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Abstract 1 

The computational generation of gradient retention time data for retrospective 2 

detection of suspected sports doping species in post-analysis human urine sample data 3 

is presented herein. Retention data for a selection of 86 compounds included in the 4 

London 2012 Olympic and Paralympic Games drug testing schedule were used to 5 

train, verify and test a range of computational models for this purpose. Spiked urine 6 

samples were analysed using solid phase extraction followed by ultra-high pressure 7 

gradient liquid chromatography coupled to electrospray ionisation high-resolution 8 

mass spectrometry. Most analyte retention times varied ≤ 0.2 min over the relatively 9 

short runtime of 10 min. Predicted retention times were within 0.5 min of 10 

experimental values for 12 out of 15 blind test compounds (largest error: 0.97 min). 11 

Minimising the variance in predictive ability across replicate networks of identical 12 

architecture is presented for the first time along with a quantitative discussion of the 13 

contribution of each selected molecular descriptor towards the overall predicted value. 14 

The performance of neural computing predictions for isobaric compound retention 15 

time is also discussed. To the authors’ knowledge, this work is the first to present the 16 

development and application of neural networks to the prediction of gradient retention 17 

time in archived urine analysis sample data in the field of anti-doping.  18 
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Introduction 1 

Drug testing in sport is becoming more and more challenging, since cheats rapidly 2 

switch to new or designer drugs to avoid being caught by anti-doping tests. Because 3 

of this, in 2011 the World Anti-Doping Agency introduced a new section in the  4 

Prohibited List to specify that any substance not approved for human therapeutic use 5 

is prohibited.
1
 Unfortunately however, there is normally a delay between new 6 

substances being used by cheats and the screening methods being implemented to 7 

detect them.  8 

 9 

New technologies in analytical chemistry now exist which offer a much more flexible 10 

and universal approach compared to targeted-type screening analyses. In particular, 11 

liquid chromatography with full data capture high resolution mass spectrometry (LC-12 

HRMS) is becoming very popular for drug screening, since it generally permits the 13 

addition of new analytes to a screening method with little/no modification to the 14 

method. One of the most promising features is the possibility for retrospective 15 

analysis of post-acquisition datasets.
2,3

  The flexibility of the HRMS approach was 16 

exploited in our laboratory during the London 2012 Olympic and Paralympic Games, 17 

where an LC-HRMS screen was employed for the detection of nearly 200 analytes 18 

within a single assay.
4
 When permitted, in accordance with the International Standard 19 

for Laboratories,
5
 all sample data acquired by this technique could be re-processed 20 

and re-evaluated (for example, where intelligence becomes available about the 21 

potential use of new substances). However, several challenges still exist for 22 

retrospective detection of drug species in both new and archived samples. Analytical 23 

reference standards are not always available, especially for new or analogous 24 

compounds which may be synthesised relatively easily and with sufficient efficacy for 25 
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practical use by athletes. Moreover, the exact operating conditions of analytical 1 

equipment may not be reproducible at a later date when a repeat analysis is required. 2 

For example, chromatograms generated from separate analyses even using the same 3 

columns may differ due to phase ageing and loss of performance. Therefore, more 4 

effort is required to interpret the original data.  5 

 6 

Predictive computing techniques, such as artificial neural networks (ANNs), can 7 

interpret underlying trends in complex datasets by learning from case examples. There 8 

are several types of ANN, but the feed-forward multi-layer type is commonly the 9 

most used across a range of scientific applications such as analytical chemistry, 10 

environmental science and molecular biology.
6-10

 By interconnecting a set of input 11 

data with a series of hidden layer neurons, statistical weights and biases between them 12 

are systematically optimised towards producing a minimised error overall output. In 13 

the training phase, the ANN requires a known true value as a comparator and once an 14 

acceptable number of training cycles (or epochs) is determined, the optimised ANN 15 

can be used to predict the same output where experimentally-derived data is 16 

unavailable (i.e. a blind test). In this case, information about a set of analytes or 17 

chromatographic system (as inputs) and the experimentally-derived retention data for 18 

standards within spiked, matrix-matched samples (as an output) could provide a 19 

useful body of information for an ANN to predict retention time retrospectively under 20 

the conditions observed at the time.  21 

Research to characterise retention behaviour has used linear solvation energy 22 

relationships (LSERs). These use solute descriptors and linear regression modelling to 23 

predict a retention parameter for a particular set of compounds.  Both algorithm-based 24 

and predictive ANN approaches have incorporated the use of LSERs as inputs to 25 
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estimate retention (usually as retention factor, k) across a number of chromatographic 1 

modes,
11-14

 column formats,
15-17

 for method optimisation purposes,
18-22

 to predict 2 

retention behaviour across column formats, or to estimate the retention of 3 

unknowns.
23-25

 Each LSER solute descriptor must be calculated and each coefficient 4 

is usually obtained via measured retention data for a set of representative compounds. 5 

Thus, the time to produce an accurate LSER model can be significant (as well as 6 

especially challenging for ionisable compounds in particular
15,18

). As LSER 7 

coefficients for retention modelling also depend on observed retention on a stationary 8 

phase, factors such as the age of the phase may lead to observable differences and 9 

lower accuracy over time. Furthermore, the exact composition of a changing mobile 10 

phase under gradient conditions is very difficult to characterise and requires the 11 

inclusion of extra variables such as purity and individual system dwell time for 12 

example. Whilst the investigation of LSERs in retention modelling advances, ANN-13 

based predictive approaches using alternative descriptors may therefore hold promise 14 

for more immediate application. 15 

The aim of this work was to investigate the use of ANNs for the prediction of 16 

retention time in archived urine analysis data from the London 2012 Olympic and 17 

Paralympic Games using a method employing ultra-high pressure liquid 18 

chromatography coupled to HRMS. In particular, the selection of alternative 19 

molecular descriptor data to those used in LSERs is presented, along with a study of 20 

the ANN dependency on these descriptors and the variance across replicated ANNs. 21 

Lastly, this work aimed to assess whether ANNs could be used to discriminate 22 

structurally similar and/or isobaric species. 23 

 24 

Page 5 of 25

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6 
 

Experimental 1 

Reagents  2 

For a detailed account of all reagents used in the experimental please see the 3 

accompanying supplementary information (SI), Table S2. For those compounds where 4 

no certificate of analysis was available, a solution of each compound was infused 5 

separately into the HRMS and full scan data acquired without any applied 6 

collisionally induced dissociation. The internal calibrator was caffeine. Identity was 7 

considered confirmed where m/z values within 2 ppm of the theoretical value were 8 

achieved along with a consistent fragmentation pattern.  9 

Urine sample preparation  10 

Drug-free urine samples were collected from 15 healthy volunteers, anonymised, 11 

divided into 1 mL aliquots and stored at -10 °C until analysis. Each aliquot was then 12 

spiked with all reference compounds. Following addition of internal standards and 13 

glucuronide hydrolysis reagents (see SI, 2.0), formic acid was added to the samples. 14 

This solution was then extracted on Bond-Elut Plexa PCX (60 mg, 3 mL barrel) solid 15 

phase extraction (SPE) cartridges (Agilent Technologies, Lake Forest, CA). 16 

Cartridges were pre-conditioned with 0.5 mL of methanol and 0.5 mL of 2 % v/v 17 

formic acid. After loading, cartridges were washed with 1 mL of each of 2 % formic 18 

acid, water and 20:80 v/v methanol:water. Elution was performed in 3 mL 3 % (v/v) 19 

ammonium hydroxide in methanol:acetonitrile (50:50, v/v). Extracts were dried under 20 

nitrogen at 60 °C and then reconstituted to 100 µL of 0.3 % v/v formic acid in 95:5 21 

v/v water:acetonitrile. 22 

 23 
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Instrumental conditions  1 

For all separations, a Waters Acquity UPLC
®

 ultra-high pressure liquid 2 

chromatographic system was used (Waters, Milford, MA, USA). Separations were 3 

performed on a Waters Acquity BEH-C18 column (2.1 × 50 mm, 1.7 µm). Gradient 4 

elution was performed as follows: 95:5 water:acetonitrile (both in 0.3 % formic acid) 5 

for 0.5 min; then to 80:20 for 3.0 min; a linear ramp to 75:25 for 2.0 min; to 43:67 for 6 

1.5 min; and finally to 10:90 for 1 min. Total time for the gradient elution was 8 min, 7 

followed by 2 min for re-equilibration. Separations were performed at 0.3 mL/min 8 

and at 30 
o
C throughout. The injection volume was 10 µL. The syringe and injector 9 

were washed sequentially with 0.2 % formic acid in acetonitrile/water (30:70, v/v) 10 

and methanol/acetonitrile (90:10, v/v) up to 5 times each before every run to avoid 11 

carryover. 12 

Detection was performed using fast polarity switching high resolution mass 13 

spectrometry on an Exactive instrument (Thermo Fisher Scientific, San Jose, USA) 14 

equipped with a heated electrospray ionisation (HESI-II) source. Enhanced resolution 15 

mode was employed at 25,000 FWHM resolution. Three events occurred during each 16 

acquisition cycle by performing a full scan both in positive and negative ionisation 17 

mode (both with disabled CID) followed by a full scan in positive ionisation mode 18 

only with CID (HCD collision energy 30 eV). For a full description of other HRMS 19 

conditions, see the SI. 20 

Molecular descriptors, neural network prediction models and architectures 21 

Eighteen molecular descriptors were generated for each compound in the optimised 22 

network. Of these, 15 descriptors were computed using Parameter Client freeware 23 
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(Virtual Computational Chemistry Laboratory, Munich, Germany) using canonical 1 

simplified molecular-input line entry system strings (SMILES). Descriptors including 2 

pKa, Ghose-Crippen and Moriguchi log P (AlogP or MlogP), number of double bonds 3 

(nDB), number of four to nine-membered rings (nR04-nR09) and number of carbon or 4 

oxygen atoms (nC or nO) were used for network optimisation. A full list of other 5 

descriptors is detailed in Table S1 and Figure 3. To investigate the use of predicted 6 

pKa values, Percepta PhysChem Profiler (ACD Labs, ON, Canada) software was used. 7 

All predicted retention times (tr
P
) were performed using licenced ANN software 8 

(Trajan Software Ltd., Lincolnshire, UK) and compared with experimentally 9 

determined retention time (tr
E
). A selection of ANN types and architectures were 10 

investigated including linear, radial basis function (RBF), probabilistic neural 11 

networks (PNN) and multi-layer perceptrons (MLPs).  12 

 13 

Results and Discussion 14 

 15 

Experimentally determined chromatographic retention time and reproducibility  16 

This screening method was used during the 2012 Olympic Games for the detection of 17 

nearly 200 compounds in our ISO 17025 accredited laboratory. All of these species 18 

were detectable at concentrations corresponding to 50 % of the WADA minimum 19 

required performance level
26

 in force at that time in spiked, drug-free urine. On 20 

average, peak widths at baseline were of the order of ~0.15 min with some notable 21 

exceptions. For example, peak widths for morphine and etilefrine were 0.3 and 22 

0.4 min respectively, with some variability between urine samples. In order to 23 

examine the potential usefulness of computational tools for the retrospective 24 

generation of retention times in archived data, the reliability of generated 25 
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chromatographic retention data was first evaluated. An in-depth evaluation of other 1 

method validation experiments including selectivity, sensitivity and limits of detection 2 

is given elsewhere.
4
 The evaluation of retention time reproducibility was performed 3 

using 15 different urine samples analysed in groups of 5 with groups being analysed 4 

on different days. Rather than expressing the reproducibility as a relative standard 5 

deviation, the maximum variation in retention time was preferred, since the aim was 6 

to establish a suitable detection window. The maximum within-day tr
E
 variability was 7 

0.22, 0.23 and 0.32 min for the 3 groups of 5 urine samples respectively. Considering 8 

all 15 urine samples together (3 groups, 3 different days), the maximum retention time 9 

variability was 0.35 min (i.e. ±0.175 min). Data analyses during screening were 10 

normally performed by reviewing extracted ion chromatograms with an m/z window 11 

of ±5 ppm and a retention time window of ±0.5 min. Athlete urine samples were 12 

always run using a “bracketed” approach to take into account phase ageing and to 13 

ensure system performance throughout the entire batch acquisition.  14 

Selection of molecular descriptors, network type and architecture 15 

By generating SMILES strings for each compound, an initial set of >200 diverse 16 

molecular descriptors were generated. Whilst the instrumental screening method 17 

incorporated a larger number of compounds in practice, the number studied here was 18 

limited to those compounds with literature reported, experimentally-derived pKa 19 

values (as this descriptor was not initially available within the Parameter Client). 20 

Given that the majority of these compounds were fully/partly ionised in the mobile 21 

phase, this descriptor was considered important for the potential prediction of 22 

retention times. Multiple network types and architectures were examined. On the 23 

whole, it was observed that use of a larger numbers of inputs did not offer advantages 24 
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in terms of prediction accuracy and a much smaller set was ultimately more practical 1 

and yielded better correlations. As a result, some descriptors were not included in the 2 

model which might have otherwise been expected under reversed-phase 3 

chromatography conditions such as analyte topological surface area, number of atoms 4 

containing lone pairs of electrons (e.g. oxygen or nitrogen atoms), or molecular 5 

weight.  6 

 7 

Whether using a large or small input descriptor set, a linear-type network offered no 8 

detectable correlation (R
2
 and slope both <0.1 in all cases) between tr

E
 and tr

P
 and 9 

irrespective of whether inputs were used for training, verification or blind testing. As 10 

such, this network type was removed from consideration. Alternative network types 11 

on the other hand offered better performance and the best correlation coefficients 12 

achieved for each type ranged from R
2
=0.86 (RBF) to 0.98 (4-layer MLP) with the 13 

slope (m) ranging from 0.97 (3-layer MLP) to 1.03 (PNN), again for all 86 14 

compounds. The best network shown in Figure 1(a) was a feed-forward, back 15 

propagation-type MLP with 2 hidden layers of 5 and 4 nodes respectively. This 16 

18:5:4:1 MLP architecture was trained using 18 molecular descriptors using 61 17 

compounds. Verification was performed with 10 compounds and training of the 18 

network was ceased when a minimum for residual error was observed (2,000 epochs 19 

here). The network was “blind” tested using 15 additional compounds displaying 20 

structural variance and a spread of input data and tr
E
 data across the 8 min runtime. 21 

Data for tr
E
 was not used by the ANN for test compounds (see Table S2) and 22 

performance was observed after training and verification. When the dataset was 23 

divided into training, verification and blind testing data, their respective m and R
2
 24 

values remained satisfactory and were also better than the corresponding plots for 25 
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PNN, RBF and 3-layer MLP networks. By examining the residual errors in the entire 1 

dataset (Figure 1(b)), it was observed that retention time could be predicted within 2 

0.5 min of tr
E
 for 80 out of 86 compounds (~93 %). This window was initially selected 3 

to cover the window employed during experimental screening outlined above. In 4 

particular, tr
P
 for 97 %, 90 % and 80 % of the training, verification and test 5 

compounds respectively lay within this window. In fact for the test set alone, this 6 

level of accuracy was maintained even to ±0.3 min of tr
E
. Therefore, these results 7 

show that this type of network offered promising predictive ability for most 8 

compounds in a relatively rapid gradient separation. The largest residual errors were 9 

observed for MDA, clenbuterol and p-methylamphetamine at -0.947 min (used within 10 

the test set), -0.721 min (in verification set) and -0.704 min (in training set) 11 

respectively. Therefore, all species could be predicted within 1 min of tr
E
. However, it 12 

should be noted that this ANN was specifically tailored for this chromatographic 13 

system and method. If applied to other separation systems and modes, it is likely that 14 

similar descriptor and ANN optimisation experiments would be necessary. 15 

 16 

Consistency in tr
P
 using replicate networks of identical type and architecture  17 

One of the main issues with ANNs is that training follows a random process towards 18 

minimising the overall error. However at larger numbers of training epochs, networks 19 

may become over-trained and whilst training set errors may be minimised, the 20 

verification set error can increase (as it is not used by the software itself during the 21 

training process). The user often manually defines where training ceases by observing 22 

where the combined verification set residual error is at its lowest. In some cases this 23 

verification error is lowest at lower numbers of training epochs, but where training 24 

errors may remain high. Therefore, the variability in network connection weightings 25 
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may be very different from network to network (even with identical architectures) and 1 

a balance is required potentially towards achieving some consistency. In this case, 2 

replicate networks (n=10) using the optimised architecture were built to examine 3 

consistency and the range of tr
P
 values for the verification and test sets were plotted as 4 

Figure 2. Also shown alongside each tr
P
 entry in Figure 2 is the tr

E
 variance of the 5 

analytical method for comparison purposes. By stopping training between 2,000-6 

3,900 epochs in each case (where verification and training error combined were 7 

lowest), it was found that relatively consistent input weightings were achieved and tr
P
 8 

performance could be maintained. To our knowledge, this has not been shown 9 

previously in predictive chromatographic retention studies. However, and despite their 10 

accuracies and consistencies, tr
E
 data for 6/15 blind test set compounds still lay 11 

outside the range of tr
P 

values generated by all 10 networks. Of these, and of particular 12 

interest, were three structurally-related species: dimethylamphetamine, MDA and 13 

phentermine. As synthetic compounds of this general type often only have slight 14 

variations in their molecular structure, this approach could be very useful to predict 15 

retention time for an array of related species where a reference standard is 16 

unavailable. The average tr
P
 errors across all 10 networks for these three compounds 17 

were +0.97, -0.62 and -0.24 min (tr
E
=2.76, 2.50 and 2.91 min) respectively. The 18 

lowest respective errors in tr
P
 achieved by any one network were +0.59, -0.57 and -19 

0.07 min. By comparison, and upon inspection of the average tr
P
 error for other related 20 

species within the training set, compounds such as MDMA, benzphetamine, 21 

fenfluramine and methamphetamine all performed reasonably well (average absolute 22 

error of 0.08-0.18 min from tr
E
 for all 10 networks). However, and as noted earlier, 23 

average tr
P
 error for p-methylamphetamine was the worst case in the training set at an 24 

average of -0.44 min across all networks. In the verification set, only one related 25 
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compound, amphetamine, yielded 0.13 min error in tr
P
 (tr

E
=2.37 min). Therefore, 1 

these figures suggest that dimethylamphetamine and MDA may be unusual cases and 2 

that ANN predictive ability for unknowns may not, on average, be poorer for these 3 

types of compound. With regard to the general test set, all verification and test 4 

compound retention times could be predicted within 1 min of tr
E
 (with 5 

average±standard deviation of tr
P
 error for all 25 compounds = 0.3±0.2 min for all 10 6 

networks). In comparison to the maximum measured experimental variance above 7 

(0.35 min), the potential for using multiple networks to predict retention time shows 8 

promise.  Therefore, the window for ANN accuracy could be set at ±0.5 min in total 9 

(again, also comparable to the experimental retention time window used in practice 10 

during the Olympic & Paralympic Games). Each network required a few minutes to 11 

build, train, verify and test. Therefore, this in silico approach could represent a 12 

significant saving in terms of time, effort and cost when used in combination with a 13 

semi-targeted post data acquisition analysis of an athlete urine sample. Samples from 14 

the Olympic Games are stored for a total of 8 years in case re-analysis is required at a 15 

later date. However, this is not the case for most other sporting events where negative 16 

urine samples are discarded after 3 months unless probable cause for prolonged 17 

storage is justified. As several isobaric compounds can exist, HRMS data alone may 18 

be considered insufficient for this purpose. Therefore, the benefits of ANN predictions 19 

could aid in the investigation of doping before analysis, before the reporting stage and 20 

after the reporting stage. When used in combination with HRMS, this gives added 21 

value especially in directing which analytical reference materials are to be 22 

synthesised. 23 

Molecular descriptor contribution towards tr
P
 and variance across replicate networks 24 
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Using the optimised MLP network, the contribution of each descriptor towards the 1 

generation of tr
P
 was calculated for a single compound, A, by determining the absolute 2 

deviation, DA, arising from sequential removal of one descriptor, i, at a time.
27

 Data 3 

were inputted into Equation 2 below to calculate the overall variance, VA, arising for 4 

that compound. Values for VA for each compound (denoted A=1-61) were then used 5 

to determine the overall percentage change in accuracy of predicted retention time for 6 

all compounds, ∆tr
P
(%), for the removal of that descriptor according to Equation 3.  7 

�� �
�����

∑ 	����������
        (2) 8 

∆��
��%� �

���.��

∑ 	�������
        (3) 9 

The contribution of each descriptor towards tr
P
 was different. Using the optimised 10 

network, the top 5 contributing molecular descriptors (in decreasing order) to tr
P
 for 11 

all compounds using the best network were nC (17.5 % change in tr
P
 when removed), 12 

nR09 (10.0 % change), nO (9.9 % change), nDB (8.8 % change) and ALogP (8.2 % 13 

change). Overall, some of these ∆tr
P
 values were unsurprising given that silica-C18 14 

was used as a stationary phase. For experimentally-derived descriptors however, 15 

removal of pKa only resulted in a change of 3.8 %, but subsequent removal of AlogD 16 

and MlogD resulted in ∆tr
P
 of ≤3 % each. As expected, descriptors such as the number 17 

nR04 having little or no incidence resulted in small ∆tr
P
 when removed. Examination 18 

of the data relative to tr
E
 revealed that predictions were on the whole worse with the 19 

removal of selected descriptors.  20 

To further understand the variability across replicate networks, this experiment was 21 

repeated for 9 additional replicate networks. The contribution and variance of each 22 

descriptor is shown as Figure 3. Taking the mean values, the top 5 contributing 23 
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molecular descriptors were the same as reported above, albeit in a slightly different 1 

order (from highest to lowest: nC, nDB, nO, AlogP and nR09). This indicated that 2 

ANNs could be replicated with acceptable consistency in their operation. 3 

Interestingly, the largest measured variance in tr
P
 across replicate ANNs for removal a 4 

single descriptor was also observed as the most highly contributing descriptor, nC, at 5 

~11 %. Removal of descriptors which resulted in the lowest % tr
P
 variance were also 6 

those which were used least by ANNs during prediction. However for the rest of the 7 

descriptor set, no trend was apparent to conclude that a more heavily used input would 8 

result in a higher variance when omitted from replicate networks. Furthermore, it was 9 

observed again that AlogP was repeatedly used in preference to MlogP in tr 10 

predictions. MlogP has been shown previously to be a less accurate descriptor in 11 

comparison to other available computational models and in respect to experimentally-12 

derived logP.
28

 Here, it was observed that MlogP data offered poorer discrimination 13 

between some species and especially those of isobaric mass. It was also apparent that 14 

this had a consequential effect on the use of AlogD over MlogD as a preferred input 15 

descriptor of the two. However, as a null % change was not observed by removing 16 

MlogP from the dataset in any network, it was still used to some degree by ANNs.  17 

Substitution of experimentally-derived pKa with predicted pKa 18 

In practice, retention on reversed-phase media is likely to be heavily dependent on 19 

analyte logP and pKa (and subsequently logD). The molecular description software 20 

used here could generate predicted analyte logP, but not pKa. The initial use of 21 

experimentally-derived pKa data from the literature overcame this problem and 22 

resulted in satisfactory tr
P
 accuracy as shown earlier. However, the availability of (or 23 

indeed the ability to generate) experimental pKa significantly limits the usefulness of 24 
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this ANN approach if it is to be used in post-acquisition data mining. The use of a 1 

separate pKa prediction software package was therefore investigated as a possible 2 

alternative. In an initial experiment, experimentally-derived pKa data were removed 3 

from the input dataset and replaced directly with predicted values into the pre-trained 4 

ANN. With this substitution, a very slight reduction in tr
P
 accuracy was observed, but 5 

it still remained acceptable (not shown). The network in Figure 1(a) generated an 6 

overall tr
P
 / tr

E
 correlation with a slope of 1.00 (R

2
 = 0.98) compared with 0.95 7 

(R
2
=0.98) in this case across all 86 analytes. This obviously indicated some minor 8 

discrepancies between numerical values in these datasets. To further understand the 9 

importance of predicted versus experimentally-derived pKa as ANN inputs, a new 10 

network of identical architecture was retrained using computationally-derived pKa 11 

values to observe whether prediction accuracy could be restored. From this, it was 12 

seen that tr
P
 accuracy was marginally worse using computed pKa (Figure S3), but still 13 

remained acceptable overall (overall slope=0.94; R
2
=0.95). In previous work, 14 

Livingstone also showed that predicted pKa data can display inaccuracies up to 1.5 log 15 

units (using a larger compound set than here).
28

 Thus, in ANN predictions of test 16 

compound retention time, experimentally-derived data should be used where possible, 17 

but predicted values could potentially be substituted with awareness that accuracy 18 

may be slightly affected. 19 

Performance of ANNs for isobaric and isomeric compounds 20 

If the ANN approach is to work in any realistic scenario with HRMS detection, then 21 

tr
P
 accuracy should be high for compounds which are both isobaric and which display 22 

high degrees of structural similarity. From the list of compounds used in this study, 23 

several such cases existed (Table 1). Nadolol and metipranolol, both non-selective 24 
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beta-blockers, display identical mass and molecular formula, but differ slightly in 1 

their molecular structure and logP. Experimentally, this translated to a two-fold 2 

difference in their retention times on this C18 phase. In this case, the optimised ANN 3 

performed well by predicting retention within 0.4 min for both compounds despite 4 

their high structural and pKa similarity. Differences in logP could have accounted for 5 

this performance, as it was used here in the calculation of logD. Hydrophilic factor 6 

was calculated based on the number of atoms in a molecule, the number of carbon 7 

atoms and the number of hydrophilic groups (such as –OH or –NH for example). 8 

Unsaturation indices are calculated based on the number of atoms containing proton 9 

deficiencies (e.g. aromatic rings or multiple bonds). Therefore, these latter two 10 

descriptors could be considered loosely correlated with logP on a fundamental level. 11 

Therefore, it might be somewhat unsurprising that this resulted in higher accuracy in 12 

this case given the nature of the separation mode. 13 

 14 

In a second similar case involving the isobaric compounds, phentermine and 15 

methamphetamine tr
P
 accuracy remained high (±0.22 min from tr

E
), but the order of 16 

elution was incorrectly predicted. Furthermore, tr
P
 for a third isobaric compound, p-17 

methylamphetamine was predicted as similar to that of phentermine and 18 

methamphetamine, but was less accurate to its tr
E
 at -0.7 min. All three of these 19 

compounds had identical MlogP data, but only slightly differing AlogP and pKa 20 

values. For the majority of the other 13 compounds eluting between 21 

methamphetamine and p-methylamphetamine and where descriptor diversity was 22 

more pronounced, this was less of a problem and tr
P
 inaccuracy remained <0.5 min. 23 

 24 
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As a third case example, a set of diastereoisomers were chosen: ephedrine and 1 

pseudoephedrine. With identical mass, molecular formula, atomic connections, AlogP 2 

and MlogP, it was somewhat unsurprising that they remained experimentally 3 

unresolved on this stationary phase. Whilst their pKa values were 0.3 units apart, and 4 

therefore a little further apart than of those species in the previous example, this had 5 

little effect on tr
P
 (within 0.15 min of tr

E
 for both species). Whilst further work on the 6 

use of ANN using resolved diastereoisomers is required, it should be noted that the 7 

SMILES strings used here employs a string of characters that specified the structure 8 

of a selected molecule including its spatial arrangements. Optical isomerism in 9 

SMILES strings is designated by the ‘@’ symbol. Where a single ‘@’is used, this 10 

represents the substituent groups giving rise to the chirality being positioned anti-11 

clockwise around the chiral atom whereas two symbols (‘@@’) indicates clockwise 12 

orientation of the groups around the chiral atom. Therefore, as this may lead to a 13 

difference in molecular description, then this could be used by the ANN to 14 

differentiate such species. Naturally, this would also depend on the importance of the 15 

molecular descriptor itself to the generation of tr
P
 (similar to Figure 3). 16 

 17 

Conclusion 18 

This work showed that ANNs could be used to predict chromatographic retention 19 

times for 93 % of all selected doping-related compounds to within 0.5 min of their 20 

true value and to within 1 min for all other compounds. All compounds were detected 21 

in a urine extract matrix and were separated under gradient elution conditions. When 22 

applied to the prediction of unknowns alone, the same level of accuracy was 23 

maintained. Variance across replicate networks of identical architecture revealed that 24 

descriptors were used to similar degrees towards prediction of retention time. This 25 
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approach could be used with quantitative structure-activity relationships alone, but it 1 

is recommended that analyte pKa should be experimentally derived for ANN training. 2 

Ultimately, prediction of retention times in archived screening data would simplify 3 

and aid data reprocessing as a complementary tool to retrospective analysis both in the 4 

identification of unknowns and where reference materials were not originally included 5 

in the analytical screen. Therefore, the combination of full data capture HRMS and in 6 

silico predictive approaches could improve the capability for semi-targeted urine 7 

sample screening before, during and after major sporting events. 8 
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Table 1. Performance of ANNs for predictions of tr for isobaric and isomeric 

compounds. 

Compound 

Monoisotopic 

Mass (Da)  

(Measured m/z for 

[M+H]
+
 ion) 

Molecular  

Formula 
Structure 

AlogP 

(MlogP) 
pKa

ref. 
tr

E
 

(min) 

tr
P
 

(min) 

Metipranolol 
309.1940 

(310.2013) 
C17H27NO4 

 

 

 

2.86 

(2.35) 
9.18

29
 5.62 6.02 

Nadolol 
309.1940 

(310.2013) 
C17H27NO4  

1.15 

(1.36) 
9.6730 2.81 2.52 

Phentermine 
149.1205 

(150.1277) 
C10H15N 

 

1.84 

(2.55) 
10.1

31
 2.91 2.69 

Methamphet-

amine 

149.1205 

(150.1277) 
C10H15N 

 

2.07 

(2.55) 
9.8732 2.59 2.80 

p-methyl- 

amphetamine 

149.1205 

(150.1277) 
C10H15N 

 

2.12 

(2.55) 
10.0

33
 3.45 2.75 

Ephedrine 

 

SMILE: 

O[C@H](c1ccccc

1)[C@@H](NC)

C 

165.1154 

(166.1226) 
C10H15NO 

 

 

 

1.24 

(1.66) 
9.6034 2.00 1.84 

 

 

Pseudoephedrine 

 

SMILE: 

O[C@@H](c1ccc

cc1)[C@@H] 

(NC)C 

165.1154 

(166.1226) 
C10H15NO 

 

1.24 

(1.66) 
9.80

35
 2.00 1.85 

 

 
NH

2

O

NH

OH

H

H

O O

O

NH

OH

OH

NH

OH

NH

NH
2

NH
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(a)

Training set: y = 1.0182x - 0.0264; R2 = 0.9883

Verification set: y = 0.971x + 0.2344; R2 = 0.9773

Test set: y = 0.9608x + 0.126; R2 = 0.9755
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Figure 1. (a) Correlation between experimentally-derived (tr
E
) and predicted (tr

P
) 

retention times using the optimised 18:5:4:1 multilayer perceptron (inset) trained for 

2000 epochs; and (b) residual errors in tr
P
 using the optimised network for all analytes 

(n = 86). All raw data represented in Table S2 in the SI. 

(SINGLE COLUMN FIGURE) 
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Figure 2. Paired comparisons of measured tr
E
 variability (left-hand box) from n=15 

volunteer urine data versus tr
P
 variability for n=10 replicate 18:5:4:1 MLP networks 

(right-hand box). Data is presented for the verification (marked V) and blind-test 

compounds (marked T) only. Boxes represent 25-75
th

 percentile, whiskers represent 

10-90
th

 percentile and dots are outliers. Thin lines represent the median and thick lines 

represent the mean. *Experimental variance not determined for benthiazide and 

polythiazide and reported values represent a single measurement. For all raw data 

(including for the training set) please refer to Tables S3 & S4 in the SI. 

 

(SINGLE COLUMN FIGURE) 
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Figure 3. Percentage change in tr
P
 relative to tr

E
 upon systematic removal of each 

molecular descriptor from 10 replicate 15:5:4:1 MLP networks. Boxes include data 

from the 25
th

-75
th

 percentile, the median (thin line), and the mean (thick line). Error 

bars include the 5
th

 and 95
th

 percentile and dots represent outliers. For all molecular 

descriptor definitions, please see experimental section or Table S1 in the SI.  
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