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Abstract: Neuroblastoma (NBL) originates from undifferentiated cells of the sympathetic nervous system.
Chemotherapy is judged to be suitable for successful treatment of this disease. Here, the influence
of histone deacetylase (HDAC) inhibitor valproate (VPA) combined with DNA-damaging
chemotherapeutic, ellipticine, on UKF-NB-4 and SH-SY5Y neuroblastoma cells was investigated.
Treatment of these cells with ellipticine in combination with VPA led to the synergism of their
anticancer efficacy. The effect is more pronounced in the UKF-NB-4 cell line, the line with N-myc
amplification, than in SH-SY5Y cells. This was associated with caspase-3-dependent induction of
apoptosis in UKF-NB-4 cells. The increase in cytotoxicity of ellipticine in UKF-NB-4 by VPA is
dictated by the sequence of drug administration; the increased cytotoxicity was seen only after
either simultaneous exposure to these drugs or after pretreatment of cells with ellipticine before
their treatment with VPA. The synergism of treatment of cells with VPA and ellipticine seems to
be connected with increased acetylation of histones H3 and H4. Further, co-treatment of cells with
ellipticine and VPA increased the formation of ellipticine-derived DNA adducts, which indicates
an easier accessibility of ellipticine to DNA in cells by its co-treatment with VPA and also resulted
in higher ellipticine cytotoxicity. The results are promising for in vivo studies and perhaps later for
clinical studies of combined treatment of children suffering from high-risk NBL.

Keywords: neuroblastoma; ellipticine; valproate; DNA damage; acetylation of histones; apoptosis

1. Introduction

Neuroblastoma (NBL) represents the commonest extracranial solid tumor of children. In child
organisms, NBL cells can spontaneously regress or differentiate; they can naturally deteriorate, develop
to benign ganglioneuroma, or grow continuously becoming speedily lethal depending on the NBL
biological type [1,2]. These processes might influence the efficacy of therapy, especially the replay on
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apoptosis developed during chemotherapy. Despite advances in cancer diagnosis and therapy, patients
suffering from high-risk NBL possess long-term survival rates of less than 40% [3]. Therefore, novel
drugs and treatment procedures are necessary to improve the efficiency of treatment of the disease.

An important function for epigenetic mechanisms in evolution of NBL was found in several
studies [4–6]. It has been demonstrated that carcinogenic processes in NBL need not result solely from
genetic changes; however they can also be developed by numerous epigenetic mechanisms such as
hyperacetylation and re-expression of growth regulatory genes [4]. DNA hypermethylation and gene
silencing are frequently connected with the abundancy of histones modified by their deacetylation
in NBL [6–8]. In total, there are about 75 genes described as epigenetically affected in several NBL
cell lines and/or NBL samples [6]. Histone modifications include the lysine acetylation status of the
core histones H3 and H4, which influence chromatin condensation. Such changes affect transcription
of several genes together with upregulation of numerous antioncogenes and genes participating in
repair of DNA [9]. Hence, epigenetic mechanisms have arisen to be new therapeutic goals largely
investigated in multiple studies including NBL. Acetylation of histones is maintained by the balance
between activities of two types of enzymes, namely histone acetyltransferases (HATs) and histone
deacetylases (HDACs) [6]. HDACs also function in posttranscriptional alterations of numerous
regulatory non-histone proteins, for example several transcription factors, chaperones or signaling
factors [10].

A variety of substances that inhibit HDACs have been shown to be antitumor agents [11,12].
In the case of one of the HDAC inhibitors, valproate (VPA), it was demonstrated that that can
decrease the aggressiveness in bladder cancer however not in prostate cancer cells [13]. Further,
stimulation of SH-SY5Y and SK-N-BE NBL cells with VPA led to increased cell death and phenotypic
changes associated with cell differentiation, that is, neurite extension and up-regulation of neuronal
markers [14]. VPA is currently used for long-term treatment of epilepsy in both adults and children.
The drug also possesses antitumoral activity, which has led to several preclinical studies showing
that VPA induces loss of proliferative capacity and promotes differentiation of several tumor cell
types [12]. The exact mechanism of the anticancer effect of VPA is however still unclear. VPA not
only suppresses tumor growth and metastatic processes, but it also induces tumor differentiation and
apoptosis. Several mechanisms might be relevant for the biological activity of VPA: (i) it increases the
DNA binding of activating protein-1 (AP-1) transcription factor and the expression of genes regulated
by the extracellular-regulated kinase (ERK)-AP-1 pathway, (ii) VPA down-regulates protein kinase C
(PKC) activity, (iii) inhibits glycogen synthase kinase-3beta (GSK-3beta), (iv) acts as a negative regulator
of the Wnt signaling pathway, and (v) activates the peroxisome proliferator-activated receptors (PPAR)
gamma and delta [12,15].

A number of clinical trials studying the effectiveness of individual inhibitors of HDACs or that
of these compounds in combined chemotherapy with other antitumor drugs and/or radiotherapy
showed that they can produce additive or synergistic effects when utilized together with several
cytostatics or ionizing radiation [12,15–28]. Recently, we have found that exposure of the UKF-NB-4
cell line derived from high-risk NBL tumor to the DNA-damaging drugs cisplatin or etoposide in
a combination with an inhibitor of class I and IIA HDACs, VPA [29], resulted in a synergistic cytotoxic
effect [25,26].

In those studies, potential mechanisms responsible for the increased cytotoxicity of cisplatin
and etoposide were investigated and the results suggested mechanisms dependent on initiation of
caspase-3-dependent apoptosis. The synergism was only produced when VPA was used together
with antitumor drugs targeted at cellular DNA; this HDAC inhibitor is not capable of potentiating the
cytotoxic effect of the antitumor agent vincristine, which is the drug acting as a mitotic inhibitor and
does not damage DNA directly. Interestingly, the increase in cytotoxicity of cisplatin and etoposide
in UKF-NB-4 caused by VPA was dictated by the sequence of administration of these drugs and
VPA; the increased cytoxicity resulted only from either simultaneous exposure to these drugs with
VPA or after the pretreatment of the cells with cisplatin and etoposide before their exposure to VPA.
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The synergism of VPA with cisplatin or etoposide correlated with the degree of acetylation of histones
H3 and H4. However, exact mechanisms of these processes require further investigations.

Here we further investigated the potentiating influence of VPA on cytotoxic effects caused by
DNA-damaging drugs in NBL cells. Because the DNA-damaging drug ellipticine efficiently inhibits
the growth of NBL cells and produces the initiation of apoptosis in the cells [23,30–34], we investigated
the influence of VPA on ellipticine-induced cytotoxicity. The DNA-damaging mechanisms leading to
ellipticine cytotoxicity are produced by its ability to intercalate into DNA [35–37], to act as the inhibitor
of topoisomerase II generating DNA double-strand breaks [38], and predominantly by its capability
of covalent binding to DNA (formation of covalent DNA adducts) when activated by cytochrome
P450 (CYP) enzymes and/or peroxidases [30,31,39–45]). Two types of NBL cells differing in N-myc
gene status were used in our experiments, because this genotype can influence the pathogenesis
of NBL [46]; the UKF-NB-4 cells with and the SH-SY5Y cells without N-myc amplification were
utilized. Both tested cell lines were found to differ significantly in sensitivity to VPA and several
cytostatics; the SH-SY5Y cell line is less sensitive than UKF-NB-4 cells [47]. Therefore, we examined
whether cell sensitivity to ellipticine, which is promising for treatment of high-risk NBL, might
be improved by co-treatment of these SH-SY5Y cells with ellipticine and VPA. We evaluated the
combined effects of VPA with ellipticine on NBL cells under various treatment conditions by studying
the pro-apoptotic efficacy of these chemotherapeutics. We investigated the mechanisms resulting
from apoptosis emphasizing the anticancer effects of VPA, and assessed the influence of VPA on
ellipticine-induced DNA damage by measuring the production of double-strand-breaks and formation
of covalent DNA adducts. Our results suggest that integrating VPA into therapy of high-risk NBL can
increase treatment efficiency.

2. Results

2.1. VPA Enhances Cytotoxicity of Ellipticine in Human UKF-NB-4 and SH-SY5Y NBL Cells

Cytotoxicity of ellipticine, VPA and their combination was evaluated in UKF-NB-4 and SH-SY5Y
NBL cells by the MTT method (Figure 1) and the real-time impedance-based platform xCELLigence
(Figure 2). UKF-NB-4 and SH-SY5Y cells were exposed to increasing amounts of ellipticine in the
presence of 1 mM VPA (Figure 1A,B) or to increasing amounts of VPA and 5 µM ellipticine (Figure 1C,D).
Our results indicated that ellipticine was toxic to both UKF-NB-4 and SH-SY5Y cells, but that its toxic
effect was lower in SH-SY5Y cells than in UKF-NB-4 cells; the IC50 values were 1.88 ± 0.13 µM and
1.27 ± 0.28 µM, respectively. In contrast, VPA was less toxic than ellipticine in NBL cells, but caused
a significant decrease in cell viability at concentrations ≥0.5 and 2 mM in UKF-NB-4 and SH-SY5Y
cell lines, respectively (Figure 1). When cells were treated with both drugs in combination, ellipticine
cytotoxicity was higher and this effect was more pronounced in UKF-NB-4 NBL cells. This result
demonstrated that VPA potentiated the cytotoxicity of ellipticine.

The cytotoxic potency of 5 µM ellipticine in the presence of 1 mM VPA was also increased in
UKF-NB-4 cells when cell growth was analyzed using the xCELLigence system (Figure 2). The results
shown in Figure 2 indicated that the UKF-NB-4 cell line cultivated with VPA grow slowly up to ~56 h
of culture; their cell index did not increase after this time of cultivation. UKF-NB-4 cells exposed to
ellipticine grow exponentially up to 28 h in culture, but after this time period their growth slowed
down before it increased again after 75 h in culture. The highest cytotoxicity in UKF-NB-4 cells was
observed by co-treatment of ellipticine with VPA; the value of cell index was lowered almost to zero
(Figure 2). The xCELLigence system could not be utilized to study the effects of VPA and ellipticine
in SH-SY5Y cells, because VPA led to alterations in cell morphology (Figure 3). Alterations in a cell
status, i.e., cell morphology, lead to changes in values of cell index.
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Figure 1. Cytotoxicity (viable cells % control) of ellipticine (elli) and/or valproic acid (VPA) or their 
combination in UKF-NB-4 (A,C) and SH-SY5Y (B,D) cells after 48 h exposure to drugs, measured by 
the MTT assay. Values are mean ± SD from three independent experiments. Panels (A,B,C) and 
D—*** p < 0.001, ** p < 0.01, * p < 0.5, significant differences between treatment with ellipticine or VPA 
alone and their combination (ANOVA with post-hoc Tukey HSD Test). Panels (C,D)—∆∆∆ p < 0.001, ∆∆ 
p < 0.01, ∆ p < 0.5, significant differences between VPA treatment compared to control (ANOVA with 
post-hoc Tukey HSD Test). 
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Figure 1. Cytotoxicity (viable cells % control) of ellipticine (elli) and/or valproic acid (VPA) or their
combination in UKF-NB-4 (A,C) and SH-SY5Y (B,D) cells after 48 h exposure to drugs, measured by the
MTT assay. Values are mean ± SD from three independent experiments. Panels (A–D)—*** p < 0.001,
** p < 0.01, * p < 0.5, significant differences between treatment with ellipticine or VPA alone and
their combination (ANOVA with post-hoc Tukey HSD Test). Panels (C,D)—∆∆∆ p < 0.001, ∆∆ p < 0.01,
∆ p < 0.5, significant differences between VPA treatment compared to control (ANOVA with post-hoc
Tukey HSD Test).Int. J. Mol. Sci. 2017, 18, 164 5 of 19 
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Figure 2. Cell index of UKF-NB-4 cells affected by 5 µM ellipticine (elli), 1 mM valproic acid (VPA) 
and their combination. Representative data from one of three independent experiments are shown. 

 
Figure 3. The effect of 24- and 48-h treatment of UKF-NB-4 and SH-SY5Y cells with 5 µM ellipticine, 1 
mM valproic acid (VPA) and their combination on the morphology of these neuroblastoma cells 
(×200). As shown in this figure, VPA changes the morphology of SH-SY5Y cells. Bars at the 
bottom-right corners = 50 µm. 

Next we examined the development of apoptosis in UKF-NB-4 and SH-SY5Y cell lines after 
their exposure to ellipticine, VPA and the combination of both drugs. Since the influence of the 
combination of cytostatic drugs with HDAC inhibitors could be affected by the treatment conditions 
[15,20,25,26], several in vitro treatment schedules of ellipticine and VPA were utilized (Table 1). 
Apoptosis development in cells cultured under these different experimental conditions is 
demonstrated in Figures 4 and 5. 

Figure 2. Cell index of UKF-NB-4 cells affected by 5 µM ellipticine (elli), 1 mM valproic acid (VPA) and
their combination. Representative data from one of three independent experiments are shown.
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Figure 3. The effect of 24- and 48-h treatment of UKF-NB-4 and SH-SY5Y cells with 5 µM ellipticine,
1 mM valproic acid (VPA) and their combination on the morphology of these neuroblastoma cells (×200).
As shown in this figure, VPA changes the morphology of SH-SY5Y cells. Bars at the bottom-right
corners = 50 µm.

Next we examined the development of apoptosis in UKF-NB-4 and SH-SY5Y cell lines after their
exposure to ellipticine, VPA and the combination of both drugs. Since the influence of the combination
of cytostatic drugs with HDAC inhibitors could be affected by the treatment conditions [15,20,25,26],
several in vitro treatment schedules of ellipticine and VPA were utilized (Table 1). Apoptosis
development in cells cultured under these different experimental conditions is demonstrated in
Figures 4 and 5.

Table 1. Treatment schedules of ellipticine (elli) and valproic acid (VPA) used in UKF-NB-4 and
SH-SY5Y neuroblastoma cell lines.

Designation 0–24 h 24–48 h

0/0 medium
0/VPA medium 1 mM VPA
0/elli medium 5 µM elli
elli/0 5 µM elli

elli/VPA 5 µM elli 1 mM VPA
VPA/0 1 mM VPA

VPA/elli 1 mM VPA
elli + VPA 5 µM elli + 1 mM VPA

elli, ellipticine; VPA, valproic acid.

Exposure of UKF-NB-4 NBL cells to 5 µM ellipticine or 1 mM VPA-induced only low levels of
apoptosis (Figures 4A and 5A) and cell viability was >80% after 24 or 48 h. In contrast, combined
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exposure of cells to ellipticine and VPA led to significant development of apoptosis (Figures 4A
and 5A). The sensitization of NBL cells to ellipticine by VPA depended on the sequence of drug
exposure; cell viability of UKF-NB-4 cells treated first with VPA and then with ellipticine was
~60%, but the strongest potentiating effect was detected when cells were pretreated with ellipticine
before VPA exposure or after co-treatment of ellipticine with VPA; cell viability was less than 20%
(Figures 4A and 5A).

Exposure of the SH-SY5Y cell line to 5 µM ellipticine or 1 mM VPA also-induced apoptosis
(Figures 4B and 5B). However, SH-SY5Y cells were less sensitive to VPA when combined with
ellipticine than UKF-NB-4 cells. Cell viability of SH-SY5Y cells incubated first with ellipticine and then
with VPA was similar to those cells incubated with ellipticine alone (~80%). The lower sensitivity of
SH-SY5Y cells compared to UKF-NB-4 cells observed here corresponds to the results obtained in the
MTT assay (see Figure 1). The strongest potentiating effect was detected after co-treatment of cells with
ellipticine and VPA together (cell viability ~56%), but pre-treatment of cells with VPA also increased
ellipticine toxicity (Figures 4B and 5B).
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Figure 4. Viability of UKF-NB-4 (A) and SH-SY5Y (B) cells after incubation with 5 µM ellipticine (elli)
or 1 mM valproic acid (VPA) and their various combinations. Experimental treatment conditions
are described in Table 1. Values are mean ± SD from three independent experiments. ** p < 0.01 as
compared to elli/0 group (ANOVA with post-hoc Tukey HSD Test).

Computational analysis of cell survival was calculated using the CompuSyn software (ComboSyn, Inc.,
Paramus, NJ, USA) [48,49] in order to evaluate whether activities of VPA and ellipticine are synergistic.
The value of the effect of VPA combined with ellipticine was calculated and expressed as combination
index (CI). Values for CI of less than 0.90 indicate that drugs act synergistically. CIs between 0.70 and
0.89 indicate a moderate drug synergism, whereas values of 0.9 or greater demonstrate that the tested
drugs act non-synergistically [48,49]. The calculated combination index for the simultaneous influence
of 5 µM ellipticine and 1 mM VPA in the UKF-NB-4 cells was less than 0.1, which demonstrates a very
strong synergism of such combined treatment. In the SH-SY5Y cell line the combination treatments of
ellipticine and VPA were also strongly synergistic at different combination concentrations, especially
at higher concentration than 5 µM ellipticine (CI = 0.14).

Utilizing flow cytometry to determine the percentage of cells with active caspase-3, the caspase
essential for activation of one of the primary apoptotic signaling pathways [50,51] leading to cell
death [52], we showed that the above-mentioned treatment conditions are connected with apoptosis
(Figure 6). Treatment of UKF-NB-4 cells simultaneously with 5 µM ellipticine and 1 mM VPA led to
the highest amount of cells with active caspase-3. The second most effective treatment leading to cell
death in UKF-NB-4 cells was treatment of cells with ellipticine followed by VPA treatment (Figure 6A).
Such results demonstrate that apoptosis initiated by ellipticine in the UKF-NB-4 cells is caused by
the activation of caspase-3 and that this effect is increased by co-treatment with VPA. In contrast,
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the SH-SY5Y cell line was less sensitive to VPA and ellipticine exposure than the UKF-NB-4 cell line
(Figure 6B). There were essentially no differences between the amounts of SH-SY5Y cells with the
active caspase-3 after pre-treatment, post-treatment or co-treatment with VPA and ellipticine.
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Figure 5. Induction of apoptosis in UKF-NB-4 and SH-SY5Y cells exposed to 1 mM valproic acid (VPA),
5 µM ellipticine (elli) and their combinations. Experimental treatment conditions are described in
Table 1. Control cells (0/0) are incubated in medium without drugs. Apoptosis was measured using
Annexin V-Dy647/DAPI labeling. Representative data from one of three independent experiments
are shown.
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experiments. ** p < 0.01 as compared to elli/0 group (ANOVA with post-hoc Tukey HSD Test).

2.2. VPA and Ellipticine Produce Different Effects on the Cell Cycle Distribution in UKF-NB-4 and SH-SY5Y Cells

In further experiments we studied the influence of exposure of UKF-NB-4 and SH-SY5Y cells to
ellipticine and VPA on the cell cycle distribution in these cells. The reason was that combined effects of
both compounds on changes in cell cycle have not been characterized as yet. Compared to controls,
cells exposed to VPA resulted in increased G0/G1 arrest in the UKF-NB-4 cells but not in the SH-SY5Y
cell line (Figure 7). Induction of the G0/G1 phase arrest by VPA is consistent with results found in
our previous study [30]. In contrast, compared to controls, both UKF-NB-4 (Figure 7A) and SH-SY5Y
cells (Figure 7B) accumulated in the S phase of cell cycle when treated with ellipticine in combination
with VPA. This finding indicates that influencing of S phase of cell cycle by ellipticine with VPA is the
predominant effect, which diminishes the influence of VPA on the arrest of G0/G1 phase.
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(elli) and 1 mM valproic acid (VPA) and their various combinations. Experimental treatment conditions
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2.3. Acetylation of Histones H3 and H4 in UKF-NB-4 and SH-SY5Y Cells Exposed to VPA, Ellipticine and
Their Combination

In the next phase of our study, we studied the changes in acetylation of histones H3 and H4 in
UKF-NB-4 and SH-SY5Y cell lines exposed to VPA, ellipticine and both drugs in a combination.

As expected exposure of UKF-NB-4 and SH-SY5Y cells to 1 mM VPA resulted in an increase in
acetylation of these histones in both NBL lines (Figure 8) that confirmed its HDAC inhibition effects.
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No influence of 5 µM ellipticine on histone acetylation was found demonstrating the absence of HDAC
inhibitory efficiency of ellipticine. Treatment of both NBL cell lines with ellipticine together with
VPA slightly elevated the degree of histone H3 and H4 acetylation, too, mainly in the UKF-NB-4 cell
line. This phenomenon was in line with increased toxic effects of ellipticine in these cells (compare
Figures 1 and 4).
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Histone H3 was used as loading control. Representative data from one of three independent
experiments are shown.

2.4. The Effect of VPA on Ellipticine-Induced DNA Damage in UKF-NB-4 and SH-SY5Y Cells

As found in previous studies, the DNA-damaging mechanisms leading to ellipticine cytotoxicity
are based, beside DNA intercalation, mainly on the inhibition of topoisomerase II generating
double-strand DNA breaks [38] and predominantly on the generation of covalent DNA adducts by
ellipticine metabolites formed during its enzymatic activation [31,33,39–45]. Therefore, we examined
how VPA affects the major DNA-damaging mechanism of the ellipticine action in UKF-NB-4 and
SH-SY5Y cell lines.

Phosphorylation of histone H2A on serine 139, assigned γH2AX, by kinase enzymes sensing
double-strand DNA breaks is considered to be a sensitive marker of this type of DNA damage [53,54].
NBL cells were cultured in medium containing 1 mM VPA, 5 µM ellipticine or their combinations,
and the amounts of γH2AX were determined by flow cytometry (Figure 9). The percentage of cells
with γH2AX did not correlate with Annexin V positive/DAPI positive cells in either NBL cell lines
(compare Figures 4 and 9). Hence, the effect of VPA leading to increased ellipticine-induced cytotoxicity
seems to be caused mainly by mechanisms other than the induction of DNA double-strand-breaks.

Because ellipticine-mediated cytotoxicity is predominately linked to covalent DNA adducts
formed during enzymatic activation of ellipticine catalyzed by CYP enzymes and peroxidases,
we analyzed the effects of VPA on generation of ellipticine-DNA adducts using the 32P-postlabeling
technique. As shown in Figure 10a and Table 2 up to four DNA adducts were determined
by 32P-postlabeling in cells exposed to ellipticine alone or in combination with VPA. No DNA
adducts were found in VPA-treated cells [23]. Adduct 1 that was predominantly formed in both
NBL cell lines (Figure 10(aA,aB)), is generated from the ellipticine metabolite 13-hydroxyellipticine
(Figure 10(bD)) which is mainly formed by CYP3A4 and this enzyme in the presence of cytochrome b5
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(Figure 10(bA,bB)) [42,43,55]. Adduct 2 is generated from 12-hydroxyellipticine (Figure 10(bE)) [31,40].
Adducts 6 and 7 were detected in NBL cells only as minor adduct products (Figure 10a and Table 2).
They are also generated in vivo in rats exposed to ellipticine (Figure 10(bC)) [31,41] but they have not
yet been structurally identified.Int. J. Mol. Sci. 2017, 18, 164 10 of 19 
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Figure 9. Analysis of phosphorylated H2AX in UKF-NB-4 (A) and SH-SY5Y (B) cells induced by 5 µM
ellipticine (elli), 1 mM valproic acid (VPA) and their various combinations. Experimental treatment
conditions are described in Table 1. Values represent mean ± SD from three independent experiments.
* p < 0.05, ** p < 0.01 as compared to elli/0 group (ANOVA with post-hoc Tukey HSD Test).
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Figure 10. Autoradiographic profile of 32P-labeled ellipticine-derived DNA adducts generated in
UKF-NB-4 (aA) and SH-SY5Y (aB) cells. DNA adduct pattern generated in calf thymus DNA by
ellipticine after its activation with CYP3A4 in the presence of NADPH without (bA) and with
cytochrome b5 (CYP3A4: cytochrome b5 of 1:5) (bB) (42); DNA of male rat liver treated with 40 mg/kg
body weight ellipticine (bC) (31); from calf thymus DNA reacted with 13-hydroxyellipticine (bD) (39)
or 12-hydroxyelipticine (bE) (40). Analyses were carried out using the nuclease P1 enrichment version
of the 32P-postlabeling method. Adduct spots 1–7 correspond to the ellipticine-derived DNA adducts
and were assigned as previously described [31].

The amounts of ellipticine-derived DNA adducts were mainly increased in UKF-NB-4 cells
when pre-treated with ellipticine before VPA exposure or when cells were exposed to both drugs
in combination relative to ellipticine alone. Significant higher amounts of ellipticine-derived DNA
adducts were also determined in SH-SY5Y cells after co-treatment with ellipticine and VPA compared
to ellipticine treatment alone (Figure 11 and Table 2). Total amounts of ellipticine-DNA adducts
strongly correlated with cell viability in both UKF-NB-4 and SH-SY5Y cells (p < 0.01) as detected by
Annexin V/DAPI staining (compare Figures 4 and 11). These results confirmed previous findings that
the cytotoxic action of ellipticine is based mainly on generation of covalent DNA adducts [33] and that
the increase in ellipticine cytotoxicity by VPA is mainly mediated by the enhanced ellipticine-DNA
adduct formation.
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Table 2. DNA adduct formation by ellipticine in neuroblastoma UKF-NB-4 and SH-SY5Y cell lines
treated with ellipticine and this drug combined with VPA. Experimental treatment conditions are
described in Table 1.

Cells RAL (Mean ± SD/107 Nucleotides) a

Adduct 1 b Adduct 2 Adduct 6 Adduct 7 Total

UKF-NB-4
elli/0 1.86 ± 0.31 0.53 ± 0.01 0.22 ± 0.04 0.30 ±0.005 2.91 ± 0.35

elli/VPA 4.42 ± 0.06 ** 0.30 ± 0.02 * 0.47 ± 0.07 ** 0.74 ± 0.09 * 5.93 ± 0.87 **
VPA/elli 2.72 ± 0.02 ** 0.23 ± 0.06 ** 0.60 ± 0.04 ** 0.80 ± 0.10 ** 4.35 ± 0.52 **
elli + VPA 6.46 ± 0.05 ** 0.24 ± 0.02 ** 1.04 ± 0.02 ** 1.10 ± 0.07 ** 8.84 ± 0.34 **

SH-SY5Y
elli/0 1.50 ± 0.13 0.12 ± 0.01 0.26 ± 0.03 0.34 ± 0.07 2.22 ± 0.11

elli/VPA 1.43 ± 0.19 0.17 ± 0.02 ** 0.37 ± 0.02 * 0.37 ± 0.06 2.34 ± 0.16
VPA/elli 2.37 ± 0.01 ** 0.26 ± 0.001 ** 0.37 ± 0.06 * 0.59 ± 0.07 ** 3.59 ± 0.19 **
elli + VPA 2.37 ± 0.01 ** 0.27 ± 0.01 ** 0.45 ± 0.01 ** 0.65 ± 0.006 ** 3.74 ± 0.02 **

elli—5 µM ellipticine, VPA—1 mM VPA. a: Relative adduct labeling. b: For adduct numbers, see Figure 10. ** p < 0.01,
* p < 0.05 (ANOVA with post-hoc Tukey HSD Test), significantly different from cells treated with ellipticine alone.
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3. Discussion

Our study aimed to develop strategies for how to improve the poor response of high-risk
NBL to general treatment regimens. One of the promising regimens effective against some tumor
cells including NBL use DNA-damaging cytostatics such as doxorubicin, etoposide, or cisplatin in
combination with several HDAC inhibitors (for a review see [15,20,22–28,56]). Therefore, we continued
to investigate the effects of the HDAC inhibitor VPA combined with the DNA-damaging drug
ellipticine in NBL cells. We employed two types of NBL cells differing in the amplification of the
N-myc gene, namely UKF-NB-4 cells with and SH-SY5Y cells without N-myc amplification), because
the status of this gene affects NBL biology [46]. Previously, it was found that over-expression of N-myc
sensitizes neuroblastomas to death-receptor-induced apoptosis [57,58]. Of all genetic aberrations
identified, N-myc amplification was the most important prognostic factor that showed a poor prognosis
of NBL [1,30,59]. Therefore, our study might also help to understand how amplification of N-myc leads
to activations of apoptotic pathways of the DNA-damaging drug ellipticine and its effectiveness.
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Our results confirm previous findings that VPA utilized at the clinically relevant doses (e.g., 1 mM)
can potentiate the cytotoxicity and caspase-3-mediated induction of apoptosis in NBL cells mediated by
DNA-damaging chemotherapeutics such as etoposide, cisplatin [25,26] and ellipticine (present study).
SH-SY5Y cells responded less sensitive to an increase in ellipticine-induced cytotoxicity mediated
by VPA than UKF-NB-4 cells. Likewise, caspase-3-induced apoptosis was lower in SH-SY5Y than in
UKF-NB-4 cells. Therefore, caspase-3 is required for apoptosis triggered by ellipticine and combination
of ellipticine with VPA sensitized NBL cells with N-myc amplification. Furthermore, analyzing the
values of CI, a strong synergistic effect of VPA combined with ellipticine was demonstrated in both
NBL cell lines.

We investigated two types of DNA damage caused by ellipticine, namely ellipticine-mediated
DNA double-strand-breaks and generation of ellipticine-derived DNA adducts and how VPA impacts
on ellipticine-induced DNA damage in NBL cells. In the UKF-NB-4 cell line we did not find any proof
for the increase in ellipticine-derived H2AX phosphorylation, which is considered to be a marker of
DNA double-strand breaks, when ellipticine was used in combination with VPA (see Figure 9). H2AX
phosphorylation increased in both NBL cells treated with ellipticine, confirming that ellipticine might
participate in DNA damage by the DNA double-strand breaks mechanism. However, the degree of
H2AX phosphorylation did not correlate with ellipticine cytotoxicity in the presence of VPA. Therefore,
inhibition of topoisomerase-II by ellipticine which leads to DNA double-strand-break formation seems
not to be the main mechanism by which VPA potentiates ellipticine toxicity in UKF-NB-4 cells. Instead
we showed that increased ellipticine cytotoxicity caused by VPA correlated with elevated amounts
of ellipticine-DNA adducts formed in these cells. Covalent modification of DNA by ellipticine was
also found in SH-SY5Y cells and corresponded to ellipticine-induced cytotoxicity, but effects were
less pronounced than in UKF-NB-4 cells. Therefore, the generation of DNA adducts by ellipticine
seems to be the predominant mechanism by which ellipticine induces cytotoxicity in NBL cells,
and ellipticine toxicity is further increased VPA treatment. Moreover, this process seems to depend
on the amplification status of the N-myc oncogene in NBL cells, because both tested NBL cell lines
differing in N-myc amplification responded differently to ellipticine and VPA treatment.

Despite our findings, the exact mechanism(s) of the synergistic effects of VPA and other HDAC
inhibitors on efficiency of chemotherapeutic drugs such as ellipticine to induce DNA damage are still
a matter of debate. It has been suggested that HDAC inhibitors improve elevated lysine acetylation in
nucleosomal histones which are considered to relax chromatin, thereby allowing increased approach of
transcription factors and DNA-damaging compounds to DNA [15,20]. In our study, enhanced toxicity
of ellipticine influenced by VPA was found to depend on the acetylation status of histones H3 and
H4; this HDAC inhibitor slightly enhanced the levels of acetylated histones. Moreover, the increased
amounts of acetylated histones corresponded to an increase in formation of covalent ellipticine-derived
DNA adducts, which finally leads to the sensitization of NBL cells (mainly the UKF-NB-4 cell line)
to ellipticine.

However, it is important to underline that the sequence of ellipticine and VPA treatment is crucial
to maximize the sensitivity of NBL cells to ellipticine by VPA. The HDAC inhibitor enhances the
cytotoxic effects of ellipticine only when administered simultaneously, or when cells were exposed to
ellipticine prior to VPA treatment. These treatment regimens were efficient to decrease the viability of
NBL cells, to elevate caspase-3 activation and to enhance ellipticine-derived DNA adduct formation.
In contrast, exposition of cells to VPA before exposure to ellipticine was not able to further enhance
ellipticine-induced cytotoxicity or covalent DNA modification by this anticancer agent. Our results
indicate that such DNA damage is essential for the promotional influence of VPA, arguing against the
hypothesis that relaxed chromatin elevates the accessibility of DNA-damaging drugs to DNA [15,20].
Likewise, the finding that DNA relaxation is not essential for the synergy of the two HDAC inhibitors
belinostat and romidepsin when tested with the DNA-damaging chemotherapeutics cisplatin and
etoposide was also determined previously [56]. Therefore, our results indicate that alterations of
the DNA structure due to covalent modification by ellipticine metabolites (i.e., the generation of
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ellipticine-derived DNA adducts) might elevate accessibility of at least some nucleosomal core histones
to acetylation. This can consequently result in the transcription of several genes responsible for DNA
repair or apoptosis. However, this hypothesis awaits further examination.

As shown in this and several previous studies [20,23,25,26,28], the most important challenge in
conducting a clinical trial when combining HDAC inhibitors such as VPA with DNA-damaging drugs
such as doxorubicin, etoposide, cisplatin or ellipticine will be to mediate increased DNA damage
in the cancer tissue leading to tumor cell death. Our findings indicate that treatment of cells with
VPA synergizes cytotoxicity of DNA-damaging agent ellipticine in NBL cells, mainly in the high-risk
UKF-NB-4 cells with N-myc gene amplification. Further, our results shown here and those of previous
studies [25,26] demonstrate that concomitant exposure to chemotherapeutic drug such as ellipticine
(present study), cisplatin or etoposide [25,26] with VPA as well as the procedure where the cells were
treated with chemotherapeutic prior to VPA treatment are both very effective treatment regimen which
supports the development of clinical trials utilizing such combinations in neuroblastomas in children.
NBL which frequently occur in children, are very rare in adults. The diagnosis in adults is difficult at
an early stage as symptoms are rarely evident until the disease has metastasized. Multidisciplinary
efforts for each patient should be undertaken with therapeutic regimens tailored to the adult patient.
Therefore, a combinatorial treatment with ellipticine and VPA might be promising in children but
might not be effective in adult patients. Combining treatment of DNA-damaging drugs with VPA
might also diminish several problems occurring during NBL treatment of children in clinical practice
such as the decrease in drug dose and temporary discontinuation of clinical treatment caused by
drug toxicity.

4. Materials and Methods

4.1. Cell Cultures and Chemicals

The UKF-NB-4 cell line, derived from bone marrow metastases of recurrent high-risk NBL,
was a present of Prof. J. Cinatl, Jr. (J. W. Goethe University, Frankfurt, Germany). The SH-SY5Y cells
were from ATCC (Manassas, VA, USA). Because the SH-SY5Y cell line has been reported that can
be partially contaminated (http://web.expasy.org/cellosaurus/CVCL_0019), which could influence
their responses to treatment, we verified them as cells of human origin (data not shown). Valproic
acid sodium salt (VPA) and ellipticine were obtained from Sigma Chemical Co. (St. Louis, MO, USA).
All additional chemicals utilized in the study were of analytical purity or better. Tested NBL cell lines
were cultivated at 37 ◦C and 5% CO2 in Iscove’s modified Dulbecco’s medium (IMDM) with 10% fetal
bovine serum (both Life Technologies, Carlsbad, CA, USA). Cell lines were cultivated for at least 48 h
with studied drugs as this time basically correlated with the time for two cycles of cell division [30].
Furthermore, this time is sufficient for the drugs investigated in the present work to enter the studied
cells, influence cell cycle and cause apoptosis [22,24–26].

4.2. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT) Assay

Cytotoxicity of ellipticine and VPA in UKF-NB-4 or SH-SY5Y cells cultured in the exponential
growth was determined in a 96-well plate format. To obtain dose-response curves, cells were
cultivated in 100 µL of medium using a density of 104 cells per well. In order to examine the effect of
ellipticine, VPA and their combination on the tested NBL cell lines, cells were treated with 0.04–20 µM
ellipticine and 0.16–8 mM VPA. Viability of cells was determined using the MTT test as shown
previously [23,60,61]. In brief, the MTT solution (2 mg/mL in PBS) was added to cells after 48 h of their
incubation at 37 ◦C in 5% CO2, the plates were incubated for 3 h and cells lysed in solution of 20% of
SDS containing 50% N,N-dimethylformamide (pH 4.5). The absorbance at 570 nm was determined for
each well by multiwell ELISA reader Versamax (Molecular Devices, Sunnyvale, CA, USA). The values
of IC50 were determined using at least 3 independent measurements utilizing the linear regression of
the dose-log response curves by SOFTmaxPro software.

http://web.expasy.org/cellosaurus/CVCL_0019
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4.3. Annexin V/DAPI Double Staining Assay

In order to detect apoptosis, Annexin V-Dy647 (Apronex s.r.o, Jesenice u Prahy, Czech Republic)
was utilized in the procedure described in manufacturer’s instructions and cells were analyzed
employing flow cytometry (LSR II, BD, Franklin Lakes, CA, USA). In brief, 8 × 105 UKF-NB-4 or
SH-SY5Y cells were plated in 60 mm dishes and exposed to tested chemotherapeutics, VPA (dissolved
in an IMDM medium), ellipticine (dissolved in dimethyl sulfoxide [DMSO]; the final volume of DMSO
did not exceed 0.5%), or these drugs in combinations. After treatment with the drugs for 48 h, cells were
washed with cold PBS, trypsinized and collected by centrifugation. The tested cells were additionally
re-suspended in 100 µL of Annexin binding buffer containing 1 µL of Annexin V-Dy647 and 1 µL
of 4′,6-diamidino-2-phenylindole, dihydrochloride (DAPI, ThermoFisher Scientific, Waltham, MA,
USA). Thereafter, cells were mildly mixed and incubated for 15 min under the ambient temperature in
the dark. Binding buffer (1 mL) was added to every tube and fudged. Pellets of collected cells were
re-suspended in the same buffer, measured using a LSR II flow cytometer (BD, Franklin Lakes, CA,
USA) and tested using FlowLogic software (Inivai Technologies, Mentone, Australia).

4.4. Real-Time Monitoring of Cell Viability

The xCELLigence RTCA DP Instrument (ACEA Bioscience Inc., San Diego, CA, USA) placed in
a humidified incubator at 37 ◦C and 5% CO2 was utilized for real-time label free monitoring of cell
viability [62]. UKF-NB-4 and/or SH-SY5Y cell lines (15,000 cells) were seeded into wells of 16-well
plates for impedance-based detection. Every treatment situation (control, 1 mM VPA, 5 µM ellipticine
and the mixture of 1 mM VPA with 5 µM ellipticine) was analyzed in duplicate. Cell index (CI) was
measured every 30 min for 140 h and results were monitored using the supplied RTCA software.

4.5. Detection of Active Caspase-3

In order to recognize cells possessing active caspase-3, 8 × 105 UKF-NB-4 and/or SH-SY5Y
neuroblastoma cell lines were plated in 60 mm dishes and exposed to tested chemotherapeutics or
their combinations for 48 h. The amounts of active caspase-3 positive cells were determined employing
the cleaved caspase-3 (Asp175) (D3E9) rabbit mAb (Alexa Fluor® 647 Conjugate) #9602 (Cell Signaling
Technology, Danvers, MA, USA). Briefly, after treatment, cells were washed with cold PBS, trypsinized
and collected by centrifugation. Pellets of cells were washed with PBS and after spinning fixed in 4%
paraformaldehyde for 10 min. Cell pellets were then again washed with PBS and permeabilized by
adding 90% methanol for 1 h at -20 ◦C. Pellets were subsequently washed 3 times with 1 mL 0.5%
bovine serum albumin (BSA) in PBS, cells re-suspended in 100 µL of diluted antibody and incubated
for 1 h at laboratory temperature. Re-suspended washed cells were measured using a LSR II flow
cytometer (BD, Franklin Lakes, CA, USA) and tested using FlowLogic software.

4.6. Cell Cycle Analysis

In order to evaluate cell cycle distribution, 8 × 105 cells were plated in 60 mm dishes and exposed
to individual drugs or their combinations for various incubation periods. After exposure, the cells
were collected by trypsinization, washed by PBS and fixed with 4% paraformaldehyde for 10 min.
Thereafter these cells were permeabilized with 90% methanol and incubated in -20 ◦C a minimum of
1 h. Samples were additionally incubated in DAPI (1 µg/mL) solution in dark under the laboratory
temperature for 30 min, washed with PBS, and measured by flow cytometry employing LSR II flow
cytometer and analyzed with FlowLogic software.

4.7. Determination of Contents of Acetylated Histones H3 and H4

To determine the histone H3 and H4 acetylation status, 5.4 × 106 cells were plated in 100 mm
dishes, cultivated and then exposed to 5 µM ellipticine, 1 mM VPA and with both compounds in
combination for 48 h. Cells were harvested and histones isolated using acid extraction followed by
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precipitation of histones using trichloracetic acid (TCA) [63]. Amounts of proteins were measured as
described previously [64], employing the DC Protein Assay (Bio-Rad, Hercules, CA, USA). Histones
(5 µg) were separated by electrophoresis on 16% polyacrylamide gels, transferred onto nitrocellulose
membrane and incubated with 5% non-fat milk to block non-specific binding. The nitrocellulose
membranes were subsequently treated with specific rabbit polyclonal anti-acetyl-histone H3 (1:2000;
Upstate Biotechnology Inc., Lake Placid, NY, USA) and anti-acetyl-histone H4 (1:2000; Merck Millipore,
Billerica, MA, USA) antibodies overnight at 4 ◦C. Thereafter they were washed and treated with
europium-labeled goat anti-rabbit and goat anti-mouse secondary antibodies (1:5000; Molecular
Devices, Sunnyvale, CA, USA) and the antigen-antibody complex was visualized by SpectraMax
i3x Multi-Mode Detection Platform according to the manufacturer’s instructions (Molecular Devices,
Sunnyvale, CA, USA). The anti-histone H3 antibody (1:8000; Merck Millipore, Billerica, MA, USA) was
employed as a loading control.

4.8. Determination of Histone H2AX Phosphorylation Status

To evaluate phosphorylation of histone H2AX, 8 × 105 neuroblastoma cells were plated in 60 mm
dishes and exposed to tested chemotherapeutics or their combinations. After treatment cells were
washed and subsequently fixed in 4% formaldehyde in PBS for 10 min. Thereafter they were washed
by PBS, re-suspended in ice cold 90% methanol and incubated for 1 h at −20 ◦C. After washing three
times with wash buffer (PBS containing 0.5% BSA and 0.2% Triton X) cells were incubated in 50 µL
of wash buffer containing 5 µL of pH2AX antibody (Alexa Fluor® 647 anti-H2AX-Phosphorylated
(Ser139), Biolegend, San Diego, CA, USA) for 60 min at 4 ◦C. Then cells were washed, measured using
a LSR II (BD, Franklin Lakes, CA, USA) and analyzed with FlowLogic software.

4.9. Detection of Ellipticine-DNA Adducts by 32P-Postlabeling

5.4 × 106 cells were plated in 100 mm dishes and exposed to 5 µM ellipticine or 5 µM ellipticine
with 1 mM VPA for 48 h. Cells were harvested after trypsinizing and washed twice with 5 mL of PBS
yielding a cell pellet that was stored at -80 ◦C until DNA isolation. DNA was isolated by a standard
phenol-chloroform extraction method as described [23,31,40,65,66]. Ellipticine-DNA adduct were
detected and quantified utilizing the nuclease P1 enrichment version of the 32P-postlabeling assay as
described previously for in vitro [23,31,40,65,66] and in vivo [31,41] analyses.

4.10. Statistical Analysis

Data are shown as averages ± SD. ANOVA with post-hoc Tukey HSD Test was utilized when
comparing the situations. p < 0.05 was considered as significant. Significances of the statistical analyses
are shown in individual Figures and described in their legends.

5. Conclusions

In conclusion, VPA sensitizes NBL cells to ellipticine toxicity. This sensitization was found to
depend on the sequence of drug treatment; synergistic effects were only seen either after simultaneous
exposure of cells to ellipticine together with VPA or when the cells were exposed to ellipticine
prior to treatment with VPA. The synergistic effects of VPA with ellipticine were connected with
increased H3 and H4 histone acetylation, mainly in UKF-NB-4 cells. The G0/G1 phase arrest was
detected in UKF-NB-4 cells after VPA treatment, which is consistent with such an effect in various
cancer cells [12,15], but not found in SH-SY5Y cells. Treatment of cells with ellipticine and VPA led
to accumulation of both NBL cell lines in the S-phase of cell cycle resulting from increased DNA
damage in these cells, and this effect diminishes the influence of VPA on the arrest in G0/G1 phase.
Enhanced ellipticine-derived DNA adduct formation stimulated by VPA treatment was predominantly
responsible for increased ellipticine cytotoxicity by VPA, indicating that the elevated accessibility of
DNA to this anticancer agent is caused by VPA.
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55. Stiborová, M.; Indra, R.; Frei, E.; Kopečková, K.; Schmeiser, H.H.; Eckschlager, T.; Adam, V.; Heger, Z.;
Arlt, V.M.; et al. Cytochrome b5 plays a dual role in the reaction cycle of cytochrome P450 3A4 during
oxidation of the anticancer drug ellipticine. Monatsh. Chem. 2017, 148, 1983–1991. [CrossRef] [PubMed]

56. Luchenko, V.L.; Salcido, C.D.; Zhang, Y.; Agama, K.; Komlodi-Pasztor, E.; Murphy, R.F.; Giaccone, G.;
Pommier, Y.; Bates, S.E.; et al. Schedule-dependent synergy of histone deacetylase inhibitors with DNA
damaging agents in small cell lung cancer. Cell Cycle 2011, 10, 3119–3128. [CrossRef] [PubMed]

57. Lutz, W.; Fulda, S.; Jeremias, I.; Debatin, K.M.; Schwab, M. MycN and IFN cooperate in apoptosis of human
neuroblastoma cells. Oncogene 1998, 17, 339–346. [CrossRef] [PubMed]

58. Petroni, M.; Veschi, V.; Prodosmo, A.; Rinaldo, C.; Massimi, I.; Carbonari, M.; Dominici, C.; McDowell, H.P.;
Rinaldi, C.; et al. MYCN sensitizes human neuroblastoma to apoptosis by HIPK2 activation through a DNA
damage response. Mol. Cancer Res. 2011, 9, 67–77. [CrossRef] [PubMed]

59. El-Sayed, M.I.; Ali, A.M.; Sayed, H.A.; Zaky, E.M. Treatment results and prognostic factors of pediatric
neuroblastoma: A retrospective study. Int. Arch. Med. 2010, 3, 37. [CrossRef] [PubMed]
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