08min. 

 

Image preprocessing 
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p-CASL images were processed using FMRIB Software Library (FSL) software 

applications (http://www.fmrib.ox.a.c.uk/fsl) 
6
. For each participant, one Spoiled 

Gradient Recalled (SPGR) scan was used in the preprocessing steps in addition to the 

T2 images acquired at the time of both CASL images (baseline and follow-up), which 

ensured that the normalization parameters applied to each scan were identical for each 

individual. A multi-step approach was performed as follows: 

(i) Extra-cerebral signal from the T2 scan was removed using the “Brain 

Extraction Tool” (BET) of FSL 
7
. The skull stripped T2 volume and its 

corresponding binary mask were then coregistered to the rCBF map.  

(ii) The coregistered binary mask was multiplied by the rCBF map to remove 

extra-cerebral signal from this scan. The skull stripped T2 and rCBF maps 

were then coregistered back to the space of the original T2 scan (returned 

to their original frame of reference).  

(iii) The T2 scan was subsequently coregistered to each subjects structural 

(SPGR) scan, with the coregistration parameters applied to the 

corresponding rCBF maps and brain extracted T2 scans. 

(iv) The SPGR was normalized to MNI space using a non-linear approach using 

FNIRT 
8
 (FMRIB Non-linear Image Registration Tool) and the 

transformation matrix was applied to the rCBF map and the T2 scans.  

(v)  All data were then smoothed using a 6 mm Gaussian Smoothing kernel. 
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