
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1109/MSP.2017.2766239

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Simeone, O. (2018). Introducing Information Measures via Inference. IEEE SIGNAL PROCESSING MAGAZINE,
35(1), 167-171. https://doi.org/10.1109/MSP.2017.2766239

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 14. Jan. 2025

https://doi.org/10.1109/MSP.2017.2766239
https://kclpure.kcl.ac.uk/portal/en/publications/f64ad178-8e4d-4f6a-a5a0-1259ffe216c0
https://doi.org/10.1109/MSP.2017.2766239


1

Introducing Information Measures via

Inference [Lecture Notes]

Osvaldo Simeone

Information measures, such as the entropy and the Kullback-Leibler (KL) divergence, are

typically introduced in Information Theory, Pattern Recognition and Machine Learning books

using an abstract viewpoint based on a notion of “surprise”: the entropy of a given random

variable is larger if its realization, when revealed, is on average more “surprising” (see, e.g., [1],

[2], [3]). The goal of these lecture notes is to describe a principled and intuitive introduction to

information measures that builds on inference, namely estimation and hypothesis testing. Specif-

ically, entropy and conditional entropy measures are defined using variational characterizations

that can be interpreted in terms of the minimum Bayes risk in an estimation problem. Divergence

metrics are similarly described using variational expressions derived via mismatched estimation

or binary hypothesis testing principles. The classical Shannon entropy and the KL divergence

are recovered as special cases of more general families of information measures.

Relevance

Information measures are among the criteria most commonly used to derive pattern recognition

and machine learning methods, including blind source separation and variational inference.

An understanding of information measures in terms of inference principles can clarify their

significance and illuminate the implications of their adoption for signal processing and learning

problems.

Prerequisites

These notes require basic knowledge in probability and statistics.

PROBLEM STATEMENT

We consider the following three questions.

1. Given a random variable (rv) X distributed according to a known probabilistic model pX(x),

i.e., X ∼ pX , how can we measure the information associated with its observation? Addressing

this question leads to the definition of generalized entropy as the minimum average loss, or

Bayes risk, attainable on the estimate of X based only on the knowledge of the probabilistic

October 5, 2017 DRAFT



2

model pX [4].

2. Given two random variables X and Y jointly distributed according to a known probabilistic

model pXY (x, y), i.e., (X, Y ) ∼ pXY , how can we measure the information associated with the

observation of X when Y is already known? This leads to the definition of the generalized

conditional entropy as the minimum average loss, or Bayes risk, attainable on the estimate of

X given the knowledge of Y and of the probabilistic model pXY [4].

3. Given two probabilistic models pX and qX defined over the same alphabet X , how can we

quantify how “different” they are? Tackling this question leads to the definition of divergence

measures, such as the KL divergence, based on two different inference problems, namely mis-

matched estimation [4] and binary hypothesis testing [5], [6].

Throughout these notes, we focus on the case of discrete rvs taking values in finite alphabets

indicated by calligraphic letters, as in X ∈ X for a rv X . For extensions to more general

alphabets, we refer to the bibliography. We will denote to the probability mass function (pmf)

of a discrete rv X as pX . The conditional pmf of X given the observation Y = y of a jointly

distributed rv Y is indicated as pX|Y =y, so that pX|Y is a random pmf indexed by Y . The

notation EX∼pX [·] indicates the expectation of the argument with respect to the rv X ∼ pX ,

and the conditional expectation is defined in a similar way. var(·) represents the variance of the

argument pmf. The notation log represents the logarithm in base two.

SOLUTION

1. Generalized Entropy

As proposed by Claude Shannon, the amount of information received from the observation of

a discrete rv X ∼ pX defined over a finite alphabet X should be measured by the amount of a

uncertainty about its value prior to its measurement [7]. This is typically done by introducing

the “surprise” associated with the occurrence of an outcome x as −logpX(x), which is indeed

an increasing function of pX(x)−1: the more unlikely x is, the larger is its induced surprise. The

average surprise is the Shannon entropy

H(X) = EX∼pX [−logpX(X)]. (1)

The logarithmic surprise measure −logpX(x) can be justified based on engineering arguments

as well as by using an axiomatic approach (see [3] for a review).
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Taking a step back, we would like to outline a more direct approach for quantifying the

information associated with the observation of a random variable X . To this end, we consider

the problem of estimating the value of X when one only knows the probabilistic model pX . The

key idea is that the observation of a rv X is more informative if its value is more difficult to

predict a priori, that is, based only on the knowledge of pX .

To formalize this notion, we need to specify: (i) the type of estimates that one is allowed to

make on the value of X; and (ii) the loss function ` that is used to measure the accuracy of

the estimate. We will proceed by considering two types of estimates, namely point estimates,

whereby one needs to commit to a specific value x̂ ∈ X as the estimate of X; and distributional

estimates, in which instead we are allowed to produce a pmf p̂X over alphabet X , hence defining

a profile of "beliefs" over the possible values of X .

Point Estimates: Given a point estimate x̂ ∈ X and an observed value x ∈ X , the estimation

error can be measured by a non-negative loss function `(x, x̂). Examples include the quadratic

loss function `2(x, x̂) = (x−x̂)2, and the 0-1 loss function, or detection error, `0(x, x̂) = |x−x̂|0,

where |a|0 = 0 if a = 0 and |a|0 = 1 otherwise. For any given loss function `, based on the

discussion above, we can measure the information accrued by the observation of X ∼ pX by

evaluating the average loss that is incurred by the best possible a priori estimate of X . This

leads to the definition of generalized entropy [4]

H`(X) = H`(pX) = min
x̂

EX∼pX [`(X, x̂)], (2)

where the estimate x̂ is generally not constrained to lie in the alphabet X . As highlighted by

the notation H`(pX), the generalized entropy depends on the pmf pX and on the loss function `.

The notion of generalized entropy (2) coincides with that of minimum Bayes risk for the given

loss function `.

Let us consider the examples of the quadratic and 0-1 loss functions. For the former, the

generalized entropy can be computed as

H`2(pX) = var(pX), (3)

where we have imposed the optimality condition dE[(X − x̂)2]/dx̂ = 0 to conclude that the

optimal point estimate is the mean x̂ = EX∼pX [X]. Under the quadratic loss function, the
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generalized entropy is hence simply the variance of the distribution. As for the 0-1 loss, we can

write

H`0(pX) = min
x̂

∑
x 6=x̂

pX(x) = 1−max
x̂

pX(x̂), (4)

since the optimal estimate is the mode, i.e., the value x̂ with the largest probability pX(x̂). The

generalized entropy (4) equals the minimum probability of error for the detection of X .

Distributional Estimate: We now consider a different type of estimation problem in which

we are permitted to choose a pmf p̂X on the alphabet X as the estimate for the outcome of

variable X . To ease intuition, we can imagine p̂X(x) to represent the fraction of one’s wager that

is invested on the outcome of X being a specific value x. Note that it may not be necessarily

optimal to put all of one’s money on one value x! In fact, this depends on how we measure the

reward, or conversely the cost, obtained when a value x is realized.

To this end, we define a non-negative loss function `(x, p̂X) representing the loss, or the

“negative gain”, suffered when the value x is observed. This loss should sensibly be a decreasing

function of p̂X(x) – we register a smaller loss, or conversely a larger gain, when we have wagered

more on the actual outcome x. As a fairly general class of loss functions, we can hence define

`(x, p̂X) = f(p̂X(x)), (5)

where f is a decreasing function. Note that a more general class of loss functions can be defined

based on the notion of scoring rule [3].

Denote as ∆(X ) the simplex of pmfs defined over alphabet X . The generalized entropy can

now be defined in a way that is formally equivalent to (2), with the only difference being the

optimization over pmf p̂X rather than over the point estimate x̂:

H`(X) = H`(pX) = min
p̂X∈∆(X )

EX∼pX [`(X, p̂X)]. (6)

A key example of loss function `(x, p̂X) in class (5) is the log-loss `(x, p̂X) = − log p̂X(x). The

log-loss has a strong motivation in terms of lossless compression. In fact, by Kraft’s inequality [1],

it is possible to design a prefix-free – and hence decodable without delay – lossless compression

scheme that uses d− log p̂X(x)e bits to represent value x. As a result, the choice of a pmf p̂X is

akin to the selection of a prefix-free lossless compression scheme that requires a description of

around − log p̂X(x) bits to represent value x. The expectation in (6) measures the corresponding

average number of bits required for lossless compression by the given scheme.
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Using the log-loss in (2), we obtain

H(pX) = min
p̂X∈∆(X )

EX∼pX [−logp̂X(x)], (7)

where H(pX) is the Shannon entropy (1). In fact, imposing the optimality condition on the

right-hand side of (7) yields the optimal pmf p̂X(x) as p̂X(x) = pX(x). Equation (7) reveals that

the entropy (1) is the minimum average log-loss when optimizing over all possible pmfs p̂X . As

a note, when the alphabet X has more than two elements, it can be proved that the log-loss is

the only loss function of the form (5) for which p̂X(x) = pX(x) is optimal, up to multiplicative

and additive constants [8, Theorem 1].

Remark: When pX is the empirical distribution of the data and the optimization over the pmf

p̂X is constrained to lie in a given set of parametrized pmfs, the cost function in (7) is typically

referred to as the cross-entropy loss and the resulting problem coincides with the Maximum

Likelihood (ML) estimation of the parametrized model p̂X [2].

Remark: The generalized entropy H`(pX) can be proved to be a concave function of pX .

This implies that a variable X ∼ λpX + (1− λ)qX distributed according to the mixture of two

distributions is more “random”, i.e., it is more difficult to estimate, than both variables X ∼ pX

and Y ∼ qX .

2. Generalized Conditional Entropy and Mutual Information

Given two rvs X and Y jointly distributed according to a known probabilistic model pXY (x, y),

i.e., (X, Y ) ∼ pXY , we now discuss how to quantify the information that the observation of one

variable, say Y , brings about the other, namely X . Following the same approach adopted above,

we can distinguish two inferential scenarios for this purpose: in the first, a point estimate x̂(y)

of X needs to be produced based on the observation of a value Y = y and the knowledge of

the joint pmf pXY ; while, in the second, we are allowed to choose a pmf p̂X|Y =y as the estimate

of X given the observation Y = y.

Point Estimate: Assuming point estimates and given a loss function `(x, x̂), the generalized

conditional entropy for an observation Y = y is defined as the minimum average loss

H`(pX|Y =y) = min
x̂(y)

EX∼pX|Y =y
[`(X, x̂(y))|Y = y]. (8)

Note that this definition is consistent with (8) as applied to the conditional pmf pX|Y =y. Averaging

over the distribution of the observation Y yields the generalized conditional entropy

H`(X|Y ) = EY∼pY [H`(pX|Y )]. (9)
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It is emphasized that the generalized conditional entropy depends on the joint distribution pXY ,

while (8) depends only on the conditional pmf pX|Y =y.

For the squared error, the generalized conditional entropy can be easily seen to be the

average conditional variance H`2(X|Y ) = EY∼pY [var(pX|Y )], since the a posteriori mean x̂(y) =

EX∼pX|Y =y
[X|Y = y] is the optimal estimate. For the 0-1 loss, the generalized conditional entropy

H`0(X|Y ) is instead equal to the minimum probability of error for the detection of X given Y ,

and the maximum a posteriori (MAP) estimate x̂(y) = argmaxx̂∈XpX|Y (x̂|y) is optimal.

Distributional Estimate: Assume now that we are allowed to choose a pmf p̂X|Y =y as the

estimate of X given the observation Y = y, and that we measure the estimation loss via a

function `(x, p̂X) as in (5). The definition of generalized conditional entropy for a given value

of Y = y follows directly from the arguments above and is given as H`(pX|Y =y), while the

generalized conditional entropy is (9). With the log-loss function, the definition above can be

again seen to coincide with Shannon conditional entropy H(X|Y ) = EX,Y∼pX,Y
[− logpX|Y (X)].

Remark: If X and Y are independent, we have the equality H`(X|Y ) = H`(X). Furthermore,

since in (8) we can always choose estimates that are independent of Y , we generally have the

inequality H`(X|Y ) ≤ H`(X): observing Y , on average, can only decrease the entropy. Note,

however, that it is not true that H`(pX|Y =y) is necessarily smaller than H`(X) [1, Chapter 2].

Remark: Assume that pX,Y is the empirical distribution of the data, typically partitioned into

as domain variables X and labels Y , and that the optimization over the conditional pmf p̂X|Y is

constrained to lie in a given set of parametrized pmfs. In this case, the cost function EX,Y∼pX,Y
[−

logp̂X|Y (X)] is again defined as the cross-entropy loss, and the resulting problem coincides with

the ML supervised learning of the parametrized model p̂X|Y , as in, e.g., logistic regression [2].

Mutual Information: The inequality H`(X|Y ) ≤ H`(X) justifies the definition of generalized

mutual information with respect to the given loss function ` as

I`(X;Y ) = H`(X)−H`(X|Y ). (10)

The mutual information measures the decrease in average loss that is obtained by observing Y

as compared to having only prior information about pX . This notion of mutual information is

in line with the concept of statistical information proposed by DeGroot [10]. With the log-loss,

the generalized mutual information (10) reduces to Shannon’s mutual information.
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3. Divergence Measures

Here we discuss how to quantify the “difference” between two given probabilistic models pX

and qX defined over the same alphabet X . We will take two different inferential viewpoints that

will lead to different definitions of divergence between two distributions. The first is based on

mismatched inference and follows naturally the approach used above to define generalized en-

tropy, conditional entropy and mutual information; while the second is based on the conceptually

distinct inferential scenario of binary hypothesis testing.

Mismatched Inference: Assume that the correct probabilistic model pX , from which the ob-

servation X ∼ pX is drawn, is not known, but only an approximation qX is available. The point

estimate x̂ can hence depend only on qX , and is selected by minimizing the mismatched average

loss as

x̂(qX) = argmin
x̂

EX∼qX [`(X, x̂)]. (11)

In a similar manner, for the distributional estimate p̂X , we have the mismatched estimate p̂(qX)
X =

argminp̂X∈∆(X ) EX∼qX [`(X, p̂X)]. The difference between the average loss obtained with the

mismatched estimate and the minimum loss H`(X) can be adopted as a measure of the divergence

between the two distributions.

For a given loss function `, this approach yields the following definition of divergence between

two distributions

D`(pX ||qX) = EX∼pX [`(X, x̂(qX))]−H`(pX) (12)

in the case of point estimates, and

D`(pX ||qX) = EX∼pX [`(X, p̂
(qX)
X )]−H`(pX) (13)

for distributional inference. It is noted that the divergence D`(pX ||qX) equals zero if and only

if the mismatched estimate performs as well as the optimal estimate in terms of average loss.

For the quadratic loss, the divergence is given as D`2(pX ||qX) = (EX∼pX [X]−EX∼qX [X])2,

which measures the difference in the means of the two pmfs. In the special case of log-loss, the

definition (12) coincides with the conventional KL divergence

D(pX ||qX) = EX∼pX

[
log

pX(X)

qX(X)

]
. (14)
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By comparing (12)-(13) with the definition of mutual information (10), it can be seen that

the following general relationship holds between the generalized mutual information and the

divergence (12)-(13)

I`(X;Y ) = EY∼pY
[
D`(pX|Y ||pX)

]
. (15)

Hence, the generalized mutual information measures the average divergence between the condi-

tional pmf pX|Y =y and the marginal pmf pX .

Binary Hypothesis Testing: We now consider the different inferential set-up of binary hypoth-

esis testing: Given an observation X , decide whether X was generated from pmf pX or from

pmf qX . To proceed, we define a decision rule T (x), which should increase with the confidence

that a value x is generated from pX rather than qX . In this way, in practice, one may impose a

threshold on the rule T (x) so that, for T (x) larger than the threshold, a decision is made that

X was generated from pX .

In order to design the decision rule T (x), we again minimize a loss function or, equivalently,

maximize a merit function. For convenience, here we take the latter approach, and define the

problem of maximizing the merit function

EX∼pX [T (X)]− EX∼qX [g(T (X))] (16)

over the rule T (x), where g is a convex increasing function. This criterion can be motivated as

follows: (i) It increases if T (x) is large, on average, for values of X generated from pX ; and (ii)

it decreases if, upon expectation, T (x) is large for values of X generated from qX . The function

g can be used to define the relative importance of errors made in favor of one distribution or the

other. We note that the merit function (16) can also be formally related to the error probability

of binary hypothesis testing [11].

From this discussion, the optimal value of (16) can be taken to be a measure of the distance

between the two pmfs. This yields the following definition of divergence between two pmfs

Df (pX ||qX) = max
T (x)

EX∼pX [T (X)]− EX∼qX [g(T (X))], (17)

where the subscript f will be justified below.

Under suitable differentiability assumptions on function g (see [6] for generalizations), taking

the derivative with respect to T (x) for all x ∈ X yields the optimality condition g′(T (x)) =

pX(x)/qX(x). This relationship reveals the connection between the optimal detector T (x) and
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the likelihood ratio pX(x)/qX(x). Plugging this result into (17), it can be directly checked that

the following equality holds [5]

Df (pX ||qX) = EX∼qX

[
f

(
pX(X)

qX(X)

)]
, (18)

where the function f(x) = g∗(x) is the convex conjugate of g(t), which is defined as g∗(x) =

supt (xt− g(t)). Note that convex conjugate is convex.

Under the additional constraint f(1) = 0, definition (18) describes a large class of divergence

measures parametrized by the convex function f , which are known as f -divergences or Ali-

Silvey distance measures [9]. The constraint f(1) = 0 ensures that the divergence is zero when

the pmfs pX and qX are identical. Among their key properties, f -divergences satisfy the data

processing inequality [1], [9].

As a specific example, the choice g(t) = exp(t − 1), which gives the convex conjugate

f(x) = xlogx, yields the optimal detector T (x) = 1 + log(pX(x)/qX(x)) and the corresponding

divergence measure (18) is the standard KL divergence KL(pX ||qX) in (14). Another instance

of f -divergence, obtained with g(t) = − log(2 − exp(t)) and the optimal detector T (x) =

log(2pX(x)/pX(x) + qX(x)), is the Jensen-Shannon divergence. Further examples include the

class of α-divergences [6], [9].

We finally mention the related divergence class of integral probability metrics, which measure

the difference EX∼pX [f(X)] − EX∼qX [f(X)] upon maximization over all functions f within

a given class. This leads, among other metrics, to the Maximum Mean Discrepancy (MMD)

measure and the Wasserstein (or Earth Mover) divergence based on optimal transport theory

[12].

Remark: When pX is the empirical distribution of the data, qX is the empirical distribution

obtained from a model to be learned and T (x) is a parametric detector, problem (17) is a key

step of Generative Adversarial Networks (GANs) [6].

Conclusions

In these lecture notes, we have presented an introduction of information measures in terms

of inferential problems, namely estimation for entropy and conditional entropy, as well as mis-

matched estimation and binary hypothesis testing for divergence metrics. This approach allows

the definition of general classes of information measures, including as special cases Shannon’s

entropy and KL divergence, in an intuitive way that reveals their operational significance. The
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variational formulations that define the information measures as optimal inference problems can

be used to derive learning algorithms, such as in [6], as well as estimates of information measures

[11], [5].
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