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Abstract

Robust evidence for the polygenicity and genetic correlations of complex traits across
the phenome suggests both the necessity of polygenic instruments and the value of
multi-trait prediction models. This thesis used multi-variable approaches in four
papers and along two main threads:

Multi-variable approaches to trait prediction A primary goal of polygenic
scores, which aggregate effects of trait-associated variants discovered in genome-wide
association studies (GWAS), is to estimate individual-specific genetic propensities to
predict trait variation. This is typically achieved using one polygenic score predicting
one outcome. Extending this to a multi-variable approach, a ‘phenome-wide analysis
of genome-wide polygenic scores’ mapped associations between 13 polygenic scores
created from GWAS for psychiatric disorders and cognitive traits and 50 behavioural
traits.

Extending the multi-variable approach further, a multi-polygenic score approach
was employed to increase prediction by exploiting the joint power of multiple discov-
ery GWAS in the same model. A regularised regression model combining summary
statistics of 81 trait GWAS improved out-of-sample prediction of three child out-
comes over the best single-predictor model.

Multi-variable approaches to gene-environment correlation Although gene-
environment correlation is widely investigated by family studies and recently by
SNP-heritability studies, the possibility that genetic effects on traits capture envir-
onmental risk factors or protective factors has been neglected by polygenic prediction
models. First, a study using genome-wide SNP-heritability estimation and polygenic
score analysis provided the first molecular evidence for substantial genetic influence
on differences in children’s educational achievement and its association with family
socio-economic status.

Second, covariation between offspring trait-associated polygenic variation and a
wide range of parent-mediated environmental exposures was estimated. For this,
a mixed linear model estimated the effects of multiple polygenic scores on each
environmental exposure while controlling for overall relatedness by fitting the effects
of all SNPs as random effects. Findings illustrate the relevance of gene-environment
correlation for polygenic prediction models.

Taken together, the analyses illustrate the value of multi-variable approaches to
complex trait prediction, as well as their current limitations and future potential.

4



Contents

1 General Introduction 7
1.1 Polygenicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Genotype-based trait prediction . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Current limitations of genotype-based prediction . . . . . . . 9
1.2.2 Polygenic prediction approaches . . . . . . . . . . . . . . . . . 11

1.3 Genetic correlation and multi-trait approaches . . . . . . . . . . . . . 12
1.3.1 Overview of chapters 3 and 4: Multi-variable approaches to

trait prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Genotype-environment correlation . . . . . . . . . . . . . . . . . . . 14

1.4.1 Overview of chapters 5 and 6: Multi-variable approaches to
gene-environment correlation . . . . . . . . . . . . . . . . . . 15

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 General methods 17
2.1 Estimation of genetic variance and covariance from genome-wide SNPs

measured in unrelated individuals . . . . . . . . . . . . . . . . . . . . 17
2.2 Polygenic score prediction . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Phenome-wide analysis of genome-wide polygenic scores 22

4 Multi-polygenic score approach to trait prediction 29

5 Genetic link between family socioeconomic status and children’s
educational achievement estimated from genome-wide SNPs 37

6 Widespread covariation of early environmental exposures and trait-
associated polygenic variation 45

7 General summary and discussion 52
7.1 Summary of findings . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.2 General limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.2.1 Correlation does not equal causation . . . . . . . . . . . . . . 55
7.2.2 Trait prediction limited to European-ancestry samples . . . . 56
7.2.3 Additive effects of common variants . . . . . . . . . . . . . . 56
7.2.4 Upper limit of SNP-based trait prediction . . . . . . . . . . . 57
7.2.5 Limits of individual-level prediction . . . . . . . . . . . . . . . 58

7.3 Implications and possible future directions . . . . . . . . . . . . . . . 58
7.3.1 Stratified rather than personalised prediction . . . . . . . . . 58
7.3.2 Prediction beyond family history . . . . . . . . . . . . . . . . 59
7.3.3 Leveraging within-family genetic variation for prediction . . . 60

5



7.3.4 Expansion of the multi-polygenic score approach . . . . . . . 61
7.4 General conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

References 63

List of Figures

3 Phenome-wide analysis of genome-wide polygenic scores

Figure 1: Correlations between 13 genome-wide polygenic scores and 50
traits from the behavioral phenome . . . . . . . . . . . . . . . . . . . 24

Figure 2a: Mean for height at age 16 by adult height genome-wide polygenic
score (GPS) septile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2b: Mean for children’s mathematics educational achievement at
age 16 by College GPS septile . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2c: Mean for total parent-reported behavior problems at age 16 by
adult College GPS septile . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Multi-polygenic score approach to trait prediction

Figure 1a: Multi-polygenic score (MPS) model predicting educational achieve-
ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 1b: MPS model predicting general cognitive ability . . . . . . . . . 33
Figure 1c: MPS model predicting body mass index . . . . . . . . . . . . . 33
Figure 2a: Educational achievement by multi-polygenic score (MPS) deciles 34
Figure 2b: General cognitive ability by MPS deciles . . . . . . . . . . . . 34
Figure 2c: Body mass index (BMI) by MPS deciles . . . . . . . . . . . . . 34

5 Genetic link between family socioeconomic status and children’s

educational achievement estimated from genome-wide SNPs

Figure 1: Bivariate genome-wide complex trait analysis of family socioeco-
nomic status and children’s educational achievement . . . . . . . . . 41

Figure 2. Genome-wide polygenic scores for years of schooling in adults pre-
dict variance in children’s educational achievement, family socioeco-
nomic status, intelligence, and educational achievement after con-
trolling for intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Widespread covariation of early environmental exposures and trait-

associated polygenic variation

Figure 1a: A Single-polygenic score models: Associations between poly-
genic scores and environmental exposures . . . . . . . . . . . . . . . 47

Figure 1b: Multi-polygenic score models: Joint estimation of effects of
polygenic scores on environmental exposures . . . . . . . . . . . . . . 47

6



Figure 2a: Offspring adjusted education polygenic scores by level of breast-
feeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 2b: Offspring adjusted education polygenic scores by level of mater-
nal smoking during pregnancy . . . . . . . . . . . . . . . . . . . . . . 48

Figure 2c: Offspring adjusted schizophrenia polygenic scores by paternal
age at birth of offspring . . . . . . . . . . . . . . . . . . . . . . . . . 48

7



1 General Introduction

Evidence across multiple methods converges in showing ubiquitous and substantial
genetic influence on human trait variation (Ge et al., 2017; Muñoz et al., 2016;
Polderman et al., 2015). Yet, success in making predictions of complex trait phen-
otypes from genotype data has been complicated by two main challenges: genetic
effects on trait variation are spread across genetic loci and they are shared among
multiple traits. This suggests both the necessity of polygenic instruments and the
value of multi-variable models for trait prediction. A further complication arises
from the empirical observation that genetic correlations between traits extend to the
environment: genetic and environmental variation is not independent; individuals’
environmental exposure partially depends on their genotype. This thesis used poly-
genic multi-variable approaches for trait prediction and for investigating covariance
between traits and environments.

The following sections provide an outline of the phenomena of polygenicity and
pleiotropy, and how multi-trait approaches can leverage them for genomic prediction.

1.1 Polygenicity

The investigation of the genetic basis of human traits and diseases is made difficult by
the empirical observation that common traits are complex (Robinson et al., 2014).
That is, trait variation is a function of a multitude of genetic and environmental
factors and their interplay. Complex traits stand in contrast to Mendelian traits,
which are strongly influenced by variation within a single gene and are characterised
by their classic patterns of inheritance within families (Garrod, 1902; Mendel, 1866).
Traits that strictly conform to Mendelian principles of inheritance are relatively rare.
Most traits do not follow readily predictable patterns of inheritance, but are subject
to a wide spectrum of non-Mendelian, multifactorial mechanisms. Often the genetic
variants affecting complex traits are large in quantity but small in effect (Falconer
and Mackay, 1996).

In 1918, Fisher seminally proposed that continuous variation amongst phenotypic
traits can be the result of Mendelian inheritance if multiple genetic variants affect
the trait (Fisher, 1918). Due to the multitude of possible allelic combinations, traits
under polygenic inheritance follow a normal continuous distribution. As the num-
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ber of genetic variants approaches infinity, individual effects approach zero (Barton,
1990). Fisher’s polygenic model conceptually reconciled the quantitative and qual-
itative perspectives of genetic influence on trait variation.

In the last decades, the advent and development of microarrays that can measure
millions of genetic markers have led to an explosion of genome-wide association
studies (GWAS) of complex traits and disorders. This has empirically reinforced the
polygenic trait model, with the extent of polygenicity being even more extreme than
anticipated.

For many human traits, single-nucleotide polymorphism (SNP)-trait associations
have been identified through GWAS. To identify trait-associated loci, a large series
of simple linear variant-trait regressions is conducted across the genome, each testing
whether allele frequency at a given locus is significantly associated with phenotypic
variation. In response to the ubiquitous polygenicity of complex traits, ever-larger
GWAS are being conducted to increase statistical power for detecting variants with
small effect sizes.

Although genome-wide association studies have been successful in discovering and
replicating SNP associations for many traits and disorders (Duncan et al., 2017;
Robinson et al., 2014; Visscher et al., 2012, 2017; Zheng et al., 2017), the lack of larger
SNP-trait associations in well-powered GWAS provides evidence for the ubiquitous
heritability of complex dimensions and common disorders being spread across tens
or hundreds of thousands of common DNA variants with individually tiny effect.
Evidence for the heritability contributed by each chromosome being proportional to
its physical lengths suggests that effects might be relatively evenly spread across the
genome (Shi et al., 2016a; Visscher et al., 2006).

1.2 Genotype-based trait prediction

The polygenicity of complex traits poses an immense conceptual and statistical chal-
lenge for deciphering the links between genetic and phenotypic variation, and there-
fore complicating genotype-based trait prediction.

Next to discovery of trait-associated variants and their biological function, there is
increasing interest in predicting trait variation from genotype data, which is the
focus of this thesis. These predictions rely on the estimation of the effects of genetic
variants in a discovery sample, with subsequent validation in an independent sample,
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R2 =
h2Meff

1 +
Meff

Neffh2
Meff

(1�R2)

Equation 1.1: Proportion of phenotypic variance explained by a predictor of a quant-
itative trait

and eventually prediction of individuals’ future phenotypes in practice. In contrast
to the deterministic genetic tests for fully penetrant Mendelian disorders, genetic
predictions for complex traits are probabilistic.

Regardless of genetic architecture of the predicted trait, an approximation of the
predictive power of a genotype-based predictor using the estimated effects of all
markers is a function of the effective number of independently associated variants
(Meff ), the trait variance they account for (h2Meff

), and the effective sample size of
the discovery sample (Neff ), equation 1.1 (Daetwyler et al., 2008; Dudbridge, 2013;
Goddard, 2009; Palla and Dudbridge, 2015; Visscher et al., 2010; Wray et al., 2014,
2013).

R2 is the accuracy of the genetic predictor, with R being the correlation between the
predictor and the to be predicted outcome trait. The efficacy of a genetic predictor
can be approximated by its predictive power relative to the best possible predictor
or the overall heritability; R2

h2 . Discrepancy between R2 and h2 is therefore affected
by the parameters in equation 1.1.

1.2.1 Current limitations of genotype-based prediction

Making predictions of complex trait phenotypes from genotype data has several con-
ceptual and logistical limitations. Genomic prediction is limited by the overall herit-
ability (h2), that is, the proportion of trait variation explained by genetic variation.
Hence, a linear coefficient of determination (R2) relying solely on genetic variants is
unable to explain all trait variation in complex traits where h2 is less than 100%.
What is more, the condition for R2 being equal to h2 is that all genetic effects are
perfectly reliably estimated.

The next paragraphs describe current limitations of genotype-based polygenic trait
prediction, followed by an outline of how the first part of this thesis was aimed at
exploring the potential of increasing R2 for polygenic traits using a multi-variable
approach.
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Known pedigree structure has been an important methodological resource for quan-
tifying genetic influences on trait variation. Pedigree-based heritability estimates,
h2pedigree, are derived by fitting the covariance structure specified by the matrix of
known kinship coefficients to a vector of measured phenotypes. Heritability estim-
ates from family studies indicate ubiquitous additive genetic influence on complex
traits (Polderman et al., 2015), suggesting great potential for genotype-based trait
prediction. So far, genotype-based complex trait prediction has not reached this
upper limit for prediction. Multiple possible sources of this discrepancy have been
proposed (Eichler et al., 2010; Manolio et al., 2009).

Genotype-based trait prediction is limited by h2M (see Eq. 1.1). For almost all
complex traits, h2M , estimated as h2SNP by fitting the additive effects of all measured
SNPs as random effects in a linear mixed model (Speed et al., 2012; Yang et al.,
2011a; Zhou and Stephens, 2014), is systematically smaller than additive h2pedigree
estimated by pedigree-based methods (Liu et al., 2015; Muñoz et al., 2016; Yang
et al., 2015; Zaitlen et al., 2013, 2014).

Model misspecifications in estimating h2SNP or h2pedigree might be one source of this
discrepancy. First, family-based approaches such as twin studies might be biased up-
wards by epistatic interactions, or more likely by shared environment, with improved
parameterisation of shared familial environmental effects showing reduced overestim-
ation (Liu et al., 2015; Muñoz et al., 2016; Yang et al., 2015; Zaitlen et al., 2014,
2013). Second, it has been shown that conventional h2SNP estimation models might
underestimate h2SNP due to incorrect prior assumptions about the distribution of
genetic effects across the genome as a function of minor allele frequency and linkage
disequilibrium (LD) (Speed et al., 2017). These two lines of evidence suggest that
the discrepancy between h2M and h2pedigree may be smaller than previously thought.

h2M only reflects variants correlated with the common markers included on SNP
arrays, i.e. h2SNP . Therefore, h2SNP underestimates additive genetic variance due
to imperfect LD between causal and genotyped (or imputed) SNPs. Common SNP
arrays take advantage of the fact that around half a million common SNPs in the hu-
man genome ‘tag’ most of the common variation (in non-African populations) (The
International HapMap Consortium, 2005). Although common (>5%) conventionally
genotyped (and imputed) markers capture variation of unmeasured common mark-
ers very well, they do not reliably ‘tag’ low frequency alleles. That is because LD of
two loci strongly depends on their allele frequency, with low frequency alleles being
weakly ‘tagged’ by proximal genotyped common alleles (Wray, 2005). By design
models using SNP from common ‘SNP chips’ are therefore limited to identify asso-
ciations with causal variants that are relatively frequent in the population. Variants
conferring large disadvantageous effects are screened by natural selection and held
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at low population frequencies. Because SNP chips are limited to the high allelic fre-
quency spectrum, models that rely on these SNPs are targeting variants with small
effects only.

Due to the limited power of GWAS in face of the polygenic architecture of most
complex traits and the technological limitation to common variants, genome-wide
significant variants discovered by GWAS explain only a small fraction of the ad-
ditive genetic variance tagged by all investigated markers, h2GWAS < h2SNP . This
discrepancy has been termed ‘hidden heritability’: the cumulative trait variation
explained by GWAS ‘hits’ lags behind their known ‘net effect’ estimated by h2SNP

methods, because small effect variants are ‘hiding’ within the noise below the genome-
wide significance threshold due to insufficient statistical power to detect them. For
example, using SNP-heritability estimation approaches, it has been estimated that
over half the variation in human height can be attributed to the common SNPs on a
genome-wide genotyping array. In comparison, only ⇠16% phenotypic variation can
be explained by ⇠670 SNPs reaching genome-wide significance (Wood et al., 2014;
Yang et al., 2010, 2011b).

1.2.2 Polygenic prediction approaches

Polygenic prediction methods have been used with the aim to increase R2 from
h2GWAS towards the current ceiling of genotype-based prediction, i.e. h2SNP . For the
same set of SNPs, R2 would be equal to h2M only if the marker effects were estimated
without error by the discovery GWAS. Therefore, the aim of polygenic prediction
methods is to optimise the balance between the predictive gain from including more
SNPs into the model and the predictive loss from the markers‚Äô unreliably estimated
effects in the discovery sample. By including variants below the threshold for genome-
wide significance, polygenic scores can reveal some of the “hidden heritability”, i.e.
the gap in trait variation explained by genome-wide significant SNPs discovered by
GWAS and variation tagged by all common SNPs together.

Polygenic scores, which aggregate the effects of thousands of trait-associated genetic
variants discovered in GWAS, have been widely applied to predict trait variation in
independent target samples (Evans et al., 2009; Marioni et al., 2016; Power et al.,
2015; Purcell et al., 2009; Szulkin et al., 2015; Vassos et al., 2017; Vassy et al., 2014;
Wray et al., 2007). However, polygenic scores have typically only explained a fraction
of the trait variance of polygenic traits, serving as validation tools for SNP-trait
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associations discovered by GWAS rather than predictive tools. Major advances in
the prediction approaches are required for genotype-based polygenic trait prediction
to become relevant in practice by achieving meaningful risk stratification.

Different lines of approaches have been pursued with the aim of increasing predict-
ive power of polygenic score prediction. The main strategy has been to improve
statistical power of detecting associations between SNPs and polygenic traits by in-
creasing the sample of the discovery set (Visscher et al., 2017). Less focus has been
on increasing prediction accuracy by improving models used when predicting into
the target sample. Here strategies have included improving modelling of LD (Vilh-
jalmsson et al., 2015) or optimising number of SNPs included in the prediction model
(Euesden et al., 2015). The first half of the current work explored the potential of in-
creasing trait prediction by leveraging genetic signal captured by multiple discovery
sets.

The following section provides an overview of evidence for genetic correlations across
the phenome and the potential of increasing trait prediction by leveraging the genetic
correlations across traits in polygenic multi-trait prediction models.

1.3 Genetic correlation and multi-trait approaches

A fully ’infinitesimal’ polygenic trait model would necessarily imply shared genetic
loci between traits to the extent that traits are under genetic influence. However,
even more modest extents of polygenicity makes it likely that some of the genetic
signal (positively or negatively) correlates between traits (Wright, 1984). This is
consistent with empirical data.

Next to polygenicity, the other defining characteristic of complex traits and common
disorders is the ubiquity of genetic correlations between them. Genetic correlation
is the empirical observation that genetic variation associated with one trait co-varies
with that associated with another trait. Mendelian mutations resulting in specific
syndromes or diseases are often associated with multiple phenotypes in an affected in-
dividual. For polygenic traits, there exists robust evidence across twin and molecular
methods for genetic correlations between psychiatric disorders, between anthropo-
metric traits, and between educational and cognitive traits, as well as for genetic
correlations across these realms (Bulik-Sullivan et al., 2015a; Calvin et al., 2012;
PGC, 2013; Davis et al., 2014; Duncan et al., 2017; Kovas and Plomin, 2006; Kra-
pohl et al., 2014; Lichtenstein et al., 2009; Pickrell et al., 2016; Visscher and Yang,
2016).
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Multivariate approaches have long been used by pedigree designs to investigate
shared genetic aetiology (Kendler et al., 2008; Krapohl et al., 2014; Lichtenstein et al.,
2009; Plomin and DeFries, 1979). More recently, molecular genetic approaches have
been developed to investigate genetic correlation between two traits, either using
individual-level genotype or GWAS summary statistics (Bulik-Sullivan et al., 2015a;
Johnson, 2013; Lee et al., 2012; Zhou and Stephens, 2014). Cross-trait polygenic
score analyses have replicated and identified shared genetic aetiology between traits,
such as predicting addiction from genetic liability for schizophrenia and bipolar or
cognitive ability from genetic variation associated with neural structures (Luciano
et al., 2015; Reginsson et al., 2017).

Researchers have also started to be interested in simultaneously analysing multiple
correlated traits to improve statistical power of the discovery data by leveraging
cross-trait covariance (Baselmans et al., 2017; Bolormaa et al., 2014; Ferreira and
Purcell, 2009; Korte et al., 2012; Maier et al., 2015; Rietveld et al., 2014; Shim et al.,
2015; Turley et al., 2017). These approaches rely on substantial and consistent
correlations between discovery GWAS. Some of these approaches are designed to
discriminate heterogeneity and homogeneity in SNP-trait associations (Bhattacharjee
et al., 2012; Majumdar et al., 2017) or different types of direct and indirect pleiotropy
(Giambartolomei et al., 2014; Pickrell et al., 2016; Shi et al., 2016b; Stephens, 2013)
across correlated traits.

1.3.1 Overview of chapters 3 and 4: Multi-variable approaches to trait
prediction

A primary goal of polygenic scores is to estimate individual-specific genetic propensit-
ies. This is typically achieved using a single polygenic score to predict a single
outcome trait.

Chapter 3 describes a systematic investigation of profiles of associations between
multiple genome-wide polygenic scores across a wide range of behavioural traits.
Specifically, this ‘phenome-wide analysis of genome-wide polygenic scores’ mapped
associations between 13 polygenic scores created from GWAS for psychiatric dis-
orders and cognitive traits and 50 behavioural traits measured in adolescence.

When the aim is prediction, genetic correlations between traits can be used for
maximising prediction power within a multi-variable approach, regardless of the un-
derlying mechanisms. Therefore, the premise of the approach used in chapter 4 was
to maximise prediction of developmental outcomes, rather than investigating their
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aetiology. This stands in contrast to multi-trait meta-analytic approaches of GWAS
summary statistics, which rely on substantial and consistent correlations between
discovery GWAS and whose main aim is variant discovery (Baselmans et al., 2017;
Ferreira and Purcell, 2009; Maier et al., 2015; Turley et al., 2017) The multi-polygenic
score approach used here allowed for, but does not require, correlation among poly-
genic predictors.

Chapter 4 employed a multi-polygenic score approach to increase predictive power by
exploiting the joint power of multiple discovery GWAS in the same model, without
assumptions about the relationships among predictors. I selected GWAS from a
centralised repository of summary statistics – based on their statistical power and
regardless of prior evidence for association with the outcomes – to predict three core
developmental outcomes in our independent target sample: educational achievement,
body-mass index, and general cognitive ability. Using repeated cross-validation, I
trained and validated the prediction models using elastic net regularised regression.
Finally, I compared out-of-sample prediction of these multi-score models to the best
single predictor models.

1.4 Genotype-environment correlation

The heritability, polygenicity, and genetic correlations observed within the realm of
phenotypes also cross over to that of environments; genetic variation and variation
in enviornmental exposures is not independent.

Converging evidence from family, twin, and adoption studies has shown that in-
dividuals’ exposure to environments and perceptions of environments varies as a
function of their genotype. This genotype-environment correlation includes both par-
enting characteristics and broad socio-economic variables (Avinun and Knafo, 2013;
Butcher and Plomin, 2008; Kendler and Baker, 2007; Klahr and Burt, 2014; Plomin
and Bergeman, 1991; Vinkhuyzen et al., 2010). In the past decade, quantitative ge-
netic research has started investigating genetic and environmental contributions to
correlations between environmental factors and children’s developmental outcomes
(Colen and Ramey, 2014; D’Onofrio et al., 2010a,b, 2007; Evenhouse and Reilly,
2005; Larsson et al., 2014).

Some newer designs such as the children-of-twins designs allow for disentangling
different types of genotype-environment correlation and identify environmental in-
fluences controlling for genetic confounds (Harden et al., 2007; Knopik et al., 2006;
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Lynch et al., 2006; Narusyte et al., 2008; Silberg et al., 2010). However, these designs
are limited by the extent to which environmental variables differ between close rel-
atives.

Corroborating evidence for gene-environment correlation comes from h2SNP studies
that estimate the ‘net’ genetic effect on trait variation from empirical genomic simil-
arity in unrelated individuals. Using h2SNP estimation, studies have shown variation
in individuals’ social deprivation, household income, stressful life events, and family
socio-economic status partially reflects individuals’ differences across genome-wide
common genetic variants measured on SNP arrays (Benjamin et al., 2012; Davies
et al., 2015; Hill et al., 2016; Marioni et al., 2014; Power et al., 2013; Trzaskowski
et al., 2014). There have also been a few reports of extending SNP heritability ana-
lysis to estimate genetic correlations between environmental measures and measures
of children’s developmental outcomes (Davies et al., 2015; Trzaskowski et al., 2014).

Gene-environment correlation is a common subject of investigation by family studies
and recently by SNP-heritability studies. However, the possibility that individuals’
trait-associated polygenic variation captures variance in established environmental
risk and protective factors has not been considered by polygenic trait prediction
models, which use genetic variants identified by GWAS to estimate individual-specific
genetic trait propensities.

1.4.1 Overview of chapters 5 and 6: Multi-variable approaches to gene-
environment correlation

Early environmental exposures are amongst the best predictors for health and edu-
cational outcomes. For instance, maternal smoking during pregnancy, watching tele-
vision, harsh parenting, and older paternal age have been identified as risk factors for
a range of behaviour problems, whereas higher parental socio-economic status and
breastfeeding have been associated with more favourable child outcomes (Afifi et al.,
2012; Ainsworth, 2002; Bender et al., 2007; Byrne et al., 2003; Caspi et al., 2016;
Danner, 2008; de Kluiver et al., 2017; D’Onofrio et al., 2014; Eamon, 2005; Garner
and Raudenbush, 1991; Gentile et al., 2004; Gershoff, 2002; Huizink and Mulder,
2006; Jago et al., 2005; Janecka et al., 2017; Knox, 2010; Leventhal and Brooks-
Gunn, 2000; Malaspina, 2001; Räsänen et al., 1999; Reichenberg et al., 2006; Sandin
et al., 2016; Sirin, 2005; Taylor et al., 2010; Victora et al., 2015; White et al., 1999;
White, 1982).

Chapter 5, using genome-wide SNP-heritability estimation and polygenic score ana-
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lysis, provided the first molecular evidence for substantial genetic influence on dif-
ferences in children’s educational achievement and its association with family socio-
economic status (SES). The analyses also tested to what extent the observed ge-
netic covariation between children’s educational achievement and family SES was
explained by children’s general cognitive ability.

Chapter 6 investigated to what extent offspring trait-associated alleles covary with
parental traits and behaviours previously reported to be environmental risk or pro-
tective factors for important child outcomes. Specifically, mixed linear models estim-
ated the effects of trait-associated polygenic variation while controlling for overall
genetic relatedness by fitting the effects of all SNPs as random effects. A second
set of analyses tested to what extent offspring genetic trait propensities contribute
to the correlation between parenting characteristics and children’s developmental
outcomes.

1.5 Summary

Robust evidence for the polygenicity and genetic correlations of complex traits across
the phenome and environment suggests both the necessity of polygenic instruments
and the value of multi-trait models. This thesis uses several multi-variable genome-
wide approaches for trait prediction (chapters 3 and 4), and to investigate genotype-
environment correlation relevant for polygenic prediction (chapters 5 and 6).

The next chapter provides an overview of some of the methods used in these studies,
methodological details are described in the later chapters.
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2 General methods

While all methods employed in this thesis are explained in detail within the respective
chapters, the following sections provide a basic outline of the two main techniques
used: estimation of genetic variance and covariance from genome-wide SNPs (chapter
3) and polygenic score prediction (chapters 3, 4, 5, and 6).

2.1 Estimation of genetic variance and covariance from genome-

wide SNPs measured in unrelated individuals

All quantitative genetics models estimate genetic and residual contribution to trait
variation by fitting a covariance structure specified by a matrix of kinship coefficients
to a vector of measured phenotypes (Falconer and Mackay, 1996; Wright, 1920).
Models vary however in which kind of genetic variation they consider and how it is
measured.

The generic model estimating the extent to which phenotypic similarity between
pairs of individuals is accounted for by their genetic relatedness can be expressed in
terms of variance components:

V ar(Y ) = �2
aA+ �2

dD + �2
cC + �2I

Equation 2.1: Generic variance component model

With Y being a vector of phenotype values, A and D matrices of kinship coefficients
corresponding to additive and dominant genetic effects, C common environmental
effects, and I is an identify matrix containing residual (’non-shared environmental’)
effects.

The widespread availability of high-throughput SNP-chip genotyping has enabled
the move from using known kinship coefficients from pedigree data to estimating ge-
nomic differences from high-density SNP arrays (Meuwissen et al., 2001; Mousseau
et al., 1998; Ritland, 1996; Thomas et al., 2002; van Kleunen and Ritland, 2005,
2004; Visscher et al., 2007). Previously used in animal breeding and plant genetics,
recently this has attracted interest and methodological development in human ge-
netics because it offers several advantages over traditional pedigree-based methods
(Yang et al., 2013, 2011a).

Whereas traditional pedigree approaches use known kinship coefficients, h2SNP estim-
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ation methods fit empirically established genomic similarity between conventionally
unrelated individuals (Meuwissen et al., 2001; Speed et al., 2012; Yang et al., 2011a).
Here, genetic similarity is estimated from short segments of nucleotide sequences
shared between unrelated individuals. Importantly for this thesis, the reliance on
empirical genomic similarity in ‘unrelated’ individuals allows for decomposition of
phenotypic variance/covariance of family-level variables.

h2SNP methods estimate additive genetic variance captured by genome-wide SNPs
by fitting the effects of all sampled (i.e. genotyped or imputed) SNPs as random ef-
fects in a linear mixed model. Linear mixed models, ubiquitously used in heritability
estimation (Henderson et al., 1959; Robinson, 1991), fit a covariance structure spe-
cified by a matrix of kinship coefficients to a vector of measured phenotypes. “Mixed”
models contain both an unobserved random effect, usually interpreted in terms of
a polygenic contribution to the trait, and fixed effects (i.e. ‘covariates’, not shown
in the equations below). h2SNP is estimated by the squared regression coefficient of
the random effect. In relation to the generic model (Eq. 2.1), the additive genetic
component representing h2SNP can be expressed as:

h2SNP =
�2
a

�2
a + �2

d + �2
c + �2

i

Equation 2.2: h2SNP ‘SNP-heritability’

Using restricted/residual maximum likelihood (REML), the h2SNP estimation model
partitions trait variance into additive polygenetic (a) and residual effects (i), which
also contains all non-additive genetic effects.

V ar(Y ) = �2
aA+ �2

i I

Equation 2.3: Univariate mixed linear model for h2SNP estimation

The genetic component of the decomposition is a product of genomic similarity (A)
and the estimated additive genetic effect (�2

a). The genomic similarity matrix (A)
contains pairwise genomic similarity between all pairs of individuals in the samples.
The genomic similarity between a given pair of individuals is their genome-wide
allelic correlation, weighted by allele frequencies for each SNP.

1

M

MX

i=1

(Gij � 2pi)(Gik � 2pi)

2pi(1� pi)

Equation 2.4: Algorithm for the estimation of pairwise genetic similarity (Yang et al.,
2011a)
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Gij is individual j’s genotype (i.e. number of copies of the reference allele) at SNPi,
with pi being the frequency of the reference allele. M is the number of markers in the
model. Notably, causal variants only contribute if they are tagged by the measured
SNPs, creating a bias towards common causal variants, which are better tagged than
rare causal variants.

This model can be extended to the bivariate (or multivariate) level by relating the
pairwise genetic similarity matrix to a phenotypic covariance matrix between traits
(Lee et al., 2012; Thompson, 1973; Zhou and Stephens, 2014).

(V ) =


Z1AZ 0

1�
2
a1 + I�2

i1 Z1AZ 0
2�

2
a1,a2

Z2AZ 0
1�

2
a1,a2 Z2AZ 0

2�
2
a2 + I�2

i2

�

Equation 2.5: Variance/covariance matrix of bivariate mixed linear model (Yang
et al., 2011a)

A is the genetic similarity matrix, and Z is an incidence matrix holding the random
genetic effects. Here �2

a1,a2 estimates the genetic covariance between the two traits,
with the residual component modelled only on the variance of each trait. Because
the genetic correlation estimate is a non-linear function of the genetic variances and
covariances of the traits, there is no explicit way to estimate its variance. In the com-
monly used Genome-wide Complex Trait Analysis (GCTA) software, the sampling
distribution of the statistic is calculated using an average information method to
obtain the standard error of each estimate (Lee et al., 2012; Lee and van der Werf,
2006).

Genetic correlation is the ratio between genetic covariance and the genetic variances
of the two traits, all of which are subject to the same underestimation. Therefore,
the estimate of genetic correlation will be similar to that of the twin method, if the
degree of correlation is the same for the co/variance tagged as for the co/variance
untagged by the sampled SNPs.

2.2 Polygenic score prediction

Because the individual effects of common genetic variants on complex traits are
miniscule, single-variant models are of little use for prediction. When the aim is
prediction, polygenic scores can be used to aggregate the effects of multiple genetic
variants discovered by independent GWAS (Dudbridge, 2013; Palla and Dudbridge,
2015; Purcell et al., 2009). Rather than just aggregating SNPs passing the level of
genome-wide significance, a recent development is to aggregate a much larger number
of SNPs, weighted by their GWAS effect size estimate. Unlike quantitative genetic
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designs that estimate the net effect captured by the measured genetic differences
in the population, polygenic scores provide individual-specific estimates of genetic
propensities for specific traits.

Genome-wide polygenic scores (GPS) are calculated as the weighted sums of indi-
vidual i’s SNPs:

GPSki =
mX

j=i

�̂kjgkji

Equation 2.6: Genome-wide polygenic score estimate

GPSki represents the individual i’s genome-wide polygenic score based on summary
statistics from GWASk. �̂kj is an estimate of marker j’s effect size for discovery
trait k, that is, the effect of having one more copy of the reference allele at SNPkj .
gkji is individual i’s genotype at marker j for discovery GWAS k, coded as having
0,1, or 2 copies of the reference allele at marker kj . Conventionally, the �̂kj for
SNPj is simply the GWASk estimate for SNPjk. However, due to local linkage
disequilibrium (LD) (i.e. correlation) between SNPs, �̂kj captures any effects of the
SNPkj and its correlates. Therefore, to correct for the multiple counting problem of
effectively counting the effects of markers that are in LD with other markers multiple
times, conventionally, markers are thinned down via the process of ‘clumping’ to a set
of uncorrelated markers prior to polygenic score creation. The clumping algorithm
preferentially selects the most significant markers identified by the GWAS.

Recently, several adjustments to the generic model have been proposed with the
aim of improving prediction accuracy of polygenic scores. For example, LDpred
attempts to avoid a reduction in predictive accuracy and loss of information caused
by the conventional approach of LD-based marker pruning and applying a P-value
threshold to association statistics (Vilhjalmsson et al., 2015). LDpred is a Bayesian
approach that infers the posterior mean effect size of each marker by adjusting the
effect size from the discovery GWAS using a prior on effect size and information on
the LD between the SNPs from a reference panel to obtain a posterior estimate of
the causal effect for SNPjk independent of the effects of other SNPs. Hence, the
LDpred GPS for individual i for GWASk is the sum of i’s genotypes across all SNPs
used in the analyses, weighted by the LDpred estimates of the genotype effects. The
score represents an estimate of the genetic propensity for individual i for trait k.

Another example is PRSice, which works on the GWAS P-value threshold for SNP
inclusion into the polygenic score (Euesden et al., 2015). This method simply runs
a large series of regression models and then selects the model with the ‘best-fit’ P-
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value threshold, ‘best-fit’ being the score that predicts the target phenotype with the
highest statistical significance. The increased multiple testing burden is addressed
by an adjusted ↵ level.

22



3 Phenome-wide analysis of genome-wide polygenic scores

Krapohl, E., Euesden, J., Zabaneh, D., Pingault, J.-B., Rimfeld, K., von Stumm,
S., Dale, P. S., Breen, G., O’Reilly, P. F., and Plomin, R. (2016). Phenome-wide
analysis of genome-wide polygenic scores. Molecular Psychiatry, 21(9):1188–1193

Supplementary material: http://www.nature.com/mp/journal/v21/n9/suppinfo/
mp2015126s1.html
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Phenome-wide analysis of genome-wide polygenic scores
E Krapohl1, J Euesden1, D Zabaneh1, J-B Pingault1,2, K Rimfeld1, S von Stumm3, PS Dale4, G Breen1, PF O’Reilly1 and R Plomin1

Genome-wide polygenic scores (GPS), which aggregate the effects of thousands of DNA variants from genome-wide association
studies (GWAS), have the potential to make genetic predictions for individuals. We conducted a systematic investigation of
associations between GPS and many behavioral traits, the behavioral phenome. For 3152 unrelated 16-year-old individuals
representative of the United Kingdom, we created 13 GPS from the largest GWAS for psychiatric disorders (for example,
schizophrenia, depression and dementia) and cognitive traits (for example, intelligence, educational attainment and intracranial
volume). The behavioral phenome included 50 traits from the domains of psychopathology, personality, cognitive abilities and
educational achievement. We examined phenome-wide profiles of associations for the entire distribution of each GPS and for the
extremes of the GPS distributions. The cognitive GPS yielded stronger predictive power than the psychiatric GPS in our
UK-representative sample of adolescents. For example, education GPS explained variation in adolescents’ behavior problems
(~0.6%) and in educational achievement (~2%) but psychiatric GPS were associated with neither. Despite the modest effect sizes of
current GPS, quantile analyses illustrate the ability to stratify individuals by GPS and opportunities for research. For example, the
highest and lowest septiles for the education GPS yielded a 0.5 s.d. difference in mean math grade and a 0.25 s.d. difference in
mean behavior problems. We discuss the usefulness and limitations of GPS based on adult GWAS to predict genetic propensities
earlier in development.

Molecular Psychiatry (2016) 21, 1188–1193; doi:10.1038/mp.2015.126; published online 25 August 2015

INTRODUCTION
One of the most striking findings emerging from genome-wide
association studies (GWAS) of complex traits is the scarcity of
common single nucleotide polymorphism (SNP) associations that
account for more than 1% of trait variation in the population.1,2

Although GWAS have been successful in discovering and replicating
SNP associations for many traits and disorders,3 the dearth of larger
SNP associations in well-powered GWAS demonstrates that the
ubiquitous heritability of complex dimensions and common
disorders is caused by thousands of common DNA variants of small
effect.1,4 Because their effects are miniscule, a single common SNP is
of little use for prediction. For this reason, the future of genetic
prediction lies with polygenic scores that aggregate the effects of
thousands of SNPs discovered by GWAS, including variants that do
not achieve genome-wide significance.5 Unlike quantitative genetic
designs that estimate the net effect of DNA differences in a
population—such as twin and adoption studies and SNP-based
heritability6—polygenic scores provide individual-specific estimates
of genetic propensities for specific SNPs.
Here we refer to polygenic scores as genome-wide polygenic

scores (GPS) for two reasons. First, the acronym GPS excludes the
term ‘risk’, in contrast to the previous labels, which imply that
genetic influences are inevitably associated with negative
outcomes. Second, the acronym GPS in its original use as global
positioning system is an apt metaphor for the use of DNA
differences across the genome to guide research on genetic
influence.

Association statistics for dozens of large meta-analytic GWAS
are now available, including GWAS for psychiatric and cognitive
traits. The GPS based on these GWAS results are limited by the
‘hidden heritability’ ceiling and, as yet, they account for only a few
percent of the variance or liability of their target trait.2 In addition,
most GWAS are based on comparisons between diagnosed cases
versus controls using a liability model that assumes continuous
liability throughout the population, but the extent to which these
case/control results generalize to prediction of continuous traits in
the population needs to be established empirically.
Multivariate quantitative genetic analyses using the twin method

as well as well as SNP heritability methods have shown that genetic
effects are to a substantial extent pleiotropic across complex traits in
general7 and in particular across cognitive abilities and disabilities8,9

and across psychopathologies.10–13 This pleiotropy suggests the
usefulness of going beyond ‘candidate-phenotype’ analyses of a
single GPS-trait pairing to consider the multivariate profile of GPS
associations across many behavioral traits, the behavioral phenome.
Here, we report the first phenome-wide analysis of GPS derived

from 13 published major psychiatric, cognitive and biometric
GWAS. We applied effect size and significance estimates from
GWAS summary statistics to create GPS from raw genotype data
for individuals in our target sample. The phenome included 50
traits from the domains of psychopathology, personality, cognitive
abilities, and educational achievement, assessed in a representa-
tive sample of over 3000 16-year-old individuals in the United
Kingdom.
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The main focus of this paper is to explore the profile of GPS
associations across the behavioral phenome for the entire
distribution of each GPS and for the extremes of the GPS
distributions. One use of polygenic scores is to predict genetic
propensities early in development in order to facilitate interventions
that promote potential and prevent problems. As a step in this
direction, the present sample consists of adolescents as they finish
compulsory schooling at age 16. We test whether GPS, based on
current GWAS, predict phenotypic variation in the adolescent
population, and we discuss the usefulness and limitations of GPS
based on adult GWAS to predict genetic propensities earlier in
development.

MATERIALS AND METHODS
We used genome-wide genotype and phenome-wide behavioral data from
3152 unrelated adolescents drawn from the UK-representative Twins Early
Development Study14–16 (Supplementary Table 1). We processed the 3152
genotypes using standard quality control procedures followed by imputation
of SNPs using the 1000 Genomes Project reference panel17 (Supplementary
Methods 1). After quality control, we included around 4.3 million variants
into the polygenic score analyses (Supplementary Methods 1). Association
analyses were conducted using imputed markers and principal components
to control for population stratification. Individuals were assessed on a wide
range of phenotypes at the age of 16. The present analyses included 50 traits
from the domains of psychopathology, personality, cognitive abilities and
educational achievement (Supplementary Methods 2). All measures were
age- and sex-regressed and the z-scores were used in the analyses.
We created 13 GPS for each of the over 3000 individuals in our sample

using summary statistics from 13 published GWAS18–28 (Supplementary
Table 2). Here we present results using a P=0.30 threshold for including
SNPs from the published GWAS (Figure 1 and Supplementary Table 3);
results for GPS based on the P-value thresholds of 0.10 and 0.05 are included
in the Supplementary material (Supplementary Figures 1a and b and
Supplementary Table 3). The selection of the relatively lenient P=0.30
threshold was based on the evidence that many associated markers lie
within the ensemble of individually non-significant SNPs, with power of the

GPS increasing with number of SNP included.5 We also report results
(Supplementary Figure 2 and Supplementary Table 4) from a high-resolution
polygenic scoring approach, implemented in the software PRSice (London,
UK), that identifies the most predictive GPS for each phenotype.29

We describe two types of main results: (i) associations between GPS and
the behavioral phenome for the entire sample, which demonstrate the
usefulness of cross-trait prediction, and (ii) quantile analyses showing the
association between selected GPS and behavior by septile, which
illustrates the ability to stratify individuals by GPS and the potential of
polygenic score for phenotype prediction.
To inform these analyses, we demonstrate that GPS are normally

distributed and discuss the implications for considering both ends—
resilience as well as risk—of GPS distributions. We also examine three
types of correlations: (i) genetic correlations between the GWAS summary
statistics (ii) correlations between the GPS, and (iii) phenotypic correlations
between the target phenotypes. These correlations support the usefulness
of a phenome-wide analysis of GPS.

RESULTS
GPS are normally distributed
The quantitative genetic model assumes that many genetic variants
of small effect drive the heritability of complex traits and common
disorders,30 even though each marker is inherited in the discrete
manner hypothesized by Mendel.31 Therefore, the central limit
theorem implies that the distribution of polygenic scores in the
population will approach normality. Specifically, the normal
distribution is to be expected whenever trait variation is polygenic
and produced by the addition of a large number of small effects.
Nonetheless, the normality of GPS (Supplementary Figures 3a

and c) merits emphasis because it illustrates that common
disorders can be considered as extremes of the common polygenic
liability spectrum, which has far-reaching implications for diagnosis,
treatment and prevention.32 It also implies that GPS can be
operationalized in terms of ‘resilience’ as well as ‘risk’ predictors.
There is untapped research potential for operationalizing the
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Correlations:  Genome−wide Polygenic Scores (pT = 0.3) and phenotypes 

Figure 1. Correlations between 13 genome-wide polygenic scores and 50 traits from the behavioral phenome. These results are based on GPS
constructed using a GWAS P-value threshold (PT)= 0.30; results for PT = 0.10 and 0.05 (Supplementary Figures 1a and b and Supplementary
Table 3). P-values that pass Nyholt–Sidak correction (see Supplementary Methods 1) are indicated with two asterisks, whereas those reaching
nominal significance (thus suggestive evidence) are shown with a single asterisk.
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negative tail of GPS for disorders as ‘resilience’ and the negative end
of cognitive or education GPS as ‘risk’ factors. This ‘other end’ of the
normal distribution of GPS is uncharted territory. From an
evolutionary perspective, averageness might be an adaptive trade-
off against the mishmash of costs and benefits of more extreme
GPS, especially given the fluctuating nature of selection.32

Intercorrelations between GWAS, GPS and phenotypic traits
As depicted in Supplementary Figure 4 the phenotypic correla-
tions between the target phenotypes in our sample of adolescents
show substantial intercorrelations, with a ‘cognitive’ and a
‘psychopathology’ cluster.
We estimate the genetic correlation between the discovery

GWAS using a new technique based on LD score regression,33,34

which uses only GWAS summary statistics and linkage disequilib-
rium information to decompose true polygenic variance/
covariance from confounding (see Supplementary Methods for
details). Supplementary Figure 5 depicts the genetic correlations
between the 13 GWAS, which provide evidence for significant and
substantial pleiotropy. In addition to the genetic correlations
reported previously,34 we add correlations for the summary
statistics of the child IQ GWAS,19 adult IQ35 and intracranial
volume.20 The observed genetic correlations replicate and extend
previous research. We confirm genetic overlap between the major
psychoses13,25,34,36,37 and between cognitive phenotypes includ-
ing intracranial volume,18,20,38–40 respectively. We further find
correlations between these two clusters—for example, strong
negative associations between the cognitive phenotypes and
Alzheimer’s and positive associations between educational attain-
ment and autism spectrum disorder as well as bipolar disorder.
We also examined correlations between the GPS created for our

sample (Supplementary Figures 6a and c and Supplementary
Table 3). We find similar correlation patterns but weaker overall
correlations.
These genetic correlations provide evidence that polygenic

effects are to a substantial degree pleiotropic across traits.
Together with finding substantial correlations between the target
phenotypes, this multivariate genetic architecture suggests the
usefulness of a phenome-wide approach to investigate the links
between GPS and behavior, which is the focus of the next and final
section of results.

GPS correlate with the behavioral phenome
Figure 1 summarizes correlations between the 50 traits of the
behavioral phenome and the 13 GPS for PT = 0.30. Correlation
coefficients, s.e., P-value thresholds (PT), and number of SNPs
included are shown in Supplementary Table 3 for the fixed
PT (0.30; 0.10; 0.05). Very similar patterns of association emerged
from both the conventional fixed PT analyses and the high-
resolution analyses that estimate the PT flexibly for the ‘best-fit’
GPS (Supplementary Figure 2 and Supplementary Table 4). Both
methods yielded statistically significant phenomic associations
only for the GPS for College and Child IQ.

College GPS. College GPS, which was based on the binary
measure of attending college or not, showed the strongest
phenomic profile at age 16, which might reflect the fact that
its meta-analytic GWAS sample size was one of the largest
(N= 120 000; Rietveld et al.18). College GPS correlated significantly
with academic performance at age 16: General Certificate of
Secondary Examination (GCSE) English (r =0.15), GCSE mathematics
(r = 0.15, s.e. 0.02) and GCSE science (r = 0.14, s.e. 0.02).39 College
GPS also correlated significantly with general cognitive ability (‘g’)
(r= 0.14, s.e. 0.03) as well as its subscales Ravens Matrices (r= 0.12,
s.e. 0.03) and with Mill Hill Vocabulary (r= 0.09, s.e. 0.03), which
confirms a similar finding for adults.40 College GPS also correlated
positively with PISA math interest (r= 0.10, s.e. 0.03) and math

self-efficacy (r= 0.12, s.e. 0.03). Negative associations for College
GPS emerged for SDQ total behavior problems (r=− 0.07, s.e. 0.02)
and SDQ Conduct (r=− 0.08, s.e. 0.02).

Child IQ GPS. The GPS for Child IQ yielded a similar but
diluted phenomic profile as compared with College GPS. Child
IQ GPS correlated significantly with GCSE English (r= 0.09, s.e.
0.02), GCSE Math (r= 0.10, s.e. 0.02) and GCSE Science (r= 0.09,
s.e. 0.02).

Psychiatric GPS. In contrast, the five psychiatric GPS yielded no
significant correlations that passed multiple comparisons corrections
across the behavioral phenome. Nominally significant associations
included a positive correlation between Alzheimer’s GPS and
Conner’s Impulsivity; and positive associations between Autism
Spectrum Disorder GPS and Autism Quotient: Attention Switching.
Autism Spectrum Disorder GPS yielded nominally significant
negative associations with Chaos at home, Attachment and
Height. Schizophrenia GPS correlated positively with GCSE English
and negatively with Autism Quotient: Attention to Detail. Bipolar
disorder GPS correlated negatively with Autism Quotient: Attention
to Detail.
One likely explanation for the lower phenomic profile of

psychiatric GPS compared with that of College GPS is the
difference in sample sizes for the discovery samples. However,
Child IQ GPS yielded significant associations despite the relatively
smaller sample size of the GWAS (N= 9616). This might point to
the importance of developmental proximity or similarity of the
phenotypes in discovery and target sample. It also emphasizes
that predictive power is not only a function of sample size of the
discovery sample.5 Phenotypic similarity between the traits in the
discovery sample and the target sample is a proxy for the
magnitude of genetic covariance between the traits.
The underlying premise of GWAS is that the polygenic

architecture of complex traits and common disorders requires a
genome-wide approach despite the multiple testing burden.
Similarly, based on strong evidence for the ubiquitous pleiotropy
of complex traits,7,9–13,34 the advantage of the phenome-wide
approach outweighs the resulting multiple testing burden.
Specifically, while testing a large number of highly unlikely
hypotheses with little or no prior support should be avoided, in
this case we have collated a well-defined set of psychological and
behavioral traits for which there is good reason to suspect causal
associations with the available discovery GWAS phenotypes. In
this way, the only 'multiple testing problem' relates to setting an
appropriate significance threshold given the number and correla-
tion of tests performed (see Supplementary Methods for multiple
testing correction method used).
Therefore, the absence of phenome-wide significant associations

(that is, after correcting for multiple testing across the 50 traits and
13 GPS) for all psychiatric GPS does not imply the absence of
polygenic effects. However, the scarcity of nominally significant
associations between the psychiatric GPS and the 50 traits suggests
that the genetic covariance between psychiatric adult case/control
samples and our adolescent population sample might be relatively
small. For instance, under certain assumptions about polygenic
architecture (for example, ⩽5% of tested SNPs associated with
schizophrenia in the discovery GWAS), we had ⩾80% power with
α=0.05 to detect associations between the Schizophrenia GPS and
a phenotype given ⩾0.06 genetic covariance between schizophre-
nia and the target trait, with ⩾ 0.5% of phenotypic variation in the
target trait explained by schizophrenia5,41,42 (see Supplementary
Methods for more detail).
One possible reason for the lower observed phenomic profile

of the psychiatric GPS might be that the current sample is UK
representative and therefore not enriched for psychiatric symptoms.
The psychiatric GPS were based on case–control comparisons, often
with extreme cases. This emphasizes the limitations of using GPS for
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the prediction of trait variation in the general population from
GWAS based on selected samples. Importantly, the GPS College did
predict children’s behavior problems in our UK-representative
sample, whereas the psychiatric GPS did not. This points to the
usefulness of cross-trait prediction in general and the value of
cognitive GWAS/GPS as prediction instruments for psychiatric
symptoms in the population.

Other GPS. Adult body mass index (BMI) GPS correlate positively
with the measure of BMI at age 16 (r= 0.18, s.e. 0.03); and adult
Height GPS correlate with height at age 16 (r= 0.33, s.e. 0.03).
There was suggestive evidence for a negative association between
Ever smoked GPS and conscientiousness (r=− 0.06, s.e. 0.03) and a
positive association with BMI (r= 0.09, s.e. 0.03).

Quantile analyses
To illustrate the ability to stratify individuals by GPS and the
potential of polygenic score for phenotype prediction, we
grouped individuals into GPS septiles and estimated the mean
phenotypic value for each quantile. We provide three examples:
Figure 2a shows that mean standardized height increased with

more adult height-associated alleles in our UK-representative sample
of children aged 16, with the largest difference between the lowest
and highest septile (Hedges g: − 1.01 with 95% confidence interval
(CI): − 1.26 to − 0.77; difference in means: 0.97 s.d., with P-value
o0.01). Figure 2b shows that mean math grade on the standardized
UK-national examinations at age 16 increased with more College-
associated alleles (Figure 2b), with the largest difference between
the lowest and highest septile (Hedges g: − 0.52 with 95% CI: − 0.67
to − 0.37; difference in means: 0.49 s.d., with P-value o0.01).

Figure 2c illustrates the utility of the phenome-wide approach for
cross-trait prediction: the mean for total parent-reported behavior
problems at age 16 decreased slightly but significantly with higher
College GPS, with a maximum effect size between the lowest and
highest quantile (Hedges g: 0.20 with 95% CI: 0.04–0.34; difference in
means: 0.19, with P-value 0.01).
These results (Figure 2) illustrate the ability to stratify individuals

by GPS, which suggests opportunities for research, for example,
selecting high and low GPS extreme individuals for intensive
research such as neuroimaging that is unable to test large
representative samples. However, we emphasize that the current
predictive power and accuracy of GPS do not allow for their use as
predictive tests.

DISCUSSION
These results highlight the usefulness of a phenome-wide
approach to examine behavioral profiles of associations with
GPS even though current GPS account for only a few percent of
variance or liability of their target trait. An interesting finding is
that phenome-wide associations for cognitive GPS are stronger
than for psychiatric GPS in our UK-representative sample of
adolescents. For example, we found that GPS College, but none of
the psychiatric GPS, predicted adolescent behavior problems,
which demonstrates the usefulness of cross-trait predictions and
the multivariate phenome-wide approach in general. However,
this finding could be explained by differences in sample sizes,
sampling methods (population versus case/control), and genetic
architecture (for example, extent of covariance between discovery
and target trait).
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Figure 2. (a) Mean for height at age 16 by adult Height genome-wide polygenic score (GPS) septile. The threshold for selecting trait-associated
alleles was PT o 0.30. The GPS were converted to quantiles (1= lowest, 7=highest GPS). Mean phenotypic values and 95% confidence
intervals (CIs) for the quantile groups (bars) were estimated using general linear regression with ancestrally informative principal components,
sex and age of measurement as covariates. (b) Mean for children’s mathematics educational achievement at age 16 (compulsory subject on
the General Certificate of Secondary Examination (GCSE), see Materials and Methods for details) by College GPS septile. The threshold for
selecting trait-associated alleles was PT o 0.30. The GPS were converted to quantiles (1= lowest, 7=highest GPS). Mean phenotypic values
and 95% CI for the quantile groups (bars) were estimated using general linear regression with ancestrally informative principal components,
sex and age of measurement as covariates. (c) Mean for total parent-reported behavior problems at age 16 by adult College GPS septile. The
threshold for selecting trait-associated alleles was PT o 0.30 (the best-fit GPS as estimated by PRSice software, see Materials and Methods).
The GPS were converted to quantiles (1= lowest, 7=highest GPS). Mean phenotypic values and 95% CI for the quantile groups (bars) were
estimated using general linear regression with ancestrally informative principal components, sex and age of measurement as covariates.
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Finding significant associations for the Child IQ GPS, which is
based on a small discovery sample, is a reminder that predictive
power of GPS is not merely a function of sample size but also of
the developmental proximity of the GWAS sample and the target
GPS sample. As explained in the Introduction, we were interested
in the extent to which GWAS in adult samples yield GPS that can
predict genetic propensities—strengths as well as weaknesses—
earlier in development, in this case in adolescence. However, GPS
College is a trait assessed closer in age to the adolescents in our
sample. In contrast, the psychiatric GPS were derived from GWAS
studies of adults.
A larger issue is that extant GPS account for only a few percent

of the phenomic variance in the target trait. However, we illustrate
the research potential of polygenic stratification by quantile.
Power and accuracy of GPS will improve as GWAS sample sizes
increase. GPS that narrow the ‘hidden heritability’ gap is what is
needed most for phenome-wide analyses—and for all research
harvesting the fruits of GWAS.
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Multi-polygenic score approach to trait prediction
E Krapohl1, H Patel2,3, S Newhouse2,3,4, CJ Curtis1,2, S von Stumm5, PS Dale6, D Zabaneh1, G Breen1,2, PF O’Reilly1 and R Plomin1

A primary goal of polygenic scores, which aggregate the effects of thousands of trait-associated DNA variants discovered in
genome-wide association studies (GWASs), is to estimate individual-specific genetic propensities and predict outcomes. This is
typically achieved using a single polygenic score, but here we use a multi-polygenic score (MPS) approach to increase predictive
power by exploiting the joint power of multiple discovery GWASs, without assumptions about the relationships among predictors.
We used summary statistics of 81 well-powered GWASs of cognitive, medical and anthropometric traits to predict three core
developmental outcomes in our independent target sample: educational achievement, body mass index (BMI) and general
cognitive ability. We used regularized regression with repeated cross-validation to select from and estimate contributions of 81
polygenic scores in a UK representative sample of 6710 unrelated adolescents. The MPS approach predicted 10.9% variance in
educational achievement, 4.8% in general cognitive ability and 5.4% in BMI in an independent test set, predicting 1.1%, 1.1%, and
1.6% more variance than the best single-score predictions. As other relevant GWA analyses are reported, they can be incorporated
in MPS models to maximize phenotype prediction. The MPS approach should be useful in research with modest sample sizes to
investigate developmental, multivariate and gene–environment interplay issues and, eventually, in clinical settings to predict and
prevent problems using personalized interventions.

Molecular Psychiatry advance online publication, 8 August 2017; doi:10.1038/mp.2017.163

INTRODUCTION
Genome-wide association studies (GWASs) have been successful
in identifying thousands of associations for hundreds of complex
traits and common disorders.1 One use of GWAS results is to
understand biological pathways between genotypes and pheno-
types. Another use, the focus of the present research, is to
estimate genetic propensities of individuals to predict individuals’
future problems and potential and, eventually, to develop
personalized interventions that meet individual medical, psychia-
tric and educational needs. Both goals have been hindered by the
ubiquitous GWA finding that the largest effect sizes are extremely
small.2 For example, the largest population effect sizes found for
common variants in height or body mass index (BMI) account for
only ~1% of the variance.3,4 We know empirically that the vast
majority of common genetic variants for most traits have a
markedly lower effect than 1%.2

The highly polygenic nature of complex traits and common
disorders poses an immense challenge for understanding the
biological mechanisms linking single variants with phenotypes.
However, when the priority is phenotypic prediction, polygenic
scores can be used to aggregate the effects of many DNA variants
in order to investigate their joint predictive power.5,6 Rather than
just using single-nucleotide polymorphisms (SNPs) that reach
genome-wide significance, a recent development is to aggregate
a much larger number of SNPs, weighted by their GWA effect size
estimate, as long as together they increase the prediction in an
independent sample, even if some SNPs have no real effect.7 For
example, for height, a polygenic score that aggregates the effects

of ~2000 SNPs accounts for 21% of the variance of height in
independent samples.3

The other defining characteristic of complex traits and common
disorders is the abundance of genetic correlations between them.
There is consistent evidence for genetic correlations between
psychiatric disorders, between anthropometric traits and between
educational and cognitive traits, as well as for genetic correlations
across these categories.8–11

Genetic correlation can arise from pleiotropy, the phenomenon
of multiple traits being associated with the same gene or genetic
variant.8 Genetic correlation can also reflect shared biological
pathways or more indirect linkage.12 Regardless of its cause,
genetic correlation between different traits means that a
polygenic score based on one trait can predict a different
outcome trait, with predictive accuracy a function of the shared
genetic signal between them. Therefore, when the aim is
prediction, genetic correlation can be exploited for trait prediction
while remaining agnostic to the underlying mechanisms.
A primary goal of polygenic scores, which aggregate the effects

of thousands of trait-associated genetic variants discovered in
GWAS, is to estimate individual-specific genetic propensities. This
is typically achieved using a single polygenic score, but here we
use an approach to increase predictive power by exploiting the
joint power of multiple discovery GWASs. We use a multi-
polygenic score (MPS) approach that exploits genetic correlations
between the outcome trait and a multitude of traits by using the
joint predictive power of multiple polygenic scores in one
regression model.
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We selected GWASs from a centralized repository of summary
statistics—based on their statistical power and regardless of prior
evidence for association with the outcomes—to predict three core
developmental outcomes in our independent target sample:
educational achievement, BMI, and general cognitive ability. Using
repeated cross-validation, we trained and validated the prediction
models using elastic net regularized regression, a multiple
regression model suited to deal with a large number of correlated
predictors while preventing overfitting.13 We subsequently tested
how well these models predict outcomes in an independent
test set.
Here, we employ a MPS approach that uses publicly available

GWAS summary statistics to estimate individual-level genetic
propensities and predict developmental outcomes in an indepen-
dent target sample. This stands in contrast to multi-trait
approaches that rely on access to individual-level data in the
discovery data sets because they make use of a method from
animal breeding in which the total genetic effect (‘breeding
value’) of each individual in a discovery data set is estimated from
the best linear unbiased predictor in a multi-trait random-effects
model that can be used for individual-level prediction in the
validation data sets. These multi-trait methods are not applicable
to GWAS summary statistics when genotype data are unavailable
because of privacy or logistical constraints that are frequently
the case.
The declared aim of the current MPS approach is to maximize

prediction of developmental outcomes, rather than investigating
their etiology. This stands in contrast to multi-trait meta-analytic
approaches of GWAS summary statistics that relies on substantial
and consistent correlations between discovery GWASs and whose
main aim is variant discovery.14–17 The current MPS approach
allows for, but does not require, correlation among polygenic
predictors.

MATERIALS AND METHODS
Sample
The target sample comprised genome-wide SNP and phenotypic data from
6710 unrelated adolescents drawn from the UK representative Twins Early
Development Study (TEDS). TEDS is a multivariate longitudinal study that
recruited over 11 000 twin pairs born in England and Wales in 1994, 1995
and 1996. Both the overall TEDS sample and the genotyped subsample
have been shown to be representative of the UK population.18–20 The
project received approval from the Institute of Psychiatry ethics committee
(05/Q0706/228) and parental consent was obtained before data collection.
We processed the genotypes for the 6710 individuals using stringent
quality control procedures followed by imputation of SNPs using the
Haplotype Reference Consortium reference panel21 (Supplementary
Methods S1).

Predictors
Discovery data sets: GWAS summary statistics. We selected GWAS
summary statistics from LD hub, a centralized repository for summary
statistics22 based on their statistical power—regardless of prior evidence
for association with our outcome traits. Specifically, we included 81 GWAS
summary statistics that were either publically downloadable or obtained
via correspondence and had a linkage disequilibrium (LD) score23

heritability z-score 45, indexing good statistical power (which is a
function of variance explained and sample size). Supplementary Table S1
provides details of all GWAS summary statistics included in our analyses.
The published version of the child IQ GWAS included the present

target sample of TEDS. Therefore, to avoid bias, the present analyses
used summary statistics from a rerun of the GWAS meta-analysis
excluding TEDS.

Polygenic scores. We created 81 genome-wide polygenic scores for each
of the 6710 individuals in the TEDS sample using summary statistics from
the GWAS described above (Supplementary Table S1). After quality control
(Supplementary Methods S1), the study data included 7 581 516 geno-
typed or well-imputed (info 40.70) SNPs. These were quality controlled

and coordinated with each of the summary statistics, respectively, by
excluding markers due to nucleotide inconsistencies or low minor allele
frequency (o1%). Number of markers before and after quality control and
coordination with the study data are listed in Supplementary Table S1.
We constructed polygenic scores as the weighted sums of each

individual’s trait-associated alleles across all SNPs. We used LDpred24 to
construct the scores. LDpred uses a prior on the markers’ effect sizes and
adjusts summary statistics for LD between markers. Scores were
standardized and adjusted for 30 principal components. More details on
the construction of the polygenic scores are provided in Supplementary
Methods S2.

Outcomes
To illustrate the MPS approach, we selected three key developmental
outcomes:
Educational achievement operationalized as the mean grade of the

three compulsory subjects (Mathematics, English and Science) attained on
the standardized United Kingdom General Certificate of Secondary
Education (GCSE), taken by almost all (499%) pupils at the end of
compulsory education at age 16 years.
General cognitive ability at age 12 years assessed by two verbal and two

nonverbal cognitive standardized tests.
BMI at age 9 years that was age and sex adjusted using external

reference data.
Supplementary Methods S3 and Figure S1 contain detailed descriptions

of the three measures.

Models
Single-polygenic score models. To estimate the separate prediction of each
predictor, we fit a series of simple linear regression models for each of the
81 polygenic scores and each of the 3 outcomes. For each GWAS-outcome
combination, three models were run using polygenic scores created with
Gaussian mixture weights of 1, 0.1 and 0.01, respectively. The model that
explained the most variance in the outcome (that is, largest cross-validated
R2 in training data) was then entered into the multi-score model. These
simple linear regression models were fit and validated in repeated 10-fold
cross-validation (see section below for details) using the lm function
implemented within the caret R package.25 Based on consistent evidence
for extensive genetic correlations across complex traits and disorders,
rather than summing up, the predictions of the single-score models were
expected to substantially overlap.

MPS models. We used the MPS model to estimate the joint prediction of
the 81 polygenic scores as well as the ranking of predictors by the
magnitude of their contribution to predicting the outcome.
Conventional multiple linear regression models in the presence of a

large number of predictors are subject to overfitting, and stepwise regres-
sion suffers from upward-biased coefficients and R2 (see, for example,
Tibshirani26). We used elastic net regularized regression13 to predict
outcomes and by selecting predictors and estimating their contribution to
the prediction. Regularized regression models are general linear models
that employ strict penalties to prevent overfitting. Elastic net allows for
estimating the joint predictive ability of a large number of variables while
preventing overfitting. Elastic net uses a linear combination of two
regularization techniques, L2 regularization (used in ridge regression) and
L1 regularization (used in LASSO (least absolute shrinkage and selection
operator)) by simultaneously implementing variable selection (that is,
dropping/retaining variables) and continuous shrinkage (that is, penalizing
coefficients for overfitting); and it efficiently deals with multicollinearity by
selecting or dropping groups of correlated variables.13,27

Elastic net overcomes the limitation of LASSO that tends to select one
variable from a group of correlated predictors and to ignore the others. In
situations where predictors are non-independent or correlated (for
example, sharing genetic signal or discovery cohorts) the elastic net has
the advantage of including automatically all the highly correlated variables
in the group (grouping effect).13,27,28

Final model coefficients are analogous to a conventional multiple linear
regression output that allows for a ranking of predictors by the magnitude
of their contribution to predicting the outcome. Overall variance explained
by the model is indexed by the coefficient of determination, R2.
We used glmnet R package15–17 implemented within caret R package25

to conduct a series of linear elastic net regularized regressions and select
polygenic predictors leading to an optimized final model for each
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outcome. Elastic net regularized regression employs two hyperparameters,
alpha and lambda.13 As recommended to achieve optimized balance
between variance explained and minimum bias, we fit models to tune over
both alpha and lambda parameter values in repeated 10-fold cross-
validation.29.

Model training and testing
Generally, a predictive model is considered powerful when the model is
capable of predicting outcomes in ‘unseen’ data with high accuracy. The
performance of a model can therefore be evaluated by testing how well it
predicts phenotypes of individuals whose data were not included in the
construction of the prediction model.
Each model described in the preceding section was trained and tested

using the following three-step strategy:

Data splitting. We randomly split the data set into a separate training set
and test set (60% train, 40% test).
Model training. We used repeated cross-validation on the training set to
train and optimize the model via validation.
Model testing and comparison. We applied the final model to the
independent test set to obtain an unbiased estimate of model
performance.

Model training. The training set was used to train and validate the model,
this included hyperparameter tuning for the elastic net models. In order to
optimize the balance between variance explained and minimum bias, we
tested each model in 10-fold cross-validation with resampling.29 We split
the training data randomly into 10 equal-sized subsets, using 9 subsets to
train the model and the remaining subset as validation. The cross-
validation process was repeated 10 times, with each of the 10 subsamples
used once as the validation data.
Although cross-validation has been shown to produce nearly unbiased

estimates of accuracy, variability of these estimates can be reduced by
bootstrap methods, wherein available data are repeatedly sampled with
replacement in order to mimic the drawing of future random
sampling.30,31 Therefore, to minimize variation across validation data sets,
we repeated the 10-fold cross-validation 100 times with random data set
partitions.32

The optimized or ‘final’ model is chosen based on the largest
performance value (or smallest mean squared error). Predictors retained
within the model and standardized coefficients index whether, and to
what extent, they contribute to predicting the outcome. Model
performance for the repeated cross-validation in the training set was
summarized as mean-cv-R2train from the resampling distribution.

Model testing and comparison. To obtain unbiased estimates of
model performance, we used the parameters from the final model
obtained from the repeated cross-validation in the training set to predict
outcomes (that is, educational achievement, BMI and general cognitive
ability) in the independent test set. To index prediction accuracy, we used
the coefficient of determination, in the following referred to as R2test.
Differences between mean-cv-R2train and R2test provide an index of out-of-
sample error.
We used permutation to test the statistical significance of the difference

in predictions between the MPS and the best single-score model. To test
the null hypothesis of exchangeability of models, H0: MPSR

2
test = best-single-

scoreR
2
test, we compared the observed diffR

2
test (MPSR

2
test – best-single-scoreR

2
test)

against an empirical null distribution of no difference in predictions
between the MPS and the best single-score model. We tested the
exchangeability of models by randomly selecting either the MPS or the
best single-score model to generate predictions. We then calculated the
difference in R2 for two models with shuffled predictions. The process was
repeated 100 000 times, generating an empirical null distribution of diffR

2

under exchangeability of model predictions.
If the null hypothesis of no difference between models is true,

it would not matter if we randomly exchange the model used for
generating predictions. However, if the observed diffR

2
test value falls outside

of those obtained when randomly exchanging models, this represents
evidence against the null hypothesis of no difference in prediction
between models. The statistical significance, as expressed in an
empirical P-value, is calculated as the fraction of permutation values that
are at least as extreme as the original diffR

2
test statistic observed in

nonpermuted data.

RESULTS
MPS predictions
The MPS models showed better prediction in the independent
test set than the best single-score models. The best single-score
models were the large 2016 GWAS of years of education
predicting 9.8% of the variance in educational achievement and
3.6% in general cognitive ability in the test set. For BMI, Obesity
class 1 achieved the best single-score prediction, explaining 3.8%
of the variance. (See Supplementary Table S2 for full single-score
models results; see Supplementary Figure S2 for a visual overview
of the single-score model results.) The MPS models explained
10.9% variance in educational achievement, 4.8% in cognitive
ability and 5.4% in BMI in the test set. The improvement in
variance explained compared with the best single-score models
was 1.1% (P= 4e− 03), 1.1% (P= 2e− 03) and 1.6% (P= 1e− 04),
respectively.
Figures 1a–c show the polygenic predictors selected during

training of the MPS models and their standardized coefficients.
The ranking of predictors provides an index for their contributions
to prediction. Analogous to conventional multiple regression, a
standardized coefficient represents the contribution of the
predictor to the outcome when adjusting for all other variables
in the model.
The model predicting educational achievement retained 12

polygenic predictors (Figure 1a). Cognitive and socioeconomic
polygenic scores took the top ranks. However, the psychiatric
cross-disorder polygenic score, which aggregates genetic risk for
bipolar disorder, schizophrenia, major depressive disorder, autism
and attention deficit hyperactivity disorder, and the score for
depressive symptoms in the general population were also
retained by the model. The scores for Homeostasis Model
Assessment of β-cell function, an index of β-cell function, and
for coronary artery disease also contributed to prediction of
educational achievement.
The MPS model predicting cognitive ability selected 10

polygenic scores during cross-validation (Figure 1b). The strongest
contributions to prediction came from cognitive and socio-
economic variables. Contributions from the psychiatric realm
came from major depressive disorder, autism spectrum disorder
and bipolar disorder, with the latter two having positive
association with cognitive ability.
The MPS model predicting BMI retained 28 polygenic scores

(Figure 1c). The top three strongest predictions came from
obesity-related variables. Ranks four and five were taken by
coronary artery disease and age at menarche (negative associa-
tion). The sixth strongest predictor for children’s BMI was the
polygenic score based on the GWAS of mean caudate nucleus
volume that plays a role in various non-motor functions including
procedural and associative learning and inhibitory action
control.33–36 Other predictors included ulcerative colitis, leptin
and neuroticism.

Stratification by MPS
We examined the phenotypic values by quantile of the MPS
distribution. Figures 2a–c plot the observed outcomes against the
predictions by the MPS model in the test set. In general, the
quantile results were roughly linear.
Figure 2a shows quantile results for mean exam grades.

Individuals in the top 10% of the MPS distribution on average
achieved an ‘A’ mean grade (across the three subjects Mathe-
matics, English and Science), whereas individuals in the bottom
10% MPS distribution achieved a ‘C’ mean grade on average (top
10% mean= 9.74; bottom 10% mean= 8.33 (11 =A*,10 =A, 9 = B,
8 = C, 7 =D, 6 = E, 5 = F, 4 =G, 0 = failed). Cohen’s d was 1.20 (95%
confidence interval 0.99–1.41) suggesting that 88% of the top 10%
MPS group had a mean grade above that of the bottom 10%
group, and there is an 80% probability that a person picked at
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random from the top 10% MPS group will have a higher score
than a person picked at random from the bottom 10% group.37,38

For cognitive ability, Figure 2b illustrates that individuals in the
top 10% of the MPS distribution on average had a standardized

cognitive ability score over 0.64 (95% confidence interval 0.40–
0.89) s.d. higher than those in the bottom 10% MPS distribution.
This means that 74% in the top 10% MPS group had mean ability
score above that of the bottom 10% group, and that there is a

0.00 0.05 0.10 0.15 0.20

Standardized coefficient of polygenic predictors
selected via repeated cross validation in training set

Multi polygenic sore model:
predicting educational achievement

0.00 0.05 0.10 0.15 0.20

Standardized coefficient of polygenic predictors
selected via repeated cross validation in training set

Multi polygenic sore model:
predicting cognitive ability

0.00 0.05 0.10 0.15 0.20

Standardized coefficient of polygenic predictors
selected via repeated cross validation in training set

Multi polygenic sore model:
predicting body mass index

Figure 1. (a) Multi-polygenic score (MPS) model predicting educational achievement. Standardized coefficients of polygenic predictors
selected by elastic net via repeated cross-validation in training set. Analogous to conventional multiple regression, a standardized coefficient
represents the contribution of the predictor to the outcome when adjusting for all other variables in the model. The mean variance explained
of the resampling distribution from the cross-validation was mean-cv-R2train= 0.12. The out-of-sample prediction of the model was R2test= 0.109.
(b) MPS model predicting general cognitive ability. Standardized coefficients of polygenic predictors selected by elastic net via repeated cross-
validation in training set. Analogous to conventional multiple regression, a standardized coefficient represents the contribution of the
predictor to the outcome when adjusting for all other variables in the model. The mean variance explained of the resampling distribution
from the cross-validation was mean-cv-R2train= 0.051. The out-of-sample prediction of the model was R2test= 0.048. (c) MPS model predicting
body mass index (BMI). Standardized coefficients of polygenic predictors selected by elastic net via repeated cross-validation in training set.
Analogous to conventional multiple regression, a standardized coefficient represents the contribution of the predictor to the outcome when
adjusting for all other variables in the model. The mean variance explained of the resampling distribution from the cross-validation was mean-
cv-R2train= 0.074. The out-of-sample prediction of the model was R2test= 0.054.
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67% probability that a person picked at random from the top 10%
MPS group will have a higher score than a person picked at
random from the bottom 10% group.
For BMI, Figure 2c shows that children in the top 10% of the

MPS distribution on average had a 0.80 (95% confidence interval
0.57–1.03) s.d. higher than those in the bottom 10% MPS
distribution. Expressed differently, 79% of children in the top
10% MPS group had a mean ability score above that of the
bottom 10% group, and that there is a 71% probability that a
person picked at random from the top 10% MPS group will have a
higher score than a person picked at random from the bottom
10% group.

DISCUSSION
We demonstrate that the MPS approach that combines summary-
level GWAS data from multiple traits yields better individual-level
phenotype prediction than single-score predictor models in
independent test data.
The observation that a multitude of polygenic scores contribute

to trait prediction in the MPS models highlights the complexity of
the system being studied and the somewhat arbitrary way we
divide it into phenotypic characteristics. We show that polygenic
variation associated with traits other than the to-be-predicted
outcome contributes to prediction. For instance, although there is
a known association between ulcerative colitis and BMI,39 genetic
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Figure 2. (a) Educational achievement by multi-polygenic score (MPS) deciles. Observed mean grade (across the three subjects Mathematics,
English and Science) by deciles of the MPS predictions in the test set. Bars represent 95% confidence estimates. (b) General cognitive ability by
MPS deciles. Observed mean standardized general cognitive ability by deciles of the MPS predictions in the test set. Bars represent 95%
confidence estimates. (c) Body mass index (BMI) by MPS deciles. Observed mean standardized BMI (age and sex adjusted by external
reference) by deciles of the MPS predictions in the test set. Bars represent 95% confidence estimates.
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variants associated with ulcerative colitis are not typically included
in models estimating individuals’ genetic risk for increased BMI.
The predictors selected and coefficients estimated by the MPS

models in the current study can be used to generate individual-
specific composite estimates of genetic propensities in other and
smaller samples. For a more parsimonious replication, future
research in other samples could construct a simple multiple
regression model using the top five predictors selected by the
current analyses. The predictive power of such an MPS model can
then be compared with that of the best single-score model. More
generally, in addition to the likely improvement in MPS prediction
as more and larger GWASs are being published, the MPS approach
has the potential to be applied to a wide range of outcomes and
samples, including psychiatric and medical outcomes in case–
control samples.
The predictive power of a polygenic score is not only a function

of the genetic correlation between discovery and outcome trait,
but also of the statistical power present in the discovery GWAS on
which it is based (that is, variance explained and sample size).5 The
MPS approach exploits the fact that even GWASs of genetically
distantly related traits might contribute predictive power if their
power is superior to GWASs of more proximal traits. For instance,
most likely because of its much greater sample size, the years of
education polygenic score predicted general cognitive ability
better than any of the polygenic scores based on GWASs directly
measuring general cognitive ability.
Because predictive power of polygenic scores does not simply

reflect the genetic correlation between discovery and target trait,
but depends on the genetic architecture of both traits and sample
size (especially of the discovery sample),5,6,40 the MPS approach is
not suited for investigating etiology. Other methods have been
developed to that end. For instance, multivariate twin studies are
appropriate for investigating trait etiology, or multi-trait GWAS
meta-analysis aims to disentangle effects of correlated traits at the
level of genetic variants.15,16,41–45 In contrast, the declared aim of
the MPS approach is to maximize trait prediction, without
assumptions about the relationships among predictors.
The MPS approach will be useful whenever trait prediction is a

priority. The primary reason for maximizing predictive power
using the MPS approach is to predict phenotypes of individuals
with as much accuracy as possible. Individual-specific genetic
predictions will be useful in research with modest sample sizes to
investigate developmental, multivariate and gene–environment
interplay issues. Eventually, MPS models could be useful in both
society and science to estimate genetic potential as well as risk in
relation to all domains of functioning, including cognitive abilities
and disabilities, personality and health and illness.
This predictive power will raise concerns about potential early,

even prenatal, prediction. It is important to begin discussions that
are informed by the empirical data because genotype-based trait
prediction is moving towards the point of practical relevance.
Although concerns are warranted, these might be outweighed by
the benefits that could result from being able to predict problems
and potential early and develop stratified preventions and
interventions accordingly.
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Genetic link between family socioeconomic status and
children’s educational achievement estimated from
genome-wide SNPs
E Krapohl and R Plomin

One of the best predictors of children’s educational achievement is their family’s socioeconomic status (SES), but the degree to
which this association is genetically mediated remains unclear. For 3000 UK-representative unrelated children we found that
genome-wide single-nucleotide polymorphisms could explain a third of the variance of scores on an age-16 UK national
examination of educational achievement and half of the correlation between their scores and family SES. Moreover, genome-wide
polygenic scores based on a previously published genome-wide association meta-analysis of total number of years in education
accounted for ~ 3.0% variance in educational achievement and ~ 2.5% in family SES. This study provides the first molecular
evidence for substantial genetic influence on differences in children’s educational achievement and its association with family SES.
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INTRODUCTION
After health care, education is society’s largest and most
expensive environmental intervention, consuming 46% of gross
domestic product in OECD (Organization for Economic Co-
operation and Development) countries.1 Understanding the
etiology and correlates of differences between children in what
they take away from their education is important because their
educational achievement directly determines admission to further
education and employability and also predicts a wide range of
health outcomes.1–3 Pedigree-based methods, primarily twin
studies comparing the similarity of identical and nonidentical
twins, have consistently suggested substantial genetic influence
on differences between children in their educational
achievement.4–10 It is now possible to use DNA-based methods
to estimate genetic influence on variance in large samples of
unrelated individuals.11,12 No DNA-based estimates of genetic
influence have as yet been reported for children’s educational
achievement, although evidence has been reported for the rough
proxy of total number of years in education in adults.13–16 This
study used children’s genotypes to estimate genetic influences on
variance in educational achievement and its covariance with
family socioeconomic status (SES).
Here we report the first investigation of genetic influence on

the variance of children’s educational achievement using DNA
alone. The same DNA-based methods can also be used to estimate
genetic influence on the covariance between traits.17 This
enabled us to investigate possible genetic mediation of the best
predictor of children’s educational achievement, their family’s
SES.18,19 This correlation is often interpreted causally as family SES
causing differences in children’s educational achievement.20

However, it remains unclear whether and to what extent the
association between family SES and children’s educational
achievement is genetically mediated, because twin and family

research is limited to studying phenotypes that can vary within a
family. Key aspects of children’s environment such as poverty,
parental education and neighborhood cannot be investigated
using the twin method because it is methodologically impossible
to decompose variance in phenotypes shared within twin pairs.
The DNA-based technique, genome-wide complex trait analysis

(GCTA),11 fits the effects of genome-wide single-nucleotide
polymorphisms (SNPs) as random effects in a mixed linear model
to estimate variance or covariance captured by all SNPs
simultaneously. Contrary to traditional family-based methods that
estimate the genetic contribution to phenotypic variation or
covariation by known kinship coefficients, GCTA relies on empirical
genetic resemblance established from identity by state inferred
from genome-wide SNP similarity of ‘unrelated’ individuals.
Because GCTA is based on unrelated individuals, it enables the

decomposition of variance of phenotypes such as family SES that
are the same for members of a family and therefore cannot be
decomposed in analyses such as the twin method that rely on
within-family differences. Another difference between the two
methods is that, unlike the twin method, GCTA is limited to
estimating additive genetic effects for the SNPs on the genome-
wide DNA array or other DNA variants in linkage disequilibrium
with the measured SNPs, which until recently have been common
SNPs. Thus, GCTA will underestimate genetic influence to the
extent that nonadditive effects or rare variants contribute
importantly to heritability. This limitation of GCTA to additive
effects of common SNPs is the same limitation of genome-wide
association (GWA) studies that attempt to identify specific SNPs
associated with a trait. GCTA is directly comparable to GWA results
because both rely on the same experimental design using the
same genetic signal;21 GCTA provides an upper-limit estimate of
the genetic effects that can be identified by GWA.

King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, London, UK. Correspondence: E Krapohl,
King’s College London, Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, Denmark Hill,
London SE5 8AF, UK.
E-mail: eva.krapohl@kcl.ac.uk
Received 26 September 2014; revised 21 November 2014; accepted 19 December 2014; published online 10 March 2015

Molecular Psychiatry (2016) 21, 437–443
© 2016 Macmillan Publishers Limited All rights reserved 1359-4184/16

www.nature.com/mp

39



GWA attempts aimed at identifying individually significant SNPs
have generally captured only extremely small fractions of genetic
variance of complex traits, the so-called missing heritability
problem.22 However, evidence has been accumulating that
significant portions of phenotypic variation can be explained
by the ensemble of markers not achieving genome-wide
significance.23 Markers are identified from GWAs using an initial
discovery sample to construct a genome-wide polygenic score
(GPS) in an independent replication sample by calculating the
effect-size-weighted sum of trait-associated alleles for each
individual. An aggregate GPS score can be used to assess genetic
influence on trait variation.
As they are tapping into the same genetic signal, GPS based on

GWA results and GCTA can be applied to the same data sets, with
both estimating the polygenic contribution to trait variance or a
shared polygenic covariance between traits captured by the
additive effects of common SNPs. We therefore employ a two-
method approach using GCTA and GPS to explore the genetic
influence on the variance of children’s educational achievement
and on the covariance between family SES and children’s
educational achievement. Our study had four objectives:
(1) To estimate, for the first time using DNA data, genetic influ-

ences on children’s educational achievement on an age-16 UK
national examination of educational achievement using genome-
wide genotypes from 43000 conventionally unrelated children.
Specifically, we conduct GCTA11 to quantify pairwise genomic
similarity between each pair of individuals across millions of SNPs
throughout the genome in order to estimate the proportion of
phenotypic variation in children’s educational achievement
captured by all SNPs simultaneously.
(2) To investigate genetic mediation of the phenotypic correla-

tion between family SES and children’s educational achievement,
we conduct bivariate GCTA to estimate the proportion of pheno-
typic covariation between children’s family SES and children’s
educational achievement captured by children's genotypes.
(3) To create a GPS based on the results of a large GWA study on

adults’ total years of schooling13 and investigate its association
with variance in children’s educational achievement and their
family SES.
(4) To examine the role of general cognitive ability (intelligence)

in the genetic nexus between children’s educational achievement
and their family SES. Molecular evidence as well as twin studies
have shown that cognitive ability is heritable and accounts
for substantial portion of genetic variance in educational
achievement.7,24–26 In addition, recent molecular evidence from
the present sample of unrelated individuals showed high genetic
correlation between family SES and children’s intelligence at
age 7 and 12 years.27 Based on this evidence, it is important to
address the question to what extent the genetic link be-
tween family SES and children’s educational achievement is
mediated by intelligence. For this reason, we perform GCTA
mediation analyses to test for a direct genetic link between family
SES and children’s educational achievement independent of
cognitive ability. Complementarily, we test whether the GPS of
adults’ total years of schooling explains variance in children’s
educational achievement independently of cognitive ability.
Our findings provide the first molecular evidence for substantial

genetic influence on variation in children’s educational achieve-
ment and its association with family SES. We further show
that children’s intelligence accounts for one third of this SNP
link between family SES and children’s educational achievement.
In addition, we demonstrate that a GPS based on years of
education in adulthood discovered in an independent large GWA
meta-analysis13 significantly explains variance in children’s educa-
tional achievement in our sample, even after controlling for
intelligence.

MATERIALS AND METHODS
Sample and genotyping
The sample was drawn from the Twins Early Development Study (TEDS), a
multivariate longitudinal study that recruited over 11 000 twin pairs born
in England and Wales in 1994, 1995 and 1996.28,29 TEDS has been shown to
be representative of the UK population.30 Supplementary Table 2 shows
that the genotyped subsample of TEDS is representative of UK census data
from first contact through age 16 years.
The project received approval from the Institute of Psychiatry ethics

committee (05/Q0706/228) and parental consent was obtained before data
collection.
DNA data were available for 3747 children whose first language was English

and had no major medical or psychiatric problems. From that sample, 3665
DNA samples were successfully hybridized to Affymetrix GeneChip 6.0 SNP
genotyping arrays (Affymetrix, Santa Clara, CA, USA) using standard
experimental protocols as part of the WTCCC2 project (for details see
Trzaskowski et al.).31 In addition to nearly 700 000 genotyped SNPs, more than
one million other SNPs were imputed from HapMap 2, 3 and WTCCC controls
using IMPUTE v.2 software.32 A total of 3152 DNA samples (1446 males and
1706 females) survived quality control criteria for ancestry, heterozygosity,
relatedness and hybridization intensity outliers. To control for ancestral
stratification, we performed principal component analyses on a subset of
100 000 quality-controlled SNPs after removing SNPs in linkage disequilibrium
(r240.2).33 Using the Tracy–Widom test,34 we identified 8 axes with Po0.05
that were used as covariates in GCTA and polygenic score analyses.

Measures
Educational achievement. Educational achievement was operationalized as
performance on the standardized UK-wide examination, the General
Certificate of Secondary Education (GCSE), taken by almost all (499%)
pupils at the end of compulsory education at typically at the age of 16 years.
English, mathematics and science are compulsory subjects. Five or more
GCSEs with grades A*–C are required for further education, including
GCSE English and GCSE mathematics. The joint performance on these three
compulsory subjects determines admission to further education and
employability.
The data for the present study were collected by questionnaires sent by

mail and by telephone interview of parents and twins themselves. After
completed forms were received from the families, the grades were coded
from 11 (the highest grade: A*) to 4 (the lowest pass grade: G); no
information about failed results was available. For 1729 individuals, self-
and parent-reported GCSE results were verified using data obtained from
the UK National Pupil Database,35 yielding correlations of 0.99 for
mathematics, 0.98 for English and 0.96 for science.
The GCSE measure for the present analyses was the mean grade of the

three compulsory core subjects, mathematics, English (mean grade of
‘English Language’ and ‘English Literature’), and science (mean of any
science subjects taken), requiring at least two measures to be nonmissing.
Scores on the three compulsory core subjects were highly correlated
(0.65–0.81).

Intelligence (IQ). Individuals were assessed at the ages of 2, 3, 4, 7, 9, 10,
12, 14, and 16 years on general cognitive ability using a battery of parent-
administered and phone- and web-based tests. At ages 2, 3, and 4, tests
were parent-administered and validated against standard tests adminis-
tered by a trained tester. At age 7, tests were administered over the phone;
at age 9, parents administered the tests; and at the ages 10 – 16, tests were
web based. At each testing age, individuals completed at least two ability
tests that assessed verbal and nonverbal intelligence. Psychometric
properties of the tests have been described in detail elsewhere,36 with
the exception of the measurements used at age 16 years, where subjects
completed a web-based adaptation of Raven’s Standard and Advanced
Progressive Matrices and the Mill-Hill Vocabulary Scale.37–39

For each composite measure at each of the nine ages, scores were
regressed on sex and age, outliers above or below 3 s.d. from the mean
were excluded and the standardized residuals were quantile normalized.
Subsequently, a mean composite scale was created as the mean across
the nine ages, performing mean-imputation for missing measurement
occasions to avoid list-wise deletion.

Family SES. Converging evidence suggests that a composite of vari-
ables including parental education and occupation represents SES better
than any single indicator.18 To index family SES, we combined parental
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education and occupation assessed when children were aged 2, 7 and
16 years. At age 2 years, SES was constructed as the mean of mother’s
and father’s highest education level, mother’s and father’s occupation
assessed by the Standard Occupational Classification 2000,40,41 and
maternal age at birth of eldest child. The SES composite when children
were age 7 years was created similarly but without the variable of age of
mother at birth of eldest child. At age 16 years, SES was composed as the
mean of household income, maternal and paternal education level and
maternal and paternal occupation. Mean composites were standardized
and quantile normalized. The correlations between these three SES
estimates ranged from 0.70 to 0.77. To increase reliability and maximize
sample size, the final measure of family SES for this study was created
as the mean composite score of parental SES reported when children
were aged 2, 7, and 16 years, performing mean-imputation for missing
data points.

Statistical analyses
GCTA. The GCTA model decomposes the trait variance into an additive
genetic component (G) captured by the available SNPs (and correlated
markers in linkage disequilibrium with the genotyped SNPs) and a residual
component containing all nonadditive genetic variance, interaction effects,
environmental factors, error variance and additive genetic variance that is
not tagged by the sampled SNPs. Hence, the GCTA model estimates lower-
bound additive genetic variance for both phenotypes (VG

GCSE, VG
SES); and

the correlation between the additive genetic components (ρG). The ρG is
not biased in the same way VG is. This is because the estimate of genetic
correlation is a function of the ratio between SNP-tagged covariance and
SNP-tagged variance that are biased to the same extent (that is, the
estimates are subject to the same imperfect linkage disequilibrium
between causal variants and genotyped SNPs) and hence cancel each
other out.42

Using genome-wide SNP data, we estimate genetic variation and
covariation from a representative sample of 3000 unrelated children. Our
estimates were obtained by restricted maximum likelihood using the
published algorithm for GCTA.11 GCTA estimates the proportion of
phenotypic variance of a trait tagged by sampled SNPs by fitting the
polygenic effects of all SNPs simultaneously as random effects in a mixed
linear model using a restricted maximum likelihood function. The so-called
genetic relatedness matrix holds the mean pairwise genomic similarity
(weighted by allele frequency) between all pairs of individuals in
the sample across all SNPs. The variance tagged by all SNPs is estimated
to be 40 when genetically more similar individuals are phenotypically
more similar. The bivariate extension of the model relates the pairwise
genetic similarity matrix to a phenotypic covariance matrix between traits
(here family SES and educational achievement).17 To prevent confounding
of the SNP estimate by shared environment effects and the effects of
causal variants that are not tagged by the SNPs, cryptic relatedness was
removed from the analyses. This default procedure eliminates one
individual from a pair whose genetic similarity is 0.025 or greater; a
coefficient that approximates at least fifth-degree relatives. The removal of
close relatives ensures that estimates reflect the tagging of causal variants
through population linkage disequilibrium. This criterion removed seven
individuals from the analyses. Analyses were executed using GCTA11 and R
software.43

The present sample size of ~ 3000 yields 80% power to detect a GCTA
heritability estimate of 30% (α=0.05) and genetic correlation estimate of
0.6 (α= 0.05; VG

1 = 0.20; VG
2: 0.30; rPh = 0.50).

Polygenic scores. We created polygenic scores from genome-wide data
of over 3000 unrelated children using GWA results for total years of
schooling from an independent discovery sample.13 The same quality
control criteria as for the GCTA analyses were applied to the data.
Polygenic risk scores were constructed using the P-values and β-weights
from the recent large (N=126 559) GWA based on years of education.6

Quality-controlled SNPs were pruned for linkage disequilibrium based
on P-value informed clumping in PLINK,44 using R2 = 0.25 cutoff within
a 200-kb window. We removed the major histocompatibility complex
region of the genome because of its complex linkage disequilibrium
structure. 144 890 SNPs survived linkage disequilibrium pruning. For
each individual, multiple polygenic scores were generated using the
PLINK score option based on the top SNPs from the GWA analysis of
educational attainment for varying significance thresholds (from 0.01 to
0.50). Numbers of SNPs per threshold are summarized in Supple-
mentary Table 3. The scores were calculated as the sum across SNPs of

the number of reference alleles for each SNP multiplied by the
effect size (β-coefficient) derived from the GWA analysis of years of
education.
Polygenic scores were tested for association with the same quantitative

measures used in the GCTA analyses (family SES, educational achievement
(GCSE), intelligence and educational achievement controlled for intelli-
gence) in linear regressions. These analyses were corrected for the first
eight ancestry-informative principal components by entering them as
covariates into the regression models. Analyses were performed in
PLINK and R.

RESULTS
Phenotypically, children’s educational achievement correlated
0.50 (0.02 s.e.) with their family SES. Both variables also correlated
with intelligence: 0.55 (0.02 s.e.) for educational achievement and
0.38 (0.02 s.e.) for family SES (Supplementary Table 1).

Bivariate GCTA
Bivariate GCTA showed that the estimated proportion of variance
tagged by the sampled SNPs was 0.31 (0.12 s.e.) in educational
achievement, and 0.20 (0.11 s.e.) in family SES (Figure 1). The
genetic correlation, indicating the extent to which the same SNPs
are associated with family SES and children’s educational
achievement, was near unity (rG = 1.02 (0.25 s.e.)).
Based on the genetic correlation between the two traits and the

genetic contribution to variance of each trait respectively, GCTA
estimates the genetic contribution to the phenotypic correlation
between the two traits: C(G) = r1,2 (G) √ (V1 (G)× V2 (G)), applied to
the data: 0.25 = 1.02×√ (0.31× 0.20). Hence, GCTA estimated the
genetic contribution to the phenotypic correlation between family
SES and children’s educational achievement as 0.25 (0.09 s.e.),
indicating that the proportion of the observed correlation tagged
by the additive effects of available SNPs was 50% (that is,
0.25/0.50; Figure 1). This suggests approximately half of the
phenotypic correlation between children’s family SES and their
educational achievement was mediated genetically.

Mediation analyses. To test whether intelligence mediates the
observed association between family SES and children’s educa-
tional achievement, we statistically controlled for intelligence by
regressing GCSE on intelligence and entering the resulting
standardized residuals into the bivariate GCTA model with family
SES. When controlling for variance explained by children’s
intelligence, which yielded a univariate GCTA estimate of 0.38
(0.11 s.e.) (data not shown), the phenotypic correlation between
family SES and children’s educational achievement was reduced
from 0.50 to 0.37 (0.02 s.e.). The GCTA estimate of the genetic
covariation between family SES and children’s educational
achievement dropped from 0.25 (0.09 s.e.) to 0.17 (0.09 s.e.).
Mirroring the mediation observed at the phenotypic level, this
suggests that one-third of the SNPs tagging variation in family SES
and children’s educational achievement also captured individual
differences in intelligence, implying two-thirds of the SNPs linking
family SES and children’s educational achievement were indepen-
dent of intelligence.

Polygenic score analyses
Polygenic score analysis is designed to test whether SNPs that do
not reach genome-wide significance in a discovery GWA are
nonetheless significantly associated in aggregate with a trait in an
independent sample. In the same sample of 3152 unrelated
individuals, we created polygenic scores with varying numbers of
SNPs (see Materials and methods) based on a large meta-analytic
GWA study (N= 126 599) of years of education.13 Figure 2 displays
the results of multiple linear regression analyses showing that the
polygenic scores accounted for ~ 3.0% variance in educational
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achievement (GCSE), ~ 2.5% in family SES and ~ 1.0% in
intelligence. All P-values were ≤ 3.79− 07. Notably, the effect size
for GCSE remained substantial (~2.0%) and significant
(Pr2.27!06) when statistically controlling for intelligence.

DISCUSSION
This study provides the first molecular evidence for substantial
genetic influence on differences in children’s educational achieve-
ment at the end of compulsory education in the United Kingdom
and its association with family SES. Our GCTA results show that
SNPs that are associated with both family SES and GCSE scores
account for about half of the phenotypic correlation between SES
and GCSE. Mediation analysis suggests that about one-third of this
genetic effect also extends to children’s intelligence, but two-thirds
of the genetic association between family SES and GCSE scores is
independent of intelligence. In GPS analysis, we show that SNPs
associated with total years of education in adulthood discovered
by an independent large GWA meta-analysis13 explain up to 3% of
the variance in children’s educational achievement in our sample,
and up to 2% of the variance after controlling for intelligence.
The GCTA heritability estimate of 31% for children’s perfor-

mance on a UK national examination at the end of compulsory
education corroborates the vast literature of traditional family-
based methods, mostly the twin method, showing that variation
in children’s educational achievement is under substantial
genetic influence,4,5,7–9,45,46 with heritability estimates converging
at ~ 50%. This commonly observed discrepancy in phenotypic

variance explained by pedigree-based methods (that is, twin and
family) and population-based methods (that is, GCTA) occurs
because GCTA only captures genetic variance contributed by
additive effects of common SNPs that are in sufficient linkage
disequilibrium with the causal DNA variants.47

Our GCTA heritability estimate of 20% for family SES tagged
by children’s genotypes is very similar to GCTA heritability
estimates of years of education in adulthood and socioeconomic
measures tagged by adults’ genotypes themselves in previous
studies.13–15 This is remarkable as children’s genotypes are only a
proxy for their parents’ genotypes. In other words, GCTA effects
on family SES estimated from children’s DNA only reflect the
extent to which children inherit parental characteristics associ-
ated with the family SES created by the parents. One such factor is
intelligence, and we find that children’s intelligence accounts
for about one-third of the GCTA association between family SES
and children’s educational achievement. However, it is interest-
ing that two-thirds of the GCTA association is not accounted
for by children’s intelligence. This finding of intelligence-
independent shared genetic variance between family SES and
children’s educational achievement suggests that differences
in educational achievement at the end of compulsory education
and the level of education and occupation attained in adult-
hood are not merely the manifestation of differences in
intelligence. This is in line with twin research that suggests that
the heritability of educational achievement reflects many geneti-
cally influenced traits such as personality and self-efficacy, not just
intelligence.48

Figure 1. Bivariate genome-wide complex trait analysis (GCTA) of family socioeconomic status (SES) and children’s educational achievement
(General Certificate of Secondary Education (GCSE)). (a) Proportion of phenotypic trait variance tagged by the sampled SNPs in GCSE and
family SES, respectively. (b) Covariance between family SES and GCSE captured by SNPs, without controlling for intelligence (left bar) and
when controlling for intelligence (GCSE.IQ) (right bar). The length of the bar indicates the total phenotypic correlation between SES and GCSE.
Solid black lines indicate standard errors.
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The polygenic nature of behavioral traits poses a statistical
challenge as enormous sample sizes are needed to identify
genome-wide significant single DNA variants.23 Therefore,
genome-wide methods, such as GCTA and GPS analysis, that
aggregate genetic effects across a multitude of markers have the
assumption of polygenicity at their core and provide powerful
approaches for exploring genetic influences on traits and shared
between traits.
A GPS based on markers associated with years of education in

adulthood in an independent discovery sample was significantly
associated with children’s educational achievement in our sample.
Replicating results from polygenic score analyses of a recent
Dutch study,49 this shows that the shared polygenic link between
children’s educational achievement and adult measures of
education even holds when limited to education-associated SNPs
identified in an independent sample of adults. We further
demonstrate that this polygenic link persists independently of
children’s cognitive ability, and that the educational attainment
GPS of children's genotypes explains variance in their parents'
socioeconomic status. The predictive power of GPS analysis in our
independent sample illustrates that adequately powered GWA
studies can identify replicable genetic associations with behavioral
traits. Although the current GPS accounts for only a small amount
of phenotypic variance, as prediction improves, GPS can identify
profiles of genetic risk and protective factors for unrelated
individuals, which will enable more powerful prediction models
that combine genetic and nongenetic factors. Polygenic

predictors might also facilitate research on the causal pathways
underlying these genetic predictors.21,22,50

The results need to be interpreted in the context of three main
important methodological limitations. First, a specific limitation of
this study is its modest statistical power in the GCTA analyses (see
Materials and methods). The GPS analyses were sufficiently
powered to identify trait-associated variance at high statistical
significance, but were limited by the power of the discovery GWAS
to detect the small effect sizes of single variants across the
genome.21,23 A second, general limitation is the allelic spectrum
covered by the current DNA microarrays, such as the Affymetrix
6.0 GeneChip used in our study, that is restricted to common
variants. Research has begun exploring the relative contribution of
common and rare variants to variation of psychiatric traits (see, for
example, Gaugler et al.51 and Yang et al.52). Future studies with
greater statistical power may explore the relative contribution of
common and rare variants to trait variation of educational
achievement and associated phenotypes. Third, both GCTA and
GWAS, on which GPS analysis relies, are limited to detecting
additive genetic variation that is captured by the sampled SNPs,
which are typically common SNPs with minor allele frequencies
40.05. Hence, GCTA heritability provides a lower-bound narrow-
sense heritability estimate and represents the upper limit for
detection of SNP associations in GWA studies and thus for GPS
analysis. Generally, these limitations imply a substantial under-
estimation of ‘true heritability’ in the present analyses.
The present analyses demonstrate the ability of DNA-based

methods to explore the genetic architecture of extended

Polygenic scores for education predict GCSE, family SES, and intelligence
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Figure 2. Genome-wide polygenic scores (GPS) for years of schooling in adults (Rietveld et al.13) predict variance (R2) in children’s educational
achievement (General Certificate of Secondary Education (GCSE)), family socioeconomic status (SES), intelligence and educational
achievement after controlling for intelligence (GCSE.IQ). GPS were created using different significance thresholds for inclusion of variants for
years of education, ranging from P= 0.01 to 0.50, indicated by heat colors. The uncorrected P-values above each bar indicate the statistical
significance of the observed association between the GPS and the respective trait.
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phenotypes such as family SES that cannot be detected by
traditional variance/covariance estimation methods that rely on
known kinship relatedness. Quantitative DNA-based methods,
which rely on empirically established pairwise genomic similarity
among traditionally unrelated individuals, can supplement and
extend family-based methods and thereby facilitate the move
from behavioral genetics to behavioral genomics.
Importantly, no directionality or causality can be inferred from

the present results. Heritability indexes the proportion of trait
variance attributable to genetic effects in a particular population
at a particular time.53 Finding evidence for heritability of a trait or
co-heritability of two traits does not imply resistance to
environmental factors as genetic effects are dynamic and subject
to developmental and environmental change.54 Research on how
the heritability of educational achievement differs across devel-
opment and across context suggests that genetic influences
on these phenotypes are maximized by environmental
opportunity.54–56 Differences in individuals’ exposure to environ-
ments are not random. Genotype–environment correlation refers
to the empirical observation that individuals experience different
environments as a systematic function of their genotypes.56–61

Genetic effects on phenotypes may be mediated through
developmental or socio-contextual processes.
Our results also contribute to the extensive debate about

meritocracy and social mobility62 that has largely ignored the fact
that parents and their offspring are genetically related.
Usually a lower correlation between parental and offspring SES
is seen as an index of social mobility.63 However, considering
genetics, we know that removing environmental sources of
variation will not remove genetically driven resemblance between
parents and offspring. To the contrary, as environmental
differences diminish, individual differences that remain will to a
larger proportion be due to genetic differences; that is, heritability
would increase, which has also been demonstrated empirically.55

That way, heritability could be seen as an index of social mobility.
No necessary policy implications arise from finding heritability

of educational achievement and its link with family SES.
However, consideration of empirical evidence will lead to
better-informed policy decisions. Specifically, analogous to the
long-established model of evidence-based medicine, we believe
that evidence-based education facilitated by a dialog between
scientists and policy makers will be beneficial to education of
all children and can also benefit schools, teachers, and society
at large.64

In summary, our GCTA results show a substantial contribution
of common SNPs to variation in children’s educational achieve-
ment and its association with family SES. This is further
substantiated by the GPS analyses, revealing significant sharing
of genetic variants between children’s educational achievement
and total years of education in adulthood. Together, these
findings provide converging evidence for substantial genetic
influence on differences in children’s educational achievement
and genetic links with family SES. Our findings add weight to the
view that genetic variation plays an important, but not exclusive,
role in educational inequalities and social mobility, which is at
variance with views, that still prevail in some quarters, that these
are solely the product of social forces and environmental
inequalities.
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7 General summary and discussion

Multi-variables approaches for trait prediction are a response to the ubiquitous poly-
genicity of complex traits and the sharing of genetic effects across traits. This thesis
described a series of multi-variable approaches for polygenic trait prediction and
for investigating gene-environment correlation in the context of polygenic prediction
models.

The following sections briefly summarise the findings, and discuss general limitations
and possible future directions.

7.1 Summary of findings

Chapter 3 presented a phenome-wide analysis of genome-wide polygenic scores, a
systematic investigation of associations between 13 polygenic scores for cognitive,
psychiatric and anthropometric traits and 50 behavioural outcomes measured in
adolescence. Cognitive and educational polygenic scores yielded stronger predictions
than psychiatric polygenic scores in the UK-representative sample of adolescents.

One of the main limitations of the research presented in chapter 3 is the very limited
statistical power of the genetic predictors. The statistical power of the polygenic
scores is mainly a function of the statistical power of the discovery GWAS (i.e.
variance explained and sample size) on which they are based (Dudbridge, 2013). In
the years between the two studies presented in chapters 3 and 4, larger GWAS for
the same traits were published (Davies et al., 2016; Demontis et al., 2017; Okbay
et al., 2016; PGC, 2017), some of which yielded increased single score prediction in
the second study (chapter 4). This trajectory is likely to continue with ever-larger
GWAS being published (Dudbridge, 2013; Visscher et al., 2017).

Despite the modest effect sizes of the polygenic score predictions in chapter 3,
quantile analyses suggested the research potential of stratifying individuals by poly-
genic score quantile. Although this study investigated multiple traits generating a
profile of cross-trait polygenic associations, it did so as a series of univariate models
rather than within one prediction model.

The study presented in chapter 4 employed a multi-polygenic score (MPS) approach
to increase prediction by exploiting the joint power of multiple discovery GWAS. The
MPS approach improved prediction over the best single-score models for three child
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outcomes, educational achievement, cognitive ability, and BMI. The findings suggest
the usefulness of multi-variable approaches for trait prediction, which is projected to
increase with the publication of new and larger discovery GWAS.

The prediction models presented in chapter 4 were only an initial illustration or
proof-of-concept of the MPS approach. Although the MPS models showed better
out-of-sample prediction than the best single-score model, it remains to be seen
whether this will replicate for different outcome traits and different samples. For a
more parsimonious and computationally straightforward replication, future research
in other samples, could construct a simple multiple regression model using the top
five predictors selected by the current analyses.

Importantly, this approach is entirely focused on prediction and does not elucidate
mechanisms. This is due to two things: First, the magnitude of prediction of a given
polygenic score is a function of both the genetic correlation between the predictor
and the outcome trait as well as the statistical power of the discovery study the
predictor is based on. Second, the observation of a genetic correlation does not in
itself provide insight into underlying mechanisms or aetiology.

Chapter 5 provided DNA-based evidence for substantial genetic influence on dif-
ferences in children’s educational achievement and its association with family so-
cioeconomic status (SES). GCTA analyses showed that the estimated proportion of
variance tagged by the sampled SNPs was 31% in educational achievement, and 20%
in family SES. These analyses demonstrated the ability of DNA-based methods to
explore the genetic architecture of extended phenotypes such as family SES that
cannot be detected by traditional variance/covariance estimation methods such as
the twin method that rely on known kinship relatedness. GCTA results showed that
SNPs that are associated with both family SES and exam scores capture about half of
their phenotypic correlation. Moreover, about one-third of this genetic association
also extended to children’s intelligence, but two-thirds of the genetic association
between family SES and exam scores were statistically independent of intelligence.

Providing converging evidence, the polygenic score analyses showed that SNPs as-
sociated with total years of education in adulthood discovered by an independent
GWA meta-analysis explained up to 3% of the variance in children’s educational
achievement, and up to 2% of the variance after controlling for intelligence.

The findings of a genetic correlation between parental socioeconomic status and
children’s educational achievement estimated by GCTA as well as the polygenic score
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for years of schooling predicting children’s educational achievement have since been
replicated in a Dutch and in a different UK cohort (Davies et al., 2015; de Zeeuw
et al., 2014).

The analyses presented in chapter 6 investigated covariation between trait-associated
polygenic variation and environmental exposures, controlling for overall genetic re-
latedness using a genomic-relatedness-matrix restricted/residual maximum-likelihood
model.

First, the findings replicated the general finding of genotype-environment correlation
for a wide range of ‘environmental exposures’ that classic epidemiological research
often conceptualises as purely environmental in origin. The findings also show that
associations between parenting behaviours and child outcomes are partially explained
by genetic factors. Second, the findings show that DNA variants identified by trait
GWAS are associated with parental behaviours and in part underlie correlations
between parental behaviour and children’s outcomes.

The analyses show that as genetic similarity in conventionally unrelated individuals
increases, so does similarity of environmental exposure, likely partially explained by
parents providing both environment and genotype for offspring. Existing polygenic
score prediction models do not take this into account.

The findings suggest that incorporating genetic variation associated with established
environmental risk or protective factors might improve genotype-based trait predic-
tion. Although the findings provide evidence for the relevance of gene-environment
correlation for polygenic trait prediction methods, they are not informative about
the mechanisms involved.

7.2 General limitations

In addition to the limitations discussed in the papers and above, there are several
general limitations that merit reiteration.
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7.2.1 Correlation does not equal causation

Importantly no directionality or causality can be inferred from the observed genetic
correlations. It is important to reiterate that genetic correlation between two phen-
otypes or environments does not imply that the same biological processes give rise
to variation in both (i.e. ‘pleiotropy’).

Genetic correlation can arise from pleiotropy, the phenomenon of multiple traits being
associated with the same genetic variant or genomic region (Solovieff et al., 2013;
Visscher and Yang, 2016; Wright, 1984). Two types of pleiotropy are conventionally
distinguished. In ‘biological pleiotropy’ a single genomic locus directly influences
multiple traits via independent causal paths. ‘Mediated pleiotropy’ refers to a single
genetic process, which results in a chain of events with one trait lying on another
trait’s causal path (Solovieff et al., 2013). Under the assumption of pure ‘mediated
pleiotropy’, the genetic variants (or set of variants) can be used as an instrumental
variable to test the causal effect of the first on the second trait (Catapano and
Ference, 2015; Davey-Smith and Hemani, 2014; Hemani et al., 2016; Kathiresan,
2015).

Genetic correlation can also arise from generational effects, or what could be termed
cross-generational pleiotropy. Parents pass on both genotype and environment to the
offspring generation. Therefore, a genetic correlation between trait A and environ-
ment B or trait C in the offspring generation can arise from: a genetic predisposition
for trait A being passed on from parents, and a predisposition for trait A causing
parents to provide an environment B to the offspring or induce trait C in the offspring
(Richmond et al., 2017; Zhang et al., 2015).

Genetic correlation between traits can also be the result of non-random mating or
what could be termed cross-mate pleiotropy. Non-random mating where mates are
correlated for two genetically influenced traits, e.g. taller individuals are more likely
to mate with smarter individuals (Keller et al., 2013), induces LD between the loci
associated with the assorted traits in the next generation. The offspring of cross-
trait assortatively-mating parents will show an increased co-occurrence of alleles that
are associated with the two traits. Effects of non-random mating will accrue over
generations until reaching an equilibrium (Falconer and Mackay, 1996).

Importantly, the mechanisms described above are not mutually exclusive. For in-
stance, the observed genetic correlation between parental characteristics and chil-
dren’s genotypes found in chapters 5 and 6 are likely a result of an amalgam of
pleiotropic, parental, and assortative mating effects. Therefore, it is important to
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keep in mind that an observation of a genetic correlation between two traits is not per
se informative about the underlying mechanisms. However, as shown in this thesis,
genetic correlation can be used in polygenic prediction models while remaining ag-
nostic about underlying mechanisms; and genotype-based complex trait prediction
could be used for prevention and intervention strategies long before causal mechan-
isms are determined.

7.2.2 Trait prediction limited to European-ancestry samples

The present investigations are limited to only one population, with the study sample
being British and the GWAS discovery samples largely based on European samples.
Although there exists suggestive evidence for some genetic risk variants to be shared
across multiple ancestries (de Candia et al., 2013), it has been shown that polygenic
scores created based on European GWAS are biased by genetic drift in other popula-
tions, with biases in any direction possible (Martin et al., 2017). Based on this, the
predictions observed in the current investigations are unlikely to reliably replicate in
samples with non-European samples.

More generally, the limited portability of trait-SNP association estimated by European
populations to other populations suggests the need for and potential gain from more
generalised genomic prediction methods based on the inclusion of more diverse pop-
ulations to allow for prediction in populations with non-European ancestry. Method-
ological approaches leveraging trans-ethnic information will likely play an important
role in this endeavour (Coram et al., 2017).

7.2.3 Additive effects of common variants

All methods employed in the current investigations are limited to detecting additive
effects of common genetic variants measured on (or imputed from) conventional
genotyping arrays. There is evidence that additive effects explain the majority of
the total genetic variance (Hill et al., 2008; Visscher et al., 2017; Zhu et al., 2015).
While non-additive effects likely exist, the power to detect these is a function of the
proportion of the variance they capture, reducing the probability that they will be
detected unless variants have intermediate frequency.

It remains unknown how much of the additive genetic variation is explained by low-
frequency (<1%) genetic variants (Visscher et al., 2017). Whole genome sequencing
data in large samples will allow for explicitly estimating the contribution of low-
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frequency variants to trait variation. First evidence suggest that contributions from
the low frequency spectrum will likely differ by phenotype (Loh et al., 2015a; Moser
et al., 2015; Ripke et al., 2013; van Rheenen et al., 2016; Visscher et al., 2017), and
might deviate from expectations of an evoluntionarily neutral model (Yang et al.,
2015).

7.2.4 Upper limit of SNP-based trait prediction

The accuracy of SNP-heritability (h2SNP ) estimates is of conceptual and logistic
importance for genotype-based trait prediction, which currently typically relies on
common SNPs and therefore is subject to the upper limit of total trait variation
explained by common SNPs. A general methodological limitation of h2SNP estimation
methods is whether its prior assumptions about the distribution of heritability across
the genome hold. To avoid overfitting when estimating h2SNP , it is necessary to make
strong assumptions about marker effect sizes.

The conventionally employed GCTA and closely related methods assume a uniform
Gaussian distribution of effect sizes for each marker (Bulik-Sullivan et al., 2015b;
Loh et al., 2015b; Yang et al., 2011a, 2013; Zhou and Stephens, 2014). Recently, it
has been shown how h2SNP varies with minor allele frequency (MAF), linkage dis-
equilibrium (LD) and genotype certainty, differently to what is assumed by GCTA
(Speed et al., 2017). When effect size was modelled as a function of local LD (as well
as marker quality score), h2SNP estimates increased. An intuitive way of thinking
about this is that if variants in a genomic region are highly correlated they are likely
to all tag the same causal variant, therefore a model that gives equal weight to all
markers might overestimate contributions of markers in high and thereby underes-
timate contributions of markers in low LD regions. It was also shown that markers
with lower population frequency contribute less to heritability than assumed by the
GCTA model, suggesting estimated h2SNP , might be increased simply by revising
genotype scaling. Further improvements in h2SNP estimates might be possible by in-
corporating functional annotations such as proximity to coding regions in the effect
size prior (Speed et al., 2017).

The implication of this is that the additive effects of the typically genotyped (and
imputed) common markers might be higher and the ‘missing heritability’ gap between
h2 and h2SNP might be smaller than previously assumed. Higher h2SNP would imply
more scope for GWAS and resulting polygenic score prediction whose ceiling for the
total effect size is defined by h2SNP .
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7.2.5 Limits of individual-level prediction

Although genotype-based prediction has value for prediction at the individual level
for Mendelian and increasingly also for oligogenic traits; this is not currently the
case for most polygenic traits. Immense logistic and conceptual challenges will have
to be overcome before genotype-based prediction accuracy (R2) will approach trait
heritability (h2). These challenges include increasing discovery samples, typing rare
variation, and improving parameter specification, as outlined in the introduction and
the section above. What is more, even under the hypothetical scenario of R2=h2,
individual-level prediction will be moderate unless h2 is extremely high.

The role of stochasticity in individual differences is often understated, with the focus
being placed on either genetic or environmental factors of variance shared between
individuals. Phenotypic discordance of bilateral organs of the same organism or of
genetically-identical twins growing up in the same environment explains substantial
proportions of variation in many phenotypes (Davey-Smith, 2011; Plomin et al., 2001;
Plomin and Daniels, 1987). This variance component is labelled ‘non-shared environ-
ment’ by twin studies. However, because of its non-stability across development and
in the absence of identification of its sources, it can arguably most parsimoniously be
conceptualised as random or stochastic events. This randomness induces unreliabil-
ity rather than systematic biases on population-level prediction estimates. However,
stochastic variability places an inherent limit on individual-level prediction.

7.3 Implications and possible future directions

Several implications and potential future areas of research arise from the work presen-
ted in this thesis, a selection of which is outlined in the following.

7.3.1 Stratified rather than personalised prediction

The substantial stochastic element in human trait variation implies that, strictly
speaking, actual individual-level trait prediction is impossible, even if all genetic ef-
fects were perfectly estimated. That is, predicted outcomes will not reliably differ
from one individual to the next, but between sub-groups of individuals. Nevertheless,
genotype-based prediction might allow for meaningful stratification, i.e. division of
individuals into groups with practically distinct risk (or resilience) profiles. There-
fore, group-level prediction can achieve high individual-level relevance.
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Stratification of prevention strategies could be one of the most effective intermediate-
term implications of genotype-based prediction. Because discrimination between
individuals within the middle of the normal distribution of complex traits or common
diseases is unobtainable in the near future, identifying the tails of the polygenic
distribution is a crude but pragmatic approach for increasing statistical power to
predict practically relevant differences between groups of individuals.

For instance, the analyses in chapter 4 found one and a half-grade difference between
individuals’ educational achievement in the top versus bottom 10% group of the
multi-polygenic score distribution. More generally, research has shown that polygenic
scores explain a sufficient proportion of variation to stratify groups, for example,
samples with the highest and lowest risk. Polygenic score models have for instance
been used to stratify by disease onset (Ahn et al., 2016; Escott-Price et al., 2015;
Power et al., 2017), disease comorbidity (Hamshere et al., 2013; Wiste et al., 2014),
treatment resistance (Frank et al., 2015), and treatment response (Musci et al.,
2016). Increased relative risk reduction through intervention in high genetic risk
compared to low genetic risk groups has been shown for complex traits, for instance
in cardiovascular disease (Khera et al., 2016; Mega et al., 2015; Natarajan et al.,
2017).

By increasing the overall proportion of individual differences explained by the pre-
diction model, multi-polygenic score approaches have the potential to minimise the
sub-groups between which differences in outcome can be reliably predicted.

7.3.2 Prediction beyond family history

If the goal is (early) prediction, the ultimate test of the value of genomic prediction
must be whether it does better than other readily available information. Family
history, which reflects genetic and non-genetic influences, has so far been superior
to genomic data in predicting most complex traits and diseases, except for heritable
traits with very low prevalence (Chatterjee et al., 2013; Cornelis et al., 2015; Do
et al., 2012; McGrath et al., 2013).

However, prediction based on family risk is family-general, whereas genotype-based
trait prediction is individual-specific. Therefore, polygenic prediction might add
value to family history, especially in cases where familial risk is high. For instance,
familial studies of breast cancer risk suggest the utility of SNP-based prediction in
the context of elevated familial risk (Li et al., 2017; Mavaddat et al., 2013; Muranen
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et al., 2016). In BRCA1/2-negative women with a family history of breast cancer,
polygenic risk scores yielded some incremental risk prediction beyond family history,
suggesting potential for more effective or more tailored prevention strategies.

Another example of individual trait-associated genomic variation explaining within-
family phenotypic variation comes from the realm of educational attainment. Spe-
cifically, studies have shown that individuals’ polygenic score for education predicted
phenotypic deviation from parental or sibling educational attainment (Ayorech et al.,
2017; Domingue et al., 2015).

More generally, with only half of the alleles transmitted from each parent, the highly
polygenic nature of many traits suggests that parent and offspring genetic propensit-
ies may differ considerably. Moreover, family history might not always be straightfor-
wardly available or unobtainable for instance for phenotypes such as drug response.
What is more, differential genetic liability of family members such as siblings might
be especially relevant when family history indicates elevated family-level risk.

7.3.3 Leveraging within-family genetic variation for prediction

Of all genetic variation in the population, 50% occurs between siblings within famil-
ies. Although this fact has been extensively used by heritability estimation methods,
arguably, it has not been fully exploited for genomic prediction. For instance, gen-
otypes of dizygotic twin represent random samples from the same pool of parental
genotypes. Therefore, any variance in outcome traits predicted by genetic differ-
ences between dizygotic twins would be highly valuable as it would be incremental
to variance predicted by family-level factors.

To achieve this, a mixed model could be fitted according to this general schema:
Yij = µ + Gtrait

ij + Fi + Eij , with µ being the average phenotypic value, the fixed
effect Gtrait

ij measuring individual-level effects (deviation of the jth individual’s trait
Y from the average for the ith family) of a polygenic score, Fi being the family-specific
random effect (difference between the average trait at family i and the average trait
in the sample), and Eij containing residual variance.

This allows for testing whether genetic differences between dizygotic twins pre-
dict outcome beyond (genetic and non-genetic) family-level factors. Formally, a
likelihood-ratio-test could test the null hypothesis that G is zero, by comparing the
likelihoods of models GFE and FE. The model could be extended to include further
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parameters: Aindividual
ij , capturing individual-level additive genetic variance that is

not captured by the polygenic score; and Afamily
ij measuring family-level additive

genetic variance that is not captured by the polygenic predictor.

A similar model has been used before: The precursor for h2SNP estimation in un-
related individuals, which used genome-wide markers in sibling pairs to estimate
heritability (Visscher et al., 2006). Although this pedigree-based h2SNP method can
estimate heritability contributed by different parts of the genome (genome, chromo-
some, gene etc.), its purpose is not trait prediction. In contrast, in the above model
Gtrait contains externally discovered trait-associated variation in form of a polygenic
score, estimating individual-level trait-specific prediction incremental to family-level
factors. This approach could also be expanded to include multiple polygenic scores.

7.3.4 Expansion of the multi-polygenic score approach

The multi-polygenic score approach presented in chapter 4 could be applied to a wide
range of outcomes and different types of samples, including disease classification in
case-control samples. It could be further extended by considering the findings from
chapter 6 that individuals’ trait-associated polygenic variation captures variance in
established environmental risk and protective factors.

Using cardiovascular disease (CAD) as an example, the following illustrates how a
multi-polygenic score approach combined with a consideration of genetic influences
on environmental risk factors might be used to increase genetic risk prediction.

A survey of ⇠56,000 found that a polygenic risk score of 50 externally discovered
risk variants predicted incident of CAD, with people in the top 20% of the genetic
risk distribution having 91% higher relative risk compared to those in the bottom
20% (Khera et al., 2016). The study also showed that in any genetic risk quintile,
‘adherence to healthy lifestyle’ was associated with relative risk reductions in CAD
event rates, with up to 50% in participants within the highest genetic risk score
quintile. The healthy life style factors included ‘no obesity’ (BMI<30), ‘no current
smoking’, weakly physical activity, and a healthy diet, with the first two being the
strongest risk predictors. These factors have been shown to be under genetic influ-
ence (Bauman et al., 2012; Locke et al., 2015; Maes et al., 1997; Rose et al., 2009;
Tobacco and Genetics Consortium, 2010; Zaitlen et al., 2013). Therefore, incorpor-
ating known genetic variation associated with such factors into the prediction model
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in form of multiple polygenic scores may be of interest for early prediction and pos-
sibly for stratifying intervention strategies as a function of genetic predispositions
for ‘environmental’ or ‘lifestyle’ risk factors.

This kind of approach might be fruitful for range of outcomes that have genetic
and environmental risk factors and where typically only a single genetic predictor is
included in genetic risk prediction models.

7.4 General conclusion

The polygenic and pleiotropic architecture of complex traits and their correlation
with environmental exposures greatly complicates trait prediction. Joint modelling
of many phenotypes (including environmental ‘phenotypes’) and many genetic vari-
ants offers many advantages over the traditional approach of considering only mar-
ginal single-variant single-phenotype associations. Multi-variable approaches have
the potential to provide more complete individual inventories of genetic propensity
for traits and environmental exposures.

Taken together, the current investigations illustrate the value of multi-variable ap-
proaches to complex trait prediction and investigation of genotype-environment cor-
relation, as well as their current limitations and future promise.

Ultimately, whole genome sequencing (Levy et al., 2007) could allow for predicting
trait variation from all sequence variants. In the interim, genome variation can be
approximated by genotyped (and imputed) common SNPs. Benefits from predicting
complex traits from polygenic models can be gained long before causal mechanisms
are identified. Genomic profiles available at birth might facilitate early prediction
including specifying individual risk within familial risk.

Genetic prediction could allow for cost-effective prevention and intervention strategies
by targeting subsets of the population for whom relative risk reduction is highest.
Combining genomic with more classical predictors such as family history and en-
vironmental risk factors rather than substituting them, is likely to allow for more
fine-grained prediction. In face of the complex genetic architecture and considerable
stochasticity of trait variation, the challenge lays in minimising the population strata
between which trait variation can be reliably predicted. Multi-variable approaches
represent a pragmatic tool for this task.
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