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Abstract 
 

Sickle cell disease (SCD) has a complex pathophysiology initiated by the polymerisation of 

deoxy-sickle-haemoglobin. The single nucleotide change underpinning SCD does not account 

for the vast range and severity of SCD complications.  This clinical heterogeneity is only partly 

explained by the genetic variability of fetal haemoglobin gene levels and co-inheritance of α-

thalassemia. Although environmental factors also contribute to the clinical complexity of SCD, 

further genetic modifiers of SCD severity exist but are yet to be determined.  

 

Genetic association studies have been boosted recently not only with the advent of new 

genotyping tools, but also with the development of increasingly sophisticated analytical 

methods. New developments in phenotyping, genotyping and genotype-phenotype association 

approaches allow us to disentangle true genetic associations from hits due to chance. This 

thesis seeks to investigate biomarkers of sickle severity and to use these clinical markers in 

genotype-phenotype correlation studies.  

 

I have investigated three key markers of disease severity: haemolysis, frequency of acute pain 

episodes and mortality. Estimated median survival of 67 years in HbSS disease in our UK cohort 

is a significant improvement in survival compared to other recent estimates in the USA and 

Jamaica. I have undertaken genome-wide micro-array scanning and created an imputed 

genotype dataset of over 15,000,000 genetic variants. I have used these phenotype and 

genotype datasets to conduct genetic association studies, both genome-wide and candidate 

gene association studies. These analyses are based on linear mixed modelling to account for 

relatedness (including population stratification) within the cohort. In addition to the severity 

outcomes, I have also evaluated the known genetic loci for HbF and created a genetic 

“summary statistic” to quantify the effects of these three loci. Finally, I have also assessed the 

role of the erythroid regulator KLF1 in HbF levels in SCD with two laboratory-based projects. 

 

Ethical basis of research  
 

Written informed consent was obtained through three approved study protocols (LREC 01-083, 

07/H0606/165, and 12/LO/1610) and research conducted in accordance with the Helsinki 

Declaration (1975, as revised 2008). 
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1.1. Outline of my PhD 
The broad aim of my PhD is to investigate genotype-phenotype correlation in the haemoglobin 

disorder sickle cell disease (SCD). Sickle cell disease is a complex multi-system disorder which 

results from a single nucleotide change in the β-globin gene. This simple genetic defect does 

not explain the multi-faceted pathophysiological mechanisms and clinical manifestations of 

SCD. To investigate the genetic determinants of SCD severity, I defined and implemented 

“phenotypes” – that is, clinical outcomes or biomarkers of disease severity – which are both 

meaningful clinically and markers reasonably expected to have genetic modifiers. In addition 

to using these phenotypes in genetic association studies, characterising clinical characteristics 

of a large SCD cohort is valuable in and of itself (and has led to off-shoot clinical projects that I 

have published during my PhD). I have defined four key markers of global severity in our 

cohort: fetal haemoglobin (HbF) levels, haemolytic index, hospitalisation rate, and mortality 

(chapter 2). 

 

“Genotypes” for many genetic polymorphisms are now easier to produce than ever. Genome-

wide arrays are readily available and provide vast genotyping data rapidly and relatively 

cheaply: I used the African-heritage specific “MEGA” chip from Illumina which generates data 

on 1.7 million variants. Statistical imputation can be used to expand the genotyping dataset to 

create a massive genotype database: imputation of our dataset resulted in dataset of over 15 

million variants (chapter 3). 

 

Analysis of genotype-phenotype association has become more sophisticated over the last ten 

years in response to the availability of new analytical approaches. Contemporary genetic 

association studies must make use of genome-wide data to infer information about 

“relatedness” of individuals within the cohort, and use this information to account for this 

relatedness when undertaking analysis. This avoids the pitfalls of many older studies, 

especially those where population structure (known or unknown) was not controlled for and 

resulted in false positive results that report genotype- phenotypes associations that are 

confounded by ethnicity. Assessment and utilisation of relatedness is crucial in genotype-

phenotype correlation in SCD because (a) many cohorts contain cryptic “near relateds” due to 

the Mendelian inheritance of this autosomal recessive disorder (b) statistical issues of 

population stratification (“far relateds”) are particularly acute in SCD in the UK where there are 

both multiple ethnic groups migrating from different regions of Africa to the UK and issues of 

admixture in our African-Caribbean patients. 
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I used linear mixed modelling approaches which takes account of relatedness (both near and 

far), as well as incorporating individual-specific covariates (e.g. age, sex). I studied both 

genome wide association (“GWAS”) in chapter 4 and also assessed candidate genes in chapter 

5. 

 

Finally, I considered the key erythroid factor KLF1 as a candidate gene for modulating HbF% in 

SCD (chapter 6). Rare variants in KLF1 have been associated with different HbF-boosting 

phenotypes, mainly in the non-sickle setting. I performed gene expression studies on one very 

rare variant not previously associated with very high HbF% (and concomitant phenotype which 

is virtually disease-free). I also investigated a common KLF1 intronic variant for association 

with HbF% levels. 

1.2. Haemoglobin (Hb)  
1.2.1. Background 

Haemoglobin (Hb) has been the subject of some of the earliest molecular and genetic 

research. Its pivotal role in oxygen transport is well-learned in school: Hb binds to oxygen in 

the lungs, delivers it to body tissues where it is exchanged for carbon dioxide; carboxy-Hb then 

returns to the lungs, offloads the carbon dioxide in exchange for oxygen, and the cycle 

continues.  

 

Hb is a tetramer of two α-like globin chains and two β-like globin chains, with each chain 

containing an oxygen-carrying heme group (Perutz et al., 1960). Different Hb protein forms are 

synthesised at different stages of fetal development. The three embryonic haemoglobins are 

Gower I (ζ2ε2), Gower II (α2ε2), and Portland (ζ2γ2) (Huehns et al., 1964). The first “globin-

switch” from embryonic to fetal Hb (α2γ2, HbF) occurs at 6-8 weeks’ gestation. Around birth, 

the second “globin-switch” occurs from fetal to adult Hb (α2β2, HbA) and is completed by 6 

months of age. HbA represents more than 95% total Hb and remains the dominant Hb 

throughout life (Kunkel and Wallenius, 1955). The globin-switch process is pictured in Figure 1. 

HbA2 (α2δ2) is a minor form of Hb which makes up 2-3% of total Hb (Stamatoyannopoulos, 

1972). The switch from fetal to adult, however, is not total, as residual HbF at <1% total Hb is 

retained in healthy adults. The genes coding for ε-, γ-, δ- and β-globin chains are localised in a 

cluster on chromosome 11p while those encoding the α-like globins are found in another 

cluster on chromosome 16 and consists of a single ζ-globin gene and two co-expressed α-

globin genes (α2 and α1).  



10 
 

 
Figure 1 Globin-switching in normal humans 

By Postnatal_genetics.svg: original: Furfur, File:Haemoglobin-Ketten.svg, 
derivation/translation:Leonid 2 derivative work: Leonid 2 (Postnatal_genetics.svg) [CC BY-SA 
3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL 
(http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons 
 

1.2.2. Hb variants and haemoglobinopathies 
The globin genes are genetically heterogeneous leading to many Hb variants. More than 1200 

Hb variants have been described to date (http://globin.cse.psu.edu/globin/hbvar/) with 

variable clinical significance; from no clinical effect to significant biochemical Hb changes and 

pathology. Diseases associated with clinically significant Hb abnormalities are termed 

haemoglobinopathies. Either the α-globin and β-globin chains can be affected, but it is not 

unusual for individuals to have inherited Hb variants affecting both α and β globin genes, as 

these variants are often prevalent in the same regions. Haemoglobinopathies include both 

quantitative and qualitative changes to Hb. 

 

Hb variants that result in quantitative changes are termed thalassaemias, the most common of 

which are α- or β-thalassaemia depending on whether there is reduced production of α- (α-

thalassaemia) or β- (β-thalassaemias) respectively, globin chains(Steinberg et al., 2009, 

Huisman et al., 1996).  

 

Qualitative Hb variants produce structurally abnormal Hb, but usually in normal quantities. 

This structural change frequently does not have functional consequences. Clinically significant 

Hb variants include those that result in a change in charge and solubility (HbS α2β2
6Glu→Val, HbC 



11 
 

α2β2
6Glu→Lys) and oxygen affinity (HbChesapeake α2

92Arg→Leu β2)(Huisman et al., 1996).  Some 

qualitative Hb variants (e.g. HbE) can also be reduced in amounts, and such variants are 

sometimes termed thalassaemic haemoglobinopathies. 

1.3. Sickle cell disease 
1.3.1. Haemoglobin S: primary cause of sickle cell disease 

The discovery of “sickle haemoglobin” or “Haemoglobin S” (HbS) represents an important step 

in molecular medicine; sickle cell disease (SCD) has been heralded as the first “molecular 

disease”. Pauling ascribed the basis of SCD to the presence of an abnormal haemoglobin in 

1949 (Pauling et al., 1949). In 1957, Ingram (Ingram, 1957) described the abnormal 

haemoglobin as being caused by a single amino acid substitution (glutamic acid to valine) at 

position 6 of the β-globin chain of haemoglobin and in 1963, Goldstein (Goldstein et al., 1963) 

demonstrated that this resulted from a single base change of thymine to adenine.  

 

Functionally, the change from glutamic acid (negative charge) to valine (neutral charge) 

facilitates polymerisation of HbS when deoxygenated (Brittenham et al., 1985). HbS 

polymerisation deforms red blood cells (RBC) into the classical “sickle” shape. HbS 

polymerisation is dependent upon: degree of (de)oxygenation of the RBC, intracellular pH, and 

intracellular HbS concentration (Bunn, 1997). Sickle carriers (HbS 35-40%, HbA 60-65%) are 

asymptomatic except under extreme conditions (very high altitude, dehydration from extreme 

exercise).  

 

Homozygous inheritance of HbS or co-inheritance with specific haemoglobin variants 

(compound heterozygotes) results in a clinically significant “sickling” haemoglobinopathy: 

sickle cell disease. HbSS is the most common genotype; in patients of African heritage, HbSS 

comprises 60% to 70%, with most of the remaining cases made up of compound heterozygotes 

HbSC (co-inheritance of βS and βC alleles) in up to 35% or HbSβ thalassaemia (co-inheritance of 

βS and either β0 or β+ mutations) in 5%, based on World Health Organisation (WHO) 

international figures (Modell and Darlison, 2008). Very rare causes of SCD in the UK include 

HbSE, HbSOArab and HbSDPunjab. 

 
1.3.2. Sickle cell disease: pathophysiology 

HbS polymerisation and sickling of RBCs results in two major pathological processes: vaso-

occlusion of micro-vasculature and haemolytic anaemia, see Figure 2. 
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Figure 2 Pathophysiology of sickle cell disease adapted from (Rees et al., 2010) 

 

Patients with a higher haematocrit/total Hb tend to have a higher incidence of “vaso-

occlusive” problems including frequent pain episodes, acute chest syndrome (ACS) and 

avascular necrosis (AVN). Patients with more haemolysis (evidenced by higher lactate 

dehydrogenase, lower Hb, and higher bilirubin) tend to have increased incidence of leg ulcers, 

priapism and pulmonary hypertension. Haemolytic-related pathologies in SCD are postulated 

to be mediated by nitric oxide (NO) bioavailability (Kato et al., 2007, Rees et al., 2010). 

Physiologically, NO controls vasodilatation, inhibits platelet activation and reduces adhesion 

molecule expression. Plasma Hb release during intravascular haemolysis leads to NO 

consumption. Furthermore, haemolysis also releases arginase which breaks down the L-

arginine (a substrate for NO production), further reducing endothelial NO. The consequences 

of reduced NO bioavailability in SCD (both through reduced production and increased 

consumption of NO) are: vasoconstriction, endothelial activation, inflammation and 

vasculopathy.  

 
1.3.3. Clinical aspects of sickle cell disease 

The simple genetic basis of SCD does not manifest as identical clinical presentations in all 

patients. Indeed, there is a striking range and severity of complications in SCD, even within the 

same sickle genotype. Patients may develop all or none of the complications described, or in a 

variety of different combinations with varying severities.   

 

Acute pain episodes are the most common presentation of SCD and are the result of tissue 

ischaemia secondary to vaso-occlusion. Pain is extremely variable in location, severity, 

duration and the triggers appear to be different in patients (Ballas, 2005, Platt et al., 1991). 
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Patients who have a higher baseline Hb appear to be at increased risk of painful episodes. 

Prompt treatment with appropriate analgesics and individualised care plans are used to tailor 

treatment to individual patients (Rees et al., 2003). 

 

Chronic haemolytic anaemia is a key feature of SCD, although there is significant inter-

genotypic, and intra-genotypic, variability in degrees of anaemia. Furthermore, anaemia can 

be exacerbated acutely; an increase in the rate of HbS polymerisation and sickling compared to 

steady-state can occur in acute vaso-occlusive crises triggered by a variety of causes including 

infection/inflammation, cold or decreased oxygen tension. The increased sickling of RBCs 

increases haemolysis. Other important causes of acute anaemia include acute splenic 

sequestration (Solanki et al., 1986, Emond et al., 1985), Parvovirus B19-associated red cell 

aplasia, and haemolytic transfusion reactions. When anaemia of any cause becomes 

symptomatic, transfusion may be required.  

 

There is a plethora of end-organ complications in SCD summarised in Figure 3.  

 

 
Figure 3 Multi-organ complications of sickle cell disease, modified from 
http://nurseslabs.com/sickle-cell-anemia-nursing-management/ 

 
1.3.4. Genetic modifiers of sickle cell disease 

As described in section 1.3.1, the syndrome of SCD includes homozygosity for the S allele 

(HbSS), as well as HbSC disease, HbS thalassaemia and rarer compound heterozygotes. 

Generally, the compound heterozygotes have a milder disease than HbSS patients, but even 

within each genotypic and ethnic group, a spectrum of clinical variability is the recurring 

theme. For example, mild patients with HbSS are virtually asymptomatic, while at the severe 
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end of the clinical spectrum presentation at an early age, frequent hospital admissions with 

acute pain crises, childhood strokes, other end-organ damage and early mortality is seen. 

 

Both environmental and genetic factors contribute to this clinical variability. Environmental 

factors (Tewari et al., 2015) have long been recognised as significant in SCD including: weather 

changes (cold, rain), and air pollution. Environmental factors also include nutritional state, 

access to social support and medical care, all of which influence risk factors such as infections. 

The impact of environmental factors is demonstrated most graphically on the differences in 

the natural history and outcomes of SCD between high- and low-income countries.  

 
1.3.4.1. Genetic modifiers of “global” sickle cell disease severity 

Since the central pathology of SCD is HbS polymerisation and formation of sickled RBCs, factors 

that impact this primary event will have a global effect on the disease phenotype. The three 

major genetic modifiers that affect this are: the causative sickle genotype, co-existing α-

thalassaemia and the innate ability to produce HbF. 

 
1.3.4.2. Causative sickle genotype 

While presence of HbS is fundamental to the pathobiology, the likelihood of HbS 

polymerisation and sickling is highly dependent on the concentration of intra-cellular HbS, and 

the presence of non-HbS haemoglobin(Noguchi et al., 1983). Thus, individuals with HbSS or 

HbSβ0 thalassaemia, where the intracellular Hb is almost all HbS, tend to have the most severe 

disease, followed by HbSC and HbSβ+ thalassaemia.  

 

HbA (α2β2) or HbA2 (α2δ2) do not participate in HbS polymerisation. Since the β+ thalassaemia 

alleles in African-heritage populations are normally of the milder type with minimal deficit in 

β globin production, Africans with HbSβ+ thalassaemia have substantial proportions of intra-

cellular HbA and the SCD tends to be very mild. In contrast, individuals with HbSβ+ 

thalassaemia in the Mediterranean, have SCD almost as severe as that of HbSS(Serjeant GR, 

2001). Subjects with sickle cell trait (HbAS) with HbS of 35-40%, rarely suffer from symptoms of 

SCD.  

 

The HbS gene is found on a genetic background of four common βS-globin haplotypes: Senegal, 

Benin, Bantu (or Central African Republic), and Arab-Indian. Clinical studies demonstrate 

variation in SCD severity between the βS haplotypes, with decreasing severity from the Bantu > 

Benin > Senegal > Arab-Indian haplotypes. Disease severity correlates inversely with the HbF% 

levels seen in these groups; lowest HbF% seen in individuals with Bantu haplotype, and highest 

HbF% in individuals with Arab-Indian haplotype(Nagel et al., 1985, Nagel et al., 1987, Nagel et 
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al., 1991, Powars, 1991, Figueiredo et al., 1996). The differences in clinical severity were 

ascribed to the difference in HbF% levels implicating the Xmn1-HBG2 site which is linked to the 

Senegal and Arab-Indian βS haplotype but not to the Bantu haplotype (Labie et al., 1985) (see 

below for further discussion on the modifying effects of HbF% on SCD).   

1.3.4.3. Alpha globin genotype 
About one-third of African-descended patients with SCD have co-existing α-thalassaemia 

(Steinberg and Embury, 1986, Vasavda et al., 2008). Most commonly, this is due to the 

deletion variant (−α3.7); 30-35% of patients are heterozygous (αα/–α3.7) with 3–5% homozygous 

for the deletion (−α3.7/−α3.7) (Steinberg and Embury, 1986, Vasavda et al., 2007). Co-

inheritance of α-thalassaemia affects SCD red cell phenotype; it reduces intracellular HbS 

concentration and thus the propensity of HbS polymerisation, reducing the number of 

irreversibly sickled cells and decreasing haemolysis(Embury et al., 1982, Ballas, 2001). 

 

Clinically, co-inherited α-thalassaemia protects against complications related to severe 

haemolysis including pulmonary hypertension, leg ulceration, priapism and albuminuria 

(Steinberg, 2009, Buchanan et al., 2004, Day et al., 2012, Higgs et al., 1982). Conversely, the 

increased haematocrit and associated blood viscosity in α-thalassaemia predispose patients to 

an increased likelihood of developing osteonecrosis, acute chest syndrome (ACS), retinopathy 

and acute painful vaso-occlusive episodes(Embury et al., 1994). Several studies have also 

demonstrated association of α-thalassaemia with lower Trans-Cranial Doppler (TCD) 

measurements and, by implication, reduced risk for stroke (Bernaudin et al., 2008, Rees et al., 

2009, Flanagan et al., 2011, Cox et al., 2014) while another study could not demonstrate 

association between α-thalassaemia and magnetic resonance angiography (MRA)-defined 

vasculopathy in paediatric patients with HbSS disease (Thangarajh et al., 2012). Co-existing α-

thalassaemia also reduces bilirubin with a quantitative effect that is independent to that of the 

UGT1A1 promoter polymorphism (Vasavda et al., 2007). Co-inheritance of α-thalassaemia 

blunts the response to hydroxycarbamide therapy in SCD; this may be explained by its effect 

on HbF% levels and MCV, two key parameters associated with hydroxycarbamide response 

(Vasavda et al., 2008).  

  
1.3.4.4. Fetal haemoglobin (HbF) 

Fetal haemoglobin (HbF, α2γ2) is a major ameliorating factor in SCD. Understanding fetal 

haemoglobin control and its therapeutic reactivation (via pharmacological and genetic 

approaches) remains a top research priority. HbF% reduces the propensity for HbS 

polymerisation and its sequelae in two major ways: 1) the hybrid tetramers (α2γβS) do not 

partake in HbS polymerisation, and 2) the presence of intra-RBC HbF dilutes the concentration 

of HbS (Noguchi et al., 1988). The protective effect of HbF in SCD becomes evident within six 
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months to two years of age as HbF levels decline and clinical manifestations of SCD become 

evident. 

 

In SCD, high HbF% levels are a major predictor of survival(Platt et al., 1994), and pain rates 

(Platt et al., 1991, Dampier et al., 2004); conversely, low levels of HbF% have been associated 

with increased risk of brain infarcts in young children (Wang et al., 2008). At the sub-

phenotype level, there appear to be disparities in its effects on complications such as renal 

impairment, retinopathy and priapism (Thein, 2011, Steinberg and Sebastiani, 2012); this may 

relate to the small sample sizes in genetic studies with specific sub-phenotypes.  

 

Although the γ-globin genes are autonomously silenced in adults, genetic variants lead to 

natural variation in γ-globin expression of over 20-fold. These variants account for 89% of the 

quantitative variation but the genetic aetiology is complex with no clear Mendelian inheritance 

patterns. The three known quantitative trait loci (QTLs) for the common HbF% variation in 

adults are: Xmn1-HBG2 (rs782144) within the β-globin gene cluster on chromosome 11p, 

HBS1L-MYB intergenic polymorphism (HMIP) on chromosome 6q23, and BCL11A on 

chromosome 2p16. 

 

Variants in the HBB, HMIP and BCL11A loci account for 10% - 50% of the variation in HbF% 

levels in adults, healthy or with SCD or β-thalassaemia, depending on the population studied 

(Menzel et al., 2007, Lettre et al., 2008, Galanello et al., 2009, Bhatnagar et al., 2011, Makani 

et al., 2011, Badens et al., 2011, Bae et al., 2012, Mtatiro et al., 2014). The remaining variation 

(‘missing heritability’) is likely to be accounted for by many loci with relatively small effects, 

and/or rare variants with significant quantitative effects on γ-globin gene expression that are 

typically missed.  

 

HBB cluster on chromosome 11p 

Xmn1-HBG2 (rs782144) in the HBB cluster was the first known QTL for HbF% and long-

implicated by clinical genetic studies (Labie et al., 1985). The differences in clinical severity of 

SCD was ascribed to the difference in HbF% levels implicating the Xmn1-HBG2 site which is 

linked to the Senegal and Arab-Indian βS haplotype but not to the Bantu haplotype (Labie et 

al., 1985). Recent high-resolution genotyping, however, suggests that rs782144 is not likely to 

be the variant itself, but in tight linkage disequilibrium with causal element(s) in the β-globin 

cluster.  

 

BCL11A on chromosome 2p16 
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Functional studies in primary human erythroid progenitor cells and transgenic mice 

demonstrated that BCL11A acts as a repressor of γ-globin gene expression that is affected by 

variants in intron 2 of this gene (Sankaran et al., 2008). Fine-mapping demonstrated that these 

HbF%-associated variants, in particular rs1427407, localised to an enhancer that is erythroid-

specific and not functional in lymphoid cells (Bauer et al., 2013).  

 

HMIP on chromosome 6q23 

High resolution genetic mapping and resequencing refined the 6q QTL to a group of variants in 

tight linkage disequilibrium (LD) in a 24-kb block between the HBS1L and MYB gene, referred 

to as HMIP-2 (Thein et al., 2007). The causal variants are likely to reside in two clusters within 

the block that coincide with conserved core enhancer elements at -84 and -71 kb respectively, 

upstream of MYB (Stadhouders et al., 2014, Menzel et al., 2014). A three-base pair (3-bp) 

deletion in HMIP-2 -84 region is one functional element in the MYB enhancers accounting for 

increased HbF expression in individuals who have the sentinel variant rs9399137 that was 

found to be common in European and Asian populations, although less frequently in African 

populations (Farrell et al., 2011). The HBS1L-MYB intergenic enhancers do not appear to affect 

expression of HBS1L, the other flanking gene. 

 

KLF1 on chromosome 19p13 

KLF1 (previously termed EKLF), an erythroid “master regulator” and discovered by Jim Bieker in 

1993 (Miller and Bieker, 1993), re-emerged as a key transcription factor controlling HbF 

through genetic studies in a Maltese family with β-thalassaemia and hereditary persistence of 

HbF (HPFH). Linkage studies identified a locus for the HPFH that segregated independently of 

the HBB locus on chromosome 19p13 which encompassed KLF1 (Borg et al., 2010). Subsequent 

studies, which included expression profiling of erythroid progenitor cells, confirmed KLF1 as 

the γ-globin gene modifier in this family. Family members with HPFH were heterozygous for 

the nonsense K288X mutation in KLF1 that disrupted the DNA-binding domain of KLF1. 

Multiple studies have now confirmed that KLF1 is key in the globin-switch from HBG to HBB 

expression; it not only activates HBB directly, providing a competitive edge, but also silences 

the γ-globin genes indirectly via activation of BCL11A (Siatecka and Bieker, 2011, Zhou et al., 

2010, Esteghamat et al., 2013). KLF1 has three zinc finger domains, which mediate sequence-

specific binding to DNA and are essential for activation of KLF1 target genes.  

 

There have been numerous reports of association of rare KLF1 variants with increased HbF% 

either as a primary phenotype, or in association with other red cell disorders (Borg et al., 

2011). Recently, KLF1 mutations have been noted not just to be relatively more common in, 
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but also to ameliorate the severity of, β-thalassaemias in China. However, to date there are no 

reports of KLF1 mutations in SCD patients. Furthermore, several genome-wide association 

studies of HbF% (including ones in SCD patients of African descent) have investigated common 

variants at the KLF1 locus but no influence on HbF% levels was detected (Bhatnagar et al., 

2011, Mtatiro et al., 2014). KLF1 continues to be actively explored as a genetic modifier of 

HbF% levels in SCD. It should be noted that the KLF1 variants in the Chinese population were 

discovered by target resequencing of a candidate gene (i.e. KLF1), not by GWAS. 

 
1.3.4.5. Other genetic modifiers of “global” sickle cell disease severity 

Causative sickle genotype, α-globin status and HbF remain the only established genetic 

determinants of SCD severity. Other researchers have used alternate phenotypes and/or 

scoring systems to establish new genetic loci. Using the global severity index propounded by 

El-Hazmi (el-Hazmi, 1992), Nishank identified three eNOS gene polymorphisms associated with 

SCD severity (Nishank et al., 2013). A genome-wide association study (Sebastiani et al., 2010) 

utilised the global severity score devised by their own group (Sebastiani et al., 2007) to identify 

associations with variants in KCNK6 (potassium channel gene) and TNKS (telomere length 

regulator gene). The same group went on to demonstrate variants in NPRL3 and HBA1/HBA2 

regulatory elements were associated with their own haemolytic score derived through 

principal components analysis (Gordeuk et al., 2009, Milton et al., 2013). All these are 

tentative findings and are not established genetic determinants of SCD: they have not been 

significantly repeated in other cohorts. 

 

1.4. Genetic methodologies 
1.4.1. Background 

Approaches to locating genetic variants relevant to human disease have evolved over time 

from linkage analysis to association studies (Hirschhorn and Daly, 2005). Historically, linkage 

analysis studies were used to establish linkage between genes that co-segregate with a 

trait/disease within a family. This technique has been successful in highly penetrant single 

gene disorders, but has had limited success in detecting the common, low effect variants in 

complex traits. Association studies look for differences in the frequencies of genetic variants 

between cases and controls to find genetic variants that are strongly associated with a 

trait/disease, and is applied in cohorts with no family structure. If a variant is more common in 

cases than controls, an association is described. Quantitative traits in cohorts, instead of case-

control studies, can be used in linear rather than logistic regression models. Association 

studies require large sample numbers and until recently have not been feasible due to 

genotyping cost. Crucially, variants identified in pilot studies (“discovery cohort”) should 
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always be replicated in additional independent populations (“replication” or “validation” 

cohort).  

1.4.2. Association studies: candidate gene studies and genome-wide 
association studies 

Prerequisites for any genetic association study include: the trait must be heritable (correlation 

of sibling pairs, good r value); and there must be a clear distinction between cases and controls 

(or sufficient variability in a quantitative trait). Adequate patient numbers are essential to 

allow robust statistical analysis and replication. Again, this presents problems in SCD genetic 

association studies; most institutions have small numbers of patients (in contrast to 

hypertensive or diabetic cohorts). Admixture of different ethnic groups is a confounder when 

different cohorts are pooled for analysis unless population stratification is accounted for prior 

to association analysis. 

 

Two types of association studies have been utilised in SCD: candidate gene and genome-wide 

association studies (GWAS).  

 

Candidate gene association studies look for differences in the frequencies of genetic variants in 

targeted genes between cases and controls. Candidate genes can be derived from a variety of 

sources. They may have been proven in one disease or population, and a new study transfers 

this knowledge onto a different disease or population. Alternatively, putative genes associated 

with a particular mechanism relevant to a disease may be studied. In SCD, while the primary 

aetiology is HbS polymerisation, multiple different (but inter-related) downstream pathological 

mechanisms also contribute to SCD phenotype: haemolysis/heme damage, inflammation, 

oxidant injury, nitric oxide biology, vaso-regulation, cell adhesion and blood coagulation. All of 

these downstream pathways suggest candidate genes that could plausibly affect the different 

sickle-related complications. Critics of candidate gene studies argue that our limited 

knowledge of SCD pathophysiology is inadequate to predict functional candidate genes 

(Manolio, 2013). I will pursue a candidate gene study with multiple candidate genes against 

global severity indices in SCD in chapters 5 and 6. 

 

GWAS involve an unbiased scan of the human genome and therefore are more likely to reveal 

unsuspected interactions (Manolio, 2013). It thus delivers a “hypothesis free” method that 

could reveal new genes controlling SCD, thereby exposing novel pathophysiological pathways. 

The complexity of SCD pathophysiology, and the dearth of knowledge about the genetic 

determinants of SCD global severity makes a GWAS approach attractive. I will pursue a GWAS 

in SCD with multiple outcome measures in chapter 4. 
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1.4.3. Development of genome-wide association studies: summary 
Design of genome-wide marker panels requires data on linkage disequilibrium (LD) for the 

“whole” genome; this was the aim of the HapMap project, www.hapmap.org. HapMap gave us 

evidence that LD can persist between loci several thousand bases apart. However, this 

depends upon the age of the population of interest. Notably, in African populations, LD 

encompasses smaller or less extensive regions than “younger” populations (European, Asian) 

so studies of African populations have less power to detect associated alleles. Conversely, 

African ‘hits’ may locate causal variants more precisely. Extensive LD permits design of efficient 

marker panels i.e. reasonably few tag variants. This motivated commercial companies to 

develop generic “chips” for GWAS analysis. The market is now dominated by two companies, 

Illumina and Affymetrix.  

 

The first wave of GWAS (2005-7) used 100,000 to 500,000 variants. Current chips have 

coverage of over two million variants (1 variant per 2kb) and power fairly close to the 

theoretical maximum for common variants in European populations.  

 

Once an association has been made, it is crucial to confirm the association through replication 

in another cohort, and then to recheck the association across multiple populations; causal 

variants may differ due to many factors including environmental influences and population 

genetic background. 

 

GWAS, including the theory behind the process as well as pros and cons, are discussed in detail 

in chapter 4. 

 

1.5. Aims of my PhD  
 Create and curate a clinical dataset of a large British adult SCD cohort: a “phenotype 

database” 

o Use this for clinical research e.g. mortality 

o Define meaningful ‘global’ SCD phenotypes: 

 HbF%, hospitalisation rate, haemolytic index, mortality 

 Perform genome-wide MEGA genotyping chip array on a South East London sickle 

cohort, and use statistical imputation to create an extended “genotype database” 

 Analyse phenotype-genotype associations for both HbF% and newly created (albeit 

experimental) global phenotypes in SCD using: 

o Mixed linear modelling including a “genetic relatedness matrix” to take 

account of near- and far- relatedness. 
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o Candidate gene analysis for putative regions of interest, considering a modified 

p-value based on regional linkage disequilibrium 

 Assess the known HbF% modifiers [BCL11A, HMIP2, HBG2-Xmn1] using 

MEGA dataset 

 Explore other biologically plausible markers in SCD severity mining the 

MEGA dataset 

 Create software which allows other laboratory users for future genotype / phenotype 

analysis for new phenotypes (both genome-wide and candidate gene analysis) 

 Examine the role of KLF1 variants in determining HbF% levels in SCD patients 

(laboratory work) 
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2.1. Introduction: defining endpoints for genetic association studies 
Accurate phenotyping is crucial for genetic association studies. It is imperative to define clear, 

reproducible, meaningful endpoints so that the true genetic component can be teased out. In 

case-control genetic studies, this means being able to distinguish “cases” and “controls”. In 

sickle cell disease (SCD), the clinical heterogeneity makes defining accurate phenotypes 

complex (Rees et al., 2010, Ballas et al., 2012, Smith-Whitley et al., 2007). Disease severity is 

hugely variable in SCD, even within a genotype. 50 years ago SCD was considered by most as a 

“disease of childhood” (Dacie, 1960), but even then there were reports of long survival (>59 

years) with infrequent or absent pain episodes and little or no end organ impairment 

(Charache and Richardson, 1964, Sydenstricker et al., 1962).  

 

Phenotypes may be specific end-organ complications, “sub-phenotypes”. Many patients 

develop isolated SCD-related clinical complications – stroke, proteinuria, osteonecrosis, 

pulmonary hypertension – but are otherwise well.  

 

Phenotypes can also include clinical and laboratory parameters. While laboratory parameters 

are simple to measure, many values vary with the clinical state of the patient; for example, 

lactate dehydrogenase (LDH) is normally elevated during steady-state, and further increases 

during acute clinical events. Laboratory “intermediate” phenotypes (such as HbF%) are 

measurable and reproducible, and disease-related, and have proven much more successful in 

genetic association in SCD studies than clinical endpoints.  

 

Markers of global SCD severity (as opposed to single organ complications) represent the “holy 

grail” of accurate clinical phenotyping. However, global severity scores have proved 

particularly difficult to define – there is no accepted, validated severity index. The difficulties 

arise from the clinical complexity of SCD: in order to create an index of global severity one 

needs to take account of the severity of each individual organ dysfunction within a patient. 

Examples of previously proposed global severity scores in SCD include:  

 number of clinical presentations with acute pain episodes per year;  

 transfusion requirements;  

 a “severity index” based on frequency of painful crises, hospitalisation, blood 

transfusion, infection and specific complications (el-Hazmi, 1992);  

 dactylitis in infants, white cell count and Hb (Miller et al., 2000);  

 a global severity score using a Bayesian network model (a “statistical” phenotype) 

(Sebastiani et al., 2007). 
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I have defined four markers of “global” SCD severity for use in genotype-phenotype association 

analysis: fetal haemoglobin, frequency of acute pain episodes, level of haemolysis and 

mortality. I have assembled a large clinical database which includes these parameters, as well 

as other demographic and laboratory data. 

 

2.2. Subjects 
My work focused on two overlapping cohorts: a regional research sickle gene bank and the 

King’s College Hospital (KCH) clinical cohort. Figure 1 demonstrates the overlap between 

these two cohorts. 

 
Figure 1 Overlap of two cohorts: research sickle gene bank and King's College Hospital adult clinic 

Recruitment into the research sickle gene bank is ongoing in the hope that many of the KCH 

clinical cohort will become subjects in genetic research. 

2.2.1. Regional research sickle gene bank 
The regional research sickle gene bank comprises 891 SCD patients for which we have 

performed genome-wide genotyping (“MEGA” array, see chapter 3). This comprises patients 

from four adult clinics and one paediatric clinic in South East London: KCH adult clinic, KCH 

paediatric clinic, Guys and St Thomas’ Hospital (GSTT) adult clinic, Lewisham Hospital adult 

clinic (LH) and Queen Elizabeth Hospital (Woolwich, QEH) adult clinic. Written informed 

consent was obtained through three approved study protocols (LREC 01-083, 07/H0606/165, 

and 12/LO/1610). Demographics of the regional sickle cohort are displayed in Figure 2.  

 

Of the 891 (516 female, 375 male) patients with MEGA data, 666 (75%) were HbSS (375 

female, 291 male), 195 (22%) were HbSC (126 female, 69 male), 20 (2%) were HbSβ+ 

thalassaemia (10 female, 11 male), 9 (1%), HbSβ0 thalassaemia (4 female, 5 male) and 1 (<1%) 

was HbS/HPFH.  

 

The median recruitment age for HbSS/Sβ0 patients was 28 years (range 4-71 years, IQR: 20-38); 

for HbSC, 37 years (range 7-77, IQR: 27-48); and HbSβ+ thalassemia, 47 years (range 17-81 
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years, IQR: 32-55). α-globin genotypes were available in 377 (45%) patients of which 63% were 

αα/αα, 31% αα/α-, and 5% α-/α- genotypes.  

a  

 

b  

 

Figure 2 Demographics of the regional sickle gene bank: panel (a) demonstrates the distribution of sickle genotype 
across age; panel (b) demonstrates the α-globin status. 

2.2.2. KCH clinical cohort 
The KCH clinical cohort includes 712 patients seen in the adult clinic at King’s College Hospital 

(London, United Kingdom), observed over a 10-year period (2004-2013 inclusive). 

Demographics of the KCH clinical cohort are displayed in Figure 3. Of the 712 patients, 444 

(62%) were HbSS, 229 (32%) were HbSC, 33 (5%) were HbSβ+ thalassemia, and 6 (1%) were 

HbSβ0 patients. The median age for HbSS/Sβ0 patients was 32 years (IQR: 25-43); HbSC, 39 

years (IQR: 29-48); and HbSβ+ thalassemia, 40 years (IQR: 31-58). α-globin genotypes were 

available in 542 (76%) patients of which 62% were αα/αα, 32% αα/α-, and 5% α-/α- genotypes. 

During the 10-year study period, 72 patients (all HbSS) had received hydroxycarbamide 

therapy, and 71 patients had received regular blood transfusions. All patients, except for one, 

were of African or African-Caribbean heritage. I have looked at the KCH clinical cohort (or a 

subset) for multiple clinical audit projects(Birkeland et al., 2016, Gardner et al., 2016, Gardner 

and Thein, 2015, van Hamel Parsons et al., 2016, Vidler et al., 2015). The clinical research was 

all done as an audit of clinical practice and therefore informed consent was not required. 
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a 

 

b  

  

Figure 3 Demographics of the KCH clinical cohort: panel (a) demonstrates the distribution of sickle genotype across 
age; panel (b) demonstrates the alpha globin status. 

2.3. The KCH clinical cohort: creating and curating a clinical dataset 
2.3.1. Background 

Clinical data management is critical for research which requires high-quality and reliable 

collection, integration and availability of data. Depth and breadth of clinical data allows us to 

understand and create better phenotypes. A comprehensive phenotype of laboratory and 

clinical data allows us to characterise the clinical outcome more accurately, as other values can 

be used as covariates. In my genotype/phenotype analyses these will be used:  

 as clinical endpoints (phenotypes) directly 

 to create new endpoints indirectly e.g. as a composite score (haemolytic index)  

 as covariates.  

2.3.2. Raw clinical data 
Clinical data for the 712 adult patients in the KCH clinical cohort were obtained from the 

“electronic patient record” (EPR) which included all investigations undertaken from 2004. This 

included laboratory results (e.g. full blood count, microbiology), radiology results (e.g. 

computed tomography scan, echocardiogram), and other tests and procedures (e.g. 

electrocardiogram, lung function testing, oesophago-gastro-duodenoscopy). A “test” 

represents anything with a single result – so a full blood count includes 17 separate “tests” 

(e.g. haemoglobin, platelet count, white cell count, neutrophil count). See Appendix 1 for the 

full list of 2546 tests. 

 

A total of 1,762,163 tests were provided as raw data for 712 patients (mean 2475 tests per 

patient). Raw data were provided as csv files for all medical results available (e.g. laboratory 

results, radiology, lung function testing), see Figure 4. This included each individual test result 

by line, so for any one date, one patient has many rows. However, it only included the actual 
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results for tests that have numerical results (mainly laboratory results) and not text-based tests 

(which return as NULL).  

 
Figure 4 Raw clinical data format 
Hospital number (redacted), test name, rest result, visit start date (e.g. clinic visit date / hospital admission date), 
visit end date (e.g. hospital discharge date, NULL if clinic visit only), location (e.g. clinic name, ward name, “results” if 
this was an externally requested test), date test result released, date test requested, visit type 

2.3.3. Data cleaning pipeline 
The data was batched and each batch subjected to the same data cleaning and processing 

pipeline, see Appendix 2. The data are presented on a per patient, per clinic visit level. The 

final clinical information available in the clinical dataset is in Appendix 7. As well as laboratory 

results, these data include demographic information. Analysis from subsequent sections on 

hospital admission data and haemolytic indices has also been added to this central database. 

2.3.4. Results 
712 patients had 6839 outpatient visits and 2819 inpatient admissions during the 10-year 

study period of 2004-13 inclusive. Overall, there were 4246 patient-years of observation in the 

10-year study period. Not all patients were observed for all 10 years; some patients entered or 

left the adult haematology clinic during the study period (e.g. through death, house move or 

simply lost to follow up). See the infographic demonstrating the range of an individual’s years 

of observation over the 10-year study period in Appendix 3. 

 

Examples of basic laboratory results (as raw data) are summarised for 450 HbSS/HbSβ0 

thalassaemia patients in Figure 5 and for 229 HbSC patients in Figure 6. 
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Figure 5 Basic laboratory results for HbSS and HbSβ0  patients 
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Figure 6 Basic laboratory results for HbSC patients 
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2.3.5. Adding more clinical data 
The clinical database is not static. More information and results are added as they are 

collected, so that the subsequent sections have all been added to the original database; this is 

a dynamic process.  

 

2.4. Fetal haemoglobin (HbF)  
2.4.1. Introduction 

Fetal haemoglobin (HbF, α2γ2) is a major ameliorating factor in SCD. Its use as a phenotype in 

SCD in genetic association studies is well-established. Investigation into causes of HbF% 

variability and genetic regulation is an ongoing endeavour: its therapeutic reactivation (via 

pharmacological and genetic approaches) remains a top research priority. See section 1.2.4.4 

for a longer description of HbF% as a phenotype in SCD, as well as its well-established three 

known quantitative trait loci. 

 

In both SCD and non-SCD populations, HbF% is influenced by both sex and age at sampling. 

Unlike non-SCD populations in whom adult levels of HbF% are reached by 2 years of age, 

subjects with SCD achieve adult levels much later, and adult HbF% levels are higher in SCD 

than in a healthy population (Mason et al., 1982). In SCD, an HbF% age cut-off of 5 years has 

been used by researchers; after this age, there is a negative, roughly linear, correlation (Mason 

et al., 1982). Sex also plays a role: females have been found to have higher HbF% levels than 

males in both healthy individuals(Miyoshi et al., 1988) and in SCD(Steinberg et al., 1995, Nagel, 

1991, Morris et al., 1991).  

 

Pregnancy is also associated with elevated HbF% levels in both healthy women (Pembrey et al., 

1973) and women with SCD (Dunn et al., 1989), probably mediated via progesterone and 

physiology of increased erythropoiesis. In the Jamaican SCD cohort, there was a significant 

HbF% increase in the first two trimesters above steady state, followed by decrease to below 

steady state in the third trimester(Dunn et al., 1989). I confirmed the finding of significantly 

increased HbF% in the first trimester compared to non-pregnancy state in our own SCD cohort 

(p<0.0001), see Appendix 8. 

 

In SCD, HbF% levels are further influenced by drugs and transfusion status. Drugs include 

hydroxycarbamide, the key disease-modifying therapy in SCD used precisely because of its 

therapeutic induction of HbF%. Other HbF%–inducing agents include: hypomethylating agents 

(5-azacitidine, decitabine), pomalidomide, and butyrate. Transfusions alter HbF% levels by 

infusing healthy (HbAA) blood, which typically has reduced HbF% (<1%) compared to SCD 
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patients. Finally, it seems feasible that an acute pain episode could affect HbF% levels in SCD; 

theoretically, increased stress erythropoiesis could cause faster release of immature 

erythrocytes (with higher HbF%) from the bone marrow. I investigated this in 127 patients with 

paired (steady state versus inpatient) and otherwise valid HbF% samples which revealed no 

statistical difference in the mean HbF% in steady state versus during an acute pain episode, 

see Appendix 9. 

 
2.4.2. Methods 

HbF% levels are typically measured by high performance liquid chromatography (HPLC). In 

healthy individuals HbF% is typically low, with the majority (85-90%) having <1% HbF% levels. 

However, in SCD, HbF% levels are 1% - 30%, which can be measured accurately by HPLC.  

 

All haemoglobin profiles (including HbF% levels) were generated with HPLC (Variant II 

Hemoglobin Testing System). Before using an HbF% value, I confirmed that it reflected “native” 

(baseline) HbF% i.e. that it was obtained when the patient was transfusion-free for at least 3 

months, not taking hydroxycarbamide or other HbF%-inducing drug for at least 3 months, and 

not pregnant. Samples taken in steady state were preferred to those taken during episodes of 

acute pain, however, samples from acute pain were acceptable if no other values were 

available.  

 

Regional sickle gene bank 

HbF% values were assayed at KCH for all patients except for GSTT patients where they were 

tested locally at GSTT. 

2.4.3. Results 
2.4.3.1. KCH clinical cohort 

Of 712 patients, 645 patients had a validated HbF% level available. The median HbF% was 3.2% 

(range: 0.1-31.6%, IQR: 1.4-7.25%) for all genotypes. For 450 HbSS/SB0 patients, 393 had a 

validated HbF% with a median of 5.4% (range: 0.2-29.5%, IQR: 2.6-9.5%). For 229 HbSC 

patients, 220 had a validated HbF%, with a median of 1.1% (range: 0.1-11.1%, IQR: 0.6-2.2%). 

The distribution of HbF% levels in the KCH clinical cohort is shown in Figure 7. 
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b

 
Figure 7 validated HbF% values for KCH clinical cohort: panel a - HbSS/SB0 (N=393); panel b - HbSC (N=220) 

2.4.3.2. Regional sickle gene bank 

Validated HbF% levels for the research cohort are shown in Figure 8. Of 891 patients, 760 

patients had a validated HbF% level available, median HbF% was 4.6% (range: 0.2-31.6%, IQR: 

1.9-8.9%) for all genotypes. 572 HbSS/HbSβ0 thalassaemia patients had a validated HbF%, with 

median 6.2% (range: 0.2-29.5%, IQR: 3.1-10.5%). 170 HbSC patients had a validated HbF%, 

median 1.3% (range: 0.2-13.4%, IQR: 0.79-2.5%). 

a

  

b 

  
Figure 8 validated HbF% values for the regional sickle gene bank: panel a - HbSS/SB0 (N=572); panel b - HbSC 
(N=170) 

2.4.3.3. Missing/lack of validated HbF data 

For both cohorts, not all patients had validated clinical data available (i.e. not taken post-

transfusion, while on hydroxycarbamide or while pregnant).  The large majority of those 

without a valid HbF% available were on either long-term hydroxycarbamide or transfusions; 

thus the “missing” HbF% data is skewed towards clinically severe patients.  

2.4.4. Validation of the KCH clinical dataset 
“Validation” of results has been fed back into the KCH clinical dataset. A flag has been added to 

denote the “validation” process of samples that are not affected by transfusion, 

hydroxycarbamide or pregnancy. 
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2.5. Haemolysis: 10-year data  
2.5.1. Introduction: a haemolytic index 

Haemolysis and sickle vaso-occlusion are the two major pathophysiological drivers for SCD 

clinical manifestations (Rees et al., 2010). Patients with more haemolysis (evidenced by higher 

lactate dehydrogenase, lower Hb, and higher bilirubin) tend to have increased incidence of leg 

ulcers, priapism and pulmonary hypertension. Haemolytic-related pathologies in SCD are 

postulated to be mediated by nitric oxide (NO) bioavailability (Kato et al., 2007, Rees et al., 

2010). Plasma free haemoglobin is a specific marker of intravascular haemolysis; red blood cell 

survival is the definitive haemolysis measurement. These measurements are not feasible in 

large cohorts. Instead haemolysis, in clinical practice and in research, is estimated by the 

reticulocyte count, lactate dehydrogenase (LDH), aspartate aminotransferase (AST) and 

bilirubin levels, all of which are commonly measured in cohort studies, although none is 

specific for haemolysis (Hebbel, 2011). Ameliorators of sickled red cell lifespan include high 

HbF% and α-thalassaemia (de Ceulaer et al., 1983, Steinberg and Sebastiani, 2012) but other 

genes are likely to modify red cell life span i.e. mediate haemolysis.  

 

I created a “haemolytic index” – a single continuous variable that quantitates haemolysis by 

using a principal component analysis of the commonly measured markers of 

haemolysis(Minniti et al., 2009, Gordeuk et al., 2009) – reticulocyte count, LDH, AST and total 

bilirubin levels. The development of a haemolytic index resolves the problem of dealing with 

correlated predictors in multivariate analyses, and has been used previously in a genome wide 

association study(Milton et al., 2013). Milton et al identified an association between 

haemolysis and a single nucleotide polymorphism in NPRL3 on chromosome 16 (and 

associated with –α3.7 thalassaemia gene deletion). The principal components analysis yielded 

one component – the haemolytic index – which was associated with intravascular haemolysis 

as measured by plasma haemoglobin and red cell micro-particles(Nouraie et al., 2013). 

Therefore, the score can be used as a robust quantitation of haemolytic rate.  

 

I used a principal components analysis approach to transform four clinical laboratory markers 

of haemolysis (reticulocyte count, LDH, AST and total bilirubin levels) into one “haemolytic 

index”. This essentially reduced the data from four parameters down to one. The haemolytic 

index can then be used as a phenotype in a genotype-phenotype association studies. 
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2.5.2. Methods 
2.5.2.1. Principal component analysis (PCA) 

Principal Component Analysis (PCA) is a dimension reduction technique for quantitative 

variables invented in 1901 by Karl Pearson(Pearson, 1901). It results in one or more 

components which summarise the information available in the data. The components are 

linear combinations of the original variables: the analysis transforms a set of correlated 

variables into a set of uncorrelated theoretical variables termed “principal components”. The 

resultant number of principal components is a maximum of the number of original variables. 

PCA is useful for studying underlying mechanisms reflected in individual biological 

measurements(Genser et al., 2007). 

 

Assumptions are made when performing this technique, and need to be validated prior to 

performing the analysis. The PCA can only perform a compression of the available information 

if there is redundancy within the original variables – that is, the variables are correlated. Two 

techniques can be applied to check this: Bartlett’s test and the Kaiser-Meyer-Olkin (KMO) 

measure of sampling adequacy. Bartlett’s test of sphericity confirms that the correlation 

matrix diverges significantly from the identity matrix; i.e. the extent to which the original 

variables are correlated. The KMO measure of sampling adequacy also checks if one can 

factorise efficiently the original variables. The KMO index uses the partial correlation between 

variables (to measure the relation between two variables by removing the effect of the 

remaining variables) and compares the values of correlations between variables and those of 

the partial correlations. The PCA can act efficiently if the KMO index is high (~1) but not low 

(~0).  

 

I performed the PCA in SPSS version 22, on the KCH clinical cohort of 712 patients, using the 

four variables reticulocyte count, LDH, AST and total bilirubin levels. 

 

2.5.3. Results 
544 of 712 patients had validated four variables for analysis available on the same day. Both 

Bartlett’s test of sphericity (chi-square = 471, df=6, p<0.001) and the KMO measure of 

sampling adequacy (0.692) suggest that the available data could be compressed. 

 

Principal components analysis resulted in a first component with eigenvalue 2.159 (explaining 

54% of variability) and subsequent components having eigenvalues<1. Thus I extracted the 

only first component as the “haemolytic index”. The new haemolytic index has a mean 0 and 

standard deviation of 1 (normalised by design), see Figure 9 for a distribution of haemolytic 
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index values. This haemolytic index had correlations of r=-0.755 with Hb (p<0.0001), r=0.439 

with absolute reticulocyte count (p<0.0001), r=0.870 with lactate dehydrogenase levels 

(p<0.0001), and r=0.608 with total bilirubin levels (p<0.0001).  

 

a 

 

b 

 
Figure 9 Histogram of haemolytic index values for (a) HbSS/HbSβ0  and (b) HbSC patients 

The haemolytic index is correlated with haemoglobin levels (Pearson’s r=-0.585, p<0.001), see 

Figure 10. 

 
Figure 10 Association between haemolytic index and haemoglobin (all SCD patients) 

2.5.4. Discussion 
The haemolytic index can now be used as a theoretical variable quantitating haemolysis having 

incorporated information from the reticulocyte count, lactate dehydrogenase (LDH), aspartate 

aminotransferase (AST) and bilirubin levels.  

 

2.6. Acute pain frequency: hospitalisation rate from 10-year data  
2.6.1. Introduction 

Acute pain episodes (APE) are the hallmark clinical feature in SCD. They are a measure of 

disease severity and a predictor of early mortality (Platt et al., 1991). Frequency of APE varies 

widely in SCD patients, with highest pain rates seen in those with high haematocrit and low 

HbF% (Platt et al., 1991). Outwith these associations, there is no concrete further 

understanding of the genetic basis of APE frequency in SCD. It is probably the complication 
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most affected by environmental factors. A compounding problem with pain studies is the 

clinical definitions of phenotypes. Nearly all patients with SCD have pain, and it is often 

difficult to quantitate objectively both frequency and severity of individual APEs. Furthermore, 

the standard treatment for pain in APEs is parenteral opioids, and individual response to 

opioid analgesia is itself related to genetic variability of their metabolism (Ballas, 2007), 

making it harder still to dissect and measure APE accurately. As a result of these complicating 

features, many genetic studies on pain in SCD are poor, in particular because of lack of clear-

cut definitions of cases versus controls required to make objective associations. Furthermore, 

some of the studies described are poorly conducted and not corrected for other key modifying 

factors including genotype and HbF% levels. In African-American patients and patients from 

Cameroon, the presence of alleles at the 3 HbF% loci (BCL11A, HBS1L-MYB, and XmnI-HBG2) 

that increased HbF% levels also led to a corresponding reduction in APEs and hospitalisation 

(Lettre et al., 2008, Wonkam et al., 2014). 

 

Studies into genetic determinants of APEs have focused on candidate genes based on APE 

pathology, itself a complex event involving: red cell deformation, enhancement of white cell 

adhesion, inflammation, endothelial injury and activation of the coagulation and complement 

pathways. These genetic studies are generally uncorroborated and not replicated in secondary 

cohorts. Examples of studies relating to APE in SCD include genes related to: 

 Oxidative stress. SCD complications, and notably APE, are associated with oxidative 

stress. Glutathione S-transferases (GSTs) are a group of enzymes that protect against 

oxidative stress. Shiba et al found the GSTM1 null genotype to be associated with 

increased risk of severe APE in Egyptian SCD patients (Shiba et al., 2014) 

 Vasculopathy. Vascular endothelial growth factors (VEGF) are known to contribute to 

the pathogenesis of APE in SCD. A study in Bahrain associated multiple VEGF gene 

polymorphisms with the risk of APE (Al-Habboubi et al., 2012). Unfortunately, the 

differences between cases and controls were not clear cut (comparing whether 

patients with SCD had a recent APE or not). 

 Thrombosis. Cystathionine beta-synthase (CBS) enzyme gene mutations are a risk 

factor for thromboembolic disorders. CBS 844ins68 was three times more frequent 

among SCD patients with APE (Alves Jacob et al., 2011). Again, there was poor 

clarification of the difference between “severe” and “mild” individuals with APE. 

 Infections. MBL2 codes for mannose-binding lectin (MBL), and is associated with 

modifications in the progression of infectious and inflammatory vascular diseases. 

Using better definitions of APE severity (using APE frequency), MBL2 polymorphisms 

have been associated with APE in children with SCD (Oliveira et al., 2009, Mendonca et 
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al., 2010). Unexpectedly, studies have observed no association of MBL2 variants with 

susceptibility to infections (Oliveira et al., 2009)(Dossou-Yovo et al., 2009). 

 

While the broad idea of frequency of APE in SCD as a marker of severity is well-accepted, the 

implementation of a precise, quantitative variable has been more difficult to implement. 

Questions surrounding APE definition (e.g. minor crisis versus major crisis), consideration of 

duration of APE, background issues of non-medical causal factors to APE precipitation, all 

contribute to an indistinct quantity. As have others, I have chosen to look at frequency of 

hospitalisation – admissions to haematology wards (and not emergency department visits). 

This definition allows us not only to use a precise event to count per patient but also makes 

the decision to admit (as a proxy of clinical severity) physician-determined rather than patient-

determined. I reviewed 10 year patient records to create a “hospitalisation rate per year” 

variable, as has been used previously, quoted as per 100 patient by researchers in the STOP 

(Miller et al., 2001) and SITS (DeBaun et al., 2014) trials.  

2.6.2. Methods 
Hospitalisation rates were collected for KCH adults over 10 years (2004-2013) using data 

gleaned in section 2.3. “Hospitalisation” included any admission to a haematology or general 

medical ward (and excluded admissions to the emergency department and orthopaedic, 

surgical, obstetric and paediatric wards), as per Appendix 6. The reason for hospital admission 

was not identified (therefore patients with medical non-sickle related problems were included 

e.g. myocardial infarction). An individual’s mean hospitalisation rate (haematology hospital 

admissions only) was calculated by dividing the number of haematology hospital admissions by 

the number of observed years. 

2.6.3. Results 
Of the 712 patients (all genotypes), 465 had been hospitalised at least once, and 247 patients 

had no hospital admissions during the 10-year observation period. The distribution is heavily 

positively skewed and is also related to the underlying sickle genotype, see Figure 11.  

For the whole cohort, median mean hospitalization rate was 0.25/year (range 0-11.25/year, 

IQR: 0-0.71). For the 450 patients with HbSS/HbSβ0, median mean hospitalization rate was 

0.35/year (range 0-11.25/year, IQR: 0-1.0); and for the 229 HbSC patients, median mean 

hospitalization rate was 0.1/year (range 0-2.11/year, IQR: 0-0.4).  

 

a b 
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Figure 11 Hospitalisation rate (i.e. hospital admission frequency) for the KCH clinical cohort, broken down by sickle 
genotype. Panel A – stacked histogram; panel B – box plot. 

Hospitalisation rate is very weakly correlated with haemoglobin levels (Spearman’s ρ=-0.185, 

p<0.001), see Figure 12. 

 

 
Figure 12 Association between hospitalisation rate and haemoglobin (all SCD patients) 

2.7. Survival | Mortality 
Mortality is the ultimate arbiter of any disease severity. We have published survival data, 

including looking at a Cox regression analysis of risk factors for mortality, for the KCH clinical 

cohort of 712 adults(Gardner et al., 2016), see Appendix 10. 

 

2.8. Sickle nephropathy  
2.8.1. Introduction 

Renal impairment – as measured by either proteinuria or glomerular filtration rate (GFR) – is a 

common complication of SCD (Sharpe and Thein, 2014, Nath and Hebbel, 2015), and in some 

cases sickle renal disease progresses to end-stage renal failure. Renal damage is due to the 

underlying environment of the renal medulla; where low partial pressure of oxygen, low pH 

and high osmolality combine to create optimum conditions for HbS polymerisation and sickling 

(Sharpe and Thein, 2011). This leads to recurrent vaso-occlusion and chronic ischaemia 
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resulting in papillary necrosis and medullary fibrosis (focal segmental glomerulosclerosis). 

Renal dysfunction is also associated with severity of haemolysis (Becton et al., 2010, Maier-

Redelsperger et al., 2010, Day et al., 2012). Thus, it is not too unexpected that co-inheritance 

of α-thalassaemia which reduces haemolysis, is protective against albuminuria (Nebor et al., 

2010).  

 

Renal impairment begins with glomerular hyperfiltration (seen in childhood and early 

adulthood) and protein loss in the urine (Scheinman, 2009, Becton et al., 2010). 

Microalbuminuria (urinary albumin creatinine ratio repeatedly >3.5 mg/mmol or 30 mg/g) 

marks the onset of sickle nephropathy, and its prevalence increases with age(McPherson Yee 

et al., 2011). In the KCH adult cohort, microalbuminuria was detectable in 28% of patients aged 

16-25 years, 38% in 26-35 years, 50% in 36-45 years, and >60% in those aged at least 46 

years(Day et al., 2012). In a small minority of patients, sickle nephropathy progresses to end 

stage renal failure but the natural history of renal disease is not characterised. Being able to 

stratify (the large number of) SCD patients with albuminuria into those at high risk of disease 

progression would impact on clinical management and may direct therapy.  

 

The APOL1 locus, an important genetic risk factor for end-stage renal failure in non-SCD 

populations of African ancestry (Genovese et al., 2010), has been shown to be associated with 

sickle cell nephropathy (Ashley-Koch et al., 2011). The original association of nephropathy with 

MYH9 has been attributed to the strong linkage disequilibrium between MYH9 and APOL1. 

2.8.2. Methods 
Urinary albumin creatinine ratio (uACR) results were collected in steady state for KCH adults 

over the 10 year period (2004-2013) using data gleaned in section 2.3. An individual’s mean 

uACR level was calculated across the 10-year study period, and used in analysis.  

2.8.3. Results 
606 of 712 patients had uACR results available. Median uACR across all genotypes was 3.1 

mg/mmol (range 0.2 to 1351, IQR 1.2-8.9). For the 403 HbSS/HbSβ0 thalassaemia patients with 

uACR available, median uACR was 4.6 mg/mmol (range 0.3 to 1351, IQR 1.5-11.7), see Figure 

13a. 240/403 (60%) of these patients have microalbuminuria (uACR≥3.5mg/mmol). For the 176 

HbSC patients with uACR available, median uACR was 1.6 mg/mmol (range 0.2 to 134, IQR 0.8-

3.4). 43/176 (24%) of these patients have microalbuminuria (uACR≥3.5mg/mmol), see Figure 

13b. 

a b 
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Figure 13 Urinary albumin creatinine ratio (mg/mmol) in (a) HbSS patients (b) HbSC patients 

2.9. Discussion 
There is no perfect marker of severity in sickle cell disease. I have defined several clinical 

endpoints, as others have done. There is strength in multiple phenotypes – to define severity 

as different traits allows us not only to understand better the complexity of phenotype, but 

strengthens our genotype/phenotype association studies. One can determine not only the 

genetic architecture of specific phenotypes but, by looking at the overlap, gain some 

understanding of global mechanisms contributing towards severity in SCD. Furthermore, there 

is more statistical power with multiple definitions of “severity”.  
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Appendix 1 
List of 2546 tests in raw data dump from the electronic patient record 

% 3-0-m-Glucose excreted 
% CD19+ CD20+ Lymphocytes 
% CD19+ Lymphocytes 
% CD20+ Lymphocytes 
% D-Xylose excreted 
% Fe Saturation 
% Hypo 
% Iron Saturation 
% Lactulose excreted 
% L-Rhamnose excreted 
% Melibiose excreted (5h) 
%HYPO 
*CD3 CELLS 
*CD3% 
*CD4 
*CD4% 
*CD8 CELLS 
*CD8% 
+ 
++ 
+++ 
17-Hydroxyprogesterone 
19D 
1st Addendum Diagnosis 
1st Addendum Microscopy 
24 hr ECG Tape 
24hr ALA excretion 
24hr PBG excretion 
24hr total porphyrin excretion 
24Hr Urine 5HIAA 
24Hr Urine 5HIAA. 
2nd Addendum Diagnosis 
2nd Addendum Microscopy 
3 Phase Bone Imaging - NM 
50/50 APTR Correction 
50/50 INR Correction 
5-HIAA (24 hour urine) 
6PGA 
6PGD assay. 
9OH-Risperidone 
a-amylase 
Abdomen 
Abdomen - CT 
Abdomen - CT (Contrast) 
Abdomen - CT (Enhanced) 
Abdomen - Mobile 
Abdomen - MRI 
Abdomen - MRI (Contrast) 
Abdomen - Pelvis - CT 
(Contrast) 
Abdomen - X Ray 
Abdomen - X Ray 
(Erect/Supine/Decubitus) 
Abdomen - X Ray (Mobile) 
Abdomen - X Ray (Plain film) 
Abdomen & pelvis - CT 
Abdomen Guided Aspiration - 
US 
Abdomen(Thorax) - CT 
(Contrast) 
Abdominal Xray (Mobile) - 
Neuro 
ABE 
ABPI & Doppler Waveform 
Analysis - Vasc 
Abscess swab - M 
Absolute Reticulocyte Count 
Absolute Reticulocyte Count. 
Achilles Tendon L. - US 
Acinetobacter lwoffi 
Acinetobacter Screen 
Acromio-Clavicular L. - X Ray 
ADAMTS13 
Additional Information 
Adenovirus 
Adenovirus CFT result 
Adenovirus DNA: 
Adjusted Calcium 
ADPCR 
Adrenal - MRI 
Adrenal - MRI (Contrast) 
Adrenal Antibodies 
Adrenal Both -  CT 
Adrenal Imaging - 123I - NM 
Adrenaline (24 hour urine) 
Adrenocorticotrophic 
Hormone 
Adrnal Imaging - 123I - NM. 
Aerobic bottle 
Age Band (Yrs) 
AI dec slope 
AI max PG 
AI max vel 
AI P1/2t 
Albumin 
Albumin Excretion Rate 
Aldosterone 
Aldosterone/Renin Ratio 
Alkaline Phosphatase 
Allergen Grade 
Almond 
Alpha-1-antitrypsin  
phenotype 
Alpha-1-antitrypsin 
phenotype 
Alpha-Feto Protein 
ALT 
Aluminium (Serum) 
Amikacin (Post-dose) 
Amikacin level - post-dose 
Amikacin level - random 
Amino-Acid (urine) 
Amino-Acids (plasma) 

Aminolaevulinic Acid (ALA) 
Ammonia (Plasma) 
Amoxicillin. 
Amphetamine Class 
AMPO 
AMPO - EXPIRED 
Amylase 
Amylase (random urine) 
ANA Pattern 
Anaerobic bottle 
ANCA IIF Pattern 
ANCP 
Androstenedione 
Angiography - CT 
Angiography (head vessels) - 
CT 
Angiography (neck vessels) - 
CT 
Angioplasty 
Angiotensin Converting 
Enzyme 
Anion Gap 
Ankle  L. 
Ankle  L. - X Ray 
Ankle  R. 
Ankle  R. - X Ray 
Ankle - USAnkle Bilateral - X 
Ray 
Ankle L. - MRI 
Ankle R. - CT 
Ankle R. - MRI 
Ankle R. Inversion - X Ray 
Ankle Series 
Ankles - MRI 
Ankles + Feet - MRI 
Anti 21-Hydroxylase 
Antibodies 
Anti Acetylcholine Receptor 
Antibody 
Anti Gastric Parietal Cell 
Antibody 
Anti Glomerular Basement 
Membrane Ab 
Anti Haemophilus Antibody 
Anti HB core IgM 
Anti Jo-1 
Anti La 
Anti MPO Antibodies 
Anti MPO Antibodies 
(Sensitive) 
Anti Neutrophil Cytoplasmic 
Antibody 
Anti Nuclear Antibody 
Anti PR3 Antibodies 
Anti PR3 Antibodies 
(Sensitive) 
Anti RN 
Anti RNP 
Anti Ro 
Anti Scl-70 
Anti Sm 
Anti Smooth Muscle Antibody 
Anti Thrombin III 
Anti Thyroid Microsomes 
Anti Tissue Transglutaminase 
Antibody interpretation (1) 
Antibody interpretation (2) 
Antibody interpretation (3) 
Antibody interpretation (4) 
Antibody interpretation (5) 
Antibody Report 
Antibody screen. 
Anti-Factor Xa 
Anti-GBM Ab (FIDIS) 
Anti-glutamic acid 
decarboxylase 
Anti-IA-2 
Anti-insulin antibody 
Anti-Liver Cytosol-1 
Antimicrobial substances 
Anti-MPO Ab (FIDIS) 
Anti-PR3 Ab (FIDIS) 
Anti-soluble liver antigen 
Antithrombin III 
Anti-Xa 
Ao max PG 
Ao max PG (full) 
Ao mean PG 
Ao mean PG (full) 
Ao root area 
Ao root diam 
Ao V2 max 
Ao V2 mean 
Ao V2 VTI 
Aorta - US 
Aortic Valve 
APC Resistance-V 
Appearance 
Appearance (APPF) 
Appearance (Sputum) 
Appendix - US 
APTR (Heparin) 
APTT Control 
APTT Ratio 
APTT ratio (heparin) 
APTT. 
AREP2 
Arm Bilateral - Vein Duplex - 
Vasc 
Arm L. - Vein Duplex - Vasc 
Arm R. - Vein Duplex - Vasc 
ARR 
Arthralgia serology 

AS max vel 
asc Aorta 
Ascites - blood culture set 
Ascites - M 
Ascites - US 
Ascites TB 
Ascorbic Acid Screen (urine) 
ASM 
ASMT 
Aspartate Transaminase 
Aspergillus EIA. 
Aspergillus fumigatus. 
Aspergillus IgG (ImmunoCAP) 
Aspirate (other) -  M 
Aspirate TB 
Aspiration - US 
Atria 
Auramine AFB stain 
Authorised by 
AVA(I 
AVA(V 
Axilla L. - US 
Axilla R. - US 
Axilla swab - C&S 
Azithromycin. 
B Cells % 
B Cells Absolute Counts 
B12 
B12 (Vitamin B12 assay) 
B19R 
B2GG 
B2GM 
Bacillus sp 
Bacillus species 
Bacteria 
Barbiturates 
Barium Enema (MS) 
Barium Meal 
Bartonella Serology 
BASO 
Basophils 
Basophils (from film) 
BBV incident (donor source) 
BBV incident (recipient) 
BCG 
Benzodiazepine 
Beta Haemolytic 
Streptococcus Group A 
Beta Haemolytic 
Streptococcus Group B 
Beta-2 Microglobulin 
BHAM1 
BHAT1 
BHBC2 
BHBS1 
B-HCG 
BHCG (molar pregnancy) 
BHCV1 
Bicarbonate 
Bicarbonate. 
Bile Acids 
Bile Acids (Total) 
Bilirubin (Conjugated) 
Bilirubin (random urine) 
Bilirubin (Total) 
Biochemistry (Glucose) 
Biopsy (other) - C&S 
Biopsy (other) - C&S & AFB 
Biopsy TB 
Biopsy/Drain in Recovery - US 
Bladder - US 
Blast Count 
Blasts (from film) 
Blood Culture 
Blood Culture for TB 
Blood group (rapid). 
Blood group. 
Blood Lactate 
Blood pH 
Blood Products are available 
to collect 
Blue mussel 
BMI 
BMWP 
Body temp corrected pCO2 
Body temp corrected pO2 
Bone Biopsy 
Bone Densitometry - Clin H+S 
- NM 
Bone Imaging - 2 Phase - NM 
Bone Imaging - 3 Phase - NM 
Bone Imaging - NM 
Bone Imaging - Whole Body - 
NM 
Bone Marrow Aspirate 
Bone Marrow TB 
Bone sample - C&S & AFB 
Bowel - US 
Brain - MRI 
Brain - MRI (Contrast) 
Brain CT - Neuro 
Brain Natriuretic Peptide 
Brazil nut 
Breast - bilateral - US 
Breast (Bilateral) - US 
Breast L. - US 
Breast R. - US 
Breast R. C/B - US 
Bronchial washings - M 
Bronchoscopy Test 
Brucella ELISA IgG 
Brucella ELISA IgM 
Brucella serology 

Brucellacapt (total IgG/IgM) 
BSA 
B-type Natriuretic Peptide 
Burkholderia cepacia 
Buttock - X Ray (Foreign Body) 
-C 
C1 Esterase Inhibitor 
C3D 
-C3d 
C3D1 
CA125 
CA-125 
CA199 
CA-199 
Caeruloplasmin (Serum) 
Calcaneum L. - X Ray 
Calcaneum R. - X Ray 
Calcium 
Calcium (random urine) 
Calculated Creatinine 
Clearance 
Campylobacter 
Candida albicans 
Candida species 
Cannabis 
Carbamazepine levels 
Carcino-Embryonic Antigen 
Cardiac - 12 Lead ECG 
Cardiac - 24 hr ECG 
Cardiac - 24hr BP Monitor 
Cardiac - Cardiac MRI 
Cardiac - Echo Reports 
Cardiac - Exercise Tolerance 
Test Dr Led 
Cardiac - MRI 
Cardiac & Hepatic Iron Load - 
MRI 
Cardiac CT 
Cardiac -
ExerciseToleranceTest Nurse 
Led 
Cardiac_Echo_Reports 
Cardiolipin Antibodies 
Cardiolipin Antibodies IgG 
Cardiolipin Antibodies IgM 
Carotid - Angiogram (Bilateral) 
Carotid - Angiogram (Left) 
Carotid & Vertebral Artery 
Duplex - Vasc 
Carotid Artery Both Doppler 
(US) 
Carotid Artery Both Doppler 
(US) - Vasc 
Carotids/Vertebral 
Angiography - MRI 
Casts 
Cat Dog-dander GuineaPig 
Epith Rat Mouse 
Cat epithelium and dander 
Catheter site swab - C&S 
Catheter tip  - C&S 
Catheter tip (other) - C&S 
Ca-Thrombin Control 
Ca-Thrombin Time. 
Caval Filter Insertion 
CCA 
CCP Antibodies 
CD19 Absolute 
CD19+CD20 Absolute 
CD20 Absolute 
CD3 CELLS 
CD3% 
CD4 
CD4 CELLS 
CD4% 
CD8 
CD8 CELLS 
CD8% 
CE MRA 
Cefalexin. 
Cefotaxime. 
Cefoxitin. 
Cefuroxime 
Central line site swab - C&S 
Central Venous Access 
Patency - Vasc 
Centromere Abs (FIDIS) 
Cerebral - Angioplasty 
Cerebral Aneurysm - Pc coil 
Emb 
Cerebral Angiography - 4 
Vessel 
Cerebral Venogram - CT 
Cerebrospinal fluid - M 
Cerebrospinal fluid - virology 
Cerebrospinal fluid shunt - M 
Cerebrospinal fluid virology 
cH+ 
Chest 
Chest - CT 
Chest - CT (Contrast) 
Chest - CT (Enhanced) 
Chest - Mobile 
Chest - PA + Lateral 
Chest - US 
Chest - X ray 
Chest - Xray (Mobile) 
Chest & abdomen - CT 
Chest & abdomen & pelvis - 
CT 
Chest (AP) - X Ray 
Chest (PA + Lateral) - X Ray 
Chest + Ribs - X Ray 

Chest CT (Enhanced) 
Chest High Resolution Supine 
- CT 
Chest Unit - Lung Function 
Report 
Chest Xray - Neuro 
Chest Xray (Mobile) - Neuro 
Chickenpox past exposure 
status 
Chickenpox past exposure 
status. 
Chickenpox status 
CHK 
Chlamydia - swabs 
Chlamydia - urine 
Chlamydia genus CFT result 
Chlamydia pneumoniae 
Chlamydia psittaci 
Chlamydia trachomatis 
Chlamydia trachomatis eye 
scrapings 
Chlamydia trachomatis NAAT. 
Chlamydia trachomatis urine 
Chloramphenicol. 
Chloride 
Chloride concentration in 
blood 
Cholesterol 
CHR 
Ciprofloxacin. 
Circulating Immune 
Complexes 
Citrobacter koseri 
CKMB (cardiac markers) 
Clauss Fibrinogen 
Clavicle Bilateral - X Ray 
Clavicle L. - X Ray 
CLO Test 
CLO Test1 
Clostridium difficile report 
Clostridium difficile toxin 
Clue Cells 
CMV antibody (IgG) 
CMV antibody (IgG). 
CMV DNA - log copies/ml 
CMV DNA: 
CMV IgG Avidity 
CMV PCR 
CMVL 
CMVPCR 
CMVV1 
Coagulase Negative 
Staphylococcus 
Co-amoxiclav. 
Cocaine 
Coccyx - X Ray 
Coconut 
Collagen/ADP 
Collagen/EPI 
Collection - US 
Colon - MRI 
Colonoscopy 
Combined Chlamydia & 
Gonorrhea 
Combined throat & nasal 
swab in VTM 
Comment 
Comment (APBS) 
Comment (BCOM) 
Comment (GYCO) 
Comment (TBC1) 
Comment (TBCO) 
Comment (UCOM) 
COMMENT CD20 
Comment Electrophoresis 
Comment Enzymes 
Comment Film 
Comment G6PD 
Comment_ 
Comments (FCOM) 
Comments (FLCO) 
Comments (MCOM) 
Comments (MYCO) 
Comments (RCOM) 
Comments (WCOM) 
Common silver birch 
COMPHENO 
Complement C3 
Complement C4 
Concentration of 
Haemoglobin in blood 
Conclusion 
Contrast - US 
Copper (Serum) 
Coroner 
Corrected Calcium 
Cortisol 
Cortisol  (0 mins) 
Cortisol  (120 mins) 
Cortisol  (150 mins) 
Cortisol  (180 mins) 
Cortisol  (20 mins) 
Cortisol  (210 mins) 
Cortisol  (240 mins) 
Cortisol  (30 mins) 
Cortisol  (60 mins) 
Cortisol  (90 mins) 
Cotrimoxazole. 
Coxiella burnetii phase 1 IgA 
Coxiella burnetii phase 1 IgG 
Coxiella burnetii phase 2 IgA 
Coxiella burnetii phase 2 IgG 
Coxiella burnetii phase 2 IgM 
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Coxiella burnetii/Q-fever 
C-peptide 
C-reactive Protein 
Creatine Kinase 
Creatinine 
Creatinine (enzymatic) 
Creatinine (serum) 
Creatinine (urine - enzymatic) 
Creatinine (urine) 
Creatinine Clearance. 
Creatinine Kinase 
Creatinine Urine 
Cross match requested 
Cryoglobulin Studies 
Cryptococcal Antigen Test 
Cryptosporidia ZN Stain 
CSF Glucose 
CSF Oligoclonal bands 
CSF Protein 
CSF TB 
CSF Xanthochromia Screen 
CT Chest 
CT Chest Enhanced 
CT Chest Hr Sup 
CT Foreign Film 
CT Head 
CT Head Enhanced 
CT Neck Enhanced 
Ctl 
CTR 
Culture (UCL) 
Culture Status 
Cyclosporin Assay - Liver Unit 
Cyclosporin levels 
Cystatin C 
Cytogenetics 
Cytomegalovirus - blood 
Cytomegalovirus - urine 
Cytomegalovirus IgM 
Cytomegalovirus IgM. 
DAGT 
DAT1 
Date result received (TBRE) 
Date sent to MRU 
DCTR 
DCTR1 
D-Dimer 
D-Dimer (Auto) 
D-Dimer (Use for DIC Only) 
Dehydroepiandrosterone SO4 
Delta Ab (IgM) 
Delta Ab (Total) 
Delta RNA Quantitative 
DFTM 
DHS - Theatres 
Dialysis Fistula Duplex - Vasc 
Diff. Wtd. MRI - Neuro 
Diffusion - MRI 
Diffusion MRI - Neuro 
Dilute RVV 
Dilute RVV Confirm 
Dilute RVV Test 
Direct Antiglobulin Test 
Dog dander 
Doppler - US 
Doppler Measurements & 
Calculations 
Double-stranded DNA 
Antibodies 
Doxycycline. 
DPDC 
DPDR 
Drain exit site swab - C&S 
Drain fluid - C&S 
Drainage - US 
Drug Screen (Serum) 
Drug Screen (Urine) 
DRVV % Correction 
DVV Confirm 
E. coli 0157 
EBM Donor - virology 
EBV DNA - Log copies/ml 
EBV DNA Post-Transplant: 
BMT/Liver 
EBV DNA: 
EBV past exposure status (EBV 
VCA IgG) 
EBV past exposure status (EBV 
VCA IgG). 
EBV VCA IgM. 
EBVL1 
EDV(MOD-sp2) 
EDV(MOD-sp4) 
EDV(sp4-el) 
EF(MOD-bp) 
EF(MOD-sp2) 
EF(MOD-sp4) 
EF(sp2-el) 
EF(sp4-el) 
Egg white Milk Fish Wheat 
Peanut Soybean 
EIA Index 
Elbow - MRI 
Elbow - US 
Elbow Both - US 
Elbow L. 
Elbow L. - US 
Elbow L. - X Ray 
Elbow R. 
Elbow R. - US 
Elbow R. - X Ray 
Elbow Rt - MRI 
Electroencephalogram 
ELU1 
 

Elution of bound antibody 
from Red Cells 
Embolisation 
EMG Report 
ENA JO-1 
ENA Scl-70 
ENA Sm 
ENA Sm/RNP 
ENA SSA (Ro52) 
ENA SSA (Ro60) 
ENA SSB (La) 
End Point 
Endocervical swab - M 
Endocrinology Urine Steroid 
Profile 
Endoscopy Report PDF 
Endoscopy Result PDF 
Endotracheal secretions - M 
Enrichment culture 
Enrichment culture 
(RCMF)Enrichment culture 
(RCMS) 
Enterobacter cloacae 
Enteroclysis - CT 
Enterococcus faecalis 
Enterovirus RNA: 
EOS 
Eosinophils 
Eosinophils (EOSI) 
Eosinophils (from film) 
Eosinophils. 
Epithelial Cells 
Epstein Barr virus VCA IgM 
ERCP 
ERCP - Endoscopy 
ERCP & Sphincter 
Erythrocyte Sedimentation 
Rate 
Erythromycin. 
Erythropoietin 
Erythropoietin Level 
Escherichia coli 
ESR 
ESR. 
ESRE 
Estimated GFR 
ESV(MOD-sp2) 
ESV(MOD-sp4) 
ESV(sp4-el) 
Ethambutol. 
Excercise Echo 
Exercise Echo 
External Organisation Result 
Extractable Nuclear Antigens 
Eye swab - M 
F425 
F428 
F8 
FABDOM 
Facet Injection - X Ray 
Facet Joint Injection 
Facial - CT 
Facial - CT (Contrast) 
Facial Bones 
Facial Bones - X Ray 
Factor V Leiden 
FAEC 
Faecal Calpotectin 
Faecal Calprotectin 
Faecal Elastase 
Faecal Occult Blood 
Faeces - Culture 
Faeces virus detection 
FAI 
FBR 
FDP D-Dimer 
FDP D-Dimer (Use for ?PE DVT 
Only) 
Feet - Standing - X-Ray 
Femora - MRI 
Femoral Line - X Ray 
Femur Bilateral - X Ray 
Femur L. - X Ray 
Femur R. 
Femur R. - X Ray 
Ferriscan - MRI 
Ferritin 
Ferritin (Serum Ferritin assay) 
FEV 1 
FEV 1 % Predicted 
FEV 1 % VC MAX 
FEV 1 % VC MAX Post 
FEV 1 Post 
FEV 1 Post % Predicted 
FEV1 
FEV1 % Predicted 
FEV1 / VC Ratio 
FEV1 Post Bronchodilator 
FEV1 Post Bronchodilator % 
Change 
FFCR 
FFCT 
FFMR 
FFNM 
FFUS 
FHIPLM 
Fibrinogen 
Film Comment. 
Finger L. Index - X Ray 
Finger L. Little - X Ray 
Finger L. Middle - X Ray 
Finger L. Ring - X Ray 
Finger R. Index - X Ray 
FIO21 
 

FISH 
Fish  Shrimp  Blue Mussel  
Tuna  Salmon 
Fish cod 
Fistulogram (MS) 
Fit to Fly 
Flexible Sigmoidoscopy 
FLOLRM 
Flucloxacillin. 
FLUI 
Fluid (other) - M 
Fluid Albumin. 
Fluid Amylase 
Fluid Amylase. 
Fluid Bilirubin 
Fluid Bilirubin. 
Fluid Crystal Examination 
Fluid Glucose 
Fluid Glucose. 
Fluid LDH 
Fluid LDH. 
Fluid Total Protein 
Fluid Total Protein. 
Fluid Type 
Fluoro.Only Image Intensifier 
(Theatre) 
Fluroscopic Embolisation 
FLUS 
FMMX 
Folate 
Folate (Serum Folate assay) 
Follicle Stimulating Hormone 
Foot - US 
Foot Both - US 
Foot L. 
Foot L. - US 
Foot L. - X Ray 
Foot L. (Lateral) - X Ray 
Foot R. 
Foot R. - X Ray 
Foot R. (Lateral) - X Ray 
Foot Series 
FOPI 
Forearm - MRI (Contrast) 
Forearm L. 
Forearm L. - X Ray 
Forearm R. - X Ray 
Foreign Body - X Ray (Demo) 
Foreign Body - X Ray 
(Localisation) 
Foreign Films 
FRE1 
Free Androgen Index 
Free Protein S 
Free Thyroxine 
Free Tri-Iodothyronine 
FREP 
Frozen Section Diagnosis 
FS 
FSH (0 mins) 
FSH (20 mins) 
FSH (60 mins) 
FT4 (0 mins) 
Full culture (inc ANO2) 
Full culture (inc ANO2) (SCU) 
Full culture (Sterile Site) 
(FCUS) 
Full culture (Sterile Site) 
(SCUS) 
Fungal Culture 
Fungal Precipitins serology 
FUPLRM 
Fusidic acid. 
FV Loops 
FXC - Vibrio Culture 
G6PD assay (WHO). 
G6PD assay two-stage. 
G6PD.. 
Gallbladder - US 
Gallbladder + Liver - US 
Gallium Imaging - Infection - 
NM 
Gallium Imaging - Lymph - NM 
Gamma-glutamyl Transferase 
Gastric Parietal Cell Abs 
paediatric 
Gastrograffin Enema 
Gastrograffin Meal 
GCR 
GCYTO 
GDHX 
Genital culture 
Gentamicin (Post-dose) 
Gentamicin (Pre-dose) 
Gentamicin level 
Gentamicin level - post-dose 
Gentamicin level - pre-dose 
Gentamicin level - random 
Gentamicin. 
GHPV 
Gilbert's Genetics 
Glandular Fever Test 
Globulin 
Glomerular Filtration Rate - 
NM 
Glucose 
Glucose (120 mins) 
Glucose (150 mins) 
Glucose (180 mins) 
Glucose (20 mins) 
Glucose (30 mins) 
Glucose (60 mins) 
Glucose (90 mins) 
Glucose (Fasting) 
 

Glucose (Plasma) 
Glucose (serum) 
Glucose (whole blood) 
Glucose. 
Glutamic Acid Decarox Abs 
Glycated Hb 
GNOS 
GPC 
GPDA 
Granulocyte PNH clone 
Grass Pollen Mix (standard) 
GX1 
Great Vessels 
Groin swab - C&S 
Gross Description 
Group + Save Rejected 
Group and Screen 
Growth Hormone 
Growth Hormone (0 mins) 
Growth Hormone (120 mins) 
Growth Hormone (150 mins) 
Growth Hormone (180 mins) 
Growth Hormone (20 mins) 
Growth Hormone (210 mins) 
Growth Hormone (240 mins) 
Growth Hormone (60 mins) 
Growth Hormone (90 mins) 
GRP2 
Guided Drainage - CT 
Guided Injection - US 
Gynae Clinical History 
Gynae Comment 
Gynae Cytopathology Report 
Gynae FHSA 
Gynae Infection 
Gynae Recall Status 
Gynae Report part 1 
Gynae Report part 2 
Gynae Report part 3 
Gynae Specimen Description 
Gynae Suggested 
Management 
H+ 
H+ (venous) 
H+. 
H2CO3 mmol/l 
H2CO3 on 1l O2 
H2CO3 on 2l O2 
Haem Other External Results 
Haem Rayne External Results 
Haematocrit (packed cell 
volume %) 
Haematology Disorders - 
Virology 
Haematology disorders 
virology 
Haemoglobin A% 
Haemoglobin A2 % 
(antenatal) 
Haemoglobin A2 % (HbA2) 
Haemoglobin A2 % (HbS) 
Haemoglobin A2 % (pre-op) 
Haemoglobin A2 % (screen) 
Haemoglobin C % (HbC) 
Haemoglobin C % (HbS) 
Haemoglobin D % 
Haemoglobin DNA 
Investigation 
Haemoglobin F % (antenatal) 
Haemoglobin F % (HbF) 
Haemoglobin F % (pre-op) 
Haemoglobin F % (screen) 
Haemoglobin F% (screen) 
Haemoglobin S % (antenatal) 
Haemoglobin S % (HbS) 
Haemoglobin S % (pre-op) 
Haemoglobin S % (screen) 
Haemophilus influenzae 
Haemophilus parainfluenzae 
Hand Bilateral - X Ray 
Hand Both - US 
Hand L. 
Hand L. - US 
Hand L. - X Ray 
Hand R. 
Hand R. - X Ray 
Haptoglobin 
HAV Ab (IgM) 
HAV Ab (Total) 
Hazel nut 
HAZY 
Hb 
HB Elect.pH 6.0 
Hb electrophoresis pH 6.0 
(antenatal) 
Hb electrophoresis pH 6.0 
(pre-op) 
Hb electrophoresis pH 6.0 
(screen) 
Hb electrophoresis pH 8.6 
(antenatal) 
Hb electrophoresis pH 8.6 
(pre-op) 
Hb electrophoresis pH 8.6 
(screen) 
Hb Electrophoresis pH8.6 
Hb. 
HB1 
HBA0% 
HBA1c (DCCT) 
HBA1c (IFCC) 
HBcAb 
HBcAb (IgM) 
HBCB1 
 

HBeAb 
HBeAg 
HBEC 
HBGN 
HBGX 
HbO2 saturation (oximeter) 
HbO2% saturation 
HBsAb 
HBsAg 
HBsAg Confirmatory 
HBV DNA 
HBV DR Mutation Screen 
HBV Genotyping 
HCAX 
HCO3- 
HCV Ab 
HCV Genotype 
HCV RNA Qualitative 
HCV RNA Quantitative 
HDL-Cholesterol 
HDV RNA Quantitative 
Head - Angiography - MRI 
Head - CT 
Head - CT (Enhanced) 
Head - MRI 
Head + Angiography MRI - 
Neuro 
Head MRI - Neuro 
HeartRate 
Helicobacter 13c-H Breath 
Test 
Helicobacter serology 
Helicobacter Stool Antigen 
Helicobacter Stool Antigen. 
Hep_ 
Hep_HBsAgQuant 
Hep_HCVAg 
Hep_IL-28B Genotype 
Hepatitis (acute) with raised 
LFTs 
Hepatitis A exposure status 
Hepatitis A status 
Hepatitis A total antibody. 
Hepatitis A virus IgM 
Hepatitis A virus IgM. 
Hepatitis A virus total Ab 
Hepatitis B - known carrier - 
markers 
Hepatitis B core total Ab 
Hepatitis B core total Ab. 
Hepatitis B e antibody 
Hepatitis B e antigen. 
Hepatitis B immune status 
Hepatitis B known carrier 
markers 
Hepatitis B past exposure 
status 
Hepatitis B post immunisation 
status 
Hepatitis B status 
Hepatitis B surface Ag 
Confirmation 
Hepatitis B surface antibody 
Hepatitis B Surface Antigen 
(HBGN) 
Hepatitis B surface antigen 
screen 
Hepatitis B surface antigen 
status 
Hepatitis B surface antigen 
status. 
Hepatitis B surface antigen.. 
Hepatitis B/C infection status 
Hepatitis B/C status 
Hepatitis C RNA 
Hepatitis C virus antibody 
Hepatitis C virus antibody.. 
Hepatitis C virus IgG. 
Hepatitis C virus RNA 
Hepatitis C virus RNA load 
Hepatitis E Send Away 
Hepatitis Markers Comment 
Hepatitis with raised LFT's - 
virology 
Hepato-Biliary Imaging - NM 
HEV Ab (IgG) 
HEV Ab (IgM) 
HEV IgM 
HEV total antibody 
Hexokinase assay. 
HFE Liver Unit 
HFR 
HHV-6 DNA. 
Hickman Line 
High Flourescence Ratio 
High Fluorescence Ratio 
High Sensitivity CRP 
Hip - Bilateral - MRI 
Hip - Bilateral - US 
Hip - Bilateral - X Ray 
Hip (Adult) - US 
Hip Both - MRI 
Hip Both - X Ray 
Hip Frog Leg - X Ray 
Hip L (AP & Lateral) - X Ray 
Hip L. 
Hip L. - MRI 
Hip L. - X Ray 
Hip L. - Xray 
Hip R (AP & Lateral) - X Ray 
Hip R. 
Hip R. - MRI 
Hip R. - US 
Hip R. - X Ray 
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Hips - Both 
Histology 
Histology Block Description 
Histology Clinical History 
Histology Diagnosis 
Histology Macroscopy 
Histology Microscopy 
Histology Report 
Histology Specimen 
Histone 
Histopathology Result 
Document 
Histopathology Results 
Document 
HIV 1&2 antibody/HIV-1 p24 
antigen 
HIV 1&2 antibody/HIV-1 p24 
antigen. 
HIV Antibody 
HIV type 1 RNA viral load 
quantification 
HIV-1 Genotypic Resistance 
Test 
HIV-1 proviral DNA on 
children <18mths 
HIV-2 Genotypic Resistance 
Test 
HLA B51 Genotype 
HLA B57 Genotype1 
HMPR 
Homocysteine (Plasma) 
House dust mite 
HPLC 
HPLC (antenatal) 
HPLC (pre-op) 
HPLC (screen) 
HRNA1 
HSV 1 AND 2 DNA 
HSV IgG 
HT Ratio 
HTLV 1/2 
HTLV type 1 and 2 antibody 
HTLV type 1&2 antibody. 
Human metapneumovirus 
RNA 
Humerus L. - X Ray 
Humerus R. - X Ray 
HVC 
Hydatid Disease serology 
HYPO 
I ABOAUTO 
I KLE 
IA2 Antibodies 
IAMs - MRI 
IGA 
IgE concentration 
IGF BP-1 
IGF BP-3 
IGF-BP1 
IGF-BP3 
IGG 
IgG Pneumococcal Antibody 
IgG subclass 1 
IgG subclass 2 
IgG subclass 3 
IgG subclass 4 
IGG. 
IGG1 
IgG2 Pneumococcal Antibody 
IGLA 
IGLG 
IGLM 
IGM 
II:C 
IIGE1 
IL-28B Genotype (rs 
12979860) 
Immunoglobulin A 
Immunoglobulin A. 
Immunoglobulin D 
Immunoglobulin E 
Immunoglobulin G 
Immunoglobulin G. 
Immunoglobulin M 
Immunoglobulin M. 
Immunology & Allergy 
External Results 
Immunophenotyping 
Immunophenotyping lab. 
comments 
Immunophenotyping: 
Comment 
Immunophenotyping: 
Conclusion 
Immunophenotyping: Sample 
Type 
Immunotyping Comments 
Immunotyping Concentration 
INC1 
Incorrect HospNo on Group 
and Save Samp 
Influenza A virus CFT result 
Influenza A virus RNA 
Influenza B virus CFT result 
Influenza B virus RNA 
INR 
INR (warfarin) 
INR 50/50 
Insulin 
Insulin Antibodies 
Insulin-Levels 
Insulin-like growth factor 1 
Interim HSV DNA result 
Interim influenza B virus RNA 
Interp HBcore Total 
Interpretation Summary 
Interpreting Physician 
Intrinsic Factor Antibody 
IOG Integrated Report 
 

IRF 
Iron (Serum) 
Iron (Urine) 
Iron Urine (24) 
Isoelectric Focusing 
Isoelectric Focusing (pre-op) 
Isoelectric Focusing (screen) 
Isoniazid. 
IVP 
IVSd 
IVSs 
IX:C 
Joint - US 
Joint Fluid Crystals. 
Jugular L. Int. - Venogram 
K.U.B. 
Kappa:Lambda Ratio 
KCO 
KCOc. 
KCOc. % Predicted 
Ketones (random urine) 
Kidney (Transplant) - US 
Kidney (transplant) US 
Kidney Bilateral - US 
Kidney Imaging (DMSA) - NM 
Kidneys + Bladder - US 
Klebsiella pneumoniae 
Klebsiella species 
Kleihauer % Fetal Cells 
Kleihauer result 
Kleihauer Test 
Knee - MRI 
Knee - Patella L - X Ray 
Knee - Patella R. - X Ray 
Knee - US 
Knee - Xray (Weight Bearing) 
Knee Bilateral - X Ray 
Knee Both - MRI 
Knee Both - US 
Knee L. 
Knee L. - MRI 
Knee L. - US 
Knee L. - X Ray 
Knee L. - X Ray (Weight 
Bearing) 
Knee R. 
Knee R. - CT 
Knee R. - MRI 
Knee R. - US 
Knee R. - X Ray 
Knee R. - X Ray (Weight 
Bearing) 
KUB 
L. Spine 
LA dimension 
LABCODE 
Lactate (CSF) 
Lactate (plasma) 
Lactate concentration in 
blood 
Lactate Dehydrogenase 
Lactulose/Rhamnose ratio 
Lamotrgine. 
Lamotrigine levels 
Latex 
LC1 Antibodies blot 
LDL-Cholesterol 
Left Ventricle 
Leg - Lower R. - MRI 
Leg (Lower) Both - CT 
Leg Bilateral - DVT Duplex - 
Vasc 
Leg Bilateral -Venous 
Incompetence- Vasc 
Leg L. - DVT Duplex - Vasc 
Leg L. - Venogram 
Leg L. - Venous Incompetence 
- Vasc 
Leg R. - DVT Duplex - Vasc 
Leg R. - Venous Incompetence 
- Vasc 
Legionella 
Levetiracetam 
LFR 
LH (0 mins) 
LH (20 mins) 
LH (60 mins) 
Limb - CT 
Linear EUS - Endoscopy 
Linezolid. 
Linogram 
Lipase 
LIT 
Lithium (Serum) 
Little Finger R. 
Liver - Biphasic - CT 
Liver - CT (Contrast) 
Liver - CT (Portogram) 
Liver - MRI 
Liver - MRI (Contrast) 
Liver - US 
Liver - US (Paediatric) 
Liver Biopsy - US 
Liver Biopsy - US (low 
risk/daycase) 
Liver Kidney Microsomal Abs 
paediatric 
Liver Kidney Microsomal 
Antibody 
LKM 
LKM Antibodies blot 
Long Leg Standing View - X 
Ray 
Low Flourescence Ratio 
Low Fluorescence Ratio 
Lower leg Both - MRI 
Lower limb Both - Pinning 
LSUM 
Lumbar Puncture Screening - 
Neuro 

Lumbo-Sacral Spine 
Lung Function Comments 
Lung Perfusion Only - NM 
Lung V/Q Imaging (VQ DTPA) - 
NM 
Lung V/Q Imaging (VQ Kr) - 
NM 
Lung V/Q Scan 
Lung Ventilation Only - NM 
Lung Ventilation/Perfusion 
(VQ) - NM 
Lupus Anticoagulant 
Luteinising Hormone 
LV max PG 
LV mean PG 
LV V1 max 
LV V1 mean 
LV V1 VTI 
LVAd ap4 
LVAs ap4 
LVIDd 
LVIDs 
LVLd ap4 
LVLs ap4 
LVOT area 
LVOT diam 
LVPWd 
LVPWs 
LYM 
Lyme Disease serology 
Lymphadenopathy/Glandular 
Fever screen 
Lymphocyte Count. 
Lymphocytes 
Lymphocytes (from film) 
Lymphocytes (LYMP) 
M2 Antibodies Blot 
Macroprolactin 
Macular rash serology 
Magnesium 
Malaria Parasitaemia 
Malaria serology 
Malarial Parasites 
Malarial Parasites Percentage 
Malarial Parasites Species 
Mammogram - Bilateral 
Mammogram - FV R. 
Mammogram L. - X Ray 
Mammogram R. - X Ray 
Mammography R. 
Mandible - CT 
Mandible - X Ray 
MANKRC 
Mantoux Range 
Mantoux Result 
Manual Retics 
Mass - US 
Mastoids 
MCH 
MCH1 
MCHC 
MCHC. 
MCHC1 
MCV 
MCV1 
Measles IgG (Immunity only) 
Medium Flouresence Ratio 
Medium Fluoresence Ratio 
Melibiose/Rhamnose ratio 
Meropenem Res GNR screen. 
Meropenem. 
Metamyelocyte Count 
Metamyelocytes (from film) 
Methadone Metab 
Met-haemoglobin 
Methylmalonic acid 
Metronidazole. 
MFR 
Microscopy comment 
Midline Insertion 
Misc. Fluid Type 
Misc. Fluid Type I 
Miscellaneous Biochemistry 
(2) 
Miscellaneous Comments 
Miscellaneous Immunology 
Test 
Miscellaneous sample - M 
Miscellaneous tissue sample - 
C&S 
MITO 
Mitochondrial antibodies 
paediatric 
Mitochondrial Antibody 
Mitral Valve 
Mixed anaerobes 
Mixed Coagulase Negative 
Staphylococci 
MKNERC 
MMode 2D Measurements & 
Calculations 
MON 
Monocyte PNH clone 
Monocytes 
Monocytes (from film) 
Mono-nuclear cells 
Morganella morganii 
Mouth swab - C&S 
MPV 
MPV1 
MRCP - MRI 
MRI 
MRI ..... 
MRI Brain 
MRI Foreign Film 
MRI Head - Angiography 
MRI Hips 
MRI Knee 
MRI Lumbar Spine 
MRI Shoulder 

MRI Whole Spine 
MRSA Admission Screen 
MRSA Culture 
MRSA PCR Result 
MRSA Pre-admission Screen 
MRSA Screen 
MRSA to VITEK 
MRSA.. 
MRU TB Culture 
MTHF Reductase 
MTHIRC 
MUGA Imaging (Cardiac - 
Rest) - NM 
Mumps virus IgG 
Mupirocin 5 
Mupirocin. 
MURCHL 
Muscle - US 
Muscle Specific Kinase 
Antibodies 
MV A point 
MV dec slope 
MV dec time 
MV E point 
MV E/A 
MV max PG 
MV mean PG 
MV P1/2t 
MV P1/2t max vel 
MV V2 max 
MV V2 mean 
MV V2 VTI 
MVA(P1/2t) 
MVA(traced) 
MYC1 
MYC2 
Mycobacterium abscessus 
Mycobacterium fortuitum 
Mycobacterium tuberculosis 
complex 
Mycology culture 
Mycology KOH microscopy 
Mycology Results 
Mycophenolate Assay - Liver 
Unit 
Mycoplasma pneumoniae CFT 
Myelocyte Count 
Myelocytes (from film) 
Myoglobin (cardiac markers) 
NAG 
Nail clippings - fungal culture 
Nasopharyngeal aspirate - 
virology 
Nasopharyngeal aspirate 
virology 
NCAC 
Neck - CT (Contrast) 
Neck - CT (Enhanced) 
Neck - MRI 
Neck - MRI (Contrast) 
Neck - Thorax - CT (Contrast) 
Neck - US 
Neck & chest - CT 
Neck & chest & abdomen & 
pelvis - CT 
Neck (Lateral Soft Tissue) - X 
Ray 
Neck-Thorax-Abdomen-Pelvis-
CT (Contrast) 
Neisseria Gonorrhoea 
Neisseria Gonorrhoea - 
Culture 
Neisseria gonorrhoeae NAAT. 
Neomycin. 
NER 
Nerve Root Injection 
(Cervical) -Fluoro 
Neuro Pathology Result 
Neurophysiology - EEG Result 
Neutrophils 
Neutrophils (from film) 
Nitrofurantoin. 
NK % 
NK CELLS 
NM BD CLIN H&S&L 
NM Bone Imaging - 2 Phase 
NM Lung (V/Q) Imaging - VQ 
Kr 
NM Parathy MIBI Imaging 
No Name on Group and Save 
Sample 
No of samples received 
No req form received for GS 
only sample 
No sample received for GS 
only request 
Nocturnal Oximetry 
Non Gynae Report 
Non-gynae Clinical History 
Non-gynae Cytopathology 
Report 
Non-gynae Specimen 
Norovirus RNA. 
Nose swab - C&S 
NPTHY 
NRBC 
NRBC (from film) 
NRH 
NSR 
NTX (C) 
NTX (R) 
Nuclear Antibodies 
Nuclear Antibodies Paediatric 
Nuclear antibodies titre 
Nucleated RBC 
NULL 
Nuts-Peanut Hazel Brazil 
Almond Coconut 
OBSERVATION 
 

Occupational Health - needle 
injury 
Oestradiol 
OGD - Diagnostic 
OGD (Gastroscopy) 
On T4 replacement therapy? 
Oncology External Results 
OP Chole (Theatre) - X Ray 
(Mobile) 
Opiate 
Orbits - CT 
Orbits - CT (Contrast) 
Orbits - MRI (Contrast) 
Orbits - X Ray 
Orbits CT - Neuro 
ORDFILM 
Organic Acids (random urine) 
Organisms (FGR1) 
Organisms (GRO2) 
Organisms (GROR) 
Organisms (SGO1) 
Organisms (SGO2) 
Orthopantomogram - X Ray 
Osmolality (random urine) 
Osmolality Plasma 
Other Foreign Film 
OUTC 
Ova cysts and parasites 
Ovarian Antibodies 
Oxacillin. 
PA acc slope 
PA acc time 
PA max PG 
PA mean PG 
PA pr(Accel) 
PA V2 max 
PA V2 mean 
PA V2 VTI 
PaCO2 (kPA) 
PaCO2 on 1l O2 
PaCO2 on 2l O2 
PACSCD 
PACSIL 
Paed Haem External Test 
Results 
Paed Resp Sleep Study Results 
Paediatric bottle 
Pancreas - MRI 
Pancreas - US 
Pandemic influenza A virus 
H1N1 PCR 
PaO2 (kPa) 
PaO2 on 1l O2 
PaO2 on 2l O2 
Paracetamol Levels 
Parainfluenza virus type 1 
RNA 
Parainfluenza virus type 2 
RNA 
Parainfluenza virus type 3 
RNA 
Parathyroid - US 
Parathyroid Hormone 
Parathyroid Imaging (MIBI) - 
NM 
Parotid - US 
Parovirus B19 IgM 
Parvovirus B19 DNA 
Parvovirus B19 IgG 
Parvovirus B19 IgG: 
Parvovirus B19 IgM. 
Parvovirus B19 IgM: 
Parvovirus B19 past exposure 
status 
Parvovirus Status 
PASSB1 
Patella R. - X Ray 
PatientHeight 
PatientWeight 
PCNA 
PCO2 
PCO21 
PCV1 
PD Fluid 1 Creatinine 
PD Fluid 1 Glucose 
PD Fluid 1 Urea 
PD Fluid 2 Creatinine 
PD Fluid 2 Glucose 
PD Fluid 2 Urea 
PD Fluid 3 Creatinine 
PD Fluid 3 Glucose 
PD Fluid 3 Urea 
PD Fluid Creatinine 
PD Fluid o/night creatinine 
PD Fluid o'night glucose 
PD Fluid o'night urea 
PD Fluid Protein 
PD Fluid Urea 
PDW 
Peanut 
PEF 
PEF % Predicted 
PEF Post 
PEF Post % Predicted 
PEF Post Bronchodilator 
PEF Post Bronchodilator % 
Change 
Pelvis - CT 
Pelvis - CT (Contrast) 
Pelvis - CT (Enhanced) 
Pelvis - MRI 
Pelvis - MRI (Contrast) 
Pelvis - US 
Pelvis (AP) - X Ray 
Pelvis (TV) - US 
Pelvis AP 
Penicillin. 
Penile swab - M 
Penis - US 
Performed date 
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Perfusion - CT 
Pericardium/Pleural 
Peritoneal dialysis fluid - M 
Peritoneal fluid - M 
Peritoneal swab - C&S 
PET CT FDG - NM 
PF1R 
PF2R 
PF3R 
pH 
pH on 1l 
pH on 2l 
pH(T) 
pH1 
Phenytoin levels 
Phosphate 
Phosphate (random urine) 
PI end-d vel 
PICC Exchange/Re-Wiring 
PICC Line Exchange 
PICC Line Insertion 
Piperacillin. 
Piperacillin-tazo 
Pituitary - MRI 
Pituitary - MRI (Contrast) 
Pituitary Fossa - CT (Contrast) 
Placental tissue - M 
Plain Film Foreign Film 
Plasma Adrenaline 
Plasma Noradrenaline 
Platelet Morphology 
Pleural fluid - M 
Pleural Fluid TB 
PLT 
PM Clinical Information 
PM Patient Details 
PM-SCL 
Pneumococcal serology 
Pneumonia (atypical) - 
virology 
Pneumonia (atypical) serology 
PNH 
Pnuem Cap Polysac IgG Ab 
Total 
PO2 
pO21 
Polymorphs 
Porphobilinogen (PBG) 
Porphyrins 24hr Urine 
Portacath 
Post 
Post Liver Biopsy - US 
Post Nasal Space - X Ray 
Potassium 
Potassium concentration in 
blood 
PR31 
Pre CEA/TCD Window 
Assessment - Vasc 
Pre Fistula Mapping Bilateral - 
Vasc 
Pre Fistula Mapping L. - Vasc 
Pre Fistula Mapping R. - Vasc 
Pre Renal Transplant 
Assessment - Vasc 
Pregnancy booking - virology 
Pregnancy booking virology 
Pregnancy Glucose Test 
Pregnancy Test 
Procollagen III Np 
Progesterone 
Prolactin 
Prolactin (0 mins) 
Prolactin (20 mins) 
Prolactin (60 mins) 
Prolactin (dil x5) 
Prolonged Anaerobic Culture 
(FPAC) 
Promyelocyte Count 
Promyelocytes (from film) 
Prostate - MRI 
Prostate Specific Antigen 
Protein (urine) 
Protein C Activity 
Protein Electrophoresis 
Protein/Creatinine Ratio 
Proteus species 
Prothrombin 
Prothrombin Genotype 
Prothrombin Time. 
Pseudomonas aeruginosa 
Pseudomonas stutzeri 
PT Control 
Pulmonary - Angiogram - CT 
Pulmonary - DSA 
Pulmonary Angiogram CT 
Pulmonic Valve 
Pus cells (FGRP) 
Pus cells (GRPU) 
Pus cells (SGRP) 
Pus Cells (UMWB) 
Pus cells (Wet prep) 
Pus swab - M 
Pus TB 
Pyrazinamide. 
Pyruvate 
QPCR 
Quantitation / Titre 
Radial EUS - Endoscopy 
Radial Head R. - X Ray 
Random ALA excretion 
Random PBG excretion 
Random total porphyrin 
excret. 
Random Urine Bilirubin 
Random Urine Blood 
Random Urine Creatinine. 
Random Urine Glucose 
Random urine HMMA 

Random urine HVA 
Random Urine Ketones 
Random Urine Leucocytes 
Random Urine Nitrite 
Random Urine pH 
Random Urine Protein 
Random Urine Protein. 
RAST 
RBC 
RBC count (CSF) 
RBC Count (CSF). 
RCDN 
RDW 
RDW1 
Reconstruction Limb - CT 
Rectal swab - C&S 
Red Blood Cells 
Red Cell Antigen Typing 
Red Cell Folate 
Red Cell Morphology 
Red cell PNH clone 
Red Cells Elution Studies 
Ref Lab Referral 
Reference Lab (TO) 
Reference Laboratory 
Comment (MRSC) 
Referred to (MRE2) 
REJ 
REJC 
Renal - MRI 
Renal Artery/Vein Duplex 
(Native) - Vasc 
Renal Artery/Vein Duplex (Tx) 
- Vasc 
Renal dialysis virology- new 
patient 
Renal Imaging (MAG3 + 
Frusemide) - NM 
Renal Pathology Specimen 
Renals - DSA 
Renin 
Renography Imaging (DTPA) - 
NM 
REPT1 
Research - US - VASC 
Respiratory PCR Flag. 
Respiratory Viral PCR 
Result Comment 
Reticulocyte HB Content 
Reticulocyte Percent 
RETP 
Rh Phenotype 
Rheumatoid Factor 
RHIN 
Rhinovirus RNA 
RHNR 
Ribavirin Assay - Liver Unit 
Ribosomal Antibodies (FIDIS) 
Rifampicin. 
Right Ventricle 
Ring Finger L. 
RINV 
Risperidone. 
RNP 
RORG 
Routine culture (no ANO2) 
Routine culture (no ANO2) 
(SCS) 
RPR 
RRBC 
RSAR1 
RSBR 
RSV CFT result 
RSV subgroup A RNA 
RSV subgroup B RNA 
Rubella status 
Rubella virus IgG 
Rubella virus IgG. 
Rubella virus IgM 
Rubella virus IgM. 
RUGV1 
RV 
RV % Predicted 
RV max PG 
RV mean PG 
RV Predicted 
RV V1 max 
RV V1 mean 
RV V1 VTI 
RVDd 
Sacro-Iliacs - X Ray 
Sacrum - X Ray 
Salicylate 
Salmon 
Salmonella 
SAM 
Sample Quality 
Sample sent to 
SaO2 on 1l O2 
SaO2 on 2l O2 
Saturated oxygen % in blood 
Save Sample 
Scanned Flexible Cystoscopy 
Scanned Flow Rate and 
Residual 
Scanty 
Scaphoid - Bone Imaging - NM 
Scaphoid L. - X Ray 
Scaphoid R. - X Ray 
Schilling Test Part 1 
Screening (H10) 
Scrotum - US 
Selenium (Serum) 
Serratia marscesens 
Serum Electrophoresis 
Serum Iron 
Serum Kappa Light Chains 
Serum lambda Light Chains 
Serum Saved temporarily 

Sex Hormone Binding 
Globulin 
Shigella 
Shoulder - MRI 
Shoulder - US 
Shoulder Bilateral - X Ray 
Shoulder Both - MRI 
Shoulder Both - US 
Shoulder L. 
Shoulder L. - MRI 
Shoulder L. - US 
Shoulder L. - X Ray 
Shoulder R. 
Shoulder R. - MRI 
Shoulder R. - US 
Shoulder R. - X Ray 
Shoulders - CT 
Shrimp 
Sickle Cell Crisis - virology 
Sickle cell crisis serology 
Sickle Solubility Test 
Sickle Solubility Test 
(antenatal) 
Sickle Solubility Test (pre-op) 
Sickle Solubility Test (screen) 
Sinus - CT 
Sinuses 
Sinuses - X Ray 
Skeletal Survey (Metabolic) - X 
Ray 
Skin Biopsy - Direct 
Immunofluorescence 
Skin Prick Test Results 
Skin scrapings - fungal culture 
Skin swab - C&S 
Skull 
Skull - X Ray 
SLA antibodies blot 
Sleep Studies 
Sm/RNP 
Smooth Muscle antibodies 
paediatric 
SMUM 
Sodium 
Sodium concentration in 
blood 
Soft Tissue - US 
Soluble Transferrin Receptor 
Species and comment 
Sphingomonas paucimobilis 
Spine - Thoracolumbar - MRI 
Spine - Whole - MRI 
Spine (Cervical ) - X Ray 
Spine (Cervical + Thor) - MRI 
(Contrast) 
Spine (Cervical) - CT 
Spine (Cervical) - MRI 
Spine (Cervical) - MRI 
(Contrast) 
Spine (Cervical) CT - Neuro 
Spine (Cervical) Lateral - X Ray 
Spine (Cervical) Odontoid Peg 
- X Ray 
Spine (Lumbar + Sacral) - X 
Ray 
Spine (Lumbar) - CT 
Spine (Lumbar) - MRI 
Spine (Lumbar) - MRI 
(Contrast) 
Spine (Lumbar) - X Ray 
Spine (Thoracic) - CT 
Spine (Thoracic) - MRI 
Spine (Thoracic) - X Ray 
Spine (Whole) - MRI 
SPJUNDR 
Spleen - US 
Sputum - C&S 
Sputum - Cystic Fibrosis 
Staphylococcus aureus 
Staphylococcus epidermidis 
Staphylococcus hominis 
Stapylococcus epidermidis 
Stenotrophomonas 
maltophilia 
Sterno-Clavicular Joint L. - X 
Ray 
Sternum - X Ray 
Sticky Label on Sample 
Streptococcal serology 
Streptococcus viridans group 
Submandibular - US 
SUMMARY 
SUMMARY1 
SV(LVOT) 
SV(MOD-bp) 
SV(MOD-sp2) 
SV(MOD-sp4) 
SV(sp4-el) 
Synovial fluid - C&S 
Synovial fluid - C&S & AFB 
Synovial Fluid TB 
T. Tube Cholangiogram 
Tacrolimus Assay - Liver Unit 
TB Test - Cystic Fibrosis 
Sputum 
TB Test - Sputum & TB Test 
TCEL CALCULATION 
TCOM 
Teicoplanin Pre level 
Teicoplanin. 
Tempero Mandibular Joint L. - 
X Ray 
Tempero Mandibular Joint R. - 
X Ray 
Tempero Mandibular Joints - 
X Ray 
Test Comment 
Testo/SHBG Ratio 
Testosterone 

Tetracycline. 
Thiopurine Methyl 
Transferase 
Thoracic Inlet - X Ray 
Thoracolumbar Spine - X Ray 
Thorax - MRI 
Thorax - MRI (Contrast) 
Thorax (Abdomen + Pelvis) - 
CT(Contrast) 
THR 
Throat swab - C&S 
Thrombin time (control) 
Thrombin time (patient) 
Thrombin Time Control 
Thrombin Time. 
Thumb L. 
Thumb L. - X Ray 
Thumb R. - X Ray 
Thyroid - US 
Thyroid Imaging + Uptake (Tc) 
- NM 
Thyroid Peroxidase antibodies 
Thyroid Stimulating Hormone 
Thyroid Stimulating Hormone 
Receptor Abs 
Thyrotoxicosis Therapy - 131 I 
- NM 
Tib & Fib L. 
Tib & Fib R. 
TIBC Result 
Tibia & fibula Bilateral - X Ray 
Tibia + Fibula - MRI 
Tibia + Fibula L. - X Ray 
Tibia + Fibula R. - X Ray 
Tibula + Fibula L. - X Ray 
Tibula + Fibula R. - X Ray 
Time of collection (mins) 
TLC 
TLC % Predicted 
TLC Predicted 
TLCO 
TLCO % Predicted 
TLCOc SB 
TLCOc SB % Predicted 
TLDL 
Tobramycin (Pre-dose) 
Toe R. Great - X Ray 
Toes L. - X Ray 
Toes R. - X Ray 
TORCH screen - Adult 
Total Cholesterol-HDL Ratio 
Total Iron Binding Capacity 
Total Porphyrin 
Total Protein 
Toxoplasma Dye Test. 
Toxoplasma IgG 
Toxoplasma IgM (EIA) 
TR Max PG 
TR Max vel 
Trans Jugular Liver Biopsy 
Transcranial Imaging 
(Paediatric) - Vasc 
Transplant - Adult Haem 
Donor 
Transplant - Adult Haem 
Recipient 
Transplant - Adult Liver Donor 
Transplant - Adult Post BMT 
CMV/Adeno 
Transplant - Adult Post Liver 
CMV load 
Transplant - Adult Pre-Liver 
Recipient 
Transplant - Adult Renal 
Transplant - Paed Liver 
CMV/EBV load 
Trauma Series - X-Ray 
Tree Pollen (Standard) Mix 
Treponemal antibody (TREG) 
Treponemal antibody. 
Treponemal serology 
Trichomonas 
Tricuspid Valve 
Triglyceride 
Tri-iodothyronine 
Trimethoprim. 
Troponin I 
Troponin I (cardiac markers) 
Troponin I. 
Tryptase 
TSDL 
TSH (0 mins) 
TSH (20 mins) 
TSH (60 mins) 
TSH Receptor Binding 
Antibody 
T-Spot TB 
TTCN 
TTSC 
Tuna 
TV max PG 
TV mean PG 
TV V2 max 
TV V2 mean 
TV V2 VTI 
Tx Reaction Investigation 
Report 
Type II PNH clone 
Type III PNH clone 
U OX 
U1RNP 
U-albumin/creat. ratio 
UGT1 
UGT2 
Ulcer swab - C&S 
Ultrasound Foreign Film 
UMYR 
Under General Anaesthetic 
UNIT 

 
Unknown HB% 
Unlabelled Sample 
UOX/CR 
Urea 
Urea (Post dialysis) 
Urea (random urine) 
Urea (serum) 
Urea Reduction Ratio 
Urethral swab - M 
Urethrogram 
Uric Acid 
Urinary Albumin 
Urinary Albumin (24 hour) 
Urine - bag specimen - M 
Urine - catheter specimen - M 
Urine - clean catch - M 
Urine - dipslide - C&S 
Urine - early morning - TB 
culture 
Urine - early morning urine TB 
culture 
Urine - Legionella Antigen 
Test 
Urine - M 
Urine - mid stream specimen - 
M 
Urine - other specimen - M 
Urine - Schistosome Ova 
Urine Albumin conc. 
Urine Blood Screen 
Urine Calcium 
Urine Calcium excr. 
Urine Calcium per unit time 
Urine Copper 
Urine Copper per 24hrs 
Urine Cortisol 
Urine Cortisol over 24hrs 
Urine Creatinine 
Urine Creatinine excr. 
Urine Creatinine per unit time 
Urine Creatinine/ 24 hour 
(enzymatic) 
Urine Dopamine (24 hour) 
Urine Glucose 
Urine Haemosiderin 
Urine HMMA (24 hour) 
Urine HVA (24 hour) 
Urine Legionella antigen 
Urine Leucocytes 
Urine Nitrite. 
Urine Noradrenaline (24 hour) 
Urine Oxalate per unit time 
Urine pH 
Urine Phosphate 
Urine Phosphate per unit time 
Urine Pneumococcal antigen 
Urine Potassium 
Urine Potassium excr. 
Urine protein 
Urine Protein Electrophoresis 
Urine Protein per unit time 
Urine Protein Screen 
Urine Sodium 
Urine Sodium excr. 
Urine Steroids 
Urine Tot. Protein excr. 
Urine Urate 
Urine Urate per unit time 
Urine Urea per unit time 
Urine Urobilinogen 
Urine virology (specify which 
virus) 
Urine vol 
Urine Volume 
Urine volume. 
USS Aspiration 
USS Bowel TP 
USS Collection 
USS Gallbladder 
USS Gallbladder + Liver 
USS Kidneys 
USS Liver 
USS Liver Paediatric 
USS Pancreas 
USS Pelvis 
USS Penis 
USS Scrotum 
USS Soft Tissue 
UURO 
V:C 
VA 
VA % Predicted 
Vaginal (High) swab - M 
Vaginal (Low) swab - M 
Vaginal swab - M 
Valproate levels 
Vancomycin (Pre-dose) 
Vancomycin level - pre-dose 
Vancomycin level - random 
Vancomycin resistant E. 
faecium 
Vancomycin. 
Varicella zoster virus DNA: 
Vascular (Other Investigation) 
- Vasc 
Vascular Line Tip 
VC 
VC % Predicted 
VC Post 
VC Post % Predicted 
VC Post Bronchodilator 
VC Post Bronchodilator % 
Change 
Venogram - MRV 
Venous Bicarbonate 
Venous H+ 
Venous PCO2 
Venous pH 
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Venous PO2 
Vertex WB Imaging 
Vesicle fluid - virus isolation 
Vesicle fluid molecular 
virology 
Video - Cystourethrography 
Video Capsule Enteroscopy 
Report 
VII:C 
VIII:C 
Virology Comment 
Virology Results 
Virus Isolation - miscellaneous 
sample 
Virus Isolation - non blood 
sample 
Vitamin A 
Vitamin D 
Vitamin E 
Vitamin K 
Volume (0-5 hrs) 
Voriconazole level 
VRE Screen 
VRE Screen. 
Vulval swab - M 
VWAG 
VWAT 
VWF Activity 
VWF Antigen 
VWF Antigen. 
WACT 
Ward Unit Summary 
WB 123-I Imaging - NM 
WBC 
WBC (Labelled) Imaging 
(HMPAO) - NM 
WBC (Labelled) Imaging 
(Indium) - NM 
WBC count (CSF) 
WBC count (Fluid) 
WBC Imaging - Indium - NM 
WBC1 
White Cell Morphology 
Wound swab - C&S 
Wrist - MRI 
Wrist - MRI (Contrast) 
Wrist - US 
Wrist + Hand - MRI 
Wrist Bilateral - X Ray 
Wrist L. 
Wrist L. - Arthrogram 
Wrist L. - MRI 
Wrist L. - US 
Wrist L. - X Ray 
Wrist R. - MRI 
Wrist R. - US 
Wrist R. - X Ray 
Wrong DOB on Sample 
WSUM1 
X:C 
XI:C 
XII:C 
Yeast (GYYC) 
Yeast Cells 
Yeast Cells 
Yeast. 
Yeasts (WPYE) 
Yersinia 
Yersinia serology 
Zinc (Serum) 
1-25 Di-Hydroxy Vitamin D 
19G1 
7 day lifecard 
AB INT 5 
Actinomyces 
Adrenal - US 
Adrenaline (random urine) 
Alk. Phos. Isoenzymes 
Alpha-1-antitrypsin genotype 
Amfetamine Class 
Amikacin (Pre-dose) 
Amikacin level - pre-dose 
Amikacin. 
Anaerobic Streptococci 
Angiogram CT - Neuro 
Angiography 4 Vessel - Neuro 
Ankle L. - US 
Ankle R. - US 
Ankles + Feet - MRI (Contrast) 
Anti Striated Muscle Antibody 
Anti Thyroglobulin 
Anti-liver kidney microsomal 
ELISA 
Anti-mitochondrial M2 
Anus + Rectum - MRI 
Aortic arch 
APTR 
Arm - Upper R. - MRI 
Arm (Upper) Both - CT 
ASPEIA 
Aspergillus flavus 
Aspergillus fumigatus 
Aspergillus niger 
Aspergillus terreus 
Axilla L. Biopsy - US 
Barium Meal (MS) 
Barium Swallow 
Bile Acids (urine) 
BK virus DNA 
BK virus DNA - GSTT. 
Blood  Culture 
Blood Cobalt 
Blood Results - Rheumatology 
Bone - CT (Guided Biopsy) 
Bone Densitometry - NM 
Bone Marrow Report 
Bone Marrow Sample - C&S 
Booked Admissions 
Breast Abscess L. - US 
Breast Abscess R. - US 

Breast L. - Fine Needle 
Aspiration - US 
Bronchial Washing TB 
Bronchitis External Results 
Bronchoalveolar Lavage 
CA153 
Calcitonin 
Candida glabrata 
Cardiac - 7 day Lifecard 
Cardiac - CPET 
Cardiac - Pacemaker Check 
Carotid Angiogram L. - Neuro 
Carrot  Potato  Spinach  
Cucumber 
CCASC 
CD19 % 
CD19 CELLS 
CD4C 
Ceftazidime. 
Ceftriaxone. 
Central line tip - C&S 
Cervical Spine 
Cheese cheddar type 
Cheese mould type 
Chest - AP 
Chest (Lat Decub) - X Ray 
Chest (Lateral) - X Ray 
Chest High Resolution Prone - 
CT 
Chest Screening 
Chlamydia trachomatis swabs 
Chromium 
Chromium (Serum) 
Chromogranin A 
Chromogranin B 
CK Iso-enzymes 
Clarithromycin. 
Clavicle R. - X Ray 
Cobalt (Serum) 
Colonoscopy - CT 
Combined Chlamydia & 
Gonorrhoea 
COMBO 
Comment.. 
Cough Monitoring 
Cough swab - C&S 
Cow's Milk 
CRESER 
Cryoglobulins 
CSF AFP 
Cystic Fibrosis Genotype 
Dehydro-epiandrosterone 
desc Aorta 
Dialysis Fistula - PTA 
Dialysis Line 
Digoxin level 
Digoxin. 
Diphtheroids 
Drain site swab - C&S 
Dry Weight 
Egg White 
Egg yolk 
Embolisation - Neuro 
Enterobacter aerogenes 
Enterococcus faecium 
Enterococcus species 
Enterovirus RNA 
Epidural Injection - X Ray 
Ertapenem. 
Exner KCT 
F.B. Demo. 
Facial Bones CT - Neuro 
Faeces - follow up culture 
Faeces - virus isolation 
Feet - MRI 
FEV 1 % VC MAX Best 
FEV 1 % VC MAX Best % 
Predicted 
FHIPRM 
Finger R. Little - X Ray 
Finger R. Middle - X Ray 
Finger R. Ring - X Ray 
Fistulogram 
Fluid TB 
Fluid Triglyceride. 
Fluid Urate 
Foetus - MRI 
Foot R. - MRI 
Foot R. - US 
Forearm R. 
Forearm R. - MRI 
Fosfomycin. 
FTHOXM 
FTYP 
Fungal Culture (FFUN) 
Fungal Culture (FUNC) 
FUPLLM 
Gallium Imaging - NM 
Gastrin 
GAWK (B) 
Glucagon 
Gram positive cocci 
GSR1 
H2CO3 on 1/2l O2 
Hand L. - CT 
Hand R. - US 
HBGA 
Heel R. - X Ray 
Helicobacter pylori serology 
Hep_HBVDRM 
Hep_HBVGen 
Hep_HDVRNA 
Hepatic Iron Index 
Hickman Line - X Ray 
Histology Supplementary 
Report 1 
HIV type 1&2 
antibody/antigen 
HIV-1 proviral DNA Send Away 
HLA broad genotype 

HLA-B27 
HSV 1/2 DNA (Taqman) 
Immunofixation 
Index Finger R. 
Infection screen - bacteriology 
Inferior Vena Cava Filter - 
Temporary 
Interim adenovirus DNA result 
Interim VZV DNA result 
IVP/IVU 
KHMDC Integrated Report 
Klebsiella Screen 
Kluyvera species 
Lateral Foot L. - X-Ray 
Lateral Soft Tissue Neck 
Leg - Lower L. - MRI 
Leg L. - Arterial Duplex - Vasc 
Liver - CT 
Liver Biopsy - US (high 
risk/inpatient) 
Liver Biopsy - US Guided Test 
Only 
LKMT 
Lower GI Endoscopy - Fluoro 
Lower limb pinning  Left 
Lung V/Q Imaging (Per MAA) - 
NM 
Metabolic Skelatal Survey 
Methotrexate levels 
MIBG Therapy - I 131 - NM 
Micturating 
Cystourethrogram 
Micturating 
Cystourethrogram (MS) 
Milk (boiled) 
Miscellaneous Biochemistry 
(1) 
MITT 
MLOLLC 
MLOLRC 
MMEF 75/25 Best 
MMEF 75/25 Best % Predicted 
Mobile - US 
MPA area 
MPA diam 
MRI Pelvis 
MSHRLC 
MTHILC 
Mumps Serology 
Myositis Specific ENA 
N123W2 
Needlestick Injury - virology 
Neurotensin 
NM Gallium Sarcoid 
NM Hepato-Biliary Imaging 
NM I-123 MIBG WITH SPECT 
NM Kidney Imaging (DMSA) 
NM Labelled WBC Imaging - 
Ind 
NM Lung (V/Q) Imaging - VQ 
DTPA 
NM Renography (DTPA) 
Imaging 
NM Thyroid Imaging - Tc I + 
Uptake 
NM Whole Body FDG PET CT 
(King's College 
NM131W 
NMIN04 
NMIN24 
NMINJ 
NMPINJ 
Non Gynae Supplementary 
Report 1 
NPA - bordetella pertussis 
Nuclear Medicine Foreign 
Film 
Octreotide Imaging - NM 
OGD - Additional Procedures 
(Therapeutic 
Opiates Screen 
Organisms (GYO1) 
Organisms (GYO2) 
Organisms (GYO3) 
P/T Amylase Ratio 
PaCO2 on 1/2l O2 
Pancreatic Amylase 
Pancreatic Polypeptide 
PaO2 on 1/2l O2 
Paracetamol 
Paraprotein 
Parathyroid SPECT CT - NM 
Parvovirus B19 DNA Send 
Away 
Parvovirus B19 genotype 
Parvovirus B19 past exposure 
status. 
PEF Best 
PEF Best % Predicted 
Perfusion - CT Neuro 
pH on 1/2l 
Phenobarbitone levels 
PI dec slope 
PI max PG 
PI max vel 
PI P1/2t 
PNH Test 
Polymixin. 
Popliteal fossa R. - US 
Porphyrins Random Urine 
Post Transplant - Olt - US 
Propionibacterium species 
Proteus mirabilis 
Pseudo-aneurysm R.- US 
Duplex - Vasc 
Pseudomonas species 
Pus cells (GYPU) 
PVA(I 
PVA(V 
Q fever Send Away. 

R92 
Random Urine 5HIAA. 
Random Urine Creatinine 
Random Urine Creatinine__ 
RAP systole 
Reference Laboratory 
Comment (FRFC) 
Referred to (FRE1) 
Renal - MRI (Contrast) 
Renal Biopsy - US 
Reptilase Control 
Reptilase Time. 
Retrograde Pyelogram - X Ray 
(Mobile) 
Rivaroxaban 
RVOT diam 
RVSP 
Sacro-Iliacs 
Sacrum - MRI 
Salivary Amylase 
Salmonella enteritidis 
Salmonella species ISOLATED 
SaO2 on 1/2l O2 
SaO2Ox on 1/2l O2 
SaO2Ox on 1l O2 
SaO2Ox on 2l O2 
Scapula L. - X Ray 
Serotype 1 
Serotype 14 
Serotype 18C 
Serotype 19F 
Serotype 23F 
Serotype 4 
Serotype 5 
Serotype 6B 
Serotype 7F 
Serotype 9V 
Shoulder Axial - X Ray 
Shoulder Rt - CT 
Sinus - CT (Contrast) 
Skelatal Survey (Metabolic) - X 
Ray 
Skeletal Survey (Myeloma) - X 
Ray 
Skin Immunofluorescence 
Skull - Lateral Only - X Ray 
Somatostatin 
Sphingomonas spiritivorum 
Spine (Whole) - MRI 
(Contrast) 
Steroid Profile (24 hour urine) 
Streptococcus mitis 
SU2 
Subphrenic - US 
Sulphamethoxazole. 
Sweat chloride 
TE Miscellaneous 
Tempero Mandibular Joints - 
MRI 
Thoracic Spine 
Three Dimensional - CT 
Time since last dose 
Tissue Copper 
Tissue Iron 
Tissue TB 
TNUN 
Toe L. Great - X Ray 
Toes L. 
Tomogram - Bone Imaging - 
NM 
Total Amylase 
Toxoplasma serology SA 
Transcranial Imaging (Adult) - 
Vasc 
Transplant - Paed Haem 
Recipient 
TSDD 
UMC2 
Under Sedation 
UPELV 
Upper GI Paeds 
Upper limb pinning Left 
Urine - Pneumococcal antigen 
Urine - terminal specimen 
Urine Adrenaline (random) 
Urine Creatinine. 
Urine Dopamine (Random) 
Urine Noradrenaline 
(Random) 
US Renal Biopsy 
USAL 
USS Breasts 
USS Kidneys/Bladder 
USS Neck 
USS Thyroid 
Vancomycin level 
Vancomycin level - post-dose 
Vasoactive Intestinal 
Polypeptide 
VC MAX Best 
VC MAX Best % Predicted 
Venoplasty 
Video Fluoroscopy Swallow 
Visual Field 
WB 1-131 Imaging - NM 
WB 123-I mIBG Imaging  - NM 
WBC count (PD fluid) 
WBC Imaging (Technitium 
HMPAO) - NM 
Weight of sweat 
Whole Body - MIBG Therapy - 
I 131 - NM 
Whole Body - MRI 
Wrist Both - US 
Wrist L. - CT 
Wrist R. 
Yeast 
157 
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Appendix 2 
Data cleaning pipeline 

 Modify: rows which have incorrectly formatted columns e.g. instead of 9 columns, 
there are 10 or 11 columns, see Figure 4 Raw clinical data format  

o Organism names include multiple “+”  
o Oestradiol or parathormone results  
o Culture results 

 Delete:  
o Meaningless test names (often comments or addendums to the actual test 

which remains in the dataset), see Appendix 4. 
o Meaningless test results (often reflect problems with the sample), see 

Appendix 5. 
 Categorise visit: based on visit type code and location, see Appendix 6. This creates 

two notable subgroups: 
o all adult haematology outpatients  
o all adult inpatient admissions (to haematology or medical wards only) 

 Correct:  
o Errors where data = “NULL” for either date of “test requested” or date “results 

released” 
o All variable formats (date, string, number) 

 Delete:  
o any entry outside the “admission dates”. This ensures that we only capture 

tests done on the same day as a haematology clinic day, or during a 
haematology admission. Date errors can occur when clinicians select the 
incorrect visit when requesting a test. 

 Manipulate data: 
o Re-configure the data to create a table with: 

 ROWS: unique hospital numbers /clinic dates as rows 
 COLUMNS: laboratory tests 

o Transform values containing ‘<’ or ‘>’ to numerical values: eGFR, CRP, NRBC, 
Urine ACR, haptoglobin, folate 

 Merge: laboratory variables with changes to name during study period: 
o ‘Hb’ and ‘Hb.’, ‘MCHC’ and ‘MCHC.’, ‘%hypo’ and ‘% hypo’; ‘eosinophil’ and 

‘eosinophil.’; and ‘iron (serum)’ and ‘serum iron’  
 Final laboratory results: see Appendix 7  
 Add: 

o Demographic data:  
 date of birth 
 age at test (exact) 
 sex 
 sickle genotype 
 alpha globin genotype 
 G6PD status 
 ethnicity: whether African / African-Caribbean or not (one patient is 

Yemeni) 
 alpha globin status: using the KCH red cell laboratory customised 

genetics panel which includes the −α3.7 (common African deletion) and 
−α4.2 alpha thalassaemic variants only. 

o Study ID numbers 
o HbFg: see chapter 4 

 HbFg = 1.89 +0.14×rs6545816+0.3 ×rs1427407+0.13 
×rs66650371+0.1×rs7482144 



55 
 

 Genotype = 0,1,2 depending on number of HbF boosting alleles 
present 

o Calculated MDRD_GFR (mL/min/1.73 m2) = 175 × (Scr /88.4)-1.154 × (Age)-0.203 × 
(0.742 if female) × (1.212 if African American)  

o Proteinuria category – three categories as per NICE: uACR <3, <30, over 30 
o Haemolytic index for the validated values – based on a principal components 

analysis of lactate dehydrogenase (LDH), aspartate transaminase (AST), 
absolute reticulocyte count, total bilirubin. See section 2.5. 

o First and last dates of haematology review 
o Hospitalisation rates, see section 2.6. 

 Per patient: number of admissions/ observation period  
o Mortality and date of death, see section 2.7. 
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Appendix 3 
Infographic demonstrating years of attendance of 712 KCH adult patients 

Patient years of attendance to the KCH haematology 2004-13 inclusive (10 years). Total 712 
patients, each (narrow) row represents one patient over the 10 years, with a scale (number of 
patients) on the right hand side. 
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Appendix 4 
List of meaningless test names 

 

Meaningless test names deleted during data cleaning (often comments or addendums to the 

actual test which remains in the dataset). 

 

1st Addendum 

Diagnosis 

1st Addendum 

Microscopy 

2nd Addendum 

Diagnosis 

2nd Addendum 

Microscopy 

Additional 

Information 

Age Band (Years) 

Age Band (Yrs) 

Authorised by 

AVA(I 

AVA(V 

Comment 

Comment (APBS) 

Comment (TBC1) 

Comment (UCOM) 

Comment 

Electrophoresis 

Comment Enzymes 

Comment G6PD 

Comment_ 

 

Comments (MCOM) 

Comments (RCOM) 

Comments (WCOM) 

compheno 

Conclusion 

Date result received 

(TBRE) 

Date sent to MRU 

Group + Save 

Rejected 

Gynae Clinical History 

Gynae Comment 

Gynae Cytopathology 

Report 

Gynae FHSA 

Gynae Infection 

Gynae Recall Status 

Gynae Report part 1 

Gynae Report part 3 

Gynae Specimen 

Description 

 

Gynae Suggested 

Management 

Interpretation 

Summary 

Interpreting Physician 

LABCODE 

Misc. Fluid Type I 

Miscellaneous 

Comments 

Miscellaneous 

Immunology Test 

Miscellaneous sample - 

M 

Miscellaneous tissue 

sample - C&S 

NM BD CLIN H&S&L 

No Name on Group and 

Save Sample 

No of samples received 

No req form received 

for GS only sample 

No sample received for 

GS only request 

Non Gynae Report 

Non-gynae Clinical 

History 

Non-gynae 

Cytopathology 

Report 

Non-gynae 

Specimen 

OUTC 

Paed Haem 

External Test 

Results 

REPT1 

SAM 

Sample sent to 

Save Sample 

Sticky Label on 

Sample 

Under General 

Anaesthetic 

Unknown HB% 

Unlabelled sample 

Wrong DOB on 

sample 
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Appendix 5 
List of meaningless test results 

 
Meaningless test results deleted during data cleaning (often reflecting problems with the 

sample). 

 
aged 
B 
D) 
DUPLICAT 
EDTA 
HAEM 
HEMOLY 
INS 
INSU 
INSUFF 
N/A 
NA 
NOT DONE 
RECEIVED 
UNS 
UNSUIT 
x-nores 
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Appendix 6 
Categorisation of clinical visit type for clinical dataset 

Categorisation into clinical visit type: based on visit type code (column 9) and location (column 6) 
Categorisation Visit Type 

Code 

Location (see below for definitions of wards) 

Adult Inpatient Inpatient or 
Emergency 

Include Haematology, Clinical Decision Unit, Medical, Guthrie, ITU, CCU/Acute Coronary Wing HDU.  

Excluded Inpatient Inpatient Obstetric, Apheresis, chemo, chest, endo, medihome, Cardiac Catheter Suite, Frank Cooksey, Haemodialysis Unit, 
Clinical Research, Renal satellite unit 

Paed Inpatient Inpatient Paed wards 
Haematology Day Case Inpatient Haematology Day Case only 
AdultHaemOutpatient Outpatient Haematology outpatient 
Paed Outpatient Outpatient Paed haem OP or Paed OP 
Adult Other Outpatient Outpatient Any other OP clinic 
AdultEmergency Emergency A&E or CDU (not required) 
Results Results  
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Ward definitions 
ITU Paediatric Surgical Medical Obstetric Cusp of IP/OP Haem 

Kinnier Wilson 
Liver ICU 
Medical Critical 
Care Unit 
  
  
  
  
  
  
  
  
  

Butlin 
Lion 
Philip Isaacs Day 
Care 
Princess 
Elizabeth 
Rays Of 
Sunshine 
Toni & Guy 
Mountbatten 
  
  
  
  
  

Acute Surgical 
Unit 
Brunel 
Christine Brown 
(but medical 
historically) 
Cotton 
Katherine Monk 
Lister 
Lonsdale 
Mary Ray 
Matthew Whiting 
Twining 
Coptcoat 
Victoria & Albert 

Annie Zunz 
Dawson 
Donne 
Fisk & Cheere 
David Marsden 
Leighton 
Oliver 
The Friends Stroke Unit 
Trundle 
Trundle & Waddington 
Victor Parsons Unit 
Medical AAU 
Todd 
Guthrie 
Fisk 
Cheere 
Howard 
Medical Assessment 
Centre 
Sam Oram 
Murray Falconer 

Antenatal William 
Gilliat 
Maternal Assessment 
Unit 
Midwifery Centre 
Nightingale Birth 
Centre 
Postnatal William 
Gilliat 
William Gilliat 
Sylvia Henley 
  
  
  
  
  

Apheresis Room 
Chemotherapy Unit 
Chest Unit 
Clinical Decision Unit 
(A&E) 
Endoscopy Suite 
Haematology Day Case 
Haematology OPD 
Medihome 
Day Surgery 
Cardiac Catheter Suite 
Frank Cooksey 
COOK 

Davidson 
Derek Mitchell 
Unit 
Elf & Libra 
Guthrie 
R D Lawrence 
Waddington 
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Appendix 7 
Clinical information in the clinical dataset 

 

Basic 
demographics 

Attendance and 
admissions date 

Haematology Biochemistry Calculated 
values 

HospitalNumber 
StudyID 
Flag_DNA 
Flag_MEGAdata 
DOB 
AgeAtTest 
Genotype 
Alpha 
Sex 
G6PD 
AfricanOrCaribbe
anFlag 
DateAdmission 
DateDischarge 
Location 
DateTestRequest
ed 
TypeCode 

FirstDate 
LastDate 
YearsObserved 
NumberOfOutpatie
nts 
NumberOfAdmissio
ns 
AvgLengthOfStay 
TotalLengthOfStay 
AdmissionFreqPerY
ear 
FlagMoreThan2Yrs
YrsObs 

WBC 
Hb 
MCV 
MCH 
MCHC 
PCV 
RBC 
RDW 
RRBC 
% Hypo 
Neutrophils 
Lymphocytes 
Monocytes 
Eosinophils 
Basophils 
PLT 
MPV 
PDW 
Absolute 
Reticulocyte 
Count 
Reticulocyte 
Percent 
Reticulocyte 
HB Content 
IRF 
NRBC 
Nucleated 
RBC 
Haemoglobin 
F % (HbF) 

Lactate 
Dehydrogenase 
Erythropoietin 
Level 
sTfR 
C-reactive Protein 
Creatinine 
Urea 
Estimated GFR 
CystatinC 
U-albumin/creat. 
ratio 
uPCR 
Potassium 
Sodium 
Phosphate 
Bilirubin (Total) 
Bilirubin 
(Conjugated) 
Alkaline 
Phosphatase 
ALT 
Aspartate 
Transaminase 
Gamma-glutamyl 
Transferase 
Total Protein 
Albumin 
Globulin 
Calcium 
Corrected 
Calcium 
Ferritin 
Serum Iron 
corrected 
TIBC Result 
% Iron Saturation 
B12 
Folate 

Haemolytic 
Index 
HbFg 
FlagValidated 
MDRD_GFR 
NICE 
proteinuria 
category 
MaxUACRcate
gory 

 

  



62 
 

Appendix 8 
Comparing HbF% in pregnancy/not in pregnancy 

Of 712 patients with SCD at KCH, 25 women (all sickle genotypes) had paired HbF% values both 

during first trimester pregnancy and in steady state (non-pregnant). None of these values were 

taken within three months of either a transfusion or hydroxycarbamide. Median non-pregnant 

HbF%=7.0 (range 0.2-22.5, IQR 4.7-10.15), median pregnant HbF%=8.1 (range 0.3-22, IQR 5.7-

13.75), for distribution of HbF% in these two states, see Figure 14.  

Figure 14 Histograms to compare HbF% when pregnant/not pregnant 

HbF% values were normalised by applying a natural logarithm (Ln) and then compared using a 

paired student’s t-test. Pregnancy Ln HbF% were significantly higher than non-pregnant values 

(t=4.835, df=24, p<0.0001). 
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Appendix 9 
Comparing HbF% in the acute setting versus steady state 

Of 712 patients with SCD at KCH, 127 (all sickle genotypes) had paired HbF% values available 

both in steady state and during acute hospital admission. None of these values were taken 

within three months of a transfusion or being on hydroxycarbamide. Median steady-state 

HbF%=4.0 (range 0.2-27.7, IQR 1.8-8.3), median acutely unwell HbF%=4.5 (range 0.2-28, IQR 

1.8-8.2), for distribution of HbF% in these two states, see Figure 15.  

 

For HbSS/SB0 thalassaemia only (N=99), median steady-state HbF%=5.850 (range 0.4-27.7, IQR 

2.5-9.25), median acutely unwell HbF%=5.5 (range 0.3-28, IQR 3-9.275), for distribution of 

HbF% in these two states, see Figure 16. 

For HbSC only (N=25), median steady-state HbF%=0.7 (range 0.2-8.7, IQR 0.6-1.45), median 

acutely unwell HbF%=0.7 (range 0.2-9.5, IQR 0.55-1.6), for distribution of HbF% in these two 

states, see Figure 17. 

Figure 15 Distribution of HbF% in steady state and acute settings for all sickle genotypes 

 

Figure 16 Distribution of HbF% in steady state and acute settings for HbSS/HbSβ0  patients 
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Figure 17 Distribution of HbF% in steady state and acute settings for HbSC patients 

HbF% values were normalised by applying a natural logarithm (Ln) and then compared using a 

paired student’s t-test. There was no statistical different between steady state and acute Ln 

HbF% (t=1.340, p=0.183). 

For HbSS/SB0 thalassaemia (N=99), there was no statistical different between steady state and 

acute Ln HbF% (t=1.267, p=0.208). 

For HbSC (N=25), there was no statistical different between steady state and acute Ln HbF% 

(t=0.579, p=0.568). 
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Survival of patients with sickle cell disease (SCD) in high-income
countries has improved greatly in the last 60 years. In 1960, it was
described as a “disease of childhood”1 whereas 25 years later, the
Cooperative Study of Sickle Cell Disease reported that 85% of hemo-
globin SS (HbSS) patients lived to adulthood. More recently, the
estimate is 99% in London,2 97% in Paris,3 and 94% in the United
States.4

Survival estimates have continued to improve; in 1994, the median
survival for patients with HbSS/Sb0 thalassemia was estimated at 42 to
48 years,5 increasing to 53 to 58 years in Jamaica in 20016 and 58 years
in the United States in 2014.7 Nonetheless, the life expectancy of
patients with SCD is still shortened by.2 decades compared with the
general population.8-10

This study evaluates survival among adult patients with SCD
followed at a single center in the United Kingdom. The study was an
audit of clinical practice, and involved analysis of data collected in
routine clinical care. All procedures followed were in accordance with
the ethical standards of the Helsinki Declaration of 1975, as revised in
2008. Seven hundred twelve adult patients with SCD (16-80 years of
age) at King’s College Hospital (London, United Kingdom) were
observed over 10 years (2004-2013 inclusive) and mortality outcome
was identified (5268 patient-years of observation; median, 8 years of
observation per patient).

All patients, except for 1, were of African or African-Caribbean
heritage. Of the 712 patients, 444 (62%) were HbSS, 229 (32%) were
HbSC, 33 (5%) were HbSb1 thalassemia, and 6 (1%) were HbSb0

patients. For subanalysis, we considered HbSS andHbSb0 thalassemia
patients as a group.Themedian age forHbSS/Sb0 patientswas 32years
(interquartile range [IQR], 25-43 years); HbSC, 39 years (IQR, 29-48
years); andHbSb1 thalassemia, 40 years (IQR, 31-58 years).a-Globin
genotypes were available in 542 patients (76%) of which 62% were
aa/aa, 32% aa/a2, and 5% a2/a2 genotypes. During the study
period, 72 patients (all HbSS) had received hydroxyurea therapy, and
71 patients had received regular blood transfusion. We underline the
low uptake of hydroxyurea therapy in our cohort. Oxygen saturations
by pulse oximetry and laboratory data collected during outpatient clinic
attendance were documented. Laboratory results were averaged over
the 10-year period to create a “steady-state” value for each patient. The
mean number of hospital admissions under hematology for each patient
was calculated from the total admissions/number of observed years of
admissions. Local hospitals were contacted to identify outcome in
patients not seen in 2012 or 2013; despite this, 104 (14.6%) were not
reviewed in 2012 or 2013. Data collection finished on July 31, 2015.

IBM SPSS Statistics 22 was used for statistical analyses. Contin-
uous variableswere log-transformedwhere necessary to obtain nor-
malized distributions. Kaplan-Meier survival analysis considered
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Figure 1. Kaplan-Meier survival curves. (A) Survival curve by sickle genotype. (B) Survival curve for HbSS/Sb0, by hospitalization frequency.
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nonfatal cases as censored at their last clinic visit. Univariate Cox
regression analysiswas undertaken for theHbSS/Sb0 subgrouponly to
identify risk factors for mortality. Dichotomous variables were
handled as follows: a-thalassemia, default5 no; sex, default5male;
fetal hemoglobin (HbF)basedonmedian split of validatedHbFvalues,
default HbF ,5.5%; iron overload based on ferritin .1000 mg/L,
default5 no; mean hospitalization rate, default#0.5 admissions per
year.We chose this cutoff based on the very skewed data distribution:
it is clinicallymeaningful (equivalent to1 admission every 2years) and
to ensure we had large enough numbers in the “high admission rate”
group for statistical analyses.

During the study period, 43 of the 712 patients (6.0%) died at a
median age of 42 years (IQR, 31-48 years). They included 33
deaths in the 450 HbSS/HbSb0 group (7.3%), at a median age of 41
years (IQR, 30-47 years), and 8 deaths in 229HbSC patients (3.5%)
at a median age of 46 years (31-72 years). For the HbSS/HbSb0

group, Kaplan-Meier analysis gave an estimatedmedian survival of
67 years (confidence interval [CI], 55-78 years), significantly lower
than in HbSC (P, .001; Figure 1A). For HbSS/HbSb0, there was a
90% estimated survival to 45 years (39-51 years), 80% to 51 years
(CI, 44-57 years), and 70% to 60 years (CI, 51-69 years).

Subanalysis was undertaken for the HbSS/HbSb0 subgroup; the
sample size in the HbSC subgroup was too small. Median survival in
patients with high hospital admission rates (.0.5 admissions per year)

was 60 years (CI, 43-77 years), significantly lower than that in patients
with low admission rates (#0.5 per year) (P5 .001; Figure 1B).

Univariate Cox regression analysis (Table 1) revealed that neither
a-thalassemia nor sex were significant risk factors for death. Lack of
difference in survival between the sexesmay be due to the lownumbers
of deaths. Hospitalization frequency was a simple but strong predictor
of survival in SCD; the risk of deathwasmore than threefold if patients
had high-frequency admissions compared with those with low admis-
sion rate. Neither hydroxyurea nor blood transfusion was associated
with mortality. This likely reflects both the relatively low use of these
therapies in our cohort and also the disproportionate use of these
therapeutic strategies in our younger patients, confounding the data.
Risk of death was increased nearly threefold if baseline oxygen
saturations were low (,95%).

For steady-state laboratory results, risk of death was increased
if there was: increased white blood cell count, low baseline HbF
level, higher lactate dehydrogenase, higher C-reactive protein, or iron
overload (ferritin.1000mg/L).Thecorrelationofdisease severitywith
iron overload is likely via transfusion rate; it is unclear whether iron
overload in itself is an independent risk factor. For hepatic enzymes,
risk of death was increased if total bilirubin, aspartate transaminase
(AST), or alkaline phosphatase were raised, but neither alanine
transaminase nor g-glutamyl transferase affected mortality risk. This
may reflect red cell rather than hepatic origin of bilirubin and AST.
Conspicuously, AST provides more dramatic hazard ratios than
lactate dehydrogenase as a marker of hemolysis. Both measures of
renal dysfunction (creatinine and urinary albumin creatinine ratio)
demonstrated significant associations with mortality.

Multivariate Cox regression analysis (Table 2) was based on com-
bining variables associated with risk of death in the univariate analysis,
plus sex and age at the start of the study. Variables that remained
independently significant after multivariate analysis were high admis-
sion rate (.0.5 per year), Ln creatinine, and Ln aspartate transaminase,
each associated with striking hazard ratios (Table 2), suggesting that
poor renal function, excess hemolysis, and frequent hospital admissions
can all contribute independently to mortality risk in SCD.

In this retrospectiveanalysis,wehavedemonstratedahighestimated
survival (median, 67 years) for adultswithHbSS/HbSb0 at a singleUK
center, which is markedly higher than recent estimates from other
institutions.We speculate the reasons: close monitoring of patients in a
specialist hematology clinic, plus regular joint care with other special-
ists (renal, hepatology, neurology, cardiology, obstetrics, and orthope-
dics); inpatient management by a dedicated health-care team; on-site
erythrocytapheresis; and a focused “transition program” to ensure safe
transition of teenagers to the adult service. Four of the 43 deathswere in
patients under the age of 25 years: 1 from hemopericardium due to stab
wound, 1 from cerebral hemorrhage, and 2 from fulminant hepatic
failure. We did not assess the socioeconomic class of each patient, but
they were from a broad spectrum of social backgrounds. All of these
features are similar to other large sickle centers in the United Kingdom.

We acknowledge some study limitations. As an adult-only study,
exclusion of pediatric patients may have inflated survival estimates;
however, the vast majority of SCD patients reach adulthood in the

Table 1. Univariate Cox regression analysis for HbSS/HbSb0

thalassemia

HbSS/HbSb0 thalassemia Hazard ratio (95% CI) P value

Demographics

a-Thalassemia* 1.34 (0.67-2.71) .411

Sex† 0.67 (0.34-1.34) .261

Admissions

High admission rate, .0.5/y‡ 3.13 (1.57-6.26) .001

Hydroxyurea use 1.48 (0.57-3.86) .42

Transfusions 1.00 (0.35-2.87) .99

Steady-state O2 saturations

Oxygen saturations ,95%§ 2.84 (1.36-5.92) .005

Hematology

White blood cell count, 3109/L 1.18 (1.04-1.35) .01

Hemoglobin, g/L 0.98 (0.96-1.00) .07

Platelets, 3109/L 1.00 (0.99-1.00) .16

Reticulocytes, 3109/L 1.00 (1.00-1.00) .29

Fetal hemoglobin high/low|| 0.44 (0.20-0.96) .04

Biochemistry

Lactate dehydrogenase, IU/L 1.00 (1.00-1.00) .04

Ln C-reactive protein, mg/L 1.98 (1.16-3.38) .013

Ferritin .1000 mg/L{ 2.52 (1.21-5.23) .013

Liver enzymes

Ln total bilirubin, mmol/L 1.78 (1.02-3.10) .04

Ln aspartate transaminase, IU/L 3.84 (2.11-7.00) ,.001

Ln alanine transaminase, IU/L 2.37 (0.91-6.22) .08

Ln g-glutamyl transferase, IU/L 1.44 (0.97-2.14) .07

Ln alkaline phosphatase, IU/L 3.24 (1.93-5.45) ,.0001

Renal function

Ln creatinine, mmol/L 2.11 (1.31-3.40) .002

Ln urinary albumin creatinine ratio, mg/mmol 1.34 (1.07-1.68) .01

Significant hazards (risk factors) are italicized. Nonnormal continuous variables

were natural logged for statistical comparison (marked “Ln”). Dichotomous variables

were handled as follows:

*a-Thalassemia, default 5 no.

†Sex, default 5 male.

‡Mean hospitalization rate, default #0.5 admissions per year.

§Oxygen saturations, default 5 normal ($95%).

||HbF based on median split of validated HbF values, default HbF ,5.5%.

{Iron overload based on ferritin .1000 mg/L, default 5 no.

Table 2. Multivariate Cox regression analysis for HbSS/HbSb0

thalassemia

HbSS/HbSb0 thalassemia Hazard ratio (95% CI) P value

High admission rate, .0.5/y 2.09 (1.02-4.29) .04

Ln creatinine 3.13 (1.83-5.33) ,.0001

Ln aspartate transaminase 5.82 (2.93-11.54) ,.0001

Age and sex as cofactors.
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United Kingdom.2We concede that we did not model for those “lost in
transition” between pediatric and adult care. However, all 100 patients
who turned 19 years of age in 2008 to 2013 inclusive (data from the
King’s Pediatric Sickle database) have been seen in the adult clinic.We
also recognize some missing data for those not reviewed at the end of
the study period, despite repeated attempts to obtain information. We
also acknowledge the low uptake of hydroxyurea in our cohort (72 of
450 of HbSS/HbSb0 patients).

Although life expectancy for a patient with SCD in the United
Kingdom continues to improve, it still falls behind that in the general
population in London, where it is 80.3 years for men, and 84.2 years
for women.11 We confirmed known predictors of mortality in SCD
including markers of cardiorespiratory dysfunction, renal impairment,
and hemolysis as well as frequent hospitalization rate.5,6,12-14 Although
these risk factors are not causative, they certainly contribute to the
mortality and morbidity in SCD. These risk factors identify higher risk
patients who perhaps should be prioritized for therapies including
hydroxyurea and hematopoietic stem cell transplantation.
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3.1. Introduction 
3.1.1. Selecting “tag” markers and genome-wide genotyping arrays  

Genetic association studies test whether different alleles of a gene are associated with a trait: 

in case-control studies, whether one allele is more frequent among cases compared to 

controls, and in quantitative trait studies, whether trait values are higher among carriers of 

one allele than another. Identification of a locus associated with a trait or disease is then 

followed by high resolution mapping to identify the causal variant. This relies on the concept of 

linkage disequilibrium (LD), where the mapped variant acts as a “tag” for the causal variant as 

they are both inherited as a block due to the close physical proximity. Genetic association 

studies are motivated by this concept of LD between alleles at two loci: carrying a specific 

allele at the first locus gives information on the allele carried at the second. A significant result 

for testing association between disease and marker implies the association is either (Figure 1):  

 Direct: the variant allele directly affects disease risk (D)  

 Indirect: the tested marker (M) is in linkage disequilibrium with the causal disease 

mutation – tends to occur on the same ancestral chromosome: a ‘tag’ variant 

 Spurious: due to confounding or chance 

 
Figure 1 LD blocks and disease-causing genetic variants (D) versus indirect markers (M) 

 

An ideal whole-genome assay system would genotype every polymorphic site in the genome 

(i.e. sequencing), but this is still too expensive for large samples. Instead, one can select 

variants (or “tag markers”) to use, based on LD information, in the hope that causal variants 

will be in LD with some of them. The first successful genome-wide association study (GWAS) 

used less than 100,000 markers and identified one variant for myocardial infarction(Ozaki et 

al., 2002). An association between a tag variant and disease implies the existence of LD 

between the marker and the causal locus i.e. that the causal variant is near the marker, see 

Figure 2. 

 
Figure 2 Direct and indirect association testing, adapted from (Hirschhorn and Daly, 2005): 

(a) candidate variant (red) is directly tested for association with a disease phenotype. (b) the 
variants to be genotyped (red) are chosen on the basis of linkage disequilibrium to provide 
information about as many variants as possible. In this case, the blue variant is tested for 
association indirectly, as it is in LD with the other three (red) variants.  
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When creating a micro-array, then, the aim is to select the minimum number of tag variants 

that are in sufficient LD with the maximum number of unselected variants. Genome-wide 

genotyping projects (HapMap project, 1000 Genomes Project) were developed with precisely 

the aim to create a reference set of LD data on the “whole” genome, in order to identify not 

just polymorphic sites, but haplotype structures (LD blocks) in different representative 

populations. These public data can be used as “reference panels” for a variety of 

bioinformatics purposes. These projects showed that LD can persist between loci kilobases 

apart, but that this is dependent upon the age of the population; there is more LD in European 

and Asian populations compared to African populations. Therefore, good coverage of the 

human genome can be achieved with reasonably few tag variants but African populations will 

require more tag variants to achieve good coverage of the genome. As a result, commercial 

companies have developed generic “chips” or “micro-arrays” for genome-wide analysis. The 

market is now dominated by two companies: Illumina (tag variants are chosen for reliable 

genotyping) and Affymetrix (“random” variants spread more evenly across the genome). The 

first wave of genome-wide association studies (2005-7) used 100,000 to 500,000 markers. 

Chips then started using over 1,000,000 variants (equivalent to one variant per <3kb).  

 

More recently, the advent of imputation to infer non-genotyped variants based on densely 

genotyped reference panels, means many millions of variants can now be used in genome-

wide analyses despite the lower density of markers on chips. Imputation is a method for 

estimating unobserved genotypes; by combining study data with a publicly available reference 

panel, unobserved variants values are predicted (imputed) based on haplotype data in the 

reference panel. This is based on linkage disequilibrium information from the reference panel 

(data such as the 1000 Genomes Project).  

 

3.1.2. Common disease, common variant hypothesis: basis of epidemiological 
genetic studies, including GWAS 

The “common disease, common variant” hypothesis states that common diseases, present in 

all major human populations, are caused by universally common alleles. In contrast, rare 

variants cannot be distinguished by epidemiological data. This concept drives the success of 

genome wide association studies (GWAS) which have identified common variants contributing 

to the inherited component of common diseases. In contrast, rare variants (Mendelian 

diseases) have historically been identified through family studies; and now are more amenable 

to whole genome or whole exome sequencing approaches(McCarthy et al., 2008). See Figure 3 

for common versus rare variants, and how the allele frequency and penetrance dictates study 

approaches.  
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Figure 3 Common versus rare variants, from (McCarthy et al., 2008) 

 

However, there remains a disparity between the observed heritability for many common 

diseases and the relatively small amount of increased risk currently attributable to known 

disease-relevant variants. This is often referred to as “missing heritability” which is explained 

by common and uncommon variants, at both already identified loci and unknown other loci. 

Previously, it was broadly accepted that rare variants played a major role in this deficit, but 

more recent analysis in the diabetes setting suggested that most associated variants were 

overwhelmingly common, and mostly at loci already identified(Fuchsberger et al., 2016). The 

advent of larger, multi-ethnic reference panels, in the era of imputation, allows larger-scale 

association testing to better characterise known loci. 

 

Consideration of the population studied is also important. Since LD extends further in younger 

populations, there is longer LD in Europeans than Africans. On a given genotyping chip, a 

causal variant is likely to be better tagged in a European population than in an African 

population. As a result, for a chip with N markers, studies of African populations have less 

power to detect associated alleles than those performed on younger populations. Imputation 

(using densely typed and ethnically diverse reference panels) circumvents this to some extent 

with the resultant denser genotyping capturing smaller LD blocks. The reduced LD blocks in 

African populations means “hits” are nearer the true causal variant. Now that research into 

African-heritage populations is better served by both ethnic specific micro-arrays and 

population-matched imputation methods, it could be argued that African-heritage populations 

are the best research cohorts precisely because of their small LD blocks. 
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3.1.3. Towards a “MEGA” sickle genetic dataset: a massive database of quality 
controlled, imputed genotypes 

I have created a “database” of genotypes in our sickle cohort for use in statistical analysis. This 

has required: good quality DNA, an appropriate micro-array (the “MEGA” chip), and 

bioinformatic expertise in interpreting and using micro-array results: variant-calling, data 

quality control, and imputation. The final, imputed dataset contains many millions of variants 

ready for use in association testing. 

 

3.2. Materials 
3.2.1. Illumina Infinium MEGA chip 

llumina’s Infinium “MEGA” chip (Multi Ethnic Genotyping Array, Illumina, San Diego, CA, USA, 

see Appendix 1). The MEGA chip was in beta-testing phase, and comprised about 1.7m 

markers. For the set of African-heritage population specific markers, it leveraged genotyping 

content from the Consortium on Asthma among African-Ancestry Populations (CAAPA, 

https://www.caapa-project.org/). The chip includes content from historical Illumina 

commercial arrays, plus African diaspora content identified through the sequencing of 700 

individuals by the CAAPA.  

 

The new (expanded) MEGA array is now commercially available from Illumina at: 

https://www.illumina.com/science/consortia/human-consortia/multi-ethnic-genotyping-

consortium.html. 

3.2.2. Data  
3.2.2.1. Genome wide variant data 

I received the MEGA chip (genome-wide) variant data (post-variant calling) in PLINK format. 

3.2.2.2. Reference panel: 1000 genomes project  
The 1000 Genomes Project (1000G, http://www.internationalgenome.org/data/) developed a 

large public database of human variation and genotype data. The goal of the 1000 Genomes 

Project was to identify genetic variants with frequencies ≥1% in populations studied. The 

project ran between 2008 and 2015. It was the first project to sequence the genomes of a 

large population. Data were made available freely through public databases. 

Cost limited the sequencing depth. However, since any genomic region contains a limited 

number of haplotypes, data was combined across samples to allow efficient detection of most 

of the variants in a region. The project planned to sequence each sample to 4x genome 

coverage; at this depth, sequencing allows the detection of most variants with frequencies 

≥1%. The multi-sample approach combined with genotype imputation allowed the project to 

determine a sample’s genotype, even in variants not covered by sequencing reads in that 

sample. 
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The final dataset (1000G phase 3) contains data for 2,504 individuals from 26 populations; 

phase 3 analyses were published at the project conclusion in 2015 (Sudmant et al., 2015, 

Auton et al., 2015). 661 of these individuals were from seven African (AFR) populations:  

 YRI: Yoruba in Ibadan, Nigeria 

 LWK: Luhya in Webuye, Kenya 

 GWD: Gambian in Western Divisions in the Gambia 

 MSL: Mende in Sierra Leone 

 ESN: Esan in Nigeria 

 ASW: Americans of African Ancestry in South-Western USA 

 ACB: African Caribbean in Barbados 

These seven groups reflect populations in West and East Africa, as well as admixed populations 

in the Caribbean and North America. 

 

After the completion of the 1000G project, the international genome sample resource (IGSR) 

has been setup to provide ongoing support for the 1000G data. It aims to ensure the future 

accessibility of the data as well as to extend the dataset (both new data on existing samples 

and new populations). 

 

Since my work, the Haplotype Reference Consortium (HRC, http://www.haplotype-reference-

consortium.org/) is beginning to supersede the 1000G data as the gold standard in reference 

genomes. The HRC project aims to create a large reference panel of human haplotypes by 

combining data from multiple cohorts.  

3.2.3. Computational requirements: hardware and software 
Computational requirements for whole genome data are significant and include adequate 

hardware and software.  

3.2.3.1. Hardware 
Imputing variants in datasets of hundreds to thousands of samples using reference sets with 

millions of variants (e.g. 1000 Genomes Project), up to several tens of millions of variants 

cannot be done on a desktop computer, as that would take months/years and would require 

more memory (RAM) than is available. Instead, the imputation process is divided into smaller 

chunks and these sub-tasks are then run on a computer cluster. The work described in this PhD 

thesis was done on such a cluster.  

 

I made use of King’s College London’s (KCL) server cluster (“super computer”) Rosalind which 

runs a Linux platform (http://rosalind.kcl.ac.uk/). Rosalind is a heterogeneous cluster that 

consists of 4 machines with 10 cores each, each with 192-384 GB of RAM, running Scientific 
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Linux release 6.6 (https://www.scientificlinux.org/). Rosalind uses the Open Grid Scheduler 

(Grid Engine), a batch-queuing system to schedule tasks across the nodes to allow for 

distributed resource management (http://gridscheduler.sourceforge.net/). Producing the 

genetic relatedness matrix in GCTA is computationally the most expensive step in my 

workflow: it requires consideration of NxNxM (N study individuals, M number of pruned 

variants) – around 80G RAM for my project.  

3.2.3.2. Software  
I wrote my own bash scripts to manipulate the data and made use of multiple open-source 

Linux-platform based genetic software: 

 Unix/Linux text manipulation commands (e.g., awk, grep, head, tail, sort, join, uniq) for 

manipulating text files  

 R statistical package for additional analysis and graphics (www.r-project.org) (Team, 

2011). 

 PLINK  v1.90b3.38(Purcell et al., 2007) for genetic data management, data quality 

control, summary statistics, see http://zzz.bwh.harvard.edu/plink/index.shtml.  

 SHAPEIT v2.r837 (Delaneau et al., 2011) for phasing, see https://mathgen.stats. 

ox.ac.uk/genetics_software/SHAPEIT/SHAPEIT.v2.r790.RHELS_5.4.static.tar.gz 

 GCTA v1.26.0(Yang et al., 2011) for statistical genetics 

 Michigan imputation online server (Das et al., 2016): 

https://imputationserver.sph.umich.edu/index.html. The Michigan Imputation Server 

is free genotype imputation service using minimac3 and is a so-called “next 

generation” imputation server because it retains imputation accuracy with 

computational efficiency.  

3.3. Methods 
3.3.1. Study subjects 

891 samples from patients with sickle cell disease (516 female, 375 male), as described in 

chapter 2.2.1, were utilised. These patients comprised: 

 666 HbSS (375 female, 291 male) 

 195 HbSC (126 female, 69 male) 

 21 HbSβ+ thalassaemia (10 female, 11 male) 

 9 HbSβ0 thalassaemia (4 female, 5 male) 

3.3.2. Sample processing pre-MEGA 
DNA had previously been extracted from peripheral blood white cells and was held at 100ng/µl 

concentrations in the sickle gene bank. All useable samples from the gene bank were prepared 

for MEGA processing: ten 96-well plates were filled with at least 1μg genomic DNA on each 

sample (mostly 15μl of 100ng/μl).  
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Samples were genotyped at the Institute of Psychiatry, Psychology & Neuroscience BRC 

Genomics Facility on Illumina’s Infinium MEGA chip (Multi Ethnic Genotyping Array), see 

section 3.2.1. Demographic information (including clinical sex and relationship information) 

was also supplied to the BRC Genomics Facility.  

3.3.3. Variant calling 
Variant-calling was not done by me: it was performed externally by Hamel Patel/Stephen 

Newhouse (at the Social, Genetic and Developmental Centre, Institute of Psychiatry, King’s 

College London) using GenomeStudio software (Illumina, San Diego, CA, USA) and a standard 

operating protocol.  

 

In summary, the genotyping assays for any given variant produce a quantitative signal intensity 

for each of the two possible alleles (A, B). A single marker can then be represented as a 

scatter-plot of signal intensities for allele A versus B (each point represents a different 

individual). If the process works, individuals can be separated into three distinct clusters 

representing the three possible genotypes AA, AB, BB, with AB in the middle, see Figure 4, 

panel (a): the coloured clusters represent individuals with AA (blue), AB (green) and BB (red) 

genotypes with genotype clusters well separated while panel (b) a problem marker where the 

AA and AB genotype clusters overlap. Individuals in the grey zone are impossible to call and so 

are labelled as missing. The ultimate assessment of genotype quality is manual inspection of 

cluster plots; these should be inspected after association testing for any positive variants. 

 

 
Figure 4 allele signal intensity plots, from (Weale, 2010) 

3.3.4. Workflow: statistics-based quality control and imputation 
I received the data post-variant calling. I undertook quality control and imputation based on 

the workflow in Figure 5.   



 

77 
 

 
Figure 5 workflow 

3.3.5. Data quality control  
3.3.5.1. Background 

Errors in genotypes or DNA sample identification (“sample mix-ups”) lead to errors in 

association studies. If these errors are systematic (e.g. in a case control study, cases and 

controls are genotyped separately), then this can introduce systematic bias leading to an 

increase in false positive findings and a decrease in power. Current genotyping panels have 

impressive genotyping quality (reports of accuracy ≥99.9%), partly because variants have been 

replaced if they work poorly by better markers in linkage disequilibrium. However, variant call 

quality is rarely as high in practice – the sample DNA is usually less carefully prepared.  The 

large number of markers now tested in genome-wide association studies means even when 

errors are infrequent, they can be detrimental. For example, if 1,000,000 markers are tested 

for association and 1/1,000 markers are poorly genotyped, and the inaccurate calling results in 

detection of a spurious association, then there may be up to 1,000 false-positive results.  

 

Potential false positive findings need to be managed by correcting for bias (often deleting 

samples and/or markers from the analysis). False negative findings, on the other hand, must 

also be avoided: while deleting samples and markers that are error prone, good markers or 

samples must not be deleted (these may contribute to true positive findings). False positive 

errors are easier to manage than false negative results, and as it currently stands, most data 

quality control is about controlling positive false positive than false negative results. 
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Quality control (QC) measures are therefore imperative to remove samples and variants prior 

to association analysis. QC involves the identification and removal of DNA samples and 

markers that introduce bias. These QC steps are necessary before statistical association testing 

and critical for a successful study. However, the criteria used to filter out low quality markers is 

a balance: care must be taken to delete poor quality markers only because every removed 

marker is potentially a missed disease variant.  

 

Principles of QC were taken from previously published protocols (Weale, 2010, Anderson et al., 

2010), and guidance from UK Biobank cut-offs (based on more recent genotyping array quality) 

at http://www.ukbiobank.ac.uk/wp-

content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf. These were 

not absolute and instead each QC step was considered in the context of the study data, rather 

than an automatic application of arbitrary QC thresholds. Markers were identified and 

removed using UK Biobank guidelines (BioBank, 2015). 

 

Quality control includes assessment of both individuals (samples) and markers (variants): 

issues relating to both sample and variant problems must be identified and removed. In a large 

study population, the impact of removing one marker is potentially greater than the removal 

of one individual and as a result sample QC before marker QC is advocated (Anderson et al., 

2010). However, in a smaller study population like ours, implementation of marker QC prior to 

sample QC optimises sample number over variant number. This approach prevents individuals 

being removed due to a subset of poorly genotyped markers, but is susceptible to markers 

being falsely removed on the basis of a poorly genotyped subset of individuals. Genotype 

imputation recovers markers potentially lost in this process(Marchini et al., 2007).  

 

Variants were removed based on sample quality - low call rate, minor allele frequency (poor 

quality marker), deviation from Hardy-Weinberg equilibrium (genotyping error), study-specific 

variant QC filters (such as differences in allele frequencies between multiple control cohorts). 

Low frequency variants are more prone to bias due to genotyping error and low power to 

detect association. Therefore, these are often removed. 

 

Samples were removed based on DNA quality, sample identity (e.g. phenotypic sex does not 

match genotypic sex), and patient relatedness (duplicates). This is based on: low call rate (poor 

DNA quality), outlying heterozygosity across autosomes (DNA sample contamination or 

consanguinity), duplication (or relatedness) based on calculated genetic relatedness, 

mismatches with external information (sample mix-up). Historically, samples were also 
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removed in large studies based on “near-relatedness” (cryptic or known) or “far-relatedness” 

(issues of population structure); in the latter case, sub-analyses based on one ethnic group 

only was conducted. The issues of relatedness can now be addressed using a “genetic 

relatedness matrix” which itself can identify duplicates and near (cryptic) relateds, and 

subsequently be used as a covariate in a mixed linear statistical model in order to manage both 

near and far relatedness. Duplicate samples are identified and removed as part of this process. 

 

I used PLINK (v1.90b3.38), a tool for handling genetic data, to perform assessments of failure 

rate per individual and per marker, and GCTA (v 1.26.0) to assess the degree of relatedness 

between individuals (both near relatedness – close relationships – and far – issues of 

population stratification). Both these software platforms are widely-used and computationally 

efficient.  

3.3.5.2. Basic quality control  
Quality control measures for pre-imputation steps generally apply stricter thresholds than in 

the non-imputation setting. Broadly speaking, stricter marker QC measures improves 

imputation quality (Marchini and Howie, 2010) but imputation accuracy is a balance between 

study variant density and variant quality (see section 3.3.6.3). 

 

Genetics variants (i.e. markers) were identified and removed if: 

 Genotyping rate <95%. Missingness (missing calls) can be a big problem; generally, 

missingness is not randomly distributed among genotypes but is overrepresented in 

some. There is a correlation between missing genotype rate and variant quality. 

Missingness can generate both false positive and false negative signals of association. 

Classically, variants with a call rate of less than 95% have been removed (Silverberg et 

al., 2009, Pompanon et al., 2005).  

 Minor allele frequency (MAF) <0.1%. This is a useful step before imputation to 

remove monomorphic and very rare variants. These variants can be reintroduced later 

(which is particularly useful if comparing our cohort to other populations. Data quality 

tends to decrease with decreasing MAF (a low MAF is synonymous with rare 

genotypes which can be problematic at the variant calling stage). Missingness can 

affect low-MAF variants more strongly and thereby increase the chances of a false 

positive signal. Furthermore, the power to detect an association signal decreases with 

decreasing MAF.  Finally, given that rare variants virtually never detect an association 

signal and that their inclusion in the study increases the overall number of tests 

performed, including these variants decreases the power to detect signals in other 

variants (Morris and Zeggini, 2010).  
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 Genotypes were out of Hardy-Weinberg equilibrium (HWE), with a threshold of 

p<5x10-7. Genotypes for a marker are considered in HWE if their frequencies do not 

deviate significantly from those predicted based on the frequency of its alleles. So, 

given a MAF of q, the probabilities of the three possible genotypes (aa, Aa, AA) at a bi-

allelic locus are ((1−q)2, 2q(1−q), q2). In a large, randomly maƟng, homogenous 

population these probabilities should be satisfied in each generation. Significant 

deviation from HWE can be due to consanguinity, population structure, and non-

random selection of study subjects. If deviation from HWE occurs with individual 

markers, it can indicate a genotyping error or calling error. It may also occur at a 

disease locus where it would clearly be counter-productive to remove these data. 

Recommended significance thresholds for declaring variants to be in HWE vary greatly 

because of this balance between removing potentially erroneous variants while 

retaining valid variants. Suggested p-value thresholds suggested have ranged from 

0.001 to 5.7 × 10−7)(Anderson et al., 2009, Wittke-Thompson et al., 2005) with lower 

values in more recent studies e.g. the UK BioBank applied a threshold of p<1x10-7. 

 

Individuals (samples) were identified and removed if: 

 Genotyping rate <99%. There are large variations in DNA sample quality and these can 

have large effects on genotype call rate and genotype accuracy. False positives results 

can arise if DNA quality differs with phenotype, leading to differences in the frequency 

of called genotypes. This presents a particular issue for case-control studies if cases are 

collected and/or processed separately to controls, and there is a systematic difference 

in genotyping between the two groups. In our cohort, the requirement for an 

individual’s genotyping rate to be >99% did not delete any samples. 

 Outlying heterozygosity rates. For a given individual, their heterozygosity rate is the 

proportion of heterozygous genotypes excluding those of the sex chromosomes. 

Individuals with anomalously high heterozygosity can indicate sample contamination, 

and with anomalously low heterozygosity can indicate membership of a different 

population or inbreeding. After extracting the autosomes for analysis only, there were 

no issues with excess heterozygosity in my population. [If there had been problems, 

there are tools available to remove extreme outliers e.g. 

https://github.com/JoniColeman/gwas_scripts/blob/master/IdHets.R.] 

 Discordant sex: phenotypic sex is inconsistent with the genetic sex (as measured by X-

chromosome homozygosity). Discordant sex was identified and managed after 

construction of an LD-pruned dataset: see sections 3.3.5.3 and 3.3.5.4. 
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 Relatedness: duplicated individuals, closely related individuals, issues of population 

structure. Relatedness was identified after creation of a genetic relatedness matrix: 

see sections 3.3.5.5 and 3.3.5.6. 

 

3.3.5.3. Linkage disequilibrium- (LD-) pruned set of genotypes  
A “pruned” genotype dataset is required for multiple downstream processing steps including 

sex checking (section 3.3.5.4), and constructing a genetic relatedness matrix (section 3.3.5.5). 

The aim is to remove variants to get one variant per linkage disequilibrium (LD) block, 

producing the “LD-pruned dataset”. Thinning to a set of 50,000-100,000 variants has been 

advocated consistently, and appears adequate for identification of cryptic relatedness and 

population outliers (isolated individuals from different ethnic populations to the main 

population) (Weale, 2010). I aimed for a pruned dataset at the upper limit of this range given 

the African origins of our population (with smaller LD blocks).  

 

In PLINK, markers were compared pairwise in windows of 1000 kb markers, and one of each 

pair removed if r2 (multiple correlation coefficient for a marker being regressed on all other 

markers simultaneously) > 0.04, and the procedure repeated after an interval shift of 100 

markers. This resulted in a pruned dataset with 98,299 variants. 

3.3.5.4. Sex discordancy 
Samples were excluded if phenotypic gender was inconsistent with genotypic sex, as measured 

by X-chromosome homozygosity. X chromosome homozygosity was calculated from 

genotypes: male samples are expected to be homozygous for X chromosome variants, and 

females heterozygous. Thus, males have a homozygosity rate of 1 and females 0 (though there 

is some variation due to genotyping error). Comparing the calculated homozygosity rate across 

all X-chromosome variants for each individual to the expected rate for phenotypic sex, 

individuals with discrepancies were detected. This is an important administrative check that 

the DNA sample has not been mislabelled and that the wrong phenotype data has been 

associated with the genotypes. The discrepant samples can then be removed. 

 

PLINK implements this by calculating the inbreeding F statistic which measures the severity of 

departure from HWE on the X chromosome: females have X-variants broadly in HWE, whereas 

males will depart severely from this (no heterozygous genotypes). For genetic females, F is ~0 

and for genetic males, F is ~1.  There are, however, some individuals who are intermediate 

between these two groups – this may be evidence of sample contamination, membership of a 

different population, or X chromosome mosaicism in females. The most pragmatic solution is 

to exclude all intermediate-F statistic individuals. 
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This procedure must be performed after dataset pruning. Final cut-offs can depend upon 

specific study data. This involved checking different cut-offs for the data – the final definitions 

of sex cut-offs were: 

 F statistic: female maximum 0.3, male minimum 0.9 

No samples were outside these thresholds, but 12 samples had their genotypic sex discordant 

with phenotypic sex and these were removed from both the QC’d original dataset and the 

pruned dataset. It should be noted that this procedure will flag sample mix-ups only where the 

gender is different. All male-male and female-female mix-ups occur at the same rate but will 

remain undetected. 

3.3.5.5. Genetic Relatedness Matrix: GRM 
A genetic relatedness matrix (GRM) is a NxN correlation matrix which is a quantification of 

relatedness of all possible pairings between individuals in the study group (sample size N). 

GRMs are a relatively new concept and developed to be a finer-scale method of detecting 

relatedness and population structure compared to principal components analysis. 

 

Construction of a GRM occurs in two steps. First, individuals are scored at each variant 

according to how different the number of reference alleles is from the cohort average, and 

weighted by the variant’s heterozygosity (Yang et al., 2010, Yang et al., 2011, Kang et al., 

2010). These variant scores are summed to give a total score for a given individual. Second, for 

each pairwise relationship within the cohort, these scores are then compared to assess genetic 

similarity between each pairwise relationship, thus constructing an NxN correlation matrix of 

all pairwise relationships.  

 

Two identical samples have GRM correlation value of around 1 (values comprise a normal 

distribution around 1 so are not exact). First degree relationships (parent/child) would have a 

value of 0.5, and second degree 0.25.  

 

The GRM is useful in and of itself. It identifies sample duplicates (with a cut-off >0.9). These 

may represent monozygotic twins, sample errors, or sample duplications which need to be 

removed. Quantification of the relationships allows us to (a) exclude one of a pair of close 

relatives prior to analysis by having a “cut-off” GRM and (b) to use this quantitative 

relatedness data as part of statistical modelling.  
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In our study, recruitment did not include documentation of family history and therefore, given 

the nature of an autosomal recessive condition in an ethnic minority community distributed 

densely in SE London, cryptic relatedness (e.g. cousins) may be a significant issue. 

 

I created a GRM using GCTA(Yang et al., 2011) using pruned, un-imputed variants (see section 

3.3.5.3). 

 

The GRM cannot be visualised directly, but using R packages devtools and OmicKriging, one 

can create a readable format of the GRM. This can then be viewed manually in csv format.  

In chapter 4, as part of GWAS analysis, the GRM is fitted into a mixed linear model as a fixed 

effect to estimate the population variance explained by the genome-wide markers (as an 

improvement on principal components). 

3.3.5.6. Duplicates  
Identification and deletion of duplicate samples is paramount to prevent overcalling of genetic 

information based on these duplicated individuals. The GRM revealed 9 pairs with GRM>0.9. I 

returned to the clinical data to assess these duplicates and consider which sample to delete. 

For one pair of monozygotic twins, one individual in the pair was deleted (the individual with 

less clinical data available). For each of five duplicate-pairs that were identified clinically as the 

same individual, but from different study sites, one of each pair was deleted (the individual 

with less clinical data available). Finally, for three pairs which appeared to be different people, 

it was assumed to be a sample mix-up and all six individuals were deleted.  

3.3.6. Imputation 
3.3.6.1. Background 

Genotype imputation is a method for estimating (imputing) unobserved genotypes i.e. 

genotypes that are not directly genotyped in a sample. Imputation is performed with a 

statistical algorithm extracting LD and haplotype information from a reference panel (e.g. 1000 

Genomes Project) of individuals who have been densely genotyped and applying it to a study 

sample of less densely genotyped individuals. Imputation will increase the number of variants 

that can be tested in association analyses up to the size of the reference panel. This may 

include markers with (1) missing genotypes at typed variant sites (2) genotypes at un-typed 

variant sites that are present in an external high-density reference panel. Imputation provides 

many benefits. Imputed datasets increase study power: the reference panel is statistically 

more likely to contain the causal variant than the original dataset. Imputation can also fine-

map any association signal: it provides a high-resolution view of an association signal across a 

locus. Finally, imputation facilitates meta-analysis: it can bridge the gap between different 
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platforms so that different studies genotyped with different arrays can be combined up to 

variants in the reference panel. 

 

The process of imputation is shown in Figure 6. The raw dataset consists of a set of genotypes 

including many unobserved variants, as in panel (a): association testing at just these variants 

may not lead to a significant association (b). Imputation predicts these missing genotypes. 

Modern pipelines first strand-align and phase each individual at the typed variants, and then 

perform imputation. Panel (c) demonstrates three phased individuals. These haplotypes are 

then compared to the reference panel which contains dense haplotypes (d). The haplotype of 

a given individual is modelled as a mosaic of (the limited number of) haplotypes of other 

individuals. Missing genotypes in the study sample are then predicted (imputed) using those 

matching haplotypes in the reference panel (e). Statistically, the uncertainty with which 

genotypes are imputed can be modelled with a probability distribution over all three possible 

genotypes. This uncertainty (imputation quality) information must be taken into account in any 

downstream analysis of the imputed data. Testing the imputed dataset can lead to more 

significant associations (f) with a detailed view of the associated locus. 

 

Figure 6 Imputation process, from (Marchini and Howie, 2010) 

In this way, imputation methods attempt to identify sharing between the underlying 

haplotypes of the study individuals and the haplotypes in the reference set, and use this 

sharing to impute the missing alleles in study individuals. The methods used in imputation are 

strongly connected to those used to infer haplotype phase (Excoffier and Slatkin, 1995, 
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Stephens et al., 2001), tagging marker-based approaches (Johnson et al., 2001) and methods in 

linkage studies (Elston and Stewart, 1971). 

 

Imputation can add variants back that were previously removed at the variant calling stage 

due to the issue of “fuzzy calls” in raw genotyping (section 3.3.3, also see Figure 7). 

 

Figure 7 benefit of imputed genotype calls (right panel) to overcome fuzzy raw genotype calls in 
pale blue (left panel), from (Marchini et al., 2007) 

3.3.6.2. Reference panels 
The first large-scale reference panels were made publicly available through the 1000 Genomes 

Project, see section 3.2.2.2. This is being superseded by the HRC but at the time of my project, 

the 1000 Genomes Project dataset comprised the largest dataset (by population, ethnic 

diversity and number of variants). Using a large, multi-ethnic reference panel improves 

imputation accuracy for rare variants. This can come at the expense of computational speed 

which, however, is less of an issue with the advent of “next generation” online imputation 

servers. 

3.3.6.3. Imputation accuracy 
Many factors affect imputation accuracy(Marchini and Howie, 2010). The first determinant is 

the study population itself with both the number of individuals and ethnicity having an effect. 

Presently, imputation accuracy declines across the world from: Europe→ Asia→ America→ 

Oceania→ Middle East→ Africa(Huang et al., 2009). This situation is improving slowly due to 

modern attempts at reflecting worldwide genetic diversity, with strategies such as new chips 

(like the MEGA chip) which reflect polymorphisms in non-European populations, as well as 

more diverse reference populations (including the 1000 Genomes Project). However, 

imputation will remain less accurate for African populations rather than “newer” populations 

like European populations: African populations are “old”, and the many generations that have 

passed under stable conditions have provided the recombination events to break down LD, 

resulting in them being genetically heterogeneous, with shorter linkage disequilibrium (LD) 
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blocks. This makes the imputation process less robust, as the mosaic blocks are shorter and 

more varied so that prediction of genotypes is less confident.  

 

The second factor influencing imputation accuracy is the chip used for genotyping i.e. how well 

it covers variation in study population. The ethnic-specificity of the new MEGA chip reflects 

present efforts of the genetics community to capture polymorphisms in all human populations. 

 

The third determinant of imputation accuracy is the reference panel used. In the reference 

panel, the number of individuals (better accuracy with larger panels), density of typing (denser 

is better as there will be more overlap with chip markers) and the issue of matching ancestry, 

all influence imputation. Historically, same-ethnicity reference panels were used (possibly 

because phasing was undertaken simultaneously with imputation), but, presently, using as 

many diverse haplotypes as possible is advocated, to capture as many uncommon and rare 

variants as possible.  

 

The fourth factor determining imputation accuracy is good data quality control. Notably, error 

rates in imputation are higher as the minor allele frequency decreases (Marchini and Howie, 

2010).  

 

The reality of imputation is that all thresholds used in pre-imputation steps (i.e. quality control 

and phasing) are study-specific. This means an iterative process of trial imputation/re-

imputation cycles to identify appropriate criteria is used. 

3.3.6.4. Process of imputation 
The practical process of imputation is summarised in Figure 5. After pre-imputation QC, strand 

alignment is performed using PLINK to ensure all genotypes are expressed relative to the same 

(positive) strand. Phasing is then undertaken in SHAPEIT (v2.r837) in order to align genotypes 

to the correct haplotype. After phasing, further QC is performed. Imputation follows, on the 

online Michigan imputation server(Das et al., 2016), and then post-imputation QC is carried 

out before the imputed genotypes are merged with raw genotype data. 

 

Throughout this process, it is imperative to maintain the same nomenclature between study 

and reference panel data. In particular, the same genome build must be used(GRCh37/hg19) 

and the same variant names (I converted all study and reference panel variant names to 

format “ChromosomeNumber_PositionNumber”).  
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3.3.6.5. Pre-imputation quality control 
There are strict data format requirements for phasing and imputation software, so I undertook 

data pre-processing steps. This included identification and deletion of: variants with non-ACGT 

format (e.g. “B”, “I/D”), duplicate variant names and duplicate variant positions. Non-bi-allelic 

markers were also removed. The files were then processed by single chromosomes for 

computational efficiency.  

3.3.6.6. Strand alignment 
The process of strand alignment expresses all alleles relative to the same strand on a 

chromosome. Genotyping technologies and variant calling algorithms can be expressed 

relative to either the positive (forward) or negative (backward) strand on a chromosome e.g. a 

variant may have alleles T and C situated within the coding strand but complementary alleles A 

and G to the template strand. During imputation, it is imperative that each variant on a 

chromosome has its genotypes expressed relative to the same strand in both the reference 

and study populations. All the 1000 Genomes Panels have their variant alleles expressed 

relative to the forward strand. Thus, the cohort data must be strand-aligned relative to the 

forward strand. It is also crucial that marker positions for both datasets use the same co-

ordinate system (i.e. the same build).  

 

Historically, strand alignment (as well as phasing) was done during imputation using a single 

reference panel. For many imputation servers, including the Michigan server, this process has 

evolved and is now performed in three steps: strand alignment, phasing and imputation steps. 

This not only speeds up the imputation process (Howie et al., 2012) but it also separates out 

the need for population matching of the reference panel at the phasing stage (i.e. using only 

match-populations), versus the benefits of maximal genetic diversity at the imputation stage 

(i.e. a reference panel with all ethnic populations). For the Michigan server, it is a pre-requisite 

that strand alignment is performed in pre-phasing. 

 

After downloading the reference panel (1000G phase 3 in hg19 build), duplicates of variant 

name / position were removed, and markers were renamed in format 

"ChromosomeNumber_PositionNumber". Strand-ambiguous variants (A/T and C/G) were 

removed. 

(C/G and A/T variants are ambiguous or cryptic as their complementary alleles are G/C and 

T/A, respectively. The ambiguity means it is much more difficult to detect and resolve strand 

alignment issues for these variants). 

 



 

88 
 

I assessed whether my data was strand-aligned indirectly. I used PLINK’s merge function by 

merging the cohort data with the strand aligned reference panel. By using a “dummy merge” 

of the two datasets in PLINK, merge errors were identified. The merge errors can have a trial 

“flip” to flip the errors and then a reattempt at merging. Those variants that could not be 

merged with the reference panel were deleted and those that were able to be merged were 

retained in the format of the successful merge (see 

http://pngu.mgh.harvard.edu/~purcell/plink/dataman.shtml#merge).  

3.3.6.7. Phasing 
The process of phasing assigns alleles (A/C/T/G) to the paternal / maternal chromosomes, i.e. 

the correct haplotype, so that now each individual has, instead of a single series of genotypes, 

two series of haplotypes, each containing alleles that sit together on the same chromosome. 

For a pair of genotypes e.g. A/a and B/b, along one chromosome in unphased data, it is not 

clear if the genotypes are AB and ab or aB and Ab. Phasing determines which the most likely 

combination is in the respective individual, based on known haplotypes in a reference panel. 

 

SHAPEIT v2.r837 was used to phase the dataset to haplotype format(Delaneau et al., 2011). 

SHAPEIT requires haplotype genetic maps (African populations downloaded from the 1000G 

project) as a reference data panel.  

 

I initially trialled and failed using two other phasing software programmes: CONFORM-GT and 

fastPHASE. CONFORM-GT was unsuccessful due to allele frequency differences with the 

HapMap reference data (not African samples). fastPHASE successfully phased but the phased 

data subsequently failed to impute, possibly because of the quality of phasing. Also, fastPHASE 

requires the removal of missing genotypes and this might have deleted too many variants. 

Both approaches required significant data formatting pre- and post-running as the 

input/output data formats were different. 

 

Increasing phasing accuracy comes at the cost of reasonable running times. The accuracy can 

be improved by increasing the number of states (per variant) on which haplotype estimation is 

based. 100 states across the dataset gives good accuracy while maintaining reasonable running 

times. The final haplotype estimate was found by averaging across the 20 main iterations. 

 

Finally, phased data was visually inspected in readable format to compare with pre- and post-

strand alignment. 
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3.3.6.8. Post-phasing QC 
First, I compared African samples from 1000 Genomes Project with our cohort to identify 

potentially flipped alleles based on allele frequencies in the populations. “Flipping” of alleles is 

a data error where the names for the two alleles of a marker have been swapped during allele 

calling. This generates a serious problem for subsequent imputation procedures. I assessed 

and trial-flipped those alleles with a minor allele frequency <0.35 plus an allele frequency 

difference between the cohort and reference data of at least 0.15. These alleles were flipped 

back.  

 

Second, I used Will Rayner's QC perl script(Rayner, 2017) to identify and delete variants which 

did not fulfil QC criteria: the variant was not in the 1000 Genomes Project, in-del variants, 

palindromic variants, and variants with non-matching alleles with the reference panel. 

 

I used a tight threshold (0.1) to identify significant differences in allele frequencies between 

the cohort data and the African populations in 1000 Genomes Project. When optimising this 

step, it is a balance between the number and the quality of variants in the pre-imputation set 

in order to increase imputation accuracy: that is, a balance between fewer quality variants and 

more, but poorer quality, variants in the pre-imputation dataset.  

 

A comparison of different pre-imputation QC is displayed in Appendix 2, in relation to ultimate 

imputation concordance rates. When comparing imputation concordance rates, this needs to 

be viewed in relation to the absolute number of variants pre- and post- imputation datasets.  

3.3.6.9. Imputation on the online Michigan imputation server 
The online Michigan imputation server is a fast, efficient method that now surpasses 

imputation software used locally, see section 3.2.3.1. The server allows upload of a user’s 

dataset (that has been strand aligned and phased); this is then imputed using a reference 

panel of the user’s choice. Prior to imputation, an extensive and compulsory QC is performed, 

including a check to ensure no excess of “strand flips” (strand alignment errors) or “allele 

switches” (phasing errors). This is displayed in Appendix 3. 

 

The choice of reference panel and population is important. The server offers imputation from 

a variety of reference panels: HapMap, 1000 Genomes Phase 1 and 3, CAAPA and (since my 

work), the new HRC reference panel.  

 

Historically, populations were imputed against reference panels of similar ethnicity (possibly 

because to improve phasing when carried out as part of imputation, requiring appropriate 
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haplotypes), but more recently, a more diverse (and larger) reference dataset has been 

advocated. Thus, using all populations in the 1000 Genomes Project was considered the ideal 

approach, however, part of the Michigan pre-QC requires allele frequencies that are similar 

enough to the reference population. Using ALL populations led to mismatches between allele 

frequencies in our sample set versus reference populations which did not pass Michigan QC. 

Unfortunately, I was therefore forced to restrict the choice to African populations only 

(N=1018 samples). 

3.3.6.10. Post imputation QC 
After imputation, I performed further data processing and quality control. First, duplicated 

variants were identified and removed and family ID and sex needed to be reinserted as they 

were lost in the vcf file / imputation step respectively. 

 

The quality of imputation was then evaluated via two considerations. The first consideration 

was the correlation between imputed and raw genotype calls. See Table 1 for concordance 

rates by chromosome; mean whole-genome concordance rate was 0.99835685. 

 

The second consideration was “imputation quality”. Imputation quality measure is specific to 

different software. On the Michigan server, it is represented by r2 in the .info file. However it is 

presented, the quality score α is in a range 0-1. α for N individuals has equivalent power to αN 

perfectly genotyped individuals. So, in a cohort with 1000 samples, an α (quality score) of 0.4 

at a marker indicates that the amount of accurate information obtained is equivalent to 

perfect genotype data in a sample of size 400. There is no standardised threshold for quality 

control as it is study population-dependent (especially in relation to study sample size). In the 

literature, many people have used a cut-off 0.3-0.5; these levels have mostly been applied in 

typical cohort sizes of a few thousand. I established a cut-off by assessing the distribution of 

info scores. I plotted the density of the info r2 in R, chromosome by chromosome, see 

Appendix 4. Prior to marker removal, mean r2 was 0.5244643. Based on this and the density 

plots, I used a cut-off info r2 rate of 0.5. 26,124,664 of 46,925,116 variants (55.9%) were “well-

imputed” (i.e. info score > 0.5) and carried forward.  

3.3.6.11. Merge imputation dataset with raw genotypes 
The imputed data were then carefully merged with the original genotyped dataset (in strand-

aligned, phased mode), using PLINK’s merge function. First, the data was “dummy” merged to 

identify potential merge issues, and these variants were corrected or deleted. Variants with 

problems were reviewed and stored separately. A full merge was then undertaken to keep raw 

calls (i.e. the original MEGA chip calls) and add in imputed variant calls not found in the original 

dataset, see Table 1 for a breakdown by chromosome of variants during the imputation 
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process. In summary, there were 980,120 variants pre-imputation and 25,740,653 post-

imputation. Of 833,979,266 non-missing overlapping calls (all variants and all samples), 

832,608,911 were concordant, giving a concordance rate of 0.99835685. 335,915 variants had 

a total of 1,370,377 call differences between pre- and post- imputation. After merging pre- and 

post-imputation files (including deletion of problem variants), there were 25,740,653 variants 

remaining. 
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Table 1 Imputation quality by chromosome 

Chr Number of 
variants 
pre-
imputation 

Number of 
variants 
post-
imputation 

Number of 
replicates  

Number of 
badly imputed 
variants i.e. 
imputation 
.info r2 <=0.5  

Number of post-
imputation 
variants after 
removing 
duplicates and 
badly imputed 
variants 

Concordance information: all variants / all samples Number of 
variants 
post-merge 
in final file 

Overlapping 
calls (no 
missing 
data) 

Concordance 
rate  

All differences 
in variant calls 
between pre- 
and post-
imputation 

Differences in 
unique 
variants 
between pre- 
/ post-
imputation 

1 77307 3738755 113  1685603 2038872  65654770 0.99848 99803 24535 2010379 
2 85503 4058012 106  1790533 2251824  72826146 0.99838 118010 29194 2219618 
3 72399 3356229 90  1441689 1901335  61699715 0.998328 103168 24788 1873392 
4 65157 3338493 84  1424115 1901238  55546455 0.99837 90515 21460 1872498 
5 58081 3032670 73  1299059 1721382  49498606 0.99835 81677 19922 1695440 
6 67474 2954719 98  1248586 1694290  57481561 0.998473 87797 20834 1668254 
7 54732 2753719 100  1203505 1539370  46643082 0.998349 77009 18826 1517165 
8 51873 2651783 69  1147727 1493046  44201489 0.998249 77407 18640 1470402 
9 42186 2063294 58  936349  1118563  35910014 0.998322 60267 15560 1102223 
10 48093 2334316 67  1028296 1296733  40954316 0.998323 68679 16570 1277881 
11 48518 2333584 65  1043239 1280890  41187420 0.998348 68062 16808 1262359 
12 45583 2242990 73  982135  1251698  38760396 0.9984 62017 15074 1233090 
13 34607 1661784 43  703452  951909  29556216 0.998344 48949 11687 937524 
14 31612 1535740 45  675613  853981  26911514 0.998331 44922 10959 841635 
15 29729 1404332 29  645659  753017  25284071 0.998272 43696 10767 742248 
16 32847 1549576 47  737328  805187  27852500 0.998269 48202 12634 792854 
17 30232 1346169 68  627919  712352  25554026 0.998362 41854 10585 702323 
18 28207 1319723 32  581988  732546  24065417 0.998261 41850 10262 721959 
19 23415 1084851 48  515177  564860  19729854 0.998509 29415 7862 556445 
20 24172 1047749 36  468430  575128  20556002 0.998264 35690 8867 567099 
21 13583 653867 13  302749  348356  11547218 0.998354 19012 4632 342808 
22 14810 652313 24  311301  338087  12558478 0.998218 22376 5449 333057 
Total 980120 47114668 1381 20800452 26124664 833979266 0.99835685 1370377 335915 25740653 
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3.3.6.12. Post-merge QC 

Once merged, final quality control measures are applied (prior to statistical analysis). I used 

thresholds based on UK Biobank procedures (http://www.ukbiobank.ac.uk/wp-

content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf). These are 

broadly less strict criteria for variants than pre-imputation QC as greater stringency for 

imputation accuracy is required. I again performed the QC in PLINK in the following order to 

optimise number of samples over number of variants: 

 Marker genotyping rate (‘geno’) > 0.02  

 Minor allele frequency (‘maf’) > 0.01  

 Hardy Weinberg equilibrium (‘hwe’) > 0.0000001  

 Individual genotyping rate (‘mind’) > 0.01  

Notably, many of the variants were monomorphic (i.e. the minor allele was not present in our 

dataset) so applying the maf > 0.01 threshold dramatically reduced the dataset down to 

15,977,584 variants. 

 

3.4. Results  
3.4.1. Quality control and imputation pipeline 

3.4.1.1. Four scripts to manage the quality control and imputation pipeline 
In addition to my goal of enabling and performing genetic analysis of our SCD population, an 

important objective of my work at King’s was to enable other team members to follow my 

footsteps and analyse new data and additional patients. For this purpose, I have written 4 

scripts to manage the pipeline from raw variant calling to quality controlled, imputed data: 

run_QC.sh (in Appendix 5). PreMichiganProcessing_SHAPEIT.sh (Appendix 6Appendix 6), 

PostMichiganProcessing_SHAPEIT.sh (Appendix 7), and PostIMputationAnalysis.sh (Appendix 

8). Future samples from our sickle genebank will be able to be run through this pipeline 

relatively quickly. In addition, to accommodate the queueing scheduling system on Rosalind, 

all of these scripts were paired with an equivalent “outer” script that sends them to the job 

scheduling system, chromosome by chromosome. 

3.4.1.2. run_QC.sh 
run_QC.sh requires post variant-calling data in PLINK binary format. The script applies basic 

quality control using PLINK, as described in methods section 3.3.5.  

 

The script produces (1) a QC’d raw genotyped dataset in PLINK binary format that can be used 

for analysis and (2) a pruned version of the genotyped dataset which is required for 

downstream bioinformatic manoeuvres. 
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3.4.1.3. PreMichiganProcessing_SHAPEIT.sh 
PreMichiganProcessing_SHAPEIT.sh requires post-QC in PLINK binary format. It also requires 

reference panel data: both the download of 1000 Genomes phase 3 data (chromosome by 

chromosome) and HapMap genetic map for strand alignment, phasing and QC steps pre-

imputation. These must be in the same build as the study data (GRCh37/hg19). The script 

performs the work of pre-imputation QC including: data processing, strand alignment, and 

phasing, using basic Linux, awk, PLINK and SHAPEIT, as described in methods sections 3.3.6.5-

3.3.6.8. 

 

The script produces bgzipped vcf files (with chromosome-by-chromosome data in strand 

aligned, phased haplotype form) suitable for upload to the Michigan imputation server at: 

https://imputationserver.sph.umich.edu/ 

3.4.1.4. PostMichiganProcessing_SHAPEIT.sh 
PostMichiganProcessing_SHAPEIT.sh requires post-imputation data (chromosome-by-

chromosome) from the Michigan imputation server in zipped vcf format. These are password-

protected files so the password is required to inflate the files. The script applies basic data 

formatting to the files and converts them to PLINK format, then removes poor-quality imputed 

markers, before merging all well-imputed variants with pre-imputation (but post-

phasing/strand alignment) variants, as described in sections 3.3.6.10.  

 

The script produces chromosome-by-chromosome imputed data in binary PLINK format. It also 

produces a log file documenting different quality measures including imputation concordance 

rate.  

3.4.1.5. PostImputationAnalysis.sh  
PostImputationAnalysis.sh requires 22 sets of PLINK imputed data files by chromosome. The 

script merges the 22 sets of chromosome files to one set of whole-genome files, updates 

family ID (lost in translation to vcf files), updates sex (lost during imputation file conversion) 

and then applies QC thresholds as per UK Biobank criteria. This is described in sections 

3.3.6.11-3.3.6.12. 

 

Thus, one final quality-controlled, imputed genotype dataset is produced, in binary PLINK 

format, ready for association analysis (chapters 4 and 5). 

3.4.2. Results for my data 
Individuals were removed with excess missingness (0.01), outlying heterozygosity, relatedness 

(GRM score>0.9), and discordant phenotypic/genotypic sex information. Genetic variants with 

excess missingness (2%), deviation from Hardy-Weinberg equilibrium (0.0000001), or low 
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minor allele frequency (0.01) were removed. All quality control was performed using PLINK 

v1.90b3.38. This produced a raw genotype dataset of 832 individuals with 980,120 variants.  

Data were then imputed to 1000 Genomes phase 3 reference set using SHAPEIT (v2.r837) for 

pre-phasing and the online Michigan server. After post-imputation quality control, an imputed 

dataset of 832 individuals with 15,977,584 quality controlled variants was produced.  

 

3.5. Discussion 
Production of a large, imputed dataset with good quality genotyping takes significant effort 

and time. The genetic data itself (including accuracy of variant calls, QC thresholds, imputation 

quality information) must be understood so that the limitations of any data analysis 

undertaken are appreciate and results are not misinterpreted. Vigilance should be maintained 

during the subsequent genetic analysis: to re-assess variant call plots for positive signals, to be 

cautious when interpreting results of variants with low allele frequencies, and to re-evaluate 

the origin of variants (raw data versus imputed data) for positive association signals. 

 

It must be reiterated here that QC criteria are subjective and vary from one study to another. 

Sample QC filters should not be so stringent as to remove the majority of the analysis cohort. 

Variant QC filters should eliminate the worst quality markers without removing good quality 

(and potentially significant) markers.  This involves some “trial and error” where the quality of 

downstream manoeuvres (e.g. imputation) can be assessed based on parameters chosen 

further upstream.  

 

While genotype imputation is computationally demanding (and used to require access to a 

high-performance computing cluster), the recent introduction of online imputation servers like 

the Michigan server I used has facilitated imputation for those without large computer 

resources.  

 

The final imputed dataset produced is not only useful for direct genotyping of variants of 

interest but, more importantly, to enlarge an association analysis (increasing power), getting 

more significant variants and thus fine-mapping to get closer to the causative mutation. 

Imputation can also facilitate future meta-analysis: this has already proved useful in forming 

collaborations with a Tanzanian group who have performed a (similar) micro-array on a sickle 

cohort.  

 

Our group have also benefited more widely from producing this massive genotype dataset. 

These processes have yielded information that can be used not only directly in subsequent 



 

96 
 

analyses, but can be fed back into our sickle research genebank database, including evidence 

of genetic relatedness, potential duplicate samples that can be cross-checked, and genome-

wide scores of genetic ancestry.  
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Appendix 2 
A comparison of post-phasing, pre-imputation quality control 

Post phasing, pre-imputation parameter modifications: chromosome 22. Final decision line highlighted in grey. 

Haplotypes  Flipped alleles by 
MAF threshold 

Action – 
exclude 
or flip 

Allele 
difference 
threshold 

Number 
variants 
pre 
imputation 

Imputation ref 
panel source 

Imputation 
population 

Number of 
variants post 
imputation 

Concordance 
rate 

All differences in 
variant calls between 
pre / post imputation 

Differences in 
unique variants 
between pre / post 
imputation 

ALL -  0.1 14194 1000G Ph3v5 AFR 638148 0.99648 42483 6023 

ALL -  0.2 14231 1000G Ph3v5 AFR 638148 0.995874 49932 6035 

ALL -  0.3 14271 1000G Ph3v5 AFR 638148 0.994955 61231 6080 

ALL -  0.4 14305 1000G Ph3v5 AFR 638148 0.994162 71022 6100 

ALL 0.05 Flip 0.1 14518 1000G Ph3v5 AFR 638108 0.996461 43681 6132 

ALL 0.1 Flip 0.1 14605 1000G Ph3v5 AFR 638087 0.996432 44303 6228 

ALL 0.15 Flip 0.1 14658 1000G Ph3v5 AFR 638075 0.996408 44761 6235 

ALL 0.15 Exclude no 15163 1000G Ph3v5 AFR 638146 0.991074 109094 6293 

AFR 0.1 Exclude no 15188 1000G Ph3v5 AFR 638146 0.992615 90395 6245 

AFR 0.15 Exclude no 15178 1000G Ph3v5 AFR 638146 0.993003 85603 6262 

AFR 0.1 Flip no 15797 1000G Ph3v5 AFR 638144 0.992603 94374 6537 

AFR 0.15 Flip no 15794 1000G Ph3v5 AFR 638141 0.992931 90172 6517 
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Appendix 3 
Michigan imputation server QC (pre-imputation) 

 Chunk 1 Chunk 2 Chunk 3 Chunk 4 

Input 
Validation 

Number of valid VCF 
file(s) 

3 4 5 10 

Samples: 857 857 857 857 
Chromosomes:  1 2 3 4 5 6 7 8 9 10 11 

12 
13 14 15 16 17 18 19 20 
21 22 

SNPs:  235209 245444 236253 263214 
Chunks: 4 36 37 37 44 
Reference Panel:  phase3 phase3 phase3 phase3 
Phasing: SHAPEIT SHAPEIT SHAPEIT SHAPEIT 

Quality  
Control: 

Statistics:      
Alternative allele 
frequency > 0.5 sites:  

0 0 0 0 

Reference Overlap:  99.49% 99.59% 99.47% 99.34% 
Match:  196,571 203,803 197,310 218,994 
Allele switch:  35,331 38,318 35,580 40,065 
Strand flip:  47 39 46 43 
Strand flip and allele 
switch:  

4 7 6 6 

A/T, C/G genotypes:  2,052 2,270 2,053 2,372 
Filtered sites:      
Filter flag set:  0 0 0 0 
Invalid alleles:  0 0 0 0 
Duplicated sites:  0 0 0 0 
NonSNP sites:  0 0 0 0 
Monomorphic sites:  0 0 0 0 
Allele mismatch:  0 0 0 0 
SNPs call rate < 90%: 0 0 0 0 

Summary Excluded sites in 
total:  

51 46 52 49 

Remaining sites in 
total:  

233,954 244,391 234,943 261,431 
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Appendix 4 
Imputation call rates (.info) by chromosome 
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Appendix 5 
run_QC.sh 

#!/bin/bash 
#$ -cwd 
#$ -j y 
#$ -S /bin/bash 
#$ -q HighMemLongterm.q,LowMemLongterm.q 
#$ -M kate.gardner@doctors.org.uk 
#$ -m beas 
#$ -l h_vmem=20G 
########## 
# BASIC QUALITY CONTROL # 
######################### 
 
module add bioinformatics/plink2/1.90b3.38 
 
# remove non sickle samples 
plink --bfile SickleCell_MEGA --remove SickleMEGA_nonSCD.txt --make-bed --out SickleMEGA_noNonSCD 
 
# remove sample with mixup ID-0195 
plink --bfile SickleMEGA_noNonSCD --remove DodgySCD.txt --make-bed --out SickleMEGA_noNonSCD2 
 
# change FID (known updates according to clinical not genetic FID) 
plink --bfile SickleMEGA_noNonSCD2 --update-ids FIDIIDrecode2.txt --make-bed --out SickleMEGA_noNonSCD_newFID 
 
# QC genotyping rate>95% (ie <5% missing genotypes for a SNP, across all individuals) 
plink --bfile SickleMEGA_noNonSCD_newFID --geno 0.05 --make-bed --out SickleMEGA_noNonSCD_newFID_geno0_05 
 
# didn't do MAF = 0 in end as 
# QC MAF<0.1% ie <1/1000 and since population<1000 this is equivalent to MAF=0 ie monomorphic SNPs. This is a 
useful pre-imputation step to remove monomorphic SNPs but we may want to reintroduce them later eg as ethnicity 
marker when comparing to different populations 
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plink --bfile SickleMEGA_noNonSCD_newFID_geno0_05 --maf 0.001 --make-bed --out 
SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001 
 
# QC genotyping rate>95% for individuals (ie <5% missing genotypes for an individual, across all SNPs) 
# note the QC for individuals done last (after SNP QC) to maximise number of individuals kept in 
plink --bfile SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001 --mind 0.05 --make-bed --out 
SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_05 
 
# HWE p<5x10^-8 
plink --bfile SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_05 --hwe 0.00000005 --make-bed --out 
SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_05_hwe0_00000005 
 
# correct 4 with wrong sex attributed 
plink --bfile SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_05_hwe0_00000005 --update-sex CorrectSex.txt --
make-bed --out SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_05_hwe0_00000005_sexCorrect 
 
 
 
################################## 
# PRUNING USING --INDEP-PAIRWISE # 
################################## 
 
# (aside: there are other PLINK pruning strategies using either --INDEP or --INDEP-PAIRPHASE) 
# Aim: prune SNPs in two parts to get one SNP/LD block. Need pruned rather than all SNPs for downstream processing 
steps including sex checking, PCA, ... 
# --indep-pairwise has 3 parameters to define: {N M r2} 
# N SNP window size in kb, large it is, more SNPs removed 
# M SNP intervals to shift (step size to shift window at end of each step) 
# r2 (NOT VIF!): VIF = 1/(1-R^2) where R^2 is the multiple correlation coefficient for a SNP being regressed on all 
other SNPs simultaneously, lower it is, more SNPs removed 
# Paul suggests r2~0.1 => VIF~1.1, or go lower to aim for pruned SNPs ~50k-100k 
 
plink --bfile SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_05_hwe0_00000005_sexCorrect --indep-pairwise 1000 
100 0.04 --out SickleMEGA_PrunedSNPs 
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plink --bfile SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_05_hwe0_00000005_sexCorrect  --extract 
SickleMEGA_PrunedSNPs.prune.in --make-bed --out SickleMEGA_Pruned_1000_100_0.04 
 
 
############################ 
# CHECK-SEX ON PRUNED DATA # 
############################ 
 
# comparing clinical sex with genotypic sex 
# this is a QC step in itself, but also much of the haploid heterozygote genotypes are a result of sex mismatches - 
so discarding the sex mismatches removes hap heterozygotes (over 90% in my case) 
# Needs to be done AFTER PRUNING. Final cutoffs depend on own data and also PRUNING THRESHOLDS above - cutoffs vary 
wildly! 
# Final definitions of sex cut-offs after I played around with the data: 
# 1. F statistic: female max 0.3, male min 0.9 
# 2. ycount: female max 6, male min 30 
# anyone outside of these definition cannot create a "genotypic sex" (noone in my dataset) 
# anyone where this genotypic sex is discordant with clinical sex, go back to collection site to confirm clinical 
sex correctly recorded (hence addition of above --update-sex step where 4 samples incorrectly labelled 
# if genotypic sex still =/= clinical sex, have to discard the sample - assume sample error 
# this will have removed most haploid heterozygote genotypes 
 
 
plink --bfile SickleMEGA_Pruned_1000_100_0.04 --check-sex ycount 0.3 0.9 6 30 --out 
SickleMEGA_Pruned_1000_100_0.04_checkSex_ycount 
grep PROBLEM SickleMEGA_Pruned_1000_100_0.04_checkSex_ycount.sexcheck | awk '{print $1"\t"$2}' > SexMismatches.txt 
 
#remove sex mismatches from pruned data 
plink --bfile SickleMEGA_Pruned_1000_100_0.04 --remove SexMismatches.txt --make-bed --out 
SickleMEGA_Pruned_NoSexMismatch 
 
#remove sex mismatches from unpruned data 
plink --bfile SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_05_hwe0_00000005_sexCorrect --remove 
SexMismatches.txt --make-bed --out SickleMEGA_QC_NoSexMismatch 
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############################################# 
# MANAGE ONGOING GENOME WIDE HETEROZYGOSITY # 
############################################# 
 
# Initially, I used Joni Coleman's R script to check for genome wide heterozygosity and remove extreme outliers>3sd 
# However, these represent precisely the males in the sample and therefore haploid heterozygotes only an issue for 
sex chromosomes. Since I am interested in autosomes only, I have extracted the autosomes and hap heterozygosity no 
longer an issue 
# Thus extracting autosomes is better for me than identifying / removing samples (6 samples) with heterozygosity 
only in X chromosome. 
 
# extract autosomes only, from both pruned and unpruned data 
plink --bfile SickleMEGA_Pruned_NoSexMismatch --chr 1-22 --make-bed --out SickleMEGA_Pruned_NoSexMismatch.autosomes 
plink --bfile SickleMEGA_QC_NoSexMismatch --chr 1-22 --make-bed --out SickleMEGA_QC_NoSexMismatch.autosomes 
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Appendix 6 
PreMichiganProcessing_SHAPEIT.sh 

#!/bin/bash 
#$ -cwd 
#$ -j y 
#$ -S /bin/bash 
#$ -q HighMemLongterm.q,LowMemLongterm.q 
#$ -M kate.gardner@doctors.org.uk 
#$ -m beas 
#$ -l h_vmem=40G 
########## 
 
# This script performs work of Pre imputation QC including: data processing, strand alignment, phasing 
# To use queueing on the cluster, use a different script to call this one so different chromosomes can be processed 
as separate jobs for cluster resource efficiency: call_PreMichiganProcessing_SHAPEIT.sh 
# However, this script started out as sequential for loops through the chromosomes which is where it still is: to 
be changed 
 
# Summary: 
# Aim is to upload sickle MEGA data and haplotype data (from 1000G) in vcf format to Michigan minimac server 
# Data for Michigan minimac must be in strand aligned, hased haplotypes format - use plink to strand align and then 
shapeit to phase 
# SNP names in sickle MEGA are non-standard so I will convert both sickle MEGA and haplotype SNP names to new SNP 
name of format "ChrNum_PosnNum" 
# Finally, we are slicing the data by chromosome BUT I HAVE ONLY DONE AUTOSOMES 
 
# Input and output files: 
# Input: binary PLINK files (.bed, .bim, .fam) with basic QC (eg mind, geno, maf cutoffs): named 
SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_25 
# Output: bgzipped vcf files suitable for upload to the Michigan imputation server minimac at: 
https://imputationserver.sph.umich.edu/ 
 



 

110 
 

# Assumes further downloads of a reference panel (1000G) an genetic map (HapMap) for strand alignment & phasing 
steps: 
# 1. Reference panel from 1000G: make sure same build as own data: 
ALL.chr${x}.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz 
# 2. Genetic map from HapMap for correct assembly (GRCh37 for MEGA data): genetic_map_HapMapII_GRCh37.tar.gz 
 
#Add software modules required 
        module add bioinformatics/htslib/1.3 
        module add bioinformatics/plink/1.90b3.31 
 module add bioinformatics/shapeit 
 
 
##################################################################### 
# DATA PROCESSING OF OWN DATA PRIOR TO STRAND ALIGNMENT AND PHASING # 
##################################################################### 
 
# 1. See what ref and alt allele names are in bim file 
# VCF files only allowed to include {A, C, G, T, N, a, c, g, t, n} so will need to remove all other characters 
# first see what characters there are in bim file, checking both ref and alt allele columns (5 and 6) 
 cut -f5 SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_25.bim |sort |uniq -c 
 cut -f6 SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_25.bim |sort |uniq -c 
 
 
# 2. Delete SNPs that won't be accepted later either for shapeit, michigan server, or during formatting (all snps 
need to be unique for plink2 manipulation) 
# (i) random names ('B' in my case)  
 plink2 --bfile SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_25 --exclude SNPsToRemove.txt --make-bed --out 
SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_25_noB 
 
 
# (ii) I and D  
# SNPS with I / D which comprise 2995 of 1145883 at this stage (0.26137% of all SNPs) 
# Realised afterwards should have combined this and above removal of 'B' alleles. In fact, should have gone further 
to do an if *not* ACGTacgtNn (ie vcf format) then produce this text file. 
# HOWEVER, may actually want to rename/recode these SNPs rather than delete them 



 

111 
 

 awk '{if ($5=="I" || $5=="D" || $6=="I" || $6=="D") print $2}' 
SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_25.bim > SickleMEGA_VCF.txt 
 plink2 --bfile SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_25_noB --exclude SNPsWithDI.txt --make-bed --out 
SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_25_noB_noDI 
 
# (iii) duplicates (difficulty later otherwise) - we are finding duplicate SNP names and duplicate SNP positions 
since later we will update the SNP name as the SNP position 
         cut -f2 SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_25_noB_noDI.bim | sort | uniq -c | awk 
'{if($1>1) print $2}' > SickleMEGADuplicates.txt 
         plink2 --bfile SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_25_noB_noDI --exclude 
SickleMEGADuplicates.txt --make-bed --out SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_25_noB_noDI_noDups 
         cut -f4 SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_25_noB_noDI.bim | sort | uniq -c | awk 
'{if($1>1) print $2}' > SickleMEGADuplicates2.txt 
         plink2 --bfile SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_25_noB_noDI_noDups --exclude 
SickleMEGADuplicates2.txt --make-bed --out SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_25_noB_noDI_noDups2 
 
 # Caution with ID in VCF files: VCF just contain sample IDs, instead of the distinct family and within-family 
IDs tracked by PLINK. We have converted these by using  --double-id causes both family and within-family IDs to be 
set to the sample ID. 
 
 
###################################### 
# CONVERT TO SINGLE CHROMOSOME FILES # 
###################################### 
 
# i. Convert to single chromosome files and also do some further processing: 
# ii. Convert SNP names so can compare to reference data 
# iii. remove duplicates 
 
# CHROMOSOMES="1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22" 
# CHROMOSOMES=$1 
 
# for x in $CHROMOSOMES; 
#         do 
 # i Get sickle data into binary plink format by chromosome 
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 plink --bfile SickleMEGA_noNonSCD_newFID_geno0_05_maf0_001_mind0_05_hwe0_00000005 --chr ${x} --make-bed --out 
Chr${x} 
 
 # ii. convert snp names of sickle data into "ChrNum_PositionNum" format. This is because lots of the given 
SNP names are non-standard in the sickle MEGA set 
 # first use awk create text file of old SNP name / new SNP name (of format chr:position) 
 awk '{print $2"\t"$1"_"$4}' Chr${x}.bim > Chr${x}newName.txt 
 # second feed this file into plink as update-SNP name command 
       plink --bfile Chr${x} --update-name Chr${x}newName.txt --make-bed --out Chr${x}_2 
 
# # iii. remove duplicates 
 # shouldn't have to do this next step as have already removed duplicate position numbers above, however, 
since duplicates remained I have added it in 
         cut -f2 Chr${x}_2.bim | sort | uniq -c | awk '{if($1>1) print $2}' > Chr${x}Duplicates.txt 
         plink --bfile Chr${x}_2 --exclude Chr${x}Duplicates.txt --make-bed --out Chr${x}_3 
 
 
#        done 
 
 
############################################################## 
# DOWNLOAD AND DATA PROCESSING OF REFERENCE PANEL FROM 1000G # 
############################################################## 
 
# 1. Download sample area hg19 from 1000G in  gzipped format BY CHROMOSOME, and copy to Rosalind, this takes time 
# WARNING: ensure using same build of reference panel as your own data 
 
 
# 2. Data formatting of 1000G haplotype data before doing strand alignment 
 
# CHROMOSOMES=$1 
 
#  for x in $CHROMOSOMES; 
#        do 
 # 1. gunzip haplotype files to vcf format 
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        chmod 777 ALL.chr${x}* 
        gunzip ALL.chr${x}.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz 
 # 2. convert vcf to binary plink format 
 plink --vcf ALL.chr${x}.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf --double-id --make-bed 
--out Chr${x}Haplo  
 
 # 3. re-gzip the (very large) vcf file  
 gzip ALL.chr${x}.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf 
 
 # 4. Remove duplicate SNPs by both SNP name  
        cut -f2 Chr${x}Haplo.bim | sort | uniq -c | awk '{if($1>1) print $2}' > Chr${x}HaploDuplicates.txt 
        plink --bfile Chr${x}Haplo --exclude Chr${x}HaploDuplicates.txt --make-bed --out Chr${x}Haplo_noDups 
 
 
 # 5. re-name SNPs in format 'chr_position' 
 # first use awk create text file of old SNP name / new SNP name [use semi colon as delimiter bw Chr and SNP 
as this is how minimac server outputs SNP names so this format make it easier for pre- to post- imputation 
comparison down the line] 
 awk '{print $2"\t"$1"_"$4}' Chr${x}Haplo_noDups.bim > Chr${x}newNameHaplo.txt 
 # Second, make this file unique 
 sort -k2 "Chr${x}newNameHaplo.txt" | uniq > "Chr${x}newNameHaplo2.txt" 
 # third, feed this file into plink as update-SNP name command 
 plink --bfile Chr${x}Haplo_noDups --update-name Chr${x}newNameHaplo2.txt --make-bed --out 
Chr${x}Haplo_noDups2 
 
        # 6. Remove duplicate SNPs by both SNP name (previously position) 
         cut -f2 Chr${x}Haplo_noDups2.bim | sort | uniq -c | awk '{if($1>1) print $2}' > 
Chr${x}HaploDuplicates2.txt 
         plink --bfile Chr${x}Haplo_noDups2 --exclude Chr${x}HaploDuplicates2.txt --make-bed --out 
Chr${x}Haplo_noDups3 
 
 # 7. remove "<" as not accepted allele  
 fgrep "<" Chr${x}Haplo_noDups3.bim | awk '{print $0}' > Chr${x}WrongChar.txt 
        plink --bfile Chr${x}Haplo_noDups3 --exclude Chr${x}WrongChar.txt --make-bed --out Chr${x}Haplo_noDups4 
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 # 8. Remove large, unnecessary files 
 rm Chr${x}Haplo_noDups.* 
        rm Chr${x}Haplo_noDups2.* 
        rm Chr${x}Haplo_noDups3.* 
 
 
#        done 
 
#################### 
# STRAND ALIGNMENT # 
#################### 
 
# Alignment comparison between reference 1000G and our phased data 
# Aside: strand alignment can be done either in prephasing or in imputation steps, but not both. For Michigan 
server, strand align in pre-phasing; and for impute2, strand align with imptutation 
# Aside 2: Alternative to plink strand alignment, as below, is GTOOL 
# In PLINK, achieve alignment using --merge and both --flip and --flipscan 
# There are several possible causes for merge failures: the variant could be known to be triallelic (which plink 
can't handle); there could be a strand flipping issue, or a sequencing error, or a previously unseen variant 
# see merging files at http://pngu.mgh.harvard.edu/~purcell/plink/dataman.shtml#merge  or  https://www.cog-
genomics.org/plink2/data 
# make strict bi allelic otherwise will have merge headaches 
 
 
#  CHROMOSOMES="1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22" 
#CHROMOSOMES=$1 
 
#  for x in $CHROMOSOMES; 
#        do 
 
        # 1. Make strict bi allelic otherwise will have merge headaches 
       plink --bfile Chr${x}_3 --biallelic-only strict --make-bed --out Chr${x}_4 
       plink --bfile Chr${x}Haplo_noDups4 --biallelic-only strict --make-bed --out Chr${x}Haplo_noDups5 
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 # 2. Identify and flip obvious strand errors using --bmerge and --flip 
        # i. do first (dry run) merge using merge-mode 7 : Report mismatching non-missing calls (diff mode 7 -- do 
not merge) 
       plink  --bfile Chr${x}Haplo_noDups5  --bmerge Chr${x}_4.bed Chr${x}_4.bim Chr${x}_4.fam  --merge-mode 7 --
out Chr${x}_Merge 
 
        # ii. use Chr${x}_Merge.missnp file as input to flip alleles in our data 
       plink  --bfile Chr${x}_4 --flip Chr${x}_Merge.missnp --make-bed --out Chr${x}_5 
 
        # iii. re-merge (again, dry run) our data (with flipped alleles) and haplotype data to create : Report 
mismatching non-missing calls (diff mode -- do not merge) 
       plink --bfile Chr${x}Haplo_noDups5  --bmerge Chr${x}_5.bed Chr${x}_5.bim Chr${x}_5.fam  --merge-mode 7 --out 
Chr${x}_Merge2 
 
 # iv. flip errors back again (weren't strand errors) 
       plink  --bfile Chr${x}_5 --flip Chr${x}_Merge2.missnp --make-bed --out Chr${x}_6 
 
 
 # 3. Exclude remaining errors using --exclude 
 #i. remerge to find remaining missnps 
       plink  --bfile Chr${x}Haplo_noDups5  --bmerge Chr${x}_6.bed Chr${x}_6.bim Chr${x}_6.fam  --merge-mode 7 --
out Chr${x}_Merge3 
 
         #ii. exclude these missnps that still exist from both our data and haplo data 
       plink --bfile Chr${x}_6 --exclude Chr${x}_Merge3.missnp --make-bed --out Chr${x}_7 
       plink --bfile Chr${x}Haplo_noDups5 --exclude Chr${x}_Merge3.missnp --make-bed --out Chr${x}Haplo_noDups6 
 
 
        # 4. Use --flip-scan to find those in high negative LD and exclude these 
 # i. re-merge our data again : Report mismatching non-missing calls (diff mode -- do not merge) 
       plink  --bfile Chr${x}Haplo_noDups6  --bmerge Chr${x}_7.bed Chr${x}_7.bim Chr${x}_7.fam  --merge-mode 2 --
out Chr${x}_MergeTemp 
 
 # ii. make phenotypes of cases (our data) versus controls (so --flipscan will know source of data) 
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       plink --bfile Chr${x}_MergeTemp --make-pheno Chr${x}_6.fam '*' --make-bed --out Chr${x}_6_fakepheno 
 
 # iii. do flipscan 
       plink --bfile Chr${x}_6_fakepheno --allow-no-sex --flip-scan --out Chr${x}_6_fakepheno_flipscan 
 
 # iv. identify those with negative LD and exclude from dataset (WE COULD FLIP THEM INSTEAD???) 
# awk '{if ($9>0) print $2}' Chr${x}_6_fakepheno_flipscan.flipscan > Chr${x}_NegLD.txt 
       plink --bfile Chr${x}_7 --exclude Chr${x}_NegLD.txt --make-bed --out Chr${x}_8 
 
 
 # 5. Remove unnecessary, big files 
 rm Chr${x}_6_fakepheno* 
 rm Chr${x}_MergeTemp* 
 
#        done 
 
 
######################## 
# PHASING WITH SHAPEIT # 
######################## 
# Use SHAPEIT to phase the data to haplotype format: input is haplotype genetic maps (from 1000G) and our data in 
binary plink format 
# following scripts cover phasing, checks on phasing, and uploading to minimac server for imputation 
# Assumes download of genetic map from HapMap for correct assembly 
 
 
#  CHROMOSOMES="1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22" 
# CHROMOSOMES=$1 
 
#  for x in $CHROMOSOMES; 
#        do 
        #1. Download genetic map (correct version) 
        #Extract 2nd to 4th columns from this 
       cut -f2-4 genetic_map_GRCh37_chr${CHROMOSOMES}.txt > genetic_map_GRCh37_chr${CHROMOSOMES}_3cols.txt 
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        #2. use shapeit to phase 
        shapeit --input-bed Chr${CHROMOSOMES}_8 --input-map genetic_map_GRCh37_chr${CHROMOSOMES}_3cols.txt --
output-max Chr${CHROMOSOMES}_Phased.haps Chr${CHROMOSOMES}_Phased.sample --thread 8 --states 100 
 
        #PARAMETERS: 
        #input-bed: input files in binary plink format 
        #input-map: genetic map using same db assembly as the input files. Not necessary to have full overlap with 
SNPs, but helpful to have some overlap - For the SNPs that don't have a genetic position, SHAPEIT internally 
determines its genetic position using linear interpolation.  
  #If the intersection between your SNP map (BIM, MAP or GEN file) and your genetic map (GMAP file) is 
poor, you should verify that the positions in both files are from the same build of the Human genome (b36 or b37 
for example). 
        #output-max: output file name for 2 files: haplotypes (haps) and samples 
        #STATES: You can increase accuracy of SHAPEIT by increasing the number of conditioning states on which 
haplotype estimation is based. By default, SHAPEIT uses 100 states per SNP across the dataset which gives good 
accuracy while maintaining reasonable running times. The complexity of the algorithm   is linear with the 
number of conditioning states, so feel free to increase this number if your computational resources allow it. For 
instance, if you set this number to 200, it will take times longer than with 100 states. 
        #burn X : where X is the number of the burn-in iterations. The default value is 7 which is sufficient for 
most application. Those iterations are used to find a good starting haplotype estimate. 
        #prune Y : where Y is the number of iterations of the pruning stage. The default value is 8. Transition 
probabilities are stored across pruning iterations and used to prune the genotype graphs in order to get more 
parsimonious graphs. 
        #main Z : where Z is the number of main iterations. The default value is 20. The final haplotype estimate 
is found by averaging across the main iterations. 
 
        #3. Convert shapeit output to vcf and plink formats (using shapeit convert function) 
       shapeit -convert --input-haps Chr${CHROMOSOMES}_Phased --output-vcf Chr${CHROMOSOMES}_Phased.vcf 
        #       Convert vcf to binary plink format as will need this post-imputation 
        plink --vcf Chr${CHROMOSOMES}_Phased.vcf --double-id --make-bed --out Chr${CHROMOSOMES}_Phased 
        #[Aside: can also convert shapeit output to plink using gtool, see https://www.biostars.org/p/17266/] 
 
        #4. Visual checks on phased data 
        # i. convert plink binary to non binary format for visual comparison with pre-strand alignment and post-
strand alignment/pre-phasing 
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       plink --bfile Chr${x}_Phased --recode --out Chr${x}_Phased 
 
#        done 
 
########################################################################################################## 
# Post phasing QC to identify difference in allele frequency between own data and reference data (1000G) # 
########################################################################################################## 
 
# CHROMOSOMES=$1 
 
#  for x in $CHROMOSOMES; 
#        do 
 #1. identify and keep AFR samples only from 1000G only, and get allele frequencies (needed for below) 
 awk 'NR==FNR { n[$1] = $1; next } ($1 in n) {print $0}' 1000G_Ph3_AFRsamples.txt Chr${x}Haplo_noDups6.fam > 
Chr${x}Haplo_AFRsamples.txt 
 plink --bfile Chr${x}Haplo_noDups6 --keep Chr${x}Haplo_AFRsamples.txt --make-bed --out Chr${x}Haplo_AFRonly 
        plink --bfile Chr${x}Haplo_AFRonly --freq --out Chr${x}Haplo_AFRonly 
 
        #2. identify potentially flipped alleles, "y=-x" based on comparing allele frequencies in our data and 
1000G AFR data using a MAF <0.35 and a difference between ours and ref panel of 0.15 (does not appear to be 
concordance issue if threshold is lower than this - may try higher threshold at a later date) 
       plink --bfile Chr${x}_Phased --freq --out Chr${x}_Phased 
 
       awk 'NR==FNR {a[$2]=$0;next} {if ($2 in a) print $2,$3,$4,$5,a[$2]}' Chr${x}_Phased.frq 
Chr${x}Haplo_AFRonly.frq > Chr${x}_compareFreqAFR.txt 
      awk '{print $1,$2,$3,$4,$7,$8,$9}' Chr${x}_compareFreqAFR.txt > Chr${x}_compareFreqAFR2.txt 
      awk '{if($2==$6 && $3==$5) print $0}' Chr${x}_compareFreqAFR2.txt > Chr${x}_compareFreqAFR3.txt 
      awk '{if($4<0.35 && $7<0.35 && sqrt(($4-$7)^2)<0.15) print $1}' Chr${x}_compareFreqAFR3.txt > 
Chr${x}_flippedAllelesAFR.txt 
 
 #3. flip these alleles, and get allele frequencies (needed for below) 
 plink --bfile Chr${x}_Phased --flip Chr${x}_flippedAllelesAFR.txt --make-bed --out Chr${x}_Phased0.15_AFR 
        plink --bfile Chr${x}_Phased0.15_AFR --freq --out Chr${x}_Phased0.15_AFR 
 
 rm Chr${x}_compareFreqAFR.txt 
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        rm Chr${x}_compareFreqAFR2.txt 
        rm Chr${x}_compareFreqAFR3.txt 
 
 
 #4. use Will Rayner's QC perl script with tight threshold for difference between allele frequencies (t=0.1) 
as this led to best imputation performance 
 # http://www.well.ox.ac.uk/~wrayner/tools/ 
 # Removes those with one of 5 QC problems: no match to 1000G, indels, allele freq difference > threshold, 
palindromic SNPs, non matching alleles 
 # (most are either no match to 1000G or allele freq difference) 
 
 gunzip 1000GP_Phase3_combined.legend.gz 
 
        perl HRC-1000G-check-bim.pl -b Chr${x}_Phased0.15_AFR.bim -f Chr${x}_Phased0.15_AFR.frq  -r 
1000GP_Phase3_combined.legend -g  -t 0.1 -p AFR 
        # parameters: 
        # -p <population> default is ALL. Choose 7 black populations in 1000G with -p AFR 
        # -t <difference> : allele frequency thresholds. -t 0.2 sets allele difference threshold to 0.2 (default) 
                #Use this to change the allele frequency difference used to exclude SNPs in the final file, range 0 
- 1, the larger the difference the fewer SNPs will be excluded. 
        # -n flag to specify that you do NOT wish to exclude any SNPs based on allele frequency difference, if -n 
is used -t has no effect. 
 
 gzip 1000GP_Phase3_combined.legend 
        plink --bfile Chr${x}_Phased0.15_AFR --exclude Exclude-Chr${x}_Phased0.15_AFR-1000G.txt --make-bed --out 
Chr${x}_Phased0.15_AFR_QC 
 
 
 #5. convert QC files to vcf and bgzip 
       plink --bfile Chr${x}_Phased0.15_AFR_QC --recode vcf --out Chr${x}_Phased0.15_AFR_QC 
        bgzip Chr${x}_Phased0.15_AFR_QC.vcf 
 
#        done 
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Appendix 7 
PostMichiganProcessing_SHAPEIT_r2.sh 

#!/bin/bash 
#$ -cwd 
#$ -j y 
#$ -S /bin/bash 
#$ -q HighMemLongterm.q,LowMemLongterm.q 
#$ -M kate.gardner@doctors.org..uk 
#$ -m beas 
#-l h_vmem=60G 
########## 
 
 module add bioinformatics/htslib/1.3 
 module add bioinformatics/plink2/1.90b3.38 
 
######################################### 
# DATA PROCESSING POST-IMPUTATION FILES # 
######################################### 
 
# Download files from minimac imputation server and copy to Rosalind 
# Also copy pre-imputation (but post-strand alignment/phasing) files across, named: Chr${CHROMOSOMES}_Phased.vcf 
 
#  echo "***************sickle MEGA data formatting**************" 
 
# CHROMOSOMES="1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22" 
 CHROMOSOMES=$1 
 
# for x in $CHROMOSOMES; 
#          do 
 
# FILES PRE IMPUTATION (BUT POST STRAND ALIGNMENT, PHASING AND FURTHER QC) ARE CALLED 
Chr${x}_Phased0.15_AFR_QC, then renamed Chr${CHROMOSOMES}_PreImputation.bed 
#       FILES POST IMPUTATION WE WILL NAME Chr${x}_Imputed 
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 #1. unzip imputation files from minimac server, then make into plink format, so we have a set of imputed 
plink files called Chr${CHROMOSOMES}_Imputed 
 # will need PASSWORD (emailed) from minimac to inflate the files 
 unzip -P 0tbEGAAOua696 chr_${CHROMOSOMES}.zip 
 gunzip chr${CHROMOSOMES}.info.gz #need to take account of this later 
 gunzip chr${CHROMOSOMES}.dose.vcf.gz 
 
 plink --vcf chr${CHROMOSOMES}.dose.vcf --biallelic-only strict --make-bed --out Chr${CHROMOSOMES}_Imputed 
        gzip chr${CHROMOSOMES}.dose.vcf 
 
 
 # 2. remove duplicate variants from imputed SNPs 
 plink --bfile Chr${CHROMOSOMES}_Imputed --list-duplicate-vars  --out Chr${CHROMOSOMES}_Imputed_Duplicates 
 plink --bfile Chr${CHROMOSOMES}_Imputed --exclude Chr${CHROMOSOMES}_Imputed_Duplicates.dupvar --make-bed --
out Chr${CHROMOSOMES}_Imputed_noDups 
 
 
 # 3. remove badly imputed SNPs using .info average call rate 
 # we plotted the density (frequency) of call rates in R - see AvgCallRate.sh 
 # this suggests we can be as stringent as call rate > 0.95 and not really lose anything above call rate > 0.4 
(graph saved on external hard disc) 
 awk '{if ($7<=0.4) print $1}' chr${CHROMOSOMES}.info > Chr${CHROMOSOMES}_PoorImpQualSNPs.txt 
 plink --bfile Chr${CHROMOSOMES}_Imputed_noDups --exclude Chr${CHROMOSOMES}_PoorImpQualSNPs.txt --make-bed --
out Chr${CHROMOSOMES}_Imputed_noDups_GoodImp 
 
       # 4.move and rename pre-imputation plink files over for comparison checks 
 cp 
/users/k1343761/brc_scratch/sickle_new/PreMichiganImpProcessing_SHAPEIT/Chr${CHROMOSOMES}_Phased0.15_AFR_QC.bed 
/users/k1343761/brc_scratch/sickle_new/PostMichiganImpProcessing_SHAPEIT/AllChr/1000G_Ph3v5_MIXED_shapeit 
 cp 
/users/k1343761/brc_scratch/sickle_new/PreMichiganImpProcessing_SHAPEIT/Chr${CHROMOSOMES}_Phased0.15_AFR_QC.bim 
/users/k1343761/brc_scratch/sickle_new/PostMichiganImpProcessing_SHAPEIT/AllChr/1000G_Ph3v5_MIXED_shapeit 
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 cp 
/users/k1343761/brc_scratch/sickle_new/PreMichiganImpProcessing_SHAPEIT/Chr${CHROMOSOMES}_Phased0.15_AFR_QC.fam 
/users/k1343761/brc_scratch/sickle_new/PostMichiganImpProcessing_SHAPEIT/AllChr/1000G_Ph3v5_MIXED_shapeit 
 
 mv 
/users/k1343761/brc_scratch/sickle_new/PostMichiganImpProcessing_SHAPEIT/AllChr/1000G_Ph3v5_MIXED_shapeit/Chr${CHRO
MOSOMES}_Phased0.15_AFR_QC.bed 
/users/k1343761/brc_scratch/sickle_new/PostMichiganImpProcessing_SHAPEIT/AllChr/1000G_Ph3v5_MIXED_shapeit/Chr${CHRO
MOSOMES}_PreImputation.bed 
 mv 
/users/k1343761/brc_scratch/sickle_new/PostMichiganImpProcessing_SHAPEIT/AllChr/1000G_Ph3v5_MIXED_shapeit/Chr${CHRO
MOSOMES}_Phased0.15_AFR_QC.bim 
/users/k1343761/brc_scratch/sickle_new/PostMichiganImpProcessing_SHAPEIT/AllChr/1000G_Ph3v5_MIXED_shapeit/Chr${CHRO
MOSOMES}_PreImputation.bim 
 mv 
/users/k1343761/brc_scratch/sickle_new/PostMichiganImpProcessing_SHAPEIT/AllChr/1000G_Ph3v5_MIXED_shapeit/Chr${CHRO
MOSOMES}_Phased0.15_AFR_QC.fam 
/users/k1343761/brc_scratch/sickle_new/PostMichiganImpProcessing_SHAPEIT/AllChr/1000G_Ph3v5_MIXED_shapeit/Chr${CHRO
MOSOMES}_PreImputation.fam 
 
 # 5. compare pre and post imputation data using plink's --merge function 
 # i. merge the two datasets two create a new dataset of pre-imputation values where available, plus imputed 
SNPS --merge-mode 7 which is a "diff" merge mode (ie don't actually perform merge, report mismatching non-missing 
calls only) 
 plink --bfile Chr${CHROMOSOMES}_PreImputation --bmerge Chr${CHROMOSOMES}_Imputed_noDups_GoodImp.bed 
Chr${CHROMOSOMES}_Imputed_noDups_GoodImp.bim Chr${CHROMOSOMES}_Imputed_noDups_GoodImp.fam  --merge-mode 7 --out 
Chr${CHROMOSOMES}_merge 
 
 
 #ii. Merge fails - we strand aligned (with 1000G) and phased (with 1000G genetic map). Michigan server will 
fail pre-imputation QC if th3ere are more than 100 obvious strand flips 
 #for safety, I am deleting the merge fails 
 plink --bfile Chr${CHROMOSOMES}_PreImputation --exclude Chr${CHROMOSOMES}_merge.missnp --make-bed --out 
Chr${CHROMOSOMES}_PreImputation_NoMergeFails 



 

123 
 

 plink --bfile Chr${CHROMOSOMES}_Imputed_noDups_GoodImp --exclude Chr${CHROMOSOMES}_merge.missnp --make-bed --
out Chr${CHROMOSOMES}_Imputed_noDups_GoodImp_NoMergeFails 
 plink --bfile Chr${CHROMOSOMES}_PreImputation_NoMergeFails --bmerge 
Chr${CHROMOSOMES}_Imputed_noDups_GoodImp_NoMergeFails.bed Chr${CHROMOSOMES}_Imputed_noDups_GoodImp_NoMergeFails.bim 
Chr${CHROMOSOMES}_Imputed_noDups_GoodImp_NoMergeFails.fam  --merge-mode 7 --out Chr${CHROMOSOMES}_merge2 
 
 #iii. inspect differences in SNP calls in Chr${CHROMOSOMES}_merge2.diff 
 # review SNPs that have different SNP calls - include a count of number of individuals with different SNPs 
 awk '{print $1}' Chr${CHROMOSOMES}_merge2.diff | sort | uniq --count | sort -k1 -n -r  > 
Chr${CHROMOSOMES}_merge2_uniq.diff 
 #This list of differences is important for future QC: Chr${CHROMOSOMES}_merge2_uniq.diff contains SNPs with 
mismatches in reverse order of mismatch frequency. This is not an issue for SNPs where we have MEGA data (ie these 
very SNPs), but what about surrounding imputed SNPs? 
  
 #6. Perform actual merge to keep original (MEGA chip) calls and add in imputed SNP calls not found in 
original dataset (merge mode 2 with first file as pre-imputation) 
 plink --bfile Chr${CHROMOSOMES}_PreImputation_NoMergeFails --bmerge 
Chr${CHROMOSOMES}_Imputed_noDups_GoodImp_NoMergeFails.bed Chr${CHROMOSOMES}_Imputed_noDups_GoodImp_NoMergeFails.bim 
Chr${CHROMOSOMES}_Imputed_noDups_GoodImp_NoMergeFails.fam  --merge-mode 2 --out Chr${CHROMOSOMES}_FINAL 
 # check that this has been merged correctly for your data 
 
 #7. Write this post imputation QC to a log file Chr${CHROMOSOMES}_QC.log 
 #review concordance rates 
 numberOfPreImputationSNPs=$(wc Chr${CHROMOSOMES}_PreImputation_NoMergeFails.bim | awk '{print $1}')  
        numberOfImputedSNPs=$(wc Chr${CHROMOSOMES}_Imputed_noDups_GoodImp_NoMergeFails.bim | awk '{print $1}') 
        numberOfPreImputationSNPs=$(wc Chr${CHROMOSOMES}_PreImputation.bim | awk '{print $1}') 
        numberOfImputedSNPs=$(wc Chr${CHROMOSOMES}_Imputed.bim | awk '{print $1}') 
 numberOfDuplicatesPlus1=$(wc Chr${CHROMOSOMES}_Imputed_Duplicates.dupvar | awk '{print $1}') 
 numberOfDuplicates=$(($numberOfDuplicatesPlus1-1)) 
 numberOfBadlyImputedSNPS=$(wc Chr${CHROMOSOMES}_PoorImpQualSNPs.txt | awk '{print $1}') 
 numberOfImputedGoodSNPsPreMerge=$(wc Chr${CHROMOSOMES}_Imputed_noDups_GoodImp.bim | awk '{print $1}') 
 concordanceInfo=$(tail -n4 Chr${CHROMOSOMES}_merge2.log | head -n2) 
 diffAllIndivs=$(wc Chr${CHROMOSOMES}_merge2.diff | awk '{print $1}') 
       diffSNPsOnly=$(wc Chr${CHROMOSOMES}_merge2_uniq.diff | awk '{print $1}')  
 awk '{if ($1>100) print $2}' Chr${CHROMOSOMES}_merge2_uniq.diff > Chr${CHROMOSOMES}_merge2_over100.txt 
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 diffSNPsOver100=$(wc Chr${CHROMOSOMES}_merge2_over100.txt | awk '{print $1}') 
        awk '{if ($1>50) print $2}' Chr${CHROMOSOMES}_merge2_uniq.diff > Chr${CHROMOSOMES}_merge2_over50.txt 
        diffSNPsOver50=$(wc Chr${CHROMOSOMES}_merge2_over50.txt | awk '{print $1}') 
        numberOfSNPsPostMerge=$(wc Chr${CHROMOSOMES}_FINAL.bim | awk '{print $1}') 
 
 echo "QC checking post imputation for chromosome ${CHROMOSOMES}: 
 Number of SNPs pre-imputation: $numberOfPreImputationSNPs 
 Number of SNPs post-imputation: $numberOfImputedSNPs 
 Number of duplicates: $numberOfDuplicates 
 Number of badly imputed SNPs ie imputation call quality <=0.95: $numberOfBadlyImputedSNPS (little difference 
between using 0.4 and 0.95 as cutoff hence higher stringency) 
 Number of post-imputation SNPs after removing duplicates and badly imputed SNPs, pre-merging with pre-
imputation genotypes: $numberOfImputedGoodSNPsPreMerge 
 Concordance info: $concordanceInfo 
 All differences in SNP calls between pre- and post-imputation: $diffAllIndivs 
 Differences in unique SNPs between pre- and post-imputation: $diffSNPsOnly 
 Number of SNPs with differences in more than 100 individuals: $diffSNPsOver100 
        Number of SNPs with differences in more than 50 individuals: $diffSNPsOver50 
 Number of SNPs Post Merge in final file: $numberOfSNPsPostMerge 
 " > Chr${CHROMOSOMES}_QC.log 
 
 
 
 #8. remove large files BUT ONLY AT END 
        rm Chr${CHROMOSOMES}_Imputed_Duplicates.* 
        rm Chr${CHROMOSOMES}_Imputed_noDups.* 
        rm Chr${CHROMOSOMES}_Imputed_noDups_GoodImp.* 
        rm Chr${CHROMOSOMES}_Imputed_noDups_GoodImp_NoMergeFails.* 
 rm Chr${CHROMOSOMES}_PreImputation_NoMergeFails.* 
       rm Chr${CHROMOSOMES}_merge.* 
       rm Chr${CHROMOSOMES}_merge2.* 
 
#        done 
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Appendix 8 
PostImputationAnalysis.sh 

#!/bin/bash 
#$ -cwd 
#$ -j y 
#$ -S /bin/bash 
#$ -q HighMemLongterm.q,LowMemLongterm.q 
#$ -M kate.gardner@doctors.org..uk 
#$ -m beas 
#-l h_vmem=40G 
########## 
 
 
 module add bioinformatics/plink2/1.90b3.38 
 module add bioinformatics/htslib/1.3 
 
 #1. merge Chr to create 1 file 
 plink --bfile Chr1_FINAL --merge-list IndivChrFiles.txt --make-bed --out Sickle_Imputed 
 
 #2. Post imputation QC  
 #a. update FID (vcf can't deal with FID so all FID are IID, to return to known clinical not genetic FID) 
 plink --bfile Sickle_Imputed --update-ids FIDIIDrecode2.txt --make-bed --out Sickle_Imputed_updateFID 
 
 #b. reinsert original sex (removed during imputation file conversion) 
 plink --bfile Sickle_Imputed_updateFID --update-sex OriginalSex.txt --make-bed --out 
Sickle_Imputed_updateFID_sexIncl 
 
 #c. correction to sex (should have happened before imputation but didn't) 
  #i. update sex: correct 4 with wrong sex attributed (should have happened pre imputation but didn't) 
  plink --bfile Sickle_Imputed_updateFID_sexIncl --update-sex CorrectSex.txt --make-bed --out 
Sickle_Imputed_updateFID_sexIncl_updateSex 
 
  #ii. remove sex mismatches from imputed samples (should have happened pre imputation but didn't) 
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  plink --bfile Sickle_Imputed_updateFID_sexIncl_updateSex --remove SexMismatches.txt --make-bed --out 
Sickle_Imputed_updateFID_sexIncl_updateSex_NoSexMismatch 
 
 #d. QC using strict cutoffs (as per UK Biobank criteria). Also do in this order so only removing samples (if 
any) at the end 
 plink --bfile Sickle_Imputed_updateFID_sexIncl_updateSex_NoSexMismatch --geno 0.02 --make-bed --out 
Sickle_Imputed_updateFID_sexIncl_updateSex_NoSexMismatch_geno0_02 
 plink --bfile Sickle_Imputed_updateFID_sexIncl_updateSex_NoSexMismatch_geno0_02 --maf 0.01 --make-bed --out 
Sickle_Imputed_updateFID_sexIncl_updateSex_NoSexMismatch_geno0_02_maf0_01 
        plink --bfile Sickle_Imputed_updateFID_sexIncl_updateSex_NoSexMismatch_geno0_02_maf0_01 --hwe 0.0000001 --
make-bed --out Sickle_Imputed_updateFID_sexIncl_updateSex_NoSexMismatch_geno0_02_maf0_01_hwe10-7 
        plink --bfile Sickle_Imputed_updateFID_sexIncl_updateSex_NoSexMismatch_geno0_02_maf0_01_hwe10-7 --mind 0.01 
--make-bed --out Sickle_Imputed_QC_strict 
 



127 
 

Chapter 4: Genome-Wide Association Studies in Sickle Cell 
Disease 

 

Figures ................................................................................................................................... 129 

Tables .................................................................................................................................... 129 

4.1. Introduction .............................................................................................................. 130 
4.1.1. Background on genome wide association studies ............................................ 130 
4.1.2. Tagging and linkage disequilibrium ................................................................... 131 
4.1.3. Selection of phenotypes for association studies .............................................. 131 
4.1.4. Statistical tests .................................................................................................. 131 
4.1.5. Consideration of population ethnicity .............................................................. 132 
4.1.6. Confounding in GWAS ....................................................................................... 133 
4.1.7. Population structure and relatedness .............................................................. 133 
4.1.8. Managing relatedness ....................................................................................... 135 

4.1.8.1. Background ............................................................................................... 135 
4.1.8.2. Study design .............................................................................................. 135 
4.1.8.3. Family studies ............................................................................................ 135 
4.1.8.4. Genomic control ........................................................................................ 136 
4.1.8.5. Principal components analysis .................................................................. 136 
4.1.8.6. Regression analysis using linear mixed modelling .................................... 138 
4.1.8.7. Assessing a model: Lambda GC and QQ plots ........................................... 139 

4.1.9. Power and sample size considerations ............................................................. 140 

4.2. Methods .................................................................................................................... 141 
4.2.1. Genotyping ........................................................................................................ 141 
4.2.2. Phenotyping ...................................................................................................... 141 
4.2.3. Statistical analysis ............................................................................................. 141 

4.2.3.1. Scripting in Linux ....................................................................................... 141 
4.2.3.2. Significance levels in GWAS ...................................................................... 141 
4.2.3.3. Checks on positive signals ......................................................................... 142 
4.2.3.4. Replication ................................................................................................ 142 

4.3. Results ....................................................................................................................... 142 
4.3.1. GWAS analysis scripts: a resource for genetic association analysis traits in sickle 
cell disease using linear mixed modelling ......................................................................... 142 
4.3.2. Fetal haemoglobin (HbF%) as phenotype ......................................................... 144 

4.3.2.1. HbFg project .............................................................................................. 147 
4.3.3. Hospitalisation rate as phenotype .................................................................... 147 
4.3.4. Haemolytic index as phenotype ........................................................................ 150 
4.3.5. Mortality/survival as phenotype ....................................................................... 153 
4.3.6. Urinary albumin creatinine ratio as phenotype ................................................ 153 

4.4. Conclusions ............................................................................................................... 156 

References ............................................................................................................................ 156 

Appendix 1 ............................................................................................................................ 159 

Appendix 2 ............................................................................................................................ 160 



128 
 

Appendix 3 ............................................................................................................................ 162 

Appendix 4 ............................................................................................................................ 163 

Appendix 5 ............................................................................................................................ 184 

Appendix 6 ............................................................................................................................ 184 
 

  



129 
 

Figures 
Figure 1 GWAS studies to July 2017, from https://www.ebi.ac.uk/gwas ................................. 130 
Figure 2 Models for statistical tests: panel (a) case-control study (b) quantitative trait study 132 
Figure 3 Confounding in genotype / phenotype association studies: what if ethnicity is a 
confounder, associated with both the phenotype and the genotype? .................................... 133 
Figure 4 Evidence of population stratification: different populations (red/blue) in cases versus 
controls ..................................................................................................................................... 134 
Figure 5 European population structure, from Novembre (2008) ........................................... 137 
Figure 6 QQ plot demonstrating genomic inflation .................................................................. 140 
Figure 7 Linear mixed modelling script interface for user to answer questions. This means the 
parameters are decided at the command line without the user having to alter the code. 
Parameters that the user can modify (after answering the questions) include: patient 
population (e.g. HbSS, HbSC, ALL, nonHbSS); relatedness cut-off; outcome (phenotype) name; 
whether imputed or chip (raw) genotype data to be used; upper and lower age limits to 
consider ..................................................................................................................................... 143 
Figure 8 Demographic details for the HbF% GWAS (N=690): (a) histogram of age and sickle 
genotype (b) pie chart of sex (c) histogram of HbF% values .................................................... 145 
Figure 9 Linear mixed model results for Ln(HbF%): (a) QQ plot of the observed versus the 
expected p-values (b) Manhattan plot for association results (-log10p) plotted against the 
position on each chromosome ................................................................................................. 146 
Figure 10 Demographic details for the hospitalisation rate GWAS (N=354): (a) histogram of age 
and sickle genotype (b) pie chart of sex (c) histogram of hospitalisation rate per year .......... 147 
Figure 11 Linear mixed model results for hospitalisation rate: (a) QQ plot of the observed 
versus the expected p-values (b) Manhattan plot for association results (-log10p) plotted 
against the position on each chromosome............................................................................... 149 
Figure 12 Demographic details for the haemolytic index GWAS (N=321): (a) histogram of age 
and sickle genotype (b) pie chart of sex (c) histogram of haemolytic index values ................. 150 
Figure 13 Linear mixed model results for the haemolytic index: (a) QQ plot of the observed 
versus the expected p-values (b) Manhattan plot for association results (-log10p) plotted 
against the position on each chromosome............................................................................... 152 
Figure 14 Demographic details for the uACR GWAS (N=326): (a) histogram of age and sickle 
genotype (b) pie chart of sex (c) histogram of urinary albumin creatinine ratios .................... 153 
Figure 15 Linear mixed model results for uACR: (a) QQ plot of the observed versus the 
expected p-values (b) Manhattan plot for association results (-log10p) plotted against the 
position on each chromosome ................................................................................................. 155 
 

Tables 
Table 1 Suggestive novel loci associated with hospitalisation rate for all sickle genotypes (A1 is 
the effect allele) ........................................................................................................................ 148 
Table 2 Suggestive novel loci associated with haemolytic index (averaged over 10 years) for all 
sickle genotypes (A1 is the effect allele) ................................................................................... 151 
Table 3 Suggestive novel loci associated with UACR (averaged over 10 years) for all sickle 
genotypes (A1 is the effect allele) ............................................................................................ 154 
  



130 
 

4.1. Introduction 
4.1.1. Background on genome wide association studies 

Genome-wide association studies (GWAS) analyse the association between many millions of 

genetic markers (across the whole genome) with a “phenotype” or “trait”. As such, the GWAS 

approach is a “hypothesis-free” search for positive signals: it involves an unbiased scan of the 

whole human genome. In addition to detecting direct association between genes and traits, 

GWAS can also reveal unsuspected interactions of several loci affecting the same outcomes 

(Manolio, 2013). GWAS data will also serve to confirm previous findings if the association is 

robust (Menzel et al., 2007, Milton et al., 2012). GWAS have transformed our understanding of 

the underlying causes of common diseases and complex phenotypes. A case in point is the 

application of GWAS in the β-globin field: the unexpected discovery of BCL11A (an oncogene 

that, hitherto, was not known to have a role in erythropoiesis) as a quantitative trait locus 

(QTL) controlling HbF% (Menzel et al., 2007, Uda et al., 2008). GWAS also confirmed 

association of the other two loci – Xmn1-HBG2 (rs782144) on chromosome 11p and 

HBS1L-MYB (HMIP) on chromosome 6q – with HbF%, QTLs that were previously discovered 

through candidate gene (Labie et al., 1985b) and genetic linkage studies (Craig et al., 1996). 

Similarly, GWAS has confirmed the association between bilirubin level and UGT1A1 

polymorphism in SCD (Milton et al., 2012).  

 

In July 2017, the GWAS Catalogue contained 3043 publications and 38708 unique genetic 

variant-trait associations (p≤5x10-8) for 17 trait categories (http://www.ebi.ac.uk/gwas/), see 

Figure 1. 

 

Figure 1 GWAS studies to July 2017, from https://www.ebi.ac.uk/gwas 
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I performed genome-wide analysis of multiple phenotypes of sickle cell disease in individuals 

from South London, United Kingdom, to identify genetic variants associated with disease 

severity in mixed African and African-Caribbean population. I used mixed linear model 

association analysis (LMM): this procedure involves using a genomic relationship matrix (GRM) 

from genome-wide data as a random effect in the mixed linear model to model relatedness / 

population structure of the cohort. The ability of the GWAS to replicate previous findings was 

also assessed.  

 
4.1.2. Tagging and linkage disequilibrium 

The premise of genetic association studies is to test whether different alleles of a gene are 

associated with a trait: in case-control studies, whether one allele more frequent among cases 

compared to controls, and in quantitative trait studies, whether trait values are higher among 

carriers of one allele than another. Significant association can mean that this locus itself has a 

direct effect on the disease or trait, or that this marker is physically near, or “tags”, the DNA 

variant that has a direct effect on the disease or trait. 

 
4.1.3. Selection of phenotypes for association studies 

A phenotype is suitable for association analysis if it is both variable and heritable. Continuous 

phenotype data offer more statistical power than those obtained by re-coding observations 

into binary or categorical variables. A mathematical transformation of phenotype data (e.g. 

log-transformation of positively skewed data) may be appropriate to create as “normal” a trait 

distribution as possible.  

 

4.1.4. Statistical tests 
GWAS are similar to randomised controlled trials or experiments in principle, but there are 

some key differences: (i) the number of tests, (ii) the model of association, and (iii) the 

importance of quality control checks (discussed in chapter 3).  

 

The number of tests performed depends, among other factors, on the number of genetic 

markers tested, which now runs into millions in the era of large scale imputation. Statistically, 

repeat testing has implications for setting genome-wide significance thresholds (see section 

4.2.3.2). On a practical level, there are also computational efficiency implications: most GWAS 

are now run on computer server clusters, rather than single machines.  

 

There are multiple models of association in genetic association studies. Data can be analysed 

as genotypes (counting AA, Aa, aa), as alleles (counting A or a), or using a dominant or 

recessive mode of inheritance (Clarke et al., 2011), see Figure 2. 
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a  

 
 

b 

 
Figure 2 Models for statistical tests: panel (a) case-control study (b) quantitative trait study  

The differences between these analysis methods are important enough to severely affect the 

ability to detect an association (significant versus non-significant results). Since the mode of 

inheritance for the trait under study is usually unknown, in GWAS, either a genotypic or allelic 

model is applied.  

 

Regression models (whether linear or logistic) allow covariates to be built in, to control for a 

variety of parameters – fixed effects related both to the individual (age, sex) or random effects 

related to the population (relatedness, via principal components or a GRM, see below).  

4.1.5. Consideration of population ethnicity 
Genetic heterogeneity within and between populations is a major issue in genotype-

phenotype association studies. Genetic variation can be specific to an ethnic group or 

unrecognised sub-groupings within known ethnic entities. The failure to deal with the ethnic 

make-up of a study population can lead to either false-positive findings (due to population 

stratification) or to loss of power (i.e. failure to capture genetic variability). Until recently, 

barriers to performing GWAS in non-Europeans populations included the lack of appropriate 

micro-arrays (genotyping chips) that capture ethnicity-specific genetic variability, scarce 

reference population data, and sub-optimal analysis procedures.  

 

Most previous genotyping arrays used in GWAS had made use of data based on European 

populations. Using ethnically-relevant assay systems is particularly important with our 

patients, all but one of whom are of African or African-Caribbean heritage. The advent of 

Illumina’s MEGA chip and other “African” weighted arrays (which include African-specific 

genetic variants) overcomes this. 

 

The lack of suitable reference panels meant a failure to accommodate the genetic 

characteristics of African populations. With the release of 1000 Genomes Project phase 3 

(which contains seven African-heritage populations), this barrier has been removed. 



133 
 

 

To date, studies in European populations (which includes European Americans) significantly 

outnumber those in other populations. African populations have been particularly neglected, 

hampering research not only into diseases prevalent in Africa, but also preventing the study of 

the increased burden for cardiovascular disease, type 2 diabetes mellitus and renal disease 

among members of the African diaspora in Europe. Sickle cell disease in the UK is a condition 

of individuals of African heritage. Therefore, there is considerable scope for identifying the 

genetic component to severity of sickle cell disease in African heritage populations.  

4.1.6. Confounding in GWAS 
Compared to other studies, GWAS are subject to fewer sources of bias: genotypes don’t 

change in an individual's lifetime. There are two key sources of confounding in GWAS: 

technical artefacts and relatedness. Technical artefacts arise from sample handling or lab 

processing that are correlated with phenotype e.g. case samples are stored differently or 

processed differently to control samples. This can also, indirectly, affect quantitative trait 

studies such as ours. Our careful genotyping and phenotyping on the same platforms (chapters 

2 and 3) together with strict quality control reduce the likelihood of technical artefacts.  

 

Population stratification, or confounding by genetic ancestry, is a key cause of false positive 

results in genotype-phenotype association studies. In statistics, confounding is a type of bias 

causing spurious or distorted findings caused by a correlation between a third variable (the 

confounding variable) and both the exposure variables (e.g. the genotype) and the outcome 

variable (e.g. quantitative trait, case-control status), see Figure 3. In genetic association 

studies, the concern is that recognised or hidden ethnic heterogeneity could represent a 

confounding factor. 

 
Figure 3 Confounding in genotype / phenotype association studies: what if ethnicity is a 
confounder, associated with both the phenotype and the genotype? 

4.1.7. Population structure and relatedness 
Population structure can generate spurious genotype–phenotype associations. Population 

stratification implies some degree of population substructure in the cohort under analysis. For 

example, sleeping sickness (Trypanosoma brucei) occurs more frequently in Africans than in 
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Europeans. In a hypothetical case-control study of sleeping sickness, which included European 

and African populations, false-positive association will occur at genetic markers that differ in 

genotype frequencies between the two subpopulations (i.e. markers of ethnicity not the 

disease under investigation), see Figure 4. This is because cases are drawn preferentially from 

the African sub-population which also has a higher frequency of the variant and so the 

difference in genotypes between cases and controls reflects their population origin, not their 

disease status. Population stratification only arises if: (1) different proportion of cases/controls 

are from each population and (2) populations differ in allele frequency. Population 

stratification can cause both false positive or false negative results. 

 

 
Figure 4 Evidence of population stratification: different populations (red/blue) in cases versus 
controls 

Even a small degree of population stratification can adversely affect a study due to the large 

sample sizes required to detect common variants underlying most complex diseases(Risch and 

Merikangas, 1996). Historically, population geneticists have been sceptical of many case-

control studies for this reason. 

 

Cryptic relatedness occurs when pairs or groups of individuals are more closely related to each 

other than the population average – thus indicating they are family members. Individuals that 

are closely related need to be accounted for in association analyses as they induce unforeseen 

correlation structures. Cryptic relatedness may introduce false positive and false negative 

results.  
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The terms “population structure” and “cryptic relatedness” can together be re-conceptualised 

as degrees of relatedness. The example of different sub-populations within a study cohort are 

good way to describe patterns of (distant) relatedness. The problem of spurious associations 

arises if cases are on average more closely related with each other than with controls. Thus, it 

is not a problem of population structure but one of degree of relatedness, and this insight is 

more accurate, and also leads to more precise, more powerful analysis approaches. 

 

4.1.8. Managing relatedness 
4.1.8.1. Background 

Relatedness has been considered in genetic association studies for decades, and strategies to 

manage this have become more sophisticated over time. All modern solutions to relatedness 

require some degree of genome-wide genotyping in individuals, in addition to the candidate 

genes. Or, in GWAS, one can make use of this genome-wide data to estimate relatedness and 

then use this as part of the association analysis. 

4.1.8.2. Study design 
An historical solution to population stratification was to allow for structure during study 

design, by matching cases and controls for ethnic group (so when a case is selected of given 

ethnicity, a matched control is selected of the same ethnicity). However, there may be fine-

scale structure within ethnic groups or population admixture that cannot be accounted for by 

matching. This is a particular issue in our cohort because of: (a) multiple tribes in West African 

populations (b) the issue of European admixture in our African Caribbean population. This 

issue of admixture is exemplified by the frequently cited case of an initially apparent 

association between variants and type 2 diabetes in Pima Indians. Type 2 diabetes occurs with 

greater prevalence in Pima Indians than European heritage individuals. The association 

identified was in fact due to population admixture: cases tended to have a lower proportion of 

Caucasian ancestry, and allele frequencies of the confounding genotype vary between the 

ancestral populations(Knowler et al., 1988).  

4.1.8.3. Family studies 
The problem of population structure can be eliminated by collecting family data and this 

approach was adopted historically. Family-based association studies ascertain affected cases 

and their unaffected parents. The parents form “internal” controls from alleles not transmitted 

from the parents to the child, effectively matching for ancestry. This is much less powerful 

since two parents are required to form a single matched control. Furthermore, parental data 

may not always be available, especially for late-age onset diseases. The family study approach 

for genetic association studies is mostly obsolete now, since one can make use of genome-

wide data to infer and adjust for population ancestry.  
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4.1.8.4. Genomic control 
Genomic control was the first quantitative method to control relatedness; it was developed by 

Devlin and Roeder in 1999 (Devlin and Roeder, 1999). In this method, the (genome-wide) non-

candidate gene variants (the “null” variants) are assessed, a theoretical λGC is calculated to 

estimate the genomic inflation (across the genome) in χ2 statistics as: λGC = median(χ2)/0.455. 

Then all χ2 tests in analysis are corrected by dividing by λGC i.e. λGC corrects for genomic 

inflation. Few (if any) of the null variants will be associated with the phenotype, so if λGC >1, 

this is likely to be due to population stratification, and dividing by λGC cancels this effect for the 

candidate variants. GC performs well under many but not all scenarios(Marchini et al., 2004). 

Notably, it corrects only for false positive results, not false negative results. 

While using genomic control methods has been superseded by the strategies below, for each 

model, λGC can be calculated and used to assess if genomic inflation is present.  

4.1.8.5. Principal components analysis 
Principal component analysis (PCA) is a data reduction technique used widely in statistics and 

introduced in chapter 2. In the last ten years, PCA has become a standard tool in genetics to 

study ethnic variation(Patterson et al., 2006, Price et al., 2006). In genetics, principal 

components reflect the genome-wide variability i.e. genetic ancestry(Price et al., 2006). PCA 

calculates axes of genetic variation that maximise the variability between individuals. Plotting 

principal components including reference panel samples can be used to identify population 

outliers. A subset of the PC can then be used in association studies as covariates as they 

represent ethnic variation between individuals within the study population i.e. PCs “correct 

for” finer scale population structure within the cohort. In the last 10 years, PC have been 

widely used in genome-wide association studies.  

 

European population structure mirrored by genetics (PC) was elegantly shown by 

Novembre(Novembre et al., 2008), see Figure 5 for the graph of principal components 1 and 2 

(rotated) reflecting the geographical origins of individuals (1387 samples, ~200,000 variants). 
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Figure 5 European population structure, from Novembre (2008) 

A statistical summary of genetic data from 1,387 Europeans based on principal component axis 
one (PC1) and axis two (PC2). Small coloured labels represent individuals and large coloured 
points represent median PC1 and PC2 values for each country. The inset map provides a key to 
the labels. The PC axes are rotated to emphasise the similarity to the geographic map of 
Europe. AL, Albania; AT, Austria; BA, Bosnia-Herzegovina; BE, Belgium; BG, Bulgaria; CH, 
Switzerland; CY, Cyprus; CZ, Czech Republic; DE, Germany; DK, Denmark; ES, Spain; FI, 
Finland; FR, France; GB, United Kingdom; GR, Greece; HR, Croatia; HU, Hungary; IE, Ireland; 
IT, Italy; KS, Kosovo; LV, Latvia; MK, Macedonia; NO, Norway; NL, Netherlands; PL, Poland; 
PT, Portugal; RO, Romania; RS, Serbia and Montenegro; RU, Russia, Sct, Scotland; SE, 
Sweden; SI, Slovenia; SK, Slovakia; TR, Turkey; UA, Ukraine; YG, Yugoslavia. 

 

PCs often do not separate out the finer population substructure. For example, our population 

contained a majority of individuals of West African heritage and minority of African-Caribbean 

heritage. These two separate ancestry groups will be separated, but within the majority West 

African group, it is difficult to separate the substructure (e.g. tribal heritage) by PCs. One 

approach could be to re-run the analysis on the West African only subgroup, with PC reflecting 

this group West African-specific principal components for use in the final analysis.  

In practice, PCs are estimated based on genotyped, independent variants i.e. the LD-pruned 

dataset chapter 3. When using PCA to detect ancestry the observations are the individuals and 

the genetic variants are the potentially correlated variables. PCA techniques are 

computationally efficient and can be applied in the context of whole genome association 

studies.  

PCA was performed in GCTA (Yang et al., 2011) on a pruned dataset for linkage disequilibrium 

(Weale, 2010). See 
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Appendix 1 for the top 10 PCs in pairs. 

4.1.8.6. Regression analysis using linear mixed modelling 
Most recently, linear mixed modelling (LMM) has emerged as the method of choice for 

conducting genetic association studies (Yang et al., 2014, Kang et al., 2010, Yang et al., 2010, 

Yang et al., 2011). LMM association analyses in genome-wide data provided a better 

alternative to control for background genetic similarity between individuals than PCA (Yang et 

al., 2014). 

 

More generally, in statistics, linear mixed models incorporate both fixed and random effects as 

covariates in a regression model for a quantitative outcome. Fixed effects are covariates fixed 

to the individual (e.g. age, sex, other genotypes). In contrast, random effects are not fixed to 

the individual but explain the effects from the underlying population (i.e. population 

structure). In genetics, a LMM tests the effect at a locus (the genotype or allele) by controlling 

for both fixed effects (factors related to the individual and added to the model as covariates) 

as well as random factors to explain population structure. The random effect is derived from 

the genetic relatedness matrix, GRM, see chapter 3. Because the GRM is a quantitative 

measure of each and every pairwise genetic relationship, it takes account of both near- and 

far-relatedness.  

 

Not only do LMM methods prevent false positive associations due to relatedness (population 

structure) but they also increase power because the correction applied (the genetic 

relatedness matrix, GRM) is specific to this structure. LMM can manage geographic population 

structure (far relatedness), family relatedness and/or cryptic relatedness (near relatedness) 

(Wang et al., 2013, Yu et al., 2006, Kang et al., 2010). The GRM models genome-wide sample 

structure, estimating the contribution of the GRM to phenotypic variance using a random-

effects model (with or without additional fixed effects) and computing association statistics 

that account for this component of phenotypic variance. Each variant is then assessed in the 

context of the gross genetic similarity between individuals(Kang et al., 2010, Yang et al., 2014). 

Of note, LMM can also be used to estimate phenotypic heritability explained by genotyped 

markers(Yang et al., 2010, Zaitlen and Kraft, 2012). 

 

There have been two key modifications to standard LMM approaches. First, the “leave one 

chromosome out” method. Recent work has shown that inclusion of the candidate variant in 

the GRM can lead to loss in power(Listgarten et al., 2012), due to “double-fitting” of the 

candidate variant in the model (both as a fixed effect tested for association and as a random 

effect as part of the GRM). This phenomenon has been termed “proximal contamination,” and 
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it has been shown that a LMM excluding the candidate variant works, and increases 

power(Listgarten et al., 2012, Yang et al., 2014). However, this is computationally expensive; in 

GCTA it is implemented with the “leave one chromosome out” method so that the whole 

chromosome is not part of the GRM when assessing markers on that chromosome(Yang et al., 

2011). This prevents any effect of the genetic variant of interest being captured by the GRM 

(thereby reducing the measured effect of the variant). The LOCO analysis is computationally 

less efficient but more powerful compared with the original analysis which included the 

candidate. This is because the genetic variance is re-estimated each time a chromosome is 

excluded from calculating the GRM. The second modification involves the number of markers 

used to create the GRM. Using a too-small subset of markers in the GRM (e.g. a few thousand 

only) can also compromise results(Yang et al., 2014). I used the LD-pruned subset of ~98,000 

markers to create the GRM. 

 

4.1.8.7. Assessing a model: Lambda GC and QQ plots 
For an association analysis, part of model assessment includes calculation of the genomic 

control parameter λGC to assess genome-wide inflation of the model, and generation of QQ 

plots. λGC is discussed in section 4.1.8.4. 

 

QQ plots are used to evaluate if p-values are drawn from a normal distribution between 0 and 

1. If the observed p-values are ordered from lowest to highest, then the nth ordered item 

should on average be equal to the corresponding expected p-values from a uniform 

distribution. Thus, if the observed p values are plotted against the expected ones, one would 

expect to see a roughly straight line through the origin with a unit slope, albeit with some 

random variation. If the p-values are broadly skewed away from this expected line (towards a 

distribution with lower p-values) then the line will be “inflated” away from the expected 

straight line. Log-scaling emphasises these low p-values so QQ plots are plotted on a negative 

logarithmic scale. Potential true hits represent the very low p-values at the top-right of the 

plot, and genomic inflation (as calculated by λGC) appears as points raised above the y=x line, 

see Figure 6. 
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Figure 6 QQ plot demonstrating genomic inflation 

Thus, QQ plots and λGC were used in an iterative process to improve the model for genetic 

analysis. This led to a progressive improvement in model performance, based on QQ plot and 

λGC, in progressively more sophisticated models: from simple linear regression, to linear 

regression incorporating age and sex as covariates, to adding in first 10 PC and finally the linear 

mixed model including the GRM. See Appendix 2 where this is demonstrate: Ln(HbF%) is used 

as the exemplar phenotype. 

4.1.9. Power and sample size considerations 
The small size of our population means it cannot be expected to identify variants in an 

hypothesis-free genome-wide analysis for the highly complex (and presumably polygenic) 

phenotypes of sickle cell disease severity. However, as in previous GWAS of HbF%, an 

oligogenic trait, we anticipated identifying known and potentially novel “hits” using HbF% as 

an outcome. SCD is not common in the UK, so, despite linking up with local hospital trusts in a 

regional network to collect samples, our cohort remains small. For this reason, the main aim of 

the project was to use the data with “global” and organ-specific severity phenotypes for 

candidate gene analysis (see chapter 5). 

 

Due to the small size, rather than doing sub-analyses by sickle genotype, I have included all 

patients of all sickle genotypes in the analyses, in order to maximise sample numbers (hence 

power) of the study. 

 

I have summarised the considerations to be made in power calculations for GWA studies in 

Appendix 3.  
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4.2. Methods 
4.2.1. Genotyping  

Genotyping was described in detail in chapter 3. In summary, I used Illumina’s Infinium MEGA 

array to get raw variant calls, and imputed the genotypes on the Michigan imputation server 

using 1000 Genome Phase III data up to over 15 million markers. Data were fully quality 

controlled prior to analysis. 

4.2.2. Phenotyping 
Phenotyping was described in detail in chapter 2. I considered fetal haemoglobin (HbF%) and 

three SCD global severity indices – haemolytic index, hospitalisation rate, mortality – and 

single organ dysfunction – proteinuria (using urinary albumin creatinine ratio, uACR). For 

HbF%, only “validated” HbF% values were used (i.e. samples obtained when patients were not 

on hydroxycarbamide, not transfused for at least 3 months, and not pregnant). For both the 

haemolytic index and uACR, I used results averaged over the 10 year study period. Traits were 

normalised prior to analysis using a natural logarithmic transformation (Ln). 

4.2.3. Statistical analysis 
4.2.3.1. Scripting in Linux 

I used the Linux bash commands to generate scripts to automate data handling, and calling of 

suites of genetic analysis tools and presentation of results. 

 

I used GCTA to create/manipulate the GRM and perform linear mixed modelling (LMM) (Yang 

et al., 2011). As well as the genetic relatedness matrix as the random effect, I added age, sex 

and sickle genotype of each individual as a fixed effect (covariate) in the model. GCTA analysis 

is similar to that implemented in other LMM software tools such as EMMAX, FaST-LMM and 

GEMMA. I used R (qqman package) to perform checks on the model (λGC, QQ plots) as well as 

to create the Manhattan plots (www.r-project.org) (Team, 2011).  

4.2.3.2. Significance levels in GWAS 
There is no absolute significance level for accepting GWAS results 

(Wellcome_Trust_Case_Control_Consortium, 2007). Interpreting the strength of evidence in 

an association study depends on several factors: the likely number of true associations, the 

power to detect them (which, itself depends on both effect sizes and sample size). In a less-

well-powered study, more stringent p-value thresholds should be adopted to control the false-

positive rate. Because of this, I have presented results tentatively and used the term 

“suggestive association”. Proof is in replication of results in a different cohort (by different 

genotyping methods). McCarthy compiled best practice guidelines for performing GWAS, and 

advocated a threshold of 5 × 10-8 for significance in GWAS(McCarthy et al., 2008). 
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4.2.3.3. Checks on positive signals 
Further checks must be made on any identified positive signals of association before moving 

towards replication of results in other cohorts. The first is to check that the results do not 

depend solely on one variant: ensure there is some evidence for association at neighbouring 

variants in linkage disequilibrium. The second is to ensure the minor allele frequency is 

reasonable i.e. results don’t depend upon a handful of individuals. 

 

After these checks, one must refer back to the variant signal intensity plots (chapter 3, figure 

4) to inspect for genotype calling problems i.e. that the clusters for each of the three 

genotypes are well-defined, and therefore that there is confidence in genotyping calling. 

4.2.3.4. Replication 
Once positive results are checked, the association must be replicated in one or more 

independent studies. This could be either in silico replication using existing GWAS data for the 

same phenotype in independent samples or de novo replication genotype variants of interest 

in independent samples using a different genotyping method. 

Our group has set up collaborations with international researchers in the genetics of SCD in 

order to replicate our results. 

4.3. Results  
4.3.1. GWAS analysis scripts: a resource for genetic association analysis traits in 

sickle cell disease using linear mixed modelling 
I wrote a bash script to encapsulate the analysis, image generation and data formation, see 

Appendix 4. This user-friendly script has been made available to colleagues unfamiliar with 

Linux/programming.  

The script has a user-friendly command line interface to run where a user can stipulate a 

variety of parameters on request, see Figure 7. This allows users to choose new phenotypes 

and different subgroups to analyse without having to alter the code.  
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Figure 7 Linear mixed modelling script interface for user to answer questions. This means the 
parameters are decided at the command line without the user having to alter the code. 
Parameters that the user can modify (after answering the questions) include: patient population 
(e.g. HbSS, HbSC, ALL, nonHbSS); relatedness cut-off; outcome (phenotype) name; whether 
imputed or chip (raw) genotype data to be used; upper and lower age limits to consider 

The user provides one file with the trait data in, and chooses various parameters in answer to 

the questions: 

 Outcome (user provides name of a file that they have uploaded which contains 

phenotypic details, in the format): 

o ID number, quantitative trait value, age at quantitative trait 

o Quantitative trait must be normalised  

 Whether to use raw data only, or imputed data (big computational efficiency 

difference) 

 Population (all sickle genotypes versus specific sickle genotype) – if “all” is used, then 

sickle genotype itself is added as a categorical covariate (implemented as four binary 

variables HbSS, HbSC, HbSβ0 thalassaemia and HbSβ+ thalassaemia). 

 Age range (i.e. specify lower and upper age limits) 

 Relatedness cut-offs to exclude (also termed the GRM cut-off): 

o Expected values 

 1 for monozygotic twins / duplicated samples 

 0.5 for first degree relatives (e.g. full-sibs or parent-offspring) 

 0.25 for second degree relatives (e.g. grandparent-grandchild) 

 0.125 for third degree relatives (e.g. cousins) 

o These are the expected relatedness values; there will be some variation 

around these numbers. The procedure automatically removes the least 

number of people to optimise the population size 
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The script then selects the specific population, modifies the GRM to exclude people more 

related than the specified relatedness cut-off1. LMM is then performed using GCTA, using 

mlma-loco (see section 4.1.8.6) with user-determined parameters, as above. 

 

Model evaluation parameters are then generated using R: QQ plots and λGC. These to allow the 

user to assess the model, see section 4.1.8.7. A Manhattan plot is also drawn using R, based on 

non-missing data from the mlma file. The results are written to a log file for the user to 

interpret, see Appendix 5. 

 

In each analysis, λGC<1.01, indicating that inflation due to population structure, was well-

controlled. 

4.3.2. Fetal haemoglobin (HbF%) as phenotype 
I performed a genome-wide association study for Ln(HbF%) in a discovery cohort of 690 

patients (no duplicate samples, 1st or 2nd degree relatives) with SCD (all sickle genotypes) of 

African Caribbean or West African heritage. Demographic details are presented in Figure 8, all 

aged at least 5 years old.  

a b 

c 

                                                           
1 I treated grm-cutoff=0.9 differently. GRM cut-offs are used to exclude people more related than the cut-off. 
Where GRM_CUTOFF=0.9 we want to exclude patients manually after identifying duplicates/monozygotic twins and 
choosing appropriately (this might depend on the volume of phenotype data we have on each in the pair, see 
chapter 3) 
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Figure 8 Demographic details for the HbF% GWAS (N=690): (a) histogram of age and sickle 
genotype (b) pie chart of sex (c) histogram of HbF% values  

I used age, sex and sickle genotype as fixed covariates in the linear mixed model. The genomic 

control (λGC) for the analysed variants was 0.999118 and a QQ plot of the observed versus 

expected p-values is shown in Figure 9a. The absence of an early departure of the observed p-

values suggests that our data are not affected by problems with genotyping, imputation, and 

uncontrolled sample relatedness or population stratification. The Manhattan plot (distribution 

of association p-values) for Ln(HbF%) is shown in Figure 9b. 

 

I have replicated known HbF% modifier loci: BCL11A on chromosome 2 and HMIP on 

chromosome 6. The peak BCL11A signal was at rs1427407 (β=0.5158, p=2.526x10-24) plus a 

second BCL11A signal at rs11692396 (β=0.390053, p=6.02798x10-14). At HMIP, the peak signals 

were rs116460276 (β=0.959567, p=3.166x10-7) and rs61028892 (β=0.888939 p=6.5453x10-7). 

rs66650371 is not in the imputed dataset. In the HBB region, the peak signal was rs10564838 

(β=0.229908, p=6.3242x10-5). rs7482144 (Xmn1- HBG2) is not in the imputed dataset. Notably, 

no variants situated at the KLF1 or ZBTB7A loci were significant in our study.  

 

I have detected no novel loci, confirming previous findings that genetic HbF% variability in 

human populations is dominated by three major loci.
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a 

 

b 

 
Figure 9 Linear mixed model results for Ln(HbF%): (a) QQ plot of the observed versus the expected p-values (b) Manhattan plot for association results (-log10p) 
plotted against the position on each chromosome
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4.3.2.1. HbFg project 
I utilised these data to create a summary variable to quantify the genetic component of HbF% 

based on the three trait loci, see Appendix 6. 

4.3.3. Hospitalisation rate as phenotype 
I performed a genome-wide association study for hospitalisation rate in a discovery cohort of 

354 adult patients (no duplicate samples, 1st or 2nd degree relatives) with SCD (all sickle 

genotypes) of African Caribbean or West African heritage. Demographic details are presented 

in Figure 10.  

a b 

 

 
 

c 

 
 

Figure 10 Demographic details for the hospitalisation rate GWAS (N=354): (a) histogram of age 
and sickle genotype (b) pie chart of sex (c) histogram of hospitalisation rate per year  
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I used age, sex and sickle genotype as fixed covariates in the linear mixed model. The genomic 

control (λGC) for the analysed variants was 0.995384 and a QQ plot of the observed versus 

expected p-values is shown in Figure 11a. The absence of an early departure of the observed 

p-values suggests that our data are not affected by problems with genotyping, imputation, and 

uncontrolled sample relatedness or population stratification. The Manhattan plot (distribution 

of association p-values) for hospitalisation rate is shown in Figure 11b.  

 

HbF% and HbF% quantitative trait loci have been found to be associated with hospitalisation 

rate in other cohorts(Wonkam et al., 2014). I have replicated two HMIP (chromosome 6) 

variants that have been associated with hospitalisation rates in a Cameroonian cohort with 

SCD: both in the HMIP region on chromosome 6 known to be a quantitative trait locus for 

HbF%. HMIP1 (rs28384513 , β=-0.243966, p=2.46346x10-05) and HMIP2 (rs9494142, 

β=0.279293, p=0.000140198). 

 

There were no significant genome-wide results but I have detected some suggestive novel loci 

associated with hospitalisation rate, see Table 1. Top loci include a region on chromosome 5 

(2913808-2948858) with peak signal at rs75904749 (β= 0.436632, p=1.36045x10-7); a region on 

chromosome 11 (80277911-80295720) with peak signal at rs10792490 (β=0.179749, 

p=6.79482x10-7); and a region on chromosome 12 (351711-364599) with peak signal rs510384 

(β=0.111138, p=3.90022x10-7). The chromosome 12 region is an intronic site within SLC6A13 

(SLC6A13 is a sodium-dependent GABA and taurine transporter. In presynaptic terminals, it 

regulates GABA signalling termination through GABA uptake. It may also be involved in beta-

alanine transport). 

 

Table 1 Suggestive novel loci associated with hospitalisation rate for all sickle genotypes (A1 is 
the effect allele) 

Chr Variant Position (hg19) A1 A2 Gene MAF β-value p-value 
5 rs75904749 2947971   A G  0.014 0.437 1.360 x10-7 
11 rs10792490 80283002 C T  0.066 0.180 6.795 x10-7 
12 rs510384 357319 G A SLC6A13 0.247 0.111 3.900 x10-7 

All of these were imputed variants, after returning to view the cluster plots for the nearest raw 

genotyped variants, all were well clustered. 
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a 

 

b 

 
Figure 11 Linear mixed model results for hospitalisation rate: (a) QQ plot of the observed versus the expected p-values (b) Manhattan plot for association results (-
log10p) plotted against the position on each chromosome
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4.3.4. Haemolytic index as phenotype 
I performed a genome-wide association study for the haemolytic index in a discovery cohort of 

321 adult patients with SCD (all sickle genotypes) of African Caribbean or West African 

heritage. Demographic details are presented in Figure 12.  

a b 

 

 
 

c 

 
Figure 12 Demographic details for the haemolytic index GWAS (N=321): (a) histogram of age and 
sickle genotype (b) pie chart of sex (c) histogram of haemolytic index values  

I used age, sex and sickle genotype as fixed covariates in the linear mixed model. The genomic 

control (λGC) for the analysed variants was 0.983 and a QQ plot of the observed versus 

expected p-values is shown in Figure 13a. The absence of an early departure of the observed 

p-values suggests that our data are not affected by problems with genotyping, imputation, and 

uncontrolled sample relatedness or population stratification. The distribution of association p-
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values (Manhattan plot) for haemolytic index is shown in Figure 13b. The low QQ plot suggests 

the model has somewhat overcorrected for population structure. This gives conservative 

results (p values not as low in our analysis). The likely cause is low sample size leading to 

under-powering of analysis. 

 

There were no significant genome-wide results but I have detected some suggestive novel loci, 

see Table 2. The second locus is a copy number variant in HBA2 (the second α-globin gene). Co-

inheritance of α-thalassaemia with SCD reduces haemolysis(Embury et al., 1982, Ballas, 2001). 

I replicated the previous association between NPRL3 variant rs7203560 on chr16:184390 and 

haemolysis in SCD(Milton et al., 2013), see Table 2. Of note, in this manuscript, a subset of our 

current cohort (N=213) comprised part of the “replication cohort”. NPRL3 is likely to be in LD 

with the functional HBA2 variants. 

Table 2 Suggestive novel loci associated with haemolytic index (averaged over 10 years) for all 
sickle genotypes (A1 is the effect allele) 

Chr Variant Position 
(hg19) 

A1 A2 Gene MAF β-
value 

s.e. p-value 

16 rs7203560 184390 G T NPRL3 0.107 -0.247 0.079 0.0017 
4 rs4695226 47382920 C A  0.246 -0.303 0.056 5.006 x10-8 
16  223678 Del C HBA2 0.209 -0.298 0.058 3.380 x10-7 

 

 

On review of the cluster plots, rs7203560 is well clustered. The remaining two variants were 

both imputed but raw genotype calls local to these were well clustered, except for one (of 

several) markers assessed near the copy number variant at 16:223678. 
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a 

 

b 

 
Figure 13 Linear mixed model results for the haemolytic index: (a) QQ plot of the observed versus the expected p-values (b) Manhattan plot for association results (-
log10p) plotted against the position on each chromosome
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4.3.5. Mortality/survival as phenotype 
I abandoned the GWAS with mortality/survival as the trait because of the low numbers: of 354, 

only 21 died, which is too small to produce a robust model.  

4.3.6. Urinary albumin creatinine ratio as phenotype 
I performed a genome-wide association study for urinary albumin creatinine ratio (UACR, 

averaged over 10 years) in a discovery cohort of 326 adult patients with SCD (all sickle 

genotypes) of African Caribbean or West African heritage. Demographic details are presented 

in Figure 14.  

a b 

 

 
 

c 

 
Figure 14 Demographic details for the uACR GWAS (N=326): (a) histogram of age and sickle 
genotype (b) pie chart of sex (c) histogram of urinary albumin creatinine ratios  
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I used age, sex and sickle genotype as fixed covariates in the linear mixed model. The genomic 

control (λGC) for the analysed variants was 0.995 and a QQ plot of the observed versus 

expected p-values is shown in Figure 15a. Again, the low QQ plot suggests the model has 

somewhat overcorrected for population structure. This gives conservative results (p values not 

as low in our analysis). The likely cause is low sample size leading to under-powering of 

analysis. The distribution of association p-values (Manhattan plot) for UACR is shown in Figure 

15b.  

 

I replicated the previous associations between APOL1 G1 (both rs73885319 and rs60910145) 

and proteinuria in SCD(Saraf et al., 2017): rs73885319 (β=0.0784576, p=0.00815811) and 

rs60910145 (β= 0.0870071, p=0.00371177). [Unfortunately, APOL1 G2, another locus 

associated in previous studies, is not in the imputed dataset: rs71785313 N388 deletion and 

Y389 deletion chr22:36662051] 

 

There were no significant genome-wide results but I have detected some suggestive novel loci, 

see Table 3. The chromosome 12 site is within an intron within gene RIC8B, and the 

chromosome 21 region is within an intron in gene GRIK1.  

Table 3 Suggestive novel loci associated with UACR (averaged over 10 years) for all sickle 
genotypes (A1 is the effect allele)  

Chr Variant Position 
(hg19) 

A1 A2 Gene MAF β-
value 

s.e. p-value 

12 rs112494669 107172971 A G RIC8B 0.101 0.214 0.045 1.915 x10-6 
19 rs7249863 23730717 C G  0.466 0.132 0.027 1.415 x10-6 
21 rs546244357 31043724 A AT GRIK1 0.512 0.135 0.028 1.497 x10-6 

 

However, on review of the cluster plots, rs112494669 clustered poorly so should be rejected. 

rs7249863 and rs546244357 were both imputed but raw genotype calls local to these were 

well clustered. 
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Figure 15 Linear mixed model results for uACR: (a) QQ plot of the observed versus the expected p-values (b) Manhattan plot for association results (-log10p) plotted 
against the position on each chromosome
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4.4. Conclusions 
After the limited success of linkage and candidate gene association studies to find genes in 

complex diseases, genome wide association studies boosted by developments of genotyping 

platforms have emerged as promising alternative approaches. The HapMap project showed 

that extensive linkage disequilibrium allowed the design of marker panels (“tag” variants). 

Quality control is crucial to reduce genotyping errors (especially those that can cause false 

positive associations). Imputed variants can be more significant than genotyped variants, and 

can therefore help to “fine-map” the location of the causal mutation. However, relatedness 

(both near and far – in the form of population stratification) can confound association studies 

and this must be taken into account in analysis. 

 

I have created a software resource which encapsulates all genome-wide analysis in one user-

friendly script. Non-technical-savvy colleagues can now supply their own files of phenotypes to 

analyse different sickle traits, and as part of the package are able to define different 

parameters (e.g. sickle subgroup analyses, age ranges, relatedness cut-offs). 

 

I have evaluated fetal haemoglobin, hospitalisation rates, a haemolytic index and urinary 

albumin creatinine ratio as quantitative markers of severity of SCD. Genome wide studies have 

replicated previous findings for HbF%, hospitalisation rates, haemolytic index and UACR. There 

are also some tentative novel loci identified for hospitalisation rates and haemolytic index. For 

hospitalisation rates, peak signals for three regions were at rs75904749 on chromosome 5, 

rs10792490 on chromosome 11 and rs510384 on chromosome 12. The latter is within an 

intron of gene SLC6A13, a sodium-dependent GABA and taurine transporter. For haemolytic 

index, peak signals were a copy number variant in HBA2 and rs4695226 on chromosome 4. 

 

The genome-wide analyses remain under-powered for the evaluation of the SCD severity 

indices hospitalisation rate, haemolytic index and uACR, so instead I will move forward to 

candidate gene analysis in the next chapter where we will have greater power to detect new 

risk variants. 
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Appendix 1 
First 10 principal components 
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Appendix 2 
Improvement in analysis parameters as model becomes more sophisticated. Table of QQ plots and λGC in statistical models of association with progressive 
sophistication: using linear regression: from basic association with no covariates, to adding age and sex only, then adding the first ten principal components, then 
using LMM with GRM as well as sex and age. 

Model Covariates HbSS N=545 λGC QQ plot 
Linear  None 1.040 

 

Linear 
(fixed 
effects) 

Sex 
Age 

1.035 
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Linear 
(fixed 
effects) 

Sex 
Age 
First 10  
 

1.018 

 

GRM 
with cut-
off 0.9 

Sex 
Age 
GRM 0.9 
 

1.004 
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Appendix 3 
Considerations of power and sample size in in genetic association studies 

There are multiple determinants of power in genetic associations studies. First, odds ratio (for 
logistic regression) or expected beta values – small odds ratios require larger samples (typical 
range 1.1 – 1.3 in complex disease). Minor Allele Frequencies (MAF) – smaller MAF requires 
larger sample size however the “common disease, common variant” hypothesis assumes a 
range 5% to 50%. Third, reasonable linkage disequilibrium between the marker variant and 
causal variant – most studies assume a genotyped variant has r2>0.8 with the causal variant. 
Finally, some consideration of the significance threshold to account for multiple testing. 
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Appendix 4 
 

#!/bin/bash 
#$ -cwd 
#$ -j y 
#$ -S /bin/bash 
#$ -q HighMemLongterm.q,LowMemLongterm.q 
#$ -M kate.gardner@doctors.org.uk 
#$ -m beas 
#$ -l h_vmem=80G 
########## 
 
 
# First select subpopulation (if any) based on sickle genotype 
 
# Second remove patients that are inappropriate eg in HbF analysis, those aged less than 5 
 
# Third do analysis. Three levels of modelling: 
# A. basic association analysis (with/without fixed covariates) 
# B. association analysis using PCA 
# C. Linear mixed modelling to take account of close relatedness 
# Use GCTA to do linear mixed modelling to take account of family relatedness, population substructure and 
admixture 
# http://gcta.freeforums.net/board/2/gcta-user-manual 
# http://cnsgenomics.com/software/gcta/index.html 
  
###################################### 
# FOR SPECIFIC SICKLE GENOTYPES ONLY # 
###################################### 
#Input population HbSS, HbSC etc. Else no 
POPULATION=$1 # requires a text file with two columns FID/IID so we can extract that population eg HbSS.txt, 
HbSC.txt 
GRM_CUTOFF=$2 #relatedness cutoff for genetic relatedness matric eg 0.9 to exclude genetic duplicates 
PCA=$3 #number of principal components to analyse eg 10 
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OUTCOME=$4 # "HbF" or "HaemIndex" or  
IMP_OR_CHIP_DATA=$5 #"chip" or "imp" 
HbFg=$6 
OUTCOMEFILE=$7 
LOWER_AGE=$8 
UPPER_AGE=$9 
 
        module add bioinformatics/plink2/1.90b3.38 
        module add bioinformatics/plink/1.90b3.31 
        module add bioinformatics/gcta/1.26.0 
        module add bioinformatics/R/3.3.0 
 
#Create phenotype files 
cp ${OUTCOMEFILE} Pheno_${OUTCOMEFILE} 
~/dos2unix Pheno_${OUTCOMEFILE} # otherwise  function doesn't work properly 
echo "FID IID ${OUTCOME} AgeAt${OUTCOME}" > ${OUTCOME}WithFID.txt 
join -1 2 -2 1 -o1.1,1.2,2.2,2.3 <(sort -k2 SickleMEGA_QC_NoSexMismatch.autosomes.fam) <(sort -k1 
Pheno_${OUTCOMEFILE}) >> ${OUTCOME}WithFID.txt 
awk '{print $1, $2, $3}' ${OUTCOME}WithFID.txt > Phenotype_${OUTCOME}.txt 
awk '{print $1, $2, $4}' ${OUTCOME}WithFID.txt > Covariate_AgeAt${OUTCOME}.txt 
 
#add HbFg to coavriatefile if required 
if [[ "${HbFg}" = "yes" ]]; then 
        HbFg_FILE="_withHbFgenetic" 
 HbFg_NAME=", HbFg (HbF genetic model)" 
 #Make phenotype file with HbFgenetic data  
 echo "FID IID ${OUTCOME} HbFg" > Covariate_AgeAt${OUTCOME}_withHbFgenetic.txt 
 tail -n +2 HbFgenetic.txt > HbFgenetic_noHeader.txt 
 join -j2 -o1.1,1.2,1.3,2.3 <(sort -k2 Covariate_AgeAt${OUTCOME}.txt) <(sort -k2 HbFgenetic_noHeader.txt) >> 
Covariate_AgeAt${OUTCOME}_withHbFgenetic.txt 
       else 
        HbFg_FILE="" 
 HbFg_NAME="" 
fi 
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if [[ "$IMP_OR_CHIP_DATA" = "chip" ]]; then 
                #chip plink data 
 IMP_CHIP_FILE="SickleMEGA_QC_NoSexMismatch.autosomes" 
 IMP_OR_CHIP_DATA_NAME="Chip data" 
        else 
 #imputed plink data 
 IMP_CHIP_FILE="Sickle_Imputed_QC_strict" 
 IMP_OR_CHIP_DATA_NAME="Imputed data" 
fi 
 
 
if [[ "$POPULATION" = "ALL" || "$POPULATION" = "nonHbSS" || "$POPULATION" = "HbSSHbSC" || "$POPULATION" = 
"HbSSHbSCHbSBplus"  ]]; then 
 COVARIATES="Sex, age, sickle genotype" 
 COVARIATES_FILE="_age_sex_sickle" 
 COVARIATES_NONQUANT_FILE="SexSickleCovariates.txt" 
       else 
 COVARIATES="Sex, age" 
        COVARIATES_FILE="_age_sex" 
        COVARIATES_NONQUANT_FILE="SexCovariate.txt" 
fi 
 
 
#Create log file 
echo "Log file for linear mixed modelling for STSTN sickle cohort 
Outcome: ${OUTCOME} 
Population: ${POPULATION} 
Data source: ${IMP_OR_CHIP_DATA} 
LMM GRM cutoff: ${GRM_CUTOFF} 
Covariates used in model: ${COVARIATES}${HbFg_NAME} 
(PCA: ${PCA} components) 
" > Logfile_LMM_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_${PCA}_${OUTCOME}_${IMP_OR_CHIP_DATA}${HbFg_FILE}.txt 
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##################### 
#1. Remove patients # 
##################### 
 
#(i) remove HPFH 
#plink --bfile SickleMEGA_Pruned_NoSexMismatch.autosomes --remove HbSHPFH.txt --make-bed --out 
SickleMEGA_Pruned_NoSexMismatch.autosomes_NoSHPFH 
#if [ "$IMP_OR_CHIP_DATA" = "chip" ]; then 
# plink --bfile SickleMEGA_QC_NoSexMismatch.autosomes --remove HbSHPFH.txt --make-bed --out 
SickleMEGA_QC_NoSexMismatch.autosomes_NoSHPFH 
#else 
# plink --bfile Sickle_Imputed_QC_strict --remove HbSHPFH.txt --make-bed --out Sickle_Imputed_QC_strict_NoSHPFH 
#fi 
# 
# 
##(ii) remove genetic duplicates (identified from previous cycling of this and seeing those individuals in genetic 
relatedness matrix with value > 0.9. Then went back to see if these were the same person in twice, MZ twin (in 
which cases fine to delete one in the duplicate pair) or if there wasn't a reason for duplicate (in which case 
delete both) 
#plink --bfile SickleMEGA_Pruned_NoSexMismatch.autosomes_NoSHPFH --remove GeneticDuplicates.txt --make-bed --out 
SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved 
# 
#if [ "$IMP_OR_CHIP_DATA" = "chip" ]; then 
# plink --bfile SickleMEGA_QC_NoSexMismatch.autosomes_NoSHPFH --remove GeneticDuplicates.txt --make-bed --out 
SickleMEGA_QC_NoSexMismatch.autosomes_PtsRemoved 
#else 
# plink --bfile Sickle_Imputed_QC_strict_NoSHPFH --remove GeneticDuplicates.txt --make-bed --out 
Sickle_Imputed_QC_strict_PtsRemoved 
#fi 
 
########################################### 
#2. Make GRM (genetic relatedness matrix) # 
########################################### 
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# GRM required for genetic duplicate analysis, but also needed for MLMA and PCA below. 
# Creating GRM before filtering out population we want to get GRM on largest dataset 
# using pruned QC file: also required to create PCA 
#(i) make initial GRM using pruned, unimputed SNPs 
#       gcta --bfile SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved --autosome --maf 0.01 --thread-num 6 --
make-grm --out SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved 
 
############################################################ 
# 3. Select specific population by sickle genotype and age # 
############################################################ 
 
 
# (i) choose age category (user defined) 
 awk -v LOWER_AGE="$LOWER_AGE" -v UPPER_AGE="$UPPER_AGE" '{if ($11>=LOWER_AGE && $11<UPPER_AGE) print $1, $2}' 
AllCovariates.txt > AgeRange${LOWER_AGE}-${UPPER_AGE}.txt 
 
#plink --bfile TROY_CNV --keep AgeRange${LOWER_AGE}-${UPPER_AGE}.txt --make-bed --out 
TROY_CNV_AgeRange${LOWER_AGE}-${UPPER_AGE}_ALL 
 plink --bfile SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved --keep AgeRange${LOWER_AGE}-${UPPER_AGE}.txt --
make-bed --out SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_AgeRange${LOWER_AGE}-${UPPER_AGE}_ALL 
 if [ "$IMP_OR_CHIP_DATA" = "chip" ]; then 
       plink --bfile SickleMEGA_QC_NoSexMismatch.autosomes_PtsRemoved --keep AgeRange${LOWER_AGE}-${UPPER_AGE}.txt 
--make-bed --out SickleMEGA_QC_NoSexMismatch.autosomes_PtsRemoved_AgeRange${LOWER_AGE}-${UPPER_AGE}_ALL 
else 
       plink --bfile Sickle_Imputed_QC_strict_PtsRemoved  --keep AgeRange${LOWER_AGE}-${UPPER_AGE}.txt --make-bed -
-out Sickle_Imputed_QC_strict_PtsRemoved_AgeRange${LOWER_AGE}-${UPPER_AGE}_ALL 
fi 
 
#(ii) choose sickle genotype population (user defined) 
 
# population = ${POPULATION} from both pruned, unimputed dataset AND FROM unpruned, imputed dataset 
 
if [ "$POPULATION" != "ALL" ]; then 
        if [ "$POPULATION" = "nonHbSS" ]; then 
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#  plink --bfile TROY_CNV_AgeRange${LOWER_AGE}-${UPPER_AGE}_ALL --remove HbSS.txt --make-bed --out 
TROY_CNV_AgeRange${LOWER_AGE}-${UPPER_AGE}_${POPULATION} 
                plink --bfile SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_ALL --remove HbSS.txt --make-bed --out 
SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_AgeRange${LOWER_AGE}-${UPPER_AGE}_${POPULATION} 
  if [ "$IMP_OR_CHIP_DATA" = "chip" ]; then 
   plink --bfile SickleMEGA_QC_NoSexMismatch.autosomes_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_ALL --remove HbSS.txt --make-bed --out 
SickleMEGA_QC_NoSexMismatch.autosomes_PtsRemoved_AgeRange${LOWER_AGE}-${UPPER_AGE}_${POPULATION} 
  else 
   plink --bfile Sickle_Imputed_QC_strict_PtsRemoved_AgeRange${LOWER_AGE}-${UPPER_AGE}_ALL --remove 
HbSS.txt --make-bed --out Sickle_Imputed_QC_strict_PtsRemoved_AgeRange${LOWER_AGE}-${UPPER_AGE}_${POPULATION} 
  fi 
        else 
#                plink --bfile TROY_CNV_AgeRange${LOWER_AGE}-${UPPER_AGE}_ALL --keep ${POPULATION}.txt --make-bed -
-out TROY_CNV_AgeRange${LOWER_AGE}-${UPPER_AGE}_${POPULATION} 
                plink --bfile SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_ALL --keep ${POPULATION}.txt --make-bed --out 
SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_AgeRange${LOWER_AGE}-${UPPER_AGE}_${POPULATION} 
                if [ "$IMP_OR_CHIP_DATA" = "chip" ]; then 
   plink --bfile SickleMEGA_QC_NoSexMismatch.autosomes_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_ALL --keep ${POPULATION}.txt --make-bed --out 
SickleMEGA_QC_NoSexMismatch.autosomes_PtsRemoved_AgeRange${LOWER_AGE}-${UPPER_AGE}_${POPULATION} 
                else 
   plink --bfile Sickle_Imputed_QC_strict_PtsRemoved_AgeRange${LOWER_AGE}-${UPPER_AGE}_ALL --keep 
${POPULATION}.txt --make-bed --out Sickle_Imputed_QC_strict_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION} 
                fi 
 
        fi 
fi 
 
 
################# 
#4. Do analysis # 
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################# 
# 
##A. BASIC ASSOC CHECK compare basic plink assoc pre and post imputation. plink's assoc can have binary or 
quantitative outcome. Plink's --linear or --logistic allows for multiple covariates 
#    #(i) assoc 
# 
##    plink --bfile Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved --pheno AllCovariates.txt --
pheno-name LnHbF --assoc --out Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved 
##                                head -n1 Sickle_Imputed${GRM_CUTOFF}_QC_strict_${POPULATION}_PtsRemoved.qassoc > 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved.qassoc.pLT0.01 
#                                awk '{if($9<0.01) print $0}'  
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved.qassoc >> 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved.qassoc.pLT0.01 
# 
    #(ii) linear, no covariates or one covariate individually 
 
 
#   if [[ "$POPULATION" = "ALL" || "$POPULATION" = "nonHbSS" || "$POPULATION" = "HbSSHbSC" || 
"$POPULATION" = "HbSSHbSCHbSBplus" ]]; then 
# 
# 
#                       plink --bfile Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved --pheno AllCovariates.txt -
-pheno-name LnHbF --linear --out Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved 
#                        head -n1 Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved.assoc.linear > 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved.assoc.linear.pLT0.01 
#                        awk '{if($5=="ADD" && $9<0.01) print $0}'  
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved.assoc.linear >> 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved.assoc.linear.pLT0.01 
 
 #                              plink --bfile Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved --pheno 
AllCovariates.txt --pheno-name LnHbF --linear --covar AllCovariates.txt --covar-name SexCode --out 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_sex 
 #                               head -n1 Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_sex.assoc.linear > 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_sex.assoc.linear.pLT0.01 



 170 

 #                               awk '{if($5=="ADD" && $9<0.01) print $0}'  
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_sex.assoc.linear >> 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_sex.assoc.linear.pLT0.01 
# 
#    plink --bfile Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved --pheno AllCovariates.txt --
pheno-name LnHbF --linear --covar AllCovariates.txt --covar-name AgeAtHbF --out 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_age 
 #                               head -n1 Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_age.assoc.linear > 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_age.assoc.linear.pLT0.01 
 #                               awk '{if($5=="ADD" && $9<0.01) print $0}'  
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_age.assoc.linear >> 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_age.assoc.linear.pLT0.01 
 
#    plink --bfile Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved --pheno AllCovariates.txt --
pheno-name LnHbF --linear --covar AllCovariates.txt --covar-name HbSS,HbSC,HbSBplus --out 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_sickle_SSSCSBplus 
 #                               head -n1 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_sickle_SSSCSBplus.assoc.linear > 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_sickle_SSSCSBplus.assoc.linear.pLT0.01 
  #                              awk '{if($5=="ADD" && $9<0.01) print $0}'  
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_sickle_SSSCSBplus.assoc.linear >> 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_sickle_SSSCSBplus.assoc.linear.pLT0.01 
 
#   else 
#                       plink --bfile Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved --pheno AllCovariates.txt -
-pheno-name LnHbF --linear --out Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved 
#                        head -n1 Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved.assoc.linear > 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved.assoc.linear.pLT0.01 
#                        awk '{if($5=="ADD" && $9<0.01) print $0}'  
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved.assoc.linear >> 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved.assoc.linear.pLT0.01 
# 
#                       plink --bfile Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved --pheno AllCovariates.txt -
-pheno-name LnHbF --linear --covar AllCovariates.txt --covar-name SexCode --out 
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Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_sex_sickle_Imputed_QC_strict_ALL_GRM0.9_GCTA_HbF${COVARIATES_FILE
}.loco.mlma 
#                        awk '{if($5=="ADD" && $9<0.01) print $0}'  
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_sex.assoc.linear >> 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_sex.assoc.linear.pLT0.01 
 
 #                      plink --bfile Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved --pheno AllCovariates.txt -
-pheno-name LnHbF --linear --covar AllCovariates.txt --covar-name AgeAtHbF --out 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_age 
#                        head -n1 Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_age.assoc.linear > 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_age.assoc.linear.pLT0.01 
#                        awk '{if($5=="ADD" && $9<0.01) print $0}'  
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_age.assoc.linear >> 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_age.assoc.linear.pLT0.01 
# 
#   fi 
 
    #(iii) linear, with covariates 
 
 #                     if [[ "$POPULATION" = "ALL" || "$POPULATION" = "nonHbSS" || "$POPULATION" = "HbSSHbSC" || 
"$POPULATION" = "HbSSHbSCHbSBplus"  ]]; then 
 
 #                              plink --bfile Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved --pheno 
AllCovariates.txt --pheno-name LnHbF --linear --covar AllCovariates.txt --covar-name 
SexCode,AgeAtHbF,HbSS,HbSC,HbSBplus --out Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved${COVARIATES_FILE} 
 #                               #this is a big file - only need the ADD beta/p value (not the covariates beta/p) 
 #                             head -n1 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved${COVARIATES_FILE}.assoc.linear > 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved${COVARIATES_FILE}.assoc.linear.pLT0.01 
 #                             awk '{if($5=="ADD" && $9<0.01) print $0}'  
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved${COVARIATES_FILE}.assoc.linear >> 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved${COVARIATES_FILE}.assoc.linear.pLT0.01 
 #                      else 
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 #                            plink --bfile Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved --pheno 
AllCovariates.txt --pheno-name LnHbF --linear --covar AllCovariates.txt --covar-name SexCode,AgeAtHbF --out 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved${COVARIATES_FILE} 
 #                              #this is a big file - only need the ADD beta/p value (not the covariates beta/p) 
 #                            head -n1 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved${COVARIATES_FILE}.assoc.linear > 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved${COVARIATES_FILE}.assoc.linear.pLT0.01 
 #                            awk '{if($5=="ADD" && $9<0.01) print $0}'  
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved${COVARIATES_FILE}.assoc.linear >> 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved${COVARIATES_FILE}.assoc.linear.pLT0.01 
 ##                     fi 
 
 
 
 
#B. Make GRM (genetic relatedness matrix) using pruned QC file: also required to create PCA  
#(i) make initial GRM using pruned, unimputed SNPs 
# gcta --bfile SickleMEGA_Pruned_NoSexMismatch.autosomes_${POPULATION}_PtsRemoved --autosome --maf 0.01 --
thread-num 6 --make-grm --out SickleMEGA_Pruned_NoSexMismatch.autosomes_${POPULATION}_PtsRemoved 
 
 
 
#(ii) Do PCA using first n=${PCA} components using GCTA  
 # (a) get the first N=${PCA} PCA components - requires GRM (GCTA) based on pruned, unimputed SNPs as above 
# gcta  --grm SickleMEGA_Pruned_NoSexMismatch.autosomes_${POPULATION}_PtsRemoved --pca ${PCA}  --out 
SickleMEGA_Pruned_NoSexMismatch.autosomes_${POPULATION}_PtsRemoved 
 
 #plot first two components in R 
# module add bioinformatics/R/3.3.0 
# Can run R scripts (from within R) with source("exampleScript.R") : script must be in same folder 
# EigenVec10PC_ALL <- read.table("SickleMEGA_Pruned_NoSexMismatch.autosomes_ALL.eigenvec",header=FALSE) 
# png("1and2PC.png", width=6, height=6, units="in", res=1000) 
# plot(EigenVec10PC_ALL$V3,EigenVec10PC_ALL$V4,main="First pair principal components (1 and 2) of population 
structure",xlab= "Component 1", ylab="Component 2") 
#        dev.off() 
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# png("3and4PC.png", width=6, height=6, units="in", res=1000) 
# plot(EigenVec10PC_ALL$V5,EigenVec10PC_ALL$V6,main="Second pair principal components (3 and 4) of population 
structure",xlab= "Component 1", ylab="Component 2") 
# dev.off() 
 
 
 #(b) do analysis using PCA components as covariates (plink) 
# if [[ "$POPULATION" = "ALL" || "$POPULATION" = "nonHbSS" || "$POPULATION" = "HbSSHbSC" || "$POPULATION" = 
"HbSSHbSCHbSBplus" ]]; then 
#  #  create a file of covariates combining (1) the N=${PCA} PCA components taken directly from the above 
eigenvectors and (2) the demographic covariates 
# _AgeRange${LOWER_AGE}-${UPPER_AGE} echo "FID IID PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 SexCode AgeAtHbF 
HbSS HbSC HbSBplus" > SexAgeAtHbFSickle${PCA}PCcovariates_${POPULATION}.${PCA}.txt 
#  join -j2 -o1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10,1.11,1.12,2.4,2.11,2.12,2.13,2.14 <(sort -k2 
SickleMEGA_Pruned_NoSexMismatch.autosomes_${POPULATION}_PtsRemoved.eigenvec) <(sort -k2 AllCovariates_noHead.txt) 
>> SexAgeAtHbFSickle${PCA}PCcovariates_${POPULATION}.${PCA}.txt 
##  # do linear analysis in plink using these covariates 
#  plink --bfile Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved --pheno LnHbF_updated2.txt --linear --
covar SexAgeAtHbFSickle${PCA}PCcovariates_${POPULATION}.${PCA}.txt --out 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_PCA${COVARIATES_FILE} 
#  #this is a big file - only need the ADD beta/p value (not the covariates beta/p) 
#  head -n1 Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_PCA${COVARIATES_FILE}.assoc.linear > 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_PCA${COVARIATES_FILE}.assoc.linear.pLT0.01 
#  awk '{if($5=="ADD" && $9<0.01) print $0}' 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_PCA${COVARIATES_FILE}.assoc.linear >> 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_PCA${COVARIATES_FILE}.assoc.linear.pLT0.01 
#  
# else 
#          # create a file of covariates combining (1) the N=${PCA} PCA components taken directly from the 
above eigenvectors and (2) the demographic covariates 
#         echo "FID IID PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 SexCode AgeAtHbF" > 
SexAgeAtHbF${PCA}PCcovariates_${POPULATION}.${PCA}.txt 
#         join -j2 -o1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10,1.11,1.12,2.4,2.11 <(sort -k2 
SickleMEGA_Pruned_NoSexMismatch.autosomes_${POPULATION}_PtsRemoved.eigenvec) <(sort -k2 AllCovariates_noHead.txt) 
>> SexAgeAtHbF10PCcovariates_${POPULATION}.${PCA}.txt 
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#         # do linear analysis in plink using these covariates 
#         plink --bfile Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved --pheno LnHbF_updated2.txt --linear -
-covar SexAgeAtHbF${PCA}PCcovariates_${POPULATION}.${PCA}.txt --out 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_PCA${COVARIATES_FILE} 
#  #this is a big file - only need the ADD beta/p value (not the covariates beta/p)  
#         head -n1 Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_PCA${COVARIATES_FILE}.assoc.linear > 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_PCA${COVARIATES_FILE}.assoc.linear.pLT0.01 
#         awk '{if($5=="ADD" && $9<0.01) print $0}' 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_PCA${COVARIATES_FILE}.assoc.linear >> 
Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_PCA${COVARIATES_FILE}.assoc.linear.pLT0.01 
# fi 
 
######################################################################### 
# C. modify GRM to exclude people more related than cutoff= $GRM_CUTOFF # 
######################################################################### 
#This is treated differently for grm-cutoff=0.9. GRM cutoffs are used to exclude people more related than the 
cutoff. Where GRM_CUTOFF=0.9 we want to exclude patients manually after identifying duplicates/MZ twins and 
choossing appropriately (might depend on how much phenotype data we have on them) 
 
if [[ "$GRM_CUTOFF" = "0.9" ]]; then 
#if GRM_CUTOFF=0.9, simple copy over the files with genetic duplicates already manually removed to the new 
nomenclature 
# #pruned plink and GRM data 
 cp 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved.grm.bin 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_postGRMcuto
ff${GRM_CUTOFF}.grm.bin 
        cp 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved.grm.id 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_postGRMcuto
ff${GRM_CUTOFF}.grm.id 
        cp 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved.grm.N.bin 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_postGRMcuto
ff${GRM_CUTOFF}.grm.N.bin 
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 cp 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_AgeRange${L
OWER_AGE}-${UPPER_AGE}_${POPULATION}.bim 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_AgeRange${L
OWER_AGE}-${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}.bim 
        cp 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_AgeRange${L
OWER_AGE}-${UPPER_AGE}_${POPULATION}.bed 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_AgeRange${L
OWER_AGE}-${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}.bed 
        cp 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_AgeRange${L
OWER_AGE}-${UPPER_AGE}_${POPULATION}.fam 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_AgeRange${L
OWER_AGE}-${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}.fam 
 
# cp /users/k1343761/brc_scratch/sickle_new/LMM/info_r2/TROY_CNV_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}.bim /users/k1343761/brc_scratch/sickle_new/LMM/info_r2/TROY_CNV_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}.bim  
#        cp /users/k1343761/brc_scratch/sickle_new/LMM/info_r2/TROY_CNV_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}.bed /users/k1343761/brc_scratch/sickle_new/LMM/info_r2/TROY_CNV_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}.bed 
#        cp /users/k1343761/brc_scratch/sickle_new/LMM/info_r2/TROY_CNV_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}.fam /users/k1343761/brc_scratch/sickle_new/LMM/info_r2/TROY_CNV_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}.fam 
 
 if [ "$IMP_OR_CHIP_DATA" = "chip" ]; then 
  #chip plink data 
  cp 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/SickleMEGA_QC_NoSexMismatch.autosomes_PtsRemoved_AgeRange${LOWER
_AGE}-${UPPER_AGE}_${POPULATION}.bim 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/SickleMEGA_QC_NoSexMismatch.autosomes_PtsRemoved_AgeRange${LOWER
_AGE}-${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}.bim 
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                cp 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/SickleMEGA_QC_NoSexMismatch.autosomes_PtsRemoved_AgeRange${LOWER
_AGE}-${UPPER_AGE}_${POPULATION}.bed 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/SickleMEGA_QC_NoSexMismatch.autosomes_PtsRemoved_AgeRange${LOWER
_AGE}-${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}.bed 
                cp 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/SickleMEGA_QC_NoSexMismatch.autosomes_PtsRemoved_AgeRange${LOWER
_AGE}-${UPPER_AGE}_${POPULATION}.fam 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/SickleMEGA_QC_NoSexMismatch.autosomes_PtsRemoved_AgeRange${LOWER
_AGE}-${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}.fam 
 
 else 
  #imputed plink data 
  cp 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/Sickle_Imputed_QC_strict_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}.bim 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/Sickle_Imputed_QC_strict_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}.bim 
                cp 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/Sickle_Imputed_QC_strict_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}.bed 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/Sickle_Imputed_QC_strict_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}.bed 
                cp 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/Sickle_Imputed_QC_strict_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}.fam 
/users/k1343761/brc_scratch/sickle_new/LMM/info_r2/Sickle_Imputed_QC_strict_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}.fam 
 
 fi 
 
else 
#if GRM_CUTOFF<0.9, use ./GCTA to exclude individuals based on GRM_CUTOFF 
       gcta --grm SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved --grm-cutoff ${GRM_CUTOFF} --thread-num 6  -
-make-grm  --out SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_postGRMcutoff${GRM_CUTOFF} 
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 #keep only those individuals left in GRM from plink datasets 
      plink --bfile SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION} --keep 
SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_postGRMcutoff${GRM_CUTOFF}.grm.id --make-bed --out 
SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF} 
# plink --bfile TROY_CNV_AgeRange${LOWER_AGE}-${UPPER_AGE}_${POPULATION} --keep 
SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_postGRMcutoff${GRM_CUTOFF}.grm.id --make-bed --out 
TROY_CNV_AgeRange${LOWER_AGE}-${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF} 
 
        if [ "$IMP_OR_CHIP_DATA" = "chip" ]; then 
               #chip plink data 
  plink --bfile SickleMEGA_QC_NoSexMismatch.autosomes_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION} --keep 
SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_postGRMcutoff${GRM_CUTOFF}.grm.id --make-bed --out 
SickleMEGA_QC_NoSexMismatch.autosomes_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF} 
        else 
               #imputed plink data 
         plink --bfile Sickle_Imputed_QC_strict_PtsRemoved_AgeRange${LOWER_AGE}-${UPPER_AGE}_${POPULATION} --
keep SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_postGRMcutoff${GRM_CUTOFF}.grm.id --make-bed --out 
Sickle_Imputed_QC_strict_PtsRemoved_AgeRange${LOWER_AGE}-${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF} 
 fi 
fi 
 
########################################################################################### 
#D. (GCTA) Do mixed linear model association (MLMA) using leave-one-chromosome-out (LOCO) # 
########################################################################################### 
        #input: imputed file, GRM from above, covariate file and phenotype file 
        # covariates:  
 # discrete covariates (--covar): sex plus sickle if population = ALL  
 # quantitative covariates (--qcovar): Age 
 
#GRM cutoffs used to exclude people too related. The process excludes both individuals (not one) - this seems odd 
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#we only want to exclude genetic identical individuals (GRM>0.9) and importantly to keep the data - we don't want 
to blanket delete individuals. 
 
########################################################################### 
#temporary step to merge TROY_CNV data 
#plink --bfile ${IMP_CHIP_FILE}_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF} --bmerge TROY_CNV_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}.bed TROY_CNV_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}.bim TROY_CNV_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}.fam --make-bed --out 
${IMP_CHIP_FILE}_PtsRemoved_AgeRange${LOWER_AGE}-${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}_TROY_CNV 
# 
# 
#gcta --mlma-loco --reml-maxit 1000 --bfile ${IMP_CHIP_FILE}_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}_TROY_CNV --grm 
SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_postGRMcutoff${GRM_CUTOFF} --pheno Phenotype_${OUTCOME}.txt --
covar ${COVARIATES_NONQUANT_FILE} --qcovar Covariate_AgeAt${OUTCOME}${HbFg_FILE}.txt --thread-num 6 --out 
${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}_TROY_CNV 
# 
# 
# 
###create results file only containing results wiht p<0.01 (for easy transfer off Rosalind, eg to local computer to 
view in Haploview) 
## CHANGE FILE NAMES IF USING# 
#head -n1 ${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}_TROY_CNV.loco.mlma > 
${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}_TROY_CNV.loco.mlma.pLT0.0
1 
#awk '{if($9<0.01) print $0}' ${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}_TROY_CNV.loco.mlma >> 
${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}_TROY_CNV.loco.mlma.pLT0.0
1 
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# 
###create results file with only valid p values (no NA etc) - subsequent R processing cannot cope with missing 
values 
#head -n1 ${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}_TROY_CNV.loco.mlma > 
${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}_TROY_CNV.loco.mlma.tick 
#awk '{if($9<=1 && $9>=0) print $0}' ${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}_TROY_CNV.loco.mlma >> 
${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}_TROY_CNV.loco.mlma.tick 
# 
# 
##QC and create plots via R script (manhattan plots, QQ plots and calculate lambda(GC)) 
#Rscript LambdaAndQQ_TROY_CNV.R ${POPULATION} ${GRM_CUTOFF} ${OUTCOME} ${IMP_OR_CHIP_DATA} ${HbFg} 
${COVARIATES_FILE} ${LOWER_AGE} ${UPPER_AGE} 
# 
##Find number of patients in common in the files 
##(a) create file of people with non-missing phenotype AND non missing HbFg data (ie this equates to complete 
phenotype and covariate set) 
#if [[ "${HbFg}" = "yes" ]]; then 
#        #check both outcome and HbFg are non missing and create file of non missing data 
#        awk '{if($3>-9 && $4>-9) print $0}' Covariate_AgeAt${OUTCOME}${HbFg_FILE}.txt > 
AgeAt${OUTCOME}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_${IMP_OR_CHIP_DATA}_postGRMcutoff${GRM_CUTOFF}${HbFg_FILE}_noMissing.txt 
#       else 
#        #check outcome is non missing and create file of non missing data 
#        awk '{if($3>-9) print $0}' Covariate_AgeAt${OUTCOME}${HbFg_FILE}.txt > 
AgeAt${OUTCOME}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_${IMP_OR_CHIP_DATA}_postGRMcutoff${GRM_CUTOFF}${HbFg_FILE}_noMissing.txt 
#fi 
# 
# 
##(b) those in common between genetic and phenotypic data 
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#awk 'NR==FNR {a[$2];next}$2 in a{print $1,$2}' ${IMP_CHIP_FILE}_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}_TROY_CNV.fam AgeAt${OUTCOME}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_${IMP_OR_CHIP_DATA}_postGRMcutoff${GRM_CUTOFF}${HbFg_FILE}_noMissing.txt > 
Pts_LMManalysis_${IMP_OR_CHIP_DATA}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_${OUTCOME}_postGRMcutoff${GRM_CUTOFF}${HbFg_FILE}_TROY_CNV.txt 
# 
# 
#N=$(wc Pts_LMManalysis_${IMP_OR_CHIP_DATA}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_${OUTCOME}_postGRMcutoff${GRM_CUTOFF}${HbFg_FILE}_TROY_CNV.txt | awk '{print $1}') 
#Lambda=$(awk '{print $1}' ${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}_TROY_CNV_lambda.txt) 
# 
# 
#echo "Number of patients in analysis (N): $N 
#Lambda (GC)=$Lambda 
# 
#Files saved: 
#Patients used in analysis: Pts_LMManalysis_${IMP_OR_CHIP_DATA}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_${OUTCOME}_postGRMcutoff${GRM_CUTOFF}${HbFg_FILE}_TROY_CNV.txt 
#Binary PLINK files used for analysis: ${IMP_CHIP_FILE}_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}_TROY_CNV 
#Covariate files used (non-quantitative and quantitative): ${COVARIATES_NONQUANT_FILE} 
Covariate_AgeAt${OUTCOME}${HbFg_FILE}.txt 
#MLMA results: ${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}_TROY_CNV.loco.mlma 
#MLMA results without missing data: ${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}_TROY_CNV.loco.mlma.tick 
#Manhattan plot: ${IMP_OR_CHIP_DATA}_${OUTCOME}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}${COVARIATES_FILE}_GRM${GRM_CUTOFF}${HbFg_FILE}_TROY_CNV_manhattan.png 
#QQ plot: ${IMP_OR_CHIP_DATA}_${OUTCOME}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}${COVARIATES_FILE}_GRM${GRM_CUTOFF}${HbFg_FILE}_TROY_CNV_qq.png 
#" >> Logfile_LMM_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_${PCA}_${OUTCOME}_${IMP_OR_CHIP_DATA}${HbFg_FILE}_TROY_CNV.txt 
# 
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########################################################################### 
 
gcta --mlma-loco --reml-maxit 1000 --bfile ${IMP_CHIP_FILE}_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF} --grm 
SickleMEGA_Pruned_NoSexMismatch.autosomes_PtsRemoved_postGRMcutoff${GRM_CUTOFF} --pheno Phenotype_${OUTCOME}.txt --
covar ${COVARIATES_NONQUANT_FILE} --qcovar Covariate_AgeAt${OUTCOME}${HbFg_FILE}.txt --thread-num 6 --out 
${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE} 
 
 
 
##create results file only containing results wiht p<0.01 (for easy transfer off Rosalind, eg to local computer to 
view in Haploview) 
# CHANGE FILE NAMES IF USING# 
head -n1 ${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}.loco.mlma > 
${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}.loco.mlma.pLT0.01 
awk '{if($9<0.01) print $0}' ${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}.loco.mlma >> 
${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}.loco.mlma.pLT0.01 
 
##create results file with only valid p values (no NA etc) - subsequent R processing cannot cope with missing 
values 
head -n1 ${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}.loco.mlma > 
${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}.loco.mlma.tick 
awk '{if($9<=1 && $9>=0) print $0}' ${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}.loco.mlma >> 
${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}.loco.mlma.tick 
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#QC and create plots via R script (manhattan plots, QQ plots and calculate lambda(GC)) 
Rscript LambdaAndQQ.R ${POPULATION} ${GRM_CUTOFF} ${OUTCOME} ${IMP_OR_CHIP_DATA} ${HbFg} ${COVARIATES_FILE} 
${LOWER_AGE} ${UPPER_AGE} 
 
#Find number of patients in common in the files 
#(a) create file of people with non-missing phenotype AND non missing HbFg data (ie this equates to complete 
phenotype and covariate set) 
if [[ "${HbFg}" = "yes" ]]; then 
 #check both outcome and HbFg are non missing and create file of non missing data 
 awk '{if($3>-9 && $4>-9) print $0}' Covariate_AgeAt${OUTCOME}${HbFg_FILE}.txt > 
AgeAt${OUTCOME}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_${IMP_OR_CHIP_DATA}_postGRMcutoff${GRM_CUTOFF}${HbFg_FILE}_noMissing.txt 
       else 
 #check outcome is non missing and create file of non missing data 
 awk '{if($3>-9) print $0}' Covariate_AgeAt${OUTCOME}${HbFg_FILE}.txt > AgeAt${OUTCOME}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_${IMP_OR_CHIP_DATA}_postGRMcutoff${GRM_CUTOFF}${HbFg_FILE}_noMissing.txt 
fi 
 
 
#(b) those in common between genetic and phenotypic data 
awk 'NR==FNR {a[$2];next}$2 in a{print $1,$2}' ${IMP_CHIP_FILE}_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}.fam AgeAt${OUTCOME}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_${IMP_OR_CHIP_DATA}_postGRMcutoff${GRM_CUTOFF}${HbFg_FILE}_noMissing.txt > 
Pts_LMManalysis_${IMP_OR_CHIP_DATA}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_${OUTCOME}_postGRMcutoff${GRM_CUTOFF}${HbFg_FILE}.txt 
 
 
N=$(wc Pts_LMManalysis_${IMP_OR_CHIP_DATA}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_${OUTCOME}_postGRMcutoff${GRM_CUTOFF}${HbFg_FILE}.txt | awk '{print $1}') 
Lambda=$(awk '{print $1}' ${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}_lambda.txt) 
 
 
echo "Number of patients in analysis (N): $N 
Lambda (GC)=$Lambda 
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Files saved: 
Patients used in analysis: Pts_LMManalysis_${IMP_OR_CHIP_DATA}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_${OUTCOME}_postGRMcutoff${GRM_CUTOFF}${HbFg_FILE}.txt 
Binary PLINK files used for analysis: ${IMP_CHIP_FILE}_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF} 
Covariate files used (non-quantitative and quantitative): ${COVARIATES_NONQUANT_FILE} 
Covariate_AgeAt${OUTCOME}${HbFg_FILE}.txt 
MLMA results: ${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}.loco.mlma 
MLMA results without missing data: ${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}${COVARIATES_FILE}${HbFg_FILE}.loco.mlma.tick 
Manhattan plot: ${IMP_OR_CHIP_DATA}_${OUTCOME}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}${COVARIATES_FILE}_GRM${GRM_CUTOFF}${HbFg_FILE}_manhattan.png 
QQ plot: ${IMP_OR_CHIP_DATA}_${OUTCOME}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}${COVARIATES_FILE}_GRM${GRM_CUTOFF}${HbFg_FILE}_qq.png 
" >> Logfile_LMM_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_${PCA}_${OUTCOME}_${IMP_OR_CHIP_DATA}${HbFg_FILE}.txt 
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Appendix 5 
Logfile output for user post-LMM 

Outcome (phenotype) 
Population: ALL, HbSS, HbSC, … 
Data source: raw or imputed data 
LMM GRM cutoff 
 

Number of patients in analysis: <number of patients> 
Lambda (GC): <calculated lambda GC> 
 
Files saved: 
Patients used in analysis <file name> 
Binary PLINK files used for analysis <file name> 
Covariates used in mode, together with files used (non-quantitative and 
quantitative) <file name> 
MLMA results (.mlma file) <file name> 
Manhattan plot <file name> 
QQ plot <file name> 
 

 

 

Appendix 6 
Manuscript: 

HbFG: a Genetic Model of Fetal Hemoglobin in Sickle Cell Disease 
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Key points 

1. The three established HbF genetic loci can be summarized into one quantitative variable, HbFG, in 
SCD. 

2. HbFG has been replicated in other SCD cohorts and demonstrated to influence markers of SCD 
severity.  

3. HbFG  provides a quantitative marker for the “genetic component” of HbF variability, potentially 
useful  in future genetic and clinical studies in SCD. 

 

 

Abstract 

Fetal hemoglobin (HbF) is a strong modifier of sickle cell disease (SCD) severity, and associated with 

three common genetic loci. Quantifying the genetic effects of the 3 loci would specifically address 

the beneficial side of HbF increases in patients. Here, we have applied statistical methods using the 

most representative variants - rs1427407 and rs6545816 in BCL11A, rs66650371 (3bp deletion) and 

rs9376090 in HMIP-2A, rs9494142 and rs9494145 in HMIP-2B, and rs7482144 (Xmn1- HBG2 in the β-

globin locus), to create HbFG, a genetic quantitative variable for HbF in SCD.  

Only patients aged ≥ 5 years with complete genotype and HbF data were studied. 581 patients with 

HbSS or HbSβ0 thalassemia formed the “discovery” cohort. Multiple linear regression modelling 

rationalized the 7 variants down to 4 markers (rs6545816, rs1427407, rs66650371 and rs7482144) 

each independently contributing HbF-boosting alleles; together accounting for 21.8% of HbF 

variability (r2) in the HbSS or HbSβ0 patients. The model was replicated with consistent r2 in two 

different cohorts: 27.5% in HbSC patients (N=186) and 23% in 994 Tanzanian HbSS patients. HbFG, 

our 4-variant model, provides a robust approach to account for the genetic component of HbF in 

SCD, and is of potential utility in sickle genetic and clinical studies. 

  



 187

Introduction 

High HbF levels are clinically beneficial in sickle cell disease (SCD), being associated with longer 

survival(Platt et al., 1994) and reduced pain rates (Platt et al., 1991). Patients with SCD have higher 

HbF levels compared to non-affected adults and, within SCD, HbF levels are higher in HbSS compared 

to HbSC individuals(Steinberg, 2009). One component of HbF variability relates to the expanded 

erythron secondary to chronic hemolysis, and preferential survival of HbF-containing red cell 

precursors (F cells)(Quinn et al., 2016, Franco et al., 2006). A second component is the innate ability 

for HbF synthesis based on genetic variants at three quantitative trait loci (QTLs): BCL11A on 

chromosome 2p, HMIP-2 on chromosome 6q and Xmn1-HBG2 (rs7482144) on chromosome 11p. 

Dependent upon the genetic variants investigated and analysis performed, such variants were found 

to account for between 8 and ~20% of the HbF variability in SCD in studies from the UK, USA, Brazil, 

Tanzania and Cameroon(Lettre et al., 2008, Bhatnagar et al., 2011, Bae et al., 2012, Makani et al., 

2011, Mtatiro et al., 2014, Wonkam et al., 2014, Sebastiani et al., 2010, Cardoso et al., 2014). This 

genetic component is likely to account for much of the variable HbF levels in SCD patients. 

Consequently, it is desirable to quantify and summarize the effects of the respective genetic loci into 

a single genetic variable to capture the essence of genetic disease alleviation through the HbF 

mechanism. Here, we present such a genetic HbF summary variable – HbFG  - which will be a useful 

parameter to use as a covariate in genetic, biological, and clinical studies in diverse SCD populations.  

 

Subjects and Methods 

British patients are part of the South East London sickle gene bank (King’s College Hospital “KCH”, 

Guys and St Thomas’ Hospitals Trust, Lewisham Hospital and Queen Elizabeth Hospital Woolwich). 

Written informed consent was obtained through three approved study protocols (LREC 01-083, 

07/H0606/165, and 12/LO/1610) and research conducted in accordance with the Helsinki 

Declaration (1975, as revised 2008).  

 

892 patients consented to the study, of whom 785 aged over 5 years had a full dataset (genotypes 

and phenotype). These 785 comprised: 581 with HbSS or HbSβ0 (the “discovery cohort” used for the 

primary analysis), 186 HbSC (the “validation” cohort) and 18 HbSβ+ thalassemia (figure 1). Additional 

validation was performed in the Muhimbili HbSS cohort, Tanzania (N=994)(Mtatiro et al., 2014). 

 

Genetic Variants and Genotyping 

We assembled an initial set of seven known (and widely replicated) HbF modifier variants, 

prioritizing those where additional functional evidence had been generated (Table 1): BCL11A -   
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rs1427407(Bauer et al., 2013) and rs6545816(Mtatiro et al., 2014); HMIP-2A - rs66650371(Farrell et 

al., 2011, Stadhouders et al., 2014) and rs9376090(Menzel et al., 2014); HMIP-2B- 

rs9494145(Mtatiro et al., 2015b, Menzel et al., 2014) and rs9494142(Stadhouders et al., 2014);  

Xmn1-HBG2 - rs7482144(Labie et al., 1985b, Labie et al., 1985a, Lettre et al., 2008).  

 

A combination of three genotyping methodologies was used: (1) “manual” genotyping in the 

laboratory (all variants) by the TaqMan procedure, except rs66650371 which was assayed by 

capillary electrophoresis (Applied Biosystems, Foster City, CA), as previously described(Menzel et al., 

2014), (2) a genome-wide chip (Illumina Infinium Multi-Ethnic Genotyping Array), (3) imputation 

with public and in-house reference haplotypes (online supplementary methods). Alpha-thalassemia 

status was not associated with HbF levels in our cohort (data not shown). 

 

Phenotypes  

HbF levels (measured by HPLC, BioRad Variant II) - no red cell transfusion or hydroxyurea for at least 

3 months, and not pregnant - were retrospectively collected. For the 581 HbSS/HbSβ0 discovery set, 

median HbF level was 4.5% (IQR: 1.9-8.8%) (supplementary figure s1). 

 

We estimated global disease severity using “hospitalization rate” as a measure of pain frequency, 

mortality and laboratory results. Mean hospitalization rates were calculated for KCH adults over 10 

years (2004-2013), dividing an individual’s number of hematology hospital admissions by the 

number of observed years.  For the 302 patients with HbSS/HbSβ0, median mean hospitalization rate 

was 0.25/year (IQR: 0-0.71) (supplementary figure s2). Mortality outcome was available for the 302 

adults (1 January 2004-31 July 2015). Steady state laboratory values (hemoglobin, white blood cells 

(WBC)) over a 10-year period (2004-2013) were averaged for 278 patients. 

 

Building and validating the genetic model for HbF%  

Genetic association between the 7 genetic variants (as normalized genotype scores) with HbF 

(ln[%HbF]) was investigated by linear regression (using STATA12) under an additive allelic model.  

Manual linear regression modelling was carried out in the HbSS/HbSβ0 thalassemia “discovery 

group” (see supplementary methods). We then validated the model – HbFG – in two replication 

groups: (1) our own HbSC subgroup (N=186) and (2) a Tanzanian HbSS cohort (N=994)(Mtatiro et al., 

2014). 

 

Testing for association of HbFG with clinical severity  
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See supplementary methods 

 

Results and Discussion 

Summary variables combining genotypes across HbF modifier loci have been found to be associated 

with clinical severity in β-thalassemia(Danjou et al., 2014), and have also been explored in 

SCD(Mtatiro et al., 2014, Milton et al., 2014, Leonardo et al., 2016, Mtatiro et al., 2015a). To 

represent the relationship between genetic factors and HbF more accurately and to build a summary 

variable that is robust across diverse SCD cohorts, we used regression modeling of the effect of 

seven known modifier variants (Table 1) on HbF levels in 581 SCD patients with HbSS and HbSβ0 

genotypes. We targeted genetic variants at the three major HbF loci that have been widely 

replicated and have been implicated as causative genetic variants. Preliminary analysis using basic 

regression with age/sex only yielded a model with r2=0.1082, and with the 7 genetic variants only 

produced a model with r2=0.2256. Putting age, sex and the 7 genetic variants together in the model 

increased the r2 to 0.3167. As age and sex are roughly orthogonal to the variants, our subsequent 

analyses did not control for age/sex. 

 

Final regression analysis resulted in a model utilizing 4 variants: rs1427407, rs6545816 (both 

BCL11A), rs66650371 (HMIP-2A) and rs7482144 (Xmn1-HBG2), see table 1. rs9376090, rs9494142 or 

rs9494145 (all at HMIP-2) did not improve the model and were considered redundant. Applying this 

model, the predicted ln[HbF%]) - HbFG – would be calculated: 

HbFG = 1.89 +0.14×rs6545816+0.3 ×rs1427407+0.13 ×rs66650371+0.1×rs7482144, 

 (genotype for each variant = 0, 1, or 2, according to the number of HbF-boosting alleles).  

HbFG underlies 22% (r2= 0.2178, p<0.0001) of the variability in HbF levels in our discovery group, and 

confirming its robustness, 23% in the Muhimbili ‘replication group’ (N=994) and 27.5% in HbSC 

patients (Table 1). In HbSC disease, the comparatively large effect of HbFG is likely due to the less 

severe pathology and thus smaller influence of non-genetic hemolysis-related factors. 

 

HbF levels affect the severity of SCD; patients with higher levels of HbF have fewer complications 

and live longer(Platt et al., 1994, Platt et al., 1991). We tested the influence of HbFG on 

hospitalization rate in HbSS and HbSβ0 patients, and detected tentative association (N=304, 

Beta=0.47, p=0.031), suggesting that a 2.7-fold increase in HbFG would result in a 38% decrease in 

hospitalization frequency. Nevertheless, the HbFG for frequently-admitted patients was not 

significantly changed. HbFG was, however, associated with hemoglobin (N=278, Beta=17.871, 

p<0.001). We found no association of HbFG with mortality or WBC. 
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Our cohort has potential power to investigate the influence of HbFG on global measures of disease 

severity. International collaboration, larger sample sizes, adding new loci as they are discovered, and 

development of the formula will be required to realize the utility of the HbFG variable. We saw no 

significant benefit for including the HMIP-2B locus(Menzel et al., 2014) in HbFG. This will be re-visited 

once the underlying functional variant has been identified. 

 

We believe that estimating HbFG, or similar genetic summary variables, will add significant value to 

genetic and clinical studies, either to test the influence of genetic modifiers on outcomes, or to act 

as a co-variate to adjust for such effects. The strength of HbFG is that it isolates the genetic 

component of HbF from the component reactive to disease severity. Using a pre-set formula for HbF 

such as HbFG, will be especially useful in smaller and medium-size cohorts or clinical trials, where de 

novo modelling is meaningless.  
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Table 1: Seven variants across the three major HbF QTLs representing the most recent biological 

understanding of the role of BCL11A and HMIP variants. The table also includes HbFG, the new 4-

variant model to represent the genetic component of HbFin HbSS and HbSβ0 thalassemia 
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Table 1: Seven variants across the three major HbF QTLs representing the most recent biological understanding of the role of BCL11A 
and HMIP variants. The table also includes HbFG, the new 4-variant model to represent the genetic component of HbF 

 

 

Gene  Variant 

HbF-
boosting 
allele 

Allele frequency  Results: HbFG model 

London UK 
Dar es Salaam 
Tanzania 

Coefficient  
(Beta) (95% CI) p-value 

BCL11A (Chr 2) 
   

rs6545816  
(A>C) C 0.34 0.36 0.14 (0.08- 0.19) <0.001 
rs1427407  
(G>T) T 0.26 0.21 0.30 (0.26-0.35) <0.001 

HMIP (HBSL1-MYB intergenic 
polymorphism on Chr 6) 

2A 

rs9376090  
(T>C) C 0.01     
rs66650371  
(TAC>---) 3bp del 0.04 0.02 0.13 (0.08-0.17) <0.001 

2B 

rs9494142  
(T>C) C 0.05     
rs9494145  
(T>C) C 0.05     

HBG2-Xmn1 
(β-globin gene cluster on Chr 11)  

rs7482144  
(G>A) A 0.07 0.01 0.10 (0.05-0.15) <0.001 
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Figure 1: Study sample fate  
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5.1. Introduction 
5.1.1. Background 

Two paradigms exist for assessing genotype-phenotype correlation: GWAS and candidate gene 

association studies. Both are based on genotyping of human polymorphisms. Candidate gene 

studies are based on testing an a priori hypothesis that a specific genetic region of interest is 

associated with trait risk (either disease status or a quantitative trait). Better than a hypothesis 

is the availability of actual prior evidence, whether that is genetic, biological or clinical. 

Candidate gene studies thus provide a focused view of genomic regions of interest, 

hypothesised to be associated with the trait.  

 

Candidate gene studies have been at the forefront of genetic association studies for as long as 

the genetic era. These studies evaluate genetic variants within a gene or region of interest that 

has been in some way related to the disease previously. The candidate region may be 

motivated by prior functional studies (the gene is known from basic science (especially 

pathway analysis) or clinical studies) or by genetic position (the gene lies within a broad region 

found by linkage analysis).  

 

The candidate gene approach begins with selection of a candidate region of interest based on 

its relevance to the mechanism of the trait being evaluated. The genetic variant is then 

analysed for association with the trait.  

 

Candidate gene studies have multiple advantages. Because the approach is hypothesis-driven, 

it allows for targeted assessment of selected alleles relevant to the hypothesis, in the chosen 

study population. Within the targeted candidate genes / genetic markers, this approach may 

confer inferential advantages in comparison with GWAS which is untargeted, and where 

coverage is genome-wide and typically does not specifically target functional variants or 

regions of interest. The low number of markers tested provides superior power to identify 

significant associations. This enhanced power to detect associations is particularly important 

when allele frequencies are low, effect sizes are small, or the study population is small. This 

makes candidate gene studies a good approach for asking research questions in our (relatively) 

small cohort. Because the candidate variants have been specifically selected, the credibility 

and interpretability of significant associations are frequently greater than in GWA studies. 

Furthermore, candidate gene approaches are relatively cheap and quick to perform (for well-

focused research questions). Candidate gene analysis is also valuable for replicating previous 

reports of genetic associations with disease in different populations. 
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Candidate gene studies also have disadvantages, primarily its limitation from the accuracy of 

the candidate selection. Precisely because it is hypothesis-driven, it cannot identify anything 

unexpected precluding the discovery of novel associations. It is constrained by our 

understanding of the trait(s) being studied: this understanding is particularly poor for sickle 

pathophysiology. Until recently, candidate gene association studies have been considered 

somewhat unreliable, after findings often could not be replicated in independent follow-up 

studies. Several factors have contributed to this. First, the lack of management of relatedness 

and population stratification. By using a statistical model which encompasses genome-wide 

data to capture relatedness in all forms, this can be circumvented. I have done this using the 

MEGA data set, constructing a genetic relatedness matrix and then using a linear mixed model 

to control for all forms of relatedness, both near and far. Second, the necessity of replication 

of positive findings in an independent cohort has often been disregarded (with different 

population characteristics e.g. different ethnicity, admixture frequency). Third, multiple testing 

has often been ignored during the estimation of statistical significance, leading to false positive 

findings. Careful consideration must be given to an appropriate significance level. This can be 

managed by adjusting the p-value to take account of multiple testing. Testing m multiple 

variants within a gene is not equivalent to m independent tests, since genotypes are 

dependent upon each other due to linkage disequilibrium. One can assess the linkage 

disequilibrium between variants to calculate an effective number of independent variants (and 

hence effective number of tests).  

 

The HapMap and 1000 Genomes Projects have both provided rich data by thoroughly 

cataloguing human polymorphisms, more recently encompassing diverse ethnic groups, 

including African-heritage  populations. As well as enabling a GWAS approach, this has also 

made it possible to interrogate candidate genes in finer detail, leading to a revival of candidate 

gene strategies for the dissection of complex genetic disorders.  

 

Our sample size has been too small to power a successful GWAS for sickle severity indices in 

our cohort, but we have reasonable expectations of meaningful association results by carefully 

targeting candidate genes to a limited but thoroughly curated set of phenotypes recorded in 

our patient cohort. 

 

I have assessed several regions of interest consisting of the candidate gene and immediately 

adjacent DNA sequence. By using a linear mixed model to account for relatedness, I have 

avoided potential problems with population stratification that occur with simpler statistical 

association models. I have used two quantitative traits as measures of sickle severity: 
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hospitalisation rate and a haemolytic index. For each of these severity indices, I considered 

two groups of genes. First, those which increase red cell intracellular 2,3-DPG levels and so 

increase deoxy-HbS thus promoting sickling. Of particular note here is the gene for the 

erythrocyte form of pyruvate kinase (PK-LR). Pyruvate kinase deficiency has been associated 

with a sickle cell phenotype in patients with sickle trait (HbAS) (Alli et al., 2008, Cohen-Solal et 

al., 1998). Second, I evaluated a group of complement-related genes, because of the parallels 

between atypical haemolytic uraemic syndrome (aHUS, a recurrent micro-angiopathic 

haemolytic anaemia) and sickle cell disease. 

 

As well as evaluating regions of interest, I also assessed whether specific genetic variants 

previously associated with morbidity in sickle cell disease could be replicated in our cohort: 

APOL1 and proteinuria, DARC and both indices of sickle severity, MAPK8 and haemolysis. 

Notably, many historical studies do not utilise a linear mixed model approach and there are 

specific concerns about population stratification and admixture in these studies which I have 

addressed. 

5.1.2. Phenotypes 
I have evaluated two quantitative markers of severity of sickle cell disease: a haemolytic index 

and hospitalisation rate. I have investigated if these two “severity” indices are associated with 

the described candidate “regions of interest” as well as other specific variants previously 

associated with sickle severity in DARC and MAPK8. I have also assessed the relationship 

between urinary albumin creatinine ratio (uACR) and specific variants in APOL1. 

5.1.3. Regions of interest  
5.1.3.1. Choosing regions of interest 

A precondition of the selection of regions of interest is that there is strong prior evidence of 

their connection with the phenotype of interest (or a similar phenotype). Therefore, genetic 

association seen with a particular phenotype (e.g. proteinuria) in the non-sickle setting may 

provide ideal candidates for assessing proteinuria in SCD. Evidence for the importance of genes 

or regions of interest may come from biological, clinical or genetic studies that link the 

candidate with sickle severity of specific complications of sickle cell disease.  Thus, the most 

common source of candidate genes and/or polymorphisms is the existing literature. 

 

This choice must be objective, there must be strong prior independent evidence, otherwise 

one should adopt genome-wide significance thresholds.  
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To reduce a set of variants down to a smaller number, databases and predictive software tools 

can be used to choose missense, nonsense and splice site variants over those without 

immediate obvious functional consequence. 

5.1.3.2. Pyruvate kinase 
2,3-diphosphoglycerate (2,3-DPG) decreases oxygen affinity of red cells, including of those 

from patients with  HbSS(Charache et al., 1970). Sickling occurs in conditions favouring 

deoxygenation and subsequent polymerisation of HbS in red blood cells. Theoretically, then, 

any mechanism that increases intra-cellular deoxy-HbS concentration facilitates sickling. 

Increased 2,3-DPG concentration and decreased intracellular red cell pH have both been 

shown to boost deoxy-HbS polymerisation(Poillon and Kim, 1990, Poillon et al., 1998).  

 

2,3-DPG is synthesized in RBCs as an intermediate substrate in the glycolytic 

pathway(Rapoport and Luebering, 1952), see Figure 1. Enzyme deficiencies in the glycolytic 

pathway (including pyruvate kinase (PK) deficiency) lead to the accumulation of upstream 

enzyme substrates, including 2,3-DPG. 
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Figure 1 The glycolytic pathway, taken from http://laboratoryinfo.com/glycolysis-steps-diagram-energy-yield-and-
significance/.  2,3-DPG is formed in stage 7. 

 

PK deficiency is a rare red cell disorder which manifests as a haemolytic anaemia. The anaemia 

is partly compensated by a right-shift of the oxygen dissociation curve to increase tissue 

oxygenation. Mechanistically, this happens via an increase of upstream glycolytic pathway 

substrates which includes 2,3-DPG concentration; the rise in 2,3-DPG causes reduced 

haemoglobin oxygen affinity. In SCD, and even in sickle trait, reduced oxygen affinity will 

favour deoxy-HbS polymerisation - and thus sickling. The combination of PK deficiency and 

sickle cell trait causing a sickling syndrome has been reported in two cases(Alli et al., 2008, 

Cohen-Solal et al., 1998). PK levels are a spectrum, and in SCD, in theory, this could represent a 

quantitative trait which modifies the risk of sickling to induce a more severe SCD phenotype.  
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In red blood cells, PK is produced by PK-LR (PK in liver and red cells). 2,3-DPG is produced via 

BPGM (biphosphoglycerate mutase). 

5.1.3.3. Adenosine A2B receptor 
Adenosine A2B receptor can also act to induce 2,3-DPG and decrease oxygen-binding affinity of 

haemoglobin, ultimately inducing sickling. Adenosine A2B receptor abnormalities have been 

associated with “haemolytic” type complications of SCD. The first association between 

adenosine A2B receptor and pulmonary hypertension is seen in both the non-sickle settings 

(Karmouty-Quintana et al., 2012, Karmouty-Quintana et al., 2013), and in SCD(Desai et al., 

2012). The second association is seen with murine priapism in a mouse model of SCD: excess 

adenosine contributed to priapism via adenosine A2B receptor signalling(Mi et al., 2008). 

 

There are high adenosine concentrations in the blood of patients with SCD. Increased 

adenosine levels promote sickling and haemolysis(Zhang et al., 2011). The adenosine A2B 

receptor mediates induction of 2,3-DPG, thus decreasing the oxygen-binding affinity of HbS. 

Adenosine signalling (via the adenosine A2B receptor) therefore has a pathological role in 

inducing sickling by excess adenosine. 

 

The Adenosine A2B receptor is encoded on the gene ADORA2B. 

5.1.3.4. Complement related genes (MCP, CFH, CFB, ADAMTS13) 
Arguments for the potential involvement of the complement system in acute pain episodes of 

SCD stem from the parallels with micro-angiopathic haemolytic anaemias, especially in more 

severe cases of acute pain episodes. In addition to the reported explicit cases of thrombotic 

thrombocytopenic purpura (TTP) in SCD(Prichard et al., 1988, Chinowsky, 1994, Geigel and 

Francis, 1997, Bolanos-Meade et al., 1999, Lee et al., 2003, Venkata Sasidhar et al., 2010, 

Shelat, 2010), we and others have described cases of “extreme haemolysis” during acute pain 

episodes, associated with markedly elevated LDH and thrombocytopenia(Shome et al., 2013, 

Gardner and Thein, 2015). Furthermore, plasma exchange has historically been used 

successfully in acute multi-organ failure syndromes associated with gross haemolysis in SCD 

(Geigel and Francis, 1997). Moreover, standard treatment of atypical haemolytic uraemic 

syndrome (aHUS) using eculizumab has been translated to the sickle setting for delayed 

haemolytic transfusion reactions(Pirenne et al., 2017, Dumas et al., 2016, Boonyasampant et 

al., 2015), transplant-associated thrombotic microangiopathy(Abusin et al., 2017) as well as 

frank aHUS(Chonat et al., 2016). 
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In the setting of aHUS, multiple complement mutations have been associated with the disease, 

including variants in MCP (CD46), CFH, CFB, thrombomodulin (THBD), diacylglycerol kinase 

epsilon (DGKE), and C3(Phillips et al., 2016, Kavanagh and Goodship, 2010). These variants 

contribute to a variety of severity and frequency of aHUS events as well as risk of progression 

to end stage kidney disease.  

 

5.1.4. Specific variants previously implicated in sickle cell disease severity 
5.1.4.1. APOL1 

Several polymorphisms at the APOL1 locus have been associated with kidney disease in 

African-heritage individuals in both the non-sickle(Genovese et al., 2010, Kopp et al., 2011, 

Larsen et al., 2013) and sickle settings (Ashley-Koch et al., 2011, Saraf et al., 2017, Saraf et al., 

2015, Schaefer et al., 2016, Kormann et al., 2017). In the non-sickle setting, it is proposed that 

APOL1 risk variants function as a “second hit” that promotes kidney disease progression 

secondary to specific chronic kidney injury(Freedman and Skorecki, 2014) – namely, focal 

segmental glomerulosclerosis, HIV-associated nephropathy and severe lupus nephritis in order 

of reference above. 

 

Two APOL1 alleles, G1 and G2, have been associated with nephropathy, see Table 1. G1 has 

two missense variants (rs73885319 / S342G and rs60910145 / I384M). G2 comprises a deletion 

of six base pairs (rs71785313 is both N388 and Y389 deletion). In some populations, positive 

selection for these mutations occurred due to their association with Trypanosome resistance 

(Genovese et al., 2010): those who have at least one copy of the alternate allele of G1/G2 are 

resistant to Trypanosome infection. In African-Americans, the prevalence of G1 or G2 variants 

is 10-15%. 

Table 1 Established APOL1 variants associated with sickle- and non-sickle renal dysfunction 

 Variant hg19 coordinates Ref> alt allele Protein effect 
G1 rs73885319 36661906 A>G  S342G 

rs60910145 36662034 T>G  I384M 
G2 rs71785313 36662051 

 
TTATAA>- N388 deletion 

Y389 deletion 
  

5.1.4.2. DARC 
“Benign ethnic neutropenia” is common in African-heritage individuals. This is caused by the 

mutation rs2814778 within the DARC (Duffy Antigen Receptor for Chemokines) gene 

promoter, resulting in both a lower white cell count and null Duffy expression on red blood 

cells(Reich et al., 2009).    
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In SCD, studies investigating the association between rs2814778 and a variety of sickle end-

organ complications have given inconsistent results, with positive results made and refuted, 

both by our group and others(Drasar et al., 2013, Afenyi-Annan et al., 2008, Mecabo et al., 

2010, Schnog et al., 2000, Nebor et al., 2010, Araujo et al., 2015). The unresolved question of 

association may be due to small sample sizes, however, all six studies fail to account for 

population structure in their analyses; only the promoter +/- other DARC variants have been 

genotyped. Controlling for population structure is crucial for this variant; population genetics 

demonstrate widely varying allele frequencies in different ethnic populations, see Table 2. 

Thus, population stratification present in our cohort is likely to be tracked by rs2814778, with 

the T allele associated with European admixture (in our African-Caribbean patients) and the C 

allele over-represented in our African patients due to lack of such admixture in this group. It is 

paramount that statistical modelling takes account of relatedness (including population 

stratification) when assessing the variant given its population genetics. This current study will 

provide the first robust assessment of rs2814778 in SCD. 

 

Table 2 Allele frequencies for rs2814778 in African (AFR) and European (EUR) in 1000 Genomes Phase 3 dataset 

 C T 

AFR 96% 4% 

EUR 1% 99% 

 

Despite these cautions surrounding interpretation of previous genetic association analyses, it 

must also be acknowledged that functional work has associated DARC red cell expression and 

the inflammatory response in SCD(Durpes et al., 2010, Durpes et al., 2011), strengthening the 

underlying biology. Furthermore, it is long-established that higher white cell counts are 

associated with increased disease severity in SCD(Platt et al., 1994, Miller et al., 2000): recall 

that rs2814778 causes benign ethnic neutropenia. 

5.1.4.3. MAPK8 
Zhang et al identified a MAPK8 variant (rs10857560) to be associated with pre-capillary 

pulmonary hypertension in SCD (Zhang et al., 2014). The authors concluded this after 

identifying MAPK8 via a gene expression approach which compared variation of expression in 

peripheral blood mononuclear cells from SCD and Chuvash polycythaemia cohorts, and then 

using standard regression modelling (with consideration of population structure) looking at 

multiple MAPK8 variants.  

 

In SCD, pulmonary hypertension is considered to be a consequence of excess haemolysis(Kato 

et al., 2017). Hence, we postulate that MAPK8 is a candidate gene as a quantitative trait locus 
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for haemolytic rate in SCD. There is diversity of allele frequencies of rs10857560 in African 

versus European populations, see Table 3. In order to assess the significance of rs10857560, a 

statistical modelling approach that accounts for relatedness is important. 

Table 3 Allele frequencies for rs10857560 in African (AFR) and European (EUR) in 1000 Genomes Phase 3 dataset 

 A C 

AFR 66% 34% 

EUR 39% 61% 

5.2. Methods 
5.2.1. Summary of methodological approach 

I have identified regions of interest using a systematic approach to decide which genomic 

sequence to interrogate, see section 5.2.2. The next step is to define significance levels against 

which to assess association, see section 5.2.3. Finally, statistical analysis can be undertaken, 

see section 5.2.4. 

 

For each specific region of interest, for the relevant phenotype, I extracted existing linear 

mixed model results from the genome-wide analysis described in chapter 4. I considered the 

analysis of the HbSS group as a “discovery cohort” and the HbSC group as a “replication set”. 

Relatedness cut-off for exclusion was >0.2 (i.e. one of a pair of any first or second degree 

relatives were excluded from analysis). As before, age and sex were used as fixed covariates in 

the linear mixed model described. As in the genome-wide studies for these outcomes, only 

patients in the KCH adult clinic were considered. I considered two “global severity” clinical 

phenotypes: 

 Hospitalisation rate (using the double natural logarithm to improve normalisation of 

the data): N=242 HbSS patients, 94 HbSC patients, 354 total patients (all genotypes) 

 Haemolytic index (using average results over 10 years): N=216 HbSS patients, 89 HbSC 

patients, 328 (all genotypes) 

 

I also assessed previous reports of specific variants and their association with phenotypes in 

our cohort, again used the linear mixed model analysis. I investigated specific APOL1 variants 

and urinary Albumin Creatinine Ratio (uACR) levels (using the double natural logarithm of the 

average results over 10 years): N=229 HbSS patients, N=80 HbSC patients. I also assessed  

DARC and both indices of sickle severity (numbers as above), and MAPK8 and the haemolytic 

index.  
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5.2.2. Defining regions of interest 
Regions of interest were defined as the transcribed transcript for the gene – the “canonical 

transcript”1 – which includes the untranslated regions upstream and downstream (i.e. 5’ UTR 

and 3’ UTR). The exact length of a promoter can often only be defined experimentally so I 

added to the transcribed region 500bp directly upstream of the transcription initiation site to 

capture the promoter (taking note of the strand). Precise regions of interest are in Table 4. 

 

Specific variants to be assessed for replication in our cohort are defined in Table 5.

                                                           
1 The canonical transcript is set according to the hierarchy: 1. Longest CCDS translation with no stop 
codons. 2. If no (1), choose the longest Ensembl/Havana merged translation with no stop codons. 3. 
If no (2), choose the longest translation with no stop codons. 4. If no translation, choose the longest 
non-protein-coding transcript. 
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Table 4 Candidate regions of interest 
 Gene Chr Canonical transcript  Strand hg19 

coordinates 
Region of 
interest  

References  

2,3-DPG – 
boosting 
candidates 
 

2,3-bisphosphoglycerate 
mutase, BPGM 

7 ENST00000393132 + 134331560-
134364565  

134331060-
134364565  

 

Pyruvate kinase, liver and 
RBC, PK-LR 

1 ENST00000342741 
 

- 155259630-
155271225  

155259630-
155271725  

(Alli et al., 2008, Cohen-Solal et al., 
1998) 

Adenosine A2b receptor, 
ADORA2B 

17 ENST00000304222 + 15848231-
15879060  

15847731-
15879060  

(Desai et al., 2012, Mi et al., 2008) 

Complement/ 
MAHA related 

MCP (CD46) 
 

1 ENST00000322875 + 207925402-
207968858  

207924902-
207968858  

(Phillips et al., 2016, Kavanagh and 
Goodship, 2010) 

CFH 
 

1 ENST00000367429 + 196621008-
196716634   

196620508-
196716634   

(Phillips et al., 2016, Kavanagh and 
Goodship, 2010) 

CFB 6 ENST00000425368 + 31895475-
31919861  

31894975-
31919861  

(Phillips et al., 2016, Kavanagh and 
Goodship, 2010) 

Thrombomodulin 
THBD 

20 ENST00000377103 - 23026270-
23030378  

23026270-
23030878  

(Kavanagh and Goodship, 2010) 

Diacylglycerol kinase, 
epsilon, DGKE 

17 ENST00000284061 + 54911460-
54946036  

54910960-
54946036  

(Kavanagh and Goodship, 2010) 

Complement component 3 21 ENST00000245907 - 6677715-
6730573  

6677715-
6731073  

(Kavanagh and Goodship, 2010) 

ADAMTS13 9 ENST00000371929 + 136279478-
136324508  

136278978-
136324508  

(Lotta et al., 2010) 

 
Table 5 Variants associated with sickle phenotypes to be replicated in our linear mixed model 

Gene Chr  Variant hg19 coordinates References  
Apolipoprotein L, 1, APOL1 22 G1 rs73885319 36661906 (Ashley-Koch et al., 2011, Saraf et al., 2017, Saraf et al., 2015, Schaefer et al., 2016, Kormann et al., 2017) 

rs60910145 36662034  
G2 rs71785313 36662051 

Duffy atypical chemokine receptor, DARC 1  rs2814778 159174683  (Drasar et al., 2013, Afenyi-Annan et al., 2008, Mecabo et al., 2010, Schnog et al., 2000, Nebor et al., 2010) 

Mitogen-activated protein kinase 8, MAPK8 10  rs10857560 49594240  (Zhang et al., 2014) 
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5.2.3. Defining significance levels 
5.2.3.1. Significance levels for regions of interest 

Defining significance levels in larger scale genetic analysis is not trivial (see also chapter 4 for 

discussing similar issues in genome-wide analysis). I corrected for multiple testing at a region 

of interest using an approach described by Cheverud(Cheverud et al., 2001). In this method, 

the linkage disequilibrium within a genomic region is quantitatively assessed to produce an 

“effective number of tests” rather than the total number of tests (=number of genetic 

variants). The method is implemented with the following four steps: 

1) Calculation of the correlation matrix for the variants in PLINK 

2) Estimation of the effective number (t.eff) of independent tests from the eigenvalues of the 

correlation matrix using R.  

a) t.eff=1+(t-1)*(1-var(λi)/t) 

b) t is the number of tests (equal to the number of genetic variants) and λi (i=1,..., t) are 

the eigenvalues of the correlation matrix 

3) Adjustment of the test criteria as though there were t.eff independent tests with the Sidak 

correction(Šidák, 1967):  

a) Modified Sidak p = 1-(1-p)^(1/t.eff) 

4) Evaluating the association results between genotypes and phenotypes variant by variant. If 

the p-value of any test is lower than modified Sidak p-value, the test is accepted as 

statistically significant.  

Further consideration should also be given to testing for multiple (two) phenotypes in our 

regions of interest. A Bonferroni correction (divide the p-value by 2) is the most cautious 

approach. One should also be mindful of the multiple testing of different regions. 

 

5.2.3.2. Significance levels for specific genetic variants 
Established, specific genetic variants already associated with phenotypes in SCD can be 

considered in our dataset by applying a p-value 0.05 as I am not performing repeat testing. 

In this case, a specific hypothesis exists, so correction for multiple testing is not warranted as 

the result is simply a replication of the original finding. 

 

5.2.4. Statistical analysis 
The analysis requires genome-wide linear mixed modelling results from chapter 4. For each 

analysis, I evaluated the linear mixed modelling results for the HbSS subgroup as the discovery 

cohort, and then attempted to replicate any positive findings in the HbSC subgroup as a 

validation cohort. 

Requires LMM results which have already been computed genome-wide. 
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I wrote a bash script to encapsulate the analysis, image generation and data formation. The 

bash script has a user-friendly command line interface to run where a user can stipulate a 

variety of parameters on request, see Figure 2. This allows users to choose new phenotypes 

and new regions of interest without having to alter the code.  

 

 
Figure 2 Region of interest script interface for user to answer questions.  

This means the parameters are decided at the command line without the user having to alter the code. Parameters 
that the user can modify (after answering the questions) include: patient population (e.g. HbSS, HbSC, ALL, 
nonHbSS); relatedness cut-off; outcome (phenotype) name; whether imputed or chip (raw) genotype data to be 
used; region of interest name; region chromosome; region coordinates (hg19 build) 

 

Any region of the genome can be inputted. Since I am interested in candidate genes, I used 

canonical transcripts of these genes plus 500bp upstream (as described in section 5.2.20. 

 

In summary, it extracts the region-specific plink data (using PLINK) and mlma results (using 

AWK) and then computes the correlation (r) between all variants using PLINK. The correlation 

matrix of linkage disequilibrium statistics is read into R where the matrix is reduced down to 

calculate the “effective number statistical tests, t.eff”. A modified Sidak p-value is then 

calculated using t.eff (as described in 5.2.3.1). The scripts involved are in Appendix 1 (the main 

script) and Appendix 2 (the calculation of the modified p value in R). 

5.2.5. Post-analysis steps 
Several post-analysis steps can help evaluate the plausibility of any significant results. 

Statistical checks can be made by confirming the cluster plots in any raw genotyping data 

available, plus imputation quality. If previous associations have been reported in the literature, 

consistency is reassuring. In the absence of previous publications, the direction of effect can be 

evaluated for consistency with the expected biological effect of the polymorphism. Other data 

can support the associations e.g. variation in gene expression or protein levels, consistent with 

the biological mechanism suggested by the association. None of these are substitutes for 
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replication of positive findings in an independent cohort (+/- with different genotyping 

methodologies).  

 

5.3. Results 
5.3.1. Regions of interest 

5.3.1.1. Pyruvate kinase 
47 genetic variants were evaluated in the PK-LR region. For hospitalisation rate (LnLnHospRate, 

N=242), the modified Sidak p-value was 0.001268. Seven variants in PK-LR were associated 

with LnLnHospRate in HbSS disease, of which 4 variants were replicated in the HbSC cohort: 

rs8177970, rs116244351, rs114455416 and rs8177964, see Table 6. No other clinical outcomes 

were associated with genetic variants in PK-LR. 

 

I then re-assessed the genotyping quality of these variants to ensure there were no concerns 

with the results. Since they are all imputed variants, I have reviewed the cluster plots of 

surrounding raw genotyped variants; they all cluster well. I also revisited the imputation 

quality of those variants which have both raw genotypes and imputed genotypes available: all 

have imputation concordance info score (r2)>99.9%. 

 

For rs8177970, 167 were wildtype homozygotes TT, 72 heterozygotes CT, and 3 homozygotes 

CC. For rs116244351, 168 were wildtype homozygotes GG, 71 heterozygotes AG, and 3 

homozygotes AA. For rs114455416, 168 were wildtype homozygotes GG, 71 heterozygotes AG, 

and 3 homozygotes AA. For rs8177964, 169 were wildtype homozygotes GG, 70 heterozygotes 

AG, and 3 homozygotes AA. Hospitalisation rate (double logarithm) by genotype are displayed 

in Figure 3.  

 

Thus four new risk variants for sickle severity (hospitalisation rate) has been identified and 

replicated in our study: rs8177970, rs116244351, rs114455416 and rs8177964.  We are 

beginning further work to assess functional implications of these variants.
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Table 6 Association of PK-LR  variants with hospitalisation rate (LnLnHospRate) in HbSS and HbSC 

Variant Coordinates  
chr:position  
(hg19) 

A1 A2 HbSS (discovery) N=242 HbSC (validation) N=94 Meta-analysis: all sickle genotypes 
(N=354) 

Freq Beta S.E P value Freq Beta S.E P value Freq Beta S.E P value 
rs2071053 1:155265177 A G 0.37 -0.0883 0.0268 0.00097 0.39 -0.0124 0.0299 0.67877 0.37 -0.0631 0.0199 0.00156 

rs8177970 1:155265661 C T 0.16 0.1299 0.0364 0.00036 0.13 0.1074 0.0448 0.01657 0.15 0.1181 0.0280 0.00003 

rs116244351 1:155266935 A G 0.16 0.1247 0.0365 0.00064 0.13 0.1074 0.0448 0.01657 0.15 0.1142 0.0281 0.00005 

rs114455416 1:155267389 A G 0.16 0.1247 0.0365 0.00064 0.13 0.1212 0.0475 0.01075 0.15 0.1177 0.0286 0.00004 

rs12741350 1:155268425 C T 0.38 -0.0864 0.0266 0.00115 0.39 -0.0033 0.0295 0.91181 0.38 -0.0592 0.0198 0.00276 

rs3020781 1:155269776 A G 0.38 -0.0864 0.0266 0.00115 0.39 -0.0033 0.0295 0.91181 0.38 -0.0592 0.0198 0.00276 

rs8177964 1:155269780 A G 0.16 0.1241 0.0367 0.00071 0.13 0.0890 0.0453 0.04948 0.15 0.1096 0.0282 0.00010 

 
 
 

a b c d 

Figure 3 Hospitalisation rate (double logarithm) by genotype for the significant variants in the linear mixed modelling: (a) rs8177970 (b) rs116244351  (c) rs114455416 (d) rs8177964
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5.3.1.2. 2,3-diphosphoglycerate 
188 genetic variants were assessed in the region BPGM. For both severity outcomes 

(LnLnHospRate, HaemIndex_avg), there were no significant region-wide variants. 

5.3.1.3. Adenosine A2B receptor 
252 genetic variants were evaluated in the region ADORA2B. For both severity outcomes 

(LnLnHospRate, HaemIndex_avg), there were no significant region-wide variants. 

5.3.1.4. Complement related genes 
All genetic variants within a complement-associated gene were analysed for both severity 

outcomes (LnLnHospRate, HaemIndex_avg). There were no significant, replicated region-wide 

variants for any region. 

 156 variants in the region MCP.   

 563 in the region CFH. 

 87 genetic variants in the region CFB. 

 16 variants in the region THBD. 

 167 variants in the region DGKE. 

 No variants in C3. 

 251 variants in the region ADAMTS13. 

5.3.2. Replication of specific variants 
5.3.2.1. APOL1 

94 genetic variants were evaluated in the region APOL1. For urinary albumin creatinine ratio, 

there were no significant region-wide variants (genome wide p value = 0.0005797). 

I have replicated the association between two G1 variants and proteinuria in SCD, see Table 7. 

Table 7 Association of APOL1 G1 variants with urinary albumin creatinine ratio (uACR) in HbSS and HbSC 

Variant Ch Position 
(hg19) 

A1 A2 HbSS (N=229) HbSC (N=80) 
MAF β-

value 
s.e. p-

value 
MAF β-

value 
s.e. p-

value 
rs73885319 22 36661906 G A 0.32 0.078 0.03 0.008 0.29 0.05 0.05 0.28 
rs60910145 22 36662034 G T 0.32 0.087 0.03 0.003 0.28 0.06 0.05 0.22 

 

Unfortunately, G2 is not in the imputed dataset so this analysis is not a full assessment of 

current APOL1 risk variants. Furthermore, a full investigation should include covariates in 

analysis (e.g. blood pressure, diabetes status, HIV status) – all causes of renal dysfunction that 

have been associated with APOL1 renal disease. 

5.3.2.2. DARC 
9 genetic variants in the DARC region were evaluated. For both severity outcomes 

(LnLnHospRate, HaemIndex_avg), there were no significant region-wide variants. 

I have not replicated the previous association between rs2814778 and either of our two SCD 

severity markers.  
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I did, however, replicate its association with average neutrophil count. This analysis 

demonstrates region-wide significance of rs2814778 with neutrophil count: MAF 0.053, Beta 

0.81, p value 0.0027.  

 

The reason for the disparity between my results and others may well be due to controlling for 

relatedness in my analysis (see section 5.1.4.2). The diversity of European admixture in the 

populations studied (from 0% in some African populations to up to 60% in Brazilian 

populations) presumably accounts for the discrepancies in the reported findings between 

different cohorts (Drasar et al., 2013, Afenyi-Annan et al., 2008, Mecabo et al., 2010, Schnog et 

al., 2000, Nebor et al., 2010, Araujo et al., 2015). 

5.3.2.3. MAPK8 
628 genetic variants in the MAPK8 region were assessed. For both severity outcomes 

(LnLnHospRate (N=242), HaemIndex_avg (N=216)), there were no significant variants. 

I have not replicated locus rs10857560 that has been associated with pulmonary hypertension 

in SCD (in any of the four outcomes). The diversity of allele frequencies again may mean the 

previous association identified was confounded by ethnicity. Unfortunately, we did not have 

enough echocardiogram data to perform an analysis using tricuspid regurgitant jet velocity as 

an outcome. 

5.4. Discussion 
Candidate gene studies are powerful, hypothesis-driven approaches to genotype-phenotype 

correlation that can contribute much to our understanding of the genetics of common diseases 

and traits, particularly when pre-existing data strengthen the hypothesis. Furthermore, the 

candidate gene approach remains the only feasible approach for studying small populations. 

Nevertheless, the method does not always work (both false negative and false positive 

association signals) because of inefficient study design and suboptimal gene or variant 

selection strategies.  

 

Using a candidate gene approach, I have identified four risk variants in the red blood cell 

pyruvate kinase gene PK-LR for frequent hospitalisation in SCD. I used our HbSS patients as the 

discovery set, and validated four variants in PK-LR in our HbSC cohort. A meta-analysis of all 

SCD patients showed improved p-values. These four risk variants are all in intron 2 of PK-LR. 

Notably, this region overlaps with a regulatory element active in K562 cells on the UCSC 

genome browser (hg19) using the layered H3K27Ac track (Kent et al., 2002), see Figure 4. 
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Figure 4 UCSC genome browser: Layered H3K27Ac track (K562 cells) for PK-LR 

In the literature, only one of the four variants, rs8177970, has reported clinical associations. 

These are all negative findings in GWA studies assessing: Alzheimer’s disease, bipolar disorder, 

schizophrenia, response to antipsychotic therapy, tardive dyskinesia and ulcerative colitis. If 

this association is corroborated, these intronic risk variants are not likely to represent the 

causal element in itself, but to be in linkage disequilibrium with the causal variant. It is 

interesting to note, however, that rs8177970 is strongly predicted to create a new 5’ splice site 

only when the variant is present. 

 

PK deficiency is associated with Plasmodium falciparum malaria prevalence; it provides 

protection against infection and replication of P. falciparum in human red cells(Ayi et al., 

2008). Moreover, genetic variants in PK-LR have been shown to modify malaria 

phenotypes(van Bruggen et al., 2015). This group demonstrated that human erythrocytes 

infected ex vivo with P. falciparum with host PK-deficiency alleles reduces infection 

phenotypes. Furthermore, on a population level, heterozygosity for one coding variant, R41Q, 

was shown to be associated with reduced frequency of P. falciparum infections(van Bruggen et 

al., 2015). 

 

Malarial protection seen in PK deficiency helps to explain the population genetics of the four 

PK-LR variants we identified. All four have a minor allele frequency of 14-15% in African 

populations in 1000 Genomes Project, while they have maximum 1% in non-African 

populations. Because I constructed our analysis model to manage relatedness (including 

admixture), I do not believe these differences reflect population stratification issues in the 

results. Furthermore, the HbSC group in which I replicated the data is, broadly, an ethnically 

distinct region, reflecting Ghanaian / Ivory Coast heritage. 

 

Our study has some limitations. Our sample numbers are small. Frequency of acute pain 

episodes is used by clinicians informally as a marker of disease severity, and it is broadly a trait 

which appears familial, but it is psychosocially as well as biologically determined. Using 

“hospitalisation rate” as a measure of acute painful crisis frequency does not account for inter-

individual differences in decision to attend hospital which is influenced by a range of cultural 

and social issues.  
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We plan to continue to continue to investigate these PK-LR risk variants. We plan replication 

studies, as well as sequencing studies to identify functional variants. Measuring protein levels 

of pyruvate kinase or 2,3-DPG in the red blood cells of patients with SCD may prove difficult as 

formal reference ranges are undefined. In SCD, red cells with low PK are not removed by the 

spleen. This also means that, for SCD, a genetic diagnosis of PK deficiency (however mild) is 

likely to be better than a proteomic approach. 

 

We identified no risk variants in complement-related genes. Other strategies to evaluate this 

region could be to consider the case series we reported of episodes of “superhaemolysis” and 

thrombocytopenia in 18 patients – which we postulated could represent an acute 

MAHA(Gardner and Thein, 2015). These 18 patients were identified precisely from the KCH 

adult cohort, so a case-control study using these patients (of whom 14 have genetic data 

available) may provide further insight into this association. 

 

I also investigated specific genetic variants and their association with sickle complications. I 

have replicated the finding of both G1 variants in APOL1 being associated with degree of 

proteinuria. Unfortunately, I did not have genetic data on APOL1 G2 available to assess this.  

 

I found no association between the DARC promoter variant rs2814778 and either severity 

index (hospitalisation rate or haemolysis rate). I suggest that this is because, in contrast with 

all previous studies, I accounted for relatedness (including population structure) in our 

statistical modelling, and rs2814778 seems to represent an ethnicity marker only seen in 

African-heritage populations. I therefore suggest that previous studies are confounded by 

admixture and the false association has occurred because of confounding due to ethnicity. 

(Notably, I did confirm the expected association between the variant and neutrophil level). 

 

I found no association between the MAPK8 variant rs10857560 and haemolysis in our cohort. 

The original paper associating rs10857560 and pulmonary hypertension did account for 

population structure. Unfortunately, we do not have a large enough dataset of 

echocardiographic results to assess the association between the variant and tricuspid 

regurgitant velocities in our own cohort. 

 

In summary, the targeted approach of candidate gene analysis identified a promising new risk 

region in the PK-LR gene associated with severity in sickle cell disease, namely hospitalisation 

rate. The approach is robust against the old flaws of candidate gene studies – notably 
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population stratification and admixture – because I accounted for relatedness in the statistical 

modelling. The same approach has also allowed us to argue that previous findings of 

association between DARC and sickle severity are likely spurious on the basis of more 

sophisticated statistical modelling. 

 

In the future, we aim to expand candidate gene analysis for our cohort. The existing pipelines 

make it very easy for new phenotypes, and new regions of interest, to be evaluated by users 

not experienced in either bioinformatics tools or statistical genetics.  

 

Future studies can be improved further by better choice of regions of interest, we can: (a) 

choose pathways not genes (b) use algorithms to prioritise variants to choose. There are 

multiple bioinformatics tools to do this. We could enrich our dataset by just choosing variants 

more likely to have functional sequelae - missense/nonsense/splice site variants rather than 

intronic or synonymous variants. Variants could also be prioritised based on allele frequency, 

so that using the “common trait, common variant” hypothesis, we only consider common 

alleles – such an approach would confer greater statistical power to detect associations. 

Conversely, for rare traits, we may be more interested in rare variants (with large effect sizes). 
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Appendix 1 
RegionOfInterestAnalysis.sh 

#!/bin/bash 
#$ -cwd 
#$ -j y 
#$ -S /bin/bash 
#$ -q HighMemLongterm.q,LowMemLongterm.q 
#$ -M kate.gardner@doctors.org.uk 
#$ -m beas 
#$ -l h_vmem=20G 
########## 
 
POPULATION=$1 # requires a text file with two columns FID/IID so we can extract that population eg HbSS.txt, 
HbSC.txt 
GRM_CUTOFF=$2 #relatedness cutoff for genetic relatedness matric eg 0.9 to exclude genetic duplicates 
OUTCOME=$3 # "HbF" or "HaemIndex" or 
IMP_OR_CHIP=$4 #"chip" or "imp" 
HbFg=$5 
REGION_OF_INTEREST=$6 # name of region of interest 
REGION_CHR=$7 # region of interest chromosome 
REGION_FROMBP=$8 # start BP in region of interest (hg19 coordinates) 
REGION_TOBP=$9 # end BP in region of interest (hg19 coordinates) 
LOWER_AGE=${10} 
UPPER_AGE=${11} 
 
 
module add bioinformatics/plink2/1.90b3.38 
module add bioinformatics/plink/1.90b3.31 
module add bioinformatics/R/3.3.0 
 
if [[ "$IMP_OR_CHIP" = "chip" ]]; then 
        #chip plink data 
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 IMP_CHIP_FILE="SickleMEGA_QC_NoSexMismatch.autosomes" 
 #SickleMEGA_QC_NoSexMismatch.autosomes_${POPULATION}_PtsRemoved_postGRMcutoff${GRM_CUTOFF} 
else 
        #imputed plink data 
 IMP_CHIP_FILE="Sickle_Imputed_QC_strict" 
 ##Sickle_Imputed_QC_strict_${POPULATION}_PtsRemoved_postGRMcutoff${GRM_CUTOFF} 
fi 
 
if [[ "$POPULATION" = "ALL" || "$POPULATION" = "nonHbSS" || "$POPULATION" = "HbSSHbSC" || "$POPULATION" = 
"HbSSHbSCHbSBplus"  ]]; then 
 COVARIATES_FILE="age_sex_sickle" 
 COVARIATES="Age at sample, sex, sickle genotype," 
else 
        COVARIATES_FILE="age_sex" 
        COVARIATES="Age at sample, sex," 
fi 
 
if [[ "$HbFg" = "yes" ]]; then 
 HbFg_FILE="_withHbFgenetic" 
        HbFgCOVARIATE="HbFg (HbF genetic model)" 
       else 
        HbFg_FILE="" 
        HbFgCOVARIATE="(no HbFg)" 
fi 
 
 
 
 
######################################## 
#get MLMA results for region of interest 
head -n1 ${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}_${COVARIATES_FILE}${HbFg_FILE}.loco.mlma.tick > 
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${OUTCOME}_${REGION_OF_INTEREST}_${IMP_OR_CHIP}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}.MLMA_GRM${GRM_CUTOFF}_${COVARIATES_FILE}${HbFg_FILE}.txt 
awk -v REGION_CHR="$REGION_CHR" -v REGION_FROMBP="$REGION_FROMBP" -v REGION_TOBP="$REGION_TOBP" -v 
IMP_CHIP_FILE="$IMP_CHIP_FILE" -v LOWER_AGE="$LOWER_AGE" -v UPPER_AGE="$UPPER_AGE" -v POPULATION="$POPULATION" 
-v GRM_CUTOFF="$GRM_CUTOFF" -v OUTCOME="$OUTCOME" -v REGION_OF_INTEREST="$REGION_OF_INTEREST" 
'{if($1==REGION_CHR && $3>=REGION_FROMBP && $3<=REGION_TOBP) print $0}' 
"${IMP_CHIP_FILE}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_GCTA_${OUTCOME}_${COVARIATES_FILE}${HbFg_FILE}.loco.mlma.tick" >> 
"${OUTCOME}_${REGION_OF_INTEREST}_${IMP_OR_CHIP}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}.MLMA_GRM${GRM_CUTOFF}_${COVARIATES_FILE}${HbFg_FILE}.txt" 
 
 
 
#get corrected p values using (1) LD in region of interest to create an effective number of tests plus (2) 
Sidak's correction 
#first get LD matrix for region of interest 
#maf 0.001 added otherwise the LD matrix subsequently will contain nan values 
plink --bfile ${IMP_CHIP_FILE}_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF} --maf 0.001 --chr ${REGION_CHR} --from-bp 
${REGION_FROMBP} --to-bp ${REGION_TOBP} --make-bed --out ${IMP_CHIP_FILE}_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}_${REGION_OF_INTEREST} 
 
plink --bfile ${IMP_CHIP_FILE}_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}_${REGION_OF_INTEREST} --r  --matrix --out 
${REGION_OF_INTEREST}_${IMP_OR_CHIP}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}_LD_r 
 
#second use R to reduce LD matrix to a number and also apply Sidak's correction to get a new p value 
Rscript modifiedPvalueCalculation.R ${POPULATION} ${GRM_CUTOFF} ${REGION_OF_INTEREST} ${IMP_OR_CHIP} 
${LOWER_AGE} ${UPPER_AGE} 
 
d=$(awk 'NR==2 {print $1}' ${REGION_OF_INTEREST}_${IMP_OR_CHIP}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}_modifiedPvalues.txt) 
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bonferroni_p=$(awk 'NR==2 {print $2}' ${REGION_OF_INTEREST}_${IMP_OR_CHIP}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}_modifiedPvalues.txt) 
sidak_p=$(awk 'NR==2 {print $3}' ${REGION_OF_INTEREST}_${IMP_OR_CHIP}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}_modifiedPvalues.txt) 
d_eff=$(awk 'NR==2 {print $4}' ${REGION_OF_INTEREST}_${IMP_OR_CHIP}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}_modifiedPvalues.txt) 
corr_p=$(awk 'NR==2 {print $5}' ${REGION_OF_INTEREST}_${IMP_OR_CHIP}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}_modifiedPvalues.txt) 
#ImputationSNPs=$(wc Chr${CHROMOSOMES}_PreImputation_NoMergeFails.bim | awk '{print $1}') 
 
#What SNPs satisfy corrected p value threshold? 
head -n1 ${OUTCOME}_${REGION_OF_INTEREST}_${IMP_OR_CHIP}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}.MLMA_GRM${GRM_CUTOFF}_${COVARIATES_FILE}${HbFg_FILE}.txt > 
${OUTCOME}_${REGION_OF_INTEREST}_${IMP_OR_CHIP}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}.MLMA_GRM${GRM_CUTOFF}_${COVARIATES_FILE}${HbFg_FILE}_signifVariants.txt 
awk -v CORR_P="$corr_p" '{if($9<CORR_P) print $0}' 
"${OUTCOME}_${REGION_OF_INTEREST}_${IMP_OR_CHIP}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}.MLMA_GRM${GRM_CUTOFF}_${COVARIATES_FILE}${HbFg_FILE}.txt" >> 
"${OUTCOME}_${REGION_OF_INTEREST}_${IMP_OR_CHIP}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}.MLMA_GRM${GRM_CUTOFF}_${COVARIATES_FILE}${HbFg_FILE}_signifVariants.txt" 
 
#Create log file 
        echo "Candidate Gene Analysis using linear mixed modelling for outcome ${OUTCOME} 
 Summary of results and files generated: 
 
 Data source: ${IMP_OR_CHIP} data 
 Region of interest: ${REGION_OF_INTEREST}, Chromosome ${REGION_CHR}, from bp ${REGION_FROMBP} to bp 
${REGION_TOBP} (hg19 coordinates) 
 Population: ${POPULATION} 
 Age range: ${LOWER_AGE} to ${UPPER_AGE} years 
 GRM cutoff: ${GRM_CUTOFF} 
 Covariates: ${COVARIATES} ${HbFgCOVARIATE} 
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 Number of genetic variants in region (d) = $d (number of tests performed - as we performed one test for 
each genetic variant) 
 Bonferroni p = p/number tests = ${bonferroni_p}  
 Sidak p = 1-(1-p)^(1/d) = ${sidak_p} (Sidak's corrected p value (at least as big as Bonferroni's p)) 
 'd.eff' = effective d = ${d_eff} (based on LD - if tests are correlated with each other then d.eff<d) 
 Fully corrected p = ${corr_p} (based on d.eff and Sidak's modified p, at least as big as Sidak's p 
without d.eff) 
 
 Files are saved: 
 LMM results for region of interest: 
${OUTCOME}_${REGION_OF_INTEREST}_${IMP_OR_CHIP}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}.MLMA_GRM${GRM_CUTOFF}_${COVARIATES_FILE}${HbFg_FILE}.txt 
 LMM results - significant results only (satisfy the fully corrected p as above, based on d.eff and 
Sidak's modification): ${OUTCOME}_${REGION_OF_INTEREST}_${IMP_OR_CHIP}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}.MLMA_GRM${GRM_CUTOFF}_${COVARIATES_FILE}${HbFg_FILE}_signifVariants.txt 
 PLINK files for region of interest: ${IMP_CHIP_FILE}_PtsRemoved_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}_${REGION_OF_INTEREST} 
 LD matrix for region of interest: ${REGION_OF_INTEREST}_${IMP_OR_CHIP}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_postGRMcutoff${GRM_CUTOFF}_LD_r.ld 
        " > 
Logfile_CandidateGeneAnalysis_LMM_${OUTCOME}_${IMP_OR_CHIP}_${REGION_OF_INTEREST}_AgeRange${LOWER_AGE}-
${UPPER_AGE}_${POPULATION}_GRM${GRM_CUTOFF}_${COVARIATES_FILE}${HbFg_FILE}.txt 
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Appendix 2 
modifiedPvalueCalculation.R 

#!/usr/bin/env Rscript 
 
args = commandArgs(trailingOnly=TRUE) 
 
if (length(args)==0) { 
 POPULATION<-"ALL" 
 GRM_CUTOFF<-0.2 
 REGION_OF_INTEREST<-"MAPK8" 
        IMP_OR_CHIP<-"chip" #"Imputed"  
 LOWER_AGE<-0 
 UPPER_AGE<-999 
 HbFg_FILE<-"no" 
 } else { 
 POPULATION<-args[1] 
 GRM_CUTOFF<-args[2] 
        REGION_OF_INTEREST<-args[3] 
        IMP_OR_CHIP<-args[4] 
        LOWER_AGE<-args[5] 
        UPPER_AGE<-args[6] 
 HbFg_FILE<-args[7] 
} 
 
 
p=0.05 
 
inputFile<-paste(REGION_OF_INTEREST,"_",IMP_OR_CHIP,"_AgeRange",LOWER_AGE,"-
",UPPER_AGE,"_",POPULATION,"_postGRMcutoff",GRM_CUTOFF,"_LD_r.ld",sep="") 
inputFile 
LDtable<-read.table(inputFile,header=FALSE) 
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d=nrow(LDtable) #d is number of tests performed (so if you perform one test for each SNP then that's the 
number of SNPs) 
bonferroni.p=p/d 
sidak.p=1-(1-p)^(1/d) # Sidak's corrected p value (smaller than Bonferroni's p) 
d.eff=1+(d-1)*(1-var(eigen(LDtable)$values)/d) #effective d - based on LD - if tests are correlated with each 
other then d.eff<d 
corr.p=1-(1-p)^(1/d.eff) 
 
col1<-c("Candidate Gene Analysis using linear mixed modelling with sex, age(, sickle genotype, HbFg) as 
covariates","Region of interest","Data source:","Population:","Lower age limit:","Upper age limit:","GRM 
cutoff:","Number of genetic variants","Bonferroni p","Sidak p","d.eff","Fully corrected p") 
col2<-
c("",REGION_OF_INTEREST,IMP_OR_CHIP,POPULATION,LOWER_AGE,UPPER_AGE,GRM_CUTOFF,d,bonferroni.p,sidak.p,d.eff,cor
r.p) 
outputExtended<-data.frame(col1,col2) 
outputExtendedFile<-paste(REGION_OF_INTEREST,"_",IMP_OR_CHIP,"_AgeRange",LOWER_AGE,"-
",UPPER_AGE,"_",POPULATION,"_postGRMcutoff",GRM_CUTOFF,"_extendedModifiedPvalues.txt",sep="") 
write.table(outputExtended,outputExtendedFile,row.names=FALSE) 
 
c<-c(d,bonferroni.p,sidak.p,d.eff,corr.p) 
output<-data.frame(d,bonferroni.p,sidak.p,d.eff,corr.p) 
outputFile<-paste(REGION_OF_INTEREST,"_",IMP_OR_CHIP,"_AgeRange",LOWER_AGE,"-
",UPPER_AGE,"_",POPULATION,"_postGRMcutoff",GRM_CUTOFF,"_modifiedPvalues.txt",sep="") 
write.table(output,outputFile,row.names=FALSE) 
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6.1. Introduction: 
6.1.1. Background 

The clinical diversity of sickle cell disease (SCD) is unexplained by its defining single base 

change in the β-globin gene, HBB. HbF levels remain a key moderator of disease severity; 

increased HbF values are associated with a milder SCD phenotype. 

 

While the three known quantitative trait loci (QTLs) for HbF (BCL11A, HMIP and HBB) have 

been reported to account for 20–50% of HbF variation in non-anaemic Europeans(Menzel et 

al., 2007), the contribution of these loci is estimated to be lower in African populations 

(Solovieff et al., 2010, Wonkam et al., 2014). This may be because other loci may be more 

important in African populations due to allele frequency differences at both known and 

unknown loci. Or, since many of the studies in African populations are in individuals with SCD, 

erythropoietic stress is a key determinant of HbF levels, thus “diluting out” the genetic 

contribution. This has been described in detail in my manuscript in Appendix 6, chapter 4.  

 

KLF1 is an important candidate gene for HbF% levels in SCD. KLF1 (previously termed EKLF) has 

been termed a ‘master regulator’ of erythropoiesis, playing a key role in globin-switching from 

HbF to HbA. It was discovered by Jim Bieker in 1993 (Miller and Bieker, 1993), is the key 

transcription factor controlling HbF identified through genetic studies in a Maltese family with 

β-thalassaemia and hereditary persistence of HbF (HPFH). Linkage studies with this family 

identified a locus (on chromosome 19p13) for the HPFH that segregated independently of the 

HBB locus. This linked region encompassed KLF1 (Borg et al., 2010). Subsequent studies, which 

included expression profiling of erythroid progenitor cells, confirmed KLF1 as the γ-globin gene 

modifier in this family. Family members with HPFH were heterozygous for the nonsense 

mutation K288X in KLF1 that disrupts the DNA-binding domain of KLF1. Several studies have 

now confirmed that KLF1 is key in the switch from HBG to HBB expression; it not only activates 

HBB directly, providing a competitive edge, but also silences the γ-globin genes indirectly via 

activation of the γ-globin repressor BCL11A, Figure 1 (Siatecka and Bieker, 2011, Zhou et al., 

2010, Esteghamat et al., 2013). KLF1 has three zinc finger domains, which mediate sequence-

specific binding to DNA and are essential for activation of KLF1 target genes.  
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Figure 1 KLF1 regulates globin switching.  

On the left, during embryonic and fetal development (or in adults with KLF1 mutations), KLF1 
levels are low, resulting in low levels of adult β-globin and BCL11A and high levels of γ-globin. 
On the right, in adults with two functional copies of KLF1, increased expression of KLF1 in 
definitive red blood cells promotes high levels of adult β-globin and BCL11A expression, which 
in turn represses γ-globin expression. Taken from (Bieker, 2010) 

 

There have been numerous reports of association of KLF1 variants with increased HbF either as 

a primary phenotype, or in association with other red cell disorders (Borg et al., 2011), Figure 

2. More recently, KLF1 mutations have been noted not just to be more common in, but also to 

ameliorate the severity of β-thalassaemias(Liu et al., 2014). There is one report associating a 

KLF1 mutation in a patient with SCD, the patient in question had high HbF% and a mild sickle 

phenotype(Gallienne et al., 2012). Such is KLF1’s pivotal role in globin switching that genetic 

therapeutic strategies (using the CRISPR/Cas9 system) are now being explored to disrupt 

KLF1 in order to overexpress γ-globin(Shariati et al., 2016). Notably, several GWAS of HbF% 

(including ones in SCD patients of African descent) have failed to identify common KLF1 

variants (Bhatnagar et al., 2011, Mtatiro et al., 2014). Thus, the role of KLF1 in SCD remains 

unclear and it is being actively explored as a genetic modifier of HbF% levels (and severity) in 

SCD. 
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Figure 2 Map of KLF1 with known mutations associated with high HbF% phenotypes  

(Borg et al., 2010, Arnaud et al., 2010, Satta et al., 2011, Gallienne et al., 2012, Viprakasit et al., 
2014) 

 

6.1.2. Previous work in our laboratory on KLF1 in SCD  
Our laboratory began evaluating KLF1 in patients with SCD in 2012, prior to my recruitment. 

250 patients from the sickle research gene bank were genotyped for four variants in the three 

HbF% QTLs (BCL11A, HMIP and HBB). Using a statistical model, “HbF%-residuals” were 

calculated for each patient; that is, HbF% not accounted for by either age, sex or the three 

known QTLs for HbF%. Thus, an ordered list of patients by “residual HbF%” was created. This 

parameter describes the component of a patient’s high HbF% level that is not explained by 

currently known HbF% loci. The extreme highest and lowest 10% of HbF%-residuals (25 in each 

group) plus 10 intermediate patients were selected to have their KLF1 genes fully sequenced 

using a modified method of Sanger cycle-sequencing and capillary electrophoresis on ABI3130. 

First, a variant in intron 1 of KLF1 (rs10407416) was found to be over-represented in the high 

residual-HbF% group (9/25) compared to the low residual-HbF% group (1/25). rs10407416 is 

not currently known to be associated with any phenotype. Second, an unreported variant 

(c.986A>G) in the zinc finger 2 domain (exon 3) of KLF1 was detected. This is a novel missense 

variant (p.His329Tyr) that affects a critical domain that is highly conserved across vertebrates. 

Crucially, in KLF1, the invariant histidine at position 329 coordinates the zinc atom (within the 

zinc finger) therefore its mutation is highly likely to be pathogenic. Figure 3 shows a schematic 

representation of the genetic sequence of KLF1 plus the two variants of interest. 
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Figure 3 Schematic representation of the genetic sequence of KLF1, plus positions of the two 
variants of interest. 

Amplicons from the primers used in the two projects are shown as coloured bars. 

 

6.1.3. Summary of my KLF1 projects 
Prompted by previous work in our laboratory, I undertook two studies to investigate if 

KLF1 variants are associated with increased HbF% levels in our SCD cohort. Since most 

functional variants reported are (very) rare, one cannot adopt cohort-based GWAS or regions 

of interest studies using our MEGA chip data – these approaches aim to identify common 

variants. Instead, one must implement an individualised genotyping approach (not reliant on 

“tagging”). I Sanger-sequenced DNA to identify variants and attempted the use of family 

studies in which to undertake functional methods. 

 

6.2. KLF1 intron 1 project: rs10407416 and HbF% in SCD 
6.2.1. Introduction 

The aim of my project was to investigate the KLF1 candidate variant rs10407416 to evaluate its 

putative association with HbF% in SCD. I genotyped rs10407416 in 285 patients with HbSS or 

HbSβ0-thalassaemia across the full spectrum of “HbF%-residuals” using Sanger sequencing. I 

used multiple regression testing with known HbF% loci results, age and sex as covariates, to 

test if the addition of rs10407416 could improve variability of HbF% values explained by 

genetics.  

 

rs10407416 has a minor allele frequency of 4-10% across the African populations in the 1000 

Genomes Project. While it is not currently associated with any clinical phenotype in the 

literature, it is very close to an intronic regulatory element (an intronic enhancer) and 

therefore may be of biological significance (Siatecka 2010).  
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6.2.2. Subjects and Methods  
6.2.2.1. Subjects and phenotyping 

285 patients with sickle cell disease (HbSS or HbSβ0-thalassaemia) from the sickle genebank, 

who had already been genotyped for variants in the three HbF% QTLs BCL11A, HMIP and HBB 

were included. HbF% results were collected as described in chapter 2 (in summary, a baseline 

HbF% was used that was taken at least three months post-transfusion, not on 

hydroxycarbamide, and not while pregnant), and the natural logarithm was taken to normalise 

the parameter (i.e. Ln(HbF%)). 

6.2.2.2. Genotyping 
I used Sanger sequencing to genotype the variant rs10407416, in five steps:  

 

Step 1: polymerase chain reaction (PCR) of amplicons including the variant rs10407416 

Extensive PCR optimisation was undertaken prior to doing high throughput work. Primer pairs 

trialled are listed in Table 1 and pictorially represented in Figure 3. I needed to re-design 

primers and optimise PCR conditions for quality high throughput sequencing. Final 

thermocycling conditions were 5 minutes at 95°C, 33x (30 seconds at 95°C, 30 seconds at 60°C, 

1 minute at 72°C), 5 minutes at 72°C, 10 minutes at 4°C.  

Table 1 Primer pairs used in KLF1 intron 1 project 

Amplicon 
name 

Primer details Amplicon 
length (bp) 

Comments 

Amp1 TACCCAGCACCTGGACCCT 566 Rejected due to its proximity 
to variant of interest. GAACCTCAAACCCCTAGACCACC 

HR TTGCCCTCCATCAGCACACTG 1289 Developed by a colleague to 
incorporate a second, tag 
variant ~800 bases away. 
Rejected because of 
difficulty sequencing 
through a polyT tail. 

CGAGTGATCCTCCGAACCCAAAA 

Bieker ACACAGGATGACTTCCTCAAGGT 593 Rejected because it included 
the same polyT tail. 

CCAGAACATCCCTCTCCTTCC 
KG Bieker forward 255 Comprise the Bieker forward 

primer plus in-house 
designed new reverse 
primer at the variant side of 
the polyT tail. 

GGCTACCTTCGTTTTCTATTACCG 

 

Step 2: Purification of the PCR product using AMPure beads: on a robotic workstation 

Biomek® NXP Laboratory Automation Workstation  

Step 3: Thermocycling DYE term step: Two separate experiments for each sample (forward 

and reverse primer). Again, extensive optimisation. Final thermocycling conditions for each 

plate (forward and reverse): 40x (30 secs at 95°C, 15 secs at 52°C, 2 min at 60°C), 10 min at 
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4°C. The DYE term step also took time to optimise: I added betaine, increased PCR volumes 

and changed PCR conditions. 

Step 4: Purification of the DYE term product using CleanSEQ beads: on a robotic workstation 

Biomek® NXP Laboratory Automation Workstation   

Step 5: Sequencing on ABI3130: ABI3130 sequencer using a standard sequencing run.  

Results from the final step were analysed as chromatograms in the software Sequencher. 

Genotypes were only called if they were clear, unclear results were re-run. 

6.2.2.3. Statistical analysis 
I conducted simple multiple regression in IBM SPSS version 22, with outcome Ln(HbF); and co-

variates: age, sex, and four variant results to represent the above three QTLs: BCL11A 

(rs11886868), 2x HMIP (rs9399137, rs9402686), and HBB (rs7482144). 

I then performed a second phase of statistical analysis with two refinements to the statistical 

model. First, following other groups’ use, I considered using age-squared as a covariate rather 

than age. Second, I considered recent understanding of the genomic architecture of the HMIP-

2 locus to build an improved model for the HbF% associated variants(Menzel et al., 2014). This 

is based on the difference between European and African haplotypes at HMIP-2: blocks A and 

B are in cis in European haplotypes, therefore one should use only one of the two blocks for 

regression analysis. European haplotypes can be identified by the separate marker rs9376090 

alternate allele. 

6.2.3. Results 
285 patients aged at least 9 years old with SCD (HbSS or HbSβ0-thalassaemia) were genotyped 

for rs10407416, see Figure 4 for demographic details and HbF% levels. Example 

chromatograms of the three genotypes are displayed in Figure 5. In total, 243 were wildtype 

(CC), 41 heterozygous for the variant (CG) and 1 homozygous (GG), see Table 2. 

a
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b 

 
Figure 4 Details of 285 patients in the rs10407416 analysis: panel (a) demographics of patients 
(b) HbF% levels 

Table 2 HbF% levels and genotyping results  

  "-/-" 
C C 

"+/-" 
G C 

"+/+" 
G G 

"+/-" or "+/+" 
G C or G G 

Number 243 41 1 42 
Mean HbF% 7.142+/-5.474 7.366+/-5.239 4 7.272+/-5.195 
Mean HbF%-
residuals 

3.447+/-0.741 3.696+/-0.706 3.974 3.704+/-0.698 

 

The results of the first multivariate regression analysis showed that rs10407416 did not 

statistically significantly improve the genetic model for estimating Ln(HbF%) levels (Table 3). By 

including rs10407416, the model reduced the variability of Ln(HbF%) explained, from r2=0.261 

without rs10407416 to r2=0.245 with rs10407416. 

After I performed the refined statistical analysis using (1) age-squared and (2) managing the 

genetic architecture of HMIP, the analysis maintained the variability of Ln(HbF%) explained at 

R2=0.245 and rs10407416 remained statistically non-significant (Table 4).  

Table 3 Multivariate regression results for a statistical model (first analysis) incorporating the KLF1 
variant rs10407416 in association with Ln(HbF%) 

 Beta (95% confidence 
intervals) 

p-
value 

(Constant) 2.482 (1.319 to 3.645) <0.001 
Sex 0.548 (0.358 to 0.738) <0.001 
Age 0.007 (-0.001 to 0.016) 0.092 
rs7482144 -0.001 (-0.352 to 0.349) 0.994 
rs11886868 -0.412 (-0.553 to -0.271) <0.001 
rs9399137 -0.319 (-0.647 to 0.010) 0.057 
rs9402686 -0.408 (-0.805 to -0.011) 0.044 
rs10407416 0.226 (-0.027 to 0.479) 0.080 
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Table 4 Multivariate regression results for a statistical model (refined analysis) incorporating the 
KLF1 variant rs10407416 in association with Ln(HbF%) 

 Beta  
(95% confidence intervals) 

p-value 

(Constant) 2.322 (1.223 to 3.421) <0.001 
Sex 0.550 (0.352 to 0.748) <0.001 
Age Squared 0.000 (0.000 to 0.000) 0.025 
rs7482144 -0.080 (-0.489 to 0.329) 0.700 
rs11886868 -0.429 (-0.577 to -0.282) <0.001 
HMIP aggregate score  -0.257 (-0.416 to -0.099) 0.002 
rs10407416 0.212 (-0.052 to 0.476) 0.115 
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a 

 
b 

 

 
c 

 

Figure 5 Chromatograms from Sanger sequencing, variant of interest is marked black. Panel (a) demonstrates homozygous wildtype CC (b) heterozygous GC (c) 
homozygous variant GG
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6.2.4. Conclusions 
In conclusion, despite refinements, using the KLF1 intronic variant rs10407416 does not 

improve the existing model for predicting HbF% in patients with SCD, with co-variates age, sex 

and 4 variants for 3 known QTLs for HbF%. Of note, this analysis has not taken account of 

population stratification and this is important for this variant: in African populations, minor 

allele frequency for rs10407416 is 4-10%, and for non-African populations is 0%. Therefore, the 

variant could represent ethnicity and our analysis is confounded by issues of admixture. 

Furthermore, the small sample size precludes us being able to reject categorically the 

association of this variant with Ln(HbF%). Therefore, evaluating the role of KLF1 in SCD remains 

open.  

 

6.3. KLF1 zinc finger 2 variant p.His329Tyr 
6.3.1. Introduction 

The aim of my project was to investigate the KLF1 zinc finger 2 variant to see if it is a genetic 

modifier of SCD severity (via high HbF%) by assessing the role of this mutation in a patient with 

SCD with a very high HbF% (in the absence of Mendelian HPFH) accompanied by a very mild 

sickle phenotype. I performed gene expression studies on reticulocytes in this patient with 

high HbF% levels to investigate the profile of BCL11A, KLF1 and HBG expression.   

 

The purpose of a family study is to show co-segregation of a trait and variant: in this setting, 

that the KLF1 zinc finger 2 variant co-segregates with very high HbF%/mild SCD. 

 

The variant (c.986A>G) is a missense variant (p.His329Tyr) in KLF1’s second zinc finger. There 

are no published reports to date of associations between this variant and high HbF% 

phenotypes. Waye and Eng have declared unpublished data with no phenotype 

reported(Waye and Eng, 2015). In another PhD student’s project using the same SCD cohort, 

Matthew Shannon (co-supervised by SLT) discovered the same KLF1 variant as one of the 

variants in exome sequencing as associated with “mildness” of disease severity. 

 

There are multiple reasons that this variant could be causative of the elevated HbF% 

phenotype. There are chemical differences between histidine (which is basic) and tyrosine 

(hydrophobic, polar uncharged). Multiple mutation prediction software programmes suggest 

that this variant produces a deleterious change (using Align GVGD, SIFT and MutationTaster). 

Furthermore, its location within the second zinc finger is in a cluster of 11 contiguous amino 

acids where six different variants have already been associated with high HbF% levels(Arnaud 

et al., 2010, Satta et al., 2011, Gallienne et al., 2012, Viprakasit et al., 2014). This includes the 
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mutation c.973G>A (p.Glu325Lys) manifesting as congenital dyserythropoietic anaemia (CDA) 

type IV; a rare CDA with high HbF% levels (Arnaud et al., 2010, Jaffray et al., 2013). 

 

6.3.2. Subjects 
The family tree, with sickle status demonstrated, is in Figure 6.  

 

Figure 6 Family tree for KLF1 zinc finger 2 family study 

SCD patients are shown with filled symbols, heterozygous carriers are half-filled. 

 

I only managed to recruit the proband and one daughter; the remainder of the family declined 

recruitment. The proband is a 75-year-old with HbSS disease and no history of sickle acute pain 

events. Her only chronic end-organ complication is very mild albuminuria not requiring 

medication; her Hb is 110g/l and HPLC reveals HbF% 29.5%, HbS 64.4%, HbA2 2.1%. She does 

not have Mendelian HPFH (deletions in the β-globin cluster or mutations in the γ-globin gene 

promoters were excluded). The daughter is a 49-year-old with HbSS disease, she has a low 

HbF% and a relatively mild SCD phenotype; her Hb is 90g/l and HPLC reveals HbF% 2%, HbS 

90.1%, and HbA2 3.8%. I used 20 sickle genebank HbSS/HbSβ0 thalassaemia patients as 

controls. At the time of blood sampling, no patients were: taking hydroxycarbamide, had a 

recent transfusion (< 3 months) and or were pregnant. 

 

6.3.3. Methods  
6.3.3.1. Summary of methodological approach 

First, I genotyped the variant using Sanger sequencing, and second, I used reverse 

transcription PCR (RT-PCR) to assess mRNA expression of KLF1, BCL11A and HBG in 

reticulocytes. The sickle genebank includes genomic DNA but not RNA samples so I preserved 

patients’ fresh red cells in TRI reagent prior to RNA extraction.  
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6.3.3.2. Genotyping  
I performed Sanger sequencing using the same method as above (section 6.2.2.2), using 

primers courtesy of Vip Viprakasit in Bangkok, see the schematic diagram of KLF1 with 

amplicons in Figure 3 and primer details in Table 5. 

Table 5 Primer pairs used Sanger sequencing in KLF1 zinc finger 2 project 

Amplicon 
name 

Primer details Amplicon 
length (bp) 

Amp5 TGTAAAACGACGGCCAGTGCGGCAAGAGCTACACCA gDNA 536 
cDNA 88 

CAGGAAACAGCTATGACCTTGTCCCATCCCCAGTCACT 

Red indicates M13 sequences 

 

6.3.3.3. RNA from reticulocytes: preservation and extraction  
Reticulocytes were isolated, and RNA preserved from reticulocytes based on a standard 

protocol for RNA preservation from buffy coat using TRI reagent and modified for use for RNA 

preservation from reticulocytes in SCD. A key modification included a higher ratio of TRI 

reagent to reticulocyte. See Appendix 1 for the RNA preservation protocol. RNA was extracted 

based on standard methods. I optimised this for our SCD samples; increased isopropranol 

(1.5x) was used for RNA precipitation, see Appendix 2. 

6.3.3.4. Reverse transcription 
Reverse transcription was conducted after DNase treatment of 2μg RNA using standard 

methods. Invitrogen’s reagents were used for reverse transcription and the manufacturer’s 

protocol was followed. In brief, for every 11µl experiment (post-DNase STOP with 2µg RNA), 

first add random primers and dNTPs and place on the thermocycler at 65°C for 5 minutes. 

Second, add forward strand buffer, DTT 0.1, RNAsin and RT superscript and place on the 

thermocycler: for 25°C for 5 minutes, 50°C for 60°C minutes and 70°C for 15 minutes. 

6.3.3.5. Quantitative PCR 
Quantitative PCR (qPCR) was conducted once the reverse transcription method was optimised 

and after proof of cDNA synthesis using standard PCR/gel electrophoresis. Since KLF1 acts via 

BCL11A as well as directly, I evaluated gene expression of: KLF1, BCL11A, γ-globin gene HBG2, 

and housekeeping gene β-actin. I trialled multiple KLF1, BCL11A and housekeeping primers, 

the final (best-performing) primers are listed in Table 6. Notably, KLF1 primers performed very 

variably between standard PCR and qPCR. 

 

Positive and negative controls were used for all runs. 
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Table 6 Final primers used in qPCR for the KLF1 zinc finger 2 project 

Primer name Primer details cDNA bp gDNA bp

bActin_IntS_ 

 

AAATCGTGCGTGACATTAAGG  229 

 

324  

  ATGATGGAGTTGAAGGTAGTT  

BCL11A exon1&2 

 

AACCCCAGCACTTAAGCAAA 114 None 

GGAGGTCATGATCCCCTTCT 

KLF1 Suzuki GTTGCGGCAAGAGCTACAC  80 336  

GCAGGCGTATGGCTTCTC   

gamma globin_LS GAGAAACCCTGGGAAGGCTC  334 334 

CCAGTCACCATCTTCTGCCA   

6.3.4. Results 
6.3.4.1. Summary of cohort 

Demographic details for the proband and her daughter, plus 20 HbSS/HbSβ0 thalassaemia 

controls, are displayed in Table 7. The 20 control samples are ordered in increasing HbF% 

values. Also in this table are the genotypes for major HbF% genetic loci across BCL11A, HMIP-2 

and HBG2-Xmn1. 

6.3.4.2. Genotyping 
The proband had heterozygous genotype CT for the KLF1 c.986A>G variant and her daughter 

homozygous wildtype TT, see chromatograms in Figure 7. All other samples tested were 

wildtype homozygous.
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Table 7 Demographic and genotype details for major HbF% loci for zinc finger 2 project. After the proband and her daughter, the remainder are arranged in ascending 
order of HbF% level 

 Sex Sickle 
genotype 

Alpha 
genotype 

HbF
%% 

Age KLF1 
variant 

BCL11A HMIP-2 Xmn1-HBG2 
rs1427407 rs6545816 rs9494142 rs6920211 rs9494145 rs9376090 rs66650371 rs7482144 

Proband F HbSS aa/aa 29.5 75 +/- G G C C T T C T T T T T I I G G 
Provand’s 
daughter 

F HbSS aa/aa 2 49 -/- G G A C T T T T T T T T I I G G 

1 F HbSS aa/aa 1 20 -/-  
G G 
 

A C T T T T T T T T I I G G 

2 M HbSβ0 ? 1.8 23  G T A A C T C T C T T T I I G G 
3 F HbSS aa/aa 2 36 -/- G G A C T T T T T T T T I I G G 
4 M HbSS aa/aa 2.5 17  ? ? ? ? ? ? ? G G 
5 F HbSS aa/aa 2.7 23  G G A C T T C T T T T T I I G G 
6 F HbSS aa/aa 2.7 18  G T A A C T C T T T T T I I G G 
7 F HbSS aa/aa 2.9 20  G G A C T T C T T T T T I I G G 
8 F HbSS aa/aa 3.3 19  G G A A T T T T T T T T I I G G 
9 F HbSS aa/aa 3.3 22  G G C C T T C C T T T T I I G G 
10 F HbSS aa/a- 3.9 23  G G A C C T C C T T T T I I G G 
11 F HbSS ? 4.1 19  ? ? ? ? ? ? ? ? 
12 M HbSS aa/a- 6.2 45  T T A A T T C T T T T T I I A G 
13 F HbSS ? 7.7 16  G T A C T T C T T T T T I I G G 
14 F HbSS aa/aa 8.3 18  G G A C T T C T T T T T I I G G 
15 M HbSS aa/aa 8.7 44 -/- G G A A T T C T T T T T D I G G 
16 M HbSS aa/aa 8.7 28  T T A A C T C T T T T T I I G G 
17 F HbSS aa/aa 11.9 42 -/- G G A C T T T T T T T T I I G G 
18 F HbSS aa/aa 13.6 46  G T A C C T C T C T T T I I A G 
19 M HbSS aa/aa 15.6 20 -/- G G A C T T C T T T T T D I A G 
20 F HbSS aa/aa 19.2 14  G T A C C T C T C T T T I I G G 
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Figure 7 Chromatograms from Sanger sequencing, variant of interest (c.986A>G) is marked black.  

I have used the negative strand as the reference strand. Panel (a) proband heterozygous CT (b) proband's daughter homozygous TT [Note the reference strand used 
was positive so the quoted variant A>G becomes T>C.] 
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6.3.4.3. qPCR results 
Quantitating cDNA amounts from qPCR is based on Ct values representing the number of PCR 

cycles to reach a threshold1. The relative expression of any given gene is quoted relative to a 

housekeeping gene (β-actin). See Figure 8 for graphs of the relative expression of KLF1, BCL11A 

and HBG2. The results of the HbSS controls are ordered 1-20 in increasing HbF% baseline 

results. 

                                                           
1 There is a negative linear relationship between Ct value and log (initial cDNA concentration). 
Thus, sample cDNA amount can be quantitated relative to one sample. Aberrant Ct values were 
discarded, and since assays were performed in triplicate, a mean Ct value for each 
sample/primer pair was used. To quote a relative expression, the Ct for a given primer/sample 
was normalised to the housekeeping gene, and then exponentiated to produce a quantitative 
result 
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Figure 8 Relative expression of KLF1, BCL11A and HBG2 in reticulocytes in our cohort (reference 
gene=Beta actin).  

The control samples are displayed in order of increasing HbF% levels, and absolute HbF% are 
also displayed in red. 
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6.3.5. Conclusions 
In our cohort of 22 patients with SCD, I identified a large diversity of KLF1 expression levels in 

red cells. The proband (with very high HbF and mild SCD phenotype) has the lowest expression 

of both KLF1 and the γ-globin repressor BCL11A of any patient. However, this is not markedly 

less than other individuals. The results are consistent with a role of the mutation in increasing 

HbF% and potentially reducing sickle severity, but this is inconclusive. 

 

Notably, the qPCR approach enables us to measure the consequences of a quantitative change 

in KLF1 caused by the KLF1 variant but does not allow us to assess any possible qualitative 

change in KLF1. It is possible that the KLF1 mutation mediates its effect through a qualitative 

change to the protein. 

 

As with previous KLF1 mutations identified, this is a heterozygous variant, indicating that a 

single KLF1 allele can boost HbF%. 

 

In the project, I used RNA from a mixed population of reticulocytes where levels may already 

be changing; it may be preferable to have a more homogeneous red cell population e.g. to use 

primary erythroid progenitor cells instead. 

 

The disparity between the proband and her daughter’s HbF% levels, in the setting of mild 

disease in both subjects, raises the question of whether another (non-HbF% related) factor 

may be contributing to the mild phenotype in both patients in this family.  

 

Finally, as previously discussed, it is more difficult to assess the genetic component of HbF% 

levels in SCD as in this setting stress erythropoiesis is also determinant of HbF% levels. 

 

6.4. Discussion 
HbF% is a well-established quantitative trait which has been extensively researched and much 

is now understood about its oligo-genic basis. Recent work has more accurately characterised 

the functional determinants of its variability. However, there remains “missing heritability”.  

 

Multiple GWAS have not identified a further locus contributing to common variation of HbF% 

apart from the known three trait loci. Instead, it is likely that many rare variants individually 

contribute significantly to an individual’s HbF%, but that the low frequency of the HbF%-

boosting allele does not affect cohorts. Therefore, rather than cohort-based genetic 
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association studies one must adopt strategies for research that allow us to identify rare 

variants, such as whole exome sequencing and family studies.  

 

KLF1 is an ideal candidate gene to search for high HbF% variants. I investigated two variants in 

KLF1 and their association with high HbF% in SCD. KLF1 – a “master erythroid regulator” – 

controls the globin switch and multiple (rare) variants have been identified and associated 

with high HbF% phenotypes. I have presented data consistent with a new, and rare, missense 

variant in association with reduced KLF1 expression and increased γ-globin expression in 

association with a phenotype with high HbF% and virtually asymptomatic SCD. 
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Appendix 1  
Protocol for RNA preservation from reticulocytes 

Equipment 

 15ml Falcon tubes 
 Pasteur pipettes 
 Centrifuge 

 

Reagents 

 Fresh whole blood in EDTA 4.5ml 
 Phosphate buffered saline (PBS) 
 Tri reagent 

 

Method 

 Tip 4.5ml fresh whole blood into 15ml Falcon and clearly label with study number and 
date 

 Pipette PBS into sample tube and tip into 15ml falcon until total volume 14ml 
 WASH ONE: suspend blood by inverting tube, then centrifuge at 3000rpm for 10mins 

at 4°C 
 Pipette and discard off PBS supernatant (do not disturb buffy coat) 
 WASH TWO: top-up falcon tube with PBS supernatant, re-suspend blood by inverting 

tube, then centrifuge again at 3000rpm for 10mins at 4°C 
 Pipette and discard off PBS supernatant (do not disturb buffy coat) 
 WASH TWO: top-up falcon tube with PBS supernatant, re-suspend blood by inverting 

tube, then centrifuge again at 4000rpm for 30mins at 4°C 
 Pipette and discard off PBS supernatant (do not disturb buffy coat) 
 Using a pipette, aspirate the buffy coat in one swooping manoeuvre, and discard 
 Using another pipette, aspirate the top 0.5ml of underlying red cells into a fresh 15ml 

Falcon tube 
 Immediately add 1.5ml TRI reagent and mix thoroughly by Vortexing. The mixture 

becomes brown and viscous. 
 Immediately store at -80°C 

 

 

  



252 
 

Appendix 2  
Protocol for RNA extraction 

Equipment 

 1.5ml Eppendorf tubes 
 Pipettes/pipette tips 
 Desktop microfuge capable of spinning at 14000rpm at 4°C 
 Nanodrop 

 

Reagents 

 Bromochloro Fresh whole blood in EDTA 4.5ml 
 Isopropranol Phosphate buffered saline 
 75% ethanol Tri reagent 
 Molecular grade water 

 

Method 

 Defrost the TRI-preserved RNA and use immediately 
 Add 500μl to a 1.5ml Eppendorf 
 PHASE SEPARATION 

o Add 37.5μl (10% TRI volume) of bromochloro, vortex and leave for 5 mins 
standing 

o Centrifuge for 15 mins at 14000rpm at 4°C 
o Note outcome of top (aqueous) layer which contains the RNA; DNA and 

proteins in lower organic layers  
 RNA PRECIPITATION 

o Pipette off as much aqueous phase into a second 1.5ml Eppendorf without 
disturbing lower layers, and note volume 

o Add 3x aqueous phase volume transferred of isopropranol, vortex and leave 
for 10 mins standing 

o Centrifuge for 10 mins at 14000rpm at 4°C 
o Note (pellet size) indicative of volume RNA precipitated 
o Remove supernatant but leave pellet 

 RNA WASH 
o Add 500μl of 75% ethanol, and dislodge pellet  
o Centrifuge for 5 mins at 4000rpm at 4°C 
o Remove ethanol, but leave pellet and then repeat RNA wash step once 
o Leave to dry out for about 10 minutes (don’t overdry the pellet) 

 WATER SOLUBILISATION 
o Add 30μl molecular grade water and pipette pellet up and down to solubilise 

the RNA 
 RNA QUANTIFICATION 

o Use the Nanodrop to measure the concentration and contamination (260/280 
and 260/230 ratios) and note values 

 Immediately store at -80°C 
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7.1. Summary of findings 
7.1.1. Genotype-phenotype association studies 

Information-rich genomic data has transformed the study of genetic variants, especially in 

white populations. Analyses in African-heritage and mixed populations are one step behind 

European populations: not only are there fewer studies, but analysis needs to take account of 

the increased genetic complexity. The (recent) advent of both African-specific genome-wide 

micro-arrays and African genomes in public genetic reference panels means the tools are now 

available to analyse these non-white populations more accurately.  

 

Successful genotype-phenotype association studies require (1) clear and meaningful 

phenotyping (of heritable traits), (2) accurate genotyping and (3) appropriate statistical 

analysis for association.  

 

7.1.2. Phenotyping 
Phenotyping is important for all clinical research, as well as for genotype/phenotype 

association studies. In SCD, there is no single, accepted definition or marker of severity. I have 

defined and applied several clinical endpoints as phenotypes in genetic association studies.  

 

These phenotypes reflect the global spectrum of disease: haemolytic index (which reflects the 

degree of haemolysis); hospitalisation rate (which reflects frequency of pain episodes) and 

mortality. I have also considered the well-established intermediate phenotype in SCD, fetal 

haemoglobin (HbF), and proteinuria (via urinary albumin creatinine ratio, uACR), which reflects 

the severity of the commonest end organ damage: sickle nephropathy. I have used data 

collected over a 10-year period, and taken averages to ensure values reflect baseline status. 

For laboratory data, I have calculated arithmetic means wherever multiple data points were 

available for a patient and for hospitalisation rate, I have accounted for an individual’s 

observation period over the 10-year study period. 

 

I published a survival study for patients with SCD at KCH. This demonstrated that estimated 

median survival of 67 years in HbSS disease – a significant improvement in survival compared 

to other recent estimates in the USA and Jamaica. We also confirmed associations between 

mortality in SCD and markers of cardiorespiratory dysfunction, renal impairment, and 

haemolysis as well as frequent hospitalisation rate. 

 

Using multiple severity indicators as phenotypes, rather than a single ‘severity index’, better 

reflects the clinical complexity of SCD and allows us to evaluate the genetic architecture of 
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specific phenotypes. Furthermore, by comparing results between phenotypes, one may be 

able to gain some understanding of global mechanisms contributing towards severity in SCD. 

Moreover, the use of multiple phenotypes potentially confers increased statistical power as 

“severity” is defined in different ways. 

 

7.1.3. Genotyping 
Genome-wide micro-arrays are the ideal platform for evaluating markers in the human 

genome, enabling identification of genetic variants amongst millions of markers.  

 

Illumina’s MEGA chip includes markers chosen on the basis of genetic polymorphisms in an 

African-American cohort, and its use in African-heritage populations better reflects genetic 

variation in this population than European-specific panels.  

 

I have created and curated a large genetic database of over 15 million markers for our regional 

sickle cohort. This was time-consuming and required bioinformatics experience. Quality 

control is imperative for genetic association analysis to prevent false-positive and false-

negative results. It must take account of multiple aspects of the quality of samples and genetic 

markers. 

 

Imputation is now standard practice in genome-wide association analyses. Imputation 

enhances the sensitivity of association analyses (increasing power) and facilitates fine-mapping 

to get closer to the causative mutation. Imputation also facilitates meta-analysis: we are 

collaborating with a Tanzanian group who have undertaken micro-array analysis on a sickle 

cohort.  

 

I have assessed relatedness via generation of a “genetic relatedness matrix”. This takes 

account of both near (cryptic) relatedness as well as issues of population stratification by 

quantifying the pair-wise relatedness between all individuals. I have used this to identify 

duplicates in our sickle cohort (this mostly reflects the same individual attending two hospital 

clinics), and thus one of a pair of close relatives can be removed for some analyses. 

 

7.1.4. Association analysis 
I undertook genetic association analysis using two approaches: genome-wide association 

analysis (GWAS) and candidate gene analysis. For both, the use of the genome-wide data in a 

linear mixed model allowed me to take account of relatedness. Notably, this has been a failing 
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of many previous studies, where identified genetic associations have been (or may be) 

confounded by population stratification (ethnicity). 

 

For GWAS, I evaluated fetal haemoglobin, hospitalisation rates, a haemolytic index and uACR 

as quantitative markers of severity of SCD. My analyses replicated previous findings for HbF, 

hospitalisation rates, haemolytic index and uACR.  

 

These data were also used to construct a polygenic score model for HbF% which uses four 

variants in a quantitative trait to estimate specifically the genetic component of HbF%. We 

have termed this summary variable for the genetics of HbF% “HbFg” and suggest its use as a 

covariate in future clinical and genetic studies in SCD. 

 

The GWAS analysis also identified some tentative novel loci for hospitalisation rates and 

haemolytic index. For hospitalisation rates, peak signals for three regions were at rs75904749 

on chromosome 5, rs10792490 on chromosome 11 and rs510384 on chromosome 12. The 

latter is within an intron of gene SLC6A13, a sodium-dependent GABA and taurine transporter. 

For haemolytic index, peak signals were a copy number variant in HBA2 and rs4695226 on 

chromosome 4.  

 

The genome-wide analyses remain under-powered in our relatively small SCD cohort, so I 

progressed to candidate gene studies which have greater power to detect new risk variants. 

 

Using a candidate gene approach, I assessed several regions of interest in association with the 

severity indices hospitalisation rate and haemolytic index. First, candidate genes with the 

potential to increase red cell 2,3-DPG levels (and increase intracellular deoxy-HbS) and, 

second, complement-related genes. I identified risk variants in the red cell pyruvate kinase 

gene PK-LR associated with hospitalisation rate in SCD. I used our HbSS patients as the 

discovery set, and validated four variants in PK-LR in our HbSC cohort, and a meta-analysis of 

all SCD patients showed improved p-values. If this association is validated in further cohorts, 

these intronic risk variants are less likely to represent the causal element itself than to be in 

linkage disequilibrium with the actual functional DNA change. However, and notably, 

rs8177970 is strongly predicted to create a new 5’ splice site only when the variant is present. 

These risk variants are all common in African populations (14-15% in African populations in 

1000 Genomes Project).  
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I also investigated specific genetic variants and their association with sickle complications. The 

association of the G1 variants in APOL1 with proteinuria was replicated. However,  

the DARC promoter variant rs2814778 was not associated with any severity index. rs2814778 

is an ancestry-informative marker only seen in African-heritage populations. Positive findings 

in previous studies may have been artefacts due to confounding by admixture and population 

stratification. In our study, I accounted for relatedness (including population structure) in our 

statistical modelling, thus removing the artefact. 

 

7.1.5. KLF1 lab projects 
I investigated the role of KLF1 in HbF% levels in patients with SCD. I have provided evidence 

that a very rare variant in KLF1 zinc finger is associated with increased γ-globin expression via 

reduced KLF1 and BCL11A expression. 

 

A common KLF1 intronic polymorphism was also evaluated for its association with HbF% levels 

in SCD, but no link was identified in the larger population I assessed. 

 

7.2. Work in context  
Many genotype-phenotype association studies in SCD have been published in the last decade. 

As in the non-sickle setting, many of the resulting findings have not been replicated. Notable 

exceptions to the large number of marginal findings in the field of β-haemoglobinopathies is 

the discovery of BCL11A as a key repressor of γ-globin, and the HBS1L-MYB (HMIP) region as a 

quantitative trait locus for HbF%. As in many GWA studies, the HMIP locus lies in a gene-free 

region, and studies have now provided evidence that the inter-genic region contains causative 

variants in erythroid-specific enhancers that not only regulate HbF but also other pleiotropic 

haematological parameters via MYB, one of the flanking genes.  

 

Genetic association studies today must take account of genome-wide information on 

relatedness – we are now in the era of linear mixed model analysis. 

 

While the proof of any novel genetic association is intrinsically linked to showing replication in 

an independent dataset, efforts to optimise all stages of phenotype-genotype association can 

be made. I have taken care over each aspect of association. First, I have used quality 

phenotypes: I have collected data over a 10-year period and considered traits that are variable. 

Second, careful genotyping is required: I have made use of a new African-specific genotyping 

array (Illumina’s MEGA chip) as well as the recent availability of multi-ethnic reference panels 

for imputation. I have been complete and conservative with quality control measures. Third, I 
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have carefully built a statistical-analysis strategy, using up-to-date knowledge in the field to 

construct sophisticated analysis models to take account of relatedness, including population 

structure. Linear mixed modelling is now becoming the gold standard for genetic association 

studies. Optimising each of these three steps helps increase the power of the study to 

disentangle true signals from those due to chance. 

 

7.3. Future work 
7.3.1. Replication of signals of association 

Signals of association should be validated through replication and/or meta-analysis. To confirm 

positive association signals from an initial study, it is imperative to replicate the result in 

independent samples (either from the same or different populations). More widely in GWA 

studies, replication of positive association signals has not proved to be easy for logistical and 

statistical reasons: it depends on the power of both initial and replication studies. As in our 

candidate gene studies, another approach is to genotype a subset (in our case, HbSS) and 

follow-up the strongest signals of association in a different subset (HbSC). Collaboration 

between international groups studying the same trait allows for in silico replication. 

 

In replication and meta-analyses, rather than direct data exchange, summary statistics are 

provided instead: for each genetic variant, the “risk” allele, p-value, β +/- standard error are 

exchanged for quantitative traits. Recall that imputation can be used to combine different 

GWAS to enable direct comparison of different genotype sets.  

 

7.3.2. Beyond GWAS: from association to function 
After identification of new GWAS loci, it is tempting to speculate on the molecular pathways 

by which these loci affect trait risk. However, one must be cautious and apply a methodical 

approach before making assertions. Multiple steps are required in post-GWAS analyses in 

order to identify the functional variant(s) responsible for the observed risk-differences, and to 

dissect the molecular pathways underlying their effects(Edwards et al., 2013). First, fine-scale 

mapping of the associated locus using imputed genotypes must be undertaken to identify a set 

of associated variants. As in our studies, imputation may have contributed to fine-mapping the 

causal variant already. Second, prioritisation of putative functional variants (using 

epidemiological information and bioinformatics) to select candidates that could contribute to 

the trait. Some identified loci are near well-characterised genes, which may be good 

candidates for being the causal gene. Other loci lie in ‘gene deserts’ with no nearby genes. 

Third, in vitro and in vivo functional analyses must then take place to confirm and further 

elucidate the mechanisms by which the causal variants are acting. Fundamentally, in order to 
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establish causality formally (of a given variant for a trait), one must show that recreating the 

risk variants in human cells or animal models generates analogous phenotypes in the model. 

 

7.3.3. Specific work on PK-LR 
We plan to continue to investigate these PK-LR risk variants and their association with 

hospitalisation rate in SCD. First, we aim to replicate our findings in other cohorts, but are 

limited by sickle cohorts where these data are available (North America and Cameroon). We 

must be careful of interpretation of results for hospitalisation rate as there are complex non-

genetic determinants of this trait, including socio-cultural and economic considerations, which 

are different to the UK. Furthermore, many North American sickle cohorts comprise paediatric 

not adult patients. 

 

We also aim to do more genotyping of the PK-LR region both to confirm findings and look for 

potential associated functional variants in this very polymorphic gene. 

 

Measuring pyruvate kinase (PK) protein levels in the red cells of patients seems intuitive but 

could prove difficult; there are no formal reference ranges of red cell PK in SCD. In SCD, red 

cells with low PK are not removed by the (functionally impaired) spleen. This also means that, 

in SCD, a genetic diagnosis of PK deficiency (however mild) is likely to be more appropriate 

than a proteomic diagnosis. 

 

If these findings corroborate PK-LR as a genetic disease severity modifier, we must consider 

functional studies using cell or animal models of SCD with degrees of PK deficiency. 

 

7.3.4. Improvements to statistical modelling 
Our statistical modelling could be revisited to consider improvements. Modifications to the 

statistical modelling could include adding in more covariates, including HbFg (our summary 

genetic variable for the three HbF% loci), haemoglobin levels or haemolytic index. In this way, 

other aspects of SCD pathophysiology can be controlled for while trying to understand the 

genetic determinants of our trait of interest. 

 

Alternative methods of analysis have also been proposed since the modelling was undertaken. 

While linear mixed models (LMM) with genetic relatedness matrices (GRM) to control for all 

forms of relatedness is now common in genetic analyses, more recently the addition of 

principal components (PC) to a LMM with a GRM has been advocated. There are two key 

reasons for this. 
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First, PC capture additional variance, resulting from non-sample relatedness such as 

genotyping batch effects. Some very recent studies recommend including principal 

components as fixed effects in addition to the random effect of the GRM in mixed association 

models(Yang et al., 2014, Zhang and Pan, 2015). 

 

Second, the setting of extreme differences in allele frequencies in different populations may 

undermine the validity of GRMs(Price et al., 2010). By adding PCs to a LMM, the PCs can take 

account of significant differences. While our measures of model accuracy (lambda GC 

measuring genomic inflation, and QQ plots) were satisfactory (indeed, excellent in some 

cases), this may improve modelling and therefore power. However, of note, as part of the 

modelling, I undertook subgroup analysis by sickle genotype to test the sensitivity of the 

results. HbSS sub-analysis yielded results that were largely concordant with those obtained 

from ALL sickle genotypes.  

 

As an aside, the issue of subgroup analysis versus whole-cohort analysis highlights issues 

around power achieved in larger (less homogeneous) populations versus smaller (more 

homogeneous) populations. This balance is different for GWA studies and candidate gene 

analyses, which have more power to identify variants.  

 

Finally, there are now new statistical methods available to take account of multiple 

phenotypes to increase the power in studies of association between variants and phenotypes. 

This way, correlated traits (such as our severity indices) can be used in a multi-phenotypic 

statistical model to evaluate association with genetic variants. MultiPhen is an R package which 

performs association testing between genetic variants and multiple phenotypes(O'Reilly et al., 

2012). It performs regression analysis where variants are treated as the outcome and multiple 

phenotypes as the predictors; this can result in large increases in statistical power to detect 

genotype-phenotype associations over the univariate approach.  

 

7.3.5. New genetic projects (non-association analyses) 
The substantial genetic dataset assembled, in an unusual population, opens up many new 

avenues for genetic analyses, not necessarily incumbent on my present work. This includes 

evaluation of the heritability of traits using genome-wide data (in contrast to twin studies). 

These analyses using genome-wide data are relatively new and have been criticised for 

overestimating heritability, however, they offer an insight into the degree with which a trait is 

heritable in order to drive the search for variants. As phenotypes are better understood, one 
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can create polygenic score models – estimating the effects of genetic variants jointly – as we 

have done for HbF%. As the genetic basis of our more experimental phenotypes becomes 

better characterised, a polygenic model could be created to explain these outcomes, too. 

Taking this further, the ultimate goal would be a genetic prediction model which robustly 

differentiates “mild” and “severe” phenotypes. Stratification on a genetic basis would have 

particular clinical significance in SCD: for those identified as severe, disease-modifying 

therapies can be considered early (hydroxycarbamide, transfusion programmes) or even 

haematopoietic stem cell transplantation. Crucially, early identification of “severe” cases 

means that these (potentially toxic) therapies can be offered to at-risk patients prior to the 

onset of end-organ damage. 

 

An alternate approach to take this project forward would be to consider different, improved 

phenotypes. We have strength in the quality of the clinical data of our adult cohorts, with 

results from over a decade long period. These longitudinal data could be harvested to evaluate 

rate of progression of complications. This potentially gives more meaningful genetic 

association of clinical phenotypes which could transfer back to the clinic to identify 

mechanisms for disease progression. 

 

Finally, a further potential field of study will be the testing for gene-environment interactions. 

The environmental risk factors for a disease may act at least partly via interactions with genetic 

risk determinants. Therefore, the validity of the genetic findings will be enhanced by 

accounting for these environmental exposures as either potential confounders or effect 

modifiers. By not accounting for environmental effects, one is exposed to errors that lead to 

both false positives and false negative results. In order to manage or investigate environmental 

exposures, depending on whether they act as confounders or effect modifiers, they can be 

incorporated into analyses by adjusting for their effect (as a fixed covariate) or by assessing 

their potential interaction with genetic region of interest. 
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