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Abstract A priority queue—a data structure supporting, inter alia, the operations
minimum (top), insert (push), and extract-min (pop)—is said to operate in-place if
it uses O(1) extra space in addition to the n elements stored at the beginning of an
array. Prior to this work, no in-place priority queue was known to provide worst-case
guarantees on the number of element comparisons that are optimal up to additive
constant terms for both insert and extract-min. In particular, for the standard imple-
mentation of binary heaps, insert and extract-min operate in logarithmic time while
involving at most �lg n� and 2 lg n [could possibly be reduced to lg lg n + O(1) and
lg n + log∗ n + O(1)] element comparisons, respectively. In this paper we propose a
variant of a binary heap that operates in-place, executes minimum and insert in O(1)
worst-case time, and extract-min in O(lg n) worst-case time while involving at most
lg n + O(1) element comparisons. These efficiencies surpass lower bounds known
for binary heaps, thereby resolving a long-standing theoretical debate.
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1 Introduction

In its elementary form, a priority queue is a data structure that stores a multiset of
elements and supports the operations: construct, minimum, insert, and extract-min
[11, Chapter 6]. In most cases, in applications where this set of operations is suffi-
cient, the basic priority queue that the users would select is a binary heap [49]. Even
though a binary heap is practically efficient, its theoretical behaviour is known not to
be optimal. The same is true for the best-known variants presented in the literature
(see, e.g. [27]).

In the theory of in-place data structures, an infinite array is assumed to be available
and, at any given point of time, the elements currently manipulated must be kept in
the first positions of this array. Thus, with respect to the dynamization of the array,
the issues related to memory management are abstracted away. Throughout the paper
we use n to denote the number of elements stored in the data structure prior to the
operation in question. In addition to the array of elements, a constant amount of
space is assumed to be available for storing elements and variables of O(lg n) bits.
We assume the comparison-based model of computation, where the elements can
be constructed, moved, compared, overwritten, and destroyed, but it is not allowed
to modify the elements in any other way. When measuring the running time, these
operations on elements and the normal arithmetic, logical, and bitwise operations on
variables are assumed to have a unit cost each.

In this paper, we present a variant of a binary heap, named strengthened lazy heap,
that

(1) can store any multiset of elements (duplicates allowed);
(2) operates in-place so that it uses O(1) extra space in addition to the elements

maintained at the beginning of an array;
(3) supports minimum in O(1) worst-case time with no element comparisons;
(4) supports insert in O(1) worst-case time;
(5) supports extract-min in O(lg n) worst-case time involving at most lg n + O(1)

element comparisons.1

Assume that, for a problem of size n, the bound achieved for a consumed resource
is A(n) and the best possible bound is OPT(n). We distinguish three different
concepts of optimality:

Asymptotic optimality: A(n) = O(OPT(n)).
Constant-factor optimality: A(n) = OPT(n) + o(OPT(n)).
Up-to-additive-constant optimality: A(n) = OPT(n) + O(1).

As to the running times, the bounds we achieved are asymptotically optimal. As to the
number of element comparisons performed, the bounds are optimal to within additive

1As is standard, throughout the text, for integers d ≥ 2 and n ≥ 0, we write logd n when we mean
logd (max{d, n}), and we use lg n as a shorthand for log2 n.
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constant terms. The claim follows from the information-theoretic lower bound for
sorting [35, Section 5.3.1]. Namely, if a priority queue is used for sorting and every
insert requires O(1) worst-case time, some extract-min must perform at least lg n −
O(1) element comparisons. Note that if we assume integer elements and allow for
word-RAM computations on them to have unit cost each, it is possible to break the
above bounds [28, 29, 43].

For a binary heap, the number of element moves performed by extract-min is at
most lg n + O(1). We have to avow that, for our data structure, extract-min requires
more element moves. On the positive side, we can adjust the number of element
moves to be at most lg n + O(lg(γ ) n) (the logarithm taken γ times), for any fixed
integer γ ≥ 1, while still achieving the same bounds for the other operations. Another
minor drawback for our data structure is that the number of element comparisons per
construct is increased from (13/8)n + o(n), the best bound known for a binary heap
[10], to (23/12)n + o(n).

When strengthened lazy heaps are used in different applications, better compari-
son bounds can be derived for the underlying tasks. We only give two examples. First,
when a strengthened lazy heap is used in heapsort [49], the resulting algorithm sorts
n elements in-place in O(n lg n) worst-case time involving at most n lg n + O(n)

element comparisons. The number of element comparisons performed matches the
information-theoretic lower bound for sorting up to the additive linear term. Ultimate
heapsort [33] is known to have the same complexity bounds, but in both solutions
the constant factor of the additive linear term is high. Note that several other vari-
ants of heapsort (e.g. those discussed in [24, 25, 47, 48, 50]) are not constant-factor
optimal with respect to the number of element comparisons performed, or the addi-
tive term may be asymptotically higher (e.g. for those discussed in [6, 27, 45, 51,
52]). Second, when a strengthened lazy heap is used in adaptive heapsort [36],
the resulting algorithm sorts a sequence X of length n having Inv(X) inversions
in asymptotically optimal worst-case time O(n lg(Inv(X)/n)) performing at most
n lg(Inv(X)/n)+O(n) element comparisons, which is optimal to within the additive
linear term. This solution is not fully in-place, but it would use less memory than the
solution relying on a weak heap [15].

Ever since the work of Williams [49], it was open whether there exists an in-
place priority queue that can match the information-theoretic lower bounds on the
number of element comparisons for all the operations. In view of the lower bounds
proved in [27], it was not entirely clear if such a structure at all exists. In this
paper we answer the question affirmatively by introducing the strengthened lazy
heap that operates in-place, supports minimum and insert in O(1) worst-case time,
and extract-min in O(lg n) worst-case time involving at most lg n + O(1) element
comparisons.

Although, compared to a binary heap, we surpass the comparison bound for
extract-min and the time bound for insert [27], our data structure is similar to a binary
heap. As this result suggests, the following two alterations are crucial:

(1) To improve the comparison bound for extract-min, we reinforce a stronger heap
order at the bottom levels of the heap such that the element at any right child is
not smaller than that at its left sibling.
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(2) To speed up insert, we buffer insertions and allow a poly-logarithmic number
of nodes to violate heap order in relation to their parents.

2 Historical Notes and Earlier Attempts

We kick off by reviewing the fascinating history of the problem of optimizing priority
queues with respect to the extra space used and the number of element comparisons
performed by the basic operations.

A binary heap (see Fig. 1) is an in-place priority queue that is viewed as a nearly-
complete binary tree [11, Section B.5.3], the nodes of which are stored in an array
in breadth-first order. For every node other than the root, the element at that node
is not smaller than the element at its parent (heap order). A binary heap supports
minimum in O(1) worst-case time, and insert and extract-min in O(lg n) worst-case
time, n being the number of current elements. For Williams’ original proposal [49],
in the worst case, the number of element comparisons performed by insert is at most
�lg n� and that by extract-min at most 2 lg n. Immediately after the appearance of
Williams’ paper, Floyd showed [26] how to support construct, which builds a heap
for n elements, in O(n) worst-case time with at most 2n element comparisons.

The operations used to reestablish heap order after an insertion or an extraction
come with different names; in the literature people use the terms: bubbling, sifting,
or heapifying. To fix the terminology, we give a complete description of the binary-
heap class in pseudo-code in Fig. 2. In insert, after augmenting the first vacant array
entry as the last leaf, sift-up traverses the path from that leaf to the root and moves
the encountered elements one level down until the correct place of the new element is
found, where the newcomer is inserted and all the elements on the traversed path are
in sorted order. In extract-min, after temporarily keeping the last element of the array
out, sift-down traverses the so-called special path starting from the root and going at
each level to the child that holds the smaller of the elements stored at the two siblings,
moves the encountered elements one level up until the correct place of the element we
kept out is found, where this element is added back and the elements on the special
path are in sorted order. The main problem is that, in their original form [49], sift-
up requires at most �lg n� element comparisons and sift-down at most 2 lg n element
comparisons. In accordance, we shall introduce other variants for implementing and
using these procedures.

Fig. 1 A binary heap in an array a[0 : 8) = [8, 26, 10, 75, 46, 12, 75, 80] viewed as a nearly-complete
binary tree. The array indices are written beside the nodes
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Fig. 2 A complete description of a binary-heap class in pseudo-code; the private part on the left and the
public part on the right. Normally, parameters are passed to a procedure by value, but in construct the
element array b is passed by reference. Correspondingly, in the assignment a ← b the address of b is
copied, not the elements

A binary heap is a simple data structure. Both the sift-up and sift-down execute
a single step of insertionsort to insert a new element into a sorted path and keep
the elements on the path sorted. In practice, when problems to be solved fit into
main memory, a binary heap is also efficient. When the operation sequence only
consists of insertions, insert runs in O(1) time on the average [31], i.e. under the
assumption that the given elements are uniformly distributed. Also, by modifying
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sift-down so that it first follows the special path down to a leaf and then puts the sifted
element in its place on the way up, as proposed in [35, Exercise 5.2.3–18], extract-
min performs lg n + O(1) element comparisons on the average [2, 41], assuming
that the operation sequence only consists of minimum extractions. As a consequence,
in software libraries, an elementary priority queue is often implemented as a binary
heap. This is in contrast to the data structures to be presented in this paper; we aim
at improving the theoretical worst-case performance but make no claims about the
practical applicability of the solutions presented.

As a binary heap does not support all the operations optimally, many attempts have
been made to develop priority queues supporting the same set (or even a larger set) of
operations that improve the worst-case running time of the operations as well as the
number of element comparisons performed by them [4, 7, 9, 10, 17, 20, 22, 27, 32,
44]. In Table 1 we summarize the history of the problem, focusing on the best-known
space and comparison complexities.

A d-ary heap, proposed by Johnson [32], is a natural extension of a binary heap,
where every branch node has d ≥ 2 children, except possibly the last branch node.
The pseudo-code for a d-ary heap is similar to that shown in Fig. 2. However, the
formulas to compute the children and parent of a node are different, construct has
the arity as an additional parameter, and in sift-down at each branch one has to find
the smallest of the elements stored at its children. This minimum finding requires
d −1 element comparisons and one more comparison is needed to determine whether
or not we can stop the traversal. Since the height of a d-ary heap of size n is

h(n, d)
def= �logd(dn−n+1)� (the height of a single node being 1), insert involves at

most h(n+ 1, d)− 1 element comparisons and extract-min at most d × (h(n, d)− 1)
element comparisons. There is an interesting trade-off between the cost of these
two operations: By making d larger, insert becomes faster but extract-min becomes
slower. Setting d = �n1/k�, the worst-case running time of insert becomes O(k).

For binary heaps, Gonnet and Munro showed [27] how to perform insert using at
most lg lg n+O(1) element comparisons and extract-min using at most lg n+log∗ n+
O(1) element comparisons.2 Chen et al. showed [10] how to construct a binary heap
in-place using at most (13/8)n+o(n) element comparisons in O(n) worst-case time.
Carlsson et al. showed [9] how to achieve O(1) worst-case time per insert by an in-
place data structure that utilizes a queue of pennants. (A pennant is a binary heap
with an extra root that has one child.) For this data structure, the number of element
comparisons performed per extract-min is bounded by 3 lg n + log∗ n + O(1).

The binomial queue [44] was the first priority queue supporting insert in
O(1) worst-case time and extract-min in logarithmic worst-case time. (This was
mentioned as a short note at the end of Brown’s paper [4].) However, the bino-
mial queue is a pointer-based data structure requiring O(n) pointers in addi-
tion to the elements. The multipartite priority queue [20] was the first priority
queue achieving the asymptotically optimal time and up-to-additive-constant-optimal

2log∗ n is the iterated logarithm of n, recursively defined as 1 for n ≤ 2, and 1 + log∗(lg n) for n > 2.
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Table 1 The performance of some elementary priority queues—the data structures in the top and bottom
sections are in-place and those in the middle section require linear extra space. The complexity of oper-
ations is expressed in the number of element comparisons performed in the worst case, unless otherwise
stated; n denotes the number of elements stored in the data structure prior to the operation in question.
For all these data structures, the worst-case running time of minimum is O(1) with no element compar-
isons and that of construct, insert, and extract-min is proportional to the number of element comparisons
performed except for heaps on heaps

Data structure construct insert extract-min

binary heaps [26, 49] 2n �lg n� 2 lg n

d-ary heaps [32, 42] (d/(d − 1))n logd n + O(1) d logd n + O(1)

heaps on heaps [27] 2n lg lg n + O(1)‡ lg n + log∗ n + O(1)

in-place heaps on heaps [10] (13/8)n + o(n) lg lg n + O(1)‡ lg n + log∗ n + O(1)

queues of pennants [9] O(n) O(1) 3 lg n + log∗ n + O(1)

binomial queues [4, 44] n − 1 2 2 lg n + O(1)

multipartite priority queues [20] O(n) O(1) lg n + O(1)

engineered weak heaps [17] n − 1 O(1) lg n + O(1)

penultimate binary heaps [22] (13/8)n + o(n) amortized O(1) amortized lg n + O(1)

strong heaps [Section 4] (23/12)n + o(n) 2 lg n 3 lg n

lazy heaps [Section 5] (13/8)n + o(n) amortized 8 + o(1) lg n + log∗ n + O(1)

relaxed lazy heaps [Section 6] (13/8)n + o(n) O(1) lg n + log∗ n + O(1)

strengthened lazy heaps [Section 7] (23/12)n + o(n) O(1) lg n + O(1)

‡The running time of Insert is logarithmic

comparison bounds. Unfortunately, the structure is involved and its representation
requires O(n) pointers. Another solution [17] is based on weak heaps [14]: To imple-
ment insert in O(1) worst-case time, a bulk-insertion strategy is used—employing
two buffers and incrementally merging one with the weak heap before the other
is full. The weak heap also achieves the desired worst-case time and comparison
bounds, but it uses n additional bits.

In [22], another in-place variant of binary heaps was introduced that supports
insert in O(1) time and extract-min in O(lg n) time with at most lg n + O(1) ele-
ment comparisons, all in the amortized sense. The components used are a partial
heap, an insertion buffer, and a backlog. The invariant is that none of the elements
in the backlog is smaller than the elements in the buffer and main heap. This allows
extract-min to borrow an element from the backlog that is known to go down all the
way to the bottom-most level of the heap, so that no additional bottom-up search is
needed. Once the backlog is empty, the structure is split again; a costly operation
that amortizes over time. (The backlog idea was inspired from ultimate heapsort [33],
which computes the median in linear time to partition the data into two parts.) The
insertion buffer is used to accumulate elements for bulk insertions. The size of the
buffer is bounded above by about lg2 n to allow efficient bulk insertion into a heap.
Furthermore, by deamortization, insert could be supported in O(1) worst-case time,
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and simultaneously construct and extract-min could be supported as efficiently as
for binary heaps. Finally, using another deamortization argument, it was shown that
a sequence of extract-min operations—with no intermixed insert operations—can be
performed in-place using worst-case lg n + O(1) element comparisons per operation
(after linear preprocessing).

Our work shows the limitation of the lower bounds proved by Gonnet and Munro
[27] (see also [7]) in their prominent paper on binary heaps. Gonnet and Munro
showed that �lg lg(n + 2)� − 2 element comparisons are necessary to insert an ele-
ment into a binary heap. In addition, slightly correcting [27], Carlsson [7] showed
that �lg n� + δ(n) element comparisons are necessary to extract the minimum from
a binary heap that has n elements, where δ(n) is the largest integer satisfying
hδ(n) ≤ lg n − 2 and h1 = 1, hi = hi−1 + 2hi−1+ i−1. One should notice that these
lower bounds are only valid under the following assumptions:

(1) All the elements are stored in one nearly-complete binary tree.
(2) Every node obeys the heap order before and after each operation.
(3) No order relation among the elements of the same level can be deduced from

the element comparisons performed by previous operations.

In this paper, we bypass those lower bounds: We prove that the number of element
comparisons for extract-min can be lowered to at most lg n + O(1) if we overrule
the third assumption by imposing an additional requirement that the element at any
right child is not smaller than that at the left sibling. We also prove that insert can be
performed in O(1) worst-case time if we overrule the second assumption by allowing
poly-logarithmic number of nodes to violate heap order. We then combine the two
ideas in our final data structure.

3 Intuition and Techniques

Our starting point is a binary heap with n elements stored at the beginning of an
array. Because of the lower bounds known for insert and extract-min [27], we cannot
expect the elements to be maintained in heap order if we want to surpass these lower
bounds. In the literature, the following approaches have been used to improve insert
and extract-min:

Relaxing heap order: In a relaxed heap [13, 15], some elements are allowed to vio-
late heap order such that an element at a node may be smaller than that at its parent.
Although the number of potential violation nodes are restricted to be logarithmic,
a separate data structure is needed to keep track of those violations.

Weakening heap order: In a weak heap [14, 15], the elements are half-ordered so
that none of the elements in the right subtree of a node is smaller than the element
at that node. Additionally, the root has no left subtree so the minimum is stored at
the root. The elements are still stored in an array, but for each node one additional
reverse bit is maintained that tells which of its two children roots the right subtree.
The virtue of the structure is that the two subtrees of a node can be swapped by
flipping the reverse bit.
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Strengthening heap order: In a fine heap [8] (see also [37, 46]), in addition to the
regular heap order, an extra dominance bit is stored at each node to indicate which
of its two children contains the smaller element.

For a relaxed heap, insert could be supported in O(1) worst-case time by attaching
the inserted element into the heap, marking it as potentially violating, and applying
some local transformations to reduce the number of potential violation nodes when
there are too many of them. For a weak heap and a fine heap, extract-min can be
supported with lg n+O(1) element comparisons since it is possible to navigate down
the heap along the special path without performing any element comparisons by using
the bits stored at the nodes.

We can draw the conclusion that these approaches may be useful for our purposes,
even if the alternatives of having less order or having more order are conflicting. In
our final construction, to improve insert, we allow O(lg2 n) nodes to violate heap
order, and to improve extract-min, we maintain O(n/ lg n) nodes at the top levels in
heap order and the remaining bottom nodes in a stronger heap order. What makes the
matter delicate is that we only have O(1) extra words of space available to keep track
of where the different types of nodes—violating, normal, and strengthened—are.

To develop our data structures, we had to use a variety of techniques listed below.
These techniques are not new, but the combination of how we use them is. The stan-
dard reference, where many of the techniques are discussed, is the book by Overmars
[39]. Our other inspirational source was the stratified trees developed by van Emde
Boas et al. (for a historical survey, see [23]).

Binary search and stopovers: In a heap-ordered tree, the elements along any path
from a leaf to the root appear in sorted order. Hence, when applying sift-up or sift-
down the correct position of a new element can be found by binary search. This
observation leads to insert which involves at most lg lg n+O(1) element compar-
isons [6, 27]. In extract-min, sift-down can be refined by making several stopovers
on the way down and applying binary search for a subpath: Go first lg n − lg lg n

levels down along the special path and test whether the searched position is above
or below this point. If it is above, complete the search by performing binary
search between the current point and the previous stopover. Otherwise, apply the
same procedure recursively below. This stopover optimization leads to extract-min
which involves at most lg n + log∗ n + O(1) element comparisons [7, 27].

Stratification: In a stratified tree [23], each leaf of the top tree roots a bottom tree.
Even though this decomposition can be used recursively, we only use these two
layers. For our structure, in the top tree the normal heap order is maintained,
whereas in each of the bottom trees the heap order is strengthened. For binary
heaps, this idea was earlier used for speeding up in-place heap construction [10].

Buffering and partial rebuilding: Buffering is a well-known technique that can be
used to improve insert in priority queues [1]. The idea is to insert the given ele-
ments into a buffer that is coupled back to back with the heap and, at some point,
combine the buffer with the heap and partially rebuild the structure. In the liter-
ature, people use the terms: bulk insertions, batch insertions, or group insertions.
In the standard construction [1], extra space is needed in the form of pointers.
To combine the buffer with the heap, wemodify Floyd’s heap-construction algorithm
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[26] such that, instead of constructing a whole heap, we use the same strategy to
add a bulk of size O(lg2 n) or O(lg3 n) to the existing heap.

Global rebuilding: As for a weight-balanced tree [38], it might be a good idea to
let a data structure go out of balance until the operations become inefficient and
then make the structure perfectly balanced. We need this kind of global rebuilding
when maintaining the border between the top tree and the bottom trees. The only
requirement set for the bottom trees is that their height may deviate from lg lg n

by only some constant in either direction. Global rebuilding will be used to ensure
that this is the case at all times while the value of n is changing.

Deamortization: If partial rebuilding or global rebuilding was done in one go, the
worst-case running time of a single operation might become high. Hence, rebuild-
ing is done incrementally by distributing the work evenly among a set of operations
so that the cost of each operation sharing the work only increases by a constant.
Here, it is significant that the state of an incremental process can be recorded using
a constant amount of space.
In [17], we discussed how a related incremental process—deamortization of

bulk insertions to get constant worst-case-time insert in a weak heap—could be
implemented (for the source code, see [16]). The computation was described as
a state machine and, in connection with each modifying operation, a constant
number of state transitions were made. This kind of deamortization is custom-
arily considered trivial in the algorithm literature, but seldom seen programmed.
According to the benchmark results reported in [17], a heap-construction algo-
rithm based on repeated insertions using deamortized constant-time insert was an
order of magnitude slower than a specialized heap-construction algorithm.

Heaps in heaps: Many priority queues are organized as a collection of heaps (see,
e.g. [5, 15, 21, 30, 40, 44]). In our in-place setting, a heap is maintained in an
array, but inside this array, in separate subarrays, up to three multiary heaps are
maintained in order to keep track of the elements that are still out of order with
respect to the elements in the main heap.

Mirroring: In the front-to-back view, when a heap of size n is organized in an array
a[0 : n), a[0] stores the element at the root and the tree grows to the right. When
space is tight, we also have to rely on the back-to-front view, where a[n−1] keeps
the element at the root and the tree grows to the left. For such a mirrored heap,
the operations are programmed as before, except that all indices are negative with
respect to the base address a + n − 1.

Concurrency management: In our final construction, there are three incremental
processes that may be ongoing when an insertion or an extraction is executed. Our
main goal is to ensure that there is no undesirable interference between the ongoing
processes and the priority-queue operations being executed. This turned out to be
the most complicated part of our construction because of the lack of the convenient
programming-language mechanisms to describe the underlying processes and their
interactions.

We develop and present our data structures in sequence in the form of basic build-
ing blocks: (1) strong heaps (Section 4) that maintain a stronger heap order, but
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are slow, and (2) lazy heaps (Section 5) that delay insertions by buffering and per-
form occasional bulk insertions instead, leading to amortized O(1) time per insert.
Thereafter, we show how to carry out bulk insertions incrementally in a deamortized
solution (Section 6) supporting insert in O(1) worst-case time. For that, the bound-
ary of the buffer is stored as a couple of heaps in the main heap, one of them is
mirrored. Relying on buffering, stratification of a binary heap on top of many small
strong heaps, maintaining the border by global rebuilding, and employing binary
search while sifting, we end up with the best results (Section 7): O(1) worst-case
time per insert and O(lg n) worst-case time with at most lg n + O(1) element com-
parisons per extract-min. This final structure is complicated and requires concurrency
management to avoid the interference of several incremental processes.

Also, to efficiently support the construct operation in-place, we use the following
standard in-place techniques.

Permuting in-place: Assume that we are given an array of elements a[0 : t) and a
permutation σ(0)σ (1) · · · σ(t − 1). It is well known [34, Section 1.3.3] that the
task of permuting the elements in this array in-place can be accomplished in O(t)

worst-case time (using O(t) words of memory) by following the cycle structure
of the permutation. In the worst case, the number of element moves performed
would be t plus the number of cycles in the given permutation, for a total of at
most �(3/2)t� element moves.

Packing small integers: Consider permuting the elements of a small subheap of
size t , the root of which is at some specific index. To optimize the number of ele-
ment moves performed by our procedures, we could use an array of pointers that
refer to the elements, and then manipulate these pointers instead of moving the ele-
ments themselves (cf. address-table sorting [35, Section 5.2]). More specifically,
each entry of this array could store a pair of small integers: one giving the level of
an element relative to that of the root, and another giving the offset at that level.

For t
def= O(lg n/ lg lg n), the size of each small pointer is O(lg lg n) bits, and the

whole representation of this subheap could be encoded in O(lg n) bits. According
to our assumption on the word size, these integers can be packed into a constant
number of variables. Using the normal arithmetic, logical, and bitwise operations,
each integer can be read and written in O(1) worst-case time.

4 Strong Heaps: Adding More Order

A strong heap is a binary heap with one additional invariant: The element at any
right child is not smaller than that at the left sibling. This left-dominance property is
fulfilled for every right child in a fine heap [8] (or its alternatives [37, 46]), which
uses one extra bit per node to maintain the property. On the contrary, a strong heap
operates in-place, but its operations are slower. Like a binary heap, a strong heap is
viewed as a nearly-complete binary tree where the lowest level may be missing some
nodes at the rightmost positions. In addition, this tree is embedded in an array in the
same way, i.e. the formulas for computing left-child, right-child, and parent are still
the same (see Fig. 2).



Theory Comput Syst (2017) 61:606–636 617

Two views of a strong heap are exemplified in Fig. 3. On the left, the directed
acyclic graph has a nearly-complete binary tree as its skeleton: There are arcs from
every parent to its children and additional arcs from every left child to its sibling indi-
cating the dominance relations. On the right, in the stretched tree, the arcs from each
parent to its right child are removed as these dominance relations can be induced. In
the stretched tree a node can have 0, 1, or 2 children. A node has one child if in the
skeleton it is a right child that is not a leaf or a leaf that has a right sibling. A node
has two children if in the skeleton it is a left child that is not a leaf. If the skeleton has
height h (height of a single node being 1), the height of the stretched tree is at most
2h − 1, and on any root-to-leaf path in the stretched tree the number of nodes with
two children is at most h − 2.

When implementing construct and extract-min for a binary heap, the basic prim-
itive used is the sift-down procedure [26, 49]. For a strong heap, the strengthening-
sift-down procedure has the same purpose, and our implementation (see Fig. 4) is
similar, with one crucial exception that we operate with the stretched tree instead
of the nearly-complete binary tree. As for a binary heap, extract-min can be imple-
mented (also in Fig. 4) by replacing the element at the root with the element at the
last position of the array (if there is any) and then invoking strengthening-sift-down
for the root.

Example 1 Consider the strong heap in Fig. 3. If its minimum was replaced with the
element 17 taken from the end of the array, the path to be followed by strengthening-

sift-down would include the nodes .

Let n denote the size of a strong heap and h the height of the underlying tree
skeleton. When going down the stretched tree, we have to perform at most h − 2
element comparisons due to branching at binary nodes and at most 2h − 1 element

Fig. 3 A strong heap in an array a[0 : 15) = [1, 3, 8, 4, 5, 9, 13, 6, 15, 7, 11, 10, 12, 14, 17] viewed as a
directed acyclic graph (left) and a stretched tree (right)
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Fig. 4 Implementation of strengthening-sift-down, and its use in construct and extract-min in a strong
heap organized in an array a[0 : n); a right child is never accessed directly

comparisons due to checking whether to stop or not. Hence, the number of element
comparisons performed by extract-min is bounded by 3h − 3, which is at most 3 lg n

as h = �lg n� + 1.
To build a strong heap, we mimic Floyd’s heap-construction algorithm [26]; that

is, we invoke strengthening-sift-down for all nodes, one by one, processing them in
reverse order of their array positions (see Fig. 4). One element comparison is needed
for every met left child in order to compare the element at its right sibling with that
at its left child, making a total of at most n/2 element comparisons. The number of
other element comparisons is bounded by the sum

∑�lg n�+1
i=1 3 · i · �n/2i+1�, which is

at most 3n+o(n). Thus, construct requires at most 3.5n+o(n) element comparisons.
For construct and extract-min, the amount of work done is proportional to the

number of element comparisons performed, i.e. the worst-case running time of
construct is O(n) and that of extract-min is O(lg n).
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Lemma 1 A strong heap of size n can be built in O(n) worst-case time by repeatedly
calling strengthening-sift-down. Each strengthening-sift-down uses O(lg n) worst-
case time and performs at most 3 lg n element comparisons.

Analogously with strengthening-sift-down, it would be possible to implement
strengthening-sift-up. As the outcome, insert would perform at most 2 lg n element
comparisons.

Next we show how to perform a sift-down operation on a strong heap of size n

with at most lg n + O(1) element comparisons. At this stage we allow the amount of
work to be higher, namely O(n). To achieve the better comparison bound, we have
to assume that the heap is complete, i.e. that all leaves have the same depth. Consider
the case where the element at the root of a strong heap is replaced by a new element.
In order to reestablish strong heap order, the swapping-sift-down procedure (Fig. 5)
traverses the left spine of the skeleton bottom up starting from the leftmost leaf, and
determines the correct place of the new element, using one element comparison at
each node visited. Thereafter, it moves all the elements above this position on the left
spine one level up, and inserts the new element into its correct place. If this place is
at height g, we have performed g element comparisons. Up along the left spine there
are lg n− g +O(1) remaining levels to which we have moved other elements. While
this results in a heap, we still have to reinforce the left-dominance property at these
upper levels. In accordance, we compare each element that has moved up with the
element at the right sibling. If the element at index j is larger than the element at
index j + 1, we interchange the subtrees Tj and Tj+1 rooted at positions j and j + 1
by swapping all their elements. The procedure continues this way until the root is
reached.

Fig. 5 Implementation of swapping-sift-down for a complete strong heap
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Example 2 Consider the strong heap in Fig. 3. If the element at the root was replaced
with the element 16, the left spine to be followed by swapping-sift-down would

include the nodes , the new element would be placed at the last leaf
we ended up with, the elements on the left spine would be lifted up one level, and

an interchange would be necessary for the subtrees rooted at node and its new

sibling .

Given two complete subtrees of height h, the number of element moves needed to
interchange the subtrees is O(2h). As

∑�lg n�
h=1 O(2h) is O(n), the total work done in

the subtree interchanges is O(n). Thus, swapping-sift-down requires at most lg n +
O(1) element comparisons and O(n) work.

Lemma 2 In a complete strong heap of size n, swapping-sift-down runs in-place and
uses at most lg n + O(1) element comparisons and O(n) moves.

To improve construct with respect to the number of element comparisons and the
number of element moves performed, still keeping the worst-case running time lin-
ear, we can use the algorithms of Carlsson et al. [8] developed for a fine heap. Instead
of swapping-sift-down, the subtree interchanges are realized by flipping the domi-
nance bits. The basic algorithm [8, Lemma 3.2] builds a fine heap of size n in O(n)

worst case time with at most 2n + o(n) element comparisons. An interesting change
in the base case [8, Lemma 3.3] leads to an improvement reducing the number of ele-
ment comparisons performed to (23/12)n + o(n). In accordance, for a strong heap,
we would expect an in-place construction algorithm with at most (23/12)n + o(n)

element comparisons. For a strong heap we want the elements to be placed at their
correct final locations, while for a fine heap it is the case that guiding information
encoded in bits is sufficient. To this extent, at the end, we have to transform a fine
heap with bits to a strong heap.

The algorithm set-up is as follows. As advised in [10], we divide the tree into a
top tree and a set of bottom trees such that each leaf of the top tree roots a small
bottom tree (stratification). To optimize the number of element moves done by the
construction, we fix the level where we cut the tree such that the size of each bot-

tom tree is less than, but as close as possible to, t
def= lg n/ lg lg n. The algorithm

makes each of the bottom trees a strong heap, one after the other, and then processes
the nodes at the top tree. The key observation is that most of the work is done when
creating the bottom heaps, so that for the nodes at the top tree any sifting strategy
can be used while only affecting the low-order terms in the computational com-
plexity. We thus end up applying strengthening-sift-down on the o(n) nodes of the
top tree.

One bottom tree may be nearly complete, not complete, so we process it separately
by using strengthening-sift-down. For each of the remaining complete bottom trees,
Bj , we do the following.

(1) Create an array of small pointers referring to the elements of Bj and reserve an
array of bits for the dominance relations between the siblings.
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(2) Use the algorithm of Carlsson et al. [8, Lemma 3.3] to build a fine heap for the
elements in Bj . Here no element moves are done; all subtree interchanges are
emulated by flipping the dominance bits and all element moves are emulated
by swapping small pointers.

(3) Perform a preorder traversal of the resulting fine heap to create a permutation
that indicates the destination of each element. Again small pointers are used
when specifying the destinations. Similarly, the recursion stack maintained can
just record small pointers.

(4) Permute the elements to get them to their final destinations (permuting in-place).

By packing the pointers used, the construction of each bottom heap only requires
O(t × lg t) bits, which is O(lg n) bits or O(1) variables (packing small integers).
When one bottom heap is constructed, the space occupied can be freed and reused
for the construction of another bottom heap. Each of the above steps requires linear
time, so the overall running time is linear too.

The results presented in this section can be summarized as follows.

Theorem 1 Let n denote the number of elements stored in a data structure. A strong
heap is an in-place priority queue, for which

(1) construct requires O(n) worst-case time performing at most (23/12)n + o(n)

element comparisons;
(2) minimum requires O(1) worst-case time involving no element comparisons;
(3) insert requires O(lg n) worst-case time involving at most 2 lg n element com-

parisons; and
(4) extract-min requires O(lg n) worst-case time involving at most 3 lg n element

comparisons. Furthermore, given a mechanism to keep the strong heap com-
plete, extract-min can be refined to perform lg n + O(1) element comparisons,
but this would increase its worst-case running time to O(n).

5 Lazy Heaps: Buffering Insertions

In the variant of a binary heap that we describe in this section some nodes may
violate heap order because insertions are buffered and only partially ordered bulks
are inserted into the heap. The main difference between the present construction and
the construction in [17] is that, for a data structure of size n and a fixed integer α ≥ 2,
we allow O(lgα n) heap-order violations instead of O(lg n), but we still use O(1)
extra space to track where the potential violations are. Using strengthening-sift-down
instead of sift-down, the construction will also work for a strong heap.

A lazy heap is composed of two parts, main heap and insertion buffer, that are
laid out back to back in an array; the insertion buffer comes after the main heap. The
following rules are imposed:

(1) insert adds every new element to the insertion buffer (buffering).
(2) If the size of the main heap is n′, the size of the insertion buffer is O(lgα n′) for

a fixed integer α ≥ 2.
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(3) When the insertion buffer reaches its maximum size, it is submerged into the
main heap in one go (partial rebuilding).

(4) When an extract-min operation is performed, the element at the last array posi-
tion is used as a replacement for the element being removed. This replacement
can come either from the insertion buffer or from the main heap (if the insertion
buffer is empty).

In the basic form, we implement the main heap as a binary heap and the insertion
buffer as a multiary heap. Depending on the arity of the multiary heap (d) and the
maximum capacity set for the insertion buffer (b), the performance characteristics of
the priority-queue operations follow.

A pseudo-code description of the data structure is given in Fig. 6. Its core is the
bulk-insert procedure which operates as Floyd’s heap-construction algorithm [26],
but it only visits the ancestors of the nodes of the insertion buffer, not all the nodes.

Fig. 6 Buffering in a lazy heap; the main heap is organized as a binary heap in a[0 : n′) and the insertion
buffer as a multiary heap in a[n′ : n); since the third parameter of buffer.construct is passed by reference,
the changes made by buffer.insert and buffer.extract-min are visible here and, if the buffer is non-empty,
a[n′] is its minimum



Theory Comput Syst (2017) 61:606–636 623

As earlier, the ancestors are visited bottom up, level by level, by calling the sift-down
procedure for each node. The key observation is that, as long as there are more than
two nodes considered at a level, the number of visited nodes almost halves at the next
level.

In the following analysis we separately consider two phases of the bulk-insert
procedure. The first phase comprises the sift-down calls for the nodes at the levels
with more than two involved nodes. Recall that the size of the initial bulk is b. The
number of the nodes visited at the j th last level is at most �(b − 2)/2j−1� + 2. For
a node at the j th last level, a call to the sift-down procedure requires O(j) work.

In the first phase, the amount of work involved is O(
∑�lg n′�

j=2 j/2j−1 · b) = O(b).
The second phase comprises at most 2�lg n� calls to the sift-down subroutine; this
accounts for a total of O(lg2 n) work.

In the first phase of bulk-insert at most 4b + o(b) element comparisons are per-
formed (in principle, this is Floyd’s heap construction for a subheap of size 2b+o(b)),
and in the second phase of bulk-insert at most 2 lg2 n element comparisons are per-
formed (two sift-down calls on each level i of the heap, each using at most 2i element
comparisons). It follows that the amortized number of element comparisons for the
bulk insertion is 4 + (2 lg2 n)/b + o(1) per insert. To maintain the cursor to the
overall minimum, one additional element comparison per insert is necessary. The
amortized cost per insert is then 5 + (2 lg2 n)/b + o(1) element comparisons in
addition to the element comparisons performed when inserting an element into the
buffer.

Let us consider the parameter values d
def= �lg n� and b

def= d2. In this case the d-ary
heap can have up to 3 levels. Therefore, inside the buffer, each insert requires at most
2 element comparisons and each extract-min at most 2 lg n element comparisons.
When the insertion costs are amortized over insert operations, the amortized number
of element comparisons performed per insert is 9 + o(1). By setting the arity of the

multiary heap down to d
def= �(1/3) lg n� and by increasing the maximum capacity of

the insertion buffer to b
def= d3, i.e. the d-ary heap would have at most 4 levels, the

number of element comparisons per extract-min would reduce to lg n + O(1) if the
removed element is inside the buffer. With these parameter values, the cost associ-
ated with the second phase of bulk-insert would become asymptotically insignificant
and the amortized number of element comparisons per insert would reduce to
8 + o(1).

By applying the stopover optimization for extract-min [7, 27], the number of ele-
ment comparisons per extract-min could be reduced to lg n + log∗ n + O(1) if the
removed element is inside the main heap.

To summarize, construct could use the best in-place algorithm known for the con-
struction of a binary heap [10], minimum reports the overall minimum to which a
cursor is maintained, insert is delegated to the insertion buffer which is occasionally
submerged into the main heap, and extract-min is delegated to the component where
the overall minimum resides.

Theorem 2 Let n denote the number of elements stored in a data structure. A lazy
heap is an in-place priority queue, for which
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(1) construct requires O(n) worst-case time performing at most (13/8)n + o(n)

element comparisons;
(2) minimum requires O(1) worst-case time involving no element comparisons;
(3) insert requires O(1) time involving 8 + o(1) element comparisons in the

amortized sense; and
(4) extract-min requires O(lg n) worst-case time involving at most lg n + log∗ n +

O(1) element comparisons.

6 Relaxed Lazy Heaps: Deamortizing Bulk Insertions

In this section we show how a lazy heap can be modified to execute insert in O(1)
worst-case time, still supporting the other operations with the same efficiency as
before. The action plan can be briefly stated as follows. Instead of performing a
bulk insertion in one go, it is executed incrementally by dividing the work among
several insert and extract-min operations such that the work done per operation only
increases by a constant (deamortization). More specifically, when the insertion buffer
becomes full, it will be closed for insertions and further insertions will be directed
to a new insertion buffer, while concomitantly the old buffer is submerged into the
main heap in an incremental fashion. We call the incremental process a submersion to
distinguish it from the bulk insertion. Obviously, such a submersion should be done
fast enough to complete before the insertion buffer becomes full again.

Already from this initial description it is clear that the desired data structure, that
we call a relaxed lazy heap, is composed of three parts: main heap, submersion area,
and insertion buffer. The main heap including the submersion area is laid out in an
array as a binary heap, and the insertion buffer occupies the last array locations. When
a submersion starts, the insertion buffer forms an embryo of the submersion area
which lies between the main heap and the new—at this point empty—insertion buffer.
When the submersion progresses and sift-down is called for each of the ancestors
of the initial embryo, the submersion area becomes bigger and bigger until the last
sift-down for the root of the main heap finishes, and the submersion completes.

Since we do not aim at optimizing the additive constant terms, we can restrict the
maximum size of the insertion buffer to be O(lg2 n). From this, it follows that the
maximum size of the submersion area is also O(lg2 n). When the submersion is in
progress, after performing sift-down for some nodes, it might happen that the overall
minimum is in the submersion area. To find the new minimum, we cannot scan the
whole submersion area, but we have to maintain a multiary-heap-like data structure
to support fast minimum finding. Also, since the insertion buffer is all of a sudden
made a submersion area, the structure maintained in both should be the same.

The following list summarizes the rules of the game:

(1) insert adds every new element to the insertion buffer.
(2) When the insertion buffer reaches its maximum size, it is made an embryo for

a new submersion area and a new empty insertion buffer is created.
(3) If the size of the main heap is n′ when a submersion area was created the last

time, the size of the insertion buffer is O(lg2 n′).
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(4) The submersion area is incrementally submerged into the main heap by per-
forming a constant amount of work in connection with every modifying
operation (insert or extract-min).

(5) When the insertion buffer is full again, the incremental submersion must have
been completed.

(6) When an extract-min is performed, the element at the last array position is used
as a replacement for the element being removed. This replacement can come
from the insertion buffer, from the submersion area (if the insertion buffer is
empty), or from the main heap (if both the insertion buffer and the submersion
area are empty).

The insertion buffer should support insert and extract-min efficiently, the submersion
area should support extract-min efficiently, and the main heap should support con-
struct and extract-min efficiently. Next we consider, component by component, how
to provide these operations.

In the life cycle of the data structure, let us consider the moments when a new
insertion buffer is created. Let n′ denote the size of the main heap just before this
happened the last time. As before, we organize the insertion buffer as a multiary heap,

but now we set the arity to d
def= �(1/4) lg n′� and the maximum capacity to d2. A

new element can be added to the end of the buffer and thereafter at mostO(1)work is
necessary to reestablish the d-ary heap property. When the minimum of the buffer at
its first location is to be removed, the last element (if any) is moved into its place. The
following sift-down operation involves at most d element comparisons per level up
to two levels and only a constant number of element moves are needed to reestablish
the d-ary heap property. Here, the number of element comparisons performed per
extract-min is at most (1/2) lg n + O(1). When a replacement is needed for the old
minimum, it is never aproblem touse the last elementof the insertionbuffer for this purpose.

To track the progress of the submersion process, we maintain two intervals that
represent the nodes up to which the sift-down subroutine has been called. Each such
interval is represented by two indices indicating its left and right endpoints, denote
them [�1 : r1) and [�2 : r2). These two intervals are at consecutive levels, and the par-
ent of the right endpoint of the first interval is the left endpoint of the second interval,
i.e. �2 = parent(r1). We say that these two intervals form the frontier. The submer-
sion area thus comprises the initial embryo plus the ancestors up to the frontier.
The frontier imparts that a sift-down is being performed starting from the node
whose index is �2. Once sift-down returns, the frontier is updated. While the process
advances, the frontier moves upwards and shrinks until it has one or two nodes. When
the frontier passes the root, the incremental submersion is complete.

We keep the elements on the frontier in two multiary heaps (heaps in heaps). The
elements in the interval [�1 : r1) are organized as a normal multiary heap and the
elements in the interval [�2 : r2) as a mirrored multiary heap (mirroring). Hence, the
minimum of the frontier is at either of its two ends, a[�1] or a[r2 − 1]. Initially,
the insertion buffer is made the multiary heap of the interval [�1 : r1). The arity of
the heaps is inherited from the insertion buffer, from which this initial embryo was
created. When the upper interval is extended by one position, we have to call sift-
down at position �2. Thereafter, we have to insert the new element at that position to
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the mirrored multiary heap. As the result of this insert, the position �2 may get a new
larger element, so we have to invoke sift-down at this position one more time. This can
be repeated for at most two interleaved calls to sift-down in the main heap followed
by sift-up in the mirrored multiary heap. At the next round, when the interval [�1 : r1)

vanishes, the scanning direction must be reversed so that a mirrored multiary heap
is used to fill a normal multiary heap, and so on. After 2 lg lg n′ + O(1) rounds, the
multiary heaps shrink to at most two elements, and a single cursor to the minimum
can be maintained.

To summarize, the information being maintained to record the state of the submer-
sion process is two intervals of indices to represent the frontier, the variables required
by the two multiary heaps, the node that is under consideration by the current sift-
down, and an activation record telling which of the two sift-down operations is in
progress at the current node. In spite of the two sift-down calls per node, the worst-
case running time of the whole process is still linear in the size of the initial embryo.
In the actual implementation of the submersion, we could count the number of levels
processed by the sift-down calls to ensure that we make progress in the desired speed.

To remove the minimum of the submersion area, we know that it must be on the
frontier and we readily have its index. This minimum is replaced with the last element
of the array. In the case that there are at most two nodes on the frontier, we just
perform a sift-down, update the cursor to the minimum of the frontier, and we are
done. In the case that there are more than two nodes on the frontier, first a sift-down in
the multiarray heap is called for the node on the frontier that got a replacement. As a
result, at most three nodes among the nodes of the frontier may get new replacement
elements. For each of these nodes a sift-down operation in the main heap may be
necessary to remedy the order between the replacement elements and the elements in
their descendants. Luckily, the height of the nodes on the frontier is at most 2 lg lg n+
O(1) so we can afford to do these operations. To sum up, extracting the minimum
of the submersion area requires O(lg n) time with at most (1/2) lg n + O(lg lg n)

element comparisons.
When we extract the last element of the submersion area, we want to be sure that

there is no unwanted interference with the other operations (concurrency manage-
ment). Therefore, one caution we have to take is that, in submersion, sift-down in
progress should never stop at a leaf. This way, when we take a replacement from the
submersion area, we will not lose the position of this incremental process.

In the main heap, the minimum and extract-min operations are performed as in a
binary heap with the same cost limitations. An exception is that, if extract-min meets
the frontier of the submersion area, we stop the execution before crossing it. Still,
in extract-min, the optimization with occasional stopovers [7, 27] could be used, if
wanted.

Since a binary heap would be a legal relaxed lazy heap having no submersion area
or insertion buffer, construct could use the best in-place algorithm known for the
construction of a binary heap [10]. By maintaining a cursor to the overall minimum,
minimum can be trivially supported in O(1) worst-case time and no element com-
parisons are needed. And, as we have seen, the insertion buffer can support insert
efficiently and the work involved in the submersion can be split over several mod-
ifying operations. All three components support extract-min in O(lg n) worst-case
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time; as to the number of element comparisons, extract-min in the main heap is the
bottleneck.

Theorem 3 Let n denote the number of elements stored in a data structure. A relaxed
lazy heap is an in-place priority queue for which

(1) construct requires O(n) worst-case time performing at most (13/8)n + o(n)

element comparisons;
(2) minimum and insert require O(1) worst-case time; and
(3) extract-min requires O(lg n) worst-case time involving at most lg n + log∗ n +

O(1) element comparisons.

7 Strengthened Lazy Heaps: Putting Things Together

Our final construction is similar to the one of the previous section in that there are
three components: main heap, submersion area, and insertion buffer. Here the main
heap has two layers: a top heap that is a binary heap, and each leaf of the top heap
roots a bottom heap that is a complete strong heap (stratification). The main heap
is laid out in the array as a binary heap and, in accordance, every bottom heap is
scattered throughout the array. As before, the submersion area is inside the main
heap, leading to a possible disobedience of heap order at its frontier. Because the
main heap is only partially strong, we call the resulting data structure a strengthened
lazy heap. To help the reader get a complete picture of the data structure, we visualize
it in Fig. 7.

The main new ingredient is the border maintained between the top heap and the
bottom heaps (for an overview of the data maintained, see Fig. 8). When the data
structure contains n elements, the target height of the top heap is set to �lg n−lg lg n�.

Fig. 7 Schematic view of a strengthened lazy heap
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Fig. 8 Most important variables of a strengthened lazy heap; the main heap is held in a[0 : n′′), the embryo
of the submersion area in a[n′′ : n′), and the insertion buffer in a[n′ : n)

Since n varies and the target height is a function of n, the actual height (denote it h0)
cannot exactly match this bound, but the goal is to keep it close to the target height
up to an additive constant. Since the border must be moved dynamically depending
on the changes made to n, we represent it in the same way as the frontier in Section 6
using two intervals [�1 : r1) and [�2 : r2). To lower the border, we just adjust h0 and
ignore the left-dominance property for the nodes on the previous border. To raise
the border, we need a new incremental remedy process that scans the nodes on the
old border and applies strengthening-sift-down on each left child (see the procedure
raise-border in Fig. 9). Again, we only need a constant amount of space to record the
state of this process.

The work to be done in border raising can be scheduled as follows. In connection
with every modifying operation, after accomplishing its real task, if n = 2h for some
positive integer h, we check the relationship between �h − lgh� and h0. If they are
equal, there is no need to move the border. If necessary, border lowering can be done
immediately since it only involves O(1) work. Otherwise, we initiate an incremen-
tal border-raising process (deamortization). The total work involved in border raising
is O(n). We divide this work evenly among the forthcoming 2h−1 modifying oper-
ations, so that each of them takes a constant share of the work. Therefore, border
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Fig. 9 Description of the new incremental processes when executed in one go

raising must be complete before n is increased to 2h+1 or decreased to 2h−1, i.e. when
the next check is due.

In all essentials, the insertion buffer and the submersion area are implemented as
explained before. Let n′′ be the size of the main heap just before the latest submersion
process was initiated. Further, let n′ be its size just after this, i.e. including the size of
the embryo of the submersion area. Again, the arity of the multiary heap used in the

insertion buffer is set to d
def= �(1/4) lg n′� and the maximum capacity of the buffer

is set to d2. When an insertion buffer is used to create a submersion area, the very
same arity is used there. In particular, the arities in the current submersion area (d ′ in
Fig. 8) and the current insertion buffer need not be the same, but their difference is a
small constant.

To improve the performance of extract-min in the main heap, we use a new pro-
cedure, that we call combined-sift-down (Fig. 10), instead of sift-down. Assume we
have to replace the minimum of the main heap with another element. To reestab-
lish heap order, we apply the stopover optimization proposed by Carlsson [6] (see
also [7, 27]): We traverse down along the special path until we reach the root of a
bottom heap. By comparing the replacement element with the element at that root, we
decide whether the replacement element should land in the top heap or in the bottom
heap. In the first case, in binary-search-sift-up, we find the position of the replace-
ment element using binary search on the traversed path and then do the required
element moves. In the second case, we move the elements of the special path one node
upwards vacating the root of the bottom tree, then move the replacement element to
the root of the bottom tree and apply swapping-sift-down on this bottom tree.

Let us now recap how the operations are executed and analyse their performance.
Here we ignore the extra work done due to the incremental processes. Since a strong
heap would be a legal strengthened lazy heap having no submersion area or insertion
buffer, construct could use the faster of the two algorithms developed in Section 4.
As previously, minimum can be carried out in O(1) worst-case time without any
element comparisons by maintaining a cursor to the overall minimum and letting the
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other operations update this cursor. Also, as before, insert adds the given element to
the insertion buffer and updates the cursors maintained if necessary. The minimum
can be at the root of the top heap, at the first location of the insertion buffer, or at
some location on the frontier of the submersion area specified by a separate cursor.
In extract-min, the minimum could be in any of these three components.

If the minimum is at the root of the top heap, we find a replacement element and
apply combined-sift-down for the root while making sure not to cross the frontier of
the submersion area. The top heap is of size O(n/ lg n) and each of the bottom heaps
is of sizeO(lg n). To reach the root of a bottom heap, we perform lg n−lg lg n+O(1)
element comparisons. If we have to go upwards, we perform lg lg n+O(1) additional
element comparisons in the binary search while applying the binary-search-sift-up
operation. On the other hand, if we have to go downwards, swapping-sift-down needs
to perform at most lg lg n + O(1) element comparisons. In both cases, the number of
element comparisons performed is at most lg n+O(1) and the work done is O(lg n).

If the overall minimum is in the insertion buffer, it is removed as explained in
the previous section. This removal involves 2d + O(1) element comparisons and the
amount of work done is proportional to that number. Since d = �(1/4) lg n′�, this
operation requires at most (1/2) lg n+O(1) element comparisons and O(lg n) work.

If the frontier contains the overall minimum, we apply a similar treatment to that
explained in the previous section with a basic exception. If there are more than two
nodes on the frontier, the height of the nodes on the frontier is at most 2 lg lg n +
O(1). In this case, we use the strengthening-sift-down procedure in place of the

Fig. 10 Implementation of combined-sift-down
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sift-down procedure. The whole process requires at most (1/2) lg n + O(lg lg n) ele-
ment comparisons and O(lg n) work. If there are at most two nodes on the frontier,
the frontier lies in the top heap. In this case, we apply the combined-sift-down pro-
cedure instead. This requires at most lg n + O(1) element comparisons and O(lg n)

work. Either way, for large enough n, the minimum extraction here requires at most
lg n + O(1) element comparisons.

One important detail that causes some troubles is the fact that the bottom heaps
have to be complete. The following two issues pop up:

(1) When we create a submersion area, we cannot use the whole insertion buffer
as its embryo. We have to leave the last elements that cannot fill a whole level
of a bottom heap in the insertion buffer. We call these elements leftovers. After
moving most of the elements to the embryo, we do not know the minimum
of the leftovers. There may only be a few elements in the submersion area
that are smaller than the minimum among the leftovers, but there are definitely
some. Hence, we have to find the minimum of the leftovers incrementally if
extractions are from the main heap, but we must finish this incremental pro-
cess in connection with the first extraction from the submersion area. As our
forthcoming analysis will show, we have plenty of time for that.

(2) When we need a replacement element for extract-min, we cannot take one from
the main heap or the submersion area if the insertion buffer is empty. Instead,
we have to return a whole level of a bottom heap to the insertion buffer (see
the procedure refill-buffer in Fig. 9). Conveniently, these elements appear at the
rear of the array. Again the problem is that, after this procedure, the minimum
of the piece cut would not be known. Fortunately, we can handle these refilling
elements almost the same way as the leftovers. The work to be done in min-
imum finding can be divided evenly among the next �(1/4) lg n� extract-min
operations if the forthcoming extractions are from the main heap or if they are
from the submersion area when the frontier is on or above level �(1/2) lg n�.
The correctness follows from the fact that, in this case, there is a logarithmic
number of elements that are smaller than any of the refilling elements. Alterna-
tively, as the forthcoming analysis will show, the work can be finished in one
go if an extraction is from the submersion area when the frontier is below level
�(1/2) lg n�.

The special case, where it is necessary to complete an incremental buffer-refilling
process in one go following an extraction, will increase the number of element com-
parisons performed by at most (1/4) lg n + O(1). First, if the submersion process is
in its first phase when there are more than two nodes on the frontier, the number of
element comparisons will increase to at most (3/4) lg n + O(lg lg n). This case also
applies for leftovers. Second, if the submersion process is below level �(1/2) lg n�,
but is in its second phase when there are at most two nodes on the frontier, combined-
sift-down will only require at most (1/2) lg n + O(1) element comparisons, and
the total will be at most (3/4) lg n + O(1) element comparisons. In both cases, for
large enough n, the number of element comparisons performed is still bounded by
lg n + O(1).
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If we swapped two subtrees in the bottom tree where the frontier consists of two
intervals, there is a risk that we mess up the frontier. In accordance, as a change
of plans, we schedule the submersion process differently: We process the bottom
trees one by one, and lock the bottom tree under consideration to skip subtree inter-
changes initiated by extract-min in the main heap (concurrency management). Then,
the frontier may be divided into four intervals (see Fig. 8):

(1) the interval corresponding to the unprocessed leaves of the initial embryo
(interval [�0 : r0); initially, �0 = n′′ and r0 = n′),

(2) the two intervals [�1 : r1) and [�2 : r2) in the bottom tree under consideration,
and

(3) the interval of the roots of the bottom heaps that have been handled by the
submersion process (interval [�3 : r3)).

Locking resolves the potential conflict with extract-min. However, in the currently
processed bottom tree there are some nodes between the root and the frontier that
are not yet included in the submersion process and are not in order with the ele-
ments above or below. This is not a problem, as none of these elements can be
the overall minimum except after a logarithmic number of modifying operations.
Within such time, these nodes should have already been handled by the submersion
process.

Inside the initial embryo, a multiary heap (I0 in Fig. 8) is used to keep track of the
minimum of these elements. Since the processed bottom tree is so small, a separate
cursor can be maintained to point to the minimum on this part of the frontier. Also,
the last interval will never grow larger than d + O(1), so a cursor to the minimum
stored at these nodes will also do here.

As shown, due to the two-layer structure and the completeness requirement for
the bottom heaps, the incremental remedy processes are more complicated for a
strengthened lazy heap than for a relaxed lazy heap. Naturally, we want to avoid any
undesirable interference between the incremental processes and the priority-queue
operations. Last, let us consider the introduced complications one at a time and sketch
how we handle them (concurrency management).

(1) To avoid interference between refill-buffer and strengthening-sift-down, an
incremental process should never stop at a leaf. One way to enforce this in the
submersion area is to keep every sibling pair of elements in sorted order when
they are inserted into the buffer. Then strengthening-sift-down need never be
called for several leaves after each other.

(2) If extract-minmeets the node where border-raising strengthening-sift-down is to
be applied, we stop the execution of extract-min and let the incremental process
reestablish strong heap order below that node.

(3) If the node where border-raising strengthening-sift-down is to be applied is
inside the submersion area, we stop this corrective action and jump to the next
since the submersion process must have already established strong heap order
below that node.

(4) If the node processed by submersion strengthening-sift-down and that by
border-raising strengthening-sift-downmeet, we stop the border-raising process
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and jump to the next since the submersion process will reestablish strong heap
order below that node.

(5) If the border-raising strengthening-sift-down meets the frontier, we stop this
corrective action before crossing it and jump to the next.

(6) When the node recorded by border-raising strengthening-sift-down is moved by
a swapping-sift-down, its index is to be updated accordingly.

Because of the subtree interchanges made in swapping-sift-down, the num-
ber of element moves performed by extract-min—even though asymptotically
logarithmic—would be larger than the number of element comparisons. However,
we can control the number of element moves by making the bottom heaps smaller
and applying the stopover optimization with several stops before using swapping-
sift-down. For a fixed integer γ ≥ 1, we could limit the size of the bottom heaps
to O(lg(γ ) n) (the logarithm taken γ times), after which the number of element
moves would be upper bounded by lg n + O(lg(γ ) n), while the bounds for the other
operations still hold.

The description and analysis of the data structure ends here. Thus, we have proved
our main result.

Theorem 4 Let n denote the number of elements stored in a data structure. A
strengthened lazy heap is an in-place priority queue, for which

(1) construct requires O(n) worst-case time performing at most (23/12)n + o(n)

element comparisons;

(2) minimum and insert require O(1) worst-case time; and
(3) extract-min requires O(lg n) worst-case time involving at most lg n + O(1)

element comparisons.

8 Conclusions

In this paper we described a priority queue that

(1) operates in-place;
(2) supports construct, minimum, insert, and extract-min in asymptotically optimal

worst-case time; and
(3) executes minimum, insert, and extract-min with the minimum number of

element comparisons up to additive constant terms.

It is remarkable that we could surpass the lower bounds on the number of element
comparisons performed by insert and extract-min known for binary heaps [27] by
slightly loosening the assumptions that are intrinsic to these lower bounds. To achieve
our goals, we simultaneously imposed more order on some nodes, by forbidding
some elements at left children to be larger than those at their right siblings, and less
order on others, by allowing someelements to possibly be smaller than those at the parents.

In retrospect, we admit that, while binary heaps [49] are practically efficient, our
data structures are mainly of theoretical value. As a warm-up, we proved that insert
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can be carried out in amortized O(1) time by performing amortized 8 + o(1) ele-
ment comparisons. For the worst-case constructions, we only proved such a constant
exists, but made no attempt to specify its value. We have implemented the amortized
solution; this reference implementation was not competitive with binary heaps, but it
was not hopelessly slow either.

The main questions left open are

(1) whether the number of element comparisons for construct can be lowered;
(2) whether the number of element moves for extract-min can be lowered;
(3) whether our constructions could be simplified; and
(4) whether there are components that are useful in practice.

Following preliminary versions of our work [18, 19, 22], two answers to the ques-
tion about the number of element moves have been given. Brodal et al. [3] showed
that, in the amortized sense, asymptotically optimal time bounds and amortized O(1)
element moves per insert and extract-min are achievable by an in-place structure.
Darwish et al. [12] proved that asymptotically optimal worst-case bounds involving
O(1) element moves per insert and extract-min are achievable if memory space for
O(n/ lg n) additional bits is available.
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