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Abstract

The goal of microwave breast imaging is to recover the profile of the dielectric properties

of the breast by solving an inverse problem. In this thesis, a novel DBIM algorithm

based on the TwIST method is proposed to reconstruct the complex permittivity of

2-D anatomically realistic numerical breast phantoms. A combined optimisation of

the algorithm parameters is applied to improve the quality of reconstructions and the

robustness of the algorithm.

Furthermore, we present new strategies which improve further the performance

of the DBIM-TwIST algorithm by refining our previous work on multiple-frequency

reconstructions using a single-pole Debye model. Multiple-frequency approaches can

combine the stabilizing effects of lower frequencies with enhanced resolution of higher

frequencies, thereby overcoming stability and resolution limitations of single-frequency

algorithms which tend to be very dependent upon the chosen frequency. And then a

novel hybrid frequency approach is proposed to optimise stability and reconstruction

accuracy at lower computational cost relative to frequency-hopping techniques.

Besides, we propose an innovative two-step reconstruction approach for optimising

the initial guess prior to reconstruction. Our approach adds low computational cost to

the final breast reconstructions, and improves significantly the reconstruction quality

for different breast phantoms. It can then be proposed that an L1 norm regularisation of

the TwIST method is based on the Pareto curve, which contributes to de-noising and

stabilising the algorithm convergence.



At last, we focus on the application of the optimized DBIM-TwIST algorithm to data

obtained from an MWI prototype, including direct measured data from MWI experi-

ments, and numerical data from a CAD model emulating the MWI experiments using

CST EM software. Based on our new eight-antenna microwave system with a small tri-

angular patch printed monopole, our research demonstrates that the algorithm is able to

image cylindrical targets immersed in a background (known) medium despite the model

errors due to approximating the real experiment with our 2-D FDTD model. Moreover,

a frequency selection method based on correlation analysis is proposed to improve the

usage of the frequency information. Finally, we perform image reconstructions using a

two-layer medium in order to enhance signal transmission through the imaging domain

and at the same time reduce unwanted multi-path signals that do no interact with the

interrogated imaging domain.
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Chapter 1

INTRODUCTION

1.1 Fundamentals of Microwave Imaging

We start by a review on microwave imaging (MWI) since its inception up to the most

recent developments. This will introduce the reader to microwave capabilities in biomed-

ical applications, and what has been done to date in this area. The motivation of this

research into MWI is based on two key facts: firstly, that microwave waves are less

harmful than X-rays and secondly, they could be produced at a lower cost than any other

imaging system.

Microwave medical imaging relies on the difference in the dielectric properties of

the different human tissues. For instance, the dielectric properties (permittivity and

conductivity) of the malignant tissues in breast cancer are higher than those of normal

breast tissue. This difference is referred to as dielectric contrast, which can be detected

by MWI methods. MWI employs energy levels that do not harm the tissues and the

equipment used has lower associated costs than the currently widely used diagnostic

tools, e.g. magnetic resonance imaging (MRI) or X-rays. Therefore, MWI has potential

benefits in early-stage breast cancer detection for the screening of the population at risk.

MWI systems seek to address the limitations of today’s standard imaging modalities

for breast cancer detection. For instance, X-ray mammography may pose several health
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1.1 Fundamentals of Microwave Imaging

risks due to its delivery of ionising radiation into the breast tissues. Another drawback

of mammography is the pain associated with breast compression. It also has relatively

low sensitivity especially in the case of radiologically dense breast tissue [1]. In the case

of ultrasound, the images contain too many artefacts and ambiguities (such as shadowing,

speckle, and non-quantified contrasts). These issues often result in insufficient effective

resolutions, a lack of specificity in distinguishing malignant and normal masses, and a

lack of distinguishing between normal background tissue and suspected masses [1]. The

main disadvantage of MRI is its operating cost. The long examination times and the use

of a contrast agent (gadolinium) make it unsuitable for screening purposes. Also, access

to this imaging tool is rather limited and may result in unacceptable delays in the time

for testing [2].

To investigate the ability of MWI for breast cancer detection, several studies of the

dielectric properties of biological tissues at microwave frequencies were carried out. The

results show that the dielectric contrast between malignant and normal breast tissues is

sufficient for early stage breast cancer detection [2–5].

Various acquisition set-ups have been considered for the microwave measurements

of the breast [5–14]. These set-ups can be categorised into three groups: passive, active,

and hybrid. In the passive systems, which are similar to radiometry, a sensor measures

the radiated thermal electromagnetic energy. The energy detected by a radiometer

at microwave frequencies is the thermal emission from the tissue itself and from the

environment that arrives at the radiometer after reflection. This intensity of emission is

proportional to the temperature of the tissue. Cancer detection relies on the fact there is

a temperature contrast between a malignant tumour and the surrounding normal tissue

due to the difference in their metabolism [15].

In some systems, the contrast between malignant and normal tissue increases further.

To archive a better contrast, for example, microwave radiation can be used to induce

heat. Such systems are examples of hybrid systems. For instance in the microwave-

induced acoustic imaging, microwaves are used to illuminate the breast. Due to the

2
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higher conductivity of malignant breast tissue, more energy is deposited in tumours,

resulting in selective heating of these lesions. A tumour expands and generates pressure

waves, which are detected by ultrasound transducers [16].

The active methods are based on the generation of microwave signals that are coupled

to the tissue using antennas. The microwave signals penetrate into the tissue and are

scattered. This scattered field can also be extracted into three different scenarios: mono-

static, bi-static or multi-static. In the mono-static scenario, which is common in radar,

the transmitting (Tx) and the receiving (Rx) antennas are co-located, and the waves

are extracted at the point at which they were generated. Moreover, to construct tissue

images, scanning the Tx/Rx location over a sufficiently large surface (acquisition surface)

is essential [17].

In a bi-static scenario, the Tx and Rx locations are different, and one antenna transmits

and only one antenna receives. To obtain tissue images similar to themono-static scenario,

either the Tx or the Rx antenna, or both, may be scanned over their respective surfaces

[18]. A multi-static system is a generalisation of the bi-static system, with one or

more receivers extracting microwave signals from one or more geographically separated

transmitters. Scanning the Tx/Rx antennas may also be used in multi-static systems

[19].

Most systems exploit active MWI techniques. The focus of this study will also be

on active systems. The goals of MWI design are increasing its capability to detect low-

contrast and small-sized tumours as well as reducing its size and cost. The improvements

can be realised both in the hardware and the software system components. Here, the

focus is on the hardware of the MWI system and the evaluation of its performance. As a

matter of fact, the hardware of the MWI system has a primary role in determining the

performance, size and cost of the system.

There are several challenges in MWI that hardware design needs to address [20, 21].

One such challenge is coupling microwave power into the tissue. Due to the large

difference between the electrical properties of living tissue and air, the reflection of any
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microwave radiation generated in the air at the tissue interface is significant. In general,

different layers of tissue not only reflect back the microwave power but also limit its

penetration through attenuation.

To reduce reflections and increase the coupling power into the tissue coupling liquids

are used [22]. Although using coupling liquids reduces the reflections, it can still cause

power loss due to spillovers and dissipation in the coupling liquid. Moreover, coupling

liquids make the maintenance of the acquisition system more difficult in clinical imple-

mentations. Another approach to improve the power coupling into the tissue is to design

the antennas so that they couple the power through direct contact with the tissue [21].

In this case, the acquisition system should be flexible for adjustments or deformations of

set-up to conform to the size and shape of the particular imaged tissue.

The low dynamic range of MWI systems is another challenging factor. The loss in

medium, sensor efficiency and uncertainty in tissue measurements are major defining

factors of the dynamic range in MWI systems. A high dynamic range is desirable to

achieve better microwave signal penetration depth and better sensitivity of tumour

detection.

1.2 Literature Review

Two approaches have been applied to MWI: microwave tomography and radar-based

approaches; both use the scattering of microwave signals. The systems transmit the

microwave signals into the breast and then measure scattered signals reflected from the

tumour.

1.2.1 Microwave Tomography

Microwave tomography techniques have been studied by several research groups [5, 22–

47]. Prof. Paulsen and Prof. Meaney from Dartmouth College in the United States are

one of the representative research groups. They have studied microwave tomography
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breast imaging since 1990s [48–51]. And they proposed an iterative reconstruction

algorithm by obtaining dielectric properties in a 2D lossy medium in 1995.

The goal of microwave tomography is to recover the profile using the inverse problem

of the dielectric properties of the breast. Microwave tomography uses an inverse scatter-

ing method to develop a diagnostic image of the breast. Inverse scattering uses scattering

signals, including diffraction from objects. It creates a map of permittivity and conduc-

tivity through inversion of those signals [52]. However, the inverse problem takes an

increased amount of time, because the calculation process is complicated. Furthermore, a

non-linear inverse scattering problem must be solved, and iterative image reconstruction

algorithms are usually required to obtain a solution. In general, these ill-posed inverse

scattering approaches suffer from non-uniqueness and require regularisation in order to

achieve convergence to a meaningful solution [29, 53].

TheDartmouth group, for the first time, have developed a clinical prototype for active

MWI of the breast [5]. They developed a 32-channel data acquisition system operating

at a frequency range of 500 MHz to 3 GHz [49] to obtain data from a clinical prototype

exam. The clinical prototype illuminates the breast with 16 monopole antennas that

operate in the 300 MHz to 1 GHz frequency range. The clinical exam was conducted

with five women, and the total acquisition time was 10–15 minutes per breast. The

system measured and obtained data at seven different array heights for seven different

frequencies at each array position [52].

King’s College London is one institute that has been experimenting on different

antenna designs for microwave tomography [44, 46]. They have also proposed new

imaging algorithms, such as an adaptive thresholding iterative shrinkage algorithm to

the linear inversion at each iteration of the distorted Born iterative method (DBIM) [54].

Other groups are researching on reducing high computational demands due to a number

of iterations and discretisation of the object image for accuracy. Xu et al. at the University

of Manitoba proposed an iterative process that involves two algorithms: finite-difference

time-domain (FDTD) and genetic algorithm (GA). They developed a parallel algorithm
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for microwave tomography on CPU-based homogeneous multi-core distributed memory

machines and the Cell BE processor [30, 31, 38]. The research group at the National

University of Ireland, Galway in Ireland presented a novel parallelisation strategy to

accelerate microwave tomography [47]. The IREA, National Research Council of Italy,

also developed diagnostic and therapeutic strategies based on the use of electromagnetic

fields at microwave frequencies for several years. They researched magnetic nanoparticles

(MNP) enhancedMWIwhich is able to reduce the rate of false positives and negatives [55–

58]. In addition, the research has been progressed in therapeutic aspects with microwave

ablation at IREA and the University of Wisconsin—Madison [59–61].

1.2.2 Radar-Based Microwave Imaging

Microwave radar imaging reconstructs the image using the reflected wave from objects. It

uses the reflection that arises due to the difference in the electrical dielectric properties of

normal and malignant breast tissues, when microwaves transmit the internal breast with

a tumour. This approach, which was first developed as a military ground-penetrating

application, is applied to the human body. It was designed in the late 1990s by Hagness

at Wisconsin University, and Benjamin at Bristol University [62–67]. Researchers at the

National University of Ireland, Galway, Tianjin University in China and Hiroshima

University are also working on this subject [10, 14, 68–79]. Recently, Goethe University

of Frankfurt and the University of Bristol have developed experimental phantom-based

imaging on 3D printing technology that was one step closer to the development of

standard breast phantoms [80].

Microwave imaging via space–time (MIST) beamforming uses finite impulse response

(FIR) filters to compensate for the frequency-dependent time delay, such as dispersion

and fractional time delay. The microwave image is formed by summing the filtered signals.

Microwave breast cancer imaging uses a generalised likelihood ratio test (GLRT), which

is a hypothesis testing problem for each voxel, with the null hypothesis representing

the tumour-free case. Reference [68] shows the image formation equations. However,

6



1.3 Contribution and Relevant Publications

most of those methods have suffered from performance degradation used with dense

breast. Thus, at the National University of Ireland, Galway, they used a preprocessing

filter to compensate the path-dependent attenuation and phase effects. In addition, they

investigated the focal quality metrics to estimate average dielectric properties to enhance

tumour detection [81]. The University of Bristol also presented a time-domain wideband

adaptive beamforming to reduce clutter [82]. The approach uses an adapted equalisation

filter that adapts a calculated estimation of averaging dielectric properties of the breast.

1.3 Contribution and Relevant Publications

The Main contribution of this research is in the area of algorithm development and

optimization for microwave tomography.

• The TwIST algorithm has been applied and optimized for MWI for the first time

(Ch.3).

• The thesis proposes a new way of combining multiple frequency information to

improve robustness, and tools for optimising the computational efficiency of the

forward FDTD solver based on a resolution adjustment (Ch. 4)

• The thesis proposes a novel two-stepDBIM algorithm, where the first step estimates

the average breast properties in a fast and efficient way. This two-step algorithm

can avoid false solutions (Ch. 5).

• A novel regularization technique based on the Pareto curve is proposed for the

first time in MWI (Ch. 5).

• The proposed MWI algorithm is assessed for realistic experiments with a unique

approach, using a three-dimensional (3-D) CAD model first to assess model error

without additional random experimental errors such as interference, before moving

to data from the true experimental system. (Ch. 6)

7



1.3 Contribution and Relevant Publications

• The impact of frequency selection in reconstructions from experimental data is

systematically studied for the first time using correlation metrics that are applied

to the experimental data directly. (Ch.6)

The publications related to the main contributions of this thesis are stated as follows.

(1) P. Kosmas and Z. Miao, “Recent advances in microwave medical imaging based

on the DBIM,” 2014 IEEE MTT-S International Microwave Workshop Series on RF

and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio2014),

London, 2014, 3 pages. (Ch.3)

(2) Z. Miao and P. Kosmas, “Microwave breast imaging based on an optimized two-

step iterative shrinkage/thresholding method," in 2015 9th European Conference on

Antennas and Propagation (EuCAP), 2015, 4 pages. (Ch.3)

(3) Z. Miao and P. Kosmas, “Multiple-frequency DBIM-TwIST algorithm for microwave

breast imaging”, IEEE Trans. Antennas Propag., vol. 65, no. 5, pp. 2507-2516, May

2017. (Ch. 4 and 5)

(4) Z. Miao, S. Ahsan, P. Kosmas, J.A. Tobon-Vasquez, F. Vipiana, M. R Casu, and

M. Vacca, “Application of the DBIM-TwIST algorithm to experimental MWI data,”

2017 European Conference on Antennas Propagation (EuCAP), Paris, France, 2017, pp.

1611-1614. (Ch. 6)

Submitting Papers

(1) Z. Miao et al., “Assessing efficacy of the DBIM-TwIST algorithm using data from an

experimental MWI prototype and its 3-D CAD equivalent”. (Ch.6)

(2) Z. Miao, S, Ahsan, et al., “A frequency selection method to reduce errors in mi-

crowave tomography”. (Ch.6)

(3) S. Ahsan, Z. Miao, et al., “Improving MWI reconstructions from an experimental

prototype using a two-layer coupling medium”. (Ch.6)
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1.4 Thesis Structure

The remainder of the thesis is structured as follows. Chapter 2 presents background

material and theories that are necessary for the development of our imaging algorithms

and its validation and testing. Chapter 3 presents our novel microwave breast imaging

algorithm based on an optimised two-step iterative shrinkage/thresholding method.

Following that Chapter 4 presents an implementation of the multiple-frequency approach

for MWI in various resolutions. Moreover, several improvement strategies based on

the multiple-frequency DBIM-TwIST algorithm are presented in Chapter 5. Finally,

Chapter 6 presents initial results from the application of the algorithm to data from a

MWI experimental prototype.
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Chapter 2

PRELIMINARIES AND RELATED

WORK

2.1 Propagation of Electromagnetic Waves

This chapter will review some basic knowledge of microwave theory, while also introduc-

ing the FDTDmethod, which is employed to simulate the propagation of electromagnetic

waves as a forward solution in this thesis.

In the case of MWI, a so-called excitation signal (a known signal) is transmitted

from one Tx antenna to a set of Rx antennas (sometimes including the Tx antenna).

By traversing the object under examination, the wave collects information about the

structural morphology and also about the current condition of the object. For example,

the information of interest is the health condition of the brain tissues. However, the

information obtained by a measurement with a microwave system contains much more

information; for example, head and brain shape and internal structure. This chapter will

briefly overview the mechanisms of microwave propagation and scattering to understand

how the content of the information could be extracted later.

10



2.1 Propagation of Electromagnetic Waves

2.1.1 Maxwell Equations

Maxwell’s Equations govern EM propagation through a set of laws described below:

J +
∂D
∂t

= ∇ × H (Faraday’s Law )

∂B
∂t

= −∇ × E (Ampère’s circuital law)

∇ · B = 0 (Gauss’s law for magnetism)

∇ · D = ρ (Gauss’s law)

(2.1)

In (2.1), D is the electric displacement field, r , the charge density, H , the magnetic

field, J , current density, E , the electric field and t denotes time [83]. If the material

properties are known, every electromagnetic field problem with defined boundary

conditions can be solved by finding a solution for this system of coupled partial differential

equations. This is often a difficult task, and in most cases a closed solution does not

exist. The only option to deal with such circumstances is to approximate the underlying

problem and its solution. A common way to deal with differential equations is to

approximate them numerically, by the method of finite differences.

A differential form in rectangular coordinates is shown below.

µ
∂Hx

∂t
=
∂Ey

∂z
−
∂Ez

∂y
− σmHx − Mx

µ
∂Hy

∂t
=
∂Ez

∂x
−
∂Ez

∂y
− σmHy − My

µ
∂Hz

∂t
=
∂Ex

∂y
−
∂Ez

∂y
− σmHz − Mz

ϵ
∂Ex

∂t
=
∂Hz

∂y
−
∂Hy

∂z
− σeEx − Jx

ϵ
∂Ey

∂t
=
∂Hx

∂z
−
∂Hz

∂x
− σeEy − Jy

ϵ
∂Ez

∂t
=
∂Hy

∂x
−
∂Hx

∂y
− σeEz − Jz

(2.2)
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2.1.2 Finite-Difference Time-Domain Method

One of the oldest numerical approximations for electromagnetic field problems is the

FDTD method. As the name suggests this method approximates the derivatives by finite

differences. This can be performed by defining a sufficiently small step ∆x and then

taking the result of the approximated function f around the point of interest x . The

approximated derivative at x, for example, can be written as

∂ f
∂x

≈
f (x + ∆x) − f (x)

∆x
. (2.3)

By performing this in this particular way, the defined approximation of the derivative

is called the forward difference. Two other such definitions exist, the backward difference

∂ f
∂x

≈
f (x) − f (x − ∆x)

∆x
(2.4)

and the central
∂ f
∂x

≈
f (x + ∆x) − f (x − ∆x)

2∆x
. (2.5)

All finite difference methods are based on at least one of these approximations. Combin-

ing these difference operators can derive higher order derivatives.

It was Kane S. Yee who first defined a scheme to discretise the fields and solve

Maxwell’s equation numerically. He introduced the lattice shown in Fig. 2.1 [84]. Because

the components of the fields are calculated at different points, a separate calculation of

the electric and the magnetic fields are possible. Currently, this lattice is the standard

applied when models are discretised for FDTD calculations. Certain side conditions

must be fulfilled, which are mainly set by the maximal wavelength. This is included

in the set-up simulation. To achieve representative results with FDTD simulations a
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Figure 2.1: Lattice defined by Yee in 1966 which shows various positions of field com-
ponents. The components of the electric field (red circle) are calculated in the middle
of the edges and the components of the magnetic field (blue circle) are centred on the
surfaces.(source: fdtd.wikispaces.com)

maximum time step ∆t , that fulfils the following inequality

∆t ≤
1

u
√

1
(∆x)2 +

1
(∆y)2 +

1
(∆z)2

(2.6)

must be used. Here u denotes the velocity of propagation and ∆x , ∆y and ∆z are the

spatial dimensions of the smallest element of the grid of the simulation [85].

2.1.3 Convolutional Perfectly Matched Layer

One of the greatest challenges of the FDTDmethod has been the generation of an efficient

and accurate solution of electromagnetic wave interaction problems in unbounded

regions. For such problems, an absorbing boundary condition (ABC) must be introduced

at the outer lattice boundary to simulate the extension of the lattice to infinity. A number

of analytical techniques have been discussed to achieve this goal in [86–91].
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An alternate approach to achieve an ABC is to terminate the outer boundary of the

space lattice in an absorbing material medium. This is analogous to the physical treatment

of the walls of an anechoic chamber. Ideally, the absorbing medium is only a few lattice

cells thick, reflectionless to all impinging waves over their full frequency spectrum, highly

absorbing, and effective in the near field of a source or a scatterer. An early attempt at

implementing such an absorbing material boundary condition was reported by Holland

[86], who used a conventional lossy dispersionless absorbing medium. The difficulty

with this tactic is that such an absorbing layer is matched only to normally incident

plane waves. As a result, the entire category of lossy material ABCs had only limited

electromagnetic application.

In 1994, a breakthrough in this area was created by Berenger’s introduction of a

highly effective absorbing-material ABC designated the perfectly matched layer (PML)

[92]. The innovation of Berenger’s PML is that plane waves of arbitrary incidence,

polarisation and frequency are matched at the boundary. Perhaps of equal importance is

that the PML can be used as an absorbing boundary to terminate domains comprised of

inhomogeneous, dispersive, anisotropic and even non-linear media, which was previously

not possible with analytically derived ABCs.

In this thesis, a more efficient implementation is applied as previously published

by Roden and Gedney in [93] based on a recursive convolution technique. This has

since been referred to as the CPML formulation. The CPML is based on the stretched-

coordinate form of Maxwell’s equations as proposed in (2.2). One example is illustrated

below

ϵ
∂

∂t
Ex + σEx = sy(t ) ∗

∂

∂y
Hz − sz (t ) ∗

∂

∂z
Hy . (2.7)

where the choice of the complex stretching variable will be as proposed by Kuzuoglu

and Mittra. Specifically, it is assumed that

si = κi +
σi

αi + jωϵ0
, i = x, y, or z (2.8)
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Finally, according to the conclusion in [93], the CPML formulation is generated as

follows

ϵ r ϵ0
En+1
x i+1/2, j,k − En

x i+1/2, j,k

∆t
+ σ

En+1
x i+1/2, j,k + En

x i+1/2, j,k

∆t
=

H n+1/2
z i+1/2, j+1/2,k − H n+1/2

z i+1/2, j−1/2,k

κy∆y
−
H n+1/2

yi+1/2, j,k+1/2 − H n+1/2
yi+1/2, j,k−1/2

κz∆z
+

N−1∑
m=0

Z0y (m)
H n−m+1/2

z i+1/2, j+1/2,k − H n−m+1/2
z i+1/2, j−1/2,k

∆y
+

N−1∑
m=0

Z0y (m)
H n−m+1/2

yi+1/2, j,k+1/2 − H n−m+1/2
yi+1/2, j,k−1/2

∆z
.

(2.9)

Fortunately, z0i (m) can be performed recursively using the recursive convolutionmethod

[94, 95]. The set of auxiliary expressions ψi is introduced, and Equation 2.9 is imple-

mented as another form

ϵ r ϵ0
En+1
x i+1/2, j,k − En

x i+1/2, j,k

∆t
+ σ

En+1
x i+1/2, j,k + En

x i+1/2, j,k

∆t
=

H n+1/2
z i+1/2, j+1/2,k − H n+1/2

z i+1/2, j−1/2,k

κy∆y
−
H n+1/2

yi+1/2, j,k+1/2 − H n+1/2
yi+1/2, j,k−1/2

κz∆z
+

+ψ
n+1/2
exyi+1/2, j,k

+ ψ
n+1/2
exzi+1/2, j,k

(2.10)

where
ψ
n+1/2
exyi+1/2, j,k

= byψn−1/2
exyi+1/2, j,k

+ ay(Hz i+1/2, j+1/2,k − Hz i+1/2, j−1/2,k )/∆y

ψ
n+1/2
exzi+1/2, j,k

= bzψn−1/2
exzi+1/2, j,k

+ az (Hyi+1/2, j+1/2,k − Hyi+1/2, j−1/2,k )/∆z

bi = e−((σi/κi )+αi )(∆t/ϵ0), (i = x, y, or z)

(2.11)

and ai is shown by

ai =
σi

σk κ
2
i αi

(e−((σi/κi )+αi )(∆t/ϵ0) − 1.0). (2.12)

2.1.4 Two-Dimensional FDTD Modelling in Dispersive Media

In this thesis, the two-dimensional (2-D) FDTD is implemented in MATLAB to model

EM propagation in the forward solver of the MWI algorithm (see Section 2.4). The

former three sections outline the basic theories and derivations involved in the complete
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modelling of FDTD. This section will cover all the formulations grouped with CPML

and dispersive media in TM mode. The explicit update for H in x -projection is also

shown below.

H n+1/2
x (i, j + 1/2) = Da(i, j + 1/2) · H n−1/2

x − Db (i, j + 1/2)·[
En
z (i, j + 1) − En

z (i, j)
κy j+1/2∆y

+ Ψn
Hxy

(i, j + 1/2)

] (2.13)

where

Da(i, j + 1/2) = (1 −
σ∗
(i, j+1/2)∆t

2µ(i, j+1/2)
)/(1 +

σ∗
(i, j+1/2)∆t

2µ(i, j+1/2)
)

Db (i, j + 1/2) = (
∆t

µi, j+1/2
)/(1 +

σ∗
i, j+1/2∆t

2µ(i, j+1/2)
)

κy(p) = 1 + (κy,max − 1) · (
p
d
)m

Ψ
n
Hxy

(i, j + 1/2) = by j+1/2 · Ψ
n−1
Hxy

(i, j + 1/2) + cy j+1/2

[
En
z (i, j + 1) − En

z (i, j)
∆y

]
(2.14)

Note that σ∗ denotes magnetic losses relative to σ as the electric conductivities. In this

thesis, the magnetic loss is set to zero as σ∗ = 0. κy uses a polynomial or geometric

variation with a PEC-backed PML slab of thickness d , with the front planar interface

located in the p = 0. It increases from 1 at p = 0, the inner surface of the CPML, to

κy,max at p = d , the PML outer boundary. In Equation 2.14, by and cy are computed for

the update of PML layer by

bw = e−(
σw
ϵ0κw
+
αw
ϵ0

)·∆t

cw =
σw

σw κw + κ
2
wαw

(bw − 1)
(2.15)
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2.1 Propagation of Electromagnetic Waves

Similarly, the update for H in y-projection is also shown. The parameters are computed

in the same form.

H n+1/2
y (i + 1/2, j) = Da(i + 1/2, j) · H n−1/2

x − Db (i + 1/2, j)·[
En
z (i + 1, j) − En

z (i, j)
κx i+1/2∆x

+ Ψn
Hyx

(i + 1/2, j)
] (2.16)

In this thesis, the 2-D FDTD simulation is excited by point sources with a wideband

Gaussian pulse in a TM configuration (i.e. the electric field is perpendicular to the breast

phantom) in the frequency range between 0.5 and 3.5 GHz. Therefore, there is only one

projection of electric field, Ez , which is given by

En+1
z (i, j) = Ca(i, j) · En

z (i, j) +Cb ·


H n+ 1

2
y (i + 1

2, j) − H n+ 1
2

y (i − 1
2, j)

κx (i)∆x

−
H n+ 1

2
x (i, j + 1

2 ) − H n+ 1
2

x (i, j − 1
2 )

κy( j)∆y
+ Ψ

n+ 1
2

Ez x
(i, j) − Ψn+ 1

2
Ezy

(i, j) −
1
2
(1 + Kd )J nd (i, j)


(2.17)

where

Ca(i, j) =
2ϵ0ϵ∞(i, j) − σs (i, j)∆t + βd (i, j)
2ϵ0ϵ∞(i, j) + σs (i, j)∆t + βd (i, j)

Cb (i, j) =
2∆t

2ϵ0ϵ∞(i, j) + σs (i, j)∆t + βd (i, j)

κx (p) = 1 + (κx,max − 1) · (
p
d
)m

κy(p) = 1 + (κy,max − 1) · (
p
d
)m

Ψ
n+ 1

2
Ez x

(i, j) = bxi · Ψ
n− 1

2
Ez x

(i, j) +Cxi


H n+ 1

2
y (i + 1

2, j) − H n+ 1
2

y (i − 1
2, j)

∆x


Ψ

n+ 1
2

Ezy
(i, j) = by j · Ψ

n− 1
2

Ezy
(i, j) +Cy j


H n+ 1

2
x (i, j + 1

2 ) − H n+ 1
2

x (i, j − 1
2 )

∆y



(2.18)
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2.2 Debye Model

Kd =
2τ − ∆t
2τ + ∆t

J nd (i, j) = Kd · J n−1d (i, j) + βb (
En
z (i, j) − En−1

z (i, j)
∆t

)

βb =
2ϵ0∆ϵ∆t
2τ + ∆t

.

(2.19)

2.2 Debye Model

The main features of the dielectric spectrum of tissues are well-known and have been

reviewed and reported by [96]. The dielectric spectrum of tissues is characterised by three

main relaxation regions at low, medium and high frequencies. In its simplest form, each

of these relaxation regions is the manifestation of a polarisation mechanism characterised

by a single time constant τ. The Debye model and single-pole Cole–Cole model are

commonly used to describe human tissues. This is because a lossy dispersive wave

equation is conducted completely by the frequency-dependent conductivity. The Debye

relation is used to model the dispersive behaviour of the complex relative permittivity

of breast tissue [64]. The single-pole Cole–Cole model is defined as

ϵ r (ω) = ϵ
′

r (ω) − jϵ
′′

r (ω)

= ϵ∞ +
ϵ s − ϵ∞

1 + ( jωτ)1−α
+

σs

jωϵ0

(2.20)

where ω is the angular frequency, ϵ ′

(ω) is the frequency-dependent dielectric constant,

and ϵ ′′

(ω) is the frequency-dependent dielectric loss which can be converted into the

effective conductivity, σ(ω) = ωϵ0ϵ
′′

(ω). Note that α is a fitting parameter. In many

cases such as biological tissue within certain frequency ranges, the Cole-Cole model in

(2.20) can be simplified to a single-pole Debye model by setting α = 1 in (2.20) [34]

ϵ (ω)

ϵ0
= ϵ∞ +

ϵ s − ϵ∞
1 + jωτ

+
σs

jωϵ0

≡ ϵ∞ +
∆ϵ

1 + jωτ
+

σs

jωϵ0

(2.21)
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2.3 Numerical Breast Phantoms

where ϵ s is the zero-frequency relative permittivity and ϵ∞ is the relative permittivity at

infinite frequency. τ is the pole relaxation time and σs denotes the static conductivity.

Finally, ω denotes angular frequency. In this thesis, the frequency range of interest for

the MWI is from 0.5 to 3.5 GHz.

For this study, the approximations of the Debye model of different breast tissues

were obtained from the University of Wisconsin Cross-Disciplinary Electromagnetics

Laboratory (UWCEM), which provides a number of anatomically-realistic MRI-derived

numerical breast phantoms for breast cancer detection and treatment applications. The

breast tissues in these phantoms have the realistic ultra wideband dielectric properties

reported in [97].

2.3 Numerical Breast Phantoms

The numerical breast phantoms are derived from 3-D MRI datasets from patients with

different breast tissue density classifications, based on the American College of Radiol-

ogy’s BI-RADS system [98]. A number of anatomically realistic MRI-derived numerical

breast phantoms are applied for breast cancer detection and treatment applications.

The phantoms are classified into four groups: ’mostly fatty’, ’scattered fibroglandular’,

’heterogeneously dense’ and ’very dense’, as illustrated by the 3-D model from Fig. 2.3

to Fig. 2.6, respectively.

The numerical breast phantoms are created following the procedures reported in

[99–101]. The intensity of the voxels in each MRI dataset is converted to dispersive

dielectric properties via a piecewise linear mapping. A single-pole Debye model (2.21) is

used to describe the frequency-dependent behaviour of the dielectric properties of all

the biological tissues in the computational model. In this study, a spatially invariant

relaxation time constant of τ = 17.125ps for FDTD algorithmic simplicity and efficiency.

The frequency dependence of the complex permittivity of the constituent tissues is

illustrated in Fig. 2.2, and their Debye parameters are listed in Table 2.1. The interior of
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2.3 Numerical Breast Phantoms

(a)

(b)

Figure 2.2: Frequency dependence of the single-pole Debye tissue models used in the nu-
merical breast phantoms. (a) ϵ r and (b) σe f f . The curves for adipose and fibroglandular
tissues represent the mean of the full mapping range from the raw MRI data.

Table 2.1: The Debye parameters of the media modelled in the computational testbeds
(valid for the frequency range of 0.5 – 3.5 GHz).

Material ϵ∞ ∆ϵ σs (S/m) τ(ps)

Adipose tissue (min) 2.28 1.3 0.0023 17.125
Adipose tissue (mean) 4.68 3.21 0.0881 17.125

Fibroglandular tissue (mean) 17.3 19.4 0.535 17.125
Dry skin 18.4 21.9 0.737 17.125

Malignant inclusion 23.2 33.6 0.801 17.125
Coupling medium 2.6 0.0 0.0 17.125
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Figure 2.3: Relative permittivity and effective conductivity of the mostly fatty 3-D
numerical breast phantom distributions at 1.0 GHz. (a) ϵ r in y − z plane. (b) ϵ r in x − z
plane. (c) ϵ r in x − y plane. (d) σe f f in y − z plane. (e) σe f f in x − z plane. (f) σe f f
in x − y plane.
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Figure 2.4: Relative permittivity and effective conductivity of the scattered fibroglandular
3-D numerical breast phantom distributions at 1.0 GHz. (a) ϵ r in y − z plane. (b) ϵ r in
x − z plane. (c) ϵ r in x − y plane. (d) σe f f in y − z plane. (e) σe f f in x − z plane. (f)
σe f f in x − y plane.
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Figure 2.5: Relative permittivity and effective conductivity of the heterogeneously dense
3-D numerical breast phantom distributions at 1.0 GHz. (a) ϵ r in y − z plane. (b) ϵ r in
x − z plane. (c) ϵ r in x − y plane. (d) σe f f in y − z plane. (e) σe f f in x − z plane. (f)
σe f f in x − y plane.
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Figure 2.6: Relative permittivity and effective conductivity of the very dense 3-D nu-
merical breast phantom distributions at 1.0 GHz. (a) ϵ r in y − z plane. (b) ϵ r in x − z
plane. (c) ϵ r in x − y plane. (d) σe f f in y − z plane. (e) σe f f in x − z plane. (f) σe f f
in x − y plane.
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2.4 Inverse Scattering Problems

each breast phantom is segmented into three distinct regions: adipose, fibroglandular

and transition. Here, the dielectric properties adopted are those reported in a recent

large-scale dielectric spectroscopy study [97] for the adipose and fibroglandular regions

in the models utilised. Voxels in the transition region are mapped to the range spanning

the maximum of the adipose range to the minimum of the fibroglandular range. The

Debye parameters for adipose tissue are derived by first averaging all the Cole–Cole

curves from the large-scale tissue study [97] that correspond to breast tissue samples with

85%—100% adipose tissue, and then fitting a Debye model with τ = 17.125ps to the

averaged curve over the frequency range of 0.5 GHz–3.5 GHz. The Debye parameters

for fibroglandular tissue result from applying the same procedure.

The 2 mm thick skin layer is modelled using the dielectric properties for dry skin

[102], which were approximated with the Debye parameters given in Table 2.1. The

dielectric properties assigned to the spherical inclusions are adapted from a recent study

[97] and are representative of malignant breast tissue properties in our frequency range

of interest.

2.4 Inverse Scattering Problems

When a bounded medium is highly inhomogeneous, there are several methods used to

resolve its scattering. One way is to approximate the inhomogeneous medium with

N scatterers and seek its scattering solution. An alternative approach is to use volume

integral equations where the unknowns in the problem are expressed in terms of the

flowing current volume in the inhomogeneity. The current volume consists of the

conduction current and the displacement current induced by the total electric field

shown in Fig. 2.7 from [103]. An integral equation can then be formulated from which

the total field is solved. This process involves the formulation of the integral equation

for the electromagnetic wave case. Historically, the volume integral equation method

was developed as early as 1913 by Esmarch [104].
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2.4 Inverse Scattering Problems

Figure 2.7: A current source radiating in the vicinity of a general inhomogeneity

2.4.1 Mathematical Formulation of EM Scattering

We first demonstrate how the corresponding integral equation can be derived for a finite-

size, inhomogeneous scatterer for the electromagnetic wave case shown in Fig. 2.7. From

Maxwell’s equations, it follows that the electric field everywhere satisfies the following

equation,

▽ ×µ−1 ▽ ×E(r ) − ω2ϵE(r ) = iω J (r ), (2.22)

where µ and ϵ are functions of position inside the inhomogeneous region V . Next,

subtracting ▽ × µ−1b ▽ ×E(r ) −ω2ϵbE(r ) from both sides of the equation, the following

is achieved

▽×(mu−1−µ−1b )▽×E(r )−ω2(ϵ−ϵb )E(r ) = iω J (r )−▽×µ−1b ▽×E(r )+ω2ϵbE(r ) (2.23)

To formulate the integral equation, we must calculate the dyadic Green’s function in the

absence of the scatterer. The dyadic Green’s function satisfies the equation

▽ ×µ−1b ▽ ×Ḡ(r , r ′) − ω2ϵḠ(r , r ′) = µ−1b Ī δ(r − r ′). (2.24)

The solution is

E (r ) =iω
∫
V
dr ′Ḡ(r , r ′) · µb J (r ′) + ω2

∫
V
dr ′Ḡ(r , r ′) · (ϵ − ϵb )E (r ′)

−

∫
V
dr ′Ḡ(r , r ′) · µb ▽′ ×

(
1
µ
−

1
µb

)
▽′ ×E (r ′)

(2.25)
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2.4 Inverse Scattering Problems

In the above, the first term is just the incident field. Hence, (2.25) becomes

E (r ) = Einc (r ) + ω2
∫
V
dr ′Ḡ(r , r ′) · (ϵ − ϵb )E (r ′)

−

∫
V
dr ′Ḡ(r , r ′) · µb ▽′ ×

(
1
µ
−

1
µb

)
▽′ ×E (r ′)

(2.26)

The integrals in (2.26) are contributions to the field E from the volume current induced in

the scatterer by the total electric field E and magnetic field H (note that ▽×E = iωµH ).

Hence, the first term is generated by the electric polarisation current or displacement

current, while the second term is generated by the magnetic polarisation charges. When

the scatterer is conductive such that ϵ = ϵ ′+ iσ/ω, the first integral in (2.26) is due to the

conduction current induced by the field as well. The two integrals can be combined by

substituting the complex permittivity into (2.26) and identifying a term proportional to

σE corresponding to conduction currents. Moreover, our analysis focuses on materials

that are non-magnetic, thus µ = µb = 1. Equation 2.26 simplifies to

E (r ) = Einc (r ) +
∫
V
dr ′Ḡ(r , r ′) ·O(r ′)E (r ′), (2.27)

whereO(r ′) = ω2(ϵ − ϵb ). In an inverse scattering problem, only field data outside the

scatterer are available, for instance, through a measurement scheme shown in Fig. 2.8.

Then, the total field is related to the object via the volume integral equation (2.27).

The integral above corresponds to the scattered field and is the only term that contains

information on the scatterer, which is described by O(r ) = κ2(r ) − κ2b , where κ2(r ) =

ω2µ(r )ϵ (r ) represents an inhomogeneous medium over a finite domainV . It is apparent

that the scattered field is a non-linear functional of O(r ) ,because E(r ) itself is also a

functional ofO(r ).

The solution of the volume integral equation (2.27) usually has to be solved numeri-

cally. This is, in general, computationally intensive because in finding the matrix element

Nmn, a double integration may have to be performed. For many problems, however,
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2.4 Inverse Scattering Problems

Figure 2.8: An example of an inverse scattering experiment

especially when the scattering from the inhomogeneity is weak, it suffices to derive

approximate solutions to the scattering problem. To this end, this thesis employs the

well-known Born approximation [104].

In the cases when κ2(r ) − κ2b is small, or where the contrast of the scatterer is weak

so that the second term on the right of Equation 2.27 is small compared to the first term,

it can be approximated by

E (r ) ≈ Einc (r ) (2.28)

Then, the total field in Equation 2.27 can be approximately calculated as

E (r ) = Einc (r ) +
∫
V
dr ′Ḡ(r , r ′) ·O(r ′)Einc (r ′) (2.29)

The above is known as the first-order Born approximation. It is also the first order

approximation in the Neumann series expansion of integral equation in (2.27).
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2.4 Inverse Scattering Problems

Figure 2.9: An inverse scattering experiment where the measurement data are obtained
at r on S and the transmitter is at r ′′

2.4.2 Distorted Born Iterative Method

The Born approximation assumes a linear integral equation, while the integral equation

is non-linear in the object function being sought. To extend the Born approach to

non-linear problems, iterative methods must be used to solve the non-linear equation.

The most popular approach to this problem is the use of the DBIM [105].

To demonstrate the implementation of the DBIM, we start by the Born integral

equation

E (r ) = Einc (r ) +
∫
V
dr ′Ḡ(r , r ′, ϵb ) ·

[
κ2(r ′) − κ2b

]
Einc (r ′). (2.30)

In this formulation, the measurement data are available only outside the scatterer in the

inverse scattering problem. Therefore, the only item available is

Esc a(r ) = E (r ) − Einc (r ) r ∈ S, (2.31)
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2.4 Inverse Scattering Problems

where S is some surface outside V (see Fig. 2.9 from [103]). It is only the scattered field

Esc a that bears information on the scatterer. Hence, it can be written as (2.30) as

Esc a(r ) =
∫
V
dr ′Ḡ(r , r ′, ϵb ) ·

[
κ2(r ′) − κ2b

]
Einc (r ′) (2.32)

Now, the preceding equation is an integral equation linear in κ2(r ) − κ2b . Moreover,

the error in the above equation can be easily shown to be of the order (κ2(r ) − κ2b )
2. In

addition, for the special case where Einc (r ′) is generated by a point source a located at

r ′′ ∈ S , it can be written as

Einc (r ′) = Ḡ(r ′, r ′′, ϵb ) · a (2.33)

Then this generates

Esc a(r ) =
∫
V
dr ′Ḡ(r , r ′, ϵb ) · Ḡ(r ′, r ′′, ϵb ) · a

[
κ2(r ′) − κ2b

]
r , r ′′ ∈ S (2.34)

Because κ2(r ) is a 3-D function with support on V , a single measurement of Esc a(r , r ′)

for r on the surface S for a fixed r ′′ is not sufficient to generate enough data to solve

κ2(r ). In other words, it is not expected that information will be accurately retrieved on

a 3-D function from a 2-D function. Therefore, data for a range of r and r ′′ are needed to

reconstruct κ2(r ) accurately. The problem may still be ill-posed. Therefore, the iterative

method is applied to find κ2(r ) approximately. However, the new κ2(r ) can be used as

the estimate κ2b . Then, a new Ḡ(r , r ′, ϵb ) that corresponds to this new κ2b in (2.34) has

to be found. This new Green’s function can then be found. This iterative procedure is

similar to Newton’s method for solving a non-linear integral equation, except that the

solution is regularised at every iteration.

Specifically, the inhomogeneous Green’s function Ḡ(r , r ′, ϵb ) has a simple relation-

ship with the internal electric field. From the differential equations governing the Green’s

28



2.4 Inverse Scattering Problems

function and electric field, the following is easily obtained

Ḡ(r , r ′, ϵb ) ≈
i
ωµ

Ea(r , r ′, ϵb ) (2.35)

where Ea(r , r ′, ϵb ) is the total electric field at the receivers generated by a 2-D point

source in the reconstruction domain filled by the background medium. Using the

reciprocity theorem, the above equation directly gives [34]

Ḡ(r , r ′, ϵb ) ≈
i
ωµ

Eb (r ′, r , ϵb ) (2.36)

Finally, (2.34) can be discretised, e.g., via the Riemann sum under the assumption that

all quantities are constant over the discrete volume elements of the mesh. Discretisation

of (2.34) for all Tx-Rx pairs results in the following set of linear equations:

b(ω) = A(ω)o. (2.37)

In (2.37), A(ω) is an M -by-K matrix, where M is the number of Tx-Rx pairs in the

antenna array and K denotes the number of elements in the discretisation, namely

unknown dielectric properties contrasting inside the breast. While b(ω) is an M -by-1

vector whose elements are equal to the residual scattered field Es .

Solving (2.37) results in a discrete approximation ô of the true distribution of contrast

o(r ). The approximation may be improved by adding ô to the background and using

FDTD simulation to calculate the new background electric field and inhomogeneous

Green’s function for the new background profile ϵb + ô. The iterative application of this

sequence of computations forms the basis of the DBIM.

The DBIM algorithm begins with an initial assumption ϵb0 of the background profile.

At the it ℎ iteration the background electric field and the Green’s function are computed
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2.5 Iterative Method to Solve Linear Problem

for the background profile ϵbi , and the associated equation is given by

Ai(ω)oi+1 = bi(ω) (2.38)

where Ai(ω) is the discretisation of (2.34) for Gb and Eb , and the vector bi(ω) contains

the residual scattered fields due to the background profile ϵbi . Then the background

profile is updated as

ϵbi+1 = ϵbi + ôi+1 (2.39)

2.5 Iterative Method to Solve Linear Problem

2.5.1 Linear Problem Description

We consider solving for the n-vector x in the system of linear equations

Ax = b (2.40)

when the n × n real symmetric matrix A is large and sparse, or represents an operator

for forming products Av . When the real vector b is in the range of A, it is said that the

system is consistent or compatible; otherwise it is inconsistent or incompatible. When

A is non-singular, the system is always consistent and the solution of (2.40) is unique.

When A is singular and (2.40) has at least one solution, and then the singular system

is consistent or compatible, in which case it has infinitely many solutions. To obtain

a unique solution, the minimum-length solution among all solutions x is selected in

Rn such that Ax = b . On the other hand, if the singular system has no solution, it is

thus referred to as inconsistent or incompatible, in which case the singular symmetric

least-squares problem is solved instead and the minimum-length solution is selected:

x = argmin ∥Ax − b ∥2. (2.41)
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2.5 Iterative Method to Solve Linear Problem

More precisely, the minimum-length least-squares problem is defined as

min ∥x ∥2 s.t. x ∈ argmin ∥Ax − b ∥2, (2.42)

or with the more commonly seen but actually a slight abuse of notation

min ∥x ∥2 s.t. x = argmin ∥Ax − b ∥2, (2.43)

When A is linear, a linear inverse problem (LIP) is generated. Many approaches to LIPs

define a solution x̂ as a minimiser of a convex object function f : X = Rm , given by

f (x) =
1
2
∥Ax − b ∥2 + λΦ(x) (2.44)

where λ ∈ [0,+∞] is the parameter of the penalty term. In a regularisation framework,

minimising f is seen as a way of overcoming the ill-conditional, or singular, nature of

A, which precludes inverting it. In this context, Φ is called the regulariser and λ the

regularisation parameter [106].

2.5.2 Direct vs Iterative Methods

Direct methods for solving systems of linear equations try to find the exact solution

and carry out a fixed amount of computations, such as using the Gaussian elimination

method. The errors introduced during computation can accumulate and render the

method unusable for very large systems of equations. In addition, the number of

arithmetic operations to be performed to solve a large system using direct methods may

become infeasible. In the case where many of the coefficients ai j are zero, this approach

may also be redundant.

Iterative methods try to identify the solution by generating a sequence of vectors that

are approximate solutions to the system of equations. These methods seek to approach

the actual solution as rapidly and as accurately as possible. This means the algorithm can
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2.5 Iterative Method to Solve Linear Problem

be stopped once the sequence of vectors approaches a solution that is close enough to the

actual solution. In addition, iterative methods can sometimes take better advantage of the

structure found in the matrix. Many matrices in practice, especially when considering

physical models, are sparse, meaning that most of the coefficients ai j are equal to zero. In

that case, iterative methods arrive at a solution in a shorter period than direct methods

and perform computations only when necessary.

There are three main classes of the iterative methods for linear systems: stationary

iterativemethod, non-stationary iterativemethod andKrylov subspacemethods. Iterative

methods that can be expressed in the simple form

xk+1 = Bxk + c (2.45)

(where neither B nor c depends upon the iteration count k ) are called stationary iterative

methods, such as Jacobi method, the Gauss-Seidel method, the Successive Over-relaxation

(SOR) method and the Symmetric Successive Over-relaxation (SSOR) method.

Non-stationary methods differ from stationary methods in that the computations

involve information that changes at each iteration. Typically, constants are computed

by taking inner products of residuals or other vectors arising from the iterative method.

In this class, there is a special kind of non-stationary method called Krylov subspace

method. With respect to the “influence on the development and practice of science and

engineering in the 20t ℎ century”, Krylov space methods are considered as one of the

ten most important classes of numerical methods [107]. Large sparse linear systems of

equations or large sparse matrix eigenvalue problems appear in most applications of

scientific computing. In the past, Krylov space solvers were referred to also by other

names such as semi-iterative methods and polynomial acceleration methods. Some

of them can also be used as (fixed) preconditioners, in which case they are known as

polynomial pre-conditioners. The best known Krylov subspace methods are the Lanczos,

Conjugate gradient, GMRES (generalized minimum residual), and MINRES (minimal
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2.6 Iterative Shrinkage/Thresholding (IST)

residual) methods. Some methods have been applied in solving the inverse problem for

MWI, such as CGLS (Conjugate Gradient method for Least Squares ).

2.6 Iterative Shrinkage/Thresholding (IST)

IST algorithm was derived by several groups in different frameworks [107–112]. In

particular, Figueiredo and Nowak [112] proposed the function Ψ(·) as the log-likelihood

function for a restoration problem with Gaussian noise and obtained the algorithm based

on an electromagnetic (EM) approach. Combettes and Wajs (see also [109] and [113])

investigate the minimisation of functions given as sums of two convex functions. Charac-

terisation of the solution as the fixed point of a proximity operator leads to an iterative

algorithm that coincides with the IST algorithm for the particular objective function

[114]. Another approach is discussed by Bredies, Lorenz and Maass in [108], where they

interpret the inclusion of a non-differentiable regularisation term as a generalisation of a

constraint and regard the IST algorithm as a generalised conditional gradient algorithm.

The IST algorithm is proposed for finding minimisers of (2.43), which is focused

on the finite-dimensional case, X = Rm,Y = Rn, and it denotes the standard Euclidean

vector norm as ∥ · ∥2. The IST algorithm has the form

x t+1 = (1 − β)x t + βΨλ(x t + KT (y − K x t )) (2.46)

where β > 0. The original IST algorithm has the form (2.46), with β = 1 [111, 112, 115].

Schemes with β , 1 can be seen as under ( β < 1) and over ( β > 1) relaxed versions of

the original IST algorithm.

Each iteration of the IST algorithm only involves sums, matrix-vector products

by K and KT , and the application of the de-noising operation Ψλ . In wavelet-based

methods, Ψλ is a coefficient- wise non-linearity, thus very computationally efficient.

When K represents the convolution with some kernel k, the corresponding product can
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be computed efficiently using the fast Fourier transform (FFT) [116]. Convergence of

IST, with β = 1, was first shown in [111]. Later, convergence of a more general version

of the algorithm was shown in [110].

2.7 Summary

In this chapter, we have introduced the theory of the FDTD method starting from the

Maxwell equations. The explicit update equations based on the 2-D FDTD with CPML

are presented. The Debye model is employed to describe the dielectric spectrum of

human tissues, and corresponding numerical breast phantoms derived from 3-D MRI

datasets from patients are presented as the original data of the simulation experiments.

Besides, the distorted Born iterative method is introduced to solve the inverse scattering

problem in MWI, by transforming the non-linear problem to the linear problem that

then can be solved by a variety of iterative methods. Finally, a traditional IST method is

introduced as the background of the TWIST method in the next chapter.
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Chapter 3

MICROWAVE BREAST IMAGING

BASED ON AN OPTIMISED

TWO-STEP ITERATIVE

SHRINKAGE/THRESHOLDING

METHOD

In this chapter, we propose the application of a two-step iterative shrinkage/thresholding

method (TwIST) to improve the resolution in MWI applications. The TwIST algorithm

is combined with the DBIM to reconstruct the complex permittivity of 2-D anatomically

realistic numerical breast phantoms. This section will also involve discussions on how

to optimise the algorithm parameters to improve the quality of reconstructions and

the robustness of the algorithm. The results generated demonstrate the ability of this

method to produce images with enhanced resolution in 2-D microwave breast imaging.

35



3.1 Introduction

3.1 Introduction

Microwave tomographic methods for medical imaging estimate the spatial distribution

of dielectric properties in a tissue region by solving an EM inverse scattering problem

[117, 118]. Various EM inverse scattering methods have been proposed in recent years for

this purpose, such as CG techniques [119, 120] and Gauss–Newton (GN) optimisation

algorithms [22, 34, 121]. In this chapter, microwave tomography is implemented by

applying the DBIM, which approximates the non-linear inverse scattering problem by

an underdetermined set of linear equations.

Previous work has applied adaptive thresholding methods to solve this set of linear

equations thereby improving reconstructions in DBIM-based microwave breast imaging

[122]. This work improves further the solution to the resulting ill-posed linear system

at every DBIM iteration based on the use of the TwIST algorithm [116], which uses the

two previous iterates to compute the current update of the iterative linear solver. This

allows the TwIST method to exhibit much faster convergence and improved robustness

relative to the one-step iterative methods.

This chapter mainly demonstrates how to implement microwave breast imaging

based on TwIST by optimising the algorithm parameters for this particular application.

3.2 Methodology

3.2.1 Microwave Breast Imaging based on DBIM

As discussed in the previous chapter, DBIM is an inverse scattering algorithm, which

is commonly used to estimate the spatial distribution of dielectric properties within a

region V [118]. It is based on a non-linear integral equation, which can be described in
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3.2 Methodology

its 2-D scalar form as [123],

Es (rn, rm) = E(rn, rm) − Eb (rn, rm)

= ω2µ

∫
V
Gb (rn, r )E(r , rm)(ϵ (r ) − ϵb (r )dr ),

(3.1)

where E , Es , Eb denote respectively total, scattered, and background fields, and rn

and rm denote the Tx and Rx antenna locations. The total field is measured at each

antenna, but is unknown inside V. Inside of the integral, Gb is the Green’s function for

the background medium. As argued in the previous chapter, the Green’s function is

estimated byGb (rn, r ) = i
ωµEb (r , rm). The difference between the complex permittivity

of the object ϵ (r ) and background ϵb (r ) are defined as the contrast functionO(r ), which

is updated at each iteration. Under the Born approximation, this non-linear integral

equation is linearised by replacing the unknown total electric field E(r , rm) with the

known background field Eb (r , rm) [34]. These approximations yield the following

integral equation as

Es (rn, rm) ≈ iω
∫
V
E2
b (r , rm)O(r )dr . (3.2)

This equation can be discretized for all Tx-Rx pairs, leading to a linear system given by

A(ω)o = b(ω) (3.3)

where
A(ω) = iωE2

b

o = ϵ (r ) − ϵb (r )
(3.4)

In (3.3), A(ω) is an M -by-K matrix, where M is the number of transmit–receive pairs

in the antenna array and K denotes the number of elements in the discretisation in the

reconstruction rangeV . The K -by-1 vector o contains the unknown dielectric properties

contrast for the K voxels in V , while b(ω) is an M -by-1 vector with elements that are
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3.2 Methodology

equal to the residual scattered fields E z
sc at (rn |rm). For example, in the 16-antenna system,

M is equal to 16 ∗ 15/2 = 120.

According to the introduction in Section 2.4.2, the updated background profile can

be obtained as

ϵbi+1 = ϵbi + oi+1 (3.5)

where oi+1 is the solution of the previous iteration by solving (2.38).

3.2.2 Two-Step IST (TwIST)

Consider an inverse problem where the goal is to estimate an unknown original image

vector x from an observation vector y, described by the linear equation Ax = y. Many

approaches to this LIP define a solution x̂ as a minimiser of a convex objective function

f : χ → R = [−∞,+∞], given by

f (x) =
1
2
∥y − Ax ∥2 + λΦ(x) (3.6)

where Φ(x) is a regularisation function for the convex optimisation problem and λ ∈

[0,+∞] is a weighting parameter.

In recent years, iterative algorithms were independently proposed by many authors

in different frameworks [116, 124–127]. For example Ref. [116] presents a method of

splitting the matrix to structure a two-step iterative equation.

Consider the linear system Ax = b , with positive definite A; define a so-called

splitting of A as A = C − B, such that C is positive definite and easy to invert. A

stationary two-step iterative method (TwSIM) for solving b is defined as

x1 = x0 + β0C−1(b − Ax0)

x t+1 = (1 − α)x t−1 + αx t + βC−1(b − Ax t )
(3.7)
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for t ≤ 1, where x0 is the initial vector, and α, β, and β0 are the parameters of the

algorithm.

For a large sparse linear problem, A is always not positive definite. Thus, we can

take C = I + λDt and R = I − KT K in the splitting A = C − R of the matrix

A = λDt +KT K , the two-step iteration (3.7) for the linear system Ax = KT y becomes

x t+1 = (1 − α)x t−1 + (α − β)x t + βC−1(x t + KT (y − Kx t )) (3.8)

Observe the relationship between (2.46) and (3.8): the former can be obtained from

the latter by setting α = 1 and replacing the multiplication by matrix C−1 by the

de-noising operator Ψλ . This similarity suggests a TwIST as shown below:

x t+1 = (1 − α)x t−1 + (α − β)x t + βΓλ(x t ) (3.9)

Γλ(x) = Ψλ(x + AT (y − Ax)) (3.10)

where α and β are the parameters of the TwIST algorithm, and Ψλ is the regularisation

operation. The designation ‘two-step freeze’ stems from the fact that the next estimate

x t+1 depends on both the current solution x t and the previous solution x t−1, rather than

only on x t .

It is noted that the one-step IST method is a special case of the TwIST with α = 1

and that the Landweber method can be obtained with α = 1 and β = 1 [128]. In our

research, the regularisation parameter λ is set to zero in order to discuss the influence of

the TwIST parameters independently. Then the update equation is simplified below,

x t+1 = (1 − α)x t−1 + αx t + β(AT (y − Ax)) (3.11)

According to Theorem 3 in [116], (3.11) converges to the solution of Ax = y, if and

only if 0 < α < 2 and 0 < β < 2α/λm , where λm denotes the largest eigenvalues of

the matrix AT A. The optimal parameters α and β are obtained from the asymptotic
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convergence factor

α = ρ2 + 1

β = 2α/(λ1 + λm)

ρ = (1 −
√
k/(1 +

√
k))

(3.12)

where λ1 is the smallest eigenvalue of the matrix AT A and k = λ1/λm is its inverse

condition number [116].

In MWI, the matrix Am×n is a severely ill-posed matrix withm << n, wherem is the

number of measurements and n represents the number of unknown dielectric contrast

coefficients of the breast model. The matrix AT A has some eigenvalues very close to

zero and others greater than 1, which leads to an unstable iterative process. Therefore, to

apply for the TwIST, the matrix is normalised by a suitably chosen smallest eigenvalue ξ ,

and the optimal parameters become,

k̂ = ξ/1

ρ̂ = (1 −
√
k̂)/(1 +

√
k̂)

α̂ = ρ̂2 + 1

β̂ = 2α̂/(ξ + 1)

(3.13)

Another important aspect of the TwIST algorithm is the so-called tolerance that

determines the number of the TwIST iterations at each DBIM iteration. In this chapter,

the stopping criterion is based on the relative variation of the objective function (3.6)

which is described as

Vt = ∥ ft − ft−1∥/ ft−1, (3.14)

where Vt is the current relative variation, and ft and ft−1 are respectively the current

and previous value of the objective function. When Vt becomes smaller than a value

denoted as the tolerance, the TwIST iteration algorithm stops and returns the result to

the DBIM iteration.
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3.2.3 Frequency Hopping Approach

MWI involving large inhomogeneous bodies using the inverse scattering technique

is highly non-linear. This is because the scattered fields are non-linearly related to

the inhomogeneity. The non-linearity is a consequence of multiple scattering [103].

Therefore, as the body becomes large compared to the wavelength or when the contrasts

of the inhomogeneity become large, the non-linear effect, or the multiple scattering effect,

becomes more pronounced. However, this effect is less pronounced at lower frequencies

[105, 129]. Therefore, an inverse problem involving higher contrasts can be solved at

lower frequencies. When the frequency becomes higher, the inverse problem increases

in non-linearity. An optimisation approach is the robust way of solving the inverse

scattering problem. However, due to the non-linearity, the use of single-frequency data

at a high frequency often results in the inverse algorithm being trapped in local minima

due to the highly non-linear nature of the problem [123].

W.C. Chew and J.H. Lin have proposed the frequency hopping approach to process

multiple-frequencymicrowavemeasurement data. By using the image reconstructed from

low frequency data as the initial guess to the higher frequency problem, the authors found

that the non-linear effect can be mitigated. By slowly hopping from lower frequencies

to higher frequencies, reconstruction of objects that are as large as 10 wavelengths in

diameter with high fidelity can be performed. The image reconstructed is much better

than using the high-frequency data directly. Such a MWI algorithm needs no a priori

information about the inhomogeneous body [123].

3.2.4 Hard Constraints

In mathematical optimisation, constraint optimisation is the process of optimising an

objective function with respect to some variables in the presence of constraints on those

variables. The objective function is either a cost function or energy function which is

to be minimised, or a reward function or utility function which is to be maximised.

41



3.3 Performance Analysis of the DBIM-TwIST Algorithm

Table 3.1: Hard boundary setting of Debye parameters applied for the updated back-
ground ϵ i+1(r ) in each DBIM iteration.

Debye parameters Lower bound Upper bound
ϵ∞ 2.28 23.2
∆ϵ 1.3 33.6

σs (S/m) 0.0023 0.801

Constraints can be either hard constraints which set conditions for the variables that

are required to be satisfied, or soft constraints which have some variable values that are

penalised in the objective function if, and based on the extent that, the conditions on

the variables are not satisfied.

In our system, we apply the hard constraint technique to restrict the updated dielectric

properties ϵ i+1(r ) in a reasonable range, which is obtained from (2.39). The choice of

boundary conditions is based on the fitted Debye parameters of the media modelled by

the UWCEM as shown in Table 2.1 and Table 3.1. For example, the value of ϵ i+1(r ) in

certain voxels will be replaced as the value of the upper bound when they are beyond

the upper bound. Note that the hard constraint only is used in the reconstruction range,

as the immersion property is a priori information in the imaging system.

3.3 Performance Analysis of theDBIM-TwISTAlgorithm

This section considers a 2-D microwave breast imaging simulation scenario which has

been used in previous work to evaluate imaging performance with the frequency hopping

approach [120]. All simulation cases are based on the FDTD method with a CPML

boundary condition. The parameters ϵ∞, ϵ s , and σs of the Debye model are estimated

for the complex relative permittivity,

ϵ r (ω) = ϵ∞ +
ϵ s − ϵ∞
1 + jωτ

− j
σs

ωϵ0
, (3.15)
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Figure 3.1: Difference from the reconstruction by the IST and the TwIST method, in
the range from 1 GHz to 3.5 GHz (15 iterations at each frequency).

where τ is assumed constant for all tissues (with a fixed value of 17.125 ps). The original

true image of the 2-D breast is sampled with a cubic cell of a 2 mm side and obtained

from UWCEM numerical breast phantom 062204 (see Fig. 2.5 in the previous chapter)

[130]. Sixteen antennas surround the breast and correspond to point sources with a

wideband pulse for 2-D simulations [120, 122]. Six sampling frequencies are selected

at 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 GHz. Moreover, the background medium is assumed

lossless with ϵ r = 2.6, and the outer outline of the breast model is assumed to be known

precisely for reconstruction. To compare the image reconstruction quality, the ‘relative

error’ is defined (used as the y-axis in subsequent figures) as,

∥ϵ∞or i g inal − ϵ∞r econs t r uc t ed ∥
2

∥ϵ∞or g inal ∥
2 (3.16)

Finally, some representative reconstruction images for the optimized parameters are

shown at the end of the next section.
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3.3.1 Comparison of the IST and TwIST Algorithms

The IST algorithm is a representative of the one-step iterative methods, which has

been introduced in Section 2.6. In Fig. 3.1, the reconstruction results illustrating the

convergence speed and accuracy of the TwIST vs the IST algorithm are presented. It is

evident that the TwIST performs better than the IST. It is also important to note that

the difference between the initial guess and true image can influence the convergence

of the TwIST and the IST method. If the initial guess is far from the average dielectric

properties of the true image, the TwIST is more likely to become unstable compared

with the IST algorithm. Finally, the corresponding reconstructed images are shown in

Section 3.3.4.

3.3.2 Impact of Estimated ξ

The parameter ξ of the TwIST algorithm is an estimate of the minimal eigenvalue of

AT A. Generally, ξ = 10−4 denotes severely ill-conditioned problems, and ξ = 10−2

denotes mildly ill-conditioned problems. In this chapter, the impact of different values

of ξ on the reconstruction quality has been examined. Fig. 3.2 suggests that there is only

little effect in the range 10−2 to 10−6. If ξ is set smaller than 10−6, the algorithm becomes

unstable. Therefore, it can be concluded that the TwIST algorithm is very robust for

this range of value ξ , and ξ to 10−4 is set for all imaging simulations.

3.3.3 Optimization of the TwIST Parameters

The tolerance value determines the stopping criterion for the TwIST iteration (see (3.14)).

This will affect the estimated solution at each DBIM iteration, and therefore plays a

key role for the overall convergence of the DBIM. Fig. 3.3 demonstrates the results for

different fixed tolerance values by using the frequency hopping method. It is evident

that a smaller tolerance value drops the error faster after the 20t ℎ iteration, but a very

small value (10−4) causes the DBIM to diverge early due to amplification of the initial

44



3.3 Performance Analysis of the DBIM-TwIST Algorithm

0 10 20 30 40 50 60

Iteration

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

R
e
la

ti
v
e
 e

rr
o
r

 = 10
-4

 = 10
-2

 = 10
-6

Figure 3.2: Impact of the estimated ξ with T ol = 10−2 and known skin in 90 iterations
by TwIST method and frequency hopping method.
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Figure 3.3: Comparison of the results in different tolerance values with known skin in
90 iterations by TwIST method and frequency hopping method.

error. This graph shows that the values in the order on 10−2 and 10−3 are optimal, but

also suggests that an adaptive process for determining its value is advantageous.
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Figure 3.4: Adaptive method for setting the tolerance value depending on the reference
value, r, in three ranges including r < 0, 0 ≤ r < 1, and r ≥ 1.

To this end, we have designed an adaptive tolerance method for the TwIST-DBIM

implementation. Firstly, it is assumed that at the n-th DBIM iteration (n < 90), there

are m TwIST iterations where we can obtain m outputs of the objective function

( f(n−1,1)... f(n−1,m)) corresponding to the previous DBIM iteration. Then we define a

reference value rn, by rn = log10(max{ f(n−1,1), f(n−1,2)... f(n−1,m)}), where max denote

the maximum in the m objective functions. Based on the reference value r , we set the

tolerance value as,

T oln =


10−1 rn > 1

10−2 0 < rn ≤ 1

10−3 rn < 0

(3.17)

The process is illustrated in Fig. 3.4. At the first iteration, T ol1 is set to 10−1.

As shown in Fig. 3.5, the adaptive method can reduce the iteration error at the first

frequency (from the 1st to 10th iteration) and can increase the accuracy of reconstruction

in high frequencies (from the 70th to 90th iteration). Importantly, these improvements

46



3.3 Performance Analysis of the DBIM-TwIST Algorithm

0 10 20 30 40 50 60 70 80 90

Iteration

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

R
e

la
ti
v
e

 e
rr

o
r

 

fixed Tolerance=10-2,known skin

fixed Tolerance=10-2,unknown skin

adaptive method,unknown skin

Figure 3.5: Comparison between the adaptive tolerance method and the fixed tolerance
method for the case of unknown skin layer thickness and properties.

can be obtained without any prior knowledge of the skin layer thickness and dielectric

properties. On the contrary, the TwIST becomes unstable when the tolerance is fixed to

10−3 with unknown prior knowledge of the skin. This is because the adaptive tolerance

method improves smoothness of the curve in the first 10 iterations by setting a large

tolerance value. This means that the estimated error is reduced at these early iterations

where the DBIM initial guess is far from the solution. Compared with the three curves

shown in Fig. 3.5, it can be concluded that the adaptive method improves robustness

and reconstructs more accurate and fine details in high frequencies.

3.3.4 Reconstructed Images

Out optimization analysis is concluded by showing reconstructed images for the Debye

parameters ϵ∞, ∆ϵ , and σs in Fig. 3.6, which are obtained by the IST, the TwIST with

fixed tolerance 10−2, and the TwIST method with the adaptive tolerance method. By

comparison with the original image, it is evident that Fig. 3.6 (g–i) present the best

estimate especially in terms of the breast details. It is also evident that the TwIST method

47



3.3 Performance Analysis of the DBIM-TwIST Algorithm

-2 0 2 

x ( cm )

-4

-2

0 

2 

4 

y
 (

 c
m

 )

0

5

10

15

20

25

(a)

-2 0 2 

x ( cm )

-4

-2

0 

2 

4 

y
 (

 c
m

 )

0

5

10

15

20

25

30

35

(b)

-2 0 2 

x ( cm )

-4

-2

0 

2 

4 

y
 (

 c
m

 )

0

0.2

0.4

0.6

0.8

1

(c)

-2 0 2 

x ( cm )

-4

-2

0 

2 

4 

y
 (

 c
m

 )

0

5

10

15

20

25

(d)

-2 0 2 

x ( cm )

-4

-2

0 

2 

4 

y
 (

 c
m

 )

0

5

10

15

20

25

30

35

(e)

-2 0 2 

x ( cm )

-4

-2

0 

2 

4 

y
 (

 c
m

 )

0

0.2

0.4

0.6

0.8

1

(f)

-2 0 2 

x ( cm )

-4

-2

0 

2 

4 

y
 (

 c
m

 )

0

5

10

15

20

25

(g)

-2 0 2 

x ( cm )

-4

-2

0 

2 

4 

y
 (

 c
m

 )

0

5

10

15

20

25

30

35

(h)

-2 0 2 

x ( cm )

-4

-2

0 

2 

4 

y
 (

 c
m

 )

0

0.2

0.4

0.6

0.8

1

(i)

-2 0 2 

x ( cm )

-4

-2

0 

2 

4 

y
 (

 c
m

 )

0

5

10

15

20

25

( j)

-2 0 2 

x ( cm )

-4

-2

0 

2 

4 

y
 (

 c
m

 )

0

5

10

15

20

25

30

35

(k)

-2 0 2 

x ( cm )

-4

-2

0 

2 

4 

y
 (

 c
m

 )

0

0.2

0.4

0.6

0.8

1

(l)

Figure 3.6: Reconstructions of the ϵ∞ (the left column), ∆ϵ (the middle column), and
σs (the right column) profiles by IST method, original TwIST method, and adaptive
TwIST method using the frequency-hopping approach. (a–c) Reconstruction by the IST
method; (d–f) Reconstruction by the TwIST method with fixed tolerance as 10−2; (g–i)
Reconstruction by the TwIST method with the adaptive tolerance; (j-l) Reference ϵ∞,
∆ϵ , and σs profiles of original breast phantom.
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3.4 Conclusion

outer-performs the IST in reconstructing the breast phantom. In particular, compared

with (d–f), the adaptive TwIST method in (g–i) produces the most accurate details. Note

that (i) shows a clear outline of breast tissues inside, which prove the high stability of

this study’s adaptive method.

3.4 Conclusion

An improved DBIM algorithm for microwave breast imaging has been implemented

based on the TwIST method, which is a novel way for solving the linear problem at each

DBIM iteration. The initial simulations of this study demonstrated the advantages and

potential of the TwIST compared with one-step iterative such as the IST. The chapter

focuses on the optimal choice of the TwIST parameters to improve the resolution in

microwave breast imaging applications. The final reconstructed breast images have

shown that the two-step iterative method can produce high-quality images in 2-D breast

reconstructions.
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Chapter 4

IMPLEMENTATION OF

MULTIPLE-FREQUENCY

APPROACH FOR MICROWAVE

BREAST IMAGING

4.1 Introduction

This chapter presents new strategies which improve further the performance of the

DBIM-TwIST algorithm for microwave breast imaging. Firstly, we improve the perfor-

mance of the DBIM-TwIST further by refining our previous work on multiple-frequency

reconstructions using a single-pole Debye model [131, 132]. Reconstructing the single-

pole Debye parameters allows multiple frequency data to be used for the inversion at

each DBIM iteration [118, 131, 133]. Multiple-frequency approaches can combine the

stabilizing effects of lower frequencies with enhanced resolution of higher frequencies,

thereby overcoming stability and resolution limitations of single-frequency algorithms

which tend to be very dependent upon the chosen frequency [103].
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4.2 Methodology

Moreover, our analysis provides insight on how to utilize multiple-frequency infor-

mation to enhance the accuracy of reconstruction and robustness of the DBIM-TwIST

algorithm. Our adopted hybrid frequency approach provides better stability and recon-

struction accuracy at lower computational cost relative to frequency-hopping techniques

[120]. Furthermore, to tackle the increase of computational cost for FDTD implemen-

tation in high resolution, we proposed an optimisation of FDTD simulation speed by

modifying the excitation from the point source and the FDTD time step.

Finally, the BDIM-TwIST out-performs two well-known iterative methods employed

for reconstruction. Our research presents the strong robustness and stability of the

multiple-frequency BDIM-TwIST algorithm.

4.2 Methodology

4.2.1 Multiple-Frequency Formulation of DBIM-TwIST Algorithm

TheDBIM is an iterative inverse scattering algorithmwhich is commonly used to estimate

the spatial distribution of dielectric properties within a region V [134]. Under the Born

approximation, a linear integral equation at each iteration can be discretized for all

Tx-Rx pairs, leading to a linear system that can be solved by various methods including

the TwIST method, as presented in the previous chapter [132]. The chapter presented

a methodology to increase the robustness of the DBIM–TwIST algorithm, as well as

ways to optimise its parameters for a particular application such as microwave breast

imaging. This robustness is an important advantage of the TwIST method relative to

other iterative solvers such as CGLS and LSQR, as suggested by the comparison results

in Section 4.5.3.
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(4.1)

The multiple-frequency approach essentially involves solving (2.37) at multiple fre-

quencies simultaneously. The systems of equations at different frequencies are coupled

via the Debye model in (4.2), such that the contrast function represents the contrast of

the unknown parameters of the Debye model. Because the model parameters are real

values, the first step is to separate the real (R) and imaginary (I ) components of each

set of equations. Then the real and imaginary parts of the complex permittivity can

be expressed in terms of the Debye parameters. Note that there is a fourth parameter

of relaxation time τ in the one-order Debye model (4.2). However, it is impossible to

separate the τ into a matrix structure. Thus, it has to be assumed that τ is known as

constant and invariant with position. This is also a reasonable assumption since τ does

not vary extensively across the different biological tissues of the breast [118].

The structure of matrix A is shown in (4.1), where A f is the extended term of the A

in (3.3) for multiple frequencies. The vector of unknowns on the left-hand side of (4.1) is

composed of three vectors of equal length: o∞, o∆ and oσ . These sub-vectors contain the

contrast values for the respective Debye parameters ϵ∞, ∆ϵ and σs , for each of K voxels.

Note that the ω∗ is a scaling factor to provide solution stability. This parameter can
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4.2 Methodology

adjust the weight of σs when the linear equation is solved. The effect of the ω∗ will be

discussed in the next section. The complete MATLAB codes are shown in Appendix A.2.

4.2.2 Testbeds for 2-D Microwave Breast Imaging

A 2-D microwave breast imaging simulation scenario that has been used in previous work

is considered for evaluation of imaging performance with different inversion approaches

[131, 135]. Simulation data is produced by the FDTD method with a CPML boundary

condition. The tests include all four types of numerical breast phantoms taken from

the UWCEM repository [136]. In particular, 2-D axial slices representative of the

phantoms classified as ‘mostly fatty’ (ID:071904), ‘scattered fibroglandular’ (ID:010204),

‘heterogeneously dense’ (ID:062204) and ‘very dense’ (ID:012304) have been considered.

The single-pole Debye model is employed to describe the frequency-dependence for all

breast tissues in the computation model,

ϵ r (ω) = ϵ∞ +
ϵ s − ϵ∞
1 + jωτ

− j
σs

ωϵ0
(4.2)

where τ is assumed constant for all tissues (with a value of 17.125 ps). As in previous

work [118, 131, 132], a lossless background medium is assumed with ϵ r = 2.6 in the

simulations. However, the impact of losses is examined for some realistic background

coupling media in Section 5.4. Our setup considers sixteen antennas surrounding the

2-D breast phantom, representing point sources excited with a wideband Gaussian pulse

in a TM configuration (i.e. the electric field is perpendicular to the breast phantom). Six

sampling frequencies are selected at 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5 GHz.

It is noted that the choice of the number of antennas is based on the analysis in [137].

In the 2-D scalar case, the essential number of the antennas is defined as,

M = 2βα (4.3)
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where α is the radius of the reconstruction domain and β is the wave number. Consider-

ing our first operating frequency of 1 GHz, M is approximately equal to 15.

The shape of the breast model is the only prior information assumed known for the

reconstruction, while the relative dielectric permittivity of the skin and its thickness are

unknown.

To compare image reconstruction quality, a relative reconstruction error has been

defined in (3.16) where ϵ∞ is chosen as the representative of reconstructed Debye pa-

rameter, but similar metrics can be calculated for any of the parameters of the Debye (or

an Ohmic) model.

As the true ϵ∞ cannot be known in a realistic application, and then a ‘Residual’ error

must also be defined as,

Residual = ∥M E
t − M S

t ∥ (4.4)

where M E
t and M S

t denote complex vectors of the ‘experimental’ and ‘model’ data at the

tt ℎ iteration respectively, recorded at the antenna locations. The ‘Residual’ difference

can be computed at each DBIM iteration, and can be used as a stopping criterion for the

DBIM iterative algorithm.

4.2.3 Conjugate Gradient Algorithms as Alternative Methods to

TwIST

The CG method is a widely used iterative algorithm for the numerical solution of large

sparse systems of linear equations, whose matrix is symmetric and positive-definite. An

overview of applications of CG, and generalisations to indefinite or non-symmetric

matrices, can be found, for example, in [138].

The CG method, originally proposed by Hestenes and Stiefel [139], is a well-known

iterative method for solving sparse systems of equations Ax = b where the matrix A is

positive defined [138, 140–142]. The main problem with methods like the CGLS, which

involves the normal equations, is that the condition number of the matrix AT A usually
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is the square of the condition number of A. Therefore, for ill-conditioned problems

the algorithm convergence can be slow. However, if the condition number of A is not

particularly high, then CGLS can be reasonably expected to converge more quickly.

LSQR is a variant of the conjugate gradient method which can be used for solving

non-symmetric linear equations Ax = b and least squares problems minx ∥b − Ax ∥2. If

A has a full column rank (linearly independent columns), AT Ais positive-definite and

the conjugate gradient algorithm can be applied to the normal equations AT Ax = AT b .

The resulting algorithm can be implemented in several ways. In this thesis, the algorithm

LSQR has been used, which is mathematically equivalent to CG on the normal equations

but has favourable properties in floating-point arithmetic [143].

Conjugate Gradient Least-Squares Algorithm

The CGLS algorithm solves the following unconstrained optimization problem:

min
b

∥(AT A + λCGLS I )x − AT b ∥2 (4.5)

where λCGLS is a regularisation term. As λCGLS increases, ∥x ∥2 decreases and the

residual error ∥r ∥2 = ∥b − Ax ∥2 increases. If matrix A is m × n, the CGLS requires only

2M + 3N complex multiplications in every iteration. When solving (4.5), the number

of iterations may be restricted or a threshold ϵ may be specified such that CGLS halts

when ∥r ∥2 < ϵ . CGLS may also incorporate preconditioning matrices, weighted norms

and initial conditions. For the MWI problem, it is hard to obtain a priori information

about the residual ϵ or related weighted norm, so that an optimal iteration step k cannot

be found based on a certain stopping rule. As the CGLS converges monotonically in the

first several iterations, one simple solution is that an L-curve technique can be applied to

locate an optimal iteration number.

When λCGLS is 0, CGLS is identical to Hestenes and Stiefel’s iterative CGmethod for

least-squares problems [139]. In this chapter, the unconstrained linear problem without
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regularisation term is discussed. The next chapter will focus on the regularisation method

for de-noising and stabilising the convergence of iterative process.

Least-Squares QR Algorithm

The LSQR algorithm is designed as an implementation of the Tikhonov regularisation

and solves large linear least-squares problems in a numerically attractive manner [143,

144]. Its name originates from its use of the QR decomposition [145, 146]. The algorithm

has one regularisation parameter, λLSQR, and solves the following:

min
b

(∥b − Ax ∥22 + λ
2
LSQR∥b ∥

2
2). (4.6)

As λLSQR increases, more weight is placed on the energy of b than on the residual

error, causing ∥b ∥2 to decrease and ∥d − Ab ∥2 to increase. LSQR also avoids the use of a

singular value decomposition (SVD) and it requires 3M + 5N complex multiplications

every iteration. LSQR, like CGLS, generates bi such that ∥ri ∥2 decreases monotonically,

but LSQR performs better in practice [143, 147] because of its unique restructuring of

the input system (via the Lanczos process [148] and Golub-Kahan bidiagonalization

[149]) prior to solving it. Many studies conducted by Paige and Saunders [149] and

Bjorck and Elfving [147] indicate that LSQR can find the best solutions with lower

residual error than CGLS when A is ill-conditioned, and of similar fidelity when A is

well-conditioned.

In addition to the above, the stopping rules of the LSQR are designed to reflect the

data’s accuracy. Relative to CGLS’s stopping rule based on the iteration number, LSQR

ensures that the algorithm always shuts down faster and the estimate of its corresponding

b is equally acceptable. This advantage becomes more pronounced as A has a lower

condition number [143].
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Note that while LSQR indeed requires N + 2M more complex multiplications than

CGLS in every iteration, this is mitigated by the fact that LSQR often requires fewer

iterations to attain a similar-fidelity solution.

L-Curve Technique

The L-curve is a log-log plot of the norm of a regularised solution versus the norm of the

corresponding residual norm. It is a convenient tool for displaying the trade-off between

the regularised solution and its fit to the given data, as the regularisation parameter

varies. The L-curve thus gives insight into the regularising properties of the underlying

regularisationmethod, and it is an aid in choosing an appropriate regularisation parameter

for the given data [150].

Given the discrete linear least-squares problem ∥Ax − b ∥2, the classical regularisation

method developed independently by Phillips and Tikhonov. In its most general form,

the minimisation problem is described as,

xλ = argmin{∥Ax − b ∥22 + λ
2∥L(x − x0)∥22}, (4.7)

where λ is a real regularisation parameter that must be chosen by the user. Here, the

‘size’ of the regularised solution is measured by the norm ∥L(x − x0)∥22 , while the fit is

measured by the Euclidean norm ∥Ax − b ∥2 of the residual. The vector x0 is a priori

estimate of x which can be set to zero when no a priori information is available. The

problem is in standard form if L = I , the identity matrix [150].

Having realised the important roles played by the norms of the solution and the

residual, it is quite natural to plot these two quantities versus each other, i.e. as a curve

(∥Axλ − b ∥2, ∥L(xλ − x0)∥2) (4.8)
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4.3 FDTD Implementation in Multiple Resolutions

Figure 4.1: An example of L-curve plot

parametrised by the regularisation parameter. This is an example of an L-curve plot in

Fig. 4.1. Note that if too much regularisation, or damping, is imposed on the solution,

then it will not fit the given data b properly and the residual ∥Axλ − b ∥2 will be too

large. On the other hand, if too little regularisation is imposed then the fit will be good

but the solution will be dominated by the contributions from the data errors, and hence

∥L(xλ − x0)∥2 will be too large. Hence, the L-curve is really a trade-off curve between

two quantities that should both be controlled. Such trade-off curves are common in the

solving of linear problems, especially the large sparse linear problems.

4.3 FDTD Implementation in Multiple Resolutions

The work carried out in this study investigates imaging performance for different voxel

sizes, in order to assess the DBIM–TwIST algorithm’s resolution limitations. The

resolution of the original breast models is 0.5 mm, it therefore follows that reconstruction

of the images in four different grid resolutions, i.e. 2 mm, 1.5 mm, 1 mm and 0.5 mm,

is proposed. It can be noted that the maximum resolution must be smaller than the

thickness of the skin. Otherwise, the lower resolution may cause down-sampling error
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Figure 4.2: Comparison of image reconstructions in different resolutions based on the
same fine breast model in 0.5 mm. (a) Reconstruction in 2 mm from 0.5 mm; (b)
Reconstruction in 3 mm from 0.5 mm.

in the forward FDTD process and cause artificial error of estimating the skin layer.

Consequently, 2 mm is the maximum for the multi-resolution implementation based on

the original breast phantoms. Fig. 4.2 indicates the comparison with the reconstructed

images in 2 mm and 3 mm. The resolution lower than the thickness of the skin layer

cannot be applied for the reconstruction algorithm.

The FDTD method provides flexibility of electromagnetic simulation in different

grids and corresponding sampling frequencies. Naturally, the choice of the grid resolution

affects the numerical data mismatch error of the FDTD forward solver. In particular,

the FDTD simulation data sampling frequency depends on the inverse of the FDTD

time-step ∆t which is fixed relative to the spatial increment ∆x = ∆y according to

Courrant’s criterion to avoid numerical instability, e.g.,

∆t = ∆x/(2 · c) (4.9)

where c denotes the speed of light in a vacuum. A soft source excitation is applied, which

commonly uses a current source as a drive to produce a required field, such as

En+1 = En + sour ce(n) (4.10)
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Figure 4.3: Errors of FDTD-calculated signals at the receiver points for multiple grid
resolutions against the 0.5 mm resolution of the original phantom.

where sour ce(n) is a discrete series of the voltage source. This soft source causes succes-

sive accumulations of energy for different time-step ∆t .

To tackle the problem, the relationship between ∆x and ∆t must be amended and

the amplitude of simulated source must be modified to compensate for this error as it

is moved from the 0.5 mm grid to its multiple increments 1.0 mm, 1.5 mm, and 2.0

mm. Thus, the parameter mul is defined as the ratio of the multiple resolution to the

‘original’ resolution grid of 0.5 mm, as shown below,

mul = rc/0.5mm

∆t = ∆x/(2 · c)/mul

sour cem = sour ceo/mul 2

(4.11)

where rc denotes the targeted resolution, and sour ceo and sour cem are the original

excitation signal and the modified source respectively.
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Fig. 4.3 plots the relative errors of received signals from 120 antenna pairs (for the 16

antenna system) in 2.0 mm, 1.5 mm and 1.0 mm grid resolutions against the received

signal in 0.5 mm. The average of relative errors is 0.0725, 0.0422 and 0.0251 respectively.

It is evident that the targeted resolution closer to the fine original model in 0.5 mm

results in the least relative error. In all cases, our compensation method results in a data

mismatch under 8% relative to the original numerical phantom. This data mismatch

due to the forward solver’s numerical discretisation is negligible relative to the model

mismatch between the true numerical phantom and our initial guess of a homogeneous

breast interior with unknown skin properties.

4.4 Optimisation of FDTDSimulation Speed in Various

Resolutions

In our breast imaging algorithm, the FDTD computation takes over 90% of the whole

computing time. In Section 4.3, an overview of how to obtain equivalent simulation

performance in different resolutions has been discussed. However, the high resolution

causes an exponential increase of computational cost, in terms of grid size and iteration

number. Thus, in this section, two optimisations strategies are proposed to reduce the

unnecessary computation cost by adaptively reducing FDTD time step and modifying

the excitation function applied in the soft source.

The Gaussian modulated sinusoidal pulse is applied as the excitation of point source,

shown as

E(t ) = e−(
t−t0
tw )2 s in(ωt ) (4.12)

where t is the present time, t0 is the time at which the pulse reaches its maximum value as

the delay parameter of the excitation. ω is the angular central frequency of the wide-band
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Figure 4.4: Theory of optimizing delay parameter

Gaussian pulse. Tw denotes the Gaussian pulse width, which is defined as

Tw = 4/(π · ( fupper − flower )) (4.13)

where fupper and flower denote the maximum and minimum of the frequency band. The

discrete form of this Gaussian pulse is

E(n∆t ) = e−(
(n−nd )∆t

Tw
)2 s in(ω · n∆t ) (4.14)

where n is the number of time intervals between the turn-on time t = 0 and the present

time t , and nd is the number of time intervals between the leading edge and the peak of

the Gaussian. The goal now is to determine the length of n and the delay parameter of

nd .
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4.4.1 Modified Delay Parameter of Gaussian Modelled Sine Pulse

Generally, the choice of the delay parameter is a constant. However, for a multiple

resolution system, this set has to consider a numerical limitation of high grid FDTD,

which leads to waste of the computational resource in the low-resolution case. Thus, an

adaptive method to obtain the nd based on envelope of the Gaussian pulse is proposed

and that is the first part of (4.14), shown as

E∗(n∆t ) = e−(
(n−nd )∆t

Tw
)2 (4.15)

Then another parameter γ can be defined as the left limit of the E∗(n∆t ). For example,

when γ is set to 10−5, a unique point n∗

d can be found on the left of the pulse peak of the

function (4.15). Fig. 4.4 indicates a left shift from a fixed value of nd to a reduced value,

which contributes to reducing the waiting time before the radiation from the antenna.

The optimal mathematical solution is shown as,

n∗

d = ⌊Tw/∆t
√
− log γ⌋ (4.16)

where ⌊⌋ denotes the floor function, and γ always to be set between 10−2 and −∞.

4.4.2 An Optimisation of FDTD time step

Based on the optimal delay parameter above, an optimal FDTD time step is proposed by

estimating the necessary number of the time step for any model size. Here, we define

the optimal time step as,

nopt = 2 · n∗

d +max{dimX , dimY } ·
√
2 · 5 (4.17)

where 2 · n∗

d contains the whole length of the envelope of the Gaussian pulse. Then a

setting of 5 times of diagonal distance of the FDTD grid can satisfy the scattered radiation
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Table 4.1: An example of the optimal FDTD parameters in various resolutions

Resolution 0.5 mm 1.0 mm 1.5 mm 2.0 mm
n∗

d 1296 648 432 324
n∗ 4629 2315 1543 1158

Running time (s) 14.3 1.75 0.72 0.28

to pass the target and received antennas completely. Table 4.1 shows an example of an

optimal FDTD time step and delay parameter based on the 2-D model in 288 × 265

of 0.5 mm. The running time calculated in a sixteen-antenna system, indicates the

average of each antenna FDTD simulation. This test performs on a laptop with Intel

Core i7-6700HQ CPU working at 2.60 GHz and in MATLAB 2016b. The complete

MATLAB codes for the FDTD forward solver are shown in Appendix A.1.

4.5 Performance ofMultiple-frequencyAlgorithm inVar-

ious Resolutions

This section discusses implementation strategies to improve the multiple-frequency

DBIM–TwIST algorithm in terms of robustness and resolution. Discussions over how

to best use multiple-frequency data to enhance the algorithm’s performance are covered.

Employing a multiple-frequency structure, seven different hybrid frequency approaches

are researched and the impact of the scaling factor is analysed in multiple-frequency

reconstruction. Finally, the performances of the three algorithms are compared in

various resolutions.
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Table 4.2: Seven recipes of hybrid frequency approaches

Name Hopping method (iteration No.)
Freq hopping approach 1→1.5→2→2.5→3→3.5 GHz
Hybrid freq approach 1 1 (20)→ 1.5 + 2 + 2.5 + 3 + 3.5 GHz
Hybrid freq approach 2 1 + 1.5 (20)→ 2 + 2.5 + 3 + 3.5 GHz
Hybrid freq approach 3 1 + 1.5 + 2 (20)→ 2.5 + 3 + 3.5 GHz
Hybrid freq approach 4 1 + 1.5 + 2 + 2.5 (20)→ 3 + 3.5 GHz
Hybrid freq approach 5 1 + 1.5 + 2 + 2.5 + 3 (20)→ 3.5 GHz
Multi-freq approach 1 + 1.5 + 2 + 2.5 + 3 + 3.5 GHz (90)

4.5.1 Multiple-Frequency Optimisation Combined with Frequency

Hopping Approach

Our recent DBIM-based work has demonstrated that the combination of multiple-

frequency information can enhance performance in terms of both robustness and resolu-

tion [131, 132]. A multiple-frequency approach requires a proper dispersion model that

should be chosen carefully to reflect true breast tissue dependencies within a frequency

range of interest. This work adopts the previously well-established assumption that

the single-pole Debye model in (4.2) can cover the range from 1.0 GHz to 3.5 GHz

[118, 133, 136], thereby allowing the combining of multiple-frequency data to estimate

the unknown Debye parameters in this entire range.

An alternative method for the use of multi-frequency data is based on the frequency

hopping approach, where single-frequency reconstructions are performed successively

from low to high frequencies [134]. With this approach, the use of low frequencies in the

initial inversion stages reduces the nonlinearity of the problem and increases robustness.

However, we have argued in previous work that the method may not take full advantage

of high frequency data due to a possibly low rank of the monochromatic linear equation

[135].

To balance between these two approaches, a variety of hybrid frequency approaches

have been tested with the DBIM–TwIST algorithm, which are listed in Table 4.2. We
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Figure 4.5: Relative reconstruction errors for seven multiple-frequency approaches in
the DBIM-TwIST applied to four breast phantoms with unknown skin properties; (a)
in Class 1 for ‘mostly fatty’; (b) in Class 2 ‘scattered fibroglandular’; (c) in Class 3 for
‘heterogeneously dense’; (d) in Class 4 for ‘very dense’.
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Figure 4.6: Reconstructed images of ϵ∞ ( left column), ∆ϵ (middle column), and σs (right
column) by the multiple-frequency approach in (a—c), freq-hopping approach in (d—f)
and hybrid frequency approach 1 in (g—i),based on the ‘very dense’ breast phantom
‘012304’ in (j—l).
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apply a two-step hopping approach, in each of which the multiple frequency approach is

employed to reconstruct in 20 and 70 DBIM iterations respectively. Note that for the

hybrid freq approach 1, single frequency at 1GHz is used to reconstruct in the first step

and hops to the multiple frequency approach with other five frequencies. The hybrid

approaches rely on first using one or more of the lowest frequencies from this study’s

set to provide a crude initial estimate of the breast distribution, which is then used as

the starting point for a second DBIM inversion using multiple-frequency data from the

remaining frequencies. Note here that the low frequency reconstruction is initialised

with the output of the algorithm’s first step, which provides the optimised initial guess

in terms of the breast average dielectric properties (see Section 5.2.1).

Relative reconstruction errors for all seven approaches and the four breast phantoms

are shown in Fig. 4.5. Here, 15 iterations were used per frequency for the frequency

hopping approach while the hybrid approaches processes the low frequencies in the first

20 iterations, followed by 70 iterations using data from the rest of the frequencies. It is

evident that the frequency hopping approach and the first hybrid frequency approach are

the most stable, while other hybrid frequency approaches are not guaranteed to converge

to a minimum. Moreover, the hybrid frequency method is much faster than frequency

hopping, requiring between 40 and 60 iterations to converge in all cases. Reconstructed

images based on the ’very dense’ breast phantom are shown in Fig. 4.6. Sub-figure (a—c),

(d—f) and (g—i) are obtained by the multiple-freq approach, the freq-hopping approach

and the hybrid frequency approach 1 in 90 iterations respectively, while the skin layer

is not assumed as a priori information. It is simple to identify the hybrid frequency

approach 1 as providing the highest accuracy of image reconstruction and more detailed

fibroglandular tissues.

4.5.2 Impact of Scaling Factor in Multiple-Frequency Structure

In Section 4.2.1, the scaling factorω∗ has been mentioned to provide solution stability, by

balancing the magnitude of three Debye parameters in the matrix A for all reconstructed
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Figure 4.7: Comparison of the reconstruction error of ϵ∞ by different α

voxels. Note that the factor is only applied to σs shown in (4.1). In this section, the

impact of the scaling factor will be analysed in the multiple-frequency algorithm, thus

applying hybrid approach 1 that was introduced above. In the first step, all cases are

reconstructed at 1 GHz in 30 iterations to obtain a stable single-frequency reconstruction

result as the new initial guess for the next multiple-frequency process. Then they will be

processed following 30 iterations using the remaining frequencies together with different

scaling factor settings. The scaling factor is defined as

ω∗ = αωs (4.18)

where ωs is set to 2π · 109. And the α is discovered from 0.1 to 3.5, corresponding to 8

frequencies from 0.1 GHz to 3.5 GHz. The reconstruction results are shown in Fig. 4.7

and Table 4.3. The Fig. 4.7 demonstrates that the scaling factor has a negative influence

on the DBIM reconstruction, when α is below 1.5. A reasonable explanation is that

there is no frequency below 1.5 GHz to be used in the multiple-frequency reconstruction

process. On the other hand, when α is set to the rest of the value, it provides quite

similar results in the end. The final relative reconstruction errors are listed in Table 4.3.

It is noted that the best solution is obtained when α is equal to 1.5.
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Table 4.3: Relative reconstruction error for different scaling factors

α 0.1 0.5 1 1.5 2.0 2.5 3.0 3.5
Relative error 0.463 0.428 0.447 0.391 0.3988 0.393 0.396 0.399

4.5.3 Analysis of Three Algorithms based on Multiple-Frequency

Optimization in Various Resolutions

First, this study demonstrates that using the TwIST method to solve the LIP can increase

the robustness of the DBIM algorithm relative to the commonly used CGLS solvers [118,

133]. To this end, the DBIM with the TwIST and the CGLS, and the LSQR in various

resolutions have been tested, using the frequency hopping approach (in order to examine

the impact of each frequency separately). The parameters adaptive TwIST provides

a flexibility of convergence to tackle the various ill-posedness in different resolutions.

Besides, as relying on the setting of iteration number, the CGLS is applied with the

L-curve technique to locate an optimal step number. In comparison, the LSQR converges

faster than the CGLS without a parameter. Comparison of relative reconstruction errors

are shown in Fig. 4.8 and Fig. 4.9, where it is evident that the adaptive TwIST performs

the best in low ill-posed condition (corresponding to 2 mm), with an almost identical

convergence rate against the LSQR. However, for higher resolutions of 1 mm where

ill-posedness increases, the TwIST algorithm becomes a little unstable, compared with

the LSQR. One reason for this is that the adaptive approach in this case cannot ensure

the algorithm’s stability. A possible remedy to the increased several ill-posedness in

higher resolution, is to increase the number of the DBIM iterations in low frequency

(such as at 1 GHz in the case) which can improve the convergence stability and enhance

the quality of the reconstructed image. It is proven in Fig. 4.10 that the convergences of

three algorithms are smoother and faster, when the DBIM iteration number increases

from 15 to 30 at 1 GHz.
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Figure 4.8: Comparison of relative reconstruction errors by the TwIST, CGLS, and
LSQR algorithms in resolutions of 2 mm and 1mm.
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Figure 4.9: Reconstructed images of ϵ∞ by the TwIST, CGLS, and LSQR algorithms in
resolution of 2 mm and 1 mm. (a) the adaptive TwIST in 2 mm; (b) the CGLS combined
L-curve technique in 2 mm; (c) the LSQR in 2mm; (d) the adaptive TwIST in 1 mm; (e)
the CGLS combined L-curve technique in 1 mm; (f) the LSQR in 1mm.
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Figure 4.10: Effect of increasing number of the DBIM iterations at 1 GHz based on the
TwIST, CGLS, and LSQR reconstructing in 1 mm.

4.6 Conclusion

This study presented a novel multiple frequency DBIM algorithm for microwave breast

imaging based on the TwIST method. It was argued that this implementation is more

flexible and robust than the CG methods as a solver of the ill-posed linear problem,

by employing the L-curve technique for CGLS. By using a hybrid multiple-frequency

approach, an optimal trade-off between imaging accuracy and reconstruction stability

has been achieved for this method. Besides, an optimisation strategy has been proposed

to speed the FDTD simulation time. Finally, the reconstructed performances of three

iterative algorithms have been shown in various resolutions.
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Chapter 5

IMPROVEMENT STRATEGIES

BASED ON

MULTIPLE-FREQUENCY

DBIM-TWIST ALGORITHM

5.1 Introduction

This section discusses implementation strategies to improve the DBIM–TwIST algorithm

in terms of robustness and resolution. First, we present a two-step reconstruction

approach, where the first step considers a homogeneous breast interior and uses the

DBIM to obtain an initial guess which corresponds to average properties of the true

breast tissue composition. This step is critical for the DBIM to converge to an optimal

solution (global minimum), as GN algorithms can be very sensitive to the initial guess

in applications such as medical imaging, where very little a priori information may

be available [151, 152]. In particular, an initial guess provides the starting point for

these convex optimization algorithms, and inaccurate information can lead to false

solutions that fit the data but are completely different from the ground truth [153]. Our
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approach adds low computational cost to the final breast reconstructions, and improves

significantly the reconstruction quality for different breast phantoms.

Moreover, we present a new method for regularizing the unconstrained optimization

problem based on L1 norm minimization and the TwIST method. This is motivated

by recent work in medical applications, where regularization methods based on the L1

norm or total variation (TV) principle have become popular instead of L2 norm regular-

ization approaches [154]. These methods impose less smoothing on the reconstruction

image. Our research implements the Pareto curve for finding the L1 norm regularization

parameter of the TwIST algorithm, which defines the optimal trade-off between the

L2 norm of the residual and the L1 norm of the solution [155]. The non-stationary

convergence of the TwIST method does not ensure differentiability and continuity of

the Pareto curve, as in stationary iterative methods such as conjugate gradient method.

We therefore employ curve fitting method of cubic polynomials to smooth the Pareto

curve. And then we apply an exponential distribution sampling of the regularization

parameter to reduce computation cost.

Combined with the multiple-frequency DBIM-TwIST algorithm and relevant optimi-

sation methods in the previous chapter, these new strategies, which are presented in a

unified framework within the DBIM, provide some unique capabilities of our algorithm

relative to recently proposed alternative methods. For example, Nikolova et al. in

[156, 157], presented an interesting and effective holography method for reconstructing

targets in the near-field range, which relies on an alternative formulation of the problem.

Similarly, theoretical and experimental work by LoVetri et al. has also focused on 2-D

wideband MWI using various approaches including the DBIM [158], but the employed

optimization and regularization strategies are very different from this work. Moreover,

the importance of the initial guess in the convergence of the algorithm has been demon-

strated in numerous papers (see for example [151]), but the approach presented here to

tackle this problem has not been considered previously, to the best of our knowledge.
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Figure 5.1: Flow chart of the multiple-frequency DBIM–TwIST algorithm
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For all our results, our reconstruction approach employed the DBIM–TwIST algo-

rithm in conjunction with the optimisation strategies as illustrated in Fig. 5.1. The

DBIM–TwIST algorithm is invoked both in the first step of finding the optimal initial

guess (average breast properties) and in the main reconstruction of the inhomogeneous

breast structure. A single frequency approach at 1 GHz is used in the first step, and its

outcome initialises the optimal multiple-frequency approach employed in the second

step of the process.

5.2 Methodology

5.2.1 Optimised Initial Guess of Breast Average Dielectric Proper-

ties

Iterative local optimisation methods, such as the DBIM method, are sensitive to the

adopted ‘initial guess’ of the reconstruction domain [151], which can result in the convex

optimisation algorithm converging to a false solution. In addition to increasing stability,

a good initial guess can speed up convergence and thus reduce computational time.

Obtaining an accurate initial guess can be challenging in applications such as breast

imaging, where very little information (e.g. the breast surface) may be known as a priori.

To this end, a very simple process to estimate the average breast dielectric properties

is proposed, which relies on the following: 1) assume the breast is homogeneous and

filled with normal tissue, and run the DBIM–TwIST algorithm for a fixed number of

iterations; and 2) apply this process to a number of samples (which we term ‘Cases’)

within a well-known range of values for normal breast tissue to determine the optimal

initial guess of the average breast dielectric properties, based on minimising the data

residual.

As an example of implementing this approach, 5 samples of the 3 Debye parameters

are chosen. These are evenly spaced within the range used to model normal breast tissue
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5.2 Methodology

Table 5.1: Five cases of estimated initial guesses based on the single-pole Debye model

Sampling ϵ∞ ∆ϵ σs (S/m) τ(ps)
Case 1 4.68 3.21 0.088 17.125
Case 2 7.835 7.26 0.2 17.125
Case 3 10.99 11.3 0.311 17.125
Case 4 14.145 15.35 0.423 17.125
Case 5 17.3 19.4 0.535 17.125
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Figure 5.2: Illustration of the proposed method to select an optimal initial guess for
microwave breast imaging. Here we consider five samples from the normal breast tissue
range shown in Table 5.1 are considered. Each sample is used as the starting point
of DBIM–TwIST, which is run for 5 iterations for a fixed homogeneous breast with
unknown skin properties. The residual and relative reconstruction errors vs iteration
number are plotted in (a) and (c) for 2 mm resolution, and in (b) and (d) for 0.5 mm.
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shown in Table 5.1 (‘Cases’ 1–5), where the parameters of Cases 1 and 5 represent the

mean of adipose breast tissue and fibroglandular breast tissue respectively [133]. Then 5

iterations of the DBIM–TwIST are run for each of the 5 cases to select the initial guess

with the smallest data residual. This process yields the three Debye parameters of the

homogeneous breast interior that reflect the closest estimate to its average dielectric

properties and are used as the optimal initial guess in the second step of the DBIM

algorithm, to estimate the inhomogeneous breast structure.

Fig. 5.2 illustrates the evolution of this process for a heterogeneously dense phantom

based on a single-frequency reconstruction at 1 GHz. The data residuals and relative

reconstruction errors against the original model are plotted at each DBIM iteration

for reconstruction resolution of 2 mm in (a) and (c), and 0.5 mm in (b) and (d). The

residual and relative errors exhibit similar trends for all cases. Moreover, the similarity

of the results in 2 mm and 0.5 mm confirms that it is sufficient to use a 2 mm resolution

grid for optimising the initial guess in this first step of the algorithm even if the final

(heterogeneous) images are reconstructed in higher resolutions. The complete MATLAB

codes have been shown in Appendix A.3.

5.2.2 L1 Norm Regularisation with the DBIM-TwIST Method

Thresholding algorithms such as the TwIST promote sparse solutions of the LIP. The

TwIST can therefore be regularised using tools employed by other sparse-promoting

algorithms, such as the basis pursuit (BP) problem. BP aims to identify a sparse solution

of the underdetermined system of equations Ax = b , where A is anm-by-n matrix and b

is m-by-1 vector. Again, if m << n, this problem is ill-posed. The approach introduced

by Chen, Donoho and Saunders [159], is to solve the convex optimisation problem,

min
x

∥x ∥1 subject to Ax = b . (5.1)
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However, it is undesirable to fit exactly the linear system because of noisy or imperfect

data. Therefore, other possible formulations of the L1 norm regularised least-squares

problem have been proposed based on the penalised least-squares problem,

min
x

∥Ax − b ∥22 + λ∥x ∥1, (5.2)

which is proposed by Chen, Donoho and Saunders [159], and an explicit L1 norm

constraint problem known as the Lasso problem,

min
x

∥Ax − b ∥2 subject to ∥x ∥1 ≤ τ. (5.3)

The formulation of (5.2) is well-suited to the TwIST method because of its close

connection to convex quadratic programming, for which an explicit expression of the

de-noising function can be obtained in closed form. Let xλ denote the optimal solution

of (5.2). The residual function,

ϕ(λ) = ∥Ax λ − b ∥2 (5.4)

gives the minimal residual of (5.2) for each λ ≥ 0.

To obtain the optimal value of λ for Φ(λ), the Pareto curve is employed, which can

yield the optimal trade-off between minimising the L2 norm of the residual r and the L1

norm of the solution x , as shown in Fig. 5.3 for a typical LIP. As the TwIST method

is a non-stationary method, the function of (5.4) is not strictly non-increasing and not

smooth. Therefore curve fitting is applied using cubic polynomials to approximate the

function and its derivative. The curve then becomes continuously differentiable and

convex, and the residual ϕ will decrease as λ increases.

Subsequently, a log-log scale is used to plot the norm of residual ϕ on the abscissa

against the L1 norm of solution x for the parameter λ. Then, a point λopt corresponding

to the maximum of the curve slope can be localised. As shown in Fig. 5.3(b), the
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Figure 5.3: A typical Pareto curve (a) and Pareto curve in log-log scale (b), which is used
to choose the optimal value of the L1-regularisation parameter λ.

smallest increase in ∥x ∥ leads to the greatest decrease in ϕ(λ) around this point. This

process is similar to using the L-curve method for L2 norm regularisation problems [160].

However, the L-curve in log-log scale is a convex downward, but the Pareto curve in

log-log scale is a convex upward (even if the original Pareto curve is convex downward).

To reduce the computation cost, the value of λ is chosen based on an exponentially

decreasing function from ∥AT b ∥∞ to zero, which is defined as,

λ(n) = ∥AT b ∥∞ · δn n ∈ Z+ (5.5)

where δ denotes a decreasing factor with 0.1 < δ < 1, (·)T denotes a transpose operator,

and ∥ · ∥∞ denotes the infinity norm. In (5.5), δ is used to control the number of samples

for the parameter λ. When δ tends to 1, a more accurate Pareto curve is obtained at the

expense of a very high computational cost. Conversely, the number of samples becomes

insufficient as δ approaches 0.1. In our numerical experiment, a reliable range of δ is

found between 0.3 and 0.5, and any choice in this range comes with a low computational

cost.

Finally, it is important to emphasise that, contrary to commonly used L1 norm

approaches, the method utilised in this study combines the Pareto curve with an adaptive
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5.3 Reconstructed Results

Table 5.2: Relative error of reconstructions of ϵ∞

Model
Default initial guess / Optimised initial guess

2 mm 1.5 mm 1 mm 0.5 mm
Class 1 0.264/0.272 0.289/0.301 0.332/0.335 0.429/0.417
Class 2 0.233/0.241 0.266/0.265 0.320/0.297 0.554/0.373
Class 3 0.306/0.312 0.342/0.319 0.380/0.298 0.682/0.361
Class 4 0.473/0.235 0.504/0.261 0.694/0.268 0.707/0.332

This is based on the default initial guess and the optimal initial guess for 4 breast phantoms introduced in Section 2.3, including
mostly fatty, scattered fibroglandular, heterogeneously dense and very dense breasts from Class 1 to 4.

strategy to optimise the L1 regularisation based on the residuals of the TwIST iterations

at each DBIM iteration, which has been detailed in [132]. The complete MATLAB code

are shown in Appendix A.4.

5.3 Reconstructed Results

5.3.1 Effect of Optimising Initial Guess by Estimating the Breast

Average Dielectric Properties

To illustrate the advantage of optimising the initial guess for the breast average dielectric

properties in the DBIM, axial slices have been reconstructed from four UWCEM breast

phantoms (see Section 2.3) in resolutions of 2 mm, 1.5 mm, 1 mm and 0.5 mm. The

reconstructed images of ϵ∞ and σs using a fixed initial guess versus an optimised initial

guess in 2 mm and 0.5 mm are shown from Fig. 5.4 to Fig. 5.7, respectively. Relative

errors computed for the same parameter are given in Table 5.2. Note that the fixed initial

guess values are chosen in the middle of the range for the Debye parameters of normal

breast tissue.

These images and error values suggest that optimising the initial guess leads to

sufficiently accurate distribution estimates for all resolution ranges, while omitting this

step can compromise imaging performance. This is particularly true in all resolution
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Figure 5.4: Reconstructed images of ϵ∞ without and with optimisation of initial guess
for 4 phantoms in 2 mm. (a–d) Reconstructions with a fixed initial guess representative
of normal breast tissue average properties (ϵ∞ = 5.76,∆ϵ = 5.51, σs = 0.0802); (e–h)
Reconstructions with an optimised initial guess.
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Figure 5.5: Reconstructed images of σs without and with optimisation of initial guess
for 4 phantoms in 2 mm. (a–d) Reconstructions with a fixed initial guess representative
of normal breast tissue average properties (ϵ∞ = 5.76,∆ϵ = 5.51, σs = 0.0802); (e–h)
Reconstructions with an optimised initial guess

82



5.3 Reconstructed Results

-6 -4 -2 0 2 4 6 

x ( cm )

-4

-2

0 

2 

4 

y
 (

 c
m

 )

0

5

10

15

20

25

(a)

-6 -4 -2 0 2 4 6 

x ( cm )

-2

0 

2 

y
 (

 c
m

 )

0

5

10

15

20

25

(b)

-2 0 2 

x ( cm )

-4

-2

0 

2 

4 

y
 (

 c
m

 )

0

5

10

15

20

25

(c)

-4 -2 0 2 4 

x ( cm )

-2

0 

2 

y
 (

 c
m

 )

0

5

10

15

20

25

(d)

-6 -4 -2 0 2 4 6 

x ( cm )

-4

-2

0 

2 

4 

y
 (

 c
m

 )

0

5

10

15

20

25

(e)

-6 -4 -2 0 2 4 6 

x ( cm )

-2

0 

2 

y
 (

 c
m

 )

0

5

10

15

20

25

(f)

-2 0 2 

x ( cm )

-4

-2

0 

2 

4 

y
 (

 c
m

 )

0

5

10

15

20

25

(g)

-4 -2 0 2 4 

x ( cm )

-2

0 

2 

y
 (

 c
m

 )

0

5

10

15

20

25

(h)

Figure 5.6: Reconstructed images of ϵ∞ without and with optimisation of initial guess
for 4 phantoms in 0.5 mm. (a–d) Reconstructions with a fixed initial guess representative
of normal breast tissue average properties (ϵ∞ = 5.76,∆ϵ = 5.51, σs = 0.0802); (e–h)
Reconstructions with an optimised initial guess.
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Figure 5.7: Reconstructed images of σs without and with optimisation of initial guess
for 4 phantoms in 0.5 mm. (a–d) Reconstructions with a fixed initial guess representative
of normal breast tissue average properties (ϵ∞ = 5.76,∆ϵ = 5.51, σs = 0.0802); (e–h)
Reconstructions with an optimised initial guess
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Figure 5.8: Original 2-D images of 4 breast phantoms (mostly fatty, scattered fibroglan-
dular, heterogeneously dense and very dense from left to right). (a–d) is ϵ∞; (e–h) is
σs .

grids for the very dense breast phantom, where the difference in the Debye parameters

of the fixed initial guess from the true average Debye parameters is the most significant.

It is also true for 3 of the 4 phantoms in the highest 0.5 mm resolution grid, where

the number of unknowns (and thus the degree of ill-posedness of the LIP) increases

dramatically relative to the low 2 mm resolution grid. Besides, Fig. 5.5 and Fig. 5.7

demonstrate more significant improvement in the conductivity part which is harder for

reconstruction than permittivity. Therefore, optimising the initial guess can increase the

algorithm’s robustness and enhance the accuracy of reconstruction in high resolution.

5.3.2 L1 Norm Regularisation Effect

In all the previous reconstructions, stability in the DBIM–TwIST algorithm has been

achieved by terminating the TwIST iterations based on an adaptive strategy presented

in previous work [132]. Although noise has not been added to the simulated data, this

implicit regularisation strategy can ensure stability in cases of noise or measurement

uncertainties, similar to previous implementations using the CGLS method [121, 131,
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Figure 5.9: Comparison of reconstruction quality for different SNR levels of noise and
phantom ‘062204’.

133]. To illustrate this, reconstructions of Section 5.3.1 have been repeated with an

increasing level of noise in the data, and the relative reconstruction errors have been

plotted against the experimental phantom ‘062204’ in Fig. 5.9. The plot confirms that

convergence is not affected by noise levels with signal to noise ratios (SNRs) as low as 20

dB, but for lower SNRs there is noticeable degradation in the reconstruction quality.

It is important to note that these low SNRs would not correspond to thermal noise

in an experimental MWI system, but rather to errors due to measurement uncertainties,

environmental factors and mismatch errors between this model and a true experiment.

These errors depend on the signal level at each antenna. This ‘measurement noise’ has

been modelled as an additive Gaussian in the absence of a better model, with the power

level dependent on the signal at each antenna. Noise of the same power at each antenna

would correspond to thermal noise, which would be well below the level of the signals

that are processed by our algorithm and would therefore have a negligible effect in our

reconstructions.
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Figure 5.10: Reconstructed images of ϵ∞ and σs in 2 mm under 5 dB noise. Top:
Estimates of ϵ∞ without (a) and with (b) L1 regularisation. Bottom: Images of σs
without (c) and with (d) L1 regularisation.
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To deal with cases of very low SNR where the TwIST termination criterion is

not sufficient to guarantee optimal convergence, (10 dB or below in Fig. 5.9), the L1

regularisation strategy can be employed based on the Pareto curve analysis presented in

Section 5.2.2. To illustrate the effect of L1-regularisation approach, the reconstructed

images of ϵ∞ and σs are compared in Fig. 5.10 without and with our L1 regularisation

for an SNR of 5 dB. These images demonstrate that our L1 regularisation approach can

assist in recovering the true breast composition, while very strong noise artefacts occur

when the DBIM–TwIST is implemented without the L1-regularisation correction. As

expected, noise artefacts are stronger in the fatty tissue, and affect the σs images more

than ϵ∞.

5.4 Impact of Uncertainties in Prior Information and

Losses in Coupling Medium

The previous reconstructions assumed prior knowledge of the outer outline of the breast

model and a fixed relaxation time τ for all Debye parameters. Moreover, a hypothetical

lossless coupling medium with low dielectric constant has been considered, motivated

by the use of low-loss coupling media such as safflower oil. In this section, the impact

on the reconstruction due to losses in the coupling medium is considered, as well as the

effect of uncertainties in the knowledge of the breast outline and the relaxation constant.

The impact of the coupling medium in microwave breast imaging has been considered

in various previous studies, both in radar-based and tomographic approaches. For

example, its effect in terms of signal level has been studied in [161], while the use of

losses to reduce unwanted signals in microwave tomography has been demonstrated in

[162]. It is evident that a lossy coupling medium will reduce the level of signals scattered

by the breast, and this loss of information can affect the quality of reconstructions.
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Figure 5.11: Reconstructed images in different lossy coupling media

Table 5.3: Relative reconstruction errors for various coupling media based on the phan-
tom ‘062204’

coupling medium ϵ∞ ∆ϵ σs τ Relative error
Ideal lossless 2.6 0 0 17.1 0.322
Corn syrup 18.7 0 0.64 13.6 0.698
Triton X-100 3.51 2.58 0.066 41.6 0.415
80% Glycerine 5.73 16.7 0.415 111.1 0.621
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Table 5.4: Relative reconstruction errors for phantom ‘062204’ due to uncertainties in
the breast outline

Error of model’s dimension Error of model’s position
model error Relative error model error Relative error

2.67% 0.376 5.65% 0.450
8.40% 0.450 8.84% 0.544
15.97% 0.430 16.05% 0.597

Table 5.3 and Fig. 5.11 quantify the effect of considering several commonly used lossy

coupling media, such as ‘corn syrup’, Triton X-100 and 80% glycerine. Here, ‘corn syrup’

‘Sample 1’ is employed from [163], and the data of the Triton X-100 and 80% glycerine

are based on this study’s measurements. It is evident that a higher conductivity in the

coupling medium leads to less accurate reconstructed images due to the additional signal

loss. This was confirmed by performing additional reconstructions for hypothetical

media with the same dielectric constants as in Table 5.3 but without losses, where no

degradation in quality was observed.

The breast and skin layer’s position is the crucial prior information for the MWI

reconstruction. In realistic experiment, we can detect the skin layer by a series of scanning

technologies, such as the 3-D laser scanning technology, but it may be impossible to

have exact knowledge of the outer outline of the breast model. Thus, an error level

analysis was performed for uncertainties in the position and size of the breast structure,

presented in Table 5.4. Reconstructions with uncertainties in the assumed breast size

and position have been analysed separately. Their errors are calculated in this table and

reconstructed images are shown in Fig. 5.12 and Fig. 5.13. The relative reconstruction

error is not affected significantly by uncertainties in the breast size, but misalignments

of the assumed breast outline from the true position affect the reconstruction quality

only for over 8% error. These results suggest that the algorithm is robust with respect to

uncertainties in the knowledge of the breast shape.
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Figure 5.12: Reconstructed images due to the error of model’s dimension
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Figure 5.13: Reconstructed images due to the error of model’s position
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5.5 Conclusion

Table 5.5: Relative reconstruction errors for phantom ‘062204’ due to various biases of
τ in different coupling mediums

Precise relaxation time Relative error
coupling medium τ(ps) 5% 10% 20%

Ideal lossless 17.1 0.3789 0.3777 0.3798
Corn syrup 13.6 0.7004 0.6998 0.7045
Triton X-100 41.6 0.5299 0.5627 0.6307
80% Glycerine 111.1 0.6656 0.6893 0.7224

Finally, the impact of performing reconstructions in different mediums with a relax-

ation time τ was also examined, which is different from the assumed value of 17.125 ps

for the breast tissue Debye models by a variation of up to 20%. Our results in Table 5.5

remain unaffected by this mismatch in the assumed model, producing visually similar

images and relative error with a maximum variation of 1% for ideal losses and ‘corn

syrup’. However, the variation of relative error increases to over 10% for the rest of

two high lossy mediums, which evidences higher sensitivity of high-loss coupling media

when inevitable uncertainties appeal in the process of experimental measurement and

reconstruction algorithm.

5.5 Conclusion

In this chapter, we have proposed a new approach to obtain an optimised initial guess of

the average breast tissues properties by sampling along the range of possible values while

also running a few DBIM iterations to identify the minimum error. Considering the

condition of the limit number of antennas given by (4.3), we use 16-antenna system with

point source in 2-D as the simulation testbed. Six sampling frequencies are selected at

0.5 GHz spacing from 1.0 to 3.5 GHz to reduce similarity of the measurements between

neighbouring frequencies.
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5.5 Conclusion

Moreover, reconstructions have been performed in multiple resolutions to examine

the benefits of our optimisation strategies. This allowed us to argue that the optimised

initial guess can be obtained in low resolution grids, and that this step prior to estimating

the true distributions is essential to minimise relative reconstruction errors, especially

for reconstruction in high resolutions grids where the number of unknowns increases

dramatically. Then we have proposed the L1 norm regularisation of the TwIST method is

based on the Pareto curve, which contributes to de-noising and stabilising the algorithm

convergence.

Finally, we have analysed the impact on the reconstruction due to losses in the

coupling medium, and the effect of uncertainties in the knowledge of the breast outline

and the relaxation constant of the Debye model. This contributes to understanding the

sensitivity of the reconstruction algorithm to the uncertainties of the prior knowledge.
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Chapter 6

APPLICATION TO DATA FROM A

MICROWAVE IMAGING

EXPERIMENTAL PROTOTYPE

6.1 Introduction

In this chapter, we focus on the application of the optimized DBIM-TwIST algorithm

to data obtained from an MWI prototype. Two types of data are considered: direct

measured data fromMWI experiments, and numerical data from a CADmodel emulating

the MWI experiments using CST EM software. An efficient measurement calibration

method is introduced to assist the data transformation from 3-D measurement to 2-D

reconstruction. The first experimental application stems from collaborative research

with Politecnico di Torino, supported by COST TD1301 ‘MiMed’ and by the Microwave

Imaging for Combined Early Diagnostics of Breast Cancer (MICENEA) FIRB project.

Most of our results, however, are produced by an in-house experimental MWI system,

that is currently being developed at King’s College. Our new eight-antenna microwave

system is based on a small triangular patch printed monopole developed by Syed Ahsan

who is in charge of designing antenna, simulating the 3-D CST model, conducting the

93



6.2 Measurement Calibration

realistic experiment and achieving all measurement data [164]. Another colleague, Ziwen

Guo contributes to data cleaning and building corresponding 2-D model used by the 2-D

FDTD solver.

Our results demonstrate that the algorithm is able to image cylindrical targets im-

mersed in a background (known) medium despite the model errors due to approximating

the real experiment with our 2-D FDTD model. Moreover, this study is valuable in

analysing sources of error and important aspects of the MWI system design. To gain

insight in the impact of the model mismatch between our forward FDTD solver and the

true imaging prototype, we have performed 2-D image reconstructions from 3-D CST

simulation. The 3-D simulation approaches to the realistic experiment environment,

and can therefore verify our antenna system and reconstruction algorithm. Moreover, a

frequency selection method based on correlation analysis is proposed to improve the

usage of the frequency information. Finally, we examine imaging performance using a

two-layer medium in order to enhance signal transmission through the imaging domain

but reduce the unwanted multi-signals that cannot be accounted in our simplified 2-D

FDTD forward model.

6.2 Measurement Calibration

The experimental data measured by hardware (such as multi-port vector network anal-

ysers) generally contains environment noise, thermal noise, antenna mutual coupling

and machine noise. For white noise sources, we can apply de-noising techniques after

measurement or in the process of reconstruction. For other types of error such as

antenna coupling and interference, however, we have to employ a calibration method

to reduce the impact in our imaging algorithm, which uses a simplified 2-D solver with

point sources as antennas. A simple strategy based on the measurement data is to apply

the difference between measurement in inhomogeneous medium (with target) and in
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6.3 Application of the DBIM-TwIST to Experimental Microwave Imaging Data

the homogeneous medium (without target). The difference is shown as

∆ΓdB = |E inℎomo |dB − |E ℎomo |dB

∆Φ = Φ(E inℎomo) − Φ(E inℎomo).

(6.1)

Then the calibrated data can be achieved as

ΓEm = |E ℎomo |dB + ∆ΓdB

ΦEm = Φ(E
ℎomo) + ∆Φ

(6.2)

where Γ denotes the magnitude of the received signals in frequency domain, and Φ

denotes the corresponding phase. E ℎomo
c al is generated by the FDTD forward solver based

on the assumed background medium. The corresponding Debye parameters of the

background medium are achieved by curving fitting method to data from experimental

media measurement to account for frequency dispersion using the Debye model. After

that, the calibrated data ΓEm and ΦEm will be processed as the input of the reconstruction

algorithm.

To analyse the received signals associated with the different transmit antennas, we

record the received antennas by relative location ordering, in which the receiver is

counted relative to the current transmitter anti-clockwise. The advantage of this receiver

ordering scheme is that we can compare signal data (amplitude or phase) at different

receivers due to the same transmit antenna in one figure. An example is shown in Fig. 6.4,

which is associated with Antenna 1 transmitting in a sixteen-antenna system.

6.3 Application of theDBIM-TwIST to ExperimentalMi-

crowave Imaging Data

This work presents some results from applying our previously developed MWI algorithm

based on the TwIST to data measured from an experimental MWI system. Combining
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Figure 6.1: Set-up of the two-antenna experimental MWI system developed in Politecnico
di Torino.

the DBIM with the TwIST linear solver, our 2-D algorithm is applied to reconstruct 2-D

slices of the complex permittivity of the interrogated imaging domain. Experimental

data are obtained by rotating a two-antenna system along the cylindrical imaging domain,

which is filled with Triton X-100. The imaging object is an anatomically realistic breast

phantom with a tube filled water representing the tumor-like target. Measurements are

covered in frequencies ranging from 0.5 GHz to 4.0 GHz.

6.3.1 Experimental Procedure

The mechanical structure of the imaging set-up is shown in Fig. 6.1. To replicate an 16-

element tomographic system, a static and robust circular base holds the entire structure.

A programmable motor that creates the desirable motion steps is placed above the

ground static base of the system. Another circular but movable wooden base is then

placed above the motor to hold the cylinder containing immersion liquid to be used as

background material. Four vertical wooden columns placed at 45 degrees with respect

to each other have been connected with the static base to form the support for antenna

96



6.3 Application of the DBIM-TwIST to Experimental Microwave Imaging Data

Figure 6.2: From left to right bottom view of Geps-L2S Phantom, the bracket to accom-
modate 22.5 degree angle between antennas and the vertical support of the antenna with
small Inverted Triangular Patch Antenna mounted.

holding structures. 3D printed plastic supports that hold the antennas are connected

with the horizontal wooden structures. A small 3D printed connector that attaches with

the vertical plastic column connected with the horizontal wooden slider, provides the

ability to achieve 22.5 or 45 degree angle between the antennas as shown in Fig. 6.1.

The imaging domain comprises a plastic cylindrical tank surrounded by an Eccosorb

MCS absorber which is shielded with the metallic sheet. The purpose of the absorber is

to minimize the effect of surface waves propagating along the periphery of the container.

There is a strong chance of occurrence of the aforementioned surface wave phenomenon

due to the fact that the distance between the antenna and the surface of the container is

not large. The Eccosorb MCS is a thin, flexible, magnetically loaded, silicone rubber

material that is electrically non-conductive. This product is particularly suitable for

cavity resonance reduction applications in the 800 MHZ to 6 GHz range.

Fig. 6.2 depicts that the mechanical fixtures hold the antenna at a steady position

and the 3D printed bracket allows for changing the angle between the antennas. The 3D

printed phantom base [165, 166] provides several holes to insert a tube as an inhomogene-

ity (target) into the phantom (by filling the tube with another medium different from the

background). The phantom is fully immersed inside a coupling liquid, which was chosen
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6.3 Application of the DBIM-TwIST to Experimental Microwave Imaging Data

Figure 6.3: The schematic of triangular patch printed monopole antenna. Front and rear
view with the geometry and dimensions of the proposed monopole for imaging.

to be Triton X-100 for the present experiment that mimics the dielectric characteristics

of the 85—100% adipose tissue content of the normal breast tissue in the considered

frequency range [166, 167]. The target comprises a 3D printed cylinder of radius 9 mm

filled with pure water. Three cases have been considered for the experimental data: (a)

Phantom with target; (b) Phantom without target, and (c) Immersion liquid alone.

Besides, my colleague proposes a compact, robust and simple printed monopole

design used in this experiment. The triangular patch printed monopole is presented in

Fig. 6.2, which is designed on an FR-4 substrate material. This particular antenna has

been designed to operate in a lossy immersion liquid and therefore we have considered

the design and optimization of the monopole in sight inside 80% glycerine water solution

which has been widely reported in the literature for imaging applications. Fig. 6.3 shows

the front and rear view of the proposed antenna modelled in CST microwave studio.

The printed monopole under study is constructed of a triangular patch, a transmission

line of length 9.16 mm and width 1 mm is used to match the antenna impedance with the

50 ohm coaxial feed. Compared with the traditional monopole, this antenna is smaller

in dimension, and can enhance the imaging quality of the MWI tomography.
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Figure 6.4: Measured amplitudes of the signals scattered from the target and phantom,
the phantom alone, and their difference. The data was measured by the receiver at 15
different angles surrounding the phantom evenly, as the transmitter is fixed at the same
position.

6.3.2 Experimental Result

An example of the level of signals measured in our experiments in shown in Fig. 6.4,

which the signal from the target is quite low relative to the signal from phantom and

thus sensitive to measurement noise. Fig. 6.5 presents reconstructed permittivity and

conductivity results for a 2-D slice halfway between the bottom of the phantoms and

the top of the target. The voxel size for our DBIM-TwIST algorithm was 2 mm, and

the algorithm converged after 15 iterations. As the phantom was immersed inside the

coupling liquid (Triton X-100 bath with ϵ r = 6.2836 and σs = 0.0950 at 0.9 GHz), the

only scattered signals are from the plastic phantom boundary (which corresponds to a

“skin” boundary of unknown thickness) and from the cylindrical target filled with water

(with ϵ r = 80.1 and σs = 0.01 at 0.9 GHz).

In the reconstruction stage, we have included an approximate outline of the phantom

with properties of plastic and unknown thickness. Due to the weak signal scattered
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Figure 6.5: Reconstructed images in 2 mm at 0.9 GHz, in condition of unknown skin.
(a) image of permittivity; (b) image of conductivity.

from the target relative to the signal caused by (see Fig. 6.4) the plastic boundary, it is

challenging to reconstruct the target beyond the plastic boundary in practice. This is

evident in Fig. 6.5, where the final reconstructed image manages to detect and localize

the target, but underestimates its dielectric constant and overestimates its conductivity

value. Moreover, reconstruction errors appear in the areas near the antenna locations.

6.4 2-DMicrowave ImageReconstructions from 3-DCST

of an In-House MWI Experimental Prototype

6.4.1 Geometry of Eight-antenna System

The CST software is the leading edge tool for the fast and accurate 3-D simulation of high

frequency devices in time domain and frequency domain simulation. It can describe the

electromagnetic wave propagation in a complex 3-D electromagnetic environment which

includes full simulation of a realistic antenna system. In this section, we will reconstruct

2-D images using the simulated measurement data obtained from 3-D electromagnetic

wave simulation by the software of ‘CST STUDIO SUITE’. In comparison, we also
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150 mm

29 mm

Antenna 1

Antenna 5

Figure 6.6: Geometry of the eight-antenna system with a simple target in a cylinder
filled with pure water.

complete a 2-D inversion based on the same 2-D scalar model by our 2-D FDTD forward

solution. To simulate and compare the experimental data in the next section, we consider

an eight-antennamicrowave system based on the small triangular patch printed monopole

introduced in the previous section. The selected antenna is wideband in nature and can

operate immersed in different dielectric media, in order to analyse the impact on the

robustness of reconstruction associated with various coupling media.

The geometry of the antenna system is depicted in Fig. 6.6. The diameter of the

exterior tank is 200 mm and the 8 printed monopole antennas used in the previous

section, are positioned in a ring that has a diameter in 150 mm, and in height of 80 mm

from the bottom. A thin acrylic glass tube in diameter of 29 mm is placed in the upper

right filled with the pure water as a target, close to Antenna 2. The antennas are counted

clockwise from y-axis.

In our study, three types of immersion liquids are considered: Trion X-100, 92%

corn syrup mixture (with 8% water) and 80% glycerine mixture (with 20% water). The
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Experimental Prototype

Table 6.1: Fitted Debye parameters of our simulation materials

Medium ϵ∞ ∆ϵ σs τ

Triton 3.512 2.582 0.0655 5.3505 × 10−11

80% Glycerine 4.75 30 0.3779 1.2346 × 10−10

92% Corn syrup 4.124 12.01 0.3405 1.6667 × 10−10

Cylinder 3.5 0 0.055 0
Pure Water 78 0 1.59 0

corresponding Debye parameters are acquired by curving fitting method to data from

experimental media measurement between 1.0 GHz and 3.0 GHz. The pure water is

filled in the inner cylinder as the target. Corresponding fitted Debye parameters are

shown in Table 6.1.

In addition, we design the same cross-section model associated with the 3-D model

and then obtain 2-D reconstruction from the 2-D FDTD forward simulation, in order to

compare the reconstruction performance with the 3-D CST simulation. Our 2-D model

considers eight antennas surrounding the 2-D target, representing point sources excited

with a wideband Gaussian pulse in a TM configuration, instead of the small triangular

patch printed monopole antenna in the same position of the 3-D model. The complete

MATLAB codes for 2-D forward FDTD simulation are shown in Appendix A.5.

6.4.2 Reconstruction Results

We have conducted several numerical experiments using the simulated data from 3-D

simulation and 2-D FDTD forward solution. Depending on whether the data comes

from the 3-D CST or the 2-D FDTD model, we implement a 2-D/2-D or 3-D/2-D

reconstruction approach (since our imaging algorithm always uses a 2-D forward solver).

The DBIM-TwIST algorithm and frequency hopping approach are employed, in which

the reconstruction frequency is assumed from 1.5 GHz to 2.7 GHz. The parameter of

the initial guess is assumed as the same as the background medium as a priori information.
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Figure 6.7: Comparison of the measurement differences (with target versus without
target) between 3-D and 2-D simulations in condition of the transmitter 1. (a–b) in
coupling medium of Triton X-100; (c–d) in coupling medium of 90% corn syrup; (e–f)
in coupling medium of 80% Glycerine.
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Figure 6.8: 2-D Reconstructed images from 3-D CST simulated measurement for three
coupling media. (a–c) the images of ϵ ′ for Triton, 90% corn syrup and 80% glycerine
from left to right; (d–f) the images of corresponding ϵ ′′.

-4 -2 0  2  4  

x ( cm )

-4 

-2 

0  

2  

4  

y
 (

 c
m

 )

5

10

15

20

25

30

35

(a)

-4 -2 0  2  4  

x ( cm )

-4 

-2 

0  

2  

4  

y
 (

 c
m

 )

4

6

8

10

12

14

16

18

20

22

24

(b)

-4 -2 0  2  4  

x ( cm )

-4 

-2 

0  

2  

4  

y
 (

 c
m

 )

5

10

15

20

25

(c)

-4 -2 0  2  4  

x ( cm )

-4 

-2 

0  

2  

4  

y
 (

 c
m

 )

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d)

-4 -2 0  2  4  

x ( cm )

-4 

-2 

0  

2  

4  

y
 (

 c
m

 )

0.2

0.4

0.6

0.8

1

1.2

(e)

-4 -2 0  2  4  

x ( cm )

-4 

-2 

0  

2  

4  

y
 (

 c
m

 )

0.5

1

1.5

2

2.5

(f)

Figure 6.9: 2-D Reconstructed images from 2-D FDTD for three coupling media. (a–c)
the images of ϵ ′ for Triton, 90% corn syrup and 80% glycerine from left to right; (d–f)
the images of corresponding ϵ ′′.
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Prior to presenting the reconstructed images, we draw an analogy of the measurement

difference (between the simulated measurement data and the background data) between

two schemes shown in Fig. 6.7. The sub-figure (a–b) indicate a similar trend between

3-D CST and 2-D FDTD, which suggests that the 2-D FDTD approach with ideal

point sources is not far from the true propagation model in this scenario. Further, the

inflection point of the v shape pointing at the Receiver 3 suggests a probable location of

the target between Antenna 1 (Transmitter) and Antenna 4 (Receiver 3 corresponding to

the transmitter). However, we also observe a clear mismatch between two schemes at 2.5

GHz in Fig. 6.7(a) and at 2.0 GHz in Fig. 6.7(b), due to the incident signals scattered by

the target and inevitable numerical dispersion in electromagnetic simulation. Besides, we

can also observe this mismatch increasing as the losses of the coupling medium increase in

(c–f). Especially for 80% glycerine, the magnitude of the measurement tends to unstable

in all frequencies, which will affect the convergence of the reconstruction algorithm

severely.

The reconstructed images from 3-D CST and 2-D FDTD are shown in Fig. 6.8 and

Fig. 6.9 respectively. The ϵ ′ and ϵ ′′ are transformed from the Debye distributions in 1.5

GHz. It is clear that good reconstructed images can be achieved both cases for Triton

X-100 which is the least lossy medium from the three.Image reconstruction for the other

two media is much worse in both CTS and FDTD cases, is correlated to inconsistencies

in the transmitted signals for the cases of corn syrup and glycerine in Fig. 6.7. An

interesting result is obtained in Fig. 6.8 is that the reconstructed results in the corn syrup

are worse than in the 80% glycerine, in spite of the fact that the latter is a more lossy

medium.This motivates a need to perform efficient frequency selection by evaluating the

measured data. To tackle this problem, we will propose a frequency selection method

based on correlation analysis, and the optimised result will be presented in the next

section.
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Figure 6.10: (a) An ideal representation of relative measurement in low frequencies for
Triton. (b) Corresponding cross-correlation map between 1.0 GHz and 3.0 GHz for
Transmitter 1.

6.5 A Frequency Selection Method Based on Correla-

tion Analysis

In a real MWI experiment, inconsistencies and errors in the received signals at different

frequencies can be due to many factors, including outside interference as well as the

antenna operation characteristics , which makes it is impossible to obtain a completely

smooth measurement in the wideband between 1.0 GHz and 3.0 GHz. By applying

the calibration method introduced in Section 6.2, we can acquire an observable trend

of the relative measured magnitude and phase between adjacent frequencies in a certain

sub-bands. Prof. Meaney has illustrated related research in [168], where magnitude and

phase have a gradual change along with frequency change. Thus, we consider categorising

the adjacent frequencies with similar trends into a group as high correlation group and

the rest into moderate and low correlation group.

Considered two variables X and Y , Pearson’s correlation coefficient is defined as ,

ρ(X ,Y ) =
cov(X ,Y )

σXσY
(6.3)
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where cov is the covariance, and σX and σY denote the standard deviation of X and

Y respectively. In this section, assuming an N -antenna system, we define 21 variables

F n
1 , F

n
2 , . . . , F

n
21 representing the received information for the nt ℎ transmitter in frequen-

cies from 1.0 to 3.0 GHz. Every variable Fi includes N − 1 elements of magnitude of

the received signals, described as

Fi = [R(i,1),R(i,2), . . . ,R(i,N−1)]
T . (6.4)

Thus, we can obtain the correlation coefficient matrix P n for the nt ℎ transmitter de-

scribed as,

P n =



ρ(F1, F1) ρ(F1, F2) . . . ρ(F1, F21)

ρ(F2, F1) ρ(F2, F2) . . . ρ(F2, F21)

...
...

...
...

ρ(F21, F1) ρ(F21, F2) . . . ρ(F21, F21)


(6.5)

and then the final cross-correlation matrix is the average of correlation coefficient P n for

all transmitters shown as,

P̄ =
1
21

21∑
n=1

P n (6.6)

An ideal representation of correlated measurement with similar trends in low fre-

quencies is demonstrated in Fig. 6.10(a), using the 2-D forward FDTD based on the

eight-antenna system introduced in Section 6.4. The model including a single object

submerged in Triton X-100 can generate smooth measurement due to low losses. The

cross-correlation map is shown in Fig. 6.10(b). It is clear that the red areas mainly

cover two sub-bands, in which one group is below 2 GHz and the other group is above

2.5 GHz. Finally, by repeating this for all transmitters, we can achieve the mean of

cross-correlation distributions in the whole frequency range.
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Figure 6.11: (a) A representation of correlated measurement in two sub-bands from 3-D
CST in 90% corn syrup. (b) Corresponding cross-correlation map between 1.0 GHz
and 3.0 GHz in an average of all transmitters.

Note that the high correlation measurement cannot guarantee a good reconstruction

in related frequencies. Conversely, the low cross-correlation frequencies may also contain

useful information used in frequency hopping approach. Thus, the correlation analysis

just provides a perspective to verify the validity of themeasurement in various frequencies.

Besides, the low correlation information may suggest that there are some measure-

ment errors at certain non-consecutive frequencies, which suggests excluding these

unnecessary frequencies in the reconstruction process. Thus, we can substitute the

relative measurement with the absolute measurement (the measurement with target)

to apply correlation analysis. The absolute measurement denotes the experimental or

CST measurement with target (pure water in the tube), which generally exist higher

cross-correlation in frequencies because the measurement noise is far smaller than the

power of the incident signals. Thus, an abnormal measurement at a certain frequency

will be highlighted in the cross-correlation map.

To present the effect of the frequency selection method based on the absolute mea-

surement, we employ the simulated measurement from 3-D CST simulation that sets

90% corn syrup as the coupling medium, and the model introduced in Section 6.4. The

measured data and the corresponding cross-correlation map have been shown in Fig. 6.11.
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Figure 6.12: Reconstructed images based on the low-frequency and high-frequency group
respectively. (a–b) the images of ϵ ′ (left) and ϵ ′′ (right) reconstructed by the frequency
hopping approach from 1.5 to 1.8 GHz; (c–d) the images of ϵ ′ (left) and ϵ ′′ (right)
reconstructed by the frequency hopping approach from 2.5 to 2.8 GHz.

109



6.5 A Frequency Selection Method Based on Correlation Analysis

It is easy in Fig. 6.11(b) to find a “blue belt” at 1.2 GHz which denotes a low correlation

against all other frequencies. The corresponding plot is depicted in Fig. 6.11(a), where

the received signals at 1.2 GHz is not similar to any other lines. As discussed above,

it possibly suggests the received signal at 1.2 GHz belongs to measurement error or

environment error which is much stronger than the power of the incident signals. Thus,

the frequency at 1.2 GHz will be removed in the process of image reconstruction. Except

the abnormal frequency, the cross-correlation map suggests two sub-bands as the repre-

sentatives of the low and high frequency group. The reconstructed images are shown

in Fig. 6.12 by low frequency group (1.5, 1.6, 1.7, and 1.8 GHz) and high-frequency

group (2.5, 2.6, 2.7, and 2.8 GHz). Compared with the results in Fig. 6.9 (b) and (e), the

distinct improvement is observed from Fig. 6.12 (c) and (d).

Conversely, low-frequency information cannot provide a reliable reconstruction in

this case. As the long wavelengths in these frequencies can only locate a large target and

the outline of the target.

In the end, it is concluded that we propose a novel analysis tool to choose the

reconstruction frequency and examine the reliability of the measurement. The frequency

selection method does not tend to optimize the reconstruction result from any of the

relative or absolute measurement, but provides a new interpretation of the received

signals at different frequencies. The distribution of the cross-correlation coefficients

represents a category of similarity of the measurement in several sub-bands. We can

not only take advantage of the characteristic in every sub-band to achieve an optimal

reconstruction images by frequency hopping approach, but also avoid the measurement

error at a certain frequency. In the next section, our frequency-selection method will

process the real experimental measurement data and provide an optimal set of frequencies

used for reconstruction.
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6.6 Application to An Experimental MWI System with a Two-layer Medium
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Figure 6.13: The geometry of improved eight-antenna system based on a two-layer
medium.

6.6 Application to An Experimental MWI System with

a Two-layer Medium

6.6.1 Introduction of Experiment System Geometry

In the previous section we considered different dielectric background media and deduced

that higher loss of immersion medium is vital to minimize the cross coupling between

array elements, however the hardware requirement for collecting these low signal levels

is completely altered when we use high loss medium as background. Therefore, there is

a need of high sensitivity transceivers to collect the information which incurs higher

cost to the system. Also, from the practical point of view, considering the actual breast

anatomy, we can confidently assume that the EM signal will not have to traverse in the

background medium across the entire array diameter. Hence, we introduce another layer

in the imaging domain by placing two different-size tanks where background immersion

is filled between two tanks and another low loss medium is filled in the interior tank

that mimics low loss fatty tissues inside the breast. The small tube filled with the pure

water is placed in the interior tank as a target.
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6.6 Application to An Experimental MWI System with a Two-layer Medium

Figure 6.14: Photo of our experimental MWI system

We propose an improved antenna system based on the two-layer medium shown in

Fig. 6.13. The exterior tank in diameter of 200 mm is wrapped by the absorber layer.

An extra interior tank in diameter of 100 mm is placed in the centre inside, which is

surrounded by 8 triangular patch printed monopole antennas with a diameter of 130

mm. All antennas are submerged into the outer medium between two tanks, close to the

interior tank by 15 mm. Safflower oil as the inner medium is filled in the interior tank

with a cylinder in 29 mm as a target of the pure water. To analyse the performance of the

improved system, 80% glycerine and 90% corn syrup are chosen as the outer medium in

comparison. According to the previous introduction, the radiation performances of the

antenna immersed two types of the media have been verified by the CST simulation and

the realistic experiment. In the next section, reconstruction results based on these two

media will be presented.
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6.6 Application to An Experimental MWI System with a Two-layer Medium

The data acquisition mechanical structure for collection of the imaging data has to be

accurate and robust in order to collect data that minimizes errors. The data acquisition

process is very prone to errors and therefore the mechanical set-up has to be designed very

carefully so that the potential errors are minimized. The sources of errors range from

the physical position of the antennas to the method of acquiring the mono-static data.

We have considered a cylindrical geometry for our set-up which provides a symmetry

on horizontal and vertical axes. The mechanical structure shown in Fig. 6.14.

The horizontal and vertical position of the antennas are controlled manually by

using the calibrated supports which allow us to easily and precisely adjust the position of

antennas forming the array. And we still use the printed monopole antenna mentioned

in 6.3.1. A circular disc having holes of different diameters at four different locations has

been 3D printed to situate the target holding acrylic tube, which allows precise control

of target location inside the imaging domain. Moreover, the phenomenon of surface

waves and multipath signal propagation has also been considered in our design and in

order to curb the interfering signals and surface waves we have introduced an absorber

layer with metallic coating along the exterior of the tank holding the dielectric medium.

The mechanical system also requires a smooth and robust base so that the whole system

remains stationary throughout the data collection.

6.6.2 2-D Image Reconstruction based on DBIM-TwIST Method

In this section, the DBIM-TwIST method and frequency hopping approach are applied

to reconstruct 2-D images in specific frequencies selected by the frequency selection

method. To analyse the impact of the outer medium’s loss, two different outer media

will be compared in the eight-antenna system with a two-layer medium, including the

90% corn syrup and 90% corn syrup. The safflower is used for two cases as the interior

medium.

Fig. 6.15 (a–b) demonstrate two cross-correlation maps regarding the relative mea-

surement (the difference of experiment measurement between with target and without
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Figure 6.15: Cross-correlation maps based on 90% corn syrup(outer medium) and
safflower(inner medium). (a) Cross-correlation map based on the relative measurement
(b) Cross-correlation map based on the absolute measurement. Reconstructed images of
ϵ ′ in (c) and ϵ ′′ in (d) by frequency hopping approach at 1.5, 1.9, and 2.3 GHz in Case 1.
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Figure 6.16: Cross-correlation maps based on 80% glycerine(outer medium) and saf-
flower(inner medium). (a) Cross-correlation map based on the relative measurement (b)
Cross-correlation map based on the absolute measurement. Reconstructed images of ϵ ′
in (c) and ϵ ′′ in (d) by frequency hopping approach in 1.5, 1.6, and 1.7 GHz in Case 2.
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6.7 Conclusion

target) and the absolute measurement (the measurement with target). It is clear that

there are four areas with high-correlation coefficient around 1.5, 1.9, and 2.3 GHz. The

reconstructed images are shown in Fig. 6.15. The image of ϵ ′ is better than ϵ ′′. A part

of reason is that the pure water as the target provides high contrast of ϵ∞ in the Debye

model but the ∆ϵ is set to zero. The Debye model combining with the non-dispersive

model causes an inevitable bias of the Debye parameter estimate starting from the initial

guess, as well as in terms of setting of hard constraints.

In comparison, two smoother cross-correlation maps regarding the relative and

absolute measurement in Case 2 are presented in Fig. 6.16 (a) and (b). Due to the

high dispersion from 80% glycerine, exterior environment noise and the interfering

signals are reduced heavily to obtain evener signals. It leads to better reconstructed

results and steady convergence shown in Fig. 6.16. It is clear that the target is located

precisely in ϵ ′, and ϵ ′′ performs much better than the results in Case 1 of Fig. 6.15.

Besides, using the same number of iterations in two cases, the dielectric value of ϵ ′ and

ϵ ′′ based on the glycerine is closer to the real value of the pure water than that in 90%

corn syrup. Thus, it is concluded that we propose a complete new microwave antenna

system based on the two-layer medium, in which the exterior medium is immersed by

antennas, and contributes to reduction of interfering signals and environment noise. The

interior medium with low dispersion enhances the signal radiation inside. Reconstructed

images for two types of the exterior media suggests that the high loss exterior medium

contributes to smooth measurements compared with the low loss material. Using the

frequency selection method and frequency hopping approach, we demonstrate a distinct

improvement of the reconstructed images in comparison to a single-medium system.

6.7 Conclusion

In this chapter, we focus on the application of our DBIM-TwIST algorithm to our

experimental antenna system. The collaborative research with Politecnico di Torino gave
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6.7 Conclusion

us an initial experience to process the experimental data relating to Triton X-100 in their

two-antenna system. Then the 3-D CST simulations provide a series of comparisons

regarding radiation performances using different background media and corresponding

reconstruction performances in the eight-antenna system. These work finally contribute

to the implementation of the enhanced-scatter MWI system based on the two-layer

medium. The reconstructed images suggest that the use of safflower as a low loss material

improves the quality of the measured data, enabling our algorithm to perform well, in

combination with the frequency selection approach presented in the chapter.
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Chapter 7

CONCLUSIONS and FUTURE

WORK

7.1 Summary of Contributions

In this thesis, the overriding purpose of this study is to reconstruct the complex per-

mittivity of 2-D anatomically realistic numerical breast phantoms and experimental

measurements. We implemented a complete 2-D microwave breast imaging technique

based on the DBIM-TwIST algorithm, and also proposed a series of MWI optimization

strategies to improve robustness of the TwIST algorithm, and to enhance quality of

multiple-frequency reconstructions in multiple resolutions by optimizing initial guess,

the L1 norm regularization method, and the novel frequency selection method. The

main contributions in this thesis are as follows.

• This study proposed the adaptive TwIST method to solve the linear problem

and optimized the algorithm’s parameters for MWI for the first time. Compared

with CGLS and LSQR, the adaptive TwIST method enhanced the flexibility and

robustness of the MWI reconstruction.
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7.1 Summary of Contributions

• A new way of combining multiple frequency information is proposed to improve

further the performance of the DBIM-TwIST algorithm for microwave breast imag-

ing. And a series of the FDTD improvement strategies increased the computational

efficiency of the forward FDTD solver based on a resolution adjustment.

• A novel two-step DBIM algorithm is proposed to optimize the initial guess of

the DBIM, where the first step estimates the average breast properties with low

computational cost. The optimal initial guess avoided false solutions and converged

the algorithm to an optimal solution. The reconstruction quality for different

breast phantoms are enhanced in various resolutions.

• A novel regularization technique based on the Pareto curve and L1 norm regu-

larization is proposed for the first time in MWI, which improved convergence

stability of the TwIST algorithm. We improved the differentiability and continuity

of the TwIST algorithm’s convergence by employing curve fitting method of cubic

polynomials to smooth the Pareto curve. And the computation cost is reduced by

applying an exponential distribution sampling of the regularization parameter.

• The proposed MWI algorithm is assessed for realistic experiments with a unique

approach, using a three-dimensional (3-D) CAD model first to assess model error

without additional random experimental errors such as interference, before moving

to data from the true experimental system. The impact of the model mismatch

between the forward FDTD solver and the true imaging prototype is analysed to

ensure the reliability of the reconstruction from the experimental measurement.

• Impact of frequency selection in reconstructions from experimental data is system-

atically studied for the first time using cross-correlation metrics that are applied

to the experimental data directly. Two approaches of the frequency selection

method based on the relative measurement and absolute measurement improved
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7.2 Future Work

the efficiency of selecting frequency used in the DBIM reconstruction by removing

the measurement error.

Moreover, we focused on developing a complete software system for MWI in MATLAB,

supporting 2-D image reconstruction in multiple resolutions from numerical breast phan-

toms, 3-D CST, and experimental measurement. The reconstruction system integrated

the DBIMwith frequency hopping, multiple frequency and hybrid frequency approaches.

The proposed regularization method and initial guess optimization method are integrated

in the DBIM-TwIST algorithm as an optional optimization method respectively.

Besides, an application interface of generic self-defined modelling tool is developed to

support self-define 2-D FDTD model. A data-connected tool is developed to process rare

S-parameter measurement data from 3-D CST simulation and experimental measurement.

Finally, the FDTD computation efficiency is optimized by parallel computing tech-

nique and GPU computing technique. The FDTD computation time reduces by 90%

from 9 second per DBIM iteration to 0.8 second, based on i7-6700HQ CPU working at

2.6 GHz with 16 GB memory.

7.2 Future Work

Acceleration of Electromagnetic Simulation

In this thesis, the FDTD with CPML is employed to simulate the propagation of EM

wave. Considering that the FDTD computation cost accounts for 90% in total, we

can optimize the FDTD computation by parallel GPU computing to distribute the

propagation simulations from different transmitters into multiple parallel GPUs. Besides,

for the large-scale model, we can apply finite element method (FEM) combined with the

FDTD to reduce the computation cost. The FEM and the FDTD are applied for outside

of the reconstruction domain and inside of the reconstruction domain respectively.
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7.2 Future Work

Moreover, the multiple-grid technique of the FDTD can be employed to enhance the

reconstruction quality in a specific reconstruction area.

Optimization of the DBIM

The DBIM is used for transforming the non-linear problem to linear problem by ap-

proximating the Green function Gb and electric field Eb . That can be optimized by

obtaining the higher precision approximation by modifying the DBIM. The challenge is

how to guarantee a stationary iterative convergence of the modified DBIM.

On the other hand, another important research is how to optimize the number of

the DBIM iterations. In this study, the iteration number is set as 15 or 10 iterations per

frequency. However, as one distinct advantage of the MWI is that the permittivity as

well as the conductivity of the human tissues including tumours can be reconstructed

as an extra measure compared with traditional imaging methods. The total number

of the DBIM iteration must be optimized to obtain the best estimate of the dielectric

values. This challenge is not only how to terminate the DBIM iterations, but also how

to reconstruct the real human tissue properties without a priori information relating to

the human interior properties. To this end, that is the reason why the current study just

can localize the tumour in high contrast.

Moreover, this study has proposed a novel two-step method to optimize the initial

guess. In the future research, we can optimize the sampling method to find the optimal

initial guess. For example, a progressive sampling in multiple steps can be designed to

reduce the number of sampling. In the first step, we can obtain N samplings between

lower bound and upper bound of the initial guesses. Following by finding an optimal

solution, we then obtain new N samplings around the optimal initial guess in the first

step and then to find the final optimal initial guess. This strategy provides N 2 precision

to estimate the optimal initial guess but just doubles the computation cost.
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7.2 Future Work

Further Development of Experimental System with Two-Layer Medium

In the last chapter, our latest experimental system with two-layer medium presents a

great improvement in enhancing the scattered signal and reducing reflection and multi-

path signals. The future work can keep optimizing this system by trying different

combinations of the interior and outer media. Moreover, the impact of the antenna’s

position (including distance to tank, distance to bottom of tank) will be discovered.

In addition, the maximum number of antennas applied in the experimental system

should be discussed. On the one hand, we should analyse the limit of the number of an-

tennas in the reconstruction process using the multiple frequency approach, considering

the computation capacity in the TwIST. On the other hand, we can design a rotatable

antenna array to reduce the number of the realistic antenna which leads to reduction of

cross-coupling signals. Finally, the quality of the MWI can be enhanced by amplifying

the scattered signals.
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Appendix A

Implementation of Breast Microwave

Imaging in Matlab Code

A.1 Core Matlab Code of 2-D FDTD Simulation with

CPML

1 % LOAD VARIABLES FROM MIAN PROGRAM

2 function FDTD_Prep_path = FDTD_Preprocess(filename, delT, ...

pml_coarse, dimX, dimY, bbox_interior_mask, ...

3 mu0, eps0, delX, EpsS, antLocations_coarse_2D)

4 % nmax = timeSteps;

5 dt = delT;

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 % PML thickness in each direction

8 pml_size = pml_coarse; % pml_coarse is loaded in sim_params_2D.mat

9 Imax = dimX+2*pml_size;

10 Jmax = dimY+2*pml_size;

11 XBB = (1+pml_size):(Imax-pml_size);

12 YBB = (1+pml_size):(Jmax-pml_size);
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13 [I, J] = ind2sub([dimX dimY], bbox_interior_mask);

14 bbox_interior_mask_extend = sub2ind([Imax Jmax], I+pml_size, ...

J+pml_size);

15 % transfer the location of the antenna to an extended field with PML

16 isource = antLocations_coarse_2D+pml_size; %the position of antennas

17 isource_ind = sub2ind([Imax, Jmax], isource(:, 1), isource(:, 2));

18 % = = = = = set PML parameters = = = = = = =

19 eta = sqrt(mu0/ (eps0*EpsS));

20 poly_m = 3; % polynomial order for pml grading

21 alpha_m = 1.0;

22 m = poly_m;

23 ma = alpha_m;

24 sig_opt = 0.8*(poly_m+1.0) / (eta*delX);

25 sig_x_max = sig_opt;

26 sig_y_max = sig_x_max;

27 alpha_x_max = 0.03; %0.24;

28 alpha_y_max = alpha_x_max;

29 kappa_x_max = 1.0; %2.0;

30 kappa_y_max = kappa_x_max;

31 % = = = = FDTD parameters for E and H fields = = = = = = = =

32 % E-Field

33 % x-dir

34 be_x_1 = zeros(pml_size, 1);

35 ce_x_1 = zeros(pml_size, 1);

36 alphae_x_PML_1 = zeros(pml_size, 1);

37 sige_x_PML_1 = zeros(pml_size, 1);

38 kappae_x_PML_1 = zeros(pml_size, 1);

39 be_x_2 = zeros(pml_size, 1);

40 ce_x_2 = zeros(pml_size, 1);

41 alphae_x_PML_2 = zeros(pml_size, 1);

42 sige_x_PML_2 = zeros(pml_size, 1);

43 kappae_x_PML_2 = zeros(pml_size, 1);

44 % y-dir
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45 be_y_1 = zeros(pml_size, 1);

46 ce_y_1 = zeros(pml_size, 1);

47 alphae_y_PML_1 = zeros(pml_size, 1);

48 sige_y_PML_1 = zeros(pml_size, 1);

49 kappae_y_PML_1 = zeros(pml_size, 1);

50 be_y_2 = zeros(pml_size, 1);

51 ce_y_2 = zeros(pml_size, 1);

52 alphae_y_PML_2 = zeros(pml_size, 1);

53 sige_y_PML_2 = zeros(pml_size, 1);

54 kappae_y_PML_2 = zeros(pml_size, 1);

55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

56 % H-Field

57 % x-dir

58 bh_x_1 = zeros(pml_size-1, 1);

59 ch_x_1 = zeros(pml_size-1, 1);

60 alphah_x_PML_1 = zeros(pml_size-1, 1);

61 sigh_x_PML_1 = zeros(pml_size-1, 1);

62 kappah_x_PML_1 = zeros(pml_size-1, 1);

63 bh_x_2 = zeros(pml_size-1, 1);

64 ch_x_2 = zeros(pml_size-1, 1);

65 alphah_x_PML_2 = zeros(pml_size-1, 1);

66 sigh_x_PML_2 = zeros(pml_size-1, 1);

67 kappah_x_PML_2 = zeros(pml_size-1, 1);

68 % y-dir

69 bh_y_1 = zeros(pml_size-1, 1);

70 ch_y_1 = zeros(pml_size-1, 1);

71 alphah_y_PML_1 = zeros(pml_size-1, 1);

72 sigh_y_PML_1 = zeros(pml_size-1, 1);

73 kappah_y_PML_1 = zeros(pml_size-1, 1);

74 bh_y_2 = zeros(pml_size-1, 1);

75 ch_y_2 = zeros(pml_size-1, 1);

76 alphah_y_PML_2 = zeros(pml_size-1, 1);

77 sigh_y_PML_2 = zeros(pml_size-1, 1);
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78 kappah_y_PML_2 = zeros(pml_size-1, 1);

79 % Denominators for the update equations

80 den_ex = zeros(Imax, Jmax);

81 den_hx = zeros(Imax-1, Jmax-1);

82 den_ey = zeros(Imax, Jmax);

83 den_hy = zeros(Imax-1, Jmax-1);

84 % SET CPML PARAMETERS IN EACH DIRECTION

85 % x-dir

86 for i = 1:pml_size

87 sige_x_PML_1(i) = sig_x_max * ( (pml_size - i) / (pml_size - ...

1.0) )^m;

88 alphae_x_PML_1(i) = alpha_x_max*((i-1.0) / (pml_size-1.0))^ma;

89 kappae_x_PML_1(i) = 1.0+(kappa_x_max-1.0) *((pml_size - i) / ...

(pml_size - 1.0))^m;

90 be_x_1(i) = exp(-(sige_x_PML_1(i) / kappae_x_PML_1(i) + ...

alphae_x_PML_1(i)) *dt/eps0);

91 if ((sige_x_PML_1(i) == 0.0) && (alphae_x_PML_1(i) == 0.0) && ...

(i == pml_size))

92 ce_x_1(i) = 0.0;

93 else

94 ce_x_1(i) = sige_x_PML_1(i) *(be_x_1(i)-1.0) / ...

(sige_x_PML_1(i)+kappae_x_PML_1(i) *alphae_x_PML_1(i)) / ...

kappae_x_PML_1(i);

95 end

96 end

97 for i = 1:pml_size-1

98 sigh_x_PML_1(i) = sig_x_max * ( (pml_size - i - 0.5) / ...

(pml_size-1.0))^m;

99 alphah_x_PML_1(i) = alpha_x_max*((i-0.5) / (pml_size-1.0))^ma;

100 kappah_x_PML_1(i) = 1.0+(kappa_x_max-1.0) *((pml_size - i - ...

0.5) / (pml_size - 1.0))^m;

101 bh_x_1(i) = exp(-(sigh_x_PML_1(i) / kappah_x_PML_1(i) + ...

alphah_x_PML_1(i)) *dt/eps0);
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102 ch_x_1(i) = sigh_x_PML_1(i) *(bh_x_1(i)-1.0) / ...

(sigh_x_PML_1(i)+kappah_x_PML_1(i) *alphah_x_PML_1(i)) / ...

kappah_x_PML_1(i);

103 end

104 %-------------------

105 for i = 1:pml_size

106 sige_x_PML_2(i) = sig_x_max * ( (pml_size - i) / (pml_size - ...

1.0) )^m;

107 alphae_x_PML_2(i) = alpha_x_max*((i-1.0) / (pml_size-1.0))^ma;

108 kappae_x_PML_2(i) = 1.0+(kappa_x_max-1.0) *((pml_size - i) / ...

(pml_size - 1.0))^m;

109 be_x_2(i) = exp(-(sige_x_PML_2(i) / kappae_x_PML_2(i) + ...

alphae_x_PML_2(i)) *dt/eps0);

110 if ((sige_x_PML_2(i) == 0.0) && (alphae_x_PML_2(i) == 0.0) && ...

(i == pml_size))

111 ce_x_2(i) = 0.0;

112 else

113 ce_x_2(i) = sige_x_PML_2(i) *(be_x_2(i)-1.0) / ...

(sige_x_PML_2(i)+kappae_x_PML_2(i) *alphae_x_PML_2(i)) / ...

kappae_x_PML_2(i);

114 end

115 end

116 for i = 1:pml_size-1

117 sigh_x_PML_2(i) = sig_x_max * ( (pml_size - i - 0.5) / ...

(pml_size-1.0))^m;

118 alphah_x_PML_2(i) = alpha_x_max*((i-0.5) / (pml_size-1.0))^ma;

119 kappah_x_PML_2(i) = 1.0+(kappa_x_max-1.0) *((pml_size - i - ...

0.5) / (pml_size - 1.0))^m;

120 bh_x_2(i) = exp(-(sigh_x_PML_2(i) / kappah_x_PML_2(i) + ...

alphah_x_PML_2(i)) *dt/eps0);

121 ch_x_2(i) = sigh_x_PML_2(i) *(bh_x_2(i)-1.0) / ...

(sigh_x_PML_2(i)+kappah_x_PML_2(i) *alphah_x_PML_2(i)) / ...

kappah_x_PML_2(i);
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122 end

123 % y-dir

124 for j = 1:pml_size

125 sige_y_PML_1(j) = sig_y_max * ( (pml_size - j ) / (pml_size - ...

1.0) )^m;

126 alphae_y_PML_1(j) = alpha_y_max*((j-1) / (pml_size-1.0))^ma;

127 kappae_y_PML_1(j) = 1.0+(kappa_y_max-1.0) *((pml_size - j) / ...

(pml_size - 1.0))^m;

128 be_y_1(j) = exp(-(sige_y_PML_1(j) / kappae_y_PML_1(j) + ...

alphae_y_PML_1(j)) *dt/eps0);

129 if ((sige_y_PML_1(j) == 0.0) && (alphae_y_PML_1(j) == 0.0) && ...

(j == pml_size))

130 ce_y_1(j) = 0.0;

131 else

132 ce_y_1(j) = sige_y_PML_1(j) *(be_y_1(j)-1.0) / ...

(sige_y_PML_1(j)+kappae_y_PML_1(j) *alphae_y_PML_1(j)) / ...

kappae_y_PML_1(j);

133 end

134 end

135 for j = 1:pml_size-1

136 sigh_y_PML_1(j) = sig_y_max * ( (pml_size - j - 0.5) / ...

(pml_size-1.0))^m;

137 alphah_y_PML_1(j) = alpha_y_max*((j-0.5) / (pml_size-1.0))^ma;

138 kappah_y_PML_1(j) = 1.0+(kappa_y_max-1.0) *((pml_size - j - ...

0.5) / (pml_size - 1.0))^m;

139 bh_y_1(j) = exp(-(sigh_y_PML_1(j) / kappah_y_PML_1(j) + ...

alphah_y_PML_1(j)) *dt/eps0);

140 ch_y_1(j) = sigh_y_PML_1(j) *(bh_y_1(j)-1.0) / ...

(sigh_y_PML_1(j)+kappah_y_PML_1(j) *alphah_y_PML_1(j)) / ...

kappah_y_PML_1(j);

141 end

142 %-------------------

143 for j = 1:pml_size

141



A.1 Core Matlab Code of 2-D FDTD Simulation with CPML

144 sige_y_PML_2(j) = sig_y_max * ( (pml_size - j ) / (pml_size - ...

1.0) )^m;

145 alphae_y_PML_2(j) = alpha_y_max*((j-1) / (pml_size-1.0))^ma;

146 kappae_y_PML_2(j) = 1.0+(kappa_y_max-1.0) *((pml_size - j) / ...

(pml_size - 1.0))^m;

147 be_y_2(j) = exp(-(sige_y_PML_2(j) / kappae_y_PML_2(j) + ...

alphae_y_PML_2(j)) *dt/eps0);

148 if ((sige_y_PML_2(j) == 0.0) && (alphae_y_PML_2(j) == 0.0) && ...

(j == pml_size))

149 ce_y_2(j) = 0.0;

150 else

151 ce_y_2(j) = sige_y_PML_2(j) *(be_y_2(j)-1.0) / ...

(sige_y_PML_2(j)+kappae_y_PML_2(j) *alphae_y_PML_2(j)) / ...

kappae_y_PML_2(j);

152 end

153 end

154 for j = 1:pml_size-1

155 sigh_y_PML_2(j) = sig_y_max * ( (pml_size - j - 0.5) / ...

(pml_size-1.0))^m;

156 alphah_y_PML_2(j) = alpha_y_max*((j-0.5) / (pml_size-1.0))^ma;

157 kappah_y_PML_2(j) = 1.0+(kappa_y_max-1.0) *((pml_size - j - ...

0.5) / (pml_size - 1.0))^m;

158 bh_y_2(j) = exp(-(sigh_y_PML_2(j) / kappah_y_PML_2(j) + ...

alphah_y_PML_2(j)) *dt/eps0);

159 ch_y_2(j) = sigh_y_PML_2(j) *(bh_y_2(j)-1.0) / ...

(sigh_y_PML_2(j)+kappah_y_PML_2(j) *alphah_y_PML_2(j)) / ...

kappah_y_PML_2(j);

160 end

161 %¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

162 % FILL IN DENOMINATORS FOR FIELD UPDATES

163 %¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

164 ii = pml_size-1;

165 for i = 1:Imax-1
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166 if (i ≤ pml_size-1)

167 den_hx(i, :) = 1.0/ (kappah_x_PML_1(i) *delX);

168 elseif (i ≥ Imax+1-pml_size)

169 den_hx(i, :) = 1.0/ (kappah_x_PML_2(ii) *delX);

170 ii = ii-1;

171 else

172 den_hx(i, :) = 1.0/delX;

173 end

174 end

175 jj = pml_size-1;

176 for j = 1:Jmax-1

177 if (j ≤ pml_size-1)

178 den_hy(:, j) = 1.0/ (kappah_y_PML_1(j) *delX);

179 elseif (j ≥ Jmax+1-pml_size)

180 den_hy(:, j) = 1.0/ (kappah_y_PML_2(jj) *delX);

181 jj = jj-1;

182 else

183 den_hy(:, j) = 1.0/delX;

184 end

185 end

186 %-------------------

187 ii = pml_size;

188 for i = 1:Imax-1

189 if (i ≤ pml_size)

190 den_ex(i, :) = 1.0/ (kappae_x_PML_1(i) *delX);

191 elseif (i ≥ Imax+1-pml_size)

192 den_ex(i, :) = 1.0/ (kappae_x_PML_2(ii) *delX);

193 ii = ii-1;

194 else

195 den_ex(i, :) = 1.0/delX;

196 end

197 end

198 jj = pml_size;
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199 for j = 1:Jmax-1

200 if (j ≤ pml_size)

201 den_ey(:, j) = 1.0/ (kappae_y_PML_1(j) *delX);

202 elseif (j ≥ Jmax+1-pml_size)

203 den_ey(:, j) = 1.0/ (kappae_y_PML_2(jj) *delX);

204 jj = jj-1;

205 else

206 den_ey(:, j) = 1.0/delX;

207 end

208 end

209 %%% == = = = = = = = temp value for computing = = = = = = = = = =

210 den_ex = den_ex(2:Imax-1, 2:Jmax-1);

211 den_ey = den_ey(2:Imax-1, 2:Jmax-1);

212 %---------- optimize the code on 12/11/2016--------

213 be_x_all = repmat(cat(1, be_x_1(2:end), zeros(Imax-2*pml_size, ...

1), flip(be_x_2(2:end))) , 1, Jmax-2);

214 be_y_all = repmat(cat(2, be_y_1(2:end)', zeros(1, ...

Jmax-2*pml_size), flip(be_y_2(2:end)')), Imax-2, 1);

215 ce_x_all = repmat(cat(1, ce_x_1(2:end), zeros(Imax-2*pml_size, ...

1), flip(ce_x_2(2:end))) , 1, Jmax-2);

216 ce_y_all = repmat(cat(2, ce_y_1(2:end)', zeros(1, ...

Jmax-2*pml_size), flip(ce_y_2(2:end)')), Imax-2, 1);

217

218 bh_x_all = repmat(cat(1, bh_x_1, zeros(Imax-1-2*(pml_size-1), ...

1), flip(bh_x_2)), 1, Jmax-1);

219 bh_y_all = repmat(cat(2, bh_y_1', zeros(1, ...

Jmax-1-2*(pml_size-1)), flip(bh_y_2')), Imax-1, 1);

220 ch_x_all = repmat(cat(1, ch_x_1, zeros(Imax-1-2*(pml_size-1), ...

1), flip(ch_x_2)), 1, Jmax-1);

221 ch_y_all = repmat(cat(2, ch_y_1', zeros(1, ...

Jmax-1-2*(pml_size-1)), flip(ch_y_2')), Imax-1, 1);

222 FDTD_Prep_path = ['FDTD_Prep' filename '.mat'];
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223 save(FDTD_Prep_path, 'be_x_all', 'be_y_all', 'ce_x_all', ...

'ce_y_all', 'bh_x_all', ...

224 'bh_y_all', 'ch_x_all', 'ch_y_all', 'den_ex', 'den_ey', ...

'den_hy', 'den_hx', 'dt'...

225 , 'Imax', 'Jmax', 'XBB', 'YBB', 'bbox_interior_mask_extend', ...

'isource_ind');

226 end

1 function [greensFunctions_mag, greensFunctions_pha, ...

receivedFields_mag, ...

2 receivedFields_pha, antObs_data_test] = ...

project_FDTD_2D(FDTD_Prep_path, estEpsInf, ...

3 estEpsDelta, estCond, tauP, dt, eps0, mu0, delX, source, ...

numAnts, numFreqs, ...

4 omegas, timeSteps, EpsS, bbSize, esource_mag, esource_pha)

5 % This is a matlab version of code for 2-D Debye model FDTD with ...

CPML

6 % written by Zhenzhuang Miao (Supervisor: Dr. Panagiotis Kosmas)

7 % 04/09/2012

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9 running_time=tic;

10 load(FDTD_Prep_path);

11 %===============================================

12 eps_s = EpsS*ones(Imax, Jmax);

13 eps_inf = EpsS*ones(Imax, Jmax);

14 sigma_s = zeros(Imax, Jmax);

15 %----------------------------------------------

16 eps_inf(XBB, YBB) = estEpsInf;

17 eps_s(XBB, YBB) = estEpsDelta + estEpsInf;

18 sigma_s(XBB, YBB) = estCond;

19 % background material

20 eps_inf(eps_inf==0) = EpsS;
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21 eps_s(eps_s==0) = EpsS;

22 sigma_s(sigma_s==0) = 0;

23 % FILL IN UPDATING COEFFICIENTS

24 Kd = (2 * tauP - dt) / (2 * tauP + dt);

25 Beta_d = (2 * eps0 * (eps_s - eps_inf) * dt) / (2 * tauP + dt);

26 DA = 1.0;

27 DB = (dt / mu0); % ????

28 CA = (2 * eps0 * eps_inf - sigma_s * dt + Beta_d) ./ ...

29 (2 * eps0 * eps_inf + sigma_s * dt + Beta_d);

30 CA = CA(2:Imax-1, 2:Jmax-1);

31 CB = 2*dt./(2*eps0.*eps_inf+sigma_s*dt+Beta_d);

32 CB = CB(2:Imax-1, 2:Jmax-1);

33 Beta_d = Beta_d(2:Imax-1, 2:Jmax-1); %temp value for computing

34 %¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬

35 %%%%% PRE-ALLOCATE MEMORY (large chunks first) %%%%%

36 % for saving phasors inside FDTD observation bounding box

37 greensFunctions_mag = zeros(numAnts, bbSize, numFreqs);

38 greensFunctions_pha = zeros(numAnts, bbSize, numFreqs);

39 % for saving phasors at the antennas in FDTD

40 % % receivedFields_mag = zeros(numAnts, numAnts, numFreqs);

41 % % receivedFields_pha = zeros(numAnts, numAnts, numFreqs);

42 antObs_data_test = zeros(numAnts, numAnts, timeSteps);

43 % t_iH=1:Imax-1; %para for updating function H

44 % t_jH=1:Jmax-1; %para for updating function H

45 t_iE=2:Imax-1; %para for updating function E

46 t_jE=2:Jmax-1; %para for updating function E

47 %============ BEGIN TO SIMULATE ALL ANTENNAS==========

48 for srcAnt= 1:numAnts

49 scr=tic;

50 %====initialize values for field=====

51 % BEGIN TIME STEP

52 Ez = zeros(Imax, Jmax);

53 Hx = zeros(Imax-1, Jmax-1);
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54 Hy = zeros(Imax-1, Jmax-1);

55 Jd = zeros(Imax-2, Jmax-2);% t_i=2:Imax-1;

56 % CPML

57 psi_Ezx = zeros(Imax-2, Jmax-2);

58 psi_Ezy = zeros(Imax-2, Jmax-2);

59 psi_Hx = zeros(Imax-1, Jmax-1);

60 psi_Hy = zeros(Imax-1, Jmax-1);

61 tempGre_imag = zeros(bbSize, numFreqs);

62 tempGre_real = zeros(bbSize, numFreqs);

63 %============BEGIN TIME STEP===========

64 for n = 1:timeSteps

65 %=============update H====================

66 [Hx, Hy, psi_Hx, psi_Hy] = FDTD_Core_H(Ez, Hx, Hy, psi_Hx, ...

psi_Hy, ...]

67 den_hy, den_hx, DA, DB, bh_x_all, ch_x_all, bh_y_all, ...

ch_y_all, delX);

68 %=============UPDATE Ez====================

69 [Ez(t_iE, t_jE), Jd, psi_Ezx, psi_Ezy] = ...

FDTD_Core_Ez(Ez(t_iE, t_jE), Jd, ...

70 psi_Ezx, psi_Ezy, CA, CB, Hy, Hx, den_ex, den_ey, Kd, ...

Beta_d, ...

71 dt, delX, be_x_all, ce_x_all, be_y_all, ce_y_all);

72 %====================source===========================

73 Ez(isource_ind(srcAnt)) = source(n) + Ez(isource_ind(srcAnt));

74 % imagesc(Ez);

75 % observe field data at every obstime_ds timesteps

76 bboxObs_data=Ez( bbox_interior_mask_extend);

77 antObs_data_test(srcAnt, :, n)=Ez(isource_ind);

78 % Computing frequency-domain quantities by FFT

79 tempGre_imag = tempGre_imag + bboxObs_data * sin(omegas*n*dt);

80 tempGre_real = tempGre_real + bboxObs_data * cos(omegas*n*dt);

81 end %loop timesteps

82 disp(['number of antenna is ' num2str(srcAnt)] )
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83 toc(scr);

84 % convert observations to phasors and normalize by source

85 tempGre_imag = tempGre_imag / (timeSteps/2);

86 tempGre_real = tempGre_real / (timeSteps/2);

87 % this is not the real green function, but is the Ez which ...

will be used

88 % to obtain green function later.

89 greensFunctions_mag(srcAnt, :, :) = sqrt( tempGre_imag.^2 + ...

tempGre_real.^2 ) ...

90 ./ repmat(esource_mag, bbSize, 1);

91 greensFunctions_pha(srcAnt, :, :) = -atan2(tempGre_imag, ...

tempGre_real) ...

92 - repmat(esource_pha, bbSize, 1);

93 end % loop over antenna simulations

94

95 [mag, pha] = fft_trans(reshape(antObs_data_test, numAnts^2, ...

timeSteps), omegas, ...

96 dt, esource_mag, esource_pha);

97 receivedFields_mag = reshape(mag, numAnts, numAnts, numFreqs);

98 receivedFields_pha = reshape(pha, numAnts, numAnts, numFreqs);

99 disp('the whole running time of FDTD is ')

100 toc(running_time);

101 end

1 function [Hx, Hy, psi_Hx, psi_Hy]=FDTD_Core_H(Ez,Hx, Hy, psi_Hx, ...

psi_Hy,den_hy,den_hx,...

2 DA,DB,bh_x_all,ch_x_all,bh_y_all,ch_y_all,delX)

3 temp_Ezx=-1*diff(Ez(1:end-1,:),1,2);

4 temp_Ezy=diff(Ez(:,1:end-1),1,1);

5 Hx = DA * Hx + DB * (temp_Ezx .* den_hy);

6 psi_Hx = bh_y_all .* psi_Hx + ch_y_all .* temp_Ezx / delX;

7 Hx=Hx + DB * psi_Hx;
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8 Hy = DA * Hy + DB *( temp_Ezy .* den_hx);

9 psi_Hy = bh_x_all .* psi_Hy + ch_x_all .* temp_Ezy / delX;

10 Hy = Hy + DB * psi_Hy;

11 end

1 function [Ez_c,Jd,psi_Ezx,psi_Ezy] = ...

FDTD_Core_Ez(Ez_c,Jd,psi_Ezx,psi_Ezy,CA,CB,Hy,Hx,den_ex,den_ey...

2 ,Kd,Beta_d,dt,delX,be_x_all,ce_x_all,be_y_all,ce_y_all)

3 Ez_former=Ez_c;

4 temp_Hy=diff(Hy(:,2:end),1,1);

5 temp_Hx=-1*diff(Hx(2:end,:),1,2);

6 %=============update main field of Ez==========

7 Ez_c= CA.*Ez_c+CB.*(temp_Hy.*den_ex+temp_Hx.*den_ey - ...

0.5*(1+Kd)*Jd);

8 Jd=Kd*Jd+Beta_d.*(Ez_c-Ez_former)/dt;

9 %========update pml of Ez in x direction=========

10 psi_Ezx = be_x_all.*psi_Ezx + ce_x_all.*temp_Hy/delX;

11 % Ez(t_i,t_j) = Ez(t_i,t_j) + CB(t_i,t_j).*psi_Ezx;

12 %=========update pml of Ez in y direction=======

13 psi_Ezy = be_y_all.*psi_Ezy + ce_y_all.*temp_Hx/delX;

14 Ez_c=Ez_c+CB.*(psi_Ezx+psi_Ezy);

15 end

1 function [estEpsInf, estEpsDelta, estCond, tauP, EpsS, bbSize, ...

range_c,...

2 bbox_interior_mask, constraints] = Load_FDTD_material_2D ...

3 (Debye_coarse_2D_model, model_phantom, ...

logic_skin,mode,init_index)

4 %bbox_interior_mask is the reconstruction area.

5 load(['..\data\model' num2str(model_phantom) '\all_material.mat']);
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6 if (strcmp(mode,'Forward_original') || ...

strcmp(mode,'Forward_background'))

7 logic_skin=0;

8 end

9 if logic_skin % known skin in inverse process

10 range_c=(Debye_coarse_2D_model.model==0.5);

11 bbox_interior_mask=find(range_c);

12 else

13 range_c=(Debye_coarse_2D_model.model==0.5 | ...

Debye_coarse_2D_model.model==1);

14 bbox_interior_mask=find(range_c);

15 end

16 bbSize=length(bbox_interior_mask);

17

18

19 [dimX,dimY] = size(Debye_coarse_2D_model.model);

20 switch mode

21 case 'Forward_original'

22 estEpsInf = Debye_coarse_2D_model.EpsInf;

23 estEpsDelta = Debye_coarse_2D_model.DeltaEps;

24 estCond = Debye_coarse_2D_model.SigmaS;

25 tauP = mats.immer.fit.Tau;

26 EpsS = ...

mats.immer.fit.EpsInf(1)+mats.immer.fit.DeltaEps(1);

27

28 case {'Forward_background','Inverse'}

29 % Note that the default of initial guess is the same as ...

inner immersion.

30 % Build 2D model based on the property of outer immersion

31 estEpsInf = mats.immer.fit.EpsInf*ones(dimX,dimY);

32 estEpsDelta = mats.immer.fit.DeltaEps*ones(dimX,dimY);

33 estCond = mats.immer.fit.SigmaS*ones(dimX,dimY);

34 tauP = mats.immer.fit.Tau;
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35 EpsS = mats.immer.fit.EpsInf+mats.immer.fit.DeltaEps;

36 % insert the inner immersion

37

38 if isfield(mats,'immer_inner')

39 estEpsInf ...

(Debye_coarse_2D_model.model==mats.immer_inner.flag) ...

= mats.immer_inner.fit.EpsInf;

40 estEpsDelta ...

(Debye_coarse_2D_model.model==mats.immer_inner.flag) ...

= mats.immer_inner.fit.DeltaEps;

41 estCond ...

(Debye_coarse_2D_model.model==mats.immer_inner.flag) ...

= mats.immer_inner.fit.SigmaS;

42 disp('Add the inner immersion!')

43 end

44 % add skin

45 if isfield(mats,'skin') && logic_skin

46 estEpsInf ...

(Debye_coarse_2D_model.model==mats.skin.flag) = ...

mats.skin.fit.EpsInf;

47 estEpsDelta ...

(Debye_coarse_2D_model.model==mats.skin.flag) = ...

mats.skin.fit.DeltaEps;

48 estCond ...

(Debye_coarse_2D_model.model==mats.skin.flag) = ...

mats.skin.fit.SigmaS;

49 end

50 %------------------------------------------------

51 if strcmp(mode,'Inverse')

52 estEpsInf(bbox_interior_mask) = ...

init_guess.EpsInf(init_index);

53 estEpsDelta(bbox_interior_mask) = ...

init_guess.DeltaEps(init_index);
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54 estCond(bbox_interior_mask) = ...

init_guess.SigmaS(init_index);

55 end

56 otherwise

57 error('The mode is not defined!');

58 end

59 % setup the property of tank on the model

60 if isfield(mats,'tank')

61 estEpsInf (Debye_coarse_2D_model.model==mats.tank.flag) = ...

mats.tank.fit.EpsInf;

62 estEpsDelta (Debye_coarse_2D_model.model==mats.tank.flag) = ...

mats.tank.fit.DeltaEps;

63 estCond (Debye_coarse_2D_model.model==mats.tank.flag) = ...

mats.tank.fit.SigmaS;

64 end

65 disp(['The mode of loading material is ' mode]);

66 %set constraints there are some problems unsolved

67 if isfield(mats,'immer_inner')

68 constraints.EpsInf = mats.immer_inner.fit.EpsInf;

69 constraints.DeltaEps = mats.immer_inner.fit.DeltaEps;

70 constraints.SigmaS = mats.immer_inner.fit.SigmaS;

71 else

72 constraints.EpsInf = mats.immer.fit.EpsInf;

73 constraints.DeltaEps = mats.immer.fit.DeltaEps;

74 constraints.SigmaS = mats.immer.fit.SigmaS;

75 end

76 end

1 function [antLocations_coarse_2D, resolution, mul, ...

coarse_grid_x, coarse_grid_y,...

2 Debye_coarse_2D_model,numAnts] = ...

Transform_Resolution(input_struct)
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3 % input_struct may be InP or fw.

4 % The function is important to initize the coarse model from ...

fine model.

5 % All coarse data are saved in the file of temp_coarse_2D.

6 def_res = 0.5; %mm

7 if (mod(input_struct.new_res,def_res)¬ = 0)

8 disp('resolution is not integral multiple of 0.5 mm')

9 return

10 end

11 mul = input_struct.new_res/def_res;

12

13 load(['..\data\model' num2str(input_struct.model_phantom) ...

'\model' ...

14 num2str(input_struct.model_phantom) '.mat'])

15

16 antLocations_coarse_2D = ceil(antLocations_fine_2D/mul);

17 [numAnts,¬] = size(antLocations_coarse_2D);

18

19 Debye_coarse_2D_model.model = ...

imresize(Debye_fine_test_model,1/mul, 'nearest');

20 Debye_coarse_2D_model.DeltaEps = ...

imresize(Debye_fine_test_model_EpsDelta, 1/mul, 'nearest');

21 Debye_coarse_2D_model.EpsInf = ...

imresize(Debye_fine_test_model_EpsInf, 1/mul, 'nearest');

22 Debye_coarse_2D_model.SigmaS = ...

imresize(Debye_fine_test_model_Sigma_s, 1/mul, 'nearest');

23 resolution = input_struct.new_res/10^3;

24 [coarse_grid_x, coarse_grid_y] = size(Debye_coarse_2D_model.model);

25

26 end

1 function [PairTR] = Generate_Ant_index(numAnts)
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2 k=1;

3 for i=1:numAnts

4 for j=1:numAnts

5 if i<j

6 PairTR(k,1)=i;

7 PairTR(k,2)=j;

8 k=k+1;

9 end

10 end

11 end

12 end

A.2 Core Matlab Code of DBIM-TwIST Algorithm

1 %==================DBIM_MF_Fine

2 close all

3 % clear

4 % clc

5 % dbstop if all error

6 InP.test_name=input('Please enter name of this test:','s');

7 InP.new_res=input('Please enter a new coarse resolution on a ...

mulitple of 0.5(mm):');

8 InP.logic_skin=input('Please choose if skin will be known or ...

not( 1 or 0 ):');

9 InP.opt_init=input('Please choose whether to optimize initial ...

guess(1 or 0):');

10 % InP.SNR=input('Please enter the SNR of signal(0¬150,1000 for ...

no noise):');

11 InP.Opt_L1=input('Please decide whether to activate the L1-norm ...

regularization (1 or 0):');
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12 InP.linear_method=input('Please choose a linear method from ...

TwIST, CGLS with L-curve, or LSQR (1, 2, or 3):');

13 InP.model_phantom=input('Please choose a kind of breast phantom ...

( 1¬99 ):');

14 % maximum total number of iterations

15 total_freqs{1} = [1.5]*1e9; %GHz

16 total_freqs{2} = [1.9]*1e9;

17 total_freqs{3} = [2.3]*1e9;

18 total_freqs{4} = [2.7]*1e9;

19 % total_freqs{5} = [1.9]*1e9;

20 % total_freqs{6} = [2.5]*1e9;

21 maxIter=[15 15 15 15 ];

22 % check input, frequency, and path

23 path = Check_Input(InP, total_freqs);

24 global multiple_sigma

25 multiple_sigma = 1;

26 disp(['Adjustment factor is ' num2str(multiple_sigma)]);

27 switch InP.opt_init

28 case 0 % start DBIM without optimized initial guess

29 Result = ...

DBIM_Inverse_Fun(InP,total_freqs,maxIter,'Inverse',1,1);

30 save([ path InP.test_name '--Result.mat'],'Result');

31 disp('All results has been saved!');

32 Save_all_figures(path);

33 case 1 %start DBIM with optimized initial guess

34 maxIter_opt=input('Please input the number of iterations ...

for changing the initial guess:');

35 load(['..\data\model' num2str(InP.model_phantom) ...

'\all_material.mat']);

36 num_sample=length(init_guess.EpsInf);

37 for i=1:num_sample

38 init_result(i) = DBIM_Inverse_Fun...

39 (InP,total_freqs(1),maxIter_opt,'Inverse',i,0);
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40 end

41 plot_initial_guess(init_result,init_guess);

42 opt_init = Analyze_optimized_init(init_result,init_guess);

43 save([ path InP.test_name '--init_result.mat'], ...

'init_result', 'opt_init');

44 Save_all_figures(path);

45 close all

46 Result = DBIM_Inverse_Fun(InP,total_freqs, maxIter, ...

'Inverse', opt_init,1);

47 save([ path InP.test_name '--Result.mat'],'Result');

48 disp('All results has been saved!');

49 Save_all_figures(path);

50 end

1 function Result = DBIM_Inverse_Fun(InP,total_freqs,maxIter,...

2 DBIM_mode,init_index,plot_flag)

3 % written by Zhenzhuang Miao (Supervisor: Dr. Panagiotis Kosmas)

4 % Created on 15/05/2017

5 global multiple_sigma

6 % Original parameters

7 load sim_params_2D

8 % transformed model and relevant parameters.

9 [antLocations_coarse_2D, resolution, mul, coarse_grid_x, ...

coarse_grid_y,...

10 Debye_coarse_2D_model, numAnts] = Transform_Resolution(InP);

11 warning(['The number of antenna is ' num2str(numAnts)]);

12 %============initialize parameters============

13 timeSteps = 6000;

14 obs_iter = 5; % used to plot inverse solution

15 numTR = numAnts*(numAnts-1)/2;

16 PairTR = Generate_Ant_index(numAnts);

17 % computational domain dimensions
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18 dimX = coarse_grid_x;%from temp_coarse_2D.mat

19 dimY = coarse_grid_y;%from temp_coarse_2D.mat

20 delX = resolution;%from temp_coarse_2D.mat

21 delT = delX/(2*c);

22 %========Create breast model=======

23 [estEpsInf, estEpsDelta, estCond, tauP, EpsS, bbSize, ...

24 range_c,bbox_interior_mask, constraints] = ...

Load_FDTD_material_2D...

25 (Debye_coarse_2D_model, InP.model_phantom, InP.logic_skin, ...

26 DBIM_mode,init_index);

27 %===============pre-process the FDTD parameters===================

28 FDTD_Prep_path = FDTD_Preprocess(InP.test_name, delT,pml_coarse, ...

29 dimX,dimY,bbox_interior_mask,...

30 mu0,eps0,delX,EpsS, antLocations_coarse_2D);

31 %==============load calibrated data============

32 load(['..\data\model' num2str(InP.model_phantom) ...

'\Calibrated_data.mat']);

33 load(['..\data\model' num2str(InP.model_phantom) ...

'\forward_para.mat']);

34 Calibrated_Mag=10.^(Calibrated_Mag/20);

35 % check the forward resolution is equal to the inverse ...

resolution, if not, stop

36 if fw.new_res, resolution * 1e3

37 error('inverse resolution is not the same as forward ...

resolution!');

38 end

39 %=========initialization of recorded value=========

40 Result.residual3 = zeros(sum(maxIter),1);

41 Result.res_diff_1 = zeros(sum(maxIter),1);

42 Result.res_diff_2 = zeros(sum(maxIter),1);

43 Result.res_diff_3 = zeros(sum(maxIter),1);

44 Result.L_curve_x = zeros(sum(maxIter),1);

45 Result.L_curve_Ax_b=zeros(sum(maxIter),1);
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46 contrast =zeros(bbSize*3,1);

47 Result.allContrast =zeros(bbSize*3,sum(maxIter));

48 iter_total=1; % temp para for counting

49 disp('Start to reconstruct the MWI...')

50 for ind_freq = 1:length(total_freqs) % frequency hopping approach

51 fctrs = total_freqs{ind_freq};

52 omegas = 2*pi*fctrs;

53 numFreqs=length(fctrs);

54 disp(['Current frequency is ' num2str(fctrs/1e9) ' GHz']);

55 switch fw.mode

56 case 'Forward_original'

57 [source,timeSteps]=create_GMS(fw.fctr,delT,'wide',...

58 timeSteps, dimX, dimY, 0);

59 case 'Forward_background'

60 [source,timeSteps]=create_GMS(fw.fctr,delT,'wide',...

61 timeSteps, dimX, dimY, 0);

62 end

63 [esource_mag,esource_pha] = fft_trans(source, omegas, delT, ...

0 ,0);

64 %load the calibrated data from forward solution

65 [¬,freq_index,¬]=intersect(round(fw.freqs/1e9,1), ...

66 round(fctrs/1e9,1));

67 measMag=squeeze(Calibrated_Mag(:,:,freq_index));

68 measPha=squeeze(Calibrated_Pha(:,:,freq_index));

69 disp(['The index of freq is ' num2str(freq_index(:)')]);

70 %%%%%%%%%%%%%%%%%%%%%%%%%%%

71 %%%%% DBIM iterations %%%%%

72 %%%%%%%%%%%%%%%%%%%%%%%%%%%

73 for iter_inner = 1:maxIter(ind_freq)

74 disp(['iteration #' num2str(iter_inner) ' > forward ...

solver ...(FDTD is running)' ])

75 %--------------------project_FDTD_2D-----------------------
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76 [greensFunctions_mag, greensFunctions_pha, ...

receivedFields_mag,...

77 receivedFields_pha, ¬] = ...

project_FDTD_2D(FDTD_Prep_path,...

78 estEpsInf, estEpsDelta, estCond, tauP, delT, eps0, ...

mu0,...

79 delX, source, numAnts, numFreqs, omegas,timeSteps, ...

EpsS,...

80 bbSize, esource_mag, esource_pha);

81 %========inverse solution setup ==========

82 disp(['iteration #' num2str(iter_inner) ' > inverse ...

solver ...'])

83 [ Mat_A, Data_ant] = Generate_Matrix( ...

receivedFields_mag, ...

84 receivedFields_pha, greensFunctions_mag, ...

85 greensFunctions_pha, measMag, measPha, numFreqs, ...

numTR,...

86 omegas, eps0, PairTR, tauP, bbSize);

87 Result.residual3(iter_total) = norm(Data_ant,2);

88 Result.res_diff_1(iter_total) = ...

norm(estEpsInf(bbox_interior_mask)...

89 -Debye_coarse_2D_model.EpsInf(bbox_interior_mask))./...

90 norm(Debye_coarse_2D_model.EpsInf(bbox_interior_mask));

91 Result.res_diff_2(iter_total) = ...

norm(estEpsDelta(bbox_interior_mask)...

92 -Debye_coarse_2D_model.DeltaEps(bbox_interior_mask))./...

93 norm(Debye_coarse_2D_model.DeltaEps(bbox_interior_mask));

94 Result.res_diff_3(iter_total) = ...

norm(estCond(bbox_interior_mask)...

95 -Debye_coarse_2D_model.SigmaS(bbox_interior_mask))./...

96 norm(Debye_coarse_2D_model.SigmaS(bbox_interior_mask));

97 %=======Start the solve the linear equation=====

98 Solve_Linear_Equation
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99 if numFreqs,1

100 contrast(2*end/3+1:end)=multiple_sigma * ...

contrast(2*end/3+1:end);

101 end

102 Result.allContrast(:,iter_total) = contrast;

103 contrast(2*end/3+1:end) = ...

contrast(2*end/3+1:end).*2*pi*1e9*eps0;

104 if isnan(contrast)

105 error('The value of contrast includes NaN !');

106 end

107 disp(['Residual error = ' ...

num2str(Result.residual3(iter_inner,1))])

108 estEpsInf(bbox_interior_mask) = ...

estEpsInf(bbox_interior_mask) + ...

109 contrast(1:end/3);

110 estEpsDelta(bbox_interior_mask) = ...

estEpsDelta(bbox_interior_mask) + ...

111 contrast(end/3+1:2*end/3);

112 estCond(bbox_interior_mask) = ...

estCond(bbox_interior_mask) + ...

113 contrast(2*end/3+1:end);

114 estEpsInf(estEpsInf< constraints.EpsInf & range_c) = ...

constraints.EpsInf;

115 estEpsDelta(estEpsDelta< constraints.DeltaEps & ...

range_c) = constraints.DeltaEps;

116 estCond(estCond< constraints.SigmaS & range_c) = ...

constraints.SigmaS;

117 estEpsInf(estEpsInf>90&range_c) = 90; % for water

118 estCond(estCond>1.6&range_c) = 1.6; % for water

119 if plot_flag

120 Plot_All_Result;

121 end

122 Result.L_curve_x(iter_total,1) = norm(contrast);
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123 Result.L_curve_Ax_b(iter_total,1) = norm(Mat_A * ...

contrast - Data_ant);

124 % objective=rho; % this line is for CGLS

125 pre_objective = log10(max(objective));

126 Result.objective_all{iter_total} = objective;

127 % tau_all(iter_total)=tau_max;

128 pre_contrast = contrast;

129 iter_total = iter_total+1;

130 end

131 Result.hopping_result{ind_freq,1} = estEpsInf;

132 Result.hopping_result{ind_freq,2} = estEpsDelta;

133 Result.hopping_result{ind_freq,3} = estCond;

134 end % DBIM iterations

135 delete(FDTD_Prep_path);

136 end % end function

1 % =================== Run IMAT_CS for the inversion ...

====================

2 Anorm=norm(Mat_A,2);

3 Mat_A=Mat_A/Anorm;

4 Data_ant=Data_ant/Anorm;%*mul;

5 %------------- test the adjustment factor

6 if numFreqs,1

7 Mat_A(:,2*end/3+1:end)=Mat_A(:,2*end/3+1:end)*multiple_sigma;

8 end

9 %-------------------------------------

10 switch InP.linear_method

11 case 1

12 %---------------------TwIST-----------------------

13 tau_max=max(Mat_A'*Data_ant);

14 %tau_TwIST=0.1*max(Mat_A'*Data_ant);

15 %[Tol]=Adaptive_Para(ind_freq);
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16 if (ind_freq==1 && iter_inner==1)

17 tau_TwIST=0;

18 Tol=10^(-1);

19 else

20 [Tol]=Adaptive_Tol_2(pre_objective);

21 %[tau_TwIST]=Adaptive_tau(pre_contrast,0.5);

22 end

23 % Tol=10^(-2);

24 lam1=10^(-4);

25 disp(['iteration #' num2str(iter_inner) ' > TwIST...'])

26 [contrast, x_debias, objective, times, debias_start, ...

mses, max_svd]...

27 =TwIST(Data_ant, Mat_A, tau_TwIST, 'TOLERANCEA', Tol,...

28 'lambda', lam1, 'MAXITERA',5000,'VERBOSE',0);

29 if InP.Opt_L1

30 L1_result(iter_total) = Optimization_L1(Mat_A, ...

31 Data_ant, Tol, lam1, contrast, ...

32 estEpsInf(bbox_interior_mask), ...

33 Debye_coarse_2D_model.EpsInf(bbox_interior_mask), ...

1);

34 contrast=L1_result(iter_total).solu;

35 objective=L1_result(iter_total).objective;

36 end

37 case 2

38 %--------cgls algorithm----------

39 disp(['iteration #' num2str(iter_inner) ' > CGLS...'])

40 [X,rho,eta] = cgls(Mat_A,Data_ant,50);

41 [k_corner,info] = corner(rho,eta);

42 contrast=X(:,k_corner);

43 objective=k_corner;

44 case 3

45 %---------LSQR algorithm----------

46 disp(['iteration #' num2str(iter_inner) ' > LSQR...'])
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47 [contrast,FLAG,RELRES] = lsqr(Mat_A,Data_ant);

48 objective = RELRES;

49 end

1 function [Tol]=Adaptive_Tol_2(pre_objective)

2 if pre_objective>2

3 Tol=10^(-1);

4 else if pre_objective>1.5

5 Tol=10^(-2);

6 else

7 Tol=10^(-3);

8 end

9 end

10 disp( [ 'Tol=' num2str(Tol) ]);

11 disp('adaptive tol is modified');

12 end

1 function [ Mat_A,Data_ant] = Generate_Matrix( ...

receivedFields_mag, ...

2 receivedFields_pha, greensFunctions_mag, ...

greensFunctions_pha, ...

3 measMag,measPha,numFreqs,numTR,omegas,eps0, PairTR, tauP, ...

bbSize)

4 for nf = 1:numFreqs

5 Mat_A = zeros(numTR*numFreqs*2,bbSize*3);

6 Data_ant = zeros(numTR*numFreqs*2,1);

7 calcMag = squeeze(receivedFields_mag(:,:,nf));

8 calcPha = squeeze(receivedFields_pha(:,:,nf));

9 internalFields = squeeze(greensFunctions_mag(:,:,nf).* ...

10 exp(1i.*greensFunctions_pha(:,:,nf)));

11 multiplier = 1i.*omegas(nf).*eps0;
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12

13 mmMag = zeros(numTR,1);

14 mmPha = zeros(numTR,1);

15 ccMag = zeros(numTR,1);

16 ccPha = zeros(numTR,1);

17 A = multiplier*internalFields(PairTR(:,1),:).* ...

18 internalFields(PairTR(:,2),:);

19 count = 1;

20 for i = 1:numTR

21 mmMag(count) = measMag(PairTR(i,1),PairTR(i,2),nf);

22 mmPha(count) = measPha(PairTR(i,1),PairTR(i,2),nf);

23 ccMag(count) = calcMag(PairTR(i,1),PairTR(i,2));

24 ccPha(count) = calcPha(PairTR(i,1),PairTR(i,2));

25 count = count + 1;

26 end

27 data = ccMag.*exp(1i.*ccPha) - mmMag.*exp(1i.*mmPha);

28 numer1 = omegas(nf).*tauP;

29 denom1 = 2*pi*1e9./omegas(nf);

30 denom2 = 1+numer1.^2;

31 Mat_A(1+(nf-1)*numTR*2:(nf-1)*numTR*2+numTR,1:end/3)= real(A);

32 Mat_A(1+(nf-1)*numTR*2:(nf-1)*numTR*2+numTR,end/3+1:2*end/3) ...

33 = real(A).*(1./denom2)+imag(A).*(numer1./denom2);

34 Mat_A(1+(nf-1)*numTR*2:(nf-1)*numTR*2+numTR,2*end/3+1:end) ...

35 = imag(A).*denom1;

36 Mat_A(1+(nf-1)*numTR*2+numTR:nf*numTR*2,1:end/3)= imag(A);

37 Mat_A(1+(nf-1)*numTR*2+numTR:nf*numTR*2,end/3+1:2*end/3) ...

38 = imag(A).*(1./denom2)+real(A).*(-numer1./denom2);

39 Mat_A(1+(nf-1)*numTR*2+numTR:nf*numTR*2,2*end/3+1:end) ...

40 = -real(A).*denom1;

41 Data_ant(1+(nf-1)*numTR*2:nf*numTR*2) = [real(data);imag(data)];

42 end % loop over freqs

43

44 end
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A.3 Matlab Code of Optimized Initial Guess Method

1 function opt_init = Analyze_optimized_init(init_result,init_guess)

2 for i=1:length(init_result)

3 temp_guess(i)=init_result(i).residual3(end);

4 end

5 opt_init=find(temp_guess==min(temp_guess));

6 if length(opt_init),1

7 warning('Existing more than one optimized initial guess!')

8 end

9 disp('the optimized initial guess is:');

10 disp(['EpsInf = ' num2str(init_guess.EpsInf(opt_init))]);

11 disp(['DeltaEps = ' num2str(init_guess.EpsDelta(opt_init))]);

12 disp(['EpsInf = ' num2str(init_guess.EpsInf(opt_init))]);

13 end

1 function value_guess=Create_initial_guess(guess_number)

2 initial_bottom=[4.68 3.21 0.0881]';

3 initial_top=[17.3 19.4 0.535]';

4 k=guess_number-1;

5 value_guess=(initial_top-initial_bottom)/k*(0:k) + ...

repmat(initial_bottom,1,guess_number);

6 end

A.4 Matlab Code of L1 Optimization method

1 function L1_result=Optimization_L1(A,b,Tol,lam1,est_contrast,...

2 pre_solution,Original_Debye_model_EpsInf,visible)
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3 npoints = 200; % Number of points on the L-curve for Tikh and dsvd.

4 smin_ratio = 16*eps; % Smallest regularization parameter.

5 eta1 = zeros(npoints,1);

6 rho1 = eta1;

7 reg_param = eta1;

8 RE1=eta1;

9 Pt1=eta1;

10 reg_param2 = eta1;

11 G=eta1;

12 m=length(est_contrast);

13 sort_contrast=sort(abs(est_contrast));

14 for i=1:npoints

15 point=ceil((i-1)/npoints*m);

16 reg_param2(i)=sort_contrast(point+1);

17 end

18 reg_param2=flipud(reg_param2);

19 reg_param=reg_param2;

20 for i=1:npoints

21 [contrast,x_debias,objective,times,debias_start,mses,max_svd]=...

22 TwIST(b,A,reg_param(i),'TOLERANCEA',Tol,'lambda',lam1,...

23 'MAXITERA',5000);

24 eta1(i)=norm(contrast,1);

25 rho1(i)=norm(A*contrast-b);

26 RE1(i)=norm((contrast(1:end/3)+pre_solution)-...

27 Original_Debye_model_EpsInf)./norm(Original_Debye_model_EpsInf);

28 solution{i}=contrast;

29 end

30 locate=find(RE1==min(RE1));

31 if visible

32 figure(111); hold off;

33 plot(eta1,rho1,'-*'); hold on;

34 for i=20:20:200

35 text(eta1(i),rho1(i),num2str(reg_param(i)));
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36 end

37 figure(112); hold off;

38 plot(reg_param,RE1,'-*'); hold on;

39 xlabel('para'); ylabel('Relatvie error');

40 figure(113); hold off;

41 loglog(eta1,rho1,'-*'); hold on;

42 xlabel('log(||x||_1)'); ylabel('log(||Ax-b||)');

43 plot(eta1(locate),rho1(locate),'ro'); hold on;

44 refresh,pause(0.1)

45 % plot_lc(rho1,eta1,'-x',1,reg_param);

46 end

47 L1_result.para=reg_param;

48 L1_result.curve={eta1,rho1,RE1};

49 L1_result.solu=solution{locate};

50 L1_result.objective=0.5*(rho1(locate))^2 + reg_param(locate) * ...

eta1(locate);

51 L1_result.RE_locate=locate;

52 end

A.5 Matlab Code of 2-D Forward FDTD Simulation

1 % db_Main_Script

2 clear

3 fw.new_res=input('Please enter a new coarse resolution on a ...

mulitple of 0.5(mm):');

4 fw.model_phantom=input('Please choose a kind of breast phantom ...

(1¬999):');

5 fw.mode=input('Please input the mode of forward FDTD: \n ...

1.Known_original \n 2.Unknown_original \n');

6 load(['..\data\model' num2str(fw.model_phantom) ...

'\all_material.mat'],'frequency');
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7 fw.freqs=frequency;

8 switch fw.mode

9 case 1

10 fw.fctr=2e9; % 2.0 GHZ

11 fw.mode='Forward_original';

12 disp(['The central frequency is ' num2str(fw.fctr/1e9) ' ...

GHz']);

13 fw.save_path_whole{1} = db_MF_Forward_FDTD(fw.fctr,fw);

14 disp('Starting to deal with the simulated data...');

15 Deal_with_original_simulation(fw); % Only called for ...

when we know the original model

16 case 2

17 % wide band model

18 fw.fctr=2e9; % 2.0 GHZ

19 fw.mode='Forward_background';

20 disp(['The central frequency is ' num2str(fw.fctr/1e9) ' ...

GHz']);

21 fw.save_path_whole{1} = db_MF_Forward_FDTD(fw.fctr,fw);

22 disp('Starting to deal with the simulated data...');

23 Deal_with_original_simulation(fw);

24 otherwise

25 error('Please check the input of the forward mode');

26 end

27

28 save(['..\data\model' num2str(fw.model_phantom) ...

'\forward_para.mat'],'fw');

29 disp('forward parameters have been saved!');

1 % db_MF_Forward_FDTD

2 function [save_path_whole] = db_MF_Forward_FDTD(fctr,fw)

3 tic

4 %%%%% CHOOSE OPTIONS %%%%%%%
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5 load sim_params_2D

6 %---------------Forward solution parameter-------------

7 warning('This is forward solution process !!');

8 [antLocations_coarse_2D, resolution, mul, coarse_grid_x, ...

coarse_grid_y,...

9 Debye_coarse_2D_model, numAnts] = Transform_Resolution(fw);

10 warning(['The number of antenna is ' num2str(numAnts)]);

11 timeSteps=6000;

12 omegas = 2.*pi.*fctr;

13 obs_iter = 5; % used to plot inverse solution

14 numTR = numAnts*(numAnts-1)/2;

15 PairTR = Generate_Ant_index(numAnts);

16 % computational domain dimensions

17 dimX = coarse_grid_x;%from temp_coarse_2D.mat

18 dimY = coarse_grid_y;%from temp_coarse_2D.mat

19 delX = resolution;%from temp_coarse_2D.mat

20 delT = delX/(2*c);

21 %================loading model =========

22 [estEpsInf, estEpsDelta, estCond, tauP, EpsS, bbSize, ¬,...

23 bbox_interior_mask, ¬] = Load_FDTD_material_2D(...

24 Debye_coarse_2D_model, fw.model_phantom,1, fw.mode, 0);

25 %============pre-process the FDTD parameters==============

26 FDTD_Prep_path = FDTD_Preprocess(num2str(fw.model_phantom), ...

27 delT, pml_coarse, dimX, dimY, bbox_interior_mask, mu0, eps0,...

28 delX, EpsS, antLocations_coarse_2D);

29 %%%%%%%%%%%%%%%%%DBIM beginning%%%%%%%%%%%%%%%%%%%

30 disp('Start to reconstruct the MWI...')

31 numFreqs=1;

32 switch fw.mode

33 case 'Forward_original'

34 [source, timeSteps]=create_GMS(fctr,delT,'wide',...

35 timeSteps,dimX,dimY,0);

36 case 'Forward_background'
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37 [source, timeSteps]=create_GMS(fctr,delT,'wide',...

38 timeSteps,dimX,dimY,0);

39 end

40 [esource_mag,esource_pha]=fft_trans(source,omegas,delT,0,0);

41 disp(['The current frequency is ' num2str(fctr/1e9) 'GHz'])

42 disp( ' > forward solver ...(FDTD is running)')

43 [¬,¬,¬,¬,original_measurement] = project_FDTD_2D(FDTD_Prep_path, ...

44 estEpsInf, estEpsDelta,estCond, tauP, delT, eps0, mu0, delX,...

45 source, numAnts, numFreqs, omegas, timeSteps, EpsS, bbSize,...

46 esource_mag, esource_pha);

47 %--------------return for the foward process----------------

48 disp('The measured data has been saved.');

49 save_path=['..\data\model' num2str(fw.model_phantom) '\model'...

50 num2str(fw.model_phantom) fw.mode];

51 mkdir(save_path);

52 save_path_whole=[save_path '\simulated_model' ...

53 num2str(fw.model_phantom) '_' num2str(fctr/1e9) 'GHz.mat'];

54 save(save_path_whole,'original_measurement', ...

'delT','delX','source');

55 delete(FDTD_Prep_path);

56 toc

57 end

1 function ...

[mag_background,pha_background]=Deal_FDTD_forward(fctr,path_t)

2 load(path_t);

3 [numAnts,¬,len] = size(original_measurement);

4 omega = 2*pi*fctr;

5

6 [esource_mag,esource_pha] = fft_trans(source,omega,delT,0,0);

7 [mag,pha] = ...

fft_trans(reshape(original_measurement,numAnts^2,len),...
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8 omega,delT,esource_mag,esource_pha);

9 mag_background = reshape(mag,numAnts,numAnts);

10 pha_background = reshape(pha,numAnts,numAnts);

11 end

1 % deal with the original_measurement as background

2 function Deal_with_background_simulation(fw)

3 num_file=length(fw.save_path_whole);

4 for i=1:num_file

5 [mag_background,pha_background]=...

6 Deal_FDTD_forward(fw.freqs(i)*1e9,fw.save_path_whole{i});

7 mag_background_set(:,:,i)=20*log10(mag_background); %dB

8 pha_background_set(:,:,i)=pha_background;

9 end

10 save(['..\data\model' num2str(fw.model_phantom) ...

'\background.mat'],...

11 'mag_background_set','pha_background_set');

12 disp('The new simulated data have been saved!')

13 end

1 function Deal_with_original_simulation(fw)

2 switch fw.mode

3 case 'Forward_original'

4 for i = 1:length(fw.freqs)

5 [mag_background, pha_background] = ...

6 Deal_FDTD_forward(fw.freqs(i), fw.save_path_whole{1});

7 Calibrated_Mag(:, :, i) = 20*log10(mag_background); %dB

8 Calibrated_Pha(:, :, i) = pha_background; %rad

9 end

10 save(['..\data\model' num2str(fw.model_phantom)...
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11 '\Calibrated_data.mat'], 'Calibrated_Mag', ...

'Calibrated_Pha');

12 disp('The new Calibrated data based on original model are ...

saved!')

13 case 'Forward_background'

14 for i = 1:length(fw.freqs)

15 [mag_background, pha_background] = ...

16 Deal_FDTD_forward(fw.freqs(i), fw.save_path_whole{1});

17 mag_background_set(:, :, i) = 20*log10(mag_background); %dB

18 pha_background_set(:, :, i) = pha_background; % rad

19 end

20 save(['..\data\model' num2str(fw.model_phantom) ...

21 '\background.mat'], 'mag_background_set', ...

'pha_background_set');

22 disp('The new background data have been saved!')

23 end

24 end
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