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PHASE DIAGRAM OF RESTRICTED BOLTZMANN MACHINES AND
GENERALISED HOPFIELD NETWORKS WITH ARBITRARY PRIORS

ADRIANO BARRA, GIUSEPPE GENOVESE, PETER SOLLICH, AND DANIELE TANTARI

Abstract. Restricted Boltzmann Machines are described by the Gibbs measure of a bipartite spin
glass, which in turn can be seen as a Generalised Hopfield network. This equivalence allows us to
characterise the state of these systems in terms of their retrieval capabilities, both at low and high load,
of pure states. We study the paramagnetic-spin glass and the spin glass-retrieval phase transitions,
as the pattern (i.e. weight) distribution and spin (i.e. unit) priors vary smoothly from Gaussian real
variables to Boolean discrete variables. Our analysis shows that the presence of a retrieval phase is
robust and not peculiar to the standard Hopfield model with Boolean patterns. The retrieval region
becomes larger when the pattern entries and retrieval units get more peaked and, conversely, when the
hidden units acquire a broader prior and therefore have a stronger response to high fields. Moreover, at
low load retrieval always exists below some critical temperature, for every pattern distribution ranging
from the Boolean to the Gaussian case.

1. Introduction

The genesis of modern AI can be traced quite far back in time. Beyond the pioneering and historical
contributions around the beginning of the last century, the most celebrated milestones are the neuron
model of McCulloch and Pitts [38], the Rosenblatt perceptron [42], and along with the Hebb learning
rule [30]. The latter was, in turn, exploited by Hopfield many years later to write his celebrated paper on
neural networks from the connectionist perspective [32]. There has been a growing stream of studies of
neural networks ever since, with the subject attracting the interest of various communities, from biology
to signal processing and information theory [31, 20, 22, 29]. The physics angle on the topic is mainly
represented by the statistical mechanics of spin glasses [39]. In particular, problems of great biological
and technological relevance, such as the capability to learn or retrieve memories, find a simple formulation
in a genuine statistical mechanics language [32, 4, 5, 31, 20, 22, 43].

However, the models used to implement these two crucial features of neural networks – learning
and retrieval – often start from quite different assumptions. For instance, in modern machine learning
approaches such as deep learning [35, 29], network weights are normally taken as real, enabling the use of
gradient descent for learning and inference. On the other side, the standard theory of pattern retrieval, as
exemplified by the Amit-Gutfreund-Sompolinsky analysis of associative neural networks [4, 5], assumes
Boolean patterns. Nevertheless, the two most utilised models for machine learning and retrieval, i.e.
restricted Boltzmann machines (RBMs) and associative Hopfield networks are known to be equivalent
[10, 15, 36, 34, 23]. Their relation is easily understood from the point of view of bipartite spin glasses:
on the one hand the Gibbs measure of such systems is the same as the one of Restricted Boltzmann
Machines, while on the other hand bipartite spin glasses constitute a class of disordered systems in
which the Hopfield model for neural networks can be embedded.

For this reason we analyse in this paper spin glasses defined on a bipartite network. We study the
retrieval in these networks while varying both spin/unit priors and pattern/weight distributions contin-
uously between the Boolean and the real Gaussian limits. We show that the presence of a ferromagnetic
region of retrieval is not peculiar to the standard Hopfield model, but occurs also in the case of continuous
units and weights when these take the form of a Gaussian “softening” of Boolean variables. Moreover,
while retrieval disappears for Gaussian weights at high load, in the low-load limit our generalised Hop-
field networks always have a retrieval phase throughout the entire range of pattern distributions ranging
from the Boolean to the Gaussian cases. This implies a degree of robustness in the machine-learning
set-up, where weights evolve on real axes and one usually works at low load, i.e. with a small number of
features, to avoid overfitting [35, 48].
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1.1. Generalised Hopfield Models and Restricted Boltzmann Machines. The Hopfield model
introduced in [32] is a celebrated paradigm for neural networks in which the neurons are represented by
N spins, taking values ±1. The energy function of the system is defined in terms of p so-called patterns,
denoted by ξµ, µ = 1, . . . , p. It is natural to take the patterns to be N -dimensional random vectors
with independent and identically distributed components, which makes the Hopfield model a spin glass.
Given an instance of the patterns, the Hamiltonian and the Gibbs measure of this system are

HN,p(σ|ξ) := −
p∑

µ=1

Nm2
µ , GN,p(σ|ξ) :=

e−βHN,p(σ|ξ)

Eσe−βHN,p(σ|ξ) , (1.1)

where β > 0 is the inverse temperature, β = 1/T , Eσ denotes the statistical expectation with respect to
the spin configurations in {−1, 1}N and

mµ :=
1

N

N∑
i=1

ξµi σi

are the pattern overlaps, or Mattis magnetisations [37]. Intuitively, the spin configurations selected by
this Hamiltonian have the best possible overlap with the quenched patterns. In particular when the
Gibbs average of mµ is non-zero for some µ we say that this pattern is being retrieved. For a short but
comprehensive summary of the main known results on this model we refer to section II.B of [36].

A generalisation of the Hopfield model is obtained by replacingm2 in (1.1) with a generic even function
u(m):

HN,p(σ|ξ) = −
p∑

µ=1

u(
√
Nmµ) . (1.2)

It is physically interesting, but not necessary, to consider convex u [42, 24, 25, 31, 22, 46]. Any convex,
even and smooth u can be expressed as the cumulant generating function of a sub-Gaussian symmetric
probability distribution with unit variance [28]. Interpreting the random variables with this distribution
as ancillary spins, we obtain a correspondence between generalised Hopfield models and bipartite spin
glass models. The latter are defined as follows: consider a bipartite system, with one part containing N1

spins denoted σ and the other N2 spins written as τ . Also let N = N1 +N2, α = N2/N and define the
partition function

ZN1,N2
(β; ξ) = Eσ,τ exp

(√
β

N

N1∑
i=1

N2∑
µ=1

ξµi σiτµ

)
. (1.3)

Setting u(x) = lnEτ1exτ1 , the cumulant generating function of the random variable τ1, and marginalising
over all τ , we clearly obtain the partition function of a generalised Hopfield model with interaction u,
as claimed. Therefore we can think of the ξµi as patterns, each entry being independently drawn from
Pξ(ξ

µ
i ). On the other hand, (1.3) can be viewed as a Restricted Boltzmann Machine, where a layer of

visible units σ interacts with a layer of hidden units τ through the weights ξ.
The standard Hopfield model is recovered when the ξ and the σ are binary and the τµ are Gaussian

variables, but we study in this paper a much larger class of priors Pσ(σi), Pτ (τµ) and Pξ(ξ
µ
i ). This

corresponds in the generalised Hopfield model to varying the pattern distribution, the spin prior and the
form of the interaction u.

Here we investigate the general phase diagram, especially with regards to the existence of a retrieval
phase (focusing on single pattern retrieval) and its interplay with the spin glass phase. Similar models
of RBMs with generic priors have recently been studied using belief propagation and related methods in
[36, 23, 47, 34].

1.2. Model and RS Equations. We shall use random variables which interpolate between Gaussian
and binary distributions. Let Ω ∈ [0, 1], g ∼ N(0, 1) and ε be a symmetric random variable taking values
±1. We define ζ as

ζ(Ω) =
√

Ωg +
√

1− Ωε

and we denote by D(Ω) its probability distribution. Of course E[ζ] = 0 and E[ζ2] = 1 for all Ω.
Throughout we will draw both the patterns and the spins from D(Ω), i.e. ξµi ∼ D(Ωξ), σi ∼ D(Ωσ)

and τµ ∼ D(Ωτ ) for Ωξ,Ωσ,Ωτ ∈ [0, 1]. It will be useful to define the shorthand δ =
√

1− Ωξ.
2
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Figure 1. Three equivalent architectures of neural networks: in a restricted Boltzmann
machine (RBM) (consisting of N1 = 5 σ variables and N2 = 3 τ variables in the figure)
the role of hidden and visible units can be exchanged and marginalising over the hidden
units one obtains two dual generalised Holpfield models (GHMs), where the visible layer
of the RBM constitutes the network and the hidden layer determines the interaction.

To allow for retrieval phases in our analysis, we assume there are some numbers `1 and `2 of condensed
patterns with pattern overlaps or Mattis magnetizations

mµ(σ) =
1

N1

N1∑
i=1

ξµi σi, µ = 1, . . . , `2, (1.4)

ni(τ ) =
1

N2

N2∑
µ=1

ξµi τµ, i = 1, . . . , `1 (1.5)

of order unity. We consider, for the sake of simplicity, the possible retrieval of a single pattern, i.e.
(`1, `2) = (1, 0) or (0, 1); this is known as a pure state ansatz. The general case of mixed states is a
straightforward generalisation [20] and can be considered a finer characterisation of the retrieval region
we are going to describe. On the other hand, the possible presence of frozen but disordered states (spin
glass region) can be described by introducing the overlaps

q(σa,σb) =
1

N1

N1∑
i=1

σai σ
b
i , r(τ a, τ b) =

1

N2

N2∑
µ=1

τaµτ
b
µ, (1.6)

between two configurations (σa, τ a) and (σb, τ b) sampled from the Gibbs measure with the same pattern
realisation, and the self-overlaps Q(σ) and R(τ ) in the case a = b. From a fairly standard replica
calculation and the replica symmetry assumption (see Appendix A for more details), one gets that in
the thermodynamic limit the Gibbs averages of the order parameters converge to the solutions of the
following system:

m =
〈
ξ 〈σ〉σ|z,ξ

〉
z,ξ

(1.7)

n =
〈
ξ 〈τ〉τ |η,ξ

〉
η,ξ

(1.8)

q =
〈
〈σ〉2σ|z,ξ

〉
z,ξ

(1.9)

r =
〈
〈τ〉2τ |η,ξ

〉
η,ξ

(1.10)

Q =
〈〈
σ2
〉
σ|z,ξ

〉
z,ξ

(1.11)

R =
〈〈
τ2
〉
τ |η,ξ

〉
η,ξ

(1.12)
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Here z and η are standard Gaussian random variables, while ξ is sampled from Pξ. The distributions of
σ and τ being averaged over are proportional to, respectively,

Pσ(σ)eβ(1−α)Ωτmξσ+
√
βαr zσ+βα(R−r)σ2/2, (1.13)

Pτ (τ)eβαΩσnξτ+
√
β(1−α)q ητ+β(1−α)(Q−q)τ2/2 . (1.14)

These equations are valid also for more general spin priors Pσ(σ) and Pτ (τ), provided one then defines
Ωσ (and similarly Ωτ ) as the high-field response of the spins, in the sense that the average of σ over
Pσ(σ)ehσ approaches Ωσh for large h.

We will repeatedly need averages over the distributions (1.13,1.14). Taking the first as an example,
the prior as defined is Pσ(σ) ∝

∑
ε exp[−(σ − ε

√
1− Ωσ)2/(2Ωσ)]. Thus the distribution (1.13) of σ has

the generic form
Z−1
σ

∑
ε

e−σ
2/(2γσ)+(φσε+hσ)σ (1.15)

where we have set φσ =
√

1− Ωσ/Ωσ and

γ−1
σ = Ω−1

σ − βα(R− r), hσ = β(1− α)Ωτmξ +
√
βαr z (1.16)

Averages over the distribution (1.15) then follow from the effective single spin partition function

Zσ =

∫
dσ
∑
ε

e−σ
2/(2γσ)+(φσε+hσ)σ ∝

∑
ε

eγσ(φσε+hσ)2/2 , (1.17)

giving

〈σ〉σ|z,ξ = ∂hσ lnZσ =

∑
ε γσ(φσε+ hσ)eγσ(φσε+hσ)2/2∑

ε e
γσ(φσε+hσ)2/2

(1.18)

= γσhσ + γσφσ tanh(γσφσhσ) (1.19)

The average of σ2 can similarly be found from〈
σ2
〉
σ|z,ξ − 〈σ〉

2
σ|z,ξ = ∂2

hσ lnZσ = ∂hσ 〈σ〉σ|z,ξ = γσ + γ2
σφ

2
σ[1− tanh2(γσφσhσ)] (1.20)

hence 〈
σ2
〉
σ|z,ξ = γσ + γ2

σ(h2
σ + φ2

σ) + 2γ2
σφσhσ tanh(γσφσhσ) . (1.21)

Analogous results hold for the averages of τ over the distribution (1.14).
The RBM and equivalent Hopfield model defined above generalises a number of existing models that

are included as special cases. For Ωσ = 0, Ωτ = 1 and Ωξ = 0 we recover the standard Hopfield model,
while if Ωξ = 1 we have the analog Hopfield model studied in [11, 12, 15] (see also [19] for the associated
Mattis model). For Ωσ = Ωτ = 0 we recover the bipartite Sherrington-Kirkpatrick (SK) model studied in
[13, 9]. In this case it is known that the thermodynamics is not affected by the pattern distribution [26].
Throughout this paper we consider only fully-connected networks: results on the sparse case restricted
to the Hopfield model can be found in [45, 1, 2].

1.3. Summary and Further Comments. The aim of this paper is to study the phase diagram of
Restricted Boltzmann Machines with generic priors and pattern/weight distributions as defined above.
In general one expects three phases: a high-temperature (or paramagnetic) phase in which the free
energy equals its annealed bound and all the order parameters are zero; a glassy phase where all pattern
overlaps are still zero but replica symmetry breaking (RSB) is expected and finally a retrieval phase in
which the overlap still has a glassy structure, but now one or more pattern overlaps have nonzero mean
values. The precise organisation of the thermodynamic states is unknown in the glassy and retrieval
regions. In particular, while in the glassy phase it is supposed to be similar to the one of the SK model
[39, 46], the understanding of the retrieval phase remains severely limited [20, 18, 46]) and represents an
open challenge for theoretical and mathematical physics.

Throughout the paper the starting point for our analysis will be equations (1.7–1.12). We will study
them analytically and numerically in the various regimes.

The high-temperature transition is well understood by exact methods for the standard Hopfield model
[20, 18], for the analog Hopfield model [11, 12, 15] and the bipartite SK model [13]. Moving beyond these
special cases, in Section 2 we give a theoretical prediction for the transition of the order parameter q as
the distributions of the priors and patterns vary. We will see that the transition is independent of the
particular pattern distribution. We find explicit expressions for the transition line for Ωσ = 0 (one layer
made of ±1 spins) and (with totally different methods in Appendix B) for Ωσ = Ωτ = 1. The remaining
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intermediate cases are studied by numerically solving the self-consistency equations (1.7–1.12) for the
order parameters.

Next we analyse the retrieval region considering the retrieval of one single pattern. A simple argument
shows that no retrieval is possible for Ωσ = Ωτ = 0: retrieval requires giving up an O(N) amount of
entropy in the σ-system. This is worthwhile only if we can gain an extensive amount of energy. The
pattern being retrieved gives a field of O(

√
N) acting on a τ spin, so the response of it needs to be also

O(
√
N) to get an overall O(N) energy gain. This is impossible for binary τ , but is possible for τ with

a Gaussian tail, for which the cumulant generating function grows quadratically at infinity. Hence we
always consider Ωτ > 0.

In Section 3 we look at the low-load regime in which α = 0, 1. It turns out that the transitions in m
and the replica overlap q occur at the same temperature T = Ωτ , and both transitions are continuous
(as is known to be correct for the standard Hopfield model [20, 18]). First we concern ourselves with
binary spins Ωσ = 0, then we analyse Ωσ > 0 where it turns out that we need to add an appropriate
spherical cut-off.

In Section 4 we study numerically the retrieval transition at high load, i.e. α ∈ (0, 1) so that the
number of patterns is proportional to the system size. First we vary separately Ωτ and Ωξ while keeping
Ωσ = 0 fixed. At Ωτ = 1 we see absence of retrieval in this analog Hopfield model (Ωξ = 1), as expected
from [12]. An analysis at T = 0 shows, furthermore, that the most efficient retrieval is given by the
standard Hopfield model.

Moving on to Ωσ > 0 we find that the model is well-defined only for high temperature. However, it
is interesting that while for Ωσ = Ωτ = 1 (Gaussian bipartite model) the divergence of the partition
function coincides with the glassy transition, in the intermediate cases there is still a region of retrieval
in the phase diagram. Finally when we regularise the model, again with a spherical cut-off, we observe
a standard retrieval phase, with a reentrant behaviour of the transition line. The latter would suggest a
RSB scenario, as in the standard Hopfield model [40].

In Appendix A we derive equations (1.7– 1.12) and in Appendix B we briefly analyse the Gaussian
bipartite spin glass via Legendre duality, a method introduced for the spherical spin glass in [27].

The model we analyse is, for Ωσ, a neural network with soft spins. Soft spin networks were introduced
at an early stage of the development of the field by Hopfield in [33], but were not much studied in the
sequel. From the (bipartite) spin glass perspective, soft spins (spherical or Gaussian) permit analytic
methods to be more easily applied, compared to the more commonly studied binary ±1 spins. Indeed
there is a substantial number of results in the literature. In [17] and [44] (see also [46]) two similar models
of spherical neural networks are introduced, with spherical spins and quadratic(-like) interactions. The
authors find the free energy to be RS and no retrieval region. However in [17] it is noted that retrieval
appears when a quartic term is added to the Hamiltonian. More recently in [7] a spherical spin glass
model was considered with random interaction given by a Wishart random matrix, which is closely
related with the work in [17, 44, 46]. The authors find the free energy (which one can argue to be RS
by comparison with the Wigner matrix case [16, 14, 27]) and its fluctuations for all temperatures. No
retrieval is observed. Finally a spherical bipartite spin glass is analysed in [6] for high temperatures, far
from the critical point, and the authors find the free energy in a variational form. Interestingly enough,
for this model our analysis yields the same paramagnetic/spin glass transition line as for the bipartite
SK model, and no retrieval (see the sections 4.3, 4.4 and Appendix B).

As for the RSB scenario there are only a few results for bipartite models. To the best of our knowledge
these are limited to 1RSB for the standard Hopfield model (see [21, 20]) and to a partial mathematical
investigation of the bipartite (in fact multipartite) SK model [9, 41]. Therefore we will restrict ourselves
only to RS approximations, where needed.

2. Transition to the spin glass phase

At very high temperature (β = 0) the distributions (1.13), (1.14) have no external effective fields and
the thermodynamic state is completely random, with order parameters m = n = q = r = 0. Lowering
the temperature, a spin glass transition to a frozen but disordered states takes place, creating nonzero
overlaps q and r while m and n remain zero. Assuming this transition is continuous, we can linearise
equations (1.9,1.10) for small q and r:

q ∼ βαr
〈
σ2
〉2

0
+ o(r) , (2.1)

r ∼ β(1− α)q
〈
τ2
〉2

0
+ o(q) . (2.2)
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Figure 2. Paramagnetic (P) / Spin glass (SG) transition line Tc(α) for different spin
priors. The values of the relevant parameters, Ωτ and Ωσ, can be read off from each
curve as Ωτ = Tc(0) and Ωσ = Tc(1). The two continuous lines (lower, Ωσ = Ωτ = 0,
bipartite SK; upper, Ωσ = Ωτ = 1, bipartite Gaussian) are completely symmetric w.r.t.
exchange of the two network layers, i.e. the transformation α → 1 − α. In the middle
the Hopfield critical line, Ωσ = 0, Ωτ = 1.

Here 〈 〉0 denotes the expectation value w.r.t. (1.13) and (1.14) with q = r = 0 (in particular without
the random field). The resulting transition criterion is

1 = β2α(1− α)
〈
σ2
〉2

0

〈
τ2
〉2

0
= β2α(1− α)Q2R2 , (2.3)

where, using (1.11) and (1.12), Q and R are the solutions of

Q =
〈
σ2
〉

0
= Z−1

σ Eσσ2eβαRσ
2/2 , (2.4)

R =
〈
τ2
〉

0
= Z−1

τ Eττ2eβ(1−α)Qτ2/2 . (2.5)

This result does not depend on the particular pattern distribution Pξ(ξ) (see also [3]), but it does clearly
involve the spin priors. With these priors fixed, the transition takes place at an inverse temperature
βc(α) > 0 that is a function of α. For β < βc(α) one finds that the self overlaps are the solutions of

Q = (1− βαΩ2
σR)/(1− βαΩσR)2 , (2.6)

R = (1− β(1− α)Ω2
τQ)/(1− β(1− α)ΩτQ)2 . (2.7)

The relation (2.6) can be derived directly from (1.21) with γ−1
σ = Ω−1

σ − βαR and hσ = 0, and similarly
for (2.7). Solving (2.6), (2.7) together with (2.3), Tc(α) = 1/βc(α) satisfies

i) limα→0 Tc(α) = Ωτ , limα→1 Tc(α) = Ωσ ,
ii) limΩσ→0 Tc(α) = 1

2

(
2(1− α)Ωτ +

√
α(1− α) + [α(1− α) + 4Ωτ (1− Ωτ )(1− α)

√
α(1− α)]1/2

)
,

and of course the symmetric expression for Ωτ → 0, which is obtained by replacing in ii) Ωτ by Ωσ and
α by 1− α.

Relation ii) recovers a number of known special cases. For Ωσ = Ωτ = 0, one gets the critical line of
the bipartite SK model Tc =

√
α(1− α) as found in [13] (see also [9]). When Ωσ = 0 and Ωτ = 1 one has

the standard Hopfield model and finds Tc = 1−α+
√
α(1− α) [5, 15]. The case of both Gaussian priors

(Ωσ = Ωτ = 1) can be found independently using the Legendre duality between the Gaussian bipartite
spin glass model and the spherical Hopfield model studied in [44, 17, 7], see Appendix B. The general
bimodal case can be analysed numerically; the results are shown in Fig. 2.

3. Transition to retrieval I: low load

In the low-load regime the size of one layer is negligible w.r.t. the total size of the system, N1 � N
or N2 � N , corresponding respectively to α = 1 or α = 0. In this case it is possible to obtain equation
(1.7) without any RS approximation since the model becomes a generalised ferromagnet. This can be

6
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Figure 3. Soft bipartite model at low load (α = 0): for a generic pattern distribution
(here δ = 0.5) a spontaneous magnetisation appears at T = Ωτ , diverging at T = ΩσΩτ .

studied only in terms of the pattern overlaps without the need to consider q and r [20, 18]. Focusing on
α = 0 and linearising (1.7) in m we get

m = βΩτm+O(m3) ,

which shows a bifurcation at T = Ωτ . As is known special cases, it therefore remains true for generic
Ωσ, Ωτ and Ωξ that the spin glass and low-load retrieval transitions occur at the same temperature.

We next consider the strength of retrieval at temperatures below the transition: the inner average of
equation (1.7) is, using (1.19) with γσ = Ωσ,

〈σ〉σ|ξ = ΩσβΩτmξ +
√

1− Ωσ tanh(
√

1− ΩσβΩτmξ)

To carry out the remaining average over ξ, which by assumption is drawn from the bimodal distribution
D(Ωξ) with peaks at ±δ = ±

√
1− Ωξ, we set (see Sec. 1.2) ξ = δε +

√
Ωξg. As 〈σ〉σ|ξ is odd in ξ, the

two possible values of ε = ±1 give the same contribution to
〈
ξ〈σ〉σ|ξ

〉
and we have to average only over

g. After an integration by parts this gives

m = fβ,Ω(m) (3.1)

with

fβ,Ω(m) = βΩσΩτm+
√

1− Ωσ

{
δ t̄(β

√
1− ΩσΩτδ m,

√
v) (3.2)

+ β
√

1− ΩσΩτΩξm
[
1− t2(β

√
1− ΩσΩτδ m,

√
v)
]}

.

Here have introduced the abbreviations

t̄(a, b) = 〈tanh(a+ b g)〉g , t2(a, b) =
〈
tanh2(a+ b g)

〉
g

(3.3)

where the averages are over a zero mean, unit variance Gaussian random variable g. We have also defined

v = β2(1− Ωσ)Ω2
τΩξm

2 (3.4)

For binary spins (Ωσ = 0), |σ| = 1 and so fβ,Ω(m) =
〈
ξ〈σ〉σ|ξ

〉
is bounded (between −〈|ξ|〉 and

+〈|ξ|〉). This ensures that a non-trivial solution m of (3.1) always exists below the retrieval transition.
The zero temperature limit of m can be found explicitly: for β → ∞, 〈σ〉σ|ξ → sgn(mξ) so fβ,Ω(m) →
sgn(m) 〈ξ sgn(ξ)〉 and therefore m→ ±〈|ξ|〉 with

〈|ξ|〉 =

√
2Ωξ
π
e−δ

2/(2Ωξ) + δ erf

(
δ√
2Ωξ

)
. (3.5)

For generic soft spins (Ωσ > 0), on the other hand, fβ,Ω(m) is no longer bounded but grows as βΩσΩτm
for large |m|. The spontaneous magnetisation, which is the solution of m = fβ,Ω(m), therefore diverges
at Tc = ΩσΩτ as temperature is lowered; see Fig. 3. For lower T the model is ill-defined as we are going
to see in more detail in the next section, thus we need to regularise the spin distribution in at least one
network layer.
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To fix the choice of regularisation we note that for a large system, every rotationally invariant weight on
the vector of σ-spins is equivalent to a rigid constraint at some fixed radius. Without loss of generality we
therefore regularise by multiplying the σ-prior by the spherical constraint δ(N−

∑N
i=1 σ

2
i ). The resulting

prior still depends on Ωσ; at Ωσ = 1 it is a uniform distribution on the sphere and we obtain the spherical
Hopfield model studied in [44, 17, 7]. At Ωσ = 0, on the other hand, the regularisation constraint is
redundant and we recover the standard Hopfield model. One can now analyse the regularised model using
similar replica computations to those above. The only difference is an extra Gaussian factor e−ωσ

2/2 in
the effective σ-spin distribution. Here ω is a Lagrange multiplier that is determined from the spherical
constraint Q = 1. It changes the variance of the two Gaussian peaks from Ωσ to γσ = (Ω−1

σ + ω)−1.
Accordingly, instead of fβ,Ω in (3.2) one obtains a modified function

fβ,Ω,γσ (m) = βγσΩτm+ γσφσ

{
δ t̄(βγσφσΩτδ m,

√
v) + βγσφσΩτΩξm

[
1− t2(. . .)

]}
. (3.6)

where the arguments of t2 are the same as for t̄. Note that the first term of (3.2) has become βγσΩτm
and all occurrences of

√
1− Ωσ = Ωσφσ have been replaced by γσφσ. Accordingly, also v now has the

more general form

v = β2γ2
σφ

2
σΩ2

τΩξm
2 (3.7)

The value of ω or equivalently γσ is defined from the condition Q =
〈
σ2
〉
σ,ξ

= 1, where Q can be worked
out using (1.21) as

Q = γσ + γ2
σ(β2Ω2

τm
2 + φ2

σ) + 2βγ2
σφσΩτδ m t̄(. . .) + 2β2γ3

σφ
2
σΩ2

τΩξm
2[1− t̄2( . . .)] (3.8)

The last two terms are proportional to the last two terms in (3.6), and hence to (1 − βγσΩτ )m; if
one traces back through the derivation this comes from the fact that both results are proportional to
〈hσ tanh(γσφσhσ)〉. With this simplification one obtains the equivalent expression

Q = γσ + γ2
σφ

2
σ + βγσΩτm

2(2− βγσΩτ ) = 1 . (3.9)

For Ωσ → 0 one has γσ ≈ Ωσ, which vanishes as Ωσ → 0 while γσφσ =
√

1− Ωσγσ/Ωσ → 1. For
this limiting case of Boolean σ-spins the constraint (3.9) is therefore automatically satisfied as expected.
More generally, while (3.6) suggests the asymptotic behaviour fβ,Ω,γσ (m) ≈ βγσΩτm for m → ∞, this
first term is not the leading contribution because γσ ∼ 1/m2 for large m. Instead the last two terms in
(3.6) dominate, giving a nonzero constant asymptote. Near m = 0, on the other hand, fβ,Ω,γσ (m) goes
as βΩτ (γσ + γ2

σφ
2
σ)m. From equation (3.9), γσ + γ2

σφ
2
σ = 1 + O(m2), thus the ferromagnetic transition

remains at Tc = Ωτ in the model with the spherical constraint. (One easily checks that γσ + γ2
σφ

2
σ = 1

implies as the physical solution γσ = Ωσ, so that the regulariser ω increases smoothly from zero at the
transition.) For temperatures below Tc one generally has to find m numerically. Results are shown in
Fig. 4. As expected for a regularised model, m remains finite at all T . In the low-temperature limit it
always reaches its maximum value m → 1. One can easily check this from (3.6) and (3.9): the latter
implies for m = 1 that βγσΩτ → 1 (see the lower plots in Fig. 4). Hence the first term on the r.h.s. of
(3.6) also approaches unity as it should from m = fβ,Ω,γσ (m) while the other terms in (3.6) vanish in
the limit.

4. Transition to retrieval II: high load

Now we study the entire phase diagram of the model, in particular with regards to the presence and
stability of a retrieval region. We now use the full definition of γσ and hσ from (1.16), along with the
analogous definition for γτ :

γ−1
σ = Ω−1

σ − βα(R− r) , γ−1
τ = Ω−1

τ − β(1− α)(Q− q) , hσ = β(1− α)Ωτmξ +
√
βαr z . (4.1)

Furthermore we abbreviate the variance of the Gaussian part of γσφσhσ as

v = β2(1− α)2γ2
σφ

2
σΩ2

τΩξm
2 + βαγ2

σφ
2
σr (4.2)

where compared to (3.4) we again have the replacement of
√

1− Ωσ by γσφσ, and otherwise the incor-
poration of the α-dependence and the new term proportional to r. Then, taking the averages w.r.t. ξ
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Figure 4. Soft model with spherical constraint at low load (α = 0). Spontaneous
magnetisation still occurs at T = Ωτ increasing until T = 0. Left panels δ = 1, right
panels δ = 0. As Ωσ → 0, m approaches the value (3.5) at low T . But at any Ωσ > 0, m
eventually peels off from this asymptote to reach m = 1 for T → 0. Lower panels show
the behaviour of γσ: it tends to zero linearly at low temperature, γσ ≈ T/Ωτ , while for
T > Ωτ , γσ = Ωσ.

and z we have, using (1.19,1.21) and integrating by parts where appropriate,

m =
〈
ξ 〈σ〉σ|z,ξ

〉
z,ξ

= β(1− α)γσΩτm+ γσφσ

[
δ t̄(β(1− α)γσφσΩτδ m,

√
v) + β(1− α)γσφσΩτΩξm

(
1− t2(. . .)

)]
q =

〈
〈σ〉2σ|z,ξ

〉
z,ξ

=
〈
(γσhσ + γσφσ tanh(γσφσhσ))2

〉
z,ξ

= β2(1− α)2γ2
σΩ2

τm
2 + βαγ2

σr + γ2
σφ

2
σt

2(. . .) + 2β(1− α)γ2
σφσΩτδ m t̄(. . .) + 2γσv

[
1− t2(. . .)

]
= β(1− α)γσΩτ (2− β(1− α)Ωτγσ)m2 + βαγ2

σ(1 + 2γσφ
2
σ)r + γ2

σφ
2
σ(1− 2βαγσr)t2(. . .)

Q =
〈〈
σ2
〉
σ|z,ξ

〉
z,ξ

= q + γσ + γ2
σφ

2
σ

[
1− t2(. . .)

]
.

where all tanh-averages t̄ and t2 are evaluated for the same parameters, as given in the equation for
m. In the final expression for q we have eliminated the t̄ term using the expression for m. Repeating
the same argument for the effective distribution of the τ spins, we get the equations for the other order
parameters simply by exchanging labels appropriately and replacing α with 1− α, bearing in mind also
that the corresponding magnetization parameter is n = 0. This gives the following additional equations:

r = β(1− α)γ2
τ (1 + 2γτφ

2
τ )q + γ2

τφ
2
τ (1− 2β(1− α)γτq)t̄2(0, γτφτ

√
β(1− α)q) (4.3)

R = r + γτ + γ2
τφ

2
τ

[
1− t2(0, γτφτ

√
β(1− α)q)

]
. (4.4)

4.1. One Boolean layer. In the case where the σ-spins are Boolean, Ωσ = 0, the saddle point equations
(4.3) simplify considerably. From (4.1), one has as before γσ ≈ Ωσ → 0 and γσφσ → 1. This leads to

m = δ t̄(β(1− α)Ωτδ m,
√
v) + β(1− α)ΩτΩξm

[
1− t2(. . .)

]
(4.5)

q = t2(. . .) (4.6)

where after inserting the expression (4.3) for r the Gaussian field variance can be written as v = β2(1−
α)2V with

V = Ω2
τΩξm

2 +
α

1− α
γ2
τ (1 + 2γτφ

2
τ )q +

α

1− α
γ2
τφ

2
τ [(β(1− α))−1 − 2γτq]t2(0, γτφτ

√
β(1− α)q) . (4.7)

Solutions of (4.5) are shown in Fig. 5. Starting from the standard Hopfield phase diagram (Ωξ = 0
and Ωτ = 1) the retrieval region gradually disappears with decreasing Ωξ or increasing Ωτ . In the first
case it shifts towards the T -axis, as the critical temperature for α = 0 is independent of Ωξ. In the
second case, both the retrieval and spin glass transition lines shift towards the α-axis, as the critical α
at T = 0 is independent of Ωτ as we will see shortly.
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Figure 5. Phase diagrams with one Boolean layer (Ωσ = 0), showing the paramagnetic
(P), spin glass (SG) and retrieval (R) regions. Left panel: (T, α) phase diagram for
Ωτ = 1 and different values of δ. The retrieval transition line moves towards the T -axis
as δ decreases while the critical temperature at α = 0 remains fixed. Right panel: phase
diagram for δ = 1 and different values of Ωτ . Both transition lines move towards the
α-axis as Ωτ decreases while now the critical load at T = 0 is fixed.

4.2. Zero temperature limit. Useful insight into the Ωσ = 0 case can be obtained by further special-
izing to the limit T → 0 (i.e. as β →∞). In this scenario

t̄(βa, βb)→ 〈sgn(a+ bη)〉 = erf(a/
√

2b) (4.8)

and, putting w = β(a+ bg),

β[1− t̄2(βa, βb)] = β

∫
dw√
2πβb

exp[−(w − βa)2/(2β2b2)][1− tanh2(w)]

→
∫

dw√
2πb

exp[−a2/(2b2)][1− tanh2(w)]

=

√
2√
πb

exp[−a2/(2b2)] . (4.9)

If we set v = β2(1−α)2V as before and then apply the above large-β identities in the equation (4.5) for
m we get

m = δ erf(Ωτδ m/
√

2V ) + ΩτΩξm

√
2√
πV

exp(−Ω2
τδ

2m2/2V ) . (4.10)

The equation (4.6) for q has a limit in terms of C = β(1− α)(1− q):

C =

√
2√
πv

exp(−Ω2
τδ

2m2/2V ) . (4.11)

Finally for V in (4.7) the zero temperature limit is simple as t2(0, βb)→ 1 and q → 1, giving

V = Ω2
τΩξm

2 +
α

1− α
γ2
τ = Ω2

τΩξm
2 +

α

1− α
(Ω−1

τ − C)−2 . (4.12)

One can reduce these three equations to a single one for x = Ωτm/
√

2V , which reads

x = Fδ,α(x), Fδ,α(x) =
δ erf(δx)− 2√

π
xδ2e−δ

2x2

[2α+ 2(1− δ2)(δ erf(δx)− 2√
π
xδ2e−δ2x2)2]1/2

, (4.13)

We leave the derivation of this result to the end of this section. One sees that Fδ,α(x) is strictly increasing,
starting from zero and approaching δ/

√
2α+ 2(1− δ2)δ2 for large x (Fig. 6). Note also that Ωτ has no

effect on the value of x, and only affects the coefficient in the linear relation between x and m.
For fixed δ, a first order phase transition occurs in the self-consistency condition (4.13) as α increases.

The transition value αc(δ) is largest for δ = 1 and decreases to zero quite rapidly as δ → 0, see Fig. 7.
For α < αc(δ) a non-zero solution of (4.13) exists, with x (thus m) growing as α decreases. In particular,
as α → 0, x = Fδ,α(x) → 1/

√
2(1− δ2) = 1/

√
2Ωξ. In this low-load limit one then recovers for m the

expression (3.5) as we show below.
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We remark that since for any 0 < α < 1, Fδ,a(x) → 0 as δ → 0, one also has m → 0 (with a first
order phase transition, see Fig. 7). For α = 0, on the other hand, we see from (4.10) that m→

√
2/π as

δ → 0, which is consistent with the data shown in Fig. 7. Thus the Hopfield model retrieves Gaussian
patterns only for α = 0, but not at high load.

We close this section by outlining the derivation of (4.13). Bearing in mind δ =
√

1− Ωξ, the equation
(4.10) for m becomes

m = δ erf(δ x) + (1− δ2)
2√
π
xe−δ

2x2

, (4.14)

while for C one gets

C =
2√
π

x

Ωτm
exp(−δ2x2) . (4.15)

Thus

V = Ω2
τ (1− δ2)m2 +

α

1− α
[Ω−1
τ − 2x/(

√
πΩτm) exp(−δ2x2)]−2

= Ω2
τm

2{1− δ2 +
α

1− α
[m− (2/

√
π)x exp(−δ2x2)]−2}

= Ω2
τm

2{1− δ2 +
α

1− α
[δ erf(δx)− (2/

√
π)δ2x exp(−δ2x2)]−2} , (4.16)

Now we set

Fδ,α(x) = {2(1− δ2) + 2(1− α)[δ erf(δx)− 2√
π
xδ2e−δ

2x2

]−2}−1/2 . (4.17)

and we readily get (4.13).
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4.3. Soft models. Models with both Gaussian spins are typically ill-defined at low temperature, due
to the occurrence of negative eigenvalues in the interaction matrix. In the fully Gaussian model (Ωσ =
Ωτ = 1) the line where the partition function diverges coincides exactly with the paramagnetic/spin
glass transition. In this case, the distributions P (σ|z, ξ) and P (τ |η, ξ) of equations (1.13 - 1.14) are
respectively proportional to

eβ(1−α)Ωτmξσ+
√
βαrzσ− 1

2 (1−βα(R−r))σ2

(4.18)

eβαΩσnξτ+
√
β(1−α)qτη− 1

2 (1−β(1−α)(Q−q))τ2

. (4.19)

Both these distributions are therefore Gaussian with variances Σσ, Στ , defined by Σ−1
σ = 1− βα(R− r)

and Σ−1
τ = 1− β(1− α)(Q− q). The equations for R and Q read

Q =
〈〈
σ2
〉
σ|z,ξ

〉
z,ξ

= q + Σσ (4.20)

R =
〈〈
τ2
〉
τ |η

〉
η,ξ

= r + Στ . (4.21)

Thus

Σσ =
1

1− βαΣτ

Στ =
1

1− β(1− α)Σσ
. (4.22)

and one has to study the equation I(Σσ) = Σσ where

I(Σσ) =
1− β(1− α)Σσ

1− βα− β(1− α)Σσ
. (4.23)

The function I(x) is a hyperbola diverging at x = (1− βα)/β(1− α), see Fig. 8. It is positive only for
x below this value, so this is the range we need to consider as Σσ > 0. For small β one has a solution
near Σσ = 1 which increases with β. At some β̂c, I(x) becomes tangent to x and for still larger β there
are no intersections. After some calculations using (4.23) one finds for the threshold β̂c

1 = β̂2
cα(1− α)Σ2

σ

(
1

1− β(1− α)Σσ

)2

= β̂2
cα(1− α)Σ2

σΣ2
τ , (4.24)

which exactly coincides with the paramagnetic / spin glass transition temperature (2.3) as anticipated.
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We note that we can compute the divergence of the partition function of the model also directly, by
diagonalising the interaction matrix (i.e. the weight matrix):

ZN (β, α; ξ) = Eσ,τ exp

(√
β

N

N1∑
i=1

N2∑
µ=1

ξµi σiτµ

)

= Eσ exp

 β

2N

N1∑
i,j=1

N2∑
µ=1

ξµi ξ
µ
j σiσj

 = Eσ exp

βα
2

N1∑
i,j=1

Mijσiσj

 (4.25)

HereM = 1
N2
ξξT is a Wishart matrix so its empirical eigenvalue spectrum converges to the Marchenko-

Pastur distribution for large N1, which is nonzero only between
(

1±
√

(1− α)/α
)2

. Using a suitable
orthogonal transformation on the spin variables we can diagonalise M , so that

ZN (β, α; ξ) = Eσ exp

(
βα

2

N1∑
i

λiσ
2
i

)
.

This is well-defined as long as maxi [β(1− α)λi] < 1. Using the largest eigenvalue from Marchenko-
Pastur, maxi λi = (1 +

√
(1− α)/α)2 for large N , we get for the critical temperature

Tc(α) = (
√
α+
√

1− α)2 .

It can be checked that the spin glass transition line numerically computed in Section 2 coincides with
T = Tc(α). In the general case 0 < Ωσ,Ωτ < 1 we simply remark that (recall that the g are N (0, 1) and
ε = ±1)

N1∑
i=1

N2∑
µ=1

ξµi σiτµ =
√

(1− Ωσ)(1− Ωτ )

N1∑
i=1

N2∑
µ=1

ξµi εiεµ (4.26)

+
(√

Ωτ (1− Ωσ) +
√

Ωσ(1− Ωτ )
) N1∑
i=1

N2∑
µ=1

ξµi giεµ (4.27)

+
√

ΩσΩτ

N1∑
i=1

N2∑
µ=1

ξµi gigµ . (4.28)

Of course the first two terms have well-defined thermodynamical properties for all T , so we just need to
rescale Tc as

Tc(α) = ΩσΩτ (
√
α+
√

1− α)2 . (4.29)
When α ∈ {0, 1} we recover the result obtained at low load, where a divergence in m appears at
Tc = ΩσΩτ (see Fig. 3); eq. (4.29) generalises this result to high load. Note that this critical temperature
is in general lower than the one for the paramagnetic/ spin glass transition: they coincide only in the
fully Gaussian case, while in all other cases the system first enters the ordered phase before encountering
the singularity as T is lowered.

4.4. Spherical Constraints. As before we can remove the singularity in the partition function by
adding the spherical constraint δ(N −

∑N
i=1 σ

2
i ) to the σ-prior. The equations (4.3) remain valid with

the replacement
γ−1
σ = Ω−1

σ − βα(R− r) + ω ,

with ω > 0 (or directly γσ, see also Section 3) satisfying

Q = q + γσ + γ2
σφ

2
σ

[
1− t2(β(1− α)γσφσΩτδm,

√
v)
]

= 1. (4.30)

For binary σ, i.e. Ωσ → 0, one has γσφσ → 1 and the constraint (4.30) is automatically satisfied. For
Gaussian σ (Ωσ = 1), on the other hand, φσ = 0 and hence γσ = 1− q.

Starting from the low-load solution α = 0 and increasing α, it is possible to find numerically the
solution of the equations (4.3) and the constraint (4.30). The results, presented in Fig. 9, indicate
that the retrieval region is robust also in the high-load regime, disappearing as Ωσ → 1. The retrieval
transition line exhibits re-entrant behaviour as in the standard Hopfield model, which might point to
underlying RSB effects [40].

In principle one can ask further what happens in a model where both layers have a spherical constraint.
In this case we simply need to put an additional Gaussian factor e−ωττ

2/2 into the effective τ -spin
13
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Figure 9. Phase diagram with the paramagnetic (P), spin glass (SG) and retrieval
(R) regions of the soft model with a spherical constraint on the σ-layer for different Ωσ
and fixed Ωτ = δ = 1. The area of the retrieval region shrinks exponentially as Ωσ is
increased from 0.

distribution, where the additional Lagrange multiplier ωτ can be found by fixing the radius R = 1. As
a consequence, the paramagnetic to spin glass transition line (2.3) becomes

β2α(1− α)Q2R2 = β2α(1− α) = 1. (4.31)

This is valid for the bipartite SK model (Ωσ = Ωτ = 0) but also for generic Ωσ and Ωτ . As Tc =√
α(1− α)→ 0 for α→ 0 and retrieval is expected only below the paramagnetic to spin glass transition,

this indicates that the double spherical constraint removes the possibility of a retrieval phase, even for low
load. What is happening is that the high-field response Ωτ is weakened and becomes γ0

τ = Ωτ/(1+Ωτωτ ).
Moreover, equations (4.3) still apply if we replace Ωτ by γ0

τ and set γ−1
τ = Ω−1

τ − β(1− α)(1− q) + ωτ .
In the paramagnetic regime γσ and γτ satisfy

Q = γσ + γ2
σφ

2
σ = 1 → γσ = Ωσ

R = γτ + γ2
τφ

2
τ = 1 → γτ = Ωτ , (4.32)

while q = 0, giving for the response γ0
τ = 1/(γ−1

τ +β(1−α)) = (Ω−1
τ +β(1−α))−1. This is not sufficient

for retrieval, not even at low load (α = 0) where βγ0
τ = βΩτ/(1 + βΩτ ) < 1 and the critical temperature

is T = 0 (β →∞). Intuitively, because of the spherical cut-off the tail of the hidden units is simply not
sufficient to give, after marginalising out the visible units, an appropriate function u (see Section 1.1) to
get spontaneous magnetisation in the low load ferromagnetic model.

5. Conclusions and outlook

In this paper we have investigated the phase diagram of Restricted Boltzmann Machines with different
unit and weight distributions, ranging from centred (real) Gaussian to Boolean variables. We highlighted
the retrieval capabilities of these networks, using their duality with generalised Hopfield models.

Our analysis is mainly based on the study of the self-consistency relations for the order parameters
and offers a nearly complete description of the properties of these systems. For this rather large class of
models we have drawn the phase diagram, which is made up of three phases, namely paramagnetic, spin
glass and retrieval, and studied the phase transitions between them.

We stress that, while in associative neural networks patterns are often restricted to the binary case,
there is at present much research activity in the area of Boltzmann machines with real weights. Our
analysis shows that retrieval is possible at high load for any pattern distribution interpolating between
Boolean and Gaussian statistics. In the Gaussian case high load retrieval fails, but is recovered even here
at low load.

A complete analysis of the paramagnetic-spin glass transition and the spin glass-retrieval transition
is very useful for the study of modern deep neural networks, where the crucial learning phase is often
initiated with a step of unsupervised learning using Restricted Boltzmann Machines [29, 35]. A first
attempt to link the properties of the phase diagram to the challenges of training a Restricted Boltzmann
Machine from data and extracting statistically relevant features can be found in [8].
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Appendix A. Derivation of equations (1.7)-(1.12)

Consider a bipartite system with N1 σ-spins and N2 τ -spins, N = N1 +N2, α = N2/N and partition
function

ZN (β, α; ξ) = Eσ,τ exp

(√
β

N

N1∑
i=1

N2∑
µ=1

ξµi σiτµ

)
, (A.1)

with the expectation being over generic spin distributions Pσ(σ) and Pτ (τ). We assume there are
`1 = O(1) condensed patterns associated with the first `1 σ-variables and similarly `2 condensed patterns
associated with the first `2 τ -variables, and two families of overlaps

mµ(σ) =
1

N1

N1∑
i=`1

ξµi σi , ni(τ) =
1

N2

N2∑
µ=`2

ξµi τµ , (A.2)

and

qαβ =
1

N1

N1∑
i=`1

σαi σ
β
i rαβ =

1

N2

N2∑
µ=`2

ταµ τ
β
µ . (A.3)

Then

ZN (β, α; ξ) = Eσ,τ exp

√ β

N

`1∑
i=1

N2∑
µ=`2

ξµi σiτµ +

√
β

N

`2∑
µ=1

N1∑
i=`1

ξµi σiτµ


× exp

√ β

N

N1∑
i=`1

N2∑
µ=`2

ξµi σiτµ +

√
β

N

`1∑
i=1

`2∑
µ=1

ξµi σiτµ

 (A.4)

∼ Eσ,τ exp

N2

√
β

N

`1∑
i=1

ni(τ)σi +N1

√
β

N

`2∑
µ=1

mµ(σ)τµ +

√
β

N

N1∑
i=`1

N2∑
µ=`2

ξµi σiτµ


where we have neglected the last, non-extensive, term of (A.4). Constraining the values of the overlaps
we get

ZN =

∫
{dmµ, dm̂µ, dni, dn̂i} exp

(
−iN

(
`1∑
i=1

nin̂i +

`2∑
µ=1

mµm̂µ

))

× Eσ,τ exp

N2

√
β

N

`1∑
i=1

niσi +N1

√
β

N

∑
µ<`2

mµτµ

 (A.5)

× Eσ,τ exp

 i

α

`1∑
i=1

n̂i
N2∑
µ=`2

ξµi τµ +
i

1− α

`2∑
µ=1

m̂µ
N1∑
i=`1

ξµi σi +

√
β

N

N1∑
i=`1

N2∑
µ=`2

ξµi σiτµ

 .

We recall the definition of Ωσ,τ and uσ,τ from the Introduction: uσ,τ is the cumulant generating
function of Pσ,τ , to wit uσ,τ (h) = lnEPσ,τ [ehx] and

lim
N→∞

1

N
uσ,τ (

√
Nx) =

Ωσ,τx
2

2
. (A.6)

Then the terms in the second line of (A.5) become

Eσ,τ exp

N2

√
β

N

`1∑
i=1

niσi +N1

√
β

N

∑
µ<`2

mµτµ

 = exp

(
βN

2

(
α2Ωσ

`1∑
i=1

n2
i + (1− α)2Ωτ

`2∑
µ=1

m2
µ

))
,

(A.7)
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while, after introducing replicas and averaging over the disorder, the last term in (A.5) gives (with uξ
the cumulant generating function associated with the patterns)

Eξ exp

√ β

N

n∑
α=1

N1∑
i=`1

N2∑
µ=`2

ξµi σ
α
i τ

α
µ

 = exp

 N1∑
i=`1

N2∑
µ=`2

uξ

(√
β

N

n∑
α=1

σαi τ
α
µ

)
∼ exp

 N1∑
i=`1

N2∑
µ=`2

β

2N

n∑
α,β=1

σαi σ
β
i τ

α
µ τ

β
µ

 .

(Here we have used that the patterns have unit variance, hence uξ(x) = x2+. . ., and neglected corrections
in 1/N .) This term becomes exp

(
βN
2 α(1− α)

∑
αβ qαβrαβ

)
once it is expressed in terms of the order

parameters q and r, bearing in mind that the missing spins σ1, . . . , σ`1 and τ1, . . . , τ`2 constitute a
vanishing fraction of the total number. Now averaging over spin variables we get the other two terms
in the last line of (A.5), where we also include the contributions from constraining the q and r order
parameters:

Eσ exp

 i

1− α

n∑
α=1

`2∑
µ=1

m̂µ
α

N1∑
i=`1

ξµi σ
α
i +

i

1− α

n∑
α,β=1

q̂αβ

N1∑
i=`1

σαi σ
β
i


= exp

(
N(1− α)

〈
lnEσe

i
1−α (

∑n
α=1

∑`2
µ=1 m̂

µ
αξ
µσα+

∑n
α,β=1 q̂αβσ

ασβ)
〉
ξ

)
and

Eτ exp

 i

(1− α)

n∑
α=1

`1∑
i=1

n̂iα

N2∑
µ=`2

ξµi τ
α
µ +

i

(1− α)

n∑
α,β=1

r̂αβ

N2∑
µ=`2

ταµ τ
β
µ


= exp

(
αN

〈
lnEτe

i
α (

∑n
α=1

∑`1
i=1 n̂

i
αξ
iτα+

∑n
α,β=1 r̂αβτ

ατβ)
〉
ξ

)
.

Collecting all the terms we get an expression for E[ZnN ] which depends on the parameters mµ
α, niα, qαβ

and rαβ :

E[ZnN ] =

∫
{dmα

µ , dm̂
α
µ}{dqαβ , dq̂αβ}eNf({mµα},{n

i
α},{qαβ},{rαβ}), (A.8)

with

f({mµ
α}, {niα}, {qα,β}, {rαβ}) = −β

2
Ωτ (1− α)2

`2∑
µ=1

mµ
α

2 − β

2
Ωσα

2
`1∑
i=1

niα
2 − β

2
α(1− α)

∑
α,β=1

qαβrαβ

+ (1− α)
〈

lnEσeβ(1−α)Ωτ
∑n
α=1(m·ξ)σα+ βα

2

∑n
α,β=1 rαβσ

ασβ
〉
ξ

+ α
〈

lnEτeβαΩσ
∑n
α=1(n·ξ)τα+

β(1−α)
2

∑n
α,β=1 qαβτ

ατβ
〉
ξ

(A.9)

By a saddle point calculation we obtain immediately

im̂µ
α = β(1− α)2Ωτm

µ
α in̂iα = βα2Ωσn

i
α iq̂αβ =

β

2
α(1− α)rαβ ir̂αβ =

β

2
α(1− α)qαβ (A.10)

and in the RS ansatz, assuming that

mµ
α = mµ niα = ni qab = Qδαβ + q(1− δα,β) rab = Rδαβ + r(1− δα,β), (A.11)

taking the limit n→ 0 and extremizing (A.9) we get the saddle point equations in (1.7− 1.12)

Appendix B. Gaussian bipartite and spherical Hopfield model

The bipartite system with Gaussian priors on both layers (Ωσ = Ωτ = 1) can be related to a spherical
Hopfield model [44, 17, 7] via Legendre duality as in [27]. In fact, integrating over the radius r

√
N we
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have

Zg(β) =

∫
dr
e−Nr

2/2

√
2π

N

∫
dΣr

√
N (σ)e−βH(σ) =

∫
dr
e−Nr

2/2

√
2π

N
Zr
√
N

s (β)

=

∫
dr
e−Nr

2/2

√
2π

N
rN−1

∫
dΣ√N (σ)e−βr

2H(σ) =

∫
dr
e−Nr

2/2

√
2π

N
rN−1Z

√
N

s (βr2), (B.1)

where dΣr(σ) is the uniform measure over the sphere of radius r and (Zg, Zs) are respectively the
partition functions of the Gaussian and spherical models. Thus the two free energies, fg and fs, are
related by

− βfg = sup
r

[
−1

2
r2 − 1

2
ln(2π) + ln(r)− βfs(βr2)

]
(B.2)

and so the Gaussian free energy comes from the spherical free energy calculated at the optimal radius
given by

r2 =
1

1− 2β∂β(−βfs(β))|βr2
. (B.3)

Since r2 = Q, the self overlap of the s-spins (first layer), and using the expression for the spherical free
energy from [17, 7] we have, in the high-temperature region,

Q =
1

1− βα 1
1−β(1−α)Q

=
1

1− βαR(Q)
and R(Q) =

1

1− β(1− α)Q
. (B.4)

These are exactly equations (2.6)-(2.7) with Ωσ = Ωτ = 1. Moreover, again from [17, 7] the critical line
for the spherical model is given by (1−β(1−α))2 = β2α(1−α). Thus we obtain the critical line for the
Gaussian model (2.3) by replacing β → βQ:

β2α(1− α)Q2

(1− β(1− α)Q)2
= 1 = β2α(1− α)Q2R2 . (B.5)
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