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Abstract 

The signal peptide region of preproinsulin (PPI) contains epitopes targeted by human 

leucocyte antigen-A (HLA-A)-restricted (HLA-A0201, A2402) cytotoxic T-cells as part of 

the pathogenesis of β-cell destruction in type 1 diabetes. We extended PPI epitope discovery 

to disease-associated HLA-B*1801 and HLA-B*3906 (risk) and HLA-A*1101 and HLA-

B*3801 (protective) alleles revealing that 4/6 alleles present epitopes derived from the signal 

peptide region. During co-translational translocation of PPI, its signal peptide is cleaved and 

retained within the endoplasmic reticulum (ER) membrane, implying it is processed for 

immune recognition outside of the canonical, proteasome-directed pathway. Using in vitro 

translocation assays with specific inhibitors and gene knockout in PPI-expressing target cells 

we show that PPI signal peptide antigen processing requires signal peptide peptidase (SPP). 

The intramembrane protease SPP generates cytoplasm-proximal epitopes, which are 

transporter-associated-with–antigen-processing (TAP)-dependent, and ER-luminal (TAP-

independent) epitopes, each presented by different HLA class I molecules, and N-terminal 

trimmed by ER aminopeptidase 1 (ERAP1) for optimal presentation. In vivo, TAP expression 

is significantly up-regulated and correlated with HLA class I hyper-expression in insulin-

containing islets of patients with type 1 diabetes. Thus, PPI signal peptide epitopes are 

processed by SPP and loaded for HLA-guided immune recognition via pathways that are 

enhanced during disease pathogenesis. 
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 abbreviation 

(Z-Leu-Leu-NHCH2)2CO (Z-LL)2 ketone 

7-Aminoactinomyocin D 7-AAD 

beta-2-microglobulin B2M 

cluster of differentiation CD 

clustered regularly interspaced short palindromic repeats CRISPR 

cytotoxic T lymphocyte CTL 

endoplasmic reticulum ER 

endoplasmic reticulum aminopeptidase ERAP 

enzyme-linked immunosorbent assay ELISA 

formalin-fixed paraffin embedded  FFPE 

glyceraldehyde 3-phosphate dehydrogenase GAPDH 

human leucocyte antigen HLA 

Islet amyloid polypeptide IAPP 

Insulin-containing islet ICI 

insulin degrading enzyme IDE 

knock out Ko 

macrophage inflammatory protein-1ββββ MIP-1β 

major histocompatibility complex MHC 

mean fluorescence intensity MFI 

messenger RNA mRNA 

peptide loading complex PLC 

preproinsulin PPI 

signal peptide SP 

signal peptide peptidase SPP 

small interfering RNA siRNA 

sodium dodecyl sulfate polyacrylamide gel electrophoresis SDS-PAGE 

standard error of the mean SEM 

TAP binding protein TAPBP 

threshold cycle Ct 

transporter associated with antigen processing TAP 
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Introduction 

In type 1 diabetes, immune-mediated destruction of insulin-producing β-cells is the 

pathological process leading to insulin deficiency and hyperglycaemia (1). Multiple arms of 

the immune system are likely to contribute to this tissue-damaging process, with strong 

indications that CD8+ cytotoxic T lymphocytes (CTLs), are a dominant killing pathway. 

Evidence includes a data from preclinical models showing dependence of disease 

development on intact CD8/MHC class I mechanisms (2), supported by compelling findings 

in human studies, including the existence of high-risk polymorphic HLA class I genes (3); 

enrichment of effector CTLs specific for β-cell targets in the circulation in new-onset disease 

(4; 5); recapitulation of β-cell killing by patient-derived preproinsulin (PPI)-specific CTLs in 

vitro (4; 6); CD8 T cell dominance of islet infiltrates in patients, including the presence of 

CD8s bearing receptors specific for β-cell autoantigens (7; 8); hyper-expression of HLA class 

I both at the RNA and protein level in residual insulin containing islets (ICIs) in type 1 

diabetes pancreatic tissue (9); and recent success in halting β-cell loss using immunotherapy 

targeted at effector CD8 T cells (10).  

The potential for the immunological dialogue between CTLs and β-cells to be a key 

component of the development of type 1 diabetes has led several groups to focus on the 

relevant molecular interactions that govern this interface, including studies on HLA class I 

gene polymorphisms carrying modified risk of disease (HLA-A*0201, A*1101, A*2402, 

B*1801, B*3801 and B*3906 (3; 11; 12)) and antigenic targets within β-cells recognized by 

CTLs. These have especially focused on PPI which is considered a primary target in β-cell 

autoimmunity because anti-insulin autoantibodies are frequently the first disease 

manifestation in high-risk children (12).  
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For immune recognition, processing and presentation of peptides by MHC class I commonly 

results from degradation of proteins by the proteasome (13), generating cytosolic peptides of 

8-16 amino acids (14) which are transported into the endoplasmic reticulum (ER) lumen via 

transporter associated with antigen processing (TAP) (15), part of the MHC class I peptide 

loading complex (PLC; (16)). ER aminopeptidase 1 (ERAP1) trims peptides to a suitable 

length for MHC loading if required (17), and peptide-MHC complexes are delivered to the 

cell surface for immune recognition. Proteasome-independent, cytoplasm-based non-

canonical antigen presentation pathways have also been described (18). Whereas these and 

the canonical route collectively require TAP for peptide delivery into the ER, signal peptide 

epitopes from secretory proteins may be MHC-loaded independently of TAP (19) following 

signal peptidase cleavage and intramembrane proteolysis by signal peptide peptidase (SPP) 

(20-22). Interestingly, peptides originating from the ER luminal side of the signal peptide can 

access the PLC directly (23-25), whereas epitopes close to the cytosol may require 

proteasomal trimming and TAP for ER entry (26). However, the extent to which signal 

peptides and these non-canonical epitope-generation pathways fuel immune recognition of 

single antigens and play a role in physiological responses remains unclear.  

The present study was motivated by the need for a better understanding of autoantigen 

processing for immune recognition of β-cells via these different routes, which could provide 

novel insights into disease pathogenesis and highlight pathways susceptible to therapeutic 

manipulation. We previously reported that the predominant epitope species presented to 

CTLs by human cell lines co-transfected with the INS gene (encoding PPI) and the HLA class 

I genes HLA-A*0201 and A*2402 derived from the signal peptide region (4; 6). These signal 

peptide-derived epitopes are recognized by patient CTLs and presented by β-cells bearing the 

relevant HLA class I molecule. Here we examine whether PPI signal peptide is a more 

general source of epitopes by studying additional HLA class I molecules associated with type 
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1 diabetes. We show that generation of epitopes from the PPI signal peptide is driven by the 

intramembrane protease SPP, and that loading into nascent HLA class I molecules requires 

trimming by ERAP1 and is either direct or follows cytoplasmic translocation and TAP, with 

the selected pathway being determined by HLA allele. Importantly, we show that the key 

factors ERAP1 and TAP are expressed in insulin-containing islets of patients studied post 

mortem after type 1 diabetes diagnosis, indicating that the multiple pathways that are 

potentially critical in the CTL:β-cell dialogue are active in the disease setting. 
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Methods 

Cell lines and epitope discovery 

K562 cells transfected with HLA-A*1101, HLA-B*1801, HLA-B*3801, or HLA-B*3906 and 

PPI cDNAs (K562-HLA-PPI cells) were generated as described (4). Expression of HLA class 

I was confirmed by flow cytometry (anti-HLA-ABC antibody W6/32; Serotec, Oxford, 

U.K.). Proinsulin was detected in supernatants by ELISA (DRG International, Marburg, 

Germany). Subsequently, ~10
10

 cells from each cell line were harvested and immunoaffinity 

purification of HLA-A1101, HLA-B1801, HLA-B3801 and HLA-B3906, peptide extraction 

and nano high-performance liquid chromatography–mass spectrometry performed as 

described (4; 6; 27; 28).  

Inhibitors, RNA interference and T cell clone activation 

K562-A24-PPI cells were transfected twice within 48 hours with 20nM small interfering 

RNAs (Applied Biosystems, Foster City, Ca, USA) targeting B2M (#s1852), ERAP1 

(#s28618), ERAP2 (#s34520), TAP1 (#s13778, #s13780), TAP2 (#s13781, #s13782, 

#s13783) using Lipofectamine RNAiMAX (Invitrogen, Paisley, U.K.). Knockdown was 

assessed by RT-PCR using TaqMan specific primers and relative cDNA content normalized 

to GAPDH gene expression. CD8 T cell clones for PPI3-11-HLA-A2402 and PPI15-24-HLA-

A0201 (4; 6) were co-cultured with K562-HLA-PPI target cells at indicated effector:target 

ratios (4 hours) and response measured as degranulation (CD107a expression (29)) or MIP-

1β release (R&D systems, Minneapolis, MN, USA). 

Site directed mutagenesis 

To alter single or multiple amino acids (as highlighted in Supplementary Table 1), PPI-

containing plasmid pcDNA3/PPI was amplified using altered primers (PPI9P→L, 

CCC→CTC; PPI12A→L, GCG→CTG; PPI15A→L, GCC→CTC; with 18-20 nucleotide 
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overhang preceding and following the mutated site) and PfuTurbo DNA Polymerase AD 

(Agilent, Santa Clara, CA, USA) with sequence confirmation before use. 

In vitro transcription, translation and translocation and analysis of SPP processing  

Plasmid pcDNA3/PPI was linearized with EcoRI and transcribed in vitro with T7 RNA 

polymerase at 42°C using 500µM m7G(5′)ppp(5′)G CAP analogue (New England Biolabs, 

Ipswich, MA, USA) (30). mRNAs were translated in vitro in 25µl rabbit reticulocyte lysate 

(Promega, Madison, WI, USA) containing [
35

S]-methionine and [
35

S]-cysteine (Perkin Elmer, 

Waltham, MA, USA) and, where indicated, 2 equivalents of nuclease-treated dog pancreas 

rough microsomes (31). (Z-LL)2-ketone (SPP inhibitor, 5µM; Merck-Calbiochem, San 

Diego, CA, USA) or DMSO control were added as indicated. After 30 minutes at 30°C, 

microsomes were extracted with 500mM KOAc, solubilized in SDS-sample buffer (32) and 

analysed by SDS-PAGE using Tris-bicine-urea acrylamide gels (15% T, 5% C; 8 M urea) 

(33) and an FLA 7000 phosphorimager (Fuji) with Multi Gauge software (Fuji). Translations 

of reference peptide comprising the 24-amino acid PPI signal sequence was performed in 

wheat germ extract (34). 

Immunohistochemistry and Immunofluorescence 

Formalin-fixed paraffin embedded (FFPE) pancreas sections from 6 controls and 6 type 1 

diabetes cases (Exeter Archival Diabetes Biobank; http://foulis.vub.ac.be/; Supplementary 

Table 2; ethical approval 15/W/0258) were studied by immunohistochemistry. Sections were 

dewaxed, rehydrated and heated by microwave (800W) for 20 minutes, blocked in 5% 

normal goat serum before incubation with primary and secondary antibodies 

(Supplementary Table 3), haematoxylin counter-stain, dehydration and mounting in a 

distyrene/xylene-based mountant (DPX). Multiple antigens within the same FFPE section 

were probed in a sequential manner with up to three different antibodies (Supplementary 
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Table 3) and images captured (Leica AF6000 microscope, Milton Keynes, U.K.). Mean 

fluorescence intensity (MFI) of stained antigens was analysed using ImageJ and isotype 

control antisera used to confirm reagent specificity. 

SPP knockout using CRISPR 

CRISPR guide sequences for exons of SPP (gene name HM13) were designed using CRISPR 

DESIGN tool (www.crispr.mit.edu) (Supplementary Table 4) and cloned into pLG2C 

vector containing eGFP linked to a Cas9 cassette via P2A. K562-A2-PPI were transfected 

with each of two pLG2C vectors (containing guide sequence for Exon 2 or 3 and Exon 10 or 

11) or empty vector (mock treated: no guide sequence) using Effectene (Qiagen, Hilden, 

Germany). Single cells sorted for high HLA-A2 (W6/32; Biolegend, San Diego, CA, UK) 

and eGFP were examined for gene truncation by RT-PCR and SPP amplification using 

primers (F: ATATATGAATTCGCACCCTCGCCATG ;R: 

ATATATCTCGAGGCACCAGCTGCATCATTTC) (Eurofins, Ebersberg, Germany) and 

Phusion High-Fidelity DNA Polymerase (New England Biolabs, Ipswich, MA, USA ) and by 

agarose gel electrophoresis. 
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Results 

Presentation of PPI epitopes by HLA-A1101, HLA-B1801, HLA-B3801 and HLA-B3906 

K562 cells transfected with INS encoding human PPI and one of HLA-A*1101, HLA-B*1801, 

HLA-B*3801 and HLA-B*3906 generated surrogate β-cells secreting proinsulin and 

expressing relevant HLA class I molecules (Supplementary Figure 1). The 

immunopeptidome eluted from affinity purified HLA-A1101 identified 905 peptides; from 

HLA-B1801 615 peptides; from HLA-B3801 455 peptides; and from HLA-B3906 298 

peptides (all MASCOT scores ≥40) and corresponded to published HLA-binding motifs and 

peptide ligandomes (35). Of interest, PPI epitopes from the signal peptide region were 

identified for HLA-B3801, PPI5-14 MRLLPLLALL, and HLA-B3906, PPI5-12 MRLLPLLA 

(Figure 1 and Supplementary Figure 2), respectively. In addition we identified a B-chain 

epitope for HLA-B3801, PPI33-41 SHLVEALYL, and a C-peptide epitope for HLA-A1101, 

PPI80-88 LALEGSLQK. Peptide identities were confirmed by tandem mass spectrometry 

profiling of the synthetic compound (Supplementary Figure 2). No other peptides from PPI 

were identified. 

Taken together with our previous reports of immunodominant PPI signal peptide-derived 

epitopes in PPI15-24-HLA-A0201  (6) and PPI3-11-HLA-A2402  (4), these new discoveries 

indicate that the signal peptide region of PPI is a rich source for processing for immune 

recognition (Table 1 and Figure 1). To examine whether this arises because signal peptide 

regions are immunogenic per se, as has been reported (36), the available peptidome data was 

mined in greater depth, showing that the degree to which signal peptides are presented is 

HLA allele dependent. Whilst, for example, HLA-A0201 presents a signal peptide-derived 

epitope from 46% of source proteins that contain a signal peptide, for HLA-A1101 this figure 

is only 6.9% (Supplementary Table 5). Probing for any signal peptide bias using in silico 
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prediction algorithms provided similar results (Supplementary Table 6). We conclude that 

presentation of signal peptides of PPI is unlikely to result from a generalized propensity of 

HLA molecules to select this region for presentation, but the number of HLA molecules 

studied to date remains limited. 

Intramembrane protease SPP cleaves PPI signal peptide 

Based on previous studies of intramembrane cleavage of signal peptides (37), we 

hypothesized that SPP is involved in processing and cleavage of PPI signal peptide. To test 

this, mRNAs encoding PPI were translated in vitro with ER-derived microsomes and [
35

S]-

labelled methionine and cysteine. Upon insertion of PPI into microsomes, PPI signal 

sequence is cleaved by signal peptidase, liberating translocated proinsulin from its signal 

peptide (Figure 2A). Moreover, traces of a peptide that co-migrated with an in vitro 

translated reference peptide comprising the PPI signal sequence were detected in the 

membrane fraction (Figure 2A, compare lanes 2 and 4). Since processing of nascent chains 

by signal peptidase is a well-known activity in ER-derived microsomes (31), and no low 

molecular weight peptides were observed in the translation reaction lacking microsomes (lane 

1), we conclude that the identified peptide corresponds to traces of PPI signal peptide that 

remain in the ER membrane fraction. In contrast, the PPI signal peptide is markedly 

stabilized and retained in the microsome fraction upon treatment with the SPP inhibitor (Z-

LL)2-ketone (Figure 2A, lane 3). Overall, this shows that PPI behaves as a canonical nascent 

chain that is processed by signal peptidase liberating a signal peptide released from the ER 

membrane by SPP-catalysed intramembrane cleavage.  

To further study the role of intramembrane proteolysis in turnover of PPI signal peptide, 

amino acid residues destabilizing the helical transmembrane span surrounding the scissile 

peptide bond were mutated to leucine, which blocks SPP-catalysed cleavage (21). Consistent 
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with our previous analysis of model signal peptides, single mutation of proline (at P9) and 

alanine (P12 and P15) shows marginal effects on PPI signal peptide processing, whereas 

double mutants (9L/12L; 9L/15L; and 12L/15L) and the triple mutant (9L/12L/15L) show 

very marked inhibition of SPP-catalysed processing (Figure 2B-D, Supplementary Table 1, 

Supplementary Figure 3). This identifies PPI signal peptide as a bona fide SPP substrate 

and confirms the requirement for helix-breaks and limited hydrophobicity for intramembrane 

cleavage. Replacement of the classical helix-break residue proline at position 9 of PPI signal 

peptide alone is not sufficient to completely block SPP-catalysed processing and only shows 

effect when at least one of the nearby alanine residues, which show an intermediate stability 

within transmembrane helices (38), is also mutated to leucine.  

We next examined whether abrogation of SPP-catalysed cleavage of PPI signal peptide 

impacts upon immune recognition of signal peptide-derived epitopes. Double-targeting 

CRISPR-Cas9 technology generated three independent K562-A2-PPI cell lines with SPP 

knockout (K562-A2-PPI-SPPko; SPP knockout validation shown in Supplementary Figure 

4). When cultured with the PPI15-24 specific HLA-A0201-restricted CD8 T cell clone, 

degranulation (measures clone activation via T cell receptor ligation by peptide-HLA) 

frequency and magnitude were markedly reduced in the presence of K562-A2-PPI-SPPko 

cells compared to mock-treated lines (Figure 3). The difference in T cell activation is not due 

to differences in HLA class I expression levels (Supplementary Figure 5) and the SPP 

knockout phenotype of reduced T cell activation is rescued when cells are pulsed with 

cognate peptide (Supplementary Figure 6), These data show that SPP-catalysed processing 

of PPI signal peptide is an essential step to generate an immunologically relevant epitope that 

is implicated as having a pathogenic role in type 1 diabetes through activation of β-cell-

specific autoreactive CD8 T cells (6; 8). 

Requirement for proteasome, TAP and ERAP in PPI processing 
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We previously showed that PPI15-24 processing and presentation by HLA-A0201 does not 

require proteasome cleavage or import into the ER via TAP (6). In contrast with PPI15-24-

HLA-A0201, however, PPI3-11-HLA-A2402 presentation is TAP dependent. RNAi inhibition 

of TAP1 (94.5 +/- 2.3% mRNA knockdown) and TAP2 (95.4 +/- 0.3% mRNA knockdown) 

expression in K562-A24-PPI cells markedly reduces MIP-1β production (60.7% and 30.2% 

respectively) by PPI3-11-HLA-A2402-specific CD8 clone upon co-culture with TAP RNAi 

treated K562-A24-PPI cells (Figure 4A). This is attributable to a reduction in surface density 

of the specific pHLA ligand PPI3-11-HLA-A2402 (TAP RNAi treated K562-A24-PPI cells 

show only minimal reduction in HLA class I expression; Supplementary Figure 7). 

Next, we investigated whether ER-resident aminopeptidases are involved in the processing 

and presentation of PPI signal peptide epitopes. Knockdown of ERAP1 (87.2 +/- 0.5% 

mRNA knockdown) in K562-A24-PPI cells by RNAi markedly reduced MIP-1β production 

(62.6%) by PPI3-11-HLA-A2402-specific clone 4C6 , whilst no effect was seen in the 

presence of ERAP2 knockdown (73.7 +/- 6.1% mRNA knockdown; 8.0% change in MIP-1β 

production) (Figure 4B). Similar effects were seen in target killing assays (data not shown). 

RNAi for ERAP1 and ERAP2 had only minimal effects on total surface HLA class I 

expression (Supplementary Figure 7), indicating that the ERAP1-mediated interference in 

clone 4C6 activation is likely to be an effect on target cell surface density of specific PPI3-11-

HLA-A2402 ligand. 

TAP and ERAP1 expression in pancreas samples from subjects with type 1 diabetes 

Expression of the processing proteins TAP1 and ERAP1, both of which we have shown to 

have potential contribution to the generation of PPI epitopes that target β-cells for killing by 

PPI-specific cytotoxic CD8 T cells, were investigated in human pancreas recovered from 

healthy control subjects and those with type 1 diabetes. TAP1 was present at low levels in the 

Page 13 of 52 Diabetes



 

14 

 

pancreatic islets of healthy control subjects and was detected at similarly low levels in the 

insulin-deficient islets (IDIs) of patients with type 1 diabetes (Figure 5A). In contrast, TAP1 

was markedly upregulated in the insulin containing islets (ICIs) of these patients (Figure 

5A). Co-localisation studies revealed that the elevation in TAP1 expression was most evident 

in β-cells although it was also increased in other islet cells. Quantification of the 

immunostaining in six age-matched controls and six type 1 diabetes subjects was achieved by 

measuring the mean fluorescent intensity of TAP1 labelling in three islets from each control 

subject and in six islets from each patient (three ICIs and three IDIs). This confirmed a 

significant elevation in TAP1 expression in ICIs from type 1 diabetes patients when 

compared to IDIs or control islets (Figure 5B; p<0.001). Application of similar approaches 

demonstrated that, as previously described (9), HLA-ABC was also markedly elevated in the 

ICIs of type 1 diabetes patients (Figure 5C). Moreover, there was a strong positive 

correlation between the expression of TAP1 and HLA-ABC in insulin-containing islets 

(Figure 5D; R
2
= 0.519, p<0.001).  

ERAP1 was detected in the islets of healthy controls and was also found in the islets of 

donors with type 1 diabetes (Supplementary Table 2). However, by contrast with TAP1, 

ERAP1 expression was not noticeably altered between the islets of control subjects and those 

with type 1 diabetes (Supplementary Figure 8). 

Model for PPI signal peptide immune processing and presentation 

Collectively, these findings imply a model of PPI signal peptide processing for HLA class I 

presentation in which the fate that follows intramembrane cleavage is dependent upon 

location within the ER membrane and HLA binding potential (Figure 6). On the one hand, 

N-terminal peptides may be released into the cytoplasm, where they are dependent upon TAP 

transport into the ER and ERAP1 trimming, before loading into nascent HLA molecules. As 
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an alternative, distally generated, ER luminal peptides are directly released into the ER lumen 

omitting the need for TAP, but may require N-terminal trimming by ERAP1 for optimal 

presentation.  
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Discussion 

In the present study, we extend our previous PPI epitope discovery effort to encompass new 

HLA class I alleles associated with type 1 diabetes risk/protection. This reveals PPI signal 

peptide as a frequent source of epitopes for multiple HLA-A and -B alleles. Our previous 

finding of proteasome independence for HLA-A0201 PPI presentation (6) implied a non-

canonical pathway for generation of signal peptide-derived epitopes. This concept is extended 

in the present study, in which we highlight the requirement for intramembrane cleavage and 

indicate the importance of SPP in this role. We further show that following intramembrane 

cleavage, the pathway of peptide loading varies according to whether a signal peptide-derived 

epitope is N-terminal (TAP requiring) or C-terminal (TAP independent). Loading is dictated 

by the HLA allele and optimised in the presence of ERAP1. These findings highlight a 

distinct set of processing principles for PPI (stoichiometry with translation; proximity to site 

of HLA molecule synthesis and loading) that contrast with canonical endogenous antigen 

processing, which relies upon proteasome degradation of effete or damaged cytoplasmic 

proteins. Together with evidence that TAP expression is upregulated in relevant tissues in the 

disease setting, the study offers important insight into the molecular processes that are a key 

underpinning of interactions between cytotoxic CD8 T cells and β-cells during the 

pathogenesis of the disease. 

One caveat in our study relates to using tumour cells transfected with the INS gene and 

selected HLA allele as “surrogate β-cells” to represent and understand the endogenous 

pathway of PPI presentation as it may occur in a human β-cell in vivo. It remains open to 

interpretation whether this approach biases epitope discovery towards a specific PPI region, 

although our finding of epitopes in the signal peptide, B chain and C-peptide across the 

different HLA molecules suggests that this is unlikely. K562 cells predominantly express the 

constitutive proteasome (39) whilst there is evidence that the immunoproteasome can be 
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upregulated in β-cells under inflammatory conditions (40) and the balance of these two could 

influence the spectrum of epitopes generated in human islets. Our approach is pragmatic, 

since obtaining sufficient, pure β-cells for such work presents a severe technical and logistical 

challenge. We therefore elect to conduct epitope discovery using “surrogate β-cells” and then 

confirm findings using human tissue. Indeed, our previous experience has been that epitopes 

identified in this way for HLA-A0201 and A2402 are faithful phenocopies of PPI 

presentation by β-cells. In both cases we were able to generate CD8 T cell clones that 

recognize PPI epitopes presented by both the surrogate and donor-derived β-cells. Providing 

similar proof for the less common alleles remains challenging, however (41), although studies 

examining the frequency and antigen-experience of, for example, PPI5-12-B3906 and PPI5-14-

B3801 restricted T cells in the blood using peptide-HLA multimer technology, will provide 

supportive evidence of a pathogenic role.  

One of our findings is to identify a non-canonical pathway of endogenous antigen processing 

for an epitope that is relevant to recognition of β-cells by the immune system. Central to this 

is an intramembrane cleavage step. Our studies conducted in vitro using microsomes indicate 

that SPP is capable of cleaving the PPI signal peptide, which is released from the ER 

membrane by SPP-catalysed cleavage. CRISPR-Cas9-mediated SPP knockout indicates that 

this enzyme is also rate-limiting for epitope generation in vivo. Using this and the (Z-LL)2-

ketone inhibitor approaches we are able to argue that SPP knockout affects processing of 

signal peptide, leading to reduced presentation of PPI15-24 and, in turn, reduced activation of 

the specific T cell clone. Overall this appears compelling evidence for a direct role of SPP in 

the processing of PPI signal peptide in a manner that is critical to the generation of this 

important epitope.  

SPP belongs to the family of GxGD intramembrane proteases including presenilin/γ-secretase 

and related SPP-like proteases (37). The ER-resident SPP cleaves various signal peptides and 
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type II membrane proteins in a number of physiological settings (42), including the 

generation of a regulatory peptide from HLA-A0301 signal peptide that is required for HLA-

E-mediated immunosurveillance (22). This is not the first study to draw attention to the 

potential requirement for intramembrane cleavage of an autoantigen in type 1 diabetes. Using 

algorithms to predict HLA-A0201 epitopes of islet amyloid polypeptide (IAPP), previous 

studies have shown CD8 T cell reactivity to IAPP9-17 and IAPP5-13 in the blood (43; 44) and 

in the case of IAPP5-13, also in islets of patients with type 1 diabetes (8). Whether these 

peptides are naturally processed and presented by β-cells remains unclear, however, and if 

confirmed for both it would imply a complex processing pathway, since the C-terminus of 

IAPP5-13 overlaps and extends into the N-terminus of IAPP9-17. 

Signal sequences are essential for protein targeting to the secretory pathway via the ER (45; 

46) where, after insertion into the protein-conduction translocation channel, they are cleaved 

from the preprotein by signal peptidase (47), which in the case of PPI15-24-HLA-A0201 also 

generates the epitope C-terminus. Signal peptides spanning the ER membrane require 

cleavage by SPP for efficient disposal (19; 20). No consensus SPP cleavage motif has been 

identified, beyond a strong preference for helix-destabilizing residues in the membrane 

spanning region (21; 48; 49), which are likely to be the proline and two alanine residues at 

positions 9, 12 and 15, respectively. Indeed, in our studies mutation of any one of these has a 

mild effect on signal peptide cleavage; any two mutations together gives a moderate 

phenotype; and when all three are mutated, SPP is unable to cleave, indicating that these are 

the helix-destabilizing residues in PPI. Once liberated, SPP-cleaved N-terminal signal peptide 

fragment gets access to the cytosol where it is either trimmed by the proteasome or directly 

loaded onto TAP and the MHC peptide-loading complex. In the case of PPI3-11-HLA-A2402, 

we show TAP requirement, whilst PPI15-24-HLA-A0201 requires neither proteasome nor TAP 
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(6) leading us to speculate that “untapped” loading of a C-terminal signal peptide fragment 

makes use of other chaperones, such as TAPBP. 

We considered it important to try to link findings in relation to mechanisms of β-cell antigen 

presentation obtained in vitro with the tissue inflammatory process taking place in subjects 

with type 1 diabetes. Our analysis shows that TAP expression is significantly increased in 

insulin-containing islets and correlated in its hyper-expression with HLA class I molecule 

expression. It has become a much vaunted metaphor that the β-cell contributes to its own 

destruction in various ways. In the particular setting of PPI presentation to cytotoxic T cells, 

it would appear that hyper-expression of TAP is a further example, certainly for HLA alleles 

such as HLA-A2402. In this way it may complement the effects of hyper-expression of HLA 

class I and hyper-glycaemic conditions (which upregulate PPI presentation (6)) in enhancing 

β-cell cytotoxicity under the inflammatory milieu that prevails in the islets of Langerhans in 

patients with type 1 diabetes.  

  

Page 19 of 52 Diabetes



 

20 

 

Table 1. Preproinsulin epitopes identified by elution from specific HLA class I molecules. 

Allele Risk/Protection PPI Signal Peptide Other PPI regions 

HLA-A*0201 Risk/neutral PPI15-24 (ALWGPDPAAA) No peptides found 

HLA-A*2402 Risk PPI3-11 (LWMRLLPLL) No peptides found 

HLA-B*1801 Risk No peptides found No peptides found 

HLA-B*3906 Risk PPI5-12 (MRLLPLLA) No peptides found 

    

HLA-A*1101 Protection  No peptides found PPI80-88 (LALEGSLQK) 

HLA-B*3801 Protection  PPI5-14 (MRLLPLLALL) PPI33-41 (SHLVEALYL) 
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Figure Legends 

Figure 1: PPI epitope discovery in HLA-B3906. (A) Tandem mass spectrometry analysis 

of collision-induced dissociation revealing the tandem mass spectrum of a peptide of mass 

463.8 m/z and sequence MRLLPLLA. The correct identity of the peptide was proven by 

tandem mass spectrometry of the synthetic compound. (B) The table lists the amino acid 

sequence of the peptide with the expected b- and y-fragment ions (fragment ions extending 

from the amino- and carboxyl terminus respectively). Observed fragment ions are underlined. 

Tandem mass spectra and table of b- and y-fragment ions for PPI epitopes discovered in 

HLA-A1101 and B3801 are provided in Supplementary Figure 2. (C) Diagram indicates 

position of the PPI signal peptide in the ER membrane during co-translational translocation, 

and the sequences and positions of the signal peptides identified by elution of the naturally 

processed and presented immunopeptidome for different HLA molecules. 

 

Figure 2: Processing of PPI signal peptide by SPP in a cell-free translocation assay. (A) 

In vitro translation of wild type (wt) PPI mRNA in the absence (lane 1) or presence of ER-

derived microsomes (lanes 2 and 3) and SPP inhibitor (Z-LL)2-ketone (lane 3). Microsomes 

containing radiolabelled translocated proinsulin and membrane integral signal peptides (SP) 

were isolated and analysed by SDS-PAGE and audioradiography. Lane 4, in vitro-translated 

reference peptide comprising the PPI signal sequence. Upon ER targeting and signal 

peptidase cleavage, liberated SP is released from the membrane fraction (lane 2) in a process 

that can be blocked in the presence of (Z-LL)2-ketone inhibitor (lane 3) indicating SPP-

catalysed cleavage. (B) In vitro translation of mutant PPI mRNA (P9L, A12L, A15L) under 

similar conditions shows cleavage-deficient SP that is retained in the membrane fraction 

irrespective of (Z-LL)2-ketone inhibitor. (C) P9L, A12L, A15L SP mutant sequence. (D) 

Quantification of PPI signal peptide processing (mean, wt n=5, mutations n=2). Means 
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indicate the relative amounts of signal peptide obtained in lane 2 compared to the 

corresponding lane 3, where SPP was inhibited. Processing was quantified by comparing 

intensity of signal peptide in the absence (DMSO) and presence of SPP inhibitor (Z-LL)2-

ketone for each condition, given by the formula 100-(100x/y) where x is the intensity of the 

test band and y is the intensity of the band in the presence of full inhibition with (Z-LL)2-

ketone). Equal translocation efficiency was controlled by comparing the amount of proinsulin 

between conditions. Supplementary Table 1 and Supplementary Figure 3 for details.  

 

Figure 3: Impact of signal peptide peptidase (SPP) knockout in PPI- expressing cells on 

HLA presentation of signal peptide-derived epitope presentation. The PPI15-24 specific 

HLA-A0201 restricted T cell clone was cultured at 2:1 target to effector ratio with different 

cell lines representing K562-A2-PPI (positive control; presents PPI15-24 in HLA-A0201); 

K562-A2 (negative control; lacks PPI) K562-A2-PPI-SPPmock (negative controls; 2 lines of 

mock CRISPR-Cas9 manipulation, see Methods) and K562-A2-PPI-SPPko (test conditions; 3 

independent lines of CRISPR-Cas9 knockout of SPP). SPPko markedly reduces activation of 

the T cell clone, as shown by (A) the lower median fluorescence intensity of CD107a and (B) 

reduced percentage expression of CD107a. Bars and error bars represent mean ± SEM for 4 

independently performed experiments.  

 

Figure 4: Impact of siRNA knockdown of TAP and ERAP1 on epitope presentation. (A) 

Percentage mRNA knockdown in K562-A24-PPI cells treated with siRNA knockdown for 

β2M, TAP1, and TAP2 genes and (B) ERAP1 and ERAP2 genes (left panels) and resulting 

effect on MIP-1β production by the HLA-A2402-restricted PPI3-11 specific CD8 T cell clone 

4C6 upon co-culture with the different cells lines (right panels). Scrambled siRNAs are used 
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as control. ∆Ct values of targeted knockdown were compared to ∆Ct of scrambled siRNA, 

and expressed as the relative mRNA level of specific gene knockdown. Efficiency of relevant 

mRNA knockdown is high resulting in reduced PPI3-11 presentation for TAP1, TAP2 and 

ERAP1, but not ERAP2. B2M serves as a positive control. Bars/error bars represent mean ± 

SEM of technical duplicates from three independent experiments for mRNA knockdown and 

one representative example of MIP-1β production (two further repeats in Supplementary 

Figure 9). 

 

Figure 5: Expression of TAP and ERAP1 in human pancreas. Pancreas samples from 6 

control individuals and 6 patients with type 1 diabetes (Supplementary Table 2) were 

stained for TAP1, HLA-ABC and insulin. (A) Images are representative (same microscope 

and camera settings) of 18 islets from control cases, plus 18 insulin-deficient islets (IDI) and 

18 insulin-containing (ICI) islets from patients with type 1 diabetes. The mean fluorescence 

intensity (MFI) for each antigen was determined within all imaged islets. The analysis reveals 

(B) a significant increase in TAP1 expression in ICIs from individuals with type 1 diabetes 

compared with IDIs or control islets. (C) Consistent with previous reports, a similar change 

was seen with HLA-ABC expression. (D) Comparing TAP1 and HLA-ABC expression 

within the same islets shows a positive correlation. Error bars represent mean values ± SEM, 

with a one-way ANOVA and a subsequent post-hoc Tukey’s multiple comparison test used to 

determine significance between groups (***p<0.001). 

 

Figure 6: Processing of PPI signal peptide. Model of PPI signal peptide processing in 

which N-terminal peptides may be released into the cytoplasm by SPP where they depend on 

TAP transport into the ER and ERAP1 trimming before loading into nascent HLA (illustrated 
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by example of PPI3-11 loading into HLA-A2402), in contrast ER luminal peptides are directly 

released into the ER lumen, not requiring TAP transport but equally requiring trimming by 

ERAP1 for optimal presentation (illustrated by example of PPI15-24 loading into HLA-

A0201). 
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Designation Sequence 

Wild type PPI SP sequence MALWMRLLPLLALLALWGPDPAAA 

9L mutant  MALWMRLLLLLLLLLLWGPDPAAA 

12L mutant  MALWMRLLLLLLLLLLWGPDPAAA 

15L mutant  MALWMRLLLLLLLLLLWGPDPAAA 

9L/12L mutant MALWMRLLLLLLLLLLWGPDPAAA 

9L/15L mutant MALWMRLLLLLLLLLLWGPDPAAA 

12L/15L mutant MALWMRLLLLLLLLLLWGPDPAAA 

9L/12L/15L mutant MALWMRLLLLLLLLLLWGPDPAAA 

Supplementary Table 1: Site directed mutation of signal peptide of preproinsulin  
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Supplementary Table 2: Details of subjects studied for pancreatic expression of antigen processing enzymes 

Case ID Group Source 
Donor Status Age 

(years) 
Duration 

485 88 No diabetes control UK Pancreas Biobank Autopsy 2   

315 89 No diabetes control UK Pancreas Biobank  Autopsy 9   

65 71 No diabetes control UK Pancreas Biobank Autopsy 40   

8579 No diabetes control UK Pancreas Biobank  Autopsy 7   

540 91 No diabetes control UK Pancreas Biobank  Autopsy 11   

PAN8 No diabetes control UK Pancreas Biobank  Autopsy 19   

E560 Type 1 diabetes UK Type 1 diabetes Biobank  Organ Donor 42 1.5y 

Sc115 Type 1 diabetes UK Type 1 diabetes Biobank  Autopsy 1 0 ‘Recent’ 

E124B Type 1 diabetes UK Type 1 diabetes Biobank  Autopsy 17 0 ‘Recent’ 

E375 Type 1 diabetes UK Type 1 diabetes Biobank  Autopsy 11 unknown 

11746 Type 1 diabetes UK Type 1 diabetes Biobank  Autopsy 6 1 week 

11713 Type 1 diabetes UK Type 1 diabetes Biobank  Autopsy 3 3 months 
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Supplementary Table 3: Details of the staining protocol for each antibody employed in the current study. 

temperature)).

 

Legend supplementary Table 3: Details of the staining protocol for each antibody employed in the current study. Where multiple antigens were stained on the same 
section, antibodies were applied sequentially (staining order: anti-TAP1 (overnight at 4°C) followed by anti-HLA-ABC (1h at room temperature) or anti-glucagon (1h at 
room temperature) then anti-insulin plus DAPI (1h at room temperature)). 

 

 
Primary 

Antibody 

Manufacturer 

and clone 

Antigen Retrieval Antibody 

Dilution 

Incubation 

time with 

primary 

antibody 

Secondary Detection System 

HLA-ABC Abcam  C#ab70328 

Mouse monoclonal 

EMR8-5 

10mM citrate pH6.0 1/1000 1h at RT 
Immunofluoroscence staining using anti-mouse IgG (H+L) 

Alexa Fluor™-conjugated secondary antibodies (1/400 for 1h) 

Insulin Dako C#A0564 

Guinea-pig polyclonal 
10mM citrate pH6.0 1/700 1h at RT 

Immunofluoroscence staining using anti-guinea-pig IgG (H+L) 

Alexa Fluor™ -conjugated secondary antibodies (1/400 for 1h) 

Glucagon Abcam C#ab92517 

Rabbit monoclonal 

EP3070 

10mM citrate pH6.0 1/4000 1h at RT 
Immunofluoroscence staining using anti-rabbit IgG (H+L) 

Alexa Fluor™-conjugated secondary antibodies (1/400 for 1h) 

TAP1 Protein Tech 

C#11114-1-AP 

Rabbit polyclonal 

10mM citrate pH6.0 1/200 o/n 4oC 
Immunofluoroscence staining using anti-rabbit IgG (H+L) 

Alexa Fluor™ -conjugated secondary antibodies (1/400 for 1h) 

ERAP R & D Systems  

C#AF2334 

Goat polyclonal 

10mM Tris, 1mM 

EDTA pH9.0 
1/200 o/n 4oC 

Dako REAL™ Envision™ Detection System with anti-goat 

IgG HRP-conjugated secondary antibodies (1/800 for 1h). 
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Supplementary Table 4: Oligonucleotides used for CRISPR-mediated gene knockout.   

Forward Reverse 

Exon 2  GAAGCGGGCGGCATCCCGGCGTTTT GCCGGGATGCCGCCCGCTTCCGGTG 

Exon 3 GCAGGAGGTTGATGTACTCCGTTTT GGAGTACATCAACCTCCTGCCGGTG 

Exon 10  GCAGCCTACATCTTCGGCCTGTTTT AGGCCGAAGATGTAGGCTGCCGGTG 

Exon 11  CAGGACAGGAAAACCGATGCGTTTT  GCATCGGTTTTCCTGTCCTGCGGTG 
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HLA- 
A*02:01 

HLA- 
A*11:01 

HLA- 
A*24:02 

HLA- 
B*18:01 

HLA- 
B*38:01 

HLA- 
B*39:06 

All  
HLA 

Human 
proteome 

Source proteins 458 667 190 510 378 259 2462 20226 

Number of source proteins 
containing a signal peptide 

26 29 17 25 35 21 153 3560 

Frequency of signal peptide 
containing source proteins 

5.68% 4.35% 8.95% 4.90% 9.26% 8.11% 6.21% 17.6% 

Number of proteins with signal 
peptide-derived epitope 

12 2 4 5 4 13 40 

Frequency of identified SP 
epitopes from SP-Protein 

46.15% 6.90% 23.53% 20.00% 11.43% 61.90% 26.14% 

Supplementary Table 5. Eluted epitopes are not selectively derived from SP containing source protein nor their signal peptide 
region.   

Source Proteins are those represented by at least one epitope with Mascot Score >40 within our HLA class I elution data (1). Uniprot (2) ( access 
via http://www.uniprot.org/) retrieve/ID mapping function was used to identify signal peptide containing source proteins. SP, signal peptide. 
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Supplementary Table 6. Putative PPI epitopes identified by in silico binding prediction algorithms. 
Binding prediction were performed by SYFPEITHI (3) (access via : www.syfpeithi.de)) to identify putative PPI epitopes to compare eluted epitopes to those 
identified in silico. Epitopes derived from the PPI signal peptide are highlighted in bold and those identified by elution in green. 
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Supplementary Figure 1 

Legend Supplementary Figure 1: Representative Expression of HLA class I  and secretion of proinsulin. Expression of HLA class I  and secretion of proinsulin by the 
generated K562-PPI (dashed line) and K562-PPI-HLA (solid line) cell lines (isotype control grey shaded). Single cell cloning was performed to select for the K562-PPI-
HLA cell line with best combination of HLA class I expression (left) and Proinsulin expression (right). Data is representative, with B*3906 shown, and similar data 
obtained for A*11:01, B*1801 and B*38:01. 
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Supplementary Figure 2 A) HLA-A*1101 Epitope PPI80-88 

bn ions 114.1 185.1 298.2 427.3 484.3 571.3 684.4 812.5 958.6 

Peptide L A L E G S L Q K 

yn ions 958.6 845.5 774.4 661.4 523.3 475.3 388.3 275.2 147.1 

Eluted 

Synthetic 

Supplementary Figure 2: PPI epitope discovery 
Tandem mass spectrometry analysis of collision-
induced dissociation revealing the tandem mass 
spectrum of a PPI peptide (A) HLA-A*1101 
Epitope PPI80-88 (LALEGSLQQK), (B) HLA-B*3801 
Epitope PPI5-14 (MRLLPLLALL) and (C) HLA-B*3801 
Epitope PPI33-41 (SHLVEALYL) . The correct identity 
of the peptide was proven by tandem mass 
spectrometry of the synthetic compound. The 
table lists the amino acid sequence of the 
peptide with the expected b- and y-fragment ions 
(fragment ions extending from the amino- and 
carboxyl terminus respectively). Observed 
fragment ions are underlined.  
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Supplementary Figure 2 B) HLA-B*3801 Epitope PPI5-14 

bn ions 132 288.1 401.2 514.3 611.4 724.5 837.5 908.6 1021.7 1134.7 

Peptide M R L L P L L A L L 

yn ions 1177.8 1021.7 865.6 752.5 639.4 542.4 429.3 316.2 245.2 132.1 

Eluted 

Synthetic 
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Supplementary Figure 2 C) HLA-B*3801 Epitope PPI33-41 

bn ions 88 225.1 338.2 437.3 566.3 637.3 750.4 913.5 1044.6 

Peptide S H L V E A L Y L 

yn ions 1044.6 957.5 820.5 707.4 608.3 479.3 408.2 295.2 132.1 

Eluted 

Synthetic 
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Legend Supplementary Figure 3: Processing of the PPI signal peptide in microsomes. In vitro translation of wt PPI mRNA or mutant PPI mRNA (P9L, A12L, A15L) in the 
absence (lanes 1) or in the presence of ER-derived microsomes (lanes 2 and 3) and SPP inhibitor (Z-LL)2-ketone (lanes 3). Microsomes were isolated and analyzed by 
SDS-PAGE, and radiolabeled proteins visualized by phosphorimaging. Lane 4, in vitro-translated reference. Images are representative images of n=2, apart from wt 
where n=5. Equal translocation efficiency and PPI precursor availability for processing was controlled by comparing the amount of proinsulin between conditions. 

Supplementary Figure 3 

microsomes             -          +         +       ref           -          +       +       -       +      +         -         +       +        -         +       +           -          +     +         -       +       +               -        +         +         -      +         + 
(Z-LL)2-ketone          -          -          +                       -          -        +       -       -       +        -          -        +       -         -        +           -           -     +         -       -        +               -        -          +         -      -          +       

SP 

PPI 

PI 

wt 9L 12L 15L 9L/12L/15L wt 9L/12L 9L/15L 12L/15L 

1 lanes 2 3 4 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 
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Supplementary Figure 4 

Lane Cell line 

1 K562-A2 

2 K562-A2-PPI 

3 K562-A2-PPI-Mock 1 

4 K562-A2-PPI-Mock 2 

5 K562-A2-PPI-SPPko 1 

6 K562-A2-PPI-SPPko 2 

7 K562-A2-PPI-SPPko 3 

Legend Supplementary Figure 4: Validation of SPP knockout (truncation) by PCR. Within the K562-A2-PPI cells line the SPP gene was truncated using CRISPR-Cas9 
directed double targeting of each exon at the start and end of the gene. Simultaneous targeting leads to truncation of the gene in effect leading to functional gene 
knockout. Length of the gene was assessed using PCR with SPP specific primers on cDNA generated from isolated mRNA from the cell lines. WT (lane 1 and 2) and 
mock transfected (lane 3 and 4) cell lines harbour full  length SPP, whereas reduction (lane 6 and 7) in size or abrogation (lane 5) was observed for cell lines with 
effective CRISPR-Cas9 targeting of SPP. 
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Supplementary Figure 5 

Legend Supplementary Figure 5: HLA class I surface expression on Mock and SPPko cell lines. Cell lines were stained with anti-pan HLA class I antibody (HLA, black 
line) and corresponding isotype control (ISO, grey line) antibody. Levels of surface HLA expression are similar for each experimental condition (WT, mock and SPP 
knockout). 
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Supplementary Figure 6 

Legend Supplementary Figure 6: Pulsing SPPko cells with cognate peptide rescues their phenotype. K562-A2 and K562-A2-PPI-SPPko cell lines were pulsed for 1 hour 
with 10uM/ml peptide or peptide diluent (DMSO) prior to co-culture with T cell clone specific for PPI15-24-HLA-A0201. T cell activation was assessed by CD107a 
expression. For each SPPko cell line, peptide pulsing leads to increased T cell activation as evidenced by both increases in percentage expression of CD107a (left) and 
median fluorescence intensity of CD107a (right) with comparable levels in the pulsed WT K562-A2 cell line. Three independent experiments. 

D
M

SO
_ K 5 6 2 -A

2 -P
P I-

S P P k o  1

P e p t i
d e _ K 5 6 2 -A

2 -P
P I-

S P P k o  1

D
M

SO
_ K 5 6 2 -A

2 -P
P I-

S P P k o  2

P e p t i
d e _ K 5 6 2 -A

2 -P
P I-

S P P k o  2

D
M

SO
_ K 5 6 2 -A

2 -P
P I-

S P P k o  3

P e p t i
d e _ K 5 6 2 -A

2 -P
P I-

S P P k o  3

D
M

SO
_ K 5 6 2 -A

2

P e p t i
d e _ K 5 6 2 -A

2

P e p t i
d e _ c lo

n e

0

5 0

1 0 0

%
 C

D
1

0
7

a
 T

 c
e

ll
s

 f
ro

m
 l

iv
e

 C
D

3
+

C
D

1
0

7
a

+

D
M

SO
_ K 5 6 2 -A

2 -P
P I-

S P P k o  1

P e p t i
d e _ K 5 6 2 -A

2 -P
P I-

S P P k o  1

D
M

SO
_ K 5 6 2 -A

2 -P
P I-

S P P k o  2

P e p t i
d e _ K 5 6 2 -A

2 -P
P I-

S P P k o  2

D
M

SO
_ K 5 6 2 -A

2 -P
P I-

S P P k o  3

P e p t i
d e _ K 5 6 2 -A

2 -P
P I-

S P P k o  3

D
M

SO
_ K 5 6 2 -A

2

P e p t i
d e _ K 5 6 2 -A

2

P e p t i
d e _ c lo

n e

0

5 0 0 0

1 0 0 0 0

M
F

I 
C

D
1

0
7

a
 l

iv
e

 C
D

3
+

C
D

1
0

7
a

+

Page 48 of 52Diabetes



Supplementary Figure 7 

Legend Supplementary Figure 7: HLA class I expression in siRNA experiments. Surface HLA-ABC (W6/32 clone) expression on b2M, ERAP1, ERAP2, TAP1, TAP2, 
scramble knockdown treated and untreated K562-A24-PPI respectively (HLA, black line) and isotype control (ISO, grey line). Median Fluorescence Intensity (MFI) of 
HLA staining is shown. 
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IDI ICI Control 

Supplementary Figure 8 

Legend Supplementary Figure 8: Representative immunohistochemistry staining of ERAP. Representative immunohistochemistry staining of ERAP on pancreas 
samples from patients with type 1 diabetes (n=3) and a representative control sample. ERAP is expressed in all islet cells irrespective of sample source and pancreas 
samples from type 1 diabetes patients show similar expression in insulin-deficient islets (IDI) and insulin-containing islets (ICI). These data suggest that ERAP 
expression is not significantly altered in the islets of patients with type 1 diabetes.  
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Supplementary Figure 9 

Legend supplementary Figure 9 : MIP-1β in siRNA experiments. MIP-1β production of HLA-A2402-restricted PPI3-11 specific CD8 T cell clone 4C6 upon co-culture with 
β2M, TAP1, TAP2, genes (top panel) and ERAP1, ERAP2 gene (bottom panel) knockdown in K562-A24-PPI cells. Two independent experiments. 
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