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Abstract 

Reconfigurable mechanisms can change their motion branches or topologies when 

constraint singularity occurs, and this phenomenon of reconfiguration leads to 

bifurcation or multi-furcation of mechanisms. Recognising reconfiguration in 

mechanisms and identifying the corresponding geometrical constraints remain 

unsolved in the field of mechanism theory and have raised much interest of 

investigation from 1990s. This dissertation uses the properties of screw algebra and Lie 

algebra to establish a method of modelling and detecting bifurcation and multi-furcation 

in reconfigurable mechanisms at singularity configurations. Based on the fundamentals 

of the screw algebra, this method establishes an algebraic way of modelling the 

kinematics of mechanisms and the variations of screw systems in which the screws have 

the same pitch. The screw algebra based method is extended to the scope of Lie group, 

where this dissertation uses compositional manifolds to explore the feasible finite 

displacements of reconfigurable mechanisms. 

 

The dissertation starts from investigating the screw dependency based on α- and β-

planes generating hyperquadrics in the 5-dimensional projective space. Projective 

geometry and matrix operation are adopted towards the situation where a non-zero pitch 

is involved in a screw system. Screw systems are related to hyperquadrics in five-

dimensional projective space by constructing projective transformations. Following the 

screw dependency investigation based on screw algebra, this dissertation examines 

high-order kinematic analysis of mechanisms by implementing a recursive method of 
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Lie bracket computation of screws and such a method provides a compact description 

for kinematic models of mechanisms with integrating the bilinear form representation 

of kinematic constraints of a derivative queer-square mechanism. This method allows 

local analysis of mechanisms at any configurations including singularity configurations. 

Specifically, the research integrates the coefficient matrix of first-order kinematic 

analysis and the bilinear form matrix of second-order kinematic analysis which makes 

it possible to identify geometrical constraints when dealing with complex mechanisms.  

The dissertation then explores the relationship between screw algebra and Lie group. In 

such a way, the method of identifying finite displacements in reconfigurable 

mechanisms is investigated. The research explored the traditional PRP kinematic chain 

producing the planar motion subgroup SE(2) to a relatively generic kinematic chain in 

which the prismatic-joint direction is not necessary to be perpendicular to the revolute-

joint axis, and revealed the equivalent displacement manifold, leading to the discovery 

of a pseudo-helical motion with a variable pitch of the particular PRP chain. 

 

Throughout the dissertation, the screw algebra based approach of kinematics analysis 

of mechanisms is proven effective and compact in representing screw-system variations, 

kinematic constraint modelling of mechanisms at singularity configuration, 

computational submanifolds analysis of mechanisms, Jabobian matrix construction of 

reconfigurable mechanisms, and recognition of motion branches using these 

fundamental theoretical tools. This thesis investigates the properties of screw systems 

within the context of screw algebra and applies the screw algebra based kinematics to 

modelling and motion-branch recognising of reconfigurable mechanisms. 
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Chapter 1   Introduction 

 

1.1 State of the Problem 

 

Reconfigurable mechanisms can change their motion branches or topologies when 

constraint singularity occurs, and this phenomenon of reconfiguration leads to 

bifurcation or multi-furcation of mechanisms. Typical reconfigurable mechanisms 

include kinematotropic mechanisms and metamorphic mechanisms, the former changes 

its mobility and kinematics characteristics when bifurcation or multi-furcation happens 

while the latter even changes its topology and in such a way changes its mobility.  

 

Recognising reconfiguration in mechanisms and identifying the corresponding 

geometrical constraints remain unsolved in the field of mechanism theory and have 

raised much interest of investigation from 1990s. This dissertation uses the properties 

of screw algebra and Lie algebra to establish a method of modelling and detecting 

bifurcation and multi-furcation in reconfigurable mechanisms at singularity 
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configurations. Based on screw algebra, this method employs an algebraic way of 

modelling the kinematics of mechanisms and the variations of screw systems in which 

the screws have the same pitch. The screw algebra-based method is extended to the 

scope of Lie groups, where this dissertation uses compositional manifolds to explore 

the feasible finite displacements of reconfigurable mechanisms. 

 

In screw algebra, when dealing with the correspondence between screws and 

hyperquadrics in the 5-dimensional projective space, researchers limited to the 

hyperquadrics as Klein quadric and the screws are of a zero pitch. This dissertation 

extends it to a relatively general case where screws are of a non-zero constant pitch and 

works out the corresponding hyperquadrics in the 5-dimensional projective space. The 

dissertation then investigates the screw dependency based on alpha- and beta-planes 

generating hyperquadrics in the 5-dimensional projective space and identifies the order 

of a screw system in which screws are of the same pitch. The fundamentals of screw 

algebra pave a way of modelling and recognising bifurcation and multi-furcation in 

mechanisms.  

 

Following the screw dependency investigation based on screw algebra, this dissertation 

examines high-order kinematic analysis of mechanisms by implementing a recursive 

method of Lie bracket computation of screws on a derivative queer-square mechanism 

which has six motion branches. Although multi-furcation of this mechanism was 

recognised by using screw-system approach in [1], there are two motion states 

presented in this paper that cannot move through the designated singularity 

configuration and the essence of the multi-furcation in this mechanism has not been 

revealed. This dissertation integrates the coefficient matrix of first-order kinematic 
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analysis and the bilinear form matrix of second-order kinematic analysis which makes 

it possible to identify geometrical constraints when dealing with such a complex 

mechanism. This piece of research based on Lie bracket computation of screws 

produces a method which is effective in determining motion branches of reconfigurable 

mechanisms. 

 

The dissertation then explores the relationship between screw algebra and Lie group. In 

such a way, the method of identifying finite displacements in reconfigurable 

mechanisms is investigated by extending the screw algebra-based method to Lie group 

based method by using computational manifolds. The research extended the standard 

PRP kinematic chain producing the planar motion subgroup SE(2) to a relatively 

generic kinematic chain in which the prismatic-joint direction was not necessary to be 

perpendicular to the revolute-joint axis, and revealed the equivalent displacement 

manifold, leading to the discovery of a screw motion with a variable-radius pitch of the 

skewed PRP chain. 

 

The dissertation presents a parallel mechanism with a reconfigurable base originated 

from a grasping model using the metamorphic robotic hand [84]. For such a hybrid 

mechanism with a reconfigurable base, the modelling of velocity and Jacobian matrix 

analysis is difficult because of its complex structure. This dissertation solves the 

problem and uses screw algebra-based approach to establish the Jacobian matrix for the 

complicated mechanism. 

 

In conclusion, this dissertation digs out kinematics properties and variations of screw 

systems and Lie algebras in the field of screw algebra and explores the map between 
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Lie algebra and compositional manifolds. A method of recognising reconfigurations 

and investigating finite displacements in mechanisms is established based on the 

research in screw algebra. A derivative queer-square mechanism, a 3-PUP parallel 

mechanism and kinematic chains are used to demonstrate the method of recognising 

reconfigurations in mechanisms and a parallel mechanism with a reconfigurable 

mechanism is modelled to demonstrate the method of screw algebra in Jacobian matrix 

construction. 

 

1.2 Aims and Objectives 

 

The dissertation emphasises the screw algebra-based approach and extends it to the 

high-order kinematic analysis using Lie bracket of screws, finite displacement 

representation of mechanism using computational submanifolds, and Jacobian matrix 

construction for a hybrid mechanism with a reconfigurable base using screw theory. 

Motion branch recognition of a derivative queer-square mechanism with multi-

furcation and a 3-PUP parallel mechanism with bifurcation are investigated using the 

above methodologies. 

 

The aims and objectives of the dissertation are proposed as and listed follows, 

 

(I) Extend the Klein quadric in the 5-dimensional projective space of zero-pitch 

screws to a relatively general hyperquadric which corresponds to screws with 

non-zero constant pitch by using projective transformation and matrix 

operation in the 5-dimensional projective space. 
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(II) Recognise the multi-furcation in the derivative queer-square mechanism 

together with the corresponding geometrical conditions using screw algebra-

based approach and reveal the essence of why the multi-furcation happens. 

(III) Extract the pseudo-helical motion from a skewed PRP kinematic chain with 

a tilting angle using the equivalence approach of screw space and then 

analysis the phenomenon of bifurcation in the 3-PUP parallel mechanism by 

using compositional submanifolds of SE(3). 

(IV) Construct the Jacobian matrix for a hybrid mechanism with a reconfigurable 

base using screw theory presented in this dissertation. 

 

1.3 Organization of the Thesis 

 

The dissertation is arranged as 10 chapters and the brief introduction of each chapter is 

presented below. 

 

Chapter 1 introduces the research problems related to recognising motion branches of 

reconfigurable mechanisms and presents the aims and objectives, and structure of the 

dissertation. 

 

Chapter 2 presents the background and historical development of the relevant fields, 

mainly including reconfigurable mechanisms, line geometry and screw theory, Lie 

algebra and Lie group in mechanisms and high-order kinematic analysis of mechanisms. 

Basic concepts are illustrated in this chapter. 
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Chapter 3 introduces the basic concepts of screws and screw systems. The two bilinear 

forms, the Killing form and Klein form, are presented for representing the pitch of 

screws and the rule of calculating Lie bracket of two screws is introduced briefly. 

Following these basic concepts, this chapter compares screw systems with non-zero 

pitch to hyperquadrics in 5-dimensional projective space bijectively and for the first 

time proposes a projective transformation on hyperquadrics of screws, revealing the 

generators of the corresponding hyperquadrics. 

 

Chapter 4 is closely connected to chapter 3 and utilises vector and matrix operations to 

explore the geometrical relationships of screws in 3-space corresponding to those points 

lying in an α-plane and a β-plane. Based on the vector and matrix representation and by 

means of the Shur complement and block diagonalization, this chapter investigates the 

intersection of the α-planes and β-planes and conventional screw systems of order two 

are rediscovered. 

 

Chapter 5 introduces a parallel mechanism with a reconfigurable base inspired by object 

in-hand manipulation with a metamorphic robotic hand. The proposed parallel 

mechanism is presented with the theory of metamorphosis and its geometric constraint 

is explored based on the approach of screw algebra. The Jacobian matrix of the 

mechanism is developed based on screw theory with the velocity analysis of the 

mechanism derived. 

 

Chapter 6 focuses on establishing kinematic constraints for a derivative queer-square 

mechanism using an approach with Lie bracket computation in terms of instantaneous 

screws. The research in this chapter for the first time applies the recursive algorithm 
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based on Lie bracket to velocity and acceleration analysis of multi-loop mechanisms. 

By introducing the bilinear form representation, second-order constraints of the 

mechanism are simplified for identifying motion branches in the next chapter.  

 

Chapter 7 focuses on working out motion branches of the derivative queer-square 

mechanisms. This chapter is to construct the constraint system of the multi-loop 

mechanism by integrating the first-order and second-order constraints revealed in the 

last chapter. Before solving the equation system of constraints, this chapter recognises 

the geometrical conditions under which the order of the constraint system changes. 

Solutions to the constraint system of integrating first-order and second-order constraints 

are solved and given and all motion branches are listed with the corresponding 

geometrical conditions and prototype validations and with numerical simulations. 

 

Chapter 8 extends the standard PRP kinematic chain generating the planar motion group 

to a relatively generic case by means of the equivalence of screw spaces as the tangent 

spaces of compositional submanifolds, in which one of the prismatic joint-direction is 

not necessarily perpendicular to the revolute-joint axis, leading to the discovery of a 

pseudo-helical motion with a variable pitch in this kinematic chain. The displacements 

of such a skewed PRP chain generate a compositional submanifold of the Schoenflies 

motions subgroup. This chapter investigates for the first time this type of motion and 

the motion representation of a PRP-Schoenflies parallel mechanism is presented. 

 

Chapter 9 investigates the bifurcated motion in a 3-PUP parallel mechanism by 

changing the active geometrical constraint in its configuration space. The representation 
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of motion of the 3-PUP parallel mechanism and its motion branches is derived using 

computational submanifolds of SE(3) based on the screw-space equivalence in Chapter 

7. An experimental test is set up based on a 3D printed prototype of the 3-PUP parallel 

mechanism to detect the inconspicuous translation of the pseudo-helical motion. 

 

Chapter 10 concludes the dissertation and presents the contributions and future research 

directions within the related fields. 
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Chapter 2   Background 

 

2.1 Introduction 

 

This chapter reviews the background which includes the historical development and 

basic concepts of the relevant fields to the dissertation. The propose and development 

of reconfigurable mechanisms is going to be introduced firstly in Section 2.2 in which 

the concept of bifurcation and multi-furcation of mechanisms is to be explained. 

Existing methods of recognising bifurcation of mechanisms are discussed in this section. 

Then Section 2.3 reviews the historical development of line geometry and screw theory 

which is closely connected to the foundation of the dissertation. Line geometry, screw 

dependency and the application of these theories to the mechanisms analysis is briefly 

discussed in the scope of 5-dimentional projective space in this section. Following this, 

Section 2.4 moves to Lie groups from its tangent space of screws and the uses of Lie 

group-based method will be reviewed. Finally, Section 2.5 discusses the development 

of the high-order analysis based on screw algebra and its application in bifurcation 

recognition of mechanisms. 
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2.2 Development of Reconfigurable Mechanisms and 

Bifurcation in Mechanisms 

 

In the 1990s, numerous mechanisms came out as they had a common property of 

reconfiguration which means these mechanisms can change their mobilities or 

topologies in different ways [2]. The mechanisms with such a property of changing are 

called reconfigurable mechanisms in mechanisms-theory community. Two typical 

examples of the reconfigurable mechanisms were the innovative discoveries of 

kinematotropic mechanisms [3] and metamorphic mechanisms [4]. The difference 

between kinematotropic and metamorphic mechanisms is that the former change their 

motion branches and mobility without changing the topologies, while the latter change 

their topologies leading to the change of mobilities. 

 

In the beginning of the 21st century, more and more research interest has been attracted 

to this field following the proposal of the kinematotropic and metamorphic mechanisms. 

In 2002, Lee and Hervé [5] revealed the discontinuously movable mechanisms and 

explored the bifurcating characteristics of mechanisms using Lie subgroup method. 

Type synthesis of kinematotropic mechanisms was investigated by Galletti and 

Fanghella [6] and a large number of single-loop kinematotropic mechanisms were 

classified with their kinematic and structural properties. Later, the method was extended 

to the synthesis of multi-loop kinematotropic mechanisms by Galletti and Giannotti [7]. 

Kong and Gosselin put forward a method of analysis and synthesis of multi-mode 

mechanisms using the equivalent kinematic tool of virtual chains [8]. Gan, Dai and 
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Caldwell synthesized the parallel mechanisms with reconfiguration using screw theory 

[9]. All these types of mechanisms could be classified in the scope of reconfigurable 

mechanisms. 

 

The ways of achieving morphing was reviewed and characterised in a journal 

dissertation authored by Aimedee, Gogu, Dai, Bouzgarrou, and Bouton. The ways of 

morphing include topological morphing and geometrical morphing, the former could 

be divided into morphing by limiting joint motion range and by using internal forces, 

while the latter includes morphing by changing relative position of joint axes, by 

superposing joint axes, by enabling joint axes to be coplanar, and by using the joint-

motion switch [10]. 

 

The field of reconfigurable mechanisms passed a milestone in 2009, when the first 

ASME/IEEE conference on reconfigurable mechanisms and robots (ReMAR 2009) was 

founded and hold by King’s College London [11]. From then reconfigurable 

mechanisms became a cutting edge and important research branch of mechanisms 

theory. This conference started a triennial academic conference in the field of 

reconfigurable mechanisms and the conference moved to Tianjin, China in 2012 [12] 

and to Beijing, China in 2015 [13]. The next conference would be hold by professor 

Just Herder in Delft University of Technology, Amsterdam. 

 

Reconfigurable mechanisms can switch their motion branches or topologies at a 

particular singularity configuration, which means the configuration spaces of the 

mechanisms can be divided into two or more pieces, this phenomenon of switching 

motion branches in reconfigurable mechanisms is called bifurcation or multi-furcation 
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of mechanisms, depending on how many branches the configuration space is divided 

into. Bifurcation or multi-furcation happen in reconfigurable mechanisms and this is a 

necessary condition for a mechanism to be reconfigurable. 

 

For analysis and identification of motion branches, Dongming, Dai and Liao [14], 

Ketao, Dai and Fang [15] used a screw-system approach to analyse the mobility of 

reconfigurable mechanisms in different motion branches. Zlatanov explored the 

constraint singularity of mechanisms and manipulators in their configuration spaces 

[16]. Kong and Gosselin proposed the method of virtual chains to analyse and 

synthesise reconfigurable mechanisms [8]. Lerbert [17], Diez-Martínez, Rico and 

Gallardo [18], Müller [19], López-Custodio, Rico, Cervantes-Sánchez, etc [20] 

investigated the high-order kinematic properties of reconfigurable mechanisms with 

open loop and single loop respectively. Though different languages of mathematics 

were adopted, they all established the high-order kinematic models of mechanisms in 

the scope of configuration space. Recently, the research in this field was extended to 

multi-furcation analysis by Qin, Dai and Gogu by using screw-system approach [1]. 

Kong investigated the structure of configuration space of mechanisms by using dual 

quaternions representing the kinematic constraints of mechanisms [21]. 

 

2.3 Historical Development of Line Geometry and 

Screw Theory 

 

Dependency of screws has been a basic and essential issue of screw theory ever since 

Ball’s epochal treatise [22], especially when screw theory was applied to constraints 
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and motion analysis and mobility analysis [23], singularity investigation [24], and type 

synthesis for parallel mechanisms [25] and compliant mechanisms [26]. It is a neat and 

effective method specifically for kinematic analysis of overconstrained and 

reconfigurable parallel mechanisms and origami-inspired mechanisms [4]. 

 

As a line in 3-dimensional projective space 3 can be regarded as a screw with zero 

pitch, the issue of screws dependency stems originally from and is an extension of the 

characterization of line varieties. Grassmann’s research in 19th century on line varieties 

was well-known as the earliest study on line geometry. The mathematical foundation 

to characterization theory of lines was comprehensively laid by Veblen and Young 

(1918) in their book on projective geometry [27]. A condition that six given lines were 

linearly dependent were given by Bricard (1927) in terms of the Plücker coordinates of 

the lines and thus a general and algebraic method to identify the dependency of lines 

were proposed. The characterization of line varieties was completely revealed by 

Dandurand (1984) in his work on the rigidity of compound spatial grid [28]. Veblen 

and Young’s work on line geometry and Dandurand’s work on characterization in fact 

provided the method to identify the dependency of lines in 3 by enumerating all types 

of line varieties varying from rank one to five. Afterwards, this method was extensively 

used in the analysis and synthesis of mechanisms, especially in the singularity analysis 

of parallel mechanism. 

 

Linear dependence of screws is a natural extension of linear dependence of lines 

[29][30]. Due to the pitch h of screws, the dependency identification of screws requires 

modifying Plücker coordinates to describe screws and devising characterization rules 

or identification principles. Screw systems were classified by Ball (1900) as the one-
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system to the five-system according to the rank of the screw systems and the Cylindroid 

was proposed to study the linear dependence and geometrical properties of two-system 

[22]. Dimentberg (1965) invented complex rectangular coordinates for screws and 

converted the issue of linear dependence of screw groups into matrix algebra issue by 

using dual numbers and motor algebra [30]. Woo and Freudenstein (1970) released 

Plücker-like screw coordinates [5] and hence Hunt (1978) provided a general rule to 

reveal the principle of linear dependence of screws by writing them in a matrix as row 

vectors [29]. This was a universal method but not usually practical because it requires 

writing down all the coordinates of screws and then examining the rank of the screw 

matrix. In early 1990s, Dai proposed a series of propositions with sufficient algebraic 

demonstration on how to identify the linear dependence of screws according to their 

geometrical properties in 3 [32]. K. Hao (1998) developed a concept of free maximal 

list for screws based on dual numbers and Lie algebra to estimate the rank of screw sets, 

hence proposed a method for screws classification [33]. 

 

In terms of screws dependency, one of the basic issue is characterization and 

classification of screws. In 1978, Hunt revealed several special screw systems based on 

some special geometrical cases [29]. Contemporarily, Hervé developed the 

characterization of screws by classifying the displacements group into Lie subgroups 

[34]. Gibson and Hunt (1990) explored the representation of screw systems with 

projective subspaces of 5-dimensional projective space 5 and developed the 

classification of screw systems and thus revealed the relationship between screw 

systems and its reciprocal system [35]. The research on classification of screws was 

then extended by Rico and Duffy (1992) by using orthogonal space [36], Dai (2001) 
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using set theory [32], Zlatanov, Sunil and Gosselin (2005) using convex cones [37], and 

Selig (2014) using Lie group [38], respectively. 

 

In the recent decade, dependency of screws had not stopped attracting researcher’s 

interests. Huang (2002) explored the method for synthesis of lower-mobility parallel 

mechanism by using the classification of line varieties with respect to various 

geometrical properties [25]. Dai, Huang, and Lipkin (2004, 2006) investigated the 

linear dependence of constraint and motion screw systems of parallel mechanisms in an 

algebraic way by newly bringing set theory, particularly multi-set into screw theory, 

hence establishing a theory to examine the constraint and motion space and mobility of 

parallel mechanisms [23]. This theory for motion space and mobility analysis was 

subsequently adopted to study bifurcation [39] and multi-furcation [1] of metamorphic 

mechanisms [4]. Su and Hafez (2011) developed the method for flexure synthesis by 

examining the rank of the relative line varieties in compliant mechanisms [40]. Zlatanov 

(2012) represented the general three-system by a sphere through the origin, which 

generalized Ball’s circle extracting from the cylindroid to 3-dimensional space [41]. 

Carricato and Zlatanov (2014) proposed the concepts of persistent screw system to 

study the special cases of mechanism motion that the end-effector motion space remains 

invariant with respect to an arbitrary finite rigid displacement [42]. 

 

Chapters 3 and 4 of this dissertation are to derive the dependency of screws in 3 in a 

manner of algebraic geometry based on α- and β-planes of the hyperquadric in 5 which 

corresponds to a set of screws with the same pitch, hence revisiting several Hunt’s 

special screw systems which are extensively used in mechanism analysis. The 

correspondence between lines in 3 and points in manifold (2)

4M  in 5 was firstly put 
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forward by Klein and this manifold is well-known as Klein quadric later. It is the α- and 

β-planes which are just two families of planes that generate Klein quadric and this 

viewpoint was revealed by Semple and Roth (1949) [104] with a coordinates 

transformation being performed to simplify the representation of Klein quadric into 

normal form. That is to say, Klein quadric can wholly cover the two families of planes 

named α- and β-planes and conversely, α- and β-planes can fully fill the Klein quadric. 

After that, Gibson and Hunt (1990) [35] extended the concept of the α- and β-planes of 

Klein quadric to those of the hyperquadrics corresponding screws with non-zero pitch, 

by a projective isomorphism that maps screws of a pitch h associated to points in a 

hyperquadric to those of zero pitch associated to points in Klein quadric. Selig defined 

α- and β-planes of Klein quadric with matrix form and related them to Hunt’s type II 

screw systems in an algebraic way. However, this research was confined in Klein 

quadric, not yet having been extended to hyperquadrics of 5 for screws with non-zero 

pitch. 

 

2.4 Historical Development of Lie group and Lie 

Algebra in Mechanisms 

 

Identifying the phenomenon of bifurcation in mechanisms has been of great interest in 

mechanisms community since 1990s [3][4]. Latest progress in bifurcation recognition 

has been made by Wei, Chen and Dai using group theory, by Qin, Dai and Gogu on 

multi-furcation using screw system approach [1] and by Kong using Euler parameter 

quaternions [44], by Walter, Husty and Pfurner using algebraic equations of Study 

parameters [45], by Nurahmi, Caro and Wenger et al using algebraic approach with 
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Study’s kinematic mapping of the Euclidean group SE(3) [46] and by López-Custodio 

et al [47] identifying bifurcation by means of the tangency of generated surfaces. 

Recently, unified kinematics of a metamorphic parallel mechanism with bifurcation was 

investigated for singularity analysis and kinematic modelling based screw systems [48]. 

Multifurcation was discovered in a queer-square mechanism in [1]. A new class of 

reconfigurable modular parallel robots stemming from the 3-CPS under-actuated 

topology was proposed with a locking system [49].   

 

To explore the bifurcated motion of a 3-PUP parallel mechanism proposed by 

Rodriguez-Leal et al [50] and provide a Lie group method for the bifurcation analysis 

of parallel mechanisms, this dissertation is to extend the traditional PRP kinematic chain 

that generates SE(2) to a relatively general kinematic chain with a particular pseudo-

helical motion embedded. This kinematic chain does not produce SE(2) anymore due 

to a tilting angle between the revolute-joint axis and the prismatic-joint direction, but 

generates a submanifold of the special Euclidean group SE(3) in which a pseudo-helical 

motion with a variable pitch can be extracted. The related concepts of product 

submanifold and its tangent spaces [51] are to be introduced in this dissertation to reveal 

the equivalent manifold for the particular chain, laying a foundation for the bifurcated 

motion analysis of the 3-PUP parallel mechanism. 

 

Lie subgroups of SE(3) with various dimensions are specific cases of submanifolds of 

SE(3). The kinematic chains that generate the cylindrical subgroup of dimension two 

were investigated by Mourad and Hervé [52] and by Meng et al [53]. Kinematic 

generators of the planar motion subgroup SE(2) were investigated by Lee and Hervé 

[54]. The different mechanical generators of each subgroup of SE(3) were investigated 
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by Pérez-Soto and Tadeo [55], including the thirty four mechanical generators of the 

Shoenflies motions subgroup. The kinematic chains generating the pseudo-planar 

motion subgroup of dimension three and the Schoenflies motion subgroup of dimension 

four were investigated by Lee and Hervé in [56] and [57] respectively. All subgroups 

of SE(3) revealed by Hervé [34] have been explored with the corresponding kinematic 

generators and the connection between Lie subgroups of a rigid body displacement was 

revealed by Dai [58][59][60] using the Lie adjoint-action approach.  

 

Research has been made in the type synthesis and analysis of parallel manipulators 

whose limbs and/or desired motion of the moving platform do not generate subgroups 

of SE(3). In this regard, Li, Huang and Hervé [61] and Meng, Liu and Li [53] applied 

a group theory approach to perform the synthesis of parallel manipulators with 3R2T 

motion which is not a subgroup, Kong and Gosselin devised one of the most effective 

methods for the type synthesis of parallel mechanisms applying the concept of virtual 

chain [8], Gogu applied a method based on the Jacobian matrix of the limbs in the 

manipulator [62], Rico et al explored parallel manipulators whose desired motion of the 

end effector is the composition of two subgroups [63]. In this last case, even though the 

twist space of kinematic generators cannot form a subalgebra of Lie algebra se(3), it 

still presents important properties for full-cycle motions. Such phenomenon was 

investigated by Carricato and Rico [42] and this sort of kinematic generators was coined 

as persistent screw systems. Tadeo-Chávez et al also investigated these screw systems 

and called them locally-constant rank screw systems [64]. In a more recent publication, 

Wu et al [65] studied another kind of submanifolds of SE(3) that, in spite of not being 

subgroups, present interesting properties, these submanifolds are called symmetric 

subspaces of SE(3).  
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A 3-PUP parallel mechanism is an example of parallel manipulator in which the sets of 

Euclidean displacements of the limbs do not constitute a subgroup of SE(3). The 3-PUP 

mechanism to be studied in this contribution was firstly put forward by Rodriguez-Leal, 

Dai and Pennock in [50] with a brief kinematics model. Its bifurcated motion, constraint 

singularity, and workspace were investigted by Zhang, Dai and Fang [66] and by Gan 

and Dai [39], using the screw system approach. In their study, the screw system of the 

parallel mechanism is decomposed into constraint and motion-screw systems of the 

platform and that of the mechanism and their relationship [32] is revealed. This 

dissertation solves the problem of describing the motion of these parallel platforms by 

means of group theory. This method facilitates the analysis of the parallel platform since 

there is no need to deal with instantaneous constraints or motions as in the previous 

publications. 

 

2.5 Development of High-Order Kinematic Analysis 

of Mechanisms 

 

Bifurcation recognition attracts many research interests in last twenty years, from 

Wohlhart’s kinematotropic mechanisms in 1996 [3] and Dai’s metamorphic 

mechanisms in 1999 [4]. Till now there are quite a few methods to identify motion 

branches in a mechanism, and this is discussed in Section 2.1 of this chapter. However, 

either relying on kinematics models of mechanisms too much, or not capable of dealing 

with complicated multi-loop mechanisms, currently we do not have an effective method 

of predicting the motion branches of reconfigurable mechanisms [10]. 
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The dissertation focuses on the topic of motion branch recognition of mechanisms based 

on screw algebra and for the first time uses high-order kinematic analysis for predicting 

motion branches of a multi-loop with even six motion branches. The method proposed 

in the dissertation integrates the high-order kinematic analysis together with the bilinear 

form representation of the kinematic constraints of mechanisms for the first time. In 

1998, Lerbet investigated the bifurcation of single-loop linkages using analytic 

geometry and approximated the local properties by computing the tangent cone of a 

analytic variety which represents the configuration space of a linkage with bifurcation 

[17]. Diez-Martínez, Rico and Gallardo employed the high-order kinematic analysis to 

calculate the mobility and connectivity of mechanisms without referring to the change 

of mobility or topology of mechanisms in 2006 [18] and 2009 [67]. The research used 

a recursive algorithm based on Lie bracket of instantaneous screws and it is worthy to 

mention that before using high-order analysis to mobility calculation of mechanism, 

Rico and Duffy had presented a simple method to perform the acceleration analysis of 

spatial chains using screw theory in 1996 [68][69] and Rico et al [70] and Gallardo [71] 

had extended the method to the jerk and jounce analysis of spatial chains. 

 

In 2014, Müller contributed to the high-order kinematic analysis by introducing a closed 

form expression for the partial derivatives of the joint screws within a kinematic chain 

and it was stated that the form of the proposed close form expressions was ideal for 

computer implementations [19]. In 2017, López-Custodio, Rico, Cervantes-Sánchez, 

Pérez-Soto and Díez-Martínez proposed a compact representation of computation of 

high-order kinematic analysis [20] and the equations obtained are equivalent to those 

derived by Lerbet in 1998 [17]. 
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The methods of implementing high-order kinematic analysis have been used for 

calculating mobility of mechanisms and approximating configuration spaces of 

mechanisms and identifying bifurcation in open or single-loop mechanisms. However, 

there is a gap from the method of high-order kinematic analysis to recognising motion 

branches of complicated multi-loop mechanisms with multi-furcation. This dissertation 

bridges the gap by introducing bilinear form to represents the constraints obtained by 

applying high-order kinematic analysis to the mechanisms and by proposing a method 

of simplifying the constraint system of mechanisms. 

 

2.6 Conclusions 

 

This chapter reviewed the historical development of reconfigurable mechanisms, line 

geometrical, screw dependency, and Lie group, etc. The basic concepts and connection 

between these fields were presented mainly with the timeline of development of these 

relevant research topics. From the reviews in this chapter, screw algebra will be the 

fundamental mathematical tools and recognition of motion branches together with the 

corresponding geometrical constraints will the main problem to be solved in this 

dissertation. Screw algebra will be extended to Lie groups and to Lie bracket 

computation of screws in this dissertation, however, screw algebra will be the mainline 

and basic mathematical tools throughout the dissertation. 
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Chapter 3   Screws in the 5-Dimensional 

Projective Space 

  

3.1 Introduction 

 

This chapter introduces the basic concepts of screws and screw systems and expresses 

these geometrical entities in homogeneous coordinates. Then the two bilinear forms, 

the Killing form and Klein form, are presented for representing the pitch of screws and 

the rule of calculating Lie bracket of two screws is briefly introduced. Following these 

basic concepts, this chapter associates screw systems with non-zero pitch to 

hyperquadrics in 5-dimensional projective space injectively. This chapter for the first 

time proposes a projective transformation on hyperquadrics of screws, by which the 

generators of the hyperquadrics can be revealed in an algebraic way of representation. 
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3.2 Screws and Screw Systems 

 

A screw is the geometrical entity of an instantaneous twist and wrench in kinematics 

and statics and can be regarded as a line vector in 3-dimensional affine space 3 

together with a pitch h. Hence a screw is in fact an extension of line vector and is usually 

expressed in the form of 6-dimensional vector as follows 

 

 
0 0

= =
h

   
   

    

s s
S

s r s s
 (3.1) 

 

where the 3-dimensional vector s is the primary part of screw representing the direction 

vector of screw axis, the 3-dimensional vector s0 is the secondary part constituted of the 

moment of the screw axis with respect to the origin and the scalar product of the primary 

part by pitch h, and the 3-dimensional vector r0 represents the position vector of the 

screw axis with respect to the origin. The geometrical meanings of these vectors and 

their relationship are further illustrated by Fig. 3.1, in which r0 × s  s0 hs holds. 

Similar with an arbitrary 6-dimensional vector, screw can also be represented by six 

coordinates as 

 

  
T

0 1 2 3 4 5= ,  ,  ,  ,  ,       S  (3.2) 

 

which are analogous to Plücker coordinates of lines in 3, and in fact are homogenous 

coordinates. Two points in 3 lying on the screw axis, described by homogeneous 

coordinates (x0, x1, x2, x3)
T, (y0, y1, y2, y3)

T, together with the pitch h can generate the 
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above screw coordinates by the means of six Grassmann determinants [72][73] and it 

has 
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 (3.3) 

 

In the above representation of screw, the scalars x0, y0 acting as the first coordinates of 

the points in screw axis are of significance since they determine whether the points stay 

in 3-dimensional affine space 3 or not. They are non-zero usually and in this case the 

points in the screw axis do not lie at infinity and hence lie in 3, while if x0, y0 are equal 

to zero, the points are at infinity so that the screw axis lie in 3-dimensional projective 

space 3 including 3 and the infinite area. 

Naturally, there exists a bijective map between n-dimensional vector subspaces Vn of six-

dimensional vector space V6 spanned by n linearly independent vectors and screw 

systems of order n donated as nconsist precisely of all linear combinations of the 

screws Si as a set of bases of n. Simultaneously, an arbitrary screw system of nth order, 

also called n-system can be defined as 

 

 6
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At the moment screw can be seen as an element of 6-dimensional vector space V6 and 

expressed by six homogenous coordinates generated by Grassmann determinants 

together with pitch h as Equation (3.3). Screw system of nth order n can be viewed as 

n-dimensional vector subspace of V6. 

 

3.3 Bilinear Forms and Lie Bracket of Screws 

 

In an alternative way screw S can be thought of as an element of projective Lie algebra 

se*(3), on which there are two symmetric bilinear forms. The first one is the Klein form, 

which is also known as mutual moment of line vectors and reciprocal product of screws, 

and can be given by  

 

 1 2 0 3 1 4 2 5 3 0 4 1 5 2( , ) =Kl                     S S  (3.5) 

 

where
1 2,  S S se*(3), and  0 1 2 3 4 5, , , , , ,       0 1 2 3 4 5, , , , ,            are homogenous 

coordinates of S1, S2 respectively. The other symmetric bilinear form is the Killing form 

which can be presented in the form of 

 

 1 2 0 0 1 1 2 2( , ) =Ki         S S  (3.6) 
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Through the above two symmetric bilinear forms on se*(3), the pitch of screw S can be 

defined as the following form 

 

 
1 ( , )

2 ( , )

Kl
h

Ki


S S

S S
 (3.7) 

 

From definition of screws, any screw in the 3-dimensional projective space satisfies the 

above quadratic constraint constructed by the two symmetric bilinear forms on se*(3), 

thus this quadratic constraint will be used to define hyperquadrics corresponding to 

screws in the next section. 

 

Given two screws S1 (s1, s10) and S2 (s2, s20), the Lie bracket or Lie product of the two 

screws can be expressed as follows 

 

   1 20

1 2

1 20 10 2

,
 

  
   

s s
S S

s s s s
 (3.8) 

 

in which the anti-commutativity property holds for the equation. 
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3.4 Hyperquadric of Screws 

 

Particularly, when pitch h vanishes, line vectors are obtained from screws and the 

quadratic constraint in the above equation degenerates such that another quadratic 

constraint constructed by Klein form can be obtained, thus defining a manifold (2)

4M  in 

5 as 

 

 (2)

4 ( , ) 0M Kl S S  (3.9) 

 

This 4-dimensional manifold (2)

4M  is of degree 2 and was put forward firstly by Klein 

and known as Klein quadric [74] or quadric primal [75]. Any line in 3, including the 

lines at infinity, can be represented by a point lying in (2)

4M in 5. Indeed, the Klein 

quadric provides an elegant way to represent lines in 3 with points in 5, and this make 

it possible to explore the projective properties of the (2)

4M in 5 and then convert the 

properties into theorems and propositions in line geometry. 

 

 

Figure 3.1  The geometrical meanings of the relative vectors of a screw 
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For instance, the Klein quadric is generated by two distinct families of planes named α-

planes and β-planes [38]; hence considering the one-to-one correspondence between 

the projective subspace of 5 and line varieties in 3, a line pencil in 3 of rank 3 where 

lines share a common point can be obtained from the α-plane, and a plane of lines of 

rank 3 in which lines lie in a specified plane can be obtained from the β-plane. The α-

planes and β-planes as the generators of Klein quadric (2)

4M , and their correspondence 

with line varieties in 3 have been investigated in geometrical method by [76][77] and 

proved in algebraic way by [38]. In this dissertation the concept of α-planes and β-

planes of Klein quadric associated with line vectors and the related results in line 

geometry are to be extended to those of hyperquadric corresponding to screws and five 

screw systems with particular geometrical properties are hence obtained in a manner of 

algebraic geometry.  

 

From the above, all the projective points corresponding to line vectors in 3 constitute 

the Klein quadric in 5 which can be represented by Equation (3.9). Analogously, all 

the corresponding points of screws in 3 with the same but non-zero pitch can also form 

a hyperquadric in 5. The hyperquadric can be defined by the quadratic constraint for 

screws with the same pitch and represented as 

 

 
4 ( , ) ( , ) = 0Kl h Ki   S S S S  (3.10) 

 

This is in fact a quadratic form on se*(3) and was defined as pitch hyperquadric in [35]. 
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In the above equation, if h  0, i.e. Kl(S, S)  0, the hyperquadric Ω4 degenerates into 

Klein quadric (2)

4M  given by Equation (3.9). If h is a variable parameter in the real 

number field, a pencil of non-degenerate hyperquadrics can be obtained. Otherwise, if 

h tends to infinity, i.e. the primary part of screw s equals 0 leading to Ki(S, S)0, then 

the hyperquadric degenerates into a plane in 5 which is common to the pencil of 

hyperquadrics and Klein quadric. In fact, the space of 5 is fully filled by the pencil of 

hyperquadrics [35]. 

 

The hyperquadric of screws can also be expressed by other forms of representations. 

Using the coordinates for screws in Equation (3.2) and considering Equations (3.1) and 

(3.3), the above Equation (3.10) can be rewritten as 

 

  2 2 2

4 0 3 1 4 2 5 0 1 2 0h                 (3.11) 

 

Combining Equations (3.2) with Equation (3.3), it has s ξ ξ ξand s0 ξ ξ ξ, 

hence the vector representation of the above hyperquadric is acquired as 

 

  T

4 0 0h   s s s  (3.12) 

 

where the vector (s0 hs) represents the position of the axes of the screws of pitch h 

which equals r0 ×s and this is indicated by the parallelogram in Fig. 3.1. Rewriting 

Equation (3.12) into the matrix form, we can get the matrix representation of the 

hyperquadric Ω4 and it is 

 



45 
 

 T T
4

1

2
0

1

2

h
 
 
 
 
  



   

I I

A

I 0

S S S S  (3.13) 

 

where 3×3 matrix I are identity matrix, screw S is the six homogenous coordinates in 

Eq. (2), and the 6×6 symmetric partitioned matrix A can uniquely identify a 

hyperquadric Ω4. 

 

Hence, the hyperquadric Ω4 of screws with the same pitch h has been defined by a 

quadratic form on se*(3) and been expressed by coordinate representation as Equation 

(3.2), vector representation as Equation (3.12), and matrix representation as Equation 

(3.13). 

 

3.5 Projective Transformations 

 

From the above section, the hyperquadric Ω4 of screws can be regarded as the extension 

of Klein quadric (2)

4M  of line vectors. Further, this section is to reveal that the concept 

of α-planes and β-planes of (2)

4M  can also be extended to those of Ω4 through a 

projective transformation. 

 

For an arbitrary hyperquadric in n-dimensional projective space n, there exists a 

projectively equivalent hyperquadric of the normal form (Otto Schreier, 1961) [78] 
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 2 2 2 2 2

1 0 1 0,  ,  0n k k n k k n                 (3.14) 

 

To obtain the normal form of the hyperquadric Ω4, a projective transformation T is 

performed on the coordinate system S as follows 

 

 
0

=
  

    
   

Τ Τ 

sx
S S

sy
 (3.15) 

 

where T is a 6×6 matrix indicating the projective transformation and screw S' gives the 

resultant coordinate system of 5 as 

 

  
T

1 2 3 1 2 3= = ,  ,  ,  ,  ,  x x x y y y
 

  
 

x
S

y
 (3.16) 

 

To construct the projective transformation that changes the hyperquadric Ω4 into normal 

form as Equation (3.14), it is natural to perform a coordinate transformation that makes 

Equation (3.12) adaptable to the difference of two squares formula, thus the following 

substitution of coordinates is given as 

 

 
0

=

=h




 

s x y

s s x y
 (3.17) 

 

Based on the algebraic relationship between x, y and s, s0 given by the above equation 

and by their geometrical relationship in plane π in Fig. 3.1, two vector parallelograms 

can be established as EGFH and GHQP as indicated in Fig. 3.2. The former 
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parallelogram EGFH is the geometrical expression of the Eq. (3.14), while the latter 

parallelogram GHQP is nothing but the copy of the parallelogram in Figure 3.1. In 

Figure 3.2, the vectors s, s0 in colour red form the initial coordinate system S, while the 

vectors x, y in colour blue constitute the resultant coordinate system S'. 

 

 

Figure 3.2  The geometrical relationship between coordinate system S and S' 

 

In vector polygon EOGQH in Figure 3.2, vector x can be represented and calculated as 

follows 

 

  

 

0 0

0

EH = EO + OG + GQ + QH

1 1
=

2 2

1 1
1

2 2

h h

h

   

  

x s s s s s

s s

 (3.18) 
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Similarly, vector y can be solved through vector polygon EOHQG as 

 

  

 

0 0

0

EG = EO + OH + HQ + QG

1 1
=

2 2

1 1
1

2 2

h h

h

   

  

y s s s s s

s s

 (3.19) 

 

Based on Equation (3.15) combining Equation (3.18) with Equation (3.19) and writing 

them in matrix form, the projective transformation T can thus be revealed as 

 

 

 

  0

1 1
1

2 2

1 1
1

2 2

h

h

 
    

       
     

  

I I

Τ

I I

 

sx
S S

sy
 (3.20) 

 

Hence, perform the projective transformation onto the matrix representation A of Ω4 

given by Equation (3.13), and then it has 

 

 

   

   

 

  

  

 

T
T 1 1

T T 1

T


 

 

  

T A T

T AT

A

S AS S S

S S

S S

 (3.21) 

 

The above coordinate transformation in fact gives the relationship between matrix A 

and A' as 
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T 1 A T AT  (3.22) 

 

which gives a congruent transformation between matrix A and A'. 

 

3.6 α- and β-Planes of a Hyperquadric in the 5-

Dimensional Projective Space 

 

Substituting matrix T given by Equation (3.20) into Equation (3.22) and writing the 

result into coordinate representation analogous with Equation (3.11), the normal form 

of Ω4 can be obtained as 

 

 2 2 2 2 2 2

4 1 2 3 1 2 3 0x x x y y y         (3.23) 

 

Alternatively, the above normal form of Ω4 can be directly calculated by substituting 

Equation (3.17) into Equation (3.12), and the result is written as 

 

 T T

4 0   x x y y  (3.24) 

 

This coincides with the result given by Equation (3.23) which was obtained through 

projective transformation matrix T. The former method by means of establishing a 

projective transformation is more complicated compared with the direct way to obtain 

the normal form of Ω4, but revealing the intrinsic geometrical relationship between x, y 
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and s, s0 is of meanings in deriving the special screw systems through α-planes and β-

planes in the next chapter. 

 

In algebraic geometry, an arbitrary projective plane in 5 can be thought of as the 

intersection of three hyperplanes and thus can be expressed by three linear equations in 

the form of matrix as 

 

  B x y  (3.25) 

 

where B is a 3×3 non-singular matrix and can be regarded as the matrix representation 

of plane in 5. To explore the properties with the normal form of Ω4, the coordinates 

given by Equation (3.16) that have undergone the projective transformation is adopted 

in the above equation. Substituting the above equation into Equation (3.25), it has 

 

 T T

4 ( ) = 0  B By y   (3.26) 

 

In this equation indicating the intersection of the plane expressed by Equation (3.25)

with Ω4, if the coefficient matrix B is an element of orthogonal group O(3), i.e. BTB=I, 

the plane given by Equation (3.25) does lie entirely in Ω4. Since the elements of O(3) 

can be classified into two types with respect to the determinant of the elements, the Ω4 

in 5 is hence generated by two families of planes. The planes identified by elements 

of O(3) whose determinant satisfies det(B) = 1 are α-planes, while the other planes 

identified by det(B) = 1 are β-planes. 
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3.7 Conclusions 

 

In this chapter, basic concepts of screw theory and Lie bracket were introduced in the 

algebraic language. A projective transformation was for the first time proposed for the 

hyperquadrics of screws with non-zero pitch in the 5-dimensional projective space. 

Using this method, any hyperquadrics corresponding to screw systems with a constant 

pitch can be represented in a matrix form, by which it can be attained that the 

hyperquadrics were generated by two bundles of planes as α-planes and β-planes. This 

chapter lays the foundation of recognising the dependency of screws for the next 

chapter and basic concepts and operations will be used in the following part of the 

dissertation, especially Chapter 5 the Lie bracket computation and bilinear form 

representation of constraints and Chapter 7 the tangent spaces of compositional 

submanifolds of mechanisms. 
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Chapter 4   Screw Systems and 

Recognition of the Geometrical 

Conditions 

 

4.1 Introduction 

 

Following chapter 3, this chapter is to use vector and matrix operation to explore the 

geometrical relationships of screws in 3-space corresponding to those points lying in an 

α-plane and a β-plane, leading to the representation of two conventional screw systems 

of order three. Based on the vector and matrix representation and by means of the Shur 

complement and block diagonalization, this chapter investigates the intersection of the 

α-planes and β-planes and conventional screw systems of order two are rediscovered. 

All the derivations and the equations of vectors and matrices are going to be validated 

numerically by constructing the related matrix representations and implementing the 

projective transformations in the last section of this chapter. 
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4.2 Three-Systems as α-Planes 

 

A screw system of order n, also named n-system, is an n-dimensional vector subspace, 

hence it corresponds to an (n 1)-dimensional projective subspace. The α-planes and 

β-planes of Ω4 can be obtained by applying three linear constraints onto 5-dimensional 

projective space, due to which the α-planes and β-planes of Ω4 are of dimension 2. 

Hence, there exist 3-systems corresponding to the α-planes and β-planes of Ω4 and 2-

systems corresponding to lines as the intersection of the α-planes and β-planes if they 

do have intersection. In what follows the geometrical properties of the corresponding 

screw systems are to be revealed and several propositions regarding the dependency of 

screw varieties are further put forward. 

 

To obtain the geometrical properties of 3-systems corresponding to the α-planes and β-

planes, it is natural to explore the relationship between the direction vectors of the 

screws s and the moment of the screw axes about the origin s0 hs. In the vector triangle 

OHF in Fig. 2, it has 

 

 
 0

OH OF FH

1 1

2 2
h

 

  s s s y
 (4.1) 

 

Similarly, in the vector triangle GOF, the following equation holds 
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 0

GO GF FO

1 1

2 2
h

 

  s s x s
 (4.2) 

 

Combining Equations (3.25), (4.1), and (4.2), eliminating vector x, y, the following 

equation can be obtained 

 

      0 h   B I B Is s s  (4.3) 

 

The α-planes and the β-planes correspond to two kinds of three-systems. To explore the 

geometrical properties of the screws with the same pitch h of the 3-systems, the 

relationship between the vectors x, y in the resultant coordinate system S' and the dual 

vectors s, s0 of screws can be derived by rewriting and performing the projective 

transformation in Equation (3.22) as follows 

 

 
 

 
 

0

1

1

h

h

    
     

     

I I sx

I I sy
 (4.4) 

 

Hence, the projective planes presented by matrix B in Equation (3.25) become 

 

     0 01 1h h    s s B s s  (4.5) 
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To explore the geometrical properties of the corresponding 3-systems, we rewrite the 

above equation as follows 

 

     0 h   B s s B s   (4.6) 

 

where the vector s represents the orientation of the axis of the screws in the 

corresponding three-systems and the vector (s0 hs) represents the position of the axis 

of the screws. 

Consequently, there are two cases to consider. As for α-planes, it has det(B) = 1 so 

that B belongs to special orthogonal group SO(3), then the 3×3 matrix (B + I) is usually 

non-singular, hence the above equation can be written as 

 

    
1

0 h


   s s B B s   (4.7) 

 

It can be proved that the matrix (B I)1(B I) is skew-symmetric (Bottema and Roth, 

1979) [79], and this gives Cayley formula [80]. The above equation can be rewritten as 

follows 

 

 
0 h     s s r s  (4.8) 

 

where matrix [r ×] represents the 3×3 skew-symmetric matrix (B I)1(B I) in 

Equation (4.7) and it has 
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      
1

   r B B   (4.9) 

 

In Equation (4.8), vector (s0 hs) presents specifically the moment with respect to the 

origin of the axes of the screws belonging to the corresponding three-system identified 

by the matrix B satisfying det(B)1. The position vector r determined by skew-

symmetric matrix [r ×] in Equation (4.9) represents a constant point in 3. 

Consequently, all the screws whose axes pass through the constant point r constitute 

the solutions to Equation (4.7). Moreover, as the projective points corresponding to 

these n screws lie exactly in the α-planes identified by the matrix B and the screws 

whose axes pass through the constant point r form a screw system of 3rd order. Now we 

can conclude that three or less than three screws with the same pitch, whose axes 

intersect at a point in 3 are linearly independent while more than three screws with the 

same pitch whose axes intersect at a point in 3 are linearly dependent. The following 

corollary can be extracted from the above. 

 

Corollary 1. If the axes of n screws with the pitch h intersect at a constant point in 3, 

all the corresponding projective points lie entirely in an α-plane of the related 

hyperquadric Qh in 5, thus these n screws constitute a screw system of 3rd order. 

Therefore, if n ≤ 3, n screws with this geometrical property whose axes have a common 

point are linearly independent; if n > 3, these n screws are linearly dependent. 

 

Now consider the singular case for matrix (B+I). Owing to the singularity, matrix (B+I) 

has at least one zero eigenvalue, meaning its algebraic multiplicity of zero κ(0) is not 

less than 1. For α-planes, matrix B represents a rotation action with respect to an axis 

through the origin due to the fact that matrix B belongs to SO(3). Hence matrix B can 

be expressed by Euler-Rodrigues formula as follows 
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  sin 1 coss s s    B I A A A  (4.10) 

 

where As is a skew-symmetric matrix constituted by rotation axis s = (sx, sy, sz) and it 

has As [s ×], θ is amplitude of the rotation and I is 3×3 identity matrix. When θ equals 

π, matrix (B+I) can be derived as 

 

  2 s s  B A A   (4.11) 

 

which can be expanded as follows 

 

 
2 2

2 2

2 2

0 0 1 0 0

2 0 0 0 1 0

0 0 0 0 1

1 0 0

2 0 1 0

0 0 1

z y z y

z x z x

y x y x

y z x y x z

y x z x y z

z x z y x y

s s s s

s s s s

s s s s

s s s s s s

s s s s s s

s s s s s s

       
      

          
             

     
    

       
         

B 

 (4.12) 

 

Considering the condition that s is a unit vector as 2 2 2
x y zs s s  , the above equation 

becomes 

 

2

2

2

2

x x y x z

y x y y z

z x z y z

s s s s s

s s s s s

s s s s s

 
 

   
 
 

B   (4.13) 
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Applying elementary operations to the matrix on the right-hand side of the above 

equation by multiplying the three rows by sysz, szsx, sxsy, respectively, then subtract the 

first row from the second row and from the third row respectively, it has 

 

 

2 2 2 2 2 2 2

2 2 2 2

2 2 2 2

0 0 0

0 0 0

x x y x z x y z x y z x y z x y z x y z x y z

y x y y z x y z x y z x y z

z x z y z x y z x y z x y z

s s s s s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s s s s

s s s s s s s s s s s s s s

     
     

      
     
     

(4.14) 

 

It can be concluded from the above equation that matrix (B+I) is singular due to rank 

(B+I)  1 when matrix B represents a rotation by π. In this case, based on (s0 hs)  

[r0×] s, it has 

 

      0     0B r B s   (4.15) 

 

where [r0×] is the skew-symmetric matrix constituted by the position vector of the axes 

of the corresponding screws. Due to the singularity of matrix (B+I) in the above 

equation, thus the position vector r0 includes at least one element with infinite quantity 

to balance the equation, meaning all the corresponding screw axes intersect at a point 

at infinity. The screw axes intersecting at infinity can be interpreted as a bundle of 

parallel screw axes. The above contents about the singular case can be concluded by 

the following corollary. 

 

Corollary 2. If the axes of n screws with the pitch h are parallel in 3, all the 

corresponding projective points lie entirely in an α-plane of the related hyperquadric 
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Qh in 5, thus these n screws constitute a screw system of 3rd order. Therefore, if n ≤ 3, 

n screws with this geometrical property whose axes are parallel are linearly 

independent; if n > 3, these n screws are linearly dependent. 

 

4.3 Three-Systems as β-Planes 

 

Consider the β-planes of the hyperquadrics Qh, then the matrix B satisfies det(B) = 1. 

Hence, the 3×3 matrix (B  I) is usually non-singular, so that Equation (4.6) can be 

written as 

 

     
1

0 h


   s B I B I s s  (4.16) 

 

The matrix (B I)1(B I) is also skew-symmetric and then the above equation can be 

presented as follows 

 

  0 h  s r s s  (4.17) 

 

where the vector r' is a three-dimensional vector determined by the 3×3 skew-

symmetric matrix (B I)1(B I) and thus it has 

 

    
1

   r B I B I  (4.18) 
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Taking the scalar products of the constant vector r' on both sides of Equation (4.17) 

yields 

 

 0  r s  (4.19) 

 

The above equation represents all the lines which are perpendicular to the vector r'. 

Considering the vector representation of screw, we have s0 hs  r0 × s. Substituting 

this into Equation (4.17) and applying the vector triple product identity, it gives 

 

 
0

   r r  (4.20) 

 

The solutions to Equation (4.17) can be extracted from Equations (4.19) and (4.20) as 

all the screws with pitch h whose axes lie on a plane in 3. Further, the n screws 

constitute a three-system because the corresponding projective points are lying on a β-

plane identified by the matrix B satisfying det(B) = 1. Hence, it can be derived that 

three or less than three screws whose axes lie on a plane in 3 are linearly independent 

whilst more than three screws whose axes lie on a plane in 3 are linearly dependent 

and this gives the following corollary. 

 

Corollary 3. If the axes of n screws with the pitch h lie on a common plane in 3, all 

the corresponding projective points lie entirely in a β-plane of the related hyperquadric 

Qh in 5, thus these n screws constitute a screw system of third order. Therefore, if n ≤ 

3, these n screws with this geometrical property whose axes lie on a common plane are 

linearly independent; if n > 3, these n screws are linearly dependent. 
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4.4 Intersection of α-Planes and β-Planes 

 

In 5, two projective planes generally do not intersect besides several special cases for 

α-planes and β-planes. For two arbitrary projective planes in 5, they can be represented 

by 3×3 matrices B1 and B2 respectively. Thus, their intersection can be expressed in the 

form of linear equations system immediately as follows 

 

 1

2

   
  

   

I B x

I B y
  (4.21) 

 

Consequently, we can examine the rank of the 6×6 matrix in the above equation to 

identify the dimension of the intersection of two arbitrary projective planes, including 

α-planes and β-planes. 

 

4.4.1 Shur Complement and Block Diagonalization 

 

By applying the Aitken block-diagonalization formula, the 6×6 coefficient matrix in 

Equation (4.21) can be decomposed as 

 

 1 1

2 1 2

       
             

00

0 0

I B II I B

I B B BI I I
 (4.22) 
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which gives the block diagonalization form of the coefficient matrix and the 3×3 block 

B1B2 is called Shur complement of the coefficient matrix. 

 

From the above decomposition and the resultant block diagonalization form, we can 

directly obtain the rank formula as follows 

 

 
1

1 2

2 1 2

rank rank rank( ) + rank( )
      

        
       

0

0

I B I
I B B

I B B B
 (4.23) 

 

Hence, given two arbitrary projective planes represented by matrices B1B2, the 

dimension of their intersection of two arbitrary projective planes is determined by the 

rank of the Shur component of the coefficient matrix. By means of the rank formula in 

Equation (4.23), if the Shur component B1B2 is of full rank, the rank of the coefficient 

matrix equals 6 and thus provides 6 effective linear constraints for the intersection of 

the two projective planes. Considering the relationship between vector subspaces and 

projective subspaces given by chapter 3, the two projective planes represented by 

matrices B1B2 respectively do not intersect. If the rank of the Shur component B1B2 

equals to 2, the number of the effective constraints provided by the coefficient matrix 

is 5. Hence, the dimension of the corresponding vector subspace of the intersection of 

the two projective planes is 1 in this case and the related projective subspace of the 

intersection equals 0. Thus, it can be concluded that two projective planes intersect at a 

projective point when the rank of the corresponding Shur component is 2. In like 

manner, it can be derived that two projective planes intersected at a projective line if 
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the rank of the corresponding Shur component equal 1. Concatenating the above 

derivation gives the following proposition. 

 

Proposition 3. Consider two arbitrary projective planes in 5 represented by 3×3 

matrices B1B2 respectively. Their intersection is determined by the Shur component 

B1B2 of the related coefficient matrix given by Eq. (46). The two projective planes do 

not intersect if the Shur component is of full rank. Otherwise, they intersect at a 

projective point or a projective line if the rank of the Shur component equals 2 or 1. 

 

4.4.2 Intersection of α-Planes and β-Planes 

 

For α-planes and β-planes, matrices B1 and B2 belong to orthogonal group O(3) with 

the condition det(B1)=+1 and det(B2)=1. In analyzing the rank of the Shur component 

B1B2, an efficient way is to premultiply the Shur component by the full-rank matrix

T

2B and this operation satisfies the following equation as 

 

       T T

1 2 2 1 2 2 1rank rank rank    B B B B B B B I  (4.24) 

 

where the matrix T

2 1B B certainly satisfies the condition  T

2 1det  B B and is an element 

of O(3) as 

 

      
T

T T T T

2 1 2 1 1 2 2 1 B B B B B B B B I  (4.25) 
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In fact  T

2 1rank B B I in Equation (4.24) determines the dimension of the eigenspace 

related to the eigenvalue 1 of matrix T

2 1B B because the eigenspace is given by the null 

space of matrix T

2 1 .B B I This can be illustrated by the following equation 

 

  T

2 1 1   0B B I x  (4.26) 

 

in which scalar 1 is the eigenvalue of T

2 1,B B vector x is the null space of matrix and 

can be regarded as the related eigenvectors constituting the eigenspace. Thus, the 

relationship between  T

2 1rank B B I and the geometric multiplicity of the eigenvalue 1 

of matrix T

2 1B B can be given as follows 

 

  T

2 1rank (1) 3  B B I  (4.27) 

 

where the scalar γ(1) is the geometric multiplicity of the eigenvalue 1 of matrix T

2 1 ,B B

presenting the dimension of the associated eigenspace, and 3 represents the row number 

of matrix T

2 1.B B Therefore,  T

2 1rank B B I can be obtained directly through the 

geometric multiplicity γ of the eigenvalue 1 of matrix T

2 1,B B  Thus, it is necessary to 

explore the characteristics of the orthogonal matrix T

2 1.B B  

 

Every element of O(3) whose determinant equals 1 is congruent and similar to a 

orthogonal matrix presenting a rotation about a line combined with reflection in the 
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orthogonal plane. Hence, performing the congruence and similarity transformation, the 

matrix T

2 1B B can be rewritten as 

 

 
T T T

2 1

1 0 0

0 cos sin

0 sin cos

 

 

 
 

  
 
  

B B R CR R R  (4.28) 

 

where matrix R is an element of O(3) and matrix C is the similarity and congruence 

matrix of T

2 1.B B Since congruent and similar matrices share eigenvalues and geometric 

multiplicities, the geometric multiplicity of the congruence and similarity matrix C can 

be used to obtain the rank of matrix T

2 1 ,B B I and further to find the rank of the Shur 

component B1B2. 

 

For the congruence and similarity matrix C, it is not complicated to find its three 

eigenvalues in complex field as 

 

  1,  ,  j je e    (4.29) 

 

Thus, the geometric multiplicity of the eigenvalue 1 is generally 0. Specially, if φ = 0, 

the three eigenvalues become 1, 1, 1 and the geometric multiplicity of the eigenvalue 

1 can be obtained as γ(1)2. In such case, the rank of the Shur component B1B2 is 

equal to 1 according to Equation (4.27),  hence it has  T

2 1rank  B B I  
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Consequently, α-plane and β-plane generally do not intersect with each other for the 

geometric multiplicity of the eigenvalue 1 of the matrix T

2 1B B  is 0 in most cases. 

Meanwhile, in some special cases, α-plane and β-plane do intersect at a projective line 

when the corresponding geometric multiplicity equals 2. 

 

4.5 Two-Systems as the Intersection of A-Planes and 

B-Planes 

 

Consider the case in which an α-plane and a β-plane intersect at a projective line. The 

corresponding vector subspace of the projective line is of dimension 2, thus the 

intersection of α-plane and β-plane as a projective line in 5 can be represented by four 

linear equations in matrix form as follows 

 

 

1

1 1 1 1 1 1 2

2 2 2 2 2 2 3

3 3 3 3 3 3 1

4 4 4 4 4 4 2

3

x

a b c d e f x

a b c d e f x

a b c d e f y

a b c d e f y

y

 
 

 
 

 
 

   
 

 
 

 
    

 
 

0  (4.30) 

 

Therefore, the projective line as the intersection of the α-plane and the β-plane can be 

interpreted as the intersection of the α-plane with a general hyperplane as well as the 

intersection of the β-plane with another hyperplane. Consequently, the following 

system of linear equations in the form of partitioned matrix holds for the projective line 
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T T

  
i

i i

i
   

   
  

I B x

e f y
  (4.31) 

 

in which matrices Bi are 3 × 3 orthogonal matrices as elements of O(3) representing the 

α-plane and the β-plane,  

T Tand i ie f are 3-dimensional vectors acting as the coefficients 

of the general hyperplanes. 

 

Hence, the projective line as the intersection of the α-plane and β-plane corresponds to 

a two-system with particular geometrical properties. Let δ(0) denote the algebraic 

multiplicity of zero eigenvalue of a matrix. Compared with the geometric multiplicity 

γ(1) which played a vital role in obtaining the rank of matrix, algebraic multiplicity is 

always acting as the determinant of invertibility of matrix. On one hand, the projective 

line can be regarded as the subspace of the α-plane presented by matrix B1. On the other 

hand, the projective line can also be regarded as subspace of the β-plane presented by 

matrix B2, i.e., Equations (4.19) and (4.20) are tenable for the projective line. 

Concatenating the mentioned equations gives 

 

 

0

0

(0) 0

h



  
   

   

 

0

s s r s

r s

r r
 (4.32) 

 

in which δ(0)  0 for matrix B1I indicates its nonsingularity, vector r and r' are two 

constant position vectors, vector r0, s and s0hs are three variable vectors describing the 
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geometrical characteristics of the screws of the corresponding two-system and present 

the position vectors, direction vectors and moment of the direction vectors of the screws, 

respectively. From the geometrical meanings of Equation (4.32), it can be obtained that 

all the screws with the same pitch whose axes pass through the constant point r and also 

lie on a plane determined by vector r' constitute the solutions to Equation (4.32) on the 

condition that    r r  which means the point r also lies on the plane. That is, the 

projective line in 5 as the intersection of α-plane and β-plane corresponds to a planar 

pencil of screws with the same pitch in 3, of which the centre and the plane is 

determined by the α-plane and the β-plane respectively. This planar pencil of screws 

forms a two-system. Further, we can conclude that more than two screws with the same 

pitch in a planar pencil of screws are linearly dependent while two of less than two 

screws with the same pitch in a planar pencil of screws are linearly independent. Hence, 

the corollary on linear dependence of screws with the same pitch can be obtained as 

follows. 

 

Corollary 4. If the axes of n screws form a planar pencil of lines in 3, all the 

corresponding projective points lie entirely in a projective line in 5, thus these n 

screws constitute a screw system of 2nd order. Therefore, if n > 2, n screws with this 

geometrical property whose axes have a common point and lie on a common plane are 

linearly dependent; if n ≤ 2, these n screws are linearly independent. 

 

If matrix B1I is singular, concatenate Equations (4.19), (4.20) and (4.15)gives the 

following geometrical constraints on the projective line as the intersection of α-plane 

and β-plane 

 



69 
 

 

     1 0 1

0

(0) 0

     

  


   

 

0

0

B r B s

r s

r r

 

 (4.33) 

 

where the notations are of the same geometrical meanings as those in Equation (4.32). 

It can be seen that a cluster of screws with the same pitch whose axes are parallel and 

coplanar constitutes the solutions to the above equation. In like manner, the following 

corollary on linear dependence of screws with the same pitch can be obtained. 

 

Corollary 5. If the axes of n screws with the pitch h are parallel and coplanar in 3, 

all the corresponding projective points lie entirely in a projective line in 5, hence these 

n screws constitute a screw system of 2rd order. Therefore, if n > 2, n screws with this 

geometrical property whose axe are parallel and coplanar are linearly dependent; if n 

≤ 2, these n screws are linearly independent. 

 

4.6 Constructing the Matrices for α-plane, β-plane, 

and Their Intersection Through Given Screws 

with Geometrical Properties 

 

The above derivations and principle can be illustrated and verified by the following 

numerical example, which presents a method for constructing the matrices for 

projective subspaces such as α-plane, β-plane, and their intersection by utilizing several 

clusters of screws designated with specific geometrical properties. To validate the 
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derivation in this chapter sufficiently, a converse procedure from several given three-

systems and two-systems to the corresponding α-plane, β-plane, and their intersection 

is adopted. This procedure is just the contrary to the derivation in this chapter and 

chapter 3. 

 

This example contains three parts. The first part is to obtain the matrix representation 

of α-plane through a bundle of screws with the same pitch whose axes have a common 

point in 3. In this part the projective transformation is implemented and a 9×9 

coefficient matrix is constructed. In like manner, the second part is to obtain the matrix 

representation of β-plane through a plane of screws with the same pitch. Then matrix 

representation of the intersection of the α-plane in the first part with the β-plane in the 

second part is calculated through a given planar pencil of screws with the same pitch. 

The matrix representation is given in Equation (4.31) and this calculation is performed 

by taking the intersection of the α-plane with the β-plane as the intersection of a general 

hyperplane with the α-plane or the β-plane. Finally, it can be seen that the matrices for 

the α-plane and the β-plane are the elements of orthogonal group O(3) and the matrix 

for the projective line as the intersection of the α-plane and the β-plane is of the form 

in Equation (4.31). Thus, the derivations in this chapter and chapter 3 in respect of the 

interrelationship of screw system with projective subspace and the issue of linear 

dependence of screws are completely verified. 
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4.6.1 Constructing the Matrix for the α-Plane Through a Bundle 

of Screws with the Same Pitch 

 

Given a bundle of screws with the same pitch. Suppose the direction vectors of the 

screws are arbitrarily chosen as 

 

 

 

 

 

 

T

1

T

2

T

3

T

4

0.500 0.600 0.500

0.500 0.700 0.600

0.600 0.500 0.800

0.700 0.600 0.700

 

 

 

  

s

s

s

s

 (4.34) 

 

Suppose all the screws are located at 

 

  
T

0.600 0.500 0.800r  (4.35) 

 

The pitch of the screws is given as h=0.500. According to the dual vector representation 

in Equation (3.1), the 6-dimensional homogenous coordinates of the screws can be 

written as 
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 

 

 

T1 1

1

10 1 1

T2 2

2

20 2 2

T3 3

3

30 3 3

4

0.500 0.600 0.500 0.480 0.400 0.860

0.500 0.700 0.600 1.110 0.310 0.370

0.600 0.500 0.800 0.500 1.210 0.400

h

h

h

   
        

   

   
        

   

   
        

    

s s
S

s r s s

s s
S

s r s s

s s
S

s r s s

S  
T4 4

40 4 4

0.700 0.600 0.700 0.480 0.680 1.060
h

   
        

   

s s

s r s s

 

  (4.36) 

 

With the above conditions, the projective transformation can be constructed and 

implemented to the bundle of screws. Hence, the coordinates of these screws in the 

coordinate system S' can be calculated as follows 

 

 

 

 

 

 

 

 

 

 

T

1 1

T

2 2

T

3 3

T

4 4

0.730 0.100 1.110 0.270 1.300 0.110

1.360 0.660 0.070 0.360 0.740 1.270

0.200 1.460 0.800 1.400 0.460 0.800

0.830 0.380 1.410 0.570 1.580 0.010

      

      

      

    

S T S

S T S

S T S

S T S

 (4.37) 

 

where matrix T represents the projective transformation with the effect of changing the 

coordinate system of screws to achieve the normal form of the hyperquadric. It can be 

seen that after applying the projective transformation the equation of the hyperquadric 

is satisfied for
1,S 2 ,S 3 ,S and

4
S , thus the corresponding projective points of these 

screws are all lying in the hyperquadric. Therefore, the effectiveness of the projective 

transformation constructed in this dissertation is verified. 
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This chapter claimed that a bundle of screws in 3 corresponds an α-plane in 5. This 

it to be verified if we can solve Equation (3.25) with the entries of matrix B as the 

unknowns and then confirm that matrix B is an orthogonal matrix as an element of O(3) 

with det(B) = +1. Accordingly, choosing three screws arbitrarily, for instance, 
1,S 2 ,S

and
4
S , substituting them into Equation (3.25)and rewriting it, the following system of 

linear equations is constructed as 

 

 

T

10 20 40 1 1

10 20 40 2 2

10 20 40 3 4

        
           

           

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

s s s b s

s s s b s

s s s b s

 (4.38) 

 

where vectors  0 ,i i
 s s  are the secondary parts and primary parts of 

1,S 2 ,S and
4
S

respectively,  1 2,b b  and 
3b  are three-dimensional vectors presenting the column spaces 

of matrix B. Solving the system of linear equations, we immediately obtain the 

numerical form of matrix B as 

 

 

0.209 0.444 0.871

0.978 0.111 0.178

0.018 0.889 0.458

 
 

 
 
  

B  (4.39) 

 

Therefore, it can be verified that matrix B presenting the α-plane corresponding to the 

bundle of screws with the same pitch satisfies the following two conditions 

 

 
T

det( )



 

B B I

B
 (4.40) 
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Obviously, matrix B belongs to O(3) with the condition det(B) = +1. Thus it has been 

validated that the corresponding projective points of a bundle of screws with the same 

pitch constitutes an α-plane in 5, and the bundle of screws forms a three-system. The 

proposition on the linear dependence of a bundle of screws whose axes have a common 

point in 3 proposed in corollary 1 is thus verified. 

 

Further, substituting the numerical form of matrix B into Equation (4.9), the skew-

symmetric matrix of the position vector of the bundle of screws can be calculated as 

 

  

0 0.800 0.500

0.800 0 0.600

0.600 0

 
 

  
 
  

r  (4.41) 

 

This result is precisely coincident with Equation (4.35) thus the corollary 1 has been 

verified. 

 

From this chapter, a cluster of parallel screws with the same pitch also corresponds to 

an α-plane in 5. In a similar way, corollary 2 regarding a cluster of parallel screws with 

the same pitch can be verified. 

 

 

 

4.6.2 Constructing the Matrix for the β-Plane Through a Plane of 

Screws with the Same Pitch 
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In the second section of the example, to construct the matrix for the β-plane presented, 

a plane of screws with the same pitch is given with the direction vectors being 

designated as 

 

 

 

 

 

 

T

1

T

2

T

3

T

4

0.300 0.500 0.300

0.700 0.200 0.460

0.500 0.600 0.220

0.800 0.500 0.200

  

 

 

  

s

s

s

s

 (4.42) 

 

A position vector r0 to locate the plane π of the screws is given as follows 

 

  
T

0 0.500 0.600 0.500   r  (4.43) 

 

The direction vectors and the position vector satisfy the condition 
0i   s r , which 

makes the screws lie in a series of parallel planes. Additionally, this position vector r0 

is designated beforehand to make vector r in Equation (4.35) and vector r0 in the above 

equation satisfy the condition 
0  r r given. All the points in 3 identified by a 

position vector whose dot product with position vector r0 equals 1 are lying in a certain 

plane. Thus the condition 
0  r r  is to locate point r given by Equation (4.35) in the 

plane π in Figure 3.2 and four position vectors are chosen to locate the screws in the 

plane π as follows 

 

 

 

 

 

 

T

1

T

2

T

3

T

4

0.400 1.000 0.400

0.400 0.500 1.000

1.000 0.000 1.000

1.000 0.000 1.000

 

 

 

 

r

r

r

r

 (4.44) 
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and the direction vectors of the screws can be arbitrarily chosen as 

 

 

 

 

 

 

T

1

T

2

T

3

T

4

0.300 0.500 0.300

0.700 0.200 0.460

0.500 0.600 0.220

0.800 0.500 0.200

  

 

 

  

s

s

s

s

 (4.45) 

 

The pitch of the screws is also given as h = 0.500. 

 

From the above known conditions, the 6-dimensional homogenous coordinates of the 

plane of screws can be obtained. Then the coordinates of these screws in the coordinate 

system S' can be calculated by implementing the projective transformation. After 

constructing a system of linear equations for the plane of screws, the numerical matrix 

for the corresponding β-plane can be calculated and it has 

 

 

0.344 0.860 0.376

0.215 0.462 0.860

0.914 0.215 0.344

  
 

  
 
   

B  (4.46) 

 

Thus, it can be verified that matrix B presenting the β-plane corresponding to the plane 

of screws with the same pitch satisfies the following two conditions 

 

 
T

det( )



 

B B I

B
 (4.47) 
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It can be seen that matrix B belongs to O(3) with the condition det(B) = 1. Thus, it has 

been validated that the corresponding projective points of the plane of screws with the 

same pitch constitutes an β-plane in 5. Then the plane of screws forms a three-system. 

The proposition proposed in corollary 2 on the linear dependence of a plane of screws 

whose axes lie in a common plane in 3 is thus verified. 

 

Substituting the numerical form of matrix B into Equation (4.9), the skew-symmetric 

matrix of the position vector locating the plane π can be calculated as 

 

  0

0 0.500 0.600

0.500 0 0.500

0.500 0

 
 

   
 
   

r  (4.48) 

 

This result is coincident with Equation (4.43), hence the corollary 2 has been 

sufficiently verified. 

 

4.6.3 Constructing Partitioned Matrix for the Intersection of the α-

Plane and the β-Plane 

 

In the third section of the example, a planar pencil of screws is given to verify corollary 

4 in this chapter. The planar pencil of screws in 3 can be regarded as the intersection 

of the bundle of screws with the plane of screws. Hence, the direction vectors that lie 

in a series of parallel plane can be chosen as the direction vectors of the planar pencil 

of screws and the position vector in Equation (4.35) can be chosen as the position 
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vectors of the planar pencil of screws. Calculating the 6-dimensional homogenous 

coordinates, then applying the projective transformation, the coordinates of the planar 

pencil of screws in the coordinate system S' can be obtained as follows 

 

 

 

 

 

 

T

1

T

2

T

3

T

4

0.850 0.440 0.150 0.250 0.560 0.750

0.630 0.636 0.930 0.770 1.036 0.010

1.090 0.332 0.390 0.090 0.868 0.830

1.100 0.260 0.900 0.500 1.260 0.500

   

     

     

   

S

S

S

S

 (4.49) 

 

In 5, two projective points identify a projective line. Otherwise, it is known two 

projective points of the corresponding screws provide 8 effective constraints for the 

projective plane. Consequently, the projective line of the planar pencil of screws can be 

presented in the form of a system of linear equations with 8 unknowns as 

 

 

1

21 1

32 2

13 3

24 4

3

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

x

xe f

xe f

ye f

ye f

y

 
 

   
   
   
   
   
 

  
 

0  (4.50) 

 

Taking any two screws in Equation (4.49) and constructing a system of linear equations 

as follows 
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T

15 25

1 11

16 15 26 25

2 14

16 15 26 25

3 21

16 15 26 25

3 24

16 26

s s

s s s s
s

s s s s

s s s s
s

s s

  
             

        
    

              

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

g s

g

g s

g

 (4.51) 

 

where the italic symbol 
ijs  represents the jth component of screw 

i
S in Equation 

(4.49), the italic and bold symbol 
ij
s  represents the primary part or secondary part of 

screw 
i
S  when j equals 1 or 2, and gi, 0 are 2-dimensional vectors and represent (ei, fi)

T 

and (0, 0)T respectively. Solving this 8 × 8 linear equations, a unique solution is 

obtained and thus the coefficient matrix can be written as 

 

 

1 0 0 0 0.602 0.684

0 1 0 0 0.624 1.053

0 0 1 0 0.902 0.474

0 0 0 1 0.752 0.895

 
 
 
  
 
 

B  (4.52) 

 

This is the matrix representation of the corresponding projective line of the planar 

pencil of screws with the same pitch. Substituting 
3 4,   S S , and the linear combinations 

3 4,   S S  into Equation (4.50) with the above matrix B as the coefficient matrix, the 

equation always keeps balance. This indicates that all the projective points 

corresponding to a planar pencil of screws with the same pitch lie on a projective line. 

These screws constitute a two-system and three or more screws with the same pitch, 

crossing a common point and lying on a common plane are linearly dependent; 

otherwise, less than three screws of this geometrical property are linearly independent. 

Consequently, corollary 4 is verified. In a similar way, corollary 5 regarding a cluster 

of screws with the same pitch whose axes are parallel and coplanar can be verified. 
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4.7 Conclusions 

 

In this chapter, conventional three-systems were rediscovered by corresponding the 

generators of hyperquadrics in 5-dimensional projective space to screws in 3-space. 

Intersection of α-planes and β-planes of screws with non-zero constant pitch were 

derived for the first time and thus two-systems were rediscovered. Researchers relate 

planes in the Klein quadric in the 5-dimensional projective space to screw systems in 

3-space, while this chapter for the first time extended it to a general case that any 

hyperquadrics in 5-dimensional space corresponding to the screws with the same pitch 

can be related back to 3-space. 

 

The equations and results in this chapter and chapter 3 have the potential to be used in 

mobility calculation and screw-system variations by researchers in mechanisms-theory 

community, and lay foundation for chapter 5 of constraint system construction based 

on screw theory, for chapter 7 of equivalence of screw systems generating the same 

computational submanifolds, and for Chapter 9 of Jacobian matrix derivation of a 

hybrid mechanism using screw theory. 
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Chapter 5   Screw-Based Jacobian of a 

Parallel Mechanism with a 

Reconfigurable Base 

 

5.1 Introduction 

 

Conventionally, parallel mechanisms contain a fixed base and a moving platform with 

several identical limbs. To enhance the mobility and dexterity, more actuations are 

introduced to the limbs. Apart of this method, the rigid moving platform can be changed 

into a reconfigurable structure to improve its performance. This chapter introduces a 

parallel mechanism with a reconfigurable base which is inspired by object in-hand 

manipulation with a metamorphic robotic hand [84-89]. This flexible base utilizes a 

spherical mechanism structure contributing to a larger workspace of the parallel 

mechanism compared with conventional rigid-base parallel manipulators [85]. The 

proposed parallel mechanism is presented with the theory of metamorphosis and its 

geometric constraint is explored based on the approach of screw algebra. The Jacobian 
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matrix of the mechanism [90-95] is developed based on screw theory with the velocity 

analysis of the mechanism derived. 

 

5.2 A Novel Parallel Mechanism Design with a 

Spherical Base 

 

5.2.1 Parallel Mechanism with a Reconfigurable Base Generated 

through Manipulation of a Metamorphic Hand 

 

Figure 5.1 shows a metamorphic robotic hand grasps and manipulates an object. The 

metamorphic hand has a reconfigurable palm with three identical two-phalanx fingers 

attached. The reconfigurable palm is composed of a spherical linkage with link AE as 

a fixed link. The other four links are symmetrically distributed to link AE, in particular, 

links AB and ED, links BC and DC are of the same length, respectively. The three 

fingers are assembled individually on link AE at point A1, link DC at point A2 and link 

BC at point A3. The points A1, A2 and A3 are evenly arranged about the centre of the 

spherical linkage, denoted as O, in the configuration with all the links in the same plane, 

the reconfigurable palm with two active DoFs varies configuration of the robotic hand 

in such a way to increase the workspace, dexterity and manipulability [85][90][96-101]. 

The method to map the multi-fingered hand grasping an object to a parallel mechanism 

was introduced by Borras-Sol and Dollar [102,103]. The robotic hand grasps and 

manipulates an object shown in Figure 5.1, where contact points between the object and 

the fingertips can be treated as spherical joints, leading to an equivalent reconfigurable 

base integrated parallel mechanism generated in Figure 5.2.  
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Figure 5.1   A three-fingered Metamorphic hand manipulates by on object 

 

5.2.2 Structure of the Spherical-Base Integrated Parallel 

Mechanism 

 

As illustrated in Figure 5.2, the spherical-base integrated parallel mechanism consists 

of a spherical non-rigid base, a moving platform and three RRS chains. The 

reconfigurable base is composed of five linkages connecting to each other to form a 

spherical five-bar linkage mechanism. In this presented design, link AE is fixed as the 

grounded link and joints A and E are the active joints to drive the palm to various 

configurations, while joints B, C and D are passive joints. The axes of these five joints 

intersect at the mechanism centre O. The angles of links AB, BC, CD, DE and EA are 

denoted by φ1 to φ5 respectively, and their sum satisfies φ1φ2φ3φ4φ5  2π. 

Three identical limbs are mounted at point Ai (i 1, 2 and 3), and the angles between 

OA1 and OA, OB and OA2, OA3 and OD are denoted by δ1, δ2 and δ3 respectively. The 
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angle between any two limbs is 120° when all the five links of the reconfigurable base 

are coplanar. However, the initial configuration of the mechanism is a singular state 

which is suitable for a theoretical representation rather than a practical starting 

configuration. Each limb is composed of two linkages linked by a revolute joint Bi (i  

1, 2 and 3). The three identical limbs are connected to the reconfigurable base by 

revolute joints Ai (i  1, 2 and 3) on one end and the moving platform by spherical joints 

Ci (i   1, 2 and 3) on the other end. The length of link AiBi is described by li1, while 

that of link BiCi as li2 (i 1, 2 and 3).  

 

 

Figure 5.2  Structure of the reconfigurable-base integrated parallel mechanism 
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5.3 Jacobian Analysis based on Screw Theory 

 

As stated in the former sections, since the parallel mechanism has three limbs fixed on 

a reconfigurable base, the kinematics decomposition method of the mechanism can be 

adopted to analysing the Jacobian matrix of the whole mechanism with the Jacobian 

analysis of the reconfigurable first presented, then followed by that of the full parallel 

mechanism. 

 

5.3.1 Jacobian Derivation of the Reconfigurable Base 

 

The velocity of point C is derived as a linear combination of angular velocity about axis 

OA and OB on one side, or the other side with angular velocity of axis OE and OD, 

 

 
C 1 A C 2 B C

( ) ( )    v P P P P  (5.1) 

 

 5 E DC C 4 C( ) ( )    v P P P P  (5.2) 

 

Since vC is an intermediate variable in the above calculation, it can be estimated from 

Equations (5.1) and (5.2). To take right inner product on both sides of the above 

equations with PD, they have 

 

        D D D BC 1 A C 2 C( ) ( )       P v P P P P P P  (5.3) 
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 D 5 D EC C( )   P v P P P  (5.4) 

 

Substituting Equation (5.4) into Equation (5.3) yields, 

 

 
D A C D E C

2 1 5

D B C D B C

( ) ( )

( ) ( )
  

   
  

   

P P P P P P

P P P P P P
 (5.5) 

 

Similarly, the angular velocity 
4 is obtained and expressed as, 

 

 
B A C B E C

4 1 5

B D C B D C

( ) ( )

( ) ( )
  

   
 

   

P P P P P P

P P P P P P
 (5.6) 

 

Thus, the above two equations are expressed in matrix form as, 

 

  (5.7) 

 

The angular velocity of passive joints B and D is derived through rotation rate of active 

joints A and E in light of the geometric constraints of the reconfigurable mechanism. 

 

 

D A C D E C

D B C D B C1 12

B A C B E C5 54

B D C B D C

( ) ( )

( ) ( )

( ) ( )

( ) ( )



 

 

    
        
      

              

P P P P P P

P P P P P P
J

P P P P P P

P P P P P P
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5.3.2 Jacobian Analysis for the Spherical-Base Integrated Parallel 

Mechanism Based on Screw theory 

 

In this section, the screw theory is introduced to analyse the velocity of the spherical-

base integrated parallel mechanism. A screw S is a six-dimensional vector to represent 

instantaneous velocity of a rigid body, which is expressed as,  

  
T

0 0 0

0

, , , , ,x y z x y zs s s s s s
+h

   
        

s s
S = =

s r s s
 (5.8) 

 

The first three components make up a unit vector s directing along the screw axis, 

describing a rotation of a joint axis. The last elements constitute s0 introducing the 

moment of the vector s about the origin of the reference frame. h expresses the screw 

pitch, which is equal to 0 for revolute joints and ∞ for prismatic joints. r is the position 

vector from the origin of the reference coordinate system directing to an arbitrary point 

on the screw axis s.  

 

 

(a)                                                       (b) 

Figure 5.3  Motion screw of the reconfigurable-base integrated parallel mechanism 
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The full Jacobian of the mechanism can be calculated from the twist of the mechanism 

based on screw algebra. Figure 5.3(a) shows motion screws of the spherical-base 

integrated parallel mechanism. We can treat each limb as an open-loop chain 

connecting the end-effector to the base shown in Figure 5.3(b). The instantaneous 

motion of the moving platform, denoted as Sp can be derived from the linear 

combination of the twist of each joint within this loop. Referring to Figure 5.3(a), twist 

Sp  is obtained in terms of limb 1, 2 and 3 separately as 

 

 

5

1 1

1

p i i

i




S S  (5.9) 

 

5

1 2 2 2

1

p a b i i

i

  


  S S S S  (5.10) 

 

5

4 5 3 3

1

p d e i i

i

  


  S S S S  (5.11) 

 

Substituting Equations (5.5) and (5.6) into Equations. (5.10) and (5.11) respectively 

leads to, 

 

  
5

1 1 2 5 2 2

1

p a b b i i

i

m m  


   S S S S S  (5.12) 

 

  
5

3 1 5 4 2 2

1

p d e d i i

i

m m  


   S S S S S  (5.13) 
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where
D A C

1

D B C

( )

( )
m

 


 

P P P

P P P
, D E C

2

D B C

( )

( )
m

 


 

P P P

P P P
,

B A C
3

B D C

( )

( )
m

 


 

P P P

P P P
 and 

B E C
4

B D C

( )

( )
m

 


 

P P P

P P P
. 

 

According to [85], we understand that the revolute-spherical screws dyad locate in a 

four-dimensional vector space. So, its reciprocal screws form a two-system with zero 

pitch, denoted as
1

r

iS and 
2

r

iS (i = 1, 2 and 3) of the ith limb. Taking the reciprocal 

product of both sides of Equations (5.9), (5.11) and (5.12) with reciprocal screw 
1

r

iS

and 
2

r

iS leads to six linear equations, which is expressed in the matrix form as,  

 

 
T

q p a J JS θ  (5.14) 

  

where 
T

1 5 11 21 31, , , ,a        θ

T

11

T

T 12

T

32

r

r

q

r

 
 
 
 
 
 

J

S

S

S

, 
1

2

3



 



 
 


 
  

J

J J

J

 and Δ denotes the 

reciprocal operator expressed as 
 

   
 

0 I

I 0
. 

 

The term iJ is detailed presented in Appendix B, and T

qJ , is a 6×6 nonsingular matrix 

in most cases. Multiplying both sides of Equation (5.14) by the inverse of T

qJ results in 

the twist of the moving platform as, 

 

 
1

T

p q a



    J JS θ  (5.15) 
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where ΔSp is the twist of the moving platform by interchanging the primary part and 

secondary part of Sp. The left-hand side and right-hand side of Equation (5.14) 

represented the power of the platform and the active joints respectively, which give 

clues to the dynamic analysis of the proposed parallel mechanism with concept of 

kinetic energy. 

 

5.3.3 Velocity Analysis of the reconfigurable-base Integrated 

Parallel Mechanism 

 

To analysis the properties of the proposed reconfigurable-base integrated parallel 

mechanism, its construction can be treated as three single-loop mechanisms between 

any two of three limbs and a spare geometric constraint of the five-bar reconfigurable 

base. The instantaneous twist represents the motion of each link, and all the links’ 

motion in a closed-loop form a linear combination of all the instantaneous twists within 

this loop. Using twist Sij denotes the instantaneous motion along the jth joint in the ith 

limb and twist Sa, Sb, Sc, Sd and Se denote that along the joints of the reconfigurable base. 

Denote the rotation rate ij and k as the velocity of the jth joint in the ith limb and the 

velocity of the kth joint in the reconfigurable base. Twists of three closed-loop-

mechanisms are expressed separately based on the introduced notations above, as 

follows, 
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(a)                                                                          (b) 

Figure 5.4  Motion screw of closed-loop mechanism of the parallel mechanism 

 

For the closed-loop composed of limb 1 and 2, shown in Fig. 5.4(a), the closed-loop-

twist equation is expressed as, 

 

5 5

1 2 1 1 2 2

1 1

a b i i i i

i i

   
 

    0S + S S S  (5.16) 

 

For limbs 2 and 3, the closed-loop-twist is, 

 

    

5 5

3 2 2 3 3

1 1

c i i i i

i i

  
 

    0S S S  (5.17) 

 

And for limbs 3 and 1, the closed-loop-twist is, 

 

 

5 5

4 5 3 3 1 1

1 1

d e i i i i

i i

   
 

    0S + S S S  (5.18) 
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Further, the closed-loop-twist of the reconfigurable base through its geometric 

constraint, shown in Fig. 5.4(b) is 

 

 1 2 3 4 5a b c d e         0S S S S S  (5.19) 

 

In each closed-loop-mechanism, the active joints can be separated from the rest passive 

joints in the twist equations given in Eqs. (7.67) throughout (7.70) as, 

 

 

5 5

1 11 11 21 21 2 1 1 2 2

2 2

a b i i i i

i i

     
 

      S S S S S S  (5.20) 

 

 

5 5

21 21 31 31 3 2 2 3 3

2 2

c i i i i

i i

    
 

     S S S S S  (5.21) 

 

 

5 5

5 31 31 11 11 4 3 3 1 1

2 2

e d i i i i

i i

     
 

      S S S S S S  (5.22) 

 

 1 5 2 3 4a e b c d        S S S S S  (5.23) 

 

The Eqs. (5.16) to (5.19) can be rearranged in a matrix form that gives the relationship 

between velocity of the active joints and that passive joints as, 

 

 a a p pJ Jθ θ  (5.24) 
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where 
aθ and 

pθ depict the velocity vectors of active joints and passive joints as, 

T

2 3 4 12 13 14 15 35, , , , , , , ... ,P           θ , aJ and
pJ dipict the active-Jacobian 

matrix and passive-Jacobian matrix respectively as 

 

1 11 21

21 31

5 11 31

1 5

a

 
 
 

 
 
 

J

S 0 S S 0

0 0 0 S S

0 S S 0 S

S S 0 0 0

 and 

2 1 2

3 2 3

4 1 3

2 3 4

p p

p p

p

p p

  
  
 

  
 
   

J J

J J
J

J J

S 0 0 0

0 S 0 0

0 0 S 0

S S S 0 0 0

 

 

where  2 3 4 5 , 1 , 2 and 3pi i i i i i J S S S S . 

 

The above derived Jacobian matrices are crucial for the singularity and dexterity 

analysis of the proposed integrated parallel mechanism.  

 

5.4 Conclusions 

 

In this chapter, a reconfigurable base integrated parallel mechanism was presented 

based on the manipulation of rigid objects with a Metamorphic hand for the first time 

through mechanism equivalent method. The structure of the proposed mechanism was 

introduced. By means of decomposing the mechanism into a typical 3RRS parallel 

mechanism and a reconfigurable linkage, the Jacobian based on screw theory was 

utilized to identify the relationship between active joints and passive joints through the 

screw system elimination with their reciprocal product. The Jacobian analysis 
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demonstrated the effectiveness of screw algebra approach in modelling the novel 

reconfigurable-base integrated parallel manipulator. 
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Chapter 6   Constraint Analysis of a 

Derivative Queer-Square Mechanism 

Using Lie Bracket 

 

6.1 Introduction 

 

This chapter investigates the kinematic constraints of a derivative queer-square 

mechanism. The derivative queer-square mechanism can be traced back to (Qin, Dai, 

and Gogu, 2014) [1] and the screw-system approach to identify the multi-furcation back 

to (Dai, Huang, and Lipkin, 2006) [23]. This chapter focuses on establishing kinematic 

constraints for the derivative queer-square mechanism using an approach with Lie 

bracket computation in terms of instantaneous screws. The research in this chapter for 

the first time applies the recursive algorithm based on Lie bracket to velocity and 

acceleration analysis of multi-loop mechanisms. By introducing the bilinear form 

representation, second-order constraints of the mechanism are simplified, and this 

operation lays a foundation for identifying motion branches in the next chapter.  
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6.2 Geometrical Structure of the Derivative Queer-

Square Mechanism 

 

The derivative queer-square mechanism consists of ten links connected by twelve 

revolute joints and in such a mechanism three loops are constructed by these joints. As 

illustrated in Figure 6.1, ten links are labelled by numbers 1, 2, …, 10, while twelve 

revolute joints can be described by letters A, B, C1, D1, E1, F1, C2, D2, E2, F2, G, H 

respectively in which revolute joints C1D1E1F1 form an inner loop and C2D2E2F2 form 

the other inner loop in the mechanism. If in some configurations links 4 and 5 are 

parallel, the loop C1, D1, E1, F1 constitutes a parallelogram, if not, the loop constitutes 

an anti-parallelogram. Similarly, the loop C2, D2, E2, F2 forms a parallelogram or an 

anti-parallelogram as well depending on whether links 7 and 8 are parallel or not. 

 

When the mechanism moves to a configuration that all links lie in a same plane, as 

shown in Figure 6.2, the mechanism is singular, and the configuration is called as 

singularity configuration or stationary configuration [29]. This chapter and chapter 6 

are to determine how many motion branches exist at this configuration and what the 

corresponding geometrical constraints are for each single motion branch. 
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Figure 6.1  The 3D structure of the derivative mechanism 

 

In the mechanism as shown in Figure 6.2, the length of the shorter link in loop C1D1E1F1 

is denoted as a and the longer part of link 1 is denoted as b. The length of links 2, 4, 5, 

7, 8, and 10 are equal to a+b. The length of the longer parts of links 6, 9 are equal to a 

while the length of the shorter parts of these two links are b. The two loops C1D1E1F1 

and C2D2E2F2 are congruent in the singularity configuration. All the above lengths of 

links can be found in the following Figure 6.2. The coordinate frame O-xyz is 

established with the x-axis along with the longer part of link 1, the y-axis in the direction 

of the shorted part of link 1 and the origin at the intersection point of the x-axis with the 

axis of the joint E2. It is straightforward to say all the joint axes are in the direction of 

either the x-axis or the y-axis at the singularity configuration and this is one of the 

reasons why the mechanism is named “square” mechanism. 
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Figure 6.2  The singularity configuration of the mechanism 

 

There are three independent loops I, II and III in the closed loop derivative queer-square 

mechanism and the topology of the queer-square mechanism can be indicated by the 

directed graph in Figure 6.3. All nodes in each single loop are connected by directed 

edges in a counter-clockwise direction, in which each node labels a link and each 

directed edge labels a revolute joint. The directed graph lays the foundation for the first-

order constraint construction of the mechanism and this is discussed in detail in the 

following section. 
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Figure 6.3  The directed graph of topology 

 

6.3 Screws at the Singularity Configuration and 

First-Order Constraints 

 

6.3.1 Screws and the Closed-Loop Velocity Formula 

 

This section focuses on the instantaneous motion of the derivative queer-square 

mechanism at its singularity configuration and first-order constraints are revealed for 

the motion analysis. As stated in Chapter 3, a screw can represent the instantaneous 

velocity including linear velocity and angular velocity of a motion generated by a 

kinematic joint with respect to a coordinate system. In Figure 6.2, twelve screws are 

attached to the twelve revolute joints. According to the dimensions of the mechanism 
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described in Figure 6.2 and the form of a screw in Equation (3.1), the twelve screws 

can be calculated and written as 

 

 

 
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 (6.1) 

 

It is known that any closed-loop mechanism with the end link connected with the base 

link fulfils the velocity formula of a closed-loop and the formula can be represented as 

follows 

 

  0Jω  (6.2) 

 

in which matrix J is called as Jacobian matrix of the closed-loop and can be obtained 

by assembling all screws corresponding to the kinematic joints; vector ω represents the 
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scalar velocities of the kinematic joints in the mechanism. The dimension of ω is 

determined by the number of kinematic joints. 

 

Applying the above formula to loop I in Figure 6.3, the closed-loop velocity equation 

can be expressed as a linear combination of screws S1, S2, S3, S4, S7, S8, S11, S12 and 

written as follows 

 

  
4

7 7 8 8 11 11 12 12

1

0i i

i

    


     S S S S S  (6.3) 

 

Similarly, for loops II and III, the closed-loop velocity equation can be written as 

 

 3 3 4 4 5 5 6 6        0S S S S  (6.4) 

 7 7 8 8 9 9 10 10        0S S S S  (6.5) 

 

The choice of symbols “+” or “” in the above three equations depends on whether the 

direction of the loop coincides with the direction of the corresponding edge in the graph. 

 

6.3.2 Jacobian Matrix and the First-Order Constraints 

 

Assembling the above three equations into a linear equation system and expressing it 

in matrix form, it has 
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S S S S

 (6.6) 

 

The above linear equation system gives the Jacobian matrix of the mechanism which 

implements instantaneous velocity analysis for the mechanism when the mechanism 

moves to the singularity configuration. 

 

Substituting the twelve screws in Equation (6.1) to the above matrix in the left-hand 

side of the equation, the Jacobian matrix can be expressed as a function of the 

mechanism dimensions and thus the equation (6.2) gives the first-order constraints of 

the mechanism at the singularity configuration and the Jacobian matrix of the first-order 

constraints can be obtained as follows in Equation (6.7). The dimension of the matrix 

is 18×12 since the mechanism has three loops and twelve joints. It is straightforward to 

know that the rank of the first-order constraints is 7 and there are 12 angular velocity 

variables. Then the transitory mobility of the mechanism at this configuration can be 

identified as 5. 
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  (6.7) 

 

This section derived the first-order constraints of the three-loop mechanism from 

Jacobian analysis and expressed it in matrix form as shown in Equation (6.7). The first-

order constraints are only a part of the constraint system at the singularity configuration. 

The other second-order constraints it to be revealed from acceleration analysis in the 

following section. 
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6.4 Acceleration Analysis and Second-Order 

Constraints 

 

To implementing acceleration analysis for the mechanism at the singularity, we take 

derivatives of both sides of Equation (6.2) and it has the following formula [20, 70] 

 

 L Jα S  (6.8) 

 

in which matrix J is the same Jacobian matrix with that in Equation (6.6) ignoring units 

of elements; the 12-dimendional vector α represents the angular accelerations of the 

corresponding revolute joints at the singularity configuration; the 6-dimensional vector 

on the left-hand side of the above equation SL can be computed by a recursive algorithm 

using Lie bracket of two screws and can be expressed as 

 

 L ,i j i j

i j




   S S S  (6.9) 

 

where i and j are 1, 2, 3, …, 12; screws Si, Sj are instantaneous screws attached to the 

revolute joints; the operator [S1, S2] is Lie bracket which gives Lie product of any two 

screws. 

 

The Lie bracket formula satisfies anti-commutativity which is [S1, S2]  [S2, S1]. The 

rule of calculating Lie bracket of screws can be seen in Equation (3.8) in section 3.3. 

The above two formulae reveal the acceleration analysis of the mechanism by using a 
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recursive algorithm of Lie bracket calculation. The formulae can be applied to any 

configuration of a mechanism, even singularity configuration. 

 

In fact, Equation (6.8) shares the same coefficient matrix with the linear equation 

system in Equation (6.6) ignoring the unit for each single entry and unknown, though 

the two equations are established for velocity analysis and acceleration analysis 

separately. The difference between the two equations in the algebraic point of view lies 

in Equation (6.8) is a non-homogeneous linear equation system, while the other is a 

homogeneous linear equation system. Both equations are derived from the same 

mechanism at the same singularity configuration, hence they will be solvable 

simultaneously under particular conditions, otherwise there are no solutions of the 

kinematics analysis including velocity and acceleration analysis which means there is 

no motion branch at the singularity configuration which can generate finite motions. 

 

The algebraic condition for solving a non-homogenous linear equation system is that 

the corresponding homogenous linear equation system has non-zero solutions. This 

condition requires that the rank of the augmented matrix of the non-homogenous linear 

equation system are the same as the rank of the corresponding homogenous linear 

equation system. Therefore, consideration Equations (6.2), (6.8) and (6.9), the 

condition for solving Equation (6.8) can be expressed as below 

 

     LRank Rank J J S  (6.10) 
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From Figure 6.1 and Equation (6.1), all axes of the twelve screws are parallel with either 

x-axis or y-axis, and due to the properties of Lie bracket calculation, the above Equation 

(6.10) holds if and only if the angular variables ωi satisfy the condition below 

 

 L ,i j i j

i j




    0S S S  (6.11) 

 

This equation is a linear combination of second-order items of ωi, ωj and gives second-

order constraints for the mechanism at the singularity configuration based on 

acceleration analysis and Lie bracket calculation. 

 

6.5 Matrix Form of the Second Order Constraints 

 

6.5.1 Bilinear Form of Second-Order Constraints 

 

The section 5.4 gives the second-order constraints from acceleration analysis of the 

mechanism by using Lie algebra calculation. We substitute the twelve screws in 

Equation (6.1) into the second-order constraints in Equation (6.11), five algebraic 

conditions can be attained. These five second-order constraints are polynomials with 

regard to second-order items ωiωj and have very complicated expressions, for example, 

one of the polynomials obtained to represent the second-order constraint can be written 

as below 
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 (6.12) 

 

the meanings of scalars a, b in the above equation can be found in Figure 6.2. It is rather 

difficult to dig out any principles or geometrical meanings from the above complicated 

expression. Therefore, we introduce bilinear form to represent the second-order 

constraints. Considering Equation (6.11), since all elements of the combinational screw 

SL are polynomials of ωiωj, such a screw can be rewritten by a bilinear form as below 

 

 T

L   1,2, ,5k kS k  A   (6.13) 

 

where matrix A describes the coefficient matrix of the bilinear form. In this case, the 

second-order constraints can be obtained in the form of bilinear form 

 

 T

k  A   (6.14) 

 

Therefore, each single constraint of second order can be represented by a specific matrix. 

Considering the above matrix operation, the dimension of the coefficient matrix of the 

bilinear form is 12×12. For instance, the polynomial in Equation (6.12) can be 
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expressed in the form of a 12×12 matrix which represents a bilinear form of the 12-

dimensional vector ω as below 
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  (6.15) 

 

This is an upper triangular matrix which represents a second-order constraint of the 

mechanism in the form of a matrix. Considering the matrix form, it is possible to reduce 

some trivial items in the constraint and dig out its geometrical and physical meanings. 

This is discussed in detail in the next step. 
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6.5.2 Simplification of the Second-Order Constraints 

 

By introducing bilinear forms, the second-constraints can be presented by 12×12 

matrices. One of the constraints has been expressed in Equation (6.15). From the 

calculation in Section 5.4, five second-order constraints in total can be attained can then 

be rewritten in the form of matrices. The other four matrices are placed into Appendix 

A as four equations from (A.1) to (A.4). 

 

If combining the first-order constraints shown in Equation (6.7) with the second-order 

constraints in section 5.5.1 and appendix A together, we can simplify the second-order 

constraints by elementary transformations of matrices and eliminating unknowns. For 

example, from the first four rows of the coefficient matrix of the first-order constraints, 

the following conditions of the unknowns ωi can be obtained 

 

 3 4 11 12 0        (6.16) 

 1 2 9 10 0        (6.17) 
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 

 (6.18) 

 

If only considering the first row in Equation (6.15) and extracting common factors, the 

following polynomial of ωiωj can be found and written as 
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From Equation (6.18), it has 
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 (6.20) 

 

Substituting the above equation to the polynomial in Equation (6.19) and rearranging 

the items, the polynomial can be simplified as below 

 

  1 2 9 10
2

b
a    
 

     
 

 (6.21) 

 

From the condition in Equation (6.17), the above simplified polynomial equals zero. In 

such a case all the items corresponding to the entries in the first row of the matrix in 

Equation (6.15) have been eliminated and the second-order constraint presented by the 

matrix has been simplified to a certain extent. 

 

Using the same manner, the other rows of the matrix in Equation (6.15) can be 

simplified by combining the conditions obtained from the coefficient matrix of the first-

order constraints. Then assembling all the simplified rows together, the fully simplified 

constraint of second order can be attained and expressed as below 
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 (6.22) 

 

It is straightforward that such a method of combining the first-order and second-order 

constraints can be applied to simplifying other second-order constraints given by the 

coefficient matrices of bilinear forms in Appendix A. The simplified second-order 

constraint related with the coefficient matrix (A.1) can be obtained as 
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 (6.23) 

 

The simplified second-order constraint related to the coefficient matrix (A.2) can be 

written as below 

 

   3 4 11 12 7 8 0           (6.24) 

 

The polynomials corresponding to the coefficient matrix (A.3) and (A.4) are already 

simplified and can be obtained directly as 

 

          3 4 6 3 5 6 5 4 6 6 4 5 0a b b a b                     (6.25) 

          9 10 12 9 10 11 11 10 12 10 11 12 0a b a b b                     

  (6.26) 
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Finally, all second-order constraints have been attained and simplified by introducing 

bilinear form representation of the polynomials of constraints. The results were 

described by Equations from (6.22) to (6.26). 

 

6.6 Conclusions 

 

This chapter established the kinematic model including velocity and acceleration 

analysis of the derivative queer-square mechanism and first-order and second-order 

constraints have been attained by using Lie bracket calculation of screws. The recursive 

algorithm of screws based on Lie bracket was used to modelling the kinematic 

constraints of multi-loop mechanisms for the first time. To reduce the complexity 

introduced by three loops and twelve kinematic joints, this chapter employed bilinear 

form to represent the second-order constraint and simplified their expressions. This 

approach made it possible to simplify complicated constraints of second order so that 

the recursive algorithm can be applied to multi-loop mechanisms which are quite 

complicated in modelling. Finally, all first-order and second-order constraints were 

attained in the simplified form. This chapter demonstrated the effectiveness of screw 

theory discussed in Chapter 3 and 4 and paved a way of exploring motion branches of 

the derivative queer-square mechanism for Chapter 6. 
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Chapter 7   Multi-Furcation 

Recognition of a Derivative Queer-

Square Mechanism Based on Constraint 

Analysis 

 

7.1 Introduction 

 

This chapter is an extension of chapter 5 focusing on working out motion branches of 

the derivative queer-square mechanisms. Following the modelling of first-order and 

second-order constraints in Chapter 5, this chapter is to construct the constraint system 

of the multi-loop mechanism in Section 6.2. Before solving the equation system of 

constraints, Section 6.3 recognises the geometrical conditions under which the order of 

the constraint system changes. Solutions to the constraint system of integrating first-

order and second-order constraints are solved and given in Section 6.4 and all motion 

branches are listed in Section 6.5 with the corresponding geometrical conditions and 

prototype validations. Finally, this chapter implements motion simulation in 

commercial software SolidWorks to validate the derivations and equations numerically. 
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7.2 Construction of Constraint System 

 

In chapter 5, first-order and second-order constraints were derived according to the 

velocity and acceleration analysis respectively using a recursive algorithm of Lie 

bracket of screws. The scalars of relative angular velocities of kinematic joints in the 

mechanism form the vector of unknowns. All the constraints are obtained at the 

singularity configuration so that the mechanism can move into a motion branch if and 

only if all the constraints of the mechanism at that moment are satisfied, that is to say, 

the constraint system compromised of the first-order and second-order constraints have 

nontrivial solutions and the number of solutions determines the number of the motion 

branches. 

 

Assembling the first-order constraints in Equation (6.2) and the second-order 

constraints in Equation (6.14), the following constraint system with first-order and 

second-order integrated is obtained and can be expressed by an equation system in 

matrix form 

 

 
T 0   1,2, ,5k k




  

0Jω

A 
 (7.1) 

 

In the above constraint system, there are seven independent first-order constraints 

which is represented by the matrix in Equation (6.7) and five second-order constraints 

described in Equations from (6.22) to (6.26). The dependence property is discussed in 

the next section. From the above constraint system and rearranging the five second-
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order constraints, all possible constraints exerted to the mechanism at the singularity 

configuration can be listed as below 
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 (7.2) 

 

All constraints have been attained completely and shown in the above equation system. 

The kinematic constraints determine the motion branches of mechanisms and this is 

discussed in detail in the following context of this chapter. 
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7.3 Recognition of Geometrical Conditions for 

Motion Branches 

 

In Equation (7.2), all the first-order constraints are independent and they are represented 

in a matrix. From Section 5.5.2, all the second-order constraints have been simplified 

considering the conditions provided by the first-order constraints, so any one of the 

second-order constraints is independent of the first-order constraints. However, the 

dependence amongst the second-order constraints has not been explored in the previous 

chapter and this issue is discussed in this section. 

 

 

Figure 7.1  Loop II of the mechanism in a configuration of a parallelogram and the 

adjunct parallelogram 

 

Considering the five second-order constraints listed in Equation (7.2) and at the same 

time check the three loops in the derivative queer-square mechanism, it can be found 

that the items in the second-order constraint are closely connected to the topology of 
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the multi-loop mechanism. For instance, if loop II is in a configuration of a parallel 

four-bar mechanism and there exists an adjunct parallelogram which is marked in red 

colour in Figure 7.1, the following algebraic items extracted from the second-order 

constraints always hold 

 

 

3 4 11 12

3 4 11 12

53 4 6

0

0

0

   

   

   

  

 

 

 (7.3) 

 

 

Figure 7.2  Loop III of the mechanism in a configuration of a parallelogram and the 

connotative parallelogram 

 

Similarly, if loop III forms a parallelogram and there exists a connotative parallelogram 

which is marked in blue colour in Figure 7.2, the algebraic conditions below always 

hold in the mechanism 
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

 (7.4) 

 

The above conditions in Equations (7.3) and (7.4) are determined by the topology of 

loops II and III in the mechanism and affects the degrees of freedom of the constraint 

system. For example, if only loop II is a parallelogram and there exists a connotative 

parallelogram as shown in Figure 7.1, one constraint ω3+ω40 is introduced to the 

constraint system, meanwhile, combining this constraint with the first-order constraints, 

it can be seen that the following two second-order constraints are trivial 
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(7.5) 

 

Hence, the degrees of the freedom of the constraint system currently can be calculated 

as (5+7) + 1211. Similarly, if both loop II and III are parallelograms and there exist 

two connotative parallelograms as shown in Figure 7.1 and Figure 7.2, there are two 

geometrical constraints which are ω3+ω40 and ω7+ω80 being introduced to the 

constraint system, however four constraint listed below in the constraint system 

including one first-order constraint become trivial 
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Therefore, the degrees of freedom of the constraint system for the mechanism can be 

calculated as (5+7) + 2410. This method of calculating the degrees of freedom of the 

constraint system can be applied to other cases of the topology of the mechanism. It can 

be concluded that whether loop II and III are parallelograms and whether there exist 

connotative parallelograms are the determinants of the degrees of freedom of the 

constraint system. In such a case, geometrical conditions which are referred to the 

topology of the mechanism can be recognised, and such types of conditions determine 

the degree of freedom of the constraint system so that they determine the motion 

branches of the mechanism which is explored in the following section. 

 

7.4 Solving the Constraint System of the Derivative 

Queer-Square Mechanism 

 

The constraint system of the derivative mechanism presented in Equation (7.2) is 

relatively complicated with 12 first-order and second-order constraints mixed. We can 

use the commercial software Matlab to help solve the equation system. Firstly, the 

recursive algorithm of Lie bracket of screws can be calculated in Matlab. Secondly, the 
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first-order and second-order constraints can be obtained by symbol operation in the 

software based on the Lie product calculation. Finally, we employ the Matlab function 

solve to implement the symbolic solution of algebraic equations. All codes to 

implement the above operation and calculation are placed into Appendix B. 

 

After running the programs presented in Appendix B, six solutions to the equation 

system of the constraints are given. If representing these solutions in the form of 12-

dimensional column vectors (ω1 ω2 … ω12)
T, the solution vectors can be expressed as 

follows 
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  
T
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in which variables ωi of angular velocities are given as the functions of ω1 and ω12. The 

above Equations from (7.7) to (7.11) gives the six solutions of the constraint system. 

The first solution in Equation (7.7) has two degrees of freedom and hence ω1 and ω12 

are chosen to represent other variables. The other five solutions have only one degree 

of freedom and ω1 is chosen to represent other variables. 

 

Till now it can be concluded that the constraint system of the derivative queer-square 

mechanism at the singularity configuration shown in Figure 6.2 has been established 

based on the recursive algorithm of Lie bracket of screws and the method of simplifying 

the second-order constraints using bilinear form. There are six solutions to the 

constraint system of the mechanism at the singularity configuration. 

 

7.5 Six Motion Branches of the Derivative Queer-

Square Mechanism 

 

The number of the solutions to the constraint system of a mechanism at a singularity 

mechanism determines the quantity of the motion branches of the mechanism at the 

singularity configuration. From Section 6.4, six solutions are obtained as presented in 

Equations from (7.7) to (7.11) and that means the mechanism has six motions branches 

at this singularity configuration. 
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All feasible geometrical conditions for the constraint system were recognised in Section 

6.3 based on the simplification of second-order constraints and the combination of the 

first-order and second-order constraints. These geometrical conditions were presented 

in Equations (7.3) and (7.4). Then we check the six solutions one by one to see which 

geometrical conditions they satisfy. In such a way we can correspond the six solutions 

to the geometrical conditions of the topology of the mechanism so that we can establish 

the relationship between the six solutions and the motion branches of the mechanism 

and in this way all the motion branches of the mechanism at the singularity 

configuration can be revealed completely. 

 

For the first solution presented in Equation (7.7), we check all the feasible geometrical 

conditions and found the following conditions are fulfilled 
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which means loops II and III are parallelograms and there exist two connotative 

parallelograms in the mechanism. Therefore, the connection from solutions to the 

constraint system to the motion branches of the mechanism can be established so that 

the corresponding motion branch can be recognised. Since loops II and III are 

parallelograms and there exist two connotative parallelograms in the mechanism, the 

motion branch corresponding to the solution in Equation (7.7) and the conditions in 
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Equation (7.13) can be determined and shown as follows 

 

 

Figure 7.3  The motion branch I with two parallelograms and two connotative 

parallelograms 

 

Considering the solution in Equation (7.7), there are two variables in the solution and 

that means in this motion branch I the mechanism has mobility two. 

 

A 3D printed prototype of the derivative queer-mechanism was made to demonstrate 

the existence of the motion branch. It was proved that the prototype can move to this 

motion branch from the singularity configuration presented in Figure 6.2 and the photo 

of the prototype in this motion branch is shown in Figure 7.4 
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Figure 7.4  The prototype of the mechanism in motion branch I 

 

In a similar way, the geometrical conditions which the second solution in Equation (7.8) 

satisfies can be obtained as below 
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which means loop I and II are parallelograms but there are no connotative 

parallelograms in the mechanism. The topology of the motion branch II can hence be 

presented in the following Figure 7.5 
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Figure 7.5  The motion branch II with two parallelograms and no connotative 

parallelograms 

 

Then we check the 3D printed prototype, the motion branch is achievable and can be 

presented in the photo below. This motion branch has mobility one. 

 

 

Figure 7.6  The prototype of the mechanism in motion branch II 

 

Considering the solution in Equation (7.9), the following conditions hold 
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126 
 

which means loop I forms a parallelogram while loop II forms an anti-parallelogram, 

meanwhile, there is only one connotative parallelogram determined by joints A, B, C2, 

and D2 in Figure 6.2. This motion branch III can be presented in Figure 7.7. 

 

 

Figure 7.7  The motion branch III with one parallelogram and one connotative 

parallelogram 

 

Using the 3D printed prototype, it is demonstrated that the mechanism can move to this 

motion III from the singularity configuration and the motion branch can be presented 

in Figure 7.8. 

 

 

Figure 7.8  The prototype of the mechanism in motion branch II 
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Now check the solution in Equation (7.10) for geometrical conditions. It can be found 

the following conditions are satisfied of the solution 
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which indicates loop I is a parallelogram and loop II is an anti-parallelogram and there 

is no connotative parallelogram in this motion branch IV. The configuration of the 

mechanism in this motion branch can be illustrated by the following Figure 7.9. 

 

 

Figure 7.9  The motion branch IV with one parallelogram and no connotative 

parallelogram 

 

In the 3D printed prototype, the mechanism can achieve the movement from the 

singularity configuration to the motion branch IV. The motion branch can be presented 

in the photo of the prototype in Figure 7.10. 
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Figure 7.10  The motion branch IV with one parallelogram and no connotative 

parallelogram 

 

Considering the solution in Equation (7.12), the following geometrical conditions can 

be satisfied 
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in which loop I is an anti-parallelogram and loop II is a parallelogram and there is no 

connotative parallelogram. The configuration of the motion branch can be presented in 

Figure 7.11. 
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Figure 7.11  The motion branch V with one parallelogram and no connotative 

parallelogram 

 

It can be demonstrated that the mechanism can move to the motion branch V from the 

singularity configuration. The 3D printed prototype in this motion branch is presented 

in Fig. 6.12 

 

 

Figure 7.12  The prototype of the mechanism in motion branch V 

 

Finally, check the solution in Equation (7.11) for the geometrical constraints. The 

following constraints satisfying the solution can be obtained as 
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which means loop II is a parallelogram and loop I is an anti-parallelogram and there 

exists one connotative parallelogram in this motion branch VI. The configuration of the 

motion branch can be presented by Figure 7.13. 

 

 

Figure 7.13  The motion branch VI with one parallelogram and one connotative 

parallelogram 

 

The 3D printed prototype in the configuration of motion branch VI can be presented by 

the photo in Figure 7.14. 

 

 

Figure 7.14  The prototype of the mechanism in motion branch VI 



131 
 

 

Now this section gives all the six motion branches of the derivative queer-square 

mechanism at the singularity configuration together with the corresponding geometrical 

constraints and the demonstration with a 3D printed prototype. 

 

7.6 Validation of the Solutions to the Constraint 

System 

 

7.6.1. Angular Velocities of the Six Motion Branches 

 

Considering the solutions in Equations from (7.7) to (7.11), angular velocity ω3 can be 

represented as functions of ω1 and ω12 in six motion branches respectively. Therefore, 

ω3i can be presented as below 
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where the subscript i from 1 to 6 in ω3i indicates the number of the motion branches. 

Here the angular velocity ω3 is arbitrarily chosen and we can also choose other angular 

velocities as the argument. Plotting the curves defined by the functions in Equation 

(7.19) in a coordinate system, the following figure with curves of angular velocities can 

be attained. 

 

 

Figure 7.15  Multifurcation represented by angular velocities 

 

In this figure, lines in red and blue colour indicate the corresponding motion branches 

have mobility one and the plane for motion branch I means it has mobility two. All lines 

and the plane intersect at a point and this indicates the configuration spaces of all motion 

branches intersect at the singularity configuration. 

 

When the mechanism moves to the singularity configuration, the mechanism will divide 

into six motion branches and this is coined multi-furcation of mechanism. The 
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mechanism can switch its motion branch when going through the intersection point and 

this point can thus be coined constraint singularity. Figure 7.16 gives the 

correspondence between the curves of angular velocities and the configuration of the 

motion branches. 

 

 

Figure 7.16  Correspondence between the curves of angular velocities and the 

configuration of the motion branches 

 

 

7.6.2. Numerical Validation of the Solutions to the Constraint 

System 
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An arbitrary trajectory given to ω1, we can get the results of other angular velocities 

when the mechanism is at the singularity configuration from the Equations from (7.7) 

to (7.11) and these calculations have been presented in Figure 7.15. On the other hand, 

we can implement the kinematics simulation for every motion branch one by one to 

collect the information of the angular velocities. 

 

Since the relationship between angular velocities in motion branches I and II are rather 

simple, this section only does the simulation for motion branches from III to VI. This 

section uses the commercial software module Solidworks Motion to implement the 

kinematics simulation for the motion branches. The results can be given by the 

following Figure 7.17. 
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Figure 7.17  Numerical validation of motion branches from III to VI 

 

The above curves reveal the numerical results of ω3 in motion branches III and IV and 

ω11 in motion branches IV and V and these results are presented by curves in red colour 

in the above figures. The vertical line in the figures gives the moment when the 

mechanism moves through the singularity configuration and hence the angular 

velocities at that moment can be attained. Through comparison between the results of 

the angular velocity at singularity configuration calculated by the solutions in Section 

6.4 and by simulation in Solidworks Motion, it can be validated that the two results 

coincide with each other precisely and this proves the validation of the solutions to the 

constraint system. 

 

7.7 Conclusions 

 

This chapter for the first time revealed the six motion branches of the derivative queer-

square mechanism. Though reference [1] gave 14 motion states of the same 

mechanisms, this dissertation found 12 of the 14 motion states can be regarded as six 

motion branches because there are 6 six solutions for sure to the constraint system of 

the mechanism. In fact, different motion ranges of the same motion branch were seen 

as different motion states in reference [1]. However, this chapter found the other 2 of 

the 14 motion states cannot go through the same singularity configuration we were 

focusing on, so it should be eliminated from the motion branch classification. 
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After attaining six motion branches by solving the constraint system of the derivative 

queer-square mechanism, this chapter presented the prototype of each single motion 

branch and implemented numerical simulation in the commercial software module 

Solidworks Motion and it was verified that the results of angular velocities obtaining 

from the solutions to the constraint system coincided precisely with the simulation 

results. This chapter has shown the effectiveness of the screw-algebra approach together 

with the bilinear form representations of constraints in recognising the multi-furcation 

in complicated multi-loop mechanisms. 
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Chapter 8   Compositional Submanifold 

Analysis of Mechanisms 

 

8.1 Introduction 

 

The kinematic chains that generate the planar motion group in which the prismatic-joint 

direction is always perpendicular to the revolute-joint axis have shown their 

effectiveness in type synthesis and mechanism analysis in parallel mechanisms. This 

chapter extends the standard PRP (Prismatic-Revolute-Prismatic) kinematic chain 

generating the planar motion group to a relatively generic case by means of the 

equivalence of screw spaces as the tangent spaces of compositional submanifolds, in 

which one of the prismatic joint-directions is not necessarily perpendicular to the 

revolute-joint axis, leading to the discovery of a pseudo-helical motion with a variable 

pitch in a kinematic chain. The displacements of such a PRP chain generate a 

submanifold of the Schoenflies motion subgroup. This chapter investigates for the first 

time this type of motion that is the variable-pitched pseudo-planar motion described by 
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the above submanifold. The motion representation of a PRP-schoenflies parallel 

mechanism is presented in this chapter. 

 

8.2 Compositional Submanifolds and Lie Subgroups 

 

This section is to retrieve several fundamental concepts on Lie groups and composition 

of submanifolds, paving a way for using a composition of submanifolds in the context 

of Lie group to perform bifurcation analysis of a 3-PUP parallel mechanism. 

 

A subset of the rigid motion group SE(3) is denoted by (3).C SE  A submanifold M 

of SE(3) can be regarded as a subset of SE(3) endowed with the smooth group 

operations and denoted as M  ⊆ SE(3). If the closure under composition is satisfied by 

M, a subgroup S of SE(3) can be obtained and written as S ≤ SE(3). Table 1 enlists the 

subgroups of SE(3) and presents the notation to be used in this dissertation. 

 

The composition of subsets is the binary operation ∘ : P(SE(3)) × P(SE(3)) → P(SE(3)), 

where P(SE(3)) is the power set of SE(3). Such that, for any A, B ∈ P(SE(3)): 

 

 A∘B = {ab | a ∈ A, b ∈ B} ∈ P(SE(3)) (8.1) 

 

where A and B are not necessarily subgroups of SE(3), even if A and B are subgroups, 

A∘B is in general not a subgroup of SE(3). Therefore A∘B can be referred to as 

compositional submanifold to indicate the general case in which the result is not a 
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subgroup. The composition of subsets is associative but not commutative. In fact, A∘B 

is a subgroup of SE(3) if and only if A∘B = B∘A. 

 

Table 8.1  List of subgroups of SE(3). When applied, L(𝒙̂, Q) denotes a line that is 

parallel to 𝒙̂ and contains Q. 

Dimension Name Description 

0 {e} The trivial set containing only the identity of SE(3) 

1 T(𝒙) The set of translations along a straight line parallel to 𝒙̂ 

1 R(Q,𝒙̂) The set of rotations about a fixed axis L(𝒙̂, Q) 

1 H(Q,𝒙̂,h) 

The set of helical displacements with fixed pitch h and fixed 

axis L(𝒙̂, Q) 

2 T(𝒙̂1, 𝒙̂2) The set of translations in a plane that contains 𝒙̂1 and 𝒙̂2 

2 C(Q,𝒙̂) 

The set of cylindrical displacements: rotations about the 

fixed axis L(𝒙̂, Q) and translations along a straight line 

parallel to 𝒙̂. 

3 T The set of spatial translations. 

3 G(𝒙) 

The set of general planar displacements: translations in a 

plane perpendicular to 𝒙̂ and rotations about an axis parallel 

to 𝒙̂. 

3 S(Q) 

The set of spherical displacements: rotations about any axis 

containing Q. 

3 Y(𝒙, h) 

The set of translations in plane perpendicular to 𝒙̂ and helical 

motions with pitch h and axis parallel to 𝒙̂. 

4 X(𝒙̂) 

The set of Schoenflies displacements: transitions in space 

and rotations about an axis that is parallel to 𝒙̂. 
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6 SE(3) The improper subset containing the whole Euclidean group. 

 

In an n-link kinematic chain the kinematic bond or mechanical liaison between links i 

and j, i<j∈{1,…,n}, L(i,j) ∈ P(SE(3)) is the set of all possible Euclidean displacements 

between links i and j. In such a case, if the kinematic chain is constructed purely by 

revolute, prismatic and helical joints, the kinematic bond between links i and j can be 

obtained by: 

 

 L(i,j) = Ai,i+1∘Ai+1,i+2∘…∘ Aj-1,j ∈ P(SE(3)) (8.2) 

 

where Ak,k+1 ≤ SE(3), k = i…j-1, is the subgroup of all possible displacements between 

adjacent links k and k+1 which are joined by a 1-DOF kinematic pair and thus Ak,k+1 is 

a subgroup of SE(3). 

 

In mechanism analysis and kinematics, the displacement of the end-effector of an open 

kinematic chain can be completely described by the concepts related to the composition 

of submanifolds in the above. An illustrative example is given by employing a PRP 

kinematic chain in Figure 8.1. In this PRP chain, the two prismatic joints are lying in 

the plane π perpendicular to the axis of the revolute joint. Each single joint in this 

kinematic chain generates a subgroup of SE(3). The corresponding tangent space of the 

manifold of a kinematic joint at the identity can be presented by the axis and type of the 

joint. In that case, the displacement of the end effector of the PRP chain can be 

represented by a compositional submanifold M constituted by the subgroups M1, M2, 

and M3 of the kinematic joints which represents the kinematic bond between the fixed 

link and the end effector. 
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Further, it is possible to use various bases to represent the tangent space at the identity 

of the composition submanifold M by applying a linear transformation to the current 

basis generating such tangent space. Since the kinematic bond between the end effector 

and the fixed link of the kinematic chain in Figure 8.1 is the subgroup of general planar 

displacements G(𝒌̂), it is possible to apply linear transformations to the current basis of 

the tangent space at identity to obtain equivalent kinematic chains. The kinematic 

equivalence is ensured not only instantaneously but also under finite displacements 

since the kinematic bond is a subgroup, and thus its tangent space at the identity is a 

subalgebra of se(3). The equivalent kinematic chains of the PRP chain can be obtained 

as PRP, PPR(Prismatic-Prismatic-Revolute), RPR(Revolute-Prismatic-Revolute), 

PRR(Prismatic-Revolute-Revolute), and RRR(Revolute-Revolute-Revolute) kinematic 

chains in which the direction of the prismatic joint axis is always perpendicular to the 

axis of the revolute joint in each chain. 

 

 

Figure 8.1  PRP chain and the related submanifolds. 
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8.3 Tangent Spaces of Compositional Submanifolds 

Generated by Screws 

 

A complex of the rigid motion group SE(3) can be defined as a subset of elements of 

SE(3) and coined SE(3).C   With the concept of the complex of SE(3), a submanifold 

M of SE(3) can be regarded as a complex of SE(3) attached with the smooth group 

operations and we coin it SE(3).M    If the closure property is satisfied for M, a 

subgroup S of SE(3) can be obtained and written as SE(3).S    Alternatively, a 

subgroup of SE(3) can be directly obtained from a complex of SE(3) in the case the 

group axioms are fulfilled for the complex. 

 

The product C1·C2 of two complexes C1, C2 of SE(3) is defined as the subset C={c1·c2: 

c1∈C1, c2∈C2} in which the product is the group multiplication of SE(3). Similar with 

the definition of the submanifold of SE(3) in the above, if integrating smooth group 

operations with the subset C attaining from the product of two complexes, the 

submanifold M of SE(3) can be obtained from the subset C and it is coined 

compositional submanifold or product submanifold in this dissertation. It is not difficult 

to prove that M is the product of two submanifolds M1, M2 growing from the complexes 

C1, C2. It is noteworthy that the product operation in the product submanifold is 

distinctive with the product in the concept of product submanifold in the theory of 

differential manifolds. The former product is nothing more than the group 

multiplication of SE(3), while the latter product refers to the direct product or the 

Cartesian product of two submanifolds. 
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Complex C Submanifold M

With the group 
axioms

Subgroup S

With the smooth
group operations

With the closure 
property

 

 

Figure 8.2  The relationship among the complex, submanifold, and subgroup of se(3) 

 

If more strictly, let the two complexes C1, C2 fulfil the group axioms, then two 

subgroups S1, S2 are given. The product of subgroups S1, S2 of SE(3) does not 

necessarily gives another subgroup unless the closure property is satisfied for the 

resultant subset of the product, but usually gives an product submanifold according to 

the above definitions. In the same manner we can derive the product of three or more 

submanifolds or subgroups to generate a product submanifold of SE(3). 

 

In kinematics, the product submanifold is in fact a mathematical representation for the 

well-known kinematic bond put forward by Hervé. 

 

In certain instances, the tangent space of a product submanifold plays an essential role 

in mechanism analysis. From the differential geometry, the tangent space of a product 

submanifold is equivalent to the product of the tangent spaces of the submanifolds. Let 

M1, M2, … , Mn be a sequence of differential manifolds of dimension d1, d2, … , dn 

respectively, a product submanifold M of dimension (d1 d2 dn) can be obtained 

by taking the product of these manifolds and can be denoted as M = M1 × M2 × … ×M 
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n. Hence, manifolds M1, M2, … , Mn come as submanifolds of M. As to the tangent 

spaces of product submanifold and its submanifolds, we have an isomorphism as 

follows 

 

 1 21 2: T T T Tp np p pnM M M M     (8.3) 

 

in which p1, p2, … , pn are the projections of p on M1, M2, … , Mn respectively. That is 

to say, the tangent space of a product submanifold is equivalent to the product of the 

tangent spaces of the corresponding submanifolds. Considering the exponential map 

between a manifold with its tangent space, the relationship amongst the product 

submanifold of the submanifolds and the related tangent spaces can be described by a 

commutative diagram in Figure 8.3. 

 

Product manifold

M

Tangent spaces 

of sub-manifolds

TpiMi

Sub-manifolds

Mi

exp

exp

Projection Product

Tangent space

TpM

 

Figure 8.3  A commutative diagram for the product submanifold, the submanifolds, and 

the related tangent spaces 

 

From Figure 8.3, a submanifold of SE(3) can be obtained through two approaches, in 

which one is to take the product of its submanifolds to gain a product submanifold, and 

the other is to obtain its tangent space followed by taking the exponential map of the 

tangent space. 
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8.4 Motion Representation of a Tilting-Angled PRP 

Chain as a Subset of the Schoenflies Motion 

Subgroup 

 

The planar motion group SE(2) can be achieved by five types of kinematic chains. This 

section is to prove the particular PRP kinematic chain with a tilting angle in Figure 

8.4(a) that is instantaneously equivalent to the chain PRH(Prismatic-Revolute-Helical) 

kinematic chain shown in Figure 8.4 (b), in which a helical joint is involved to 

compensate for the tilting angle. In other words, the chain PRP with a tilting angle 

receives a pseudo-helical motion due to the tilting angle compared with a standard PRP 

chain. 

 

Let M(𝒔̂, α) ≜ L(1,4) be the kinematic bond between the end-effector and the fixed link 

in the PRP kinematic chain in Figure 8.4(a). Then, 

 

 exp(m1E4) exp(θ(E3+m1E5)) exp(m2(cosαcosθE4+cosαsinθE5+sinαE6)) ∈ M(𝒔̂, α) 

  (8.4) 

 

where 𝒔̂ coincides with z-axis, representing a normal vector of plane π of the kinematic 

chain, and scalars θ, m1 and m2 indicate the amplitudes of the revolute joint and the two 

prismatic joints respectively. In this dissertation, Ei, i=1,…,6, form a standard basis for 
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the Lie algebra se(3) of SE(3), E1, E2, and E3 representing the rotations about x-, y-, and 

z-axis respectively, and E4, E5, and E6 representing the translations along the three axes 

respectively. 

 

 

(a) PRP chain with a tilting angle α 

 

    

 (b) PRH kinematic chain 

Figure 8.4  Geometrical structures of the PRP chain with a tilting angle and the PRH 

chain. 

 

Considering the open kinematic chain of Figure 8.4(a), the basis {S1, S2, S3} for the 

tangent space of the manifold M(𝒔̂, α) at identity can be written as follows: 

 

 
1 4 2 3 1 5

3 4 5 6

,   ,

cos cos cos sin sin

S E S E m E

S E E E    

  

  
 (8.5) 
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Now consider M*(𝒔̂, h) ≜ L(1,4) be the kinematic bond between the end-effector and 

the fixed link in the PRP kinematic chain in Figure 8.4 (b). Then, 

 

 exp(nE4) exp(φ(E3+nE5)) exp(γ(E3+ksinφE4+(n-kcosφ)E5+hE6)) ∈ M*(𝒔̂, h) (8.6) 

 

where scalars φ, n and γ indicate the amplitudes of the prismatic joint, revolute joint 

and helical joint respectively, h is the pitch of the helical joint, and k is the distance 

between the revolute joint and the helical joint. Hence, the tangent space at the identity, 

TeM*(𝒔̂, h), of the displacement manifold produced by the PRH kinematic chain can be 

generated by the following basis 

 

 
 

1 4 2 3 5

3 3 4 5 6

,   ,

sin cos

V E V E nE

V E k E n k E hE 

  

    
 (8.7) 

 

Comparing Equation (7.5) with Equation (7.7) and simply using elementary operations 

for matrices, the basis {V1, V2, V3} can be transformed into the basis {S1, S2, S3} by the 

following linear transformation 

 

 

 

1 1

2 2

3 3

1 0 0

0 1 0

cos cos
1

sin cos sin

V S

V S

V Sk k  

  

 
    
    

     
         
  

 (8.8) 

 

where we take m1=n and the variable pitch of the pseudo-helical motion is derived as 

 



148 
 

 
cos

tan
sin

h k





   (8.9) 

 

It should be noted that the pitch of the pseudo-helical motion included in M*(𝒔̂, h) is a 

variable, rather than a constant scalar which can be expressed by a mechanical helical 

joint. Instantaneously, the motion of kinematic chain in Figure 8.4(a) is equivalent to 

that of the kinematic chain in Figure 8.4(b). Since M(𝒔̂,α) is not a subgroup of SE(3), 

this equivalence does not hold for finite displacements and M(𝒔̂,α) ≠ M*(𝒔̂, h). Other 

instantaneously-equivalent generators can be found by means of the change of basis, 

for example HRH(Helical-Revolute-Helical) kinematic chain.  

 

A point in the end effector of the skewed PRP kinematic chain generating M(𝒔̂ ,α) 

describes a family of one-sheet hyperboloids whose centers can translate along a 

straight line. Each hyperboloid is generated by the composition of the second and third 

kinematic pairs, an RP chain, and each center of the hyperboloid lies in a line parallel 

to the first prismatic pair. This gives a total of ∞3 points, in concordance with the 

dimension of M( 𝒔̂ ,α). The end effector undergoes a rotation about the axis of the 

hyperboloid, such rotation is dependent of its position in the hyperboloid.   

 

A simpler way of describing M(𝒔̂,α) is thinking of it as G(𝒔̂) adding a translation through 

𝒔̂, which is dependent of G(𝒔̂). However, unlike in Y(𝒔̂,h), this dependence is not related 

to the rotational component of G(𝒔̂ ). If G(𝒔̂ ) is generated by a PRP chain, then the 

translation through 𝒔̂ is given is by (tan α)s, where s is a displacement of the final P 

joint, this relationship is linear, in a similar way that the translation through 𝒔̂ in Y(𝒔̂,h) 

is linearly dependent on the rotation about 𝒔̂. It can be seen that due to this translation 
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the smallest subgroup containing M(𝒔̂,α) is the 5-dimensional subgroup of Schoenflies 

displacements, X(𝒔̂). 

 

8.5 Motion Representation of a PRP-Schoenflies 

Parallel Mechanism 

 

Since a PRP chain with tilting angle is a generator of the M(𝒔̂,α) submanifold of the 

Schoenflies motions subgroup,  X(𝒔̂), it is possible to build a parallel manipulator whose 

end effector motions generates M(𝒔̂,α). Such manipulator can be obtained by taking the 

skewed PRP chain with tilting angle as a limb and other two limbs that generate 

manifolds of the Shoenflies motion.  

 

An example of such a mechanism is shown in Figure 8.5. The two generators of the 

Schoenflies motions subgroup are the limbs 2 and 3, which are RPC and 

RCH(Revolute-Cylindrical-Helical) chains respectively. In limb 2 the axes of the C and 

R joints are parallel to 𝒖̂ and the direction of P joint axis is perpendicular to 𝒖̂. In limb 

3 the axes of the three joints are parallel to 𝒖̂. Permutation of the joints in these two 

limbs is allowed. These two limbs can be replaced by any other mechanical generator 

of the Schoenflies subgroup of motions.   
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Figure 8.5  The 3-DOF PRP-Schoenflies parallel mechanism 

 

The manifold generated by the possible displacements of the moving platform with 

respect to the fixed platform is the intersection of three manifolds generated bylimbs. 

Since M(𝒖̂ ,α) is a submanifold of  X(𝒖̂ ), then the manifold of displacements of the 

moving platform with respect to the fixed one is  

 

 M1∩M2∩M3 = M(𝒖̂,α)∩X(𝒖̂)∩X(𝒖̂) = M(𝒖̂,α). (8.10) 

 

Therefore, this parallel mechanism is able to generate exactly the same submanifold of 

the skewed PRP kinematic chain with a tilting angle. The parallel mechanism has 3 

degrees of freedom since no passive degree of freedom is present in the limbs. The three 

limbs allow to control each degree of freedom using each limb.  

 

8.6 Conclusions 
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Serial chains with kinematic equivalence that generate the same Lie subgroups of SE(3) 

play an essential role in mechanism synthesis and analysis. By introducing the concept 

of computational submanifolds of SE(3) with its tangent spaces and the relevant 

products, this chapter extended the standard PRP kinematic chain producing the planar 

motion subgroup SE(2) to a relatively generic kinematic chain in which the prismatic-

joint direction is not necessary to be perpendicular to the revolute-joint axis. To the 

knowledge of the candidate, although such a PRP kinematic chain has been investigated 

in [39][66] through screw systems, the type of motion described by this skewed PRP 

kinematic chain is not included in previous dissertations or books dealing with 

submanifolds of SE(3) that are not subgroups. Finally, this chapter ended up with 

investigating the motion representation of a PRP-schoenflies parallel mechanism. 
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Chapter 9   Bifurcation Analysis of a 3-

PUP Parallel Mechanism 

 

9.1 Introduction 

 

Following the extraction of a pseudo-helical motion from the skewed PRP kinematic 

chain in Chapter 7, this chapter investigates the bifurcated motion in a 3-PUP parallel 

mechanism by changing the active geometrical constraint in its configuration space. 

The representation of motion of the 3-PUP parallel mechanism and its motion branches 

will be derived using computational submanifolds of SE(3). An experimental test is set 

up based on a 3D printed prototype of the 3-PUP parallel mechanism to detect the 

inconspicuous translation of the pseudo-helical motion. 
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9.2 Geometrical Structure of the 3-PUP Parallel 

Mechanism 

 

The elementary concept of Lie group and product submanifold in chapter 8 is to be 

applied in the displacement and mobility analysis of a parallel mechanism with 

bifurcated motion by exploring the characteristics of the displacement of a 3-PUP 

parallel mechanism. 
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Figure 9.1  The 3-PUP Parallel Mechanism 

 

As illustrated in Figure 9.1, the 3-PUP parallel mechanism contains three PUP limbs 

denoted as limb i (i=1, 2, 3) where U represents the Hook joint. In each limb, the 

prismatic joint of the limb labelled as Pi1 is perpendicular to the base and is called base-

prismatic joint. The three base-prismatic joints are symmetrically distributed, and thus 

constitute an equilateral triangle A1A2A3 attached with the base. The rotation axes in 
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three Hook joints Ui allocated respectively at each joint between a limb and the platform 

form two sets of rotation axes Ri1 and Ri2, where the first subscript indicates the limb 

number and the second subscript indicates the set number. In this arrangement, the same 

set rotation axes in three limbs respectively are parallel to each other. Three rotation 

axes Ri1 are parallel with A2A3. For three platform-prismatic joints Pi2 on the platform, 

P12 corresponding to limb 1 is collinear with the rotation axis of R12 while P22 and P32 

have an angle α with R22 and R32 respectively. 

 

As in Figure 9.1, a global reference frame {O-xyz} is located at the central point O of 

triangle A1A2A3 with its x-axis passing through point A1 and y-axis parallel with A2A3, 

while a local reference frame {E-uvw} is attached to the platform with its origin at the 

central point E of the platform, u-axis going through the point B1, and v-axis parallel 

with B2B3.  

 

In the global reference frame, the three base-prismatic joints Pi1 are in the direction of 

the z-axis and the first set of revolute joint Ri1 in the three hook joints directs towards 

the y-axis. In the local reference frame, the second set of revolute joints in the three 

hook joints is lying in the direction of the u-axis and the revolute joint R12 is in the 

direction of the u-axis, while the revolute joints R22 and R23 form an angle α with v-

axis. Hence, the joints in limb 1 from the base to the platform can be written as P(z), 

U(B1, y, u), and P(u), in which the prismatic joint is represented by a direction vector 

and the hook joint by two direction vectors perpendicular to each other together with 

the point where the axes of the two revolute joints intersect. In such a case, the joints in 

limb 2 can be denoted as P(z), U(B2, y, u), and P(m); the joints in limb 3 can be denoted 
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as P(z), U(B3, y, u). Vector m and n are the position vectors from origin E to point B2 

and B3 respectively. 

 

 

Figure 9.2  The PRP Chain Extracted from Limb 1 and Its Equivalent RPR Chain 

 

As in Figure 9.2, a PRP chain in which two prismatic joints lie in a plane perpendicular 

to the revolute-joint axis can be extracted from limb 1 of the 3-PUP parallel mechanism. 

This is one of the kinematic chains that generate the planar motion group SE(2). 

According to the description this chapter, chain PRP in limb 1 and chain RPR are said 

to be equivalent with each other. If we switch these two chains, the displacement and 

mobility of the platform of the 3-PUP parallel mechanism do not change as both of the 

two kinematic chains generate the same product submanifold, strictly the planar motion 

group SE(2). Such a sort of kinematic equivalence brings benefits to this dissertation 

because the displacement submanifold of the platform of the 3-PUP parallel mechanism 

can be derived by means of finding out the kinematic equivalence chains of particular 

chains. 
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Figure 9.3  The PRP Chain with an Offset Angle Extracted From Limb 2 

 

Likewise, a PRP chain with an offset angle α can be obtained from limb 2 as illustrated 

in Figure 9.3. This particular PRP chain can be regarded as a variation of PRP chain in 

Figure 8.1 and there is no difference between them other than the offset angle α. 

However, the two kinematic chains are distinctive in kinematics because the PRP chain 

with an offset angle generates a 2-dimensional submanifold of SE(3) and thus cannot 

generate the planar motion group SE(2) anymore due to the existence of the offset angle 

α. Finding out the equivalence manifold of this submanifold to obtain submanifold of 

the platform of the 3-PUP parallel mechanism is an essential issue of this dissertation 

and is to be further investigated in the following sections. 
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9.3 Manifold Representation of The PUP Motion 

and the Parallel Mechanism 

 

In a 3-PUP parallel manipulator (Figure 9.1) the three base-prismatic joints Pi1 are in 

the direction of k(z) and the first set of revolute joints Ri1 in the universal joints directs 

towards the k(z) of the global fixed frame. In the local reference frame, the second set 

of revolute joints in the three universal joints is lying in the direction of the u thus the 

revolute joint R12 is in the direction of the u, while the revolute joints R22 and R32 form 

an angle α with v. Hence, the joints in limb 1 from the base to the platform can be 

written as P(𝒌̂), U(B1, 𝒋̂, 𝒖̂), and P(𝒖̂), in which the prismatic joint is represented by a 

direction vector and the universal joint by two direction vectors perpendicular to each 

other together with the point where the axes of the two revolute joints intersect. In such 

a case, the joints in limb 2 can be denoted as P(𝒌̂), U(B2, 𝒋̂, 𝒖̂), and P(𝒎̂); the joints in 

limb 3 can be denoted as P(𝒌̂ ), U(B2, 𝒋̂ , 𝒖̂ ), and P(𝒏̂ ). Vector 𝒎̂  and 𝒏̂  are the unit 

vectors in the direction of EB2 and EB3, respectively. 

 

As shown in Figure 8.1, a standard PRP chain in which two prismatic joints lie in a 

plane perpendicular to the revolute-joint axis can be extracted from limb 1 of the 3-PUP 

parallel mechanism. This is one of the kinematic chains that generate the planar motion 

group SE(2).  

 

As in Figure 9.4, the submanifolds generated by the kinematic joints in limb 1 and can 

be expressed as T (𝒌̂), R (B1, 𝒋̂), R (B1, 𝒖̂) and T (𝒖̂), respectively. Based on the related 

concepts of composition of submanifolds given in chapter 7, the kinematic bond 
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between the fixed and the moving platforms generated by limb 1 is represented by the 

compositional submanifold as follows, 

 

 M1 = T(𝒌̂)R (B1, 𝒋̂)R (B1, 𝒖̂)T (𝒖̂) (9.1) 

 

This presents a compositional submanifold generated by limb 1 that is  a pivoting limb 

of a 3-PUP parallel mechanism.  

 

 

Figure 9.4  The Lie subgroups in limb 1. 
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Figure 9.5  The skewed PRP chain with a tilting angle extracted from limb 2. 

 

According to the geometrical structure of the 3-PUP parallel mechanism given in this 

chapter, the displacement manifolds generated by limb 2 and limb 3 are respectively 

written as 

 

 M2 = T(𝒌̂)R (B2, 𝒋̂)R (B2, 𝒖̂)T (𝒎̂) (9.2) 

 M3 = T(𝒌̂)R (B3, 𝒋̂)R (B3, 𝒖̂)T (𝒏̂) (9.3) 

 

It can be seen that M1, M2 and M3 are four-dimensional submanifolds of SE(3). 

 

Since the displacements of the platform of a parallel mechanism are the intersection of 

displacements of its limbs, the displacement submanifold M of the platform of the 3-

PUP parallel mechanism can be represented by the intersection of the submanifolds M 

1, M 2 and M3 in the form of 

 

  1  2  3M M M M    (9.4) 

 

The displacement subset M is not necessarily a differential manifold due to the fact that 

it may contain more than one displacement branch. This phenomenon will be further 

explored. Consequently, the displacements of the platform of the 3-PUP parallel 

mechanism can be presented using the intersection of three product submanifolds. 

However, the result of the intersection of the three product submanifolds in Equation 

(8.4) remains unsolved and it is changeable with respect to the change of the 

geometrical conditions in configuration space of the 3-PUP parallel mechanism. 



160 
 

 

9.4 Motion Branches of the 3-PUP Parallel 

Mechanism 

 

9.4.1 Motion Branch with a Pure Rotation and a Translation 

 

To solve the intersection of the three submanifolds in Equation (8.4), motion branch A 

of the configuration space of the 3-PUP parallel mechanism can be obtained when the 

geometrical condition that the rotation axis of revolute joint R21 coincides with the 

rotation axis of revolute joint R31 is effective. In this case, the constraint d2  d3, where 

d2 and d3 represent the amplitudes of the prismatic joints P21 and P31 respectively, is a 

consequence of R21 and R31 being co-axial. The denotations R21, R31, P21 and P31 are 

given in Figure 9.1. Hence, the group equality R(B2, 𝒋̂)= R(B1, 𝒋̂) is satisfied, since B1B2 

is parallel to 𝒋̂. In this motion branch, the displacement manifold MA1 produced by limb 

1 can be obtained from Equation (8.4) and derived as follows: 

 

MA1 = T(𝒌̂) ∘R(B1, 𝒋̂) ∘R(B1, 𝒖̂) ∘T(𝒖̂) = T(𝒌̂) ∘R(B1, 𝒋̂) ∘T(𝒖̂) ∘R(B1, 𝒖̂)  = G(𝒋̂) ∘R(B1, 𝒖̂)

  (9.5) 

 

where R(B1, 𝒖̂) ∘T(𝒖̂) has commuted to T(𝒖̂) ∘R(B1, 𝒖̂), this is allowed since the axes of 

rotation and translation are parallel. The result, G(𝒋̂ ) ∘R(B1, 𝒖̂ ), is a 4-dimensional 

submanifold which was studied by Fanghella and Galletti [81] and Rico [82] et al (see 
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Table 8.1, row 10)1 . From such research it is known that G(𝒋̂ ) ∘R(B1, 𝒖̂ ) contains 3 

translations and 2 rotations that are not independent, so that the dimension of this 

submanifold is four. The smallest subgroup of SE(3) that contains G(𝒋̂) ∘R(B1, 𝒖̂) is the 

improper subgroup SE(3).  

 

For the second and third limb we have: 

 

 MA2 = T(𝒌̂) ∘R(B2, 𝒋̂) ∘R(B2, 𝒖̂) ∘T(𝒎̂) (9.6) 

 MA3 = T(𝒌̂) ∘R(B2, 𝒋̂) ∘R(B2, 𝒖̂) ∘T(𝒏̂) (9.7) 

 

Which are 4-dimensional submanifolds of SE(3). The smallest subgroup containing 

them is the whole group SE(3). However, both, MA2 and MA3 are subsets of the double 

Schoenflies submanifold, X(𝒋̂) ∘ X(𝒖̂), which was studied by Lee and Hervé [54]. It can 

be seen that: 

 

 MA2∩MA3= T(𝒌̂) ∘R(B2, 𝒋̂) ∘R(B2, 𝒖̂) (9.8) 

 

Since intersection is an associative operation it follows that: 

 

MA = MA1∩MA2∩MA3 = MA1∩(MA2∩MA3) = G(𝒋̂) ∘R(B1, 𝒖̂) ∩T(𝒌̂) ∘R(B2, 𝒋̂) ∘R(B2, 𝒖̂) 

= T(𝒌̂) ∘ R(B2, 𝒋̂)  (9.9) 

 

                                                           
1 In both references R(B1, 𝒖̂) ∘ G(𝒋)̂  was analyzed. Even though the composition of sets is non-

commutative, G(𝒋)̂ ∘R(B1, 𝒖̂) can be analyzed by kinematic inversion, i.e. considering the end-effector 

as fixed link and the fixed link as end-effector. 
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In such a case, the feasible mobility of the platform of the 3-PUP parallel mechanism 

in branch A of the configuration space restricted by the condition d2d3 is a translation 

along z-axis together with a rotation about the axis R21 getting through the point B2, 

parallel with y-axis. The displacement of the platform described by the submanifold MA 

can be illustrated by the 3D printed prototype given in Figure 9.6. 

 

 

Figure 9. 6  Feasible displacements in motion branch A: (a) home configuration (see 

Sec. 6.3); (b), (c) from the test set up in Section 8.5, the platform is performing pure 

rotation, without any translation along x- and y-axis. 

 

9.4.2 Motion Branch with a Pseudo-helical motion and a 

Translation 

 

When the geometrical condition that rotation axes R22 and R32 are perpendicular to the 

yz-plane of the global reference frame {O-xyz} is effective (then 𝒖̂   𝒊̂), Eq. (9.8) has a 

solution. Observe that if R22 is parallel to R32, then revolute joints R21 and R31 must be 

idle. With such a constraint exerted by the geometrical  
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structure of the 3-PUP parallel mechanism, the configuration of the parallel mechanism 

goes into another branch denoted as motion branch B in this dissertation. For the first 

limb we have the same set of displacements: 

 

MB1 = T(𝒌̂) ∘R(B1, 𝒋̂) ∘R(B1, 𝒊̂) ∘T(𝒊̂) = T(𝒌̂) ∘R(B1, 𝒋̂) ∘T(𝒊̂) ∘[T(𝒊̂) ∘R(B1, 𝒊̂)]  = G(𝒋̂) 

∘C(B1, 𝒊̂)  (9.10) 

 

Both limbs are generators of the 3-dimensional submanifold described in chapter 7. To 

find MB2∩MB3 observe that, if the end effectors of both limbs are rigidly connected the 

translational component along 𝒊̂, appearing due to the pseudo-helical motion described 

in Chapter 7, has to be the same for both kinematic chains. Therefore:  

 

 MB2∩MB3= M-1(𝒊̂, α) = M-1(𝒊̂, π-α) (9.11) 

 

where M-1(𝒊̂, β), β = α,  π –α, indicates a submanifold of M(𝒊̂, β) whose dimension is 2 

and includes the pseudo-helical motion component of M( 𝒊̂, β). Therefore M-1(𝒊̂, β) 

includes the pseudo-helical motion of M(𝒊̂, β) and T(𝒌̂), so that: 

 

 MB2∩MB3= M-1(𝒊̂, α) = T(𝒌̂)∘M-2(𝒊̂, α) = M-1(𝒊̂, π-α) = T(𝒌̂)∘M-2(𝒊̂, π-α) (9.12) 

 

where M-2(𝒊̂, β), (β = α,  π –α), represents the 1-dimensional submanifold of pseudo-

helical motions with variable pitch. Observe that M-1( 𝒊̂, α) = M-1(𝒊̂, π-α) since the 

translation of both end-effectors, which have been rigidly connected occurs in the x-

direction due to the symmetry of the isosceles triangle conformed by the moving 

platform. If the displacements in this direction have to be the same for both limbs we 
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have s22sin α = s32sin(π-α) ⇔ s22 = s32, where s22 and s32 are the displacements of pairs 

P22 and P32 respectively, and the translations in the y- direction are cancelled.   

 

It is now straightforward to determine the set of displacements of the moving platform 

with respect to the fixed platform: 

 

MB = MB1∩MB2∩MB3 = MB1∩(MB2∩MB3) = G(𝒋̂) ∘C(B1, 𝒊̂)∩ T(𝒌̂)∘M-2(𝒊̂, π-α) = T(𝒌̂)∘M-

2(𝒊̂, π-α)  (9.13) 

 

This is due to the fact that T(𝒌̂) ≤ G(𝒋̂) and M-2(𝒊̂, π-α) ⊆ C(B1, 𝒊̂). Observe that due to 

symmetry the axis of rotation of M-2(𝒊̂, π-α) passes through E and B1. It can be concluded 

that in this branch of motion the parallel platform undergoes a pseudo-helical motion 

and a pure translation. Revolute joint R11 is idle too since the rotational component of 

G(𝒋̂) is lost in the intersection.  

 

Imagine that P11 is locked, then the pure translation of the moving platform is lost. If 

s21 and s31 are the displacements of prismatic joints P21 and P31, respectively, then 

d2d3. If P11 is released and the pure translation is now allowed, then d2 d1d3 d1, 

where s11 is the displacement of kinematic pair P11. Thus, the geometric constraint for 

this motion branch is d2 d3 2d1 

 

The displacement of the platform described by submanifold MB can be illustrated by 

the prototype given in Figure 9.7. 
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Figure 9.7  Feasible displacements in motion branch B. (a) home configuration; (b), 

(c) the photos only illustrate the rotation of the platform, and the translation of the 

pseudo-helical motion is to be detected in Sec. 7. 

 

9.4.3 Home Configuration and the Bifurcated Motion 

 

The home configuration of the 3-PUP parallel mechanism is a configuration where the 

two motion branches of the configuration space switch over. In the home configuration, 

the constraints in motion branches A and B are both effective, due to that the home 

configuration is also named constraint singularity in configuration space.  

 

Note that MA∩ MB T(𝒌̂), therefore there is a continuum of points in the configuration 

space that are singularities. If coordinate system {E-uvw} coincides with {O-xyz}, 

applying pure translation in the z direction will lead to singular configurations in which 

it is possible to escape to any of both motion branches. Hence, all these configurations 

belong to both components of the configuration space and both geometric constraints 

(d2  d3  2d1 and d2d3) are satisfied, therefore, in such continuum of singular 
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configurations d1  d2  d3. These properties are summarized in the diagram in Figure 

9.8. 

 

 

 

Figure 9.8  Bifurcated motion and constraint singularity in the 3-PUP parallel 

mechanism. 

 

As in Figure 9.8, the translation of the platform T (z), common to branches A and B, is 

still feasible at home configuration. However, the rotation of the platform R(B2, y), 

included in motion branch A but not in motion branch B, becomes instantaneous 

displacement because the constraint space of motion branch A is a proper subset of the 

constraint space of the home configuration. That is to say, in home configuration the 

instantaneous rotation R(B2, y) exists since home configuration is a specific case of 

motion branch A, but this instantaneous rotation R(B2, y) cannot generate any finite 

motion in home configuration since this rotation is not permitted by the constraints of 

motion branch B. In a similar way, we can obtain an instantaneous screw motion M(E, 

u, h) as well in home configuration. Hence, in home configuration determined by the 

conditions d2d3 and d2d32d1, i.e. d1d2d3, the platform of the 3-PUP parallel 
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mechanism has a finite rotation as T(z), an instantaneous rotation as R(B2, y), and an 

instantaneous screw motion as M(E, u, h). This result can be verified by taking the 

intersection of three manifolds of limbs under the geometrical constraint d1d2d3. In 

this home configuration the displacement manifold MC1 generated by limb 1 can be 

derived as follows 
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where PL(y) and C (B1, u) was given in previous sections. Due to the geometrical 

constraint d1d2d3, PL(y) and C (B1, u) in the above represents the potential 

displacements in home configuration and thus cannot produce a finite displacement. In 

like manner, we can obtain the displacement manifold MC2 and MC3 generated by limb 

2 and 3 
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where we have R(B1, y) R(B2, y) PL(y), and M(C, u, h) C(B1, u). Similarly, the 

displacements represented by R(B1, y) R(B2, y), PL(y), M(C, u, h), and C(B1, u) in the 
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above are all instantaneous that cannot generate finite displacement due to the 

geometrical constraint d1d2d3. Taking the intersection of the three product 

submanifold MC1, MC2 and MC3, the displacement of the platform in the home 

configuration can be derived as follows 
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 (9.17) 

 

In such a case, the platform of the 3-PUP parallel mechanism has a finite rotation T (z), 

an instantaneous rotation R(B2, y), and an instantaneous screw motion M(E, u, h), and 

hence the result has been verified by the above derivation. The displacement of the 

platform given by product submanifold MC can be illustrated by the forward kinematics 

simulation given in Figure 9.9. 

 

In terms of the bifurcated motion of the 3-PUP parallel mechanism, this paragraph 

returns to Figure 9.8. Assuming the 3-PUP parallel mechanism is moving in motion 

branch A under the geometrical constraint d2d3, the other geometrical constraint 

d2d32d1, will be automatically activated when the configuration of the 3-PUP parallel 

mechanism arrives in the home configuration. Then, if the constraint d2d3 is released, 

the mechanism will move into motion branch B from the home configuration. 

Otherwise, if the constraint d2d32d1 is deactivated, the mechanism will return back 

to motion branch A from the home configuration. Due to the geometrical structure, the 

two constraints d2d3 and dd32d1 of the 3-PUP parallel mechanism can be effective 
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simultaneously in which case the mechanism receives the constraint singularity in the 

home configuration. But the case that these two constraints are deactivated 

simultaneously will never happen. That is to say, for the 3-PUP parallel mechanism at 

least one of the two constraints are effective such that the mechanism is either in motion 

branch A, or in motion branch B, and switches from each other at the home 

configuration. 

 

z
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Figure 9.9  Feasible displacements in Home configuration 

 

9.5 Experimental validation of the bifurcated motion 

 

In Section 8.4, when the 3-PUP parallel mechanism moved within motion branch B, the 

derivations revealed a pseudo-helical motion of the platform. Though Figure 9.7 

illustrated the feasible displacements in motion branch B, the variable-pitched 

translation of the pseudo-helical motion in that motion branch cannot be shown only by 

photos of the prototype. Thus, this section is to set up an experiment on the 3D printed 

prototype of the 3-PUP parallel mechanism, then detect the translation of the screw 

motion to validate the extraction of the pseudo-helical motion. 
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Figure 9.10 gives the experimental test environment which consists of a 3D printed 

prototype of the 3-PUP parallel mechanism, four 6-DOF tracking sensors (Ascension, 

Model 800), a transmitter (Ascension wide-range transmitter), and a sensor driver (3D 

Guidance trakSTAR, Class 1 Type B). Three tracking sensors, i.e. sensor 1, 2, 3 are 

attached to sliders in limbs 1, 2, 3 of the 3-PUP parallel mechanism respectively to 

measure the displacement of each single slider, while the remaining tracking sensor, i.e. 

sensor 4 is attached to the platform aligning with the symmetry axis of the platform to 

gather the motion-output information. The platform of the 3-PUP parallel mechanism 

moves upon the adjustment of the height of each single slider, where the three tracking 

sensors can ensure the three sliders moving along the same direction during test. 

 

 

Figure 9.10  The experimental environment for detecting the translation of the 

pseudo-helical motion. 

 

Figure 9.7(a) gives the home configuration of motion branch B, where the initial data 

of configuration of each single sensor is acquired as shown in Table 9.1. At the initial 
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configuration, the value of component z of sensors 1 and 3 are measured as 10.16mm 

and 10.49mm respectively. Then adjust sliders 1 and 3 upwards, and simultaneously 

ensure the geometrical condition d2d32d1 held during the adjustment by subscribing 

to the real-time sensor data. The prototype reaches the configuration shown in Figure 

9.7(b) when slider 3 is moved upwards for 30mm, then move sliders 1 and 3 forwards 

for another increment 30mm for slider 3, to the third configuration described in Figure 

9.7(c). During the movement we always keep slider 2 still, hence the condition d1d3/2 

holds. The data of sensors 1 and 3 are recorded when the prototype reaches the two 

configurations illustrated in Figure 9.7(b) and Figure 9.7(c), as shown in Table 9.2. 

 

Table 9.1  Data acquisition of all sensors at initial configuration. 

Sensors x(mm) y(mm) z(mm) azimuth(°) elevation(°) roll(°) 

Sensor 1 -2.68 453.18 10.16 163.15 84.97 100.79 

Sensor 2 312.87 55.48 3.35 97.82 82.49 127.70 

Sensor 3 -61.84 327.72 10.49 158.98 78.04 121.20 

Sensor 4 6.92 381.74 15.40 98.30 1.96 1.23 

 

Table 9.2  Data acquisition for sensors 1 and 3 at configurations (b) and (c) in Figure 

9.7. 

Configurations Sensors x(mm) y(mm) z(mm) azimuth(°) elevation(°) roll(°) 

Configuration (b) 

Sensor 1 -2.46 453.18 -4.80 174.42 84.49 78.50 

Sensor 3 -63.40 328.05 -19.53 168.70 79.36 89.11 

Configuration (c) 

Sensor 1 -3.01 453.52 -19.76 165.38 83.34 39.51 

Sensor 3 -69.43 327.38 -49.56 144.63 77.67 62.57 
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From Tables 9.1 and 9.2, looking at the component z of sensors 1 and 3, it can be 

calculated easily that the increments for the two sensors are measured as about 30mm 

and 60mm respectively. During the movement of sliders 1 and 3 from configurations 

8.7(a) to 8.7(c), the translation of the pseudo-helical motion would be captured if sensor 

4 attached to the platform detects any movements along x- and y-axis of the transmitter 

reference frame which can be seen from the data x and y in tables. For convenience we 

gather all the data measured by sensor 4 in Table 9.2 as below. 

 

Table 9.3  Data acquisition for sensor 4 at configurations 8.7(a), 8.7(b) and 8.7(c). 

Configurations 

x(mm) y(mm) z(mm) 

azimuth(

°) 

elevation

(°) 

roll(°) 

Configuration (a) 6.92 381.74 15.40 98.30 1.96 1.23 

Configuration (b) 4.58 382.86 29.58 97.56 0.01 -10.74 

Configuration (c) 3.91 384.76 43.42 96.53 -1.41 -20.96 

 

In Table 9.3, the data of components x and y are decreasing upon the adjustments of 

slider 1 and 3 under the geometrical condition d2  d3 2d1, i.e. d1 d3/2 if keeping 

slider 2 still. That means that the minor translation of the platform are happening and 

detected during the movement of the platform from configurations 8.7(a) to 8.7(c). The 

corresponding rotation in motion branch B is also detected, seeing the data in the last 

two columns of Table 9.2. In such ways the experiment discloses the inconspicuous 

translation of the screw and hence validates the extraction of pseudo-helical motion 

based on the composition of submanifolds analysis. 
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9.6 Conclusions 

 

Following the analysis of the skewed PRP chain which extracted a special pseudo-

helical motion in chapter 7, this chapter investigated the displacement representation, 

bifurcated motion, and constraint singularity of a 3-PUP parallel mechanism parallel 

mechanism with a Lie group interpretation, presenting a Lie group method for the 

displacement analysis of a parallel mechanism with bifurcated motion. The method 

facilitated the analysis of the parallel platform since it did not need to deal with 

instantaneous constraints or motions as in the previous publications and simplified the 

analysis of such parallel mechanism without resorting to in-depth geometry analysis. 

At last this chapter implemented an experimental test using commercial 6-DOF tracking 

sensors to detect the translation of the pseudo-helical motion and validated the 

derivations. 
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Chapter 10   Conclusions and Future 

Work 

 

10.1 General Conclusions 

 

The dissertation addressed the problems in recognising reconfiguration of mechanisms 

using screw algebra-based kinematics analysis and its extensions in mechanisms theory. 

 

The dependency of screws with non-zero constant pitch was identified by introducing 

a projective transformation in the 5-dimensional projective space and by revealing the 

generators α- and β-planes of the corresponding hyperquadrics. Based on screw algebra 

calculations, a method of integrating high-order kinematic analysis and bilinear form 

representations was for the first time proposed for recognising the six motion branches 

with the related geometrical conditions of the derivative queer-square mechanism. The 

dissertation then investigated the equivalence between two screw spaces and extended 

the results to the field of compositional submanifolds of SE(3), by which the bifurcation 

of the 3-PUP parallel mechanism parallel mechanism was analysed using compositional 

submanifold representations. Finally, the dissertation constructed the Jacobian matrix 
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for a hybrid mechanism with a reconfigurable base using screw algebra-based approach. 

The general conclusions of this dissertation can be presented below. 

 

Chapter 1 introduced the research problems related with recognising motion branches 

of reconfigurable mechanisms and the aims and objectives, and structure of the 

dissertation were briefly presented. 

 

Chapter 2 reviewed the background and historical development of reconfigurable 

mechanisms, line geometry, screw dependency, and Lie group, etc. The basic concepts 

and connection between these fields were presented mainly with the timeline of 

development of these relevant research topics. 

 

Chapter 3 introduced a projective transformation for the first time proposed for the 

hyperquadrics of screws with non-zero pitch in the 5-dimensional projective space and 

any hyperquadrics corresponding to screw systems with a constant pitch can be 

represented in a matrix form. By using this method, it was attained that the 

hyperquadrics were generated by two bundles of planes as α-planes and β-planes. This 

chapter laid the foundation of recognising the dependency of screws for the next chapter 

and basic concepts and operations were used in the remaining part of the dissertation, 

especially Chapter 5 the Lie bracket computation and bilinear form representation of 

constraints and Chapter 7 the tangent spaces of compositional submanifolds of 

mechanisms. 

 

Chapter 4 rediscovered the conventional three-systems by corresponding the generators 

of hyperquadrics in 5-dimensional projective space to screws in 3-space. Intersection 
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of α-planes and β-planes of screws with non-zero constant pitch were derived for the 

first time and thus two-systems were rediscovered. Researchers relate planes in the 

Klein quadric in the 5-dimensional projective space to screw systems in 3-space, while 

this chapter for the first time extended it to a general case that any hyperquadrics in 5-

dimensional space corresponding to the screws with the same pitch can be related back 

to 3-space. The equations and results in this chapter and chapter 3 can be used in 

mobility calculation and screw-system variations and lay foundation for chapter 5 of 

constraint system construction based on screw theory, for chapter 7 of equivalence of 

screw systems generating the same computational submanifolds, and for Chapter 9 of 

Jacobian matrix derivation of a hybrid mechanism using screw theory. 

 

Chapter 5 presented a reconfigurable base integrated parallel mechanism based on the 

manipulation of rigid objects with a Metamorphic hand for the first time through 

mechanism equivalent method. By means of decomposing the mechanism into a typical 

3RRS parallel mechanism and a reconfigurable linkage, the Jacobian based on screw 

theory was utilized to identify the relationship between active joints and passive joints 

through the screw system elimination with their reciprocal product. The Jacobian 

analysis demonstrated the effectiveness of screw algebra approach in modelling the 

novel reconfigurable-base integrated parallel manipulator. 

 

Chapter 6 established the kinematic model including velocity and acceleration analysis 

of the derivative queer-square mechanism and first-order and second-order constraints 

were attained by using Lie bracket calculation of screws. The recursive algorithm of 

screws based on Lie bracket was used to analyse the kinematic constraints of multi-

loop mechanisms for the first time. This chapter employed bilinear form to represent 
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the second-order constraint and simplified their expressions. This approach made it 

possible to simplify complicated constraints of second order so that the recursive 

algorithm can be applied to multi-loop mechanisms which are quite complicated in 

modelling. Finally, all first-order and second-order constraints were attained in the 

simplified form. This chapter demonstrated the effectiveness of screw theory discussed 

in Chapter 3 and 4 and paved a way of exploring motion branches of the derivative 

queer-square mechanism for Chapter 6. 

 

Chapter 7 for the first time revealed the six motion branches of the derivative queer-

square mechanism. After attaining six motion branches by solving the constraint system 

of the derivative queer-square mechanism, this chapter presented the prototype of each 

single motion branch and implemented numerical simulation in the commercial 

software module Solidworks Motion and it was verified that the results of angular 

velocities obtaining from the solutions to the constraint system coincided precisely with 

the simulation results. This chapter shown the effectiveness of the screw-algebra 

approach together with the bilinear form representations of constraints in recognising 

the multi-furcation in complicated multi-loop mechanisms. 

 

Chapter 8 introduced the concept of computational submanifolds of SE(3) with its 

tangent spaces and the relevant products, then this chapter extended the standard PRP 

kinematic chain producing the planar motion subgroup SE(2) to a relatively generic 

kinematic chain in which the prismatic-joint direction is not necessary to be 

perpendicular to the revolute-joint axis. To the knowledge of the candidate, the type of 

motion described by the skewed PRP chain is not included in previous dissertations or 

books dealing with submanifolds of SE(3) that are not subgroups. Finally, this chapter 
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ended up with investigating the motion representation of a PRP-Schoenflies parallel 

mechanism. 

 

Chapter 9 followed the analysis of this PRP chain which extracted a special pseudo-

helical motion in chapter 7 and investigated the displacement representation, bifurcated 

motion, and constraint singularity of a 3-PUP parallel mechanism with a Lie group 

interpretation, presenting a Lie group method for the displacement analysis of a parallel 

mechanism with bifurcated motion. The method facilitates the analysis of the parallel 

platform since it did not need to deal with instantaneous constraints or motions as in the 

previous publications and simplified the analysis of such parallel mechanism without 

resorting to in-depth geometry analysis. 

 

Chapter 10 concluded the dissertation with general conclusions of all chapters, 

contributions and future work within the related fields. 

 

10.2 Main Achievements of the Dissertation 

 

Screw algebra-based kinematics analysis of mechanisms was investigated thoroughly 

in this dissertation, and this theory was extended to high-order kinematic analysis of 

multi-loop reconfigurable mechanisms and to the equivalence of screw spaces and then 

to the compositional representations of reconfigurable mechanisms. The main 

contributions of the dissertation can be concluded as below. 
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(I) The Klein quadric in the 5-dimensional projective space was extended to a 

relatively general hyperquadric corresponding to screws in 3-space with non-

zero constant pitch by constructing a projective transformation. By this 

means, α- and β-planes of the hyperquadrics were derived and several 

conventional screw systems were rediscovered. This research laid the 

foundation of the whole picture of the dissertation in recognising motion 

branches and geometrical conditions of reconfigurable mechanisms.  

(II) This dissertation for the first time obtained the six motion branches of the 

queer-square mechanism completely with their geometrical conditions by 

establishing an explicit way of recognition. The constraint system of the 

mechanism was constructed by integrating high-order kinematic analysis 

based on Lie bracket computation and the bilinear form representation of the 

second-order constraints. 

(III) The dissertation for the first time extracted the pseudo-helical motion with a 

variable pitch from the skewed PUP kinematic chain with a tilting angle and 

the pseudo-helical motion was presented by a compositional submanifold of 

SE(3). This extended the research within the context of Lie subgroups of 

SE(3) to compositional submanifolds of SE(3) based on the equivalence of 

screw spaces as tangent spaces of compositional submanifolds. Therefore, 

the bifurcation in the 3-PUP parallel mechanism was analysed and 

represented in a compact way. 

(IV) Kinematic characteristics of a hybrid mechanism with a reconfigurable base 

was investigated by mechanism decomposition and its Jacobian matrix was 

derived using screw algebra approach. 
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10.3 Future Work 

 

This dissertation investigated the hyperquadrics in the 5-dimensional projective space 

corresponding to the screws with non-zero constant pitch and hence the research on 

Klein quadric was extended. However, this dissertation has not yet explored the 

hyperquadrics corresponding to the screw systems in which the pitch of screws is 

variable. In mechanisms, normally all helical joints are of the same pitch. In the future, 

if any results on the hyperquadrics corresponding to the screw systems with variable 

pitches are attained, it is expected novel mechanisms can be invited by arranging helical 

joints with different pitches. 

 

The essence of why the movement of the derivative queer-square mechanism can be 

divided into six motion branches at the singularity configuration was revealed in this 

dissertation, that is, the multi-furcation in this mechanism is caused by the existence of 

the parallelogram and connotative parallelogram. In this manner, it has the potential 

that more reconfigurable mechanisms of this type can be discovered by rearranges the 

parallelogram and connotative parallelogram. 

 

The bifurcation of the 3-PUP parallel mechanism was analysed, and the pseudo-helical 

motion produced by the skewed PRP kinematic chain was extracted. This mechanism 

can rotate along x- or y-axis in the horizontal plane and it can avoid the other motion 

branch when moves in one motion branch. This property provides a function of self-

locking in mechanical system which brings safety in real application such as ankle 

rehabilitation devices and other medical robots. Exploiting real applications by using 

the 3-PUP parallel mechanism can be future direction for mechanisms research. 
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Appendix A 

 

Four coefficient matrices of bilinear forms below from (A.1) to (A.4) represent four 

second-order constraints of the derivative queer-square mechanism at the singularity 

configuration. The blank entry in these matrices are zeros. These expressions of 

constraints can be used to simplify the constraints of the mechanism and this was 

discussed in detail in Section 5.5. 
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Appendix B 

 

The Matlab program of a mathematical function to implement Lie bracket calculation 

and the Jacobian modelling are presented in the table below. 

 

function [L] = LieProduct(S1,S2) 

 

S1Pri=S1(:,1:3); 

S1Sec=S1(:,4:6); 

S2Pri=S2(:,1:3); 

S2Sec=S2(:,4:6); 

  

L=[cross(S1Pri,S2Pri) cross(S1Pri,S2Sec)+cross(S1Sec,S2Pri)]'; 

  

end 

 

 

function ad_fng = liebracket(f,g,x,n) 

 

ad_fng = sym(zeros(length(f),n+1)); 

ad_fng(:,1) = g; 

  

if n>0 

    for t = 2:n+1 

        ad_fng(:,t) = jacobian(ad_fng(:,t-1) ,x)*f - jacobian(f,x)*ad_fng(:,t-1); 

    end 

end 

  

ad_fng = expand(ad_fng); 

  

end 

 

 

 

The codes to implement the recursive algorithm of Lie bracket of screws discussed in 

Chapter 5 are presented in the table below. 
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clear all; 

clc; 

 

syms l1 l2 l3 k1 k2 k3 a b real; 

syms w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 real; 

S1=[0 1 0 0 0 a+0.5*b]'; 

S2=[0 1 0 0 0 2*a+1.5*b]'; 

S3=[1 0 0 0 0 -a]'; 

S4=[1 0 0 0 0 -(2*a+b)]'; 

S6=[1 0 0 0 0 -(a+b)]'; 

S5=[1 0 0 0 0 -2*(a+b)]';  

S7=[0 1 0 0 0 a+2*b]'; 

S8=[0 1 0 0 0 b]'; 

S10=[0 1 0 0 0 a+b]'; 

S9=[0 1 0 0 0 0]'; 

S11=[1 0 0 0 0 -(a+1.5*b)]'; 

S12=[1 0 0 0 0 -0.5*b]'; 

 

W=[w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12]'; 

 

JLoop1=[S1 S2 S3 S4 S7 S8 S11 S12]; 

WLoop1=[w1 w2 w3 w4 w7 w8 w11 w12]; 

n1=size(JLoop1,2); 

k1=1; 

 

for i = 1:(n1-1) 

    for j = (i+1):n1 

        

LieLoop1(:,k1)=WLoop1(i)*WLoop1(j)*LieProduct((JLoop1(:,i))',(JLoop1(:,j))'); 

        k1=k1+1; 

    end 

end 

LieLoop1; 

size(LieLoop1,2); 

Loop1=sum(LieLoop1,2) 

 

 

JLoop2=[-S3 -S4 S5 S6]; 

WLoop2=[w3 w4 w5 w6]; 

n2=size(JLoop2,2); 

k2=1; 
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for i = 1:(n2-1) 

    for j = (i+1):n2 

        

LieLoop2(:,k2)=WLoop2(i)*WLoop2(j)*LieProduct((JLoop2(:,i))',(JLoop2(:,j))'); 

        k2=k2+1; 

    end 

end 

LieLoop2; 

size(LieLoop2,2); 

Loop2=sum(LieLoop2,2) 

 

 

JLoop3=[-S7 -S8 S9 S10]; 

WLoop3=[w7 w8 w9 w10]; 

n3=size(JLoop3,2); 

k3=1; 

 

for i = 1:(n3-1) 

    for j = (i+1):n3 

        

LieLoop3(:,k3)=WLoop3(i)*WLoop3(j)*LieProduct((JLoop3(:,i))',(JLoop3(:,j))'); 

        k3=k3+1; 

    end 

end 

LieLoop3; 

size(LieLoop3,2); 

Loop3=sum(LieLoop3,2) 

 

 

 

The codes to solve the equation system of the first-order and second-order constraints 

are presented in the table below. 

 

clear all; 

clc; 

  

syms w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 a b real; 

  

B1=w3+w4+w11+w12; 
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B2=w1+w2+w7+w8; 

B3=b*w8-a*w3-(b*w12)/2+w1*(a + b/2)-w4*(2*a+b)+w7*(a+2*b)-

w11*(a+(3*b)/2)+w2*(2*a+(3*b)/2); 

B4=w5-w4-w3+w6; 

B5=a*w3+w4*(2*a+b)-w5*(2*a+2*b)-w6*(a+b); 

B6=-w7-w8+w9+w10; 

B7=b*w10-w7*(a+2*b)-w8*(a+b); 

  

Loop14=(a+b)*(w1*w2-w7*w8)+(a*w3+(2*a+b)*w4-(a+1.5*b)*w11-

0.5*b*w12)*(w7+w8); 

Loop15=(a+b)*(w3*w4-w11*w12)+(0.5*b*w3+(-

a+0.5*b)*w4+(a+2*b)*w7+b*w8)*(w11+w12)-

((a+2*b)*w7+b*w8+(a+b)*w12)*(w3+w4); 

  

Loop2=(a+b)*(w3*w4-w5*w6)-b*w3*(w5+w6)+a*(w4*w6-w3*w5)-

b*w5*(w3+w4) 

Loop3=(a+b)*(w9*w10-w7*w8)+b*w7*(w9+w10)+a*(w7*w9-

w8*w10)+b*w9*(w7+w8) 

  

[w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12]=solve(Loop14==0,w3*w4-

w11*w12==0,w3+w4==0,Loop3==0,B1==0,B2==0,B3==0,B4==0,B5==0,B6==0,

B7==0,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12) 

 


