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In late-onset Alzheimer's disease (AD), the ε4 allele of the apolipoprotein E gene (APOE) is the major 

known genetic risk factor [1]. In 2013 two research groups reported the R47H variant of triggering 

receptor expressed on myeloid cells 2 (TREM2), is associated with AD by almost as much as APOE ε4 

[2,3]. A loss-of-function R47H mutation in TREM2 is also one of the strongest single allele genetic risk 

factors for AD [2,3], providing a link between microglia dysfunction and AD pathogenesis. TREM2 

encodes a single-pass type I membrane protein that forms a receptor-signaling complex with the 

TYRO protein tyrosine kinase-binding protein (TYROBP) triggering immune responses in certain 

macrophages and dendritic cells. 

 At Queen Square Brain Bank for Neurological disorders (Institute of Neurology, UCL) and 

London Neurodegenerative Diseases Brain Bank (Institute of Psychiatry, Psychology and 

Neuroscience, KCL) we have identified 16 TREM2 variant cases, 11 cases with neuropathological 

confirmation of AD and 5 cases identified as normal controls with no underlying AD pathology at the 

time of death (Figure 1). The cohort includes 5 AD cases with R47H variant (cases 6-10) that also 

carry an APOE ε4 allele; an AD case carrying an R47H variant with no APOE ε4 allele (case 5) and the 

remaining 5 AD cases carrying different TREM2 variants described previously to be associated with 

AD pathogenesis (cases 1-4) or an additional PS1 mutation (case 11). Two normal controls carry the 

R47H variant and do not carry an APOE ε4 allele (cases 15 and 16), two controls have a different 

TREM2 mutation and the remaining R47H control case died at young age (cases 12-14). This is a 

small cohort of pathologically confirmed cases that potentially link the R47H TREM2 variant and 

APOE ε4 allele with a diagnosis of AD. In our cohort three other TREM2 variants (T96K, Q22X, D87N) 

are present with an APOE ε4 allele, suggesting that APOE ε4 allele may also be the driving factor 

rather than then TREM2 variant. Where the presence of the R47H TREM2 variant is found in the 

absence of APOE ε4  AD does not manifest (Figure 1). The single AD case in this cohort (case 5) with 

a R47H variant which lacked an APOE ε4 allele, pathologically had an additional diagnosis of 

frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP subtype A). This case had a 

much later age of onset compared to the other cases and the additional diagnosis was more than 

typically observed when a secondary TDP-43 pathology is seen in elderly patients with AD. These 

findings are supported by pathologically confirmed cases reported in the literature. Korvatska et al 

reported a large late onset family in which the R47H variant co-segregated with 75% of cases [4]. The 

R47H variant was confirmed in 11 individuals affected by AD, and all 11 cases also carried an APOE 

ε4 allele. Three unaffected individuals were also shown to carry the R47H variant: two died before 

the typical age of late onset AD and one died at age 87, was both cognitively normal and an APOE 

ε3ε3  carrier [4]. Yuan et al included ten R47H variant pathologically confirmed AD cases all of which 

carried an APOE ε4 allele [5]. Krasemann et al reported the R47H variant cases used in their study 



also carried an APOE ε4 allele [6]. Studies that have been unable to show a significant correlation 

between carrying both the R47H variant and an APOE ε4 allele [3,7]. Including GWAS studies from 

clinical samples without pathological confirmation and or including other TREM2 variants in the 

analysis and not just the R47H variant or correlated APOE ε4  status in AD cases without a R47H 

variant [3,7]. 

Many TREM2 variants have been identified which can impact TREM2 localization within the cell. The 

R47H variant is found on the extracellular portion of the protein and impacts ligand binding [8]; the 

expression and protein levels remain unaltered [7]. Unlike other variants, TREM2 containing the 

R47H variant is mostly localized to the trans-Golgi network rather than the endoplasmic reticulum 

(ER), comparable to the wild-type receptor [9,10]. Studies employing a TREM2 R47H-Fc chimeric 

protein revealed the R47H variant significantly reduces TREM2 binding to cells [8] and the three 

isoforms of APOE [11]. Although binding seems to occur independently of APOE isoforms [11,12], 

several studies demonstrate that TREM2- APOE binding is not dependent on lipid loading [11]. 

However, others have found that lipidation was necessary to drive TREM2 binding [12] and lipid 

association was reported to be necessary for TREM2 binding to APOE from cynomolgus macaque CSF 

and serum [11]. APOE binding to TREM2 was found to induce TREM2 signaling in reporter cell lines; 

though how its binding to TREM2 would alter signaling in vivo remains to be determined. As APOE 

can bind to apoptotic cells and amyloid plaques [11], it has been proposed that an interaction 

between TREM2 and APOE may indirectly allow it to mediate recognition and phagocytosis of these 

substrates. A study by Krasemann et al. shows the mechanism controlling the transition from 

homeostatic to neurodegenerative microglia (MGnD) is dependent on APOE. They also show that the 

removal of TREM2 locks microglia into a homeostatic state blocking the formation of MGnD 

microglia, similarly to the effects of APOE deficiency. Pathway analysis identified APOE as a major 

upstream inducer of the MGnD microglia phenotype, and the authors turned to TREM2 because it 

has high affinity for anionic phospholipids in complex with APOE on the surface of apoptotic neurons 

or in lipoproteins. Krasemann et al also found that acquisition of MGnD microglia is dependent on 

APOE and mediated through TREM2 signaling [6].  

We propose that pathologically confirmed AD cases carrying the R47H variant also carry an 

APOE ε4 allele and without an APOE ε4 allele AD does not develop. As both genetic variants have 

been confirmed to increase the risk of AD the likelihood of receiving donated brains with both 

variants is also increased. Our observations from cases donated and published studies suggest that 

APOE ε4 allele  moderates AD risk in TREM2 R47H variants; therefore you are unlikely to develop AD 

without having an APOE ε4 allele if you are TREM2 R47H positive. No pathological studies have 

confirmed the lack of underlying AD pathology in R47H variant cases without an APOE ε4 allele and 



there is a greater need to obtain pathological confirmation in these cases to validate a connection 

between the two genetic risk factors. The identification of the TREM2 locus as a risk factor for AD is 

important to understand the mechanism by which it influences disease risk. Evidence based on 

pathologically confirmed cases highlights the association of the R47H variant and APOE ε4 allele in 

AD although further investigations are needed to determine the effect of APOE on TREM2. The link 

between innate immunity and AD pathogenesis, highlighted by genetics studies, emphasizes the 

importance of exploring APOE function in microglia. 
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Figure 1: Case demographics and comparison of pathological hallmarks in a  TREM+ APOE ε4- 

control case (case 16; panels a and b) and TREM+APOE ε4+ Alzheimer’s disease case (case 9; panels 

c-f). The table details the case demographics of the TREM2 variant cases identified at Queen Square 

Brain Bank and Institute of Psychiatry, Psychology and Neuroscience. Immunohistochemical analysis 

of R47H variant carriers shows no Aβ deposition in TREM2 R47H+ APOE ε4- (a and b) compared to the 

characteristic Alzheimer’s disease pathology observed in the TREM2 R47H+ APOE ε4+ cases: Aβ 

plaques observed in the hippocampus (c) and frontal cortex (d), along with tau 

immunohistochemistry in the hippocampus (e) and occipital cortex (f) Scale bar in a represents 

500µm in a, c and f; 30µm in b and d: 100 µm in e. 
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