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Abstract

There is an increasing body of research associating the gut microbiome with human health.
This has been fuelled by the development of untargeted techniques to profile whole micro-
bial communities. A common approach is to sequence the 16S rRNA gene as a marker for
taxonomic quantification. However, the results of such analyses are of limited use. The
high-dimensional sequencing data are typically reduced to operational taxonomic units
(OTUs), which are purely analytical units with no direct biological interpretation. Fur-
thermore, experimental and analytical variation can lead to poor reproducibility of results
between such studies. Here, I present novel methods to address these limitations and im-
prove the application of 16S rRNA gene sequencing to profiling of the gut microbiota in
human health research.

I first explore existing and simpler approaches to the analysis of 16S rRNA gene sequencing
data by investigating gut microbiota associations with two phenotypes, host frailty and
proton pump inhibitor use, identifying several novel associations with both. I then tackle
the limited biological representation ofOTUs by presenting a comprehensive comparison of
OTU clustering algorithms, using heritability as a novel and biologically motivated quality
measure. The results of this comparison provide guidance for the approaches used in
later analyses. Finally, I present two novel, more complex, methods to summarise 16S
rRNA gene sequencing data in human health studies; both of which address the high
dimensionality and limited reproducibility and biological relevance of these datasets. Firstly,
I identify gut microbiota associations with multiple diseases within a single study. This
generates comparable results that enable the identification of key marker taxa consistently
associated with health or disease. From this, I generate an index that can represent wide-
scale gut microbiota composition within a single score that is also associated with host
health. Secondly, I present amethod to identify communities of interactingmicrobeswithin
the gut microbiota and demonstrate that these reliably associate with host phenotypes
across geographically diverse populations.

In summary, this thesis addresses several issues currently associated with the analysis of
16S rRNA gene sequencing-based gut microbiota profiles and in turn identifies several
novel biological phenomena. The techniques described herein should improve the utility
of microbiota profiles derived from 16S rRNA gene sequencing and advance the field of
gut microbiome research in human health.
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Chapter 1

Introduction

1.1 Overview

Within this thesis I present novel approaches to the analysis of 16S ribosomal RNA (rRNA)
gene sequencing-based profiles of the human gut microbiota. With the aim to improve
their applicability to human health research. This is achieved through:

1. Benchmarking one of the key stages in 16S rRNA gene sequencing analysis - the
creation of operational taxonomic units.

2. The identification of marker taxa, and the development of an associated index, to
quantify gut microbiome composition in relation to host health.

3. The development of a robust approach to identify microbial communities in the gut
microbiome.

These sections are also preluded by analyses of two health related phenotypes, host frailty
and proton pump inhibitor (PPI) use, as a demonstration of typical approaches to the
analysis of 16S rRNA gene sequencing in microbiome research.

In the present chapter I will introduce the concept of the human microbiome and provide
a brief overview of the gut microbiome and its associations with human health. I will
then describe the process of microbiota profiling by 16S rRNA gene sequencing, preparing
data for analysis, the concept of operational taxonomic units, and typical methods used to
analyse microbiome data in relation to human health; highlighting some of the limitations
of these approaches throughout. I will then examine the existing methods used to identify
microbial communities in 16S rRNA gene sequencing profiles of the gut microbiome.

Following this chapter is a description of the data and methods used throughout. As this
thesis is presented through publication, the first three of the five research chapters are pre-
sented as manuscripts unmodified from their published form. I conclude with a summary
of the thesis in its entirety.
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1.2 The human gut microbiome

1.2.1 The humanmicrobiome

The term microbiome refers to the ecological community of microbes (chiefly bacteria, ar-
chaea, and fungi) inhabiting a particular environment (Table 1.1). This terminology is now
applied to studies of microbial communities from a wide range of environments but was
originally coined in reference to those inhabiting the human body (Lederberg and McCray
2001). Humans are host to trillions of microbes found in communities at a range of sites
across the body, including gut, oral, nasal, skin, and vaginal microbiomes (Consortium
2012). Across the body the number of bacterial cells is estimated to be approximately equal
to the number of human cells but contains a much vaster genetic repertoire (Sender, Fuchs,
and Milo 2016). Whilst there has been previous research of the human microbiome us-
ing culture based approaches, it is only more recently through the development of culture
independent techniques (see Section 1.3) that it has been possible to examine the full diver-
sity and functionality of these systems. This has lead to a rapid expansion in microbiome
research (Jones 2013).

Costello et al. carried out one of the first studies using culture independent techniques
to investigate the human microbiome across different body sites and between individu-
als. Investigating six body sites in nine individuals, they demonstrated that microbiome
composition primarily segregated by body site with each site having a distinct microbial
composition (Costello et al. 2009). Furthermore, they showed that whilst there is some
temporal variability, microbiomes also retain compositional properties unique to individu-
als. This was later confirmed in a study investigating finer-scale temporal variation using
daily sampling from three body sites (Caporaso et al. 2011b). These findings were also
reproduced in one of the landmark studies of the human microbiome - the Human Micro-
biome Project (HMP).The project profiled themicrobiomes of over 200 healthy individuals
across five body areas with longitudinal sampling. The HMP not only confirmed the afore-
mentioned findings, but has also provided a key reference for typical microbiomes at a
range of body sites. It was also one of the first large-scale studies to probe microbiome
function, showing there is higher inter-individual conservation of microbiome function
than taxonomic composition (Consortium 2012).

1.2.2 The gut microbiome in disease

Often referred to as the gut microbiome, the colon contains the most densely populated
microbial community in the body (Savage 1977). As such, it is the largest interface between
the host and its microbial inhabitants. The gut microbiome can also be sampled non-
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Table 1.1: Definitions for some common terms related to microbiome research that are used within this
thesis. (Marchesi and Ravel 2015).

Term Definition

Microbiome Refers to the complete ecosystem of microbial organisms
inhabiting a given environment, including its taxonomic
make-up and functional properties.

Microbiota Refers to the microbial taxa within a microbiome. Can be
used in reference to any taxonomic level from strain to king-
dom. Typically assayed using targeted marker gene based
approaches such as 16S rRNA gene sequencing. Assesses
the taxonomic distribution of a microbiome.

Metagenome Refers to themicrobial genomic complement across awhole
microbiome. Typically assayed using shotgun sequencing
of microbiome DNA. Assesses the functional potential of a
microbiome.

16S Refers to the 16S rRNA, a sub-unit of the ribosome found
across all domains of life. Typically referred to in the con-
text of 16S rRNA gene sequencing, where its gene is used a
taxonomic marker to assay microbiota.

OTU Operational Taxonomic Unit. Refers to any analytical unit
created by grouping taxonomically/genetically related or-
ganisms together for the purpose of simplifying analyses.
Typically used in reference to grouping of closely related
16S rRNA gene sequencing reads to reduce data dimen-
sionality in microbiota profiles.

Alpha Diversity The ecological diversity within amicrobiome sample. Gives
an indication of the number of different taxa observed (rich-
ness) and how comparable their abundances are (evenness).
Can be quantified using established ecological indices.

Beta Diversity The difference in diversity between two microbiome sam-
ples. This can be in terms of the presence/absence of simi-
lar taxa and/or the similarity in the evenness of their abun-
dances. Can be quantified using a range of distance/similar-
itymeasures, which are often used in principle co-ordinates
analyses to visualise clustering ofmultiplemicrobiome sam-
ples in a study.
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invasively using faecal sampling. As a result of these factors, the gut microbiome is one of
the most well studied in the human body.

Several studies have characterised typical gut microbiome composition and function in
large population based cohorts, these include the HMP (Consortium 2012), the Flem-
ish Gut Project (Falony et al. 2016), the Dutch LifeLines-DEEP cohort (Zhernakova et al.
2016), the European MetaHit consortium (Qin et al. 2010), the American Gut Project (The
American Gut Project), and the British TwinsUK cohort (Goodrich et al. 2014b). The gut
microbiome is one of the most ecologically diverse (high alpha diversity) when compared
to those of other body sites (Consortium 2012). Within a population there are few core taxa
(bacteria found across all participants) and each individual gutmicrobiomehas unique char-
acteristics. However, the gut microbiome has a stable high-level taxonomic composition
generally dominated by anaerobic bacteria from the phyla Bacteroidetes and Firmicutes
(Qin et al. 2010) (Figure 1.1). It was observed across several human populations that gut
microbiomes tended to fall into three groups referred to as enterotypes, with microbiota
dominated by taxa from the Bacteroides, Ruminococcus, or Prevotella genera (Arumugam
et al. 2011; Wu et al. 2011). It has since been debated if enterotypes are as distinct as first
thought or represent peaks in a gradient of taxonomic compostionality (Jeffery et al. 2012).
However, grouping of enterotypes has been replicated (Falony et al. 2016; Qin et al. 2012)
and at least the existence of the Bacteroides and Prevotella dominant groups has been more
widely reported (Wu et al. 2011; Claesson et al. 2012).

Alongside establishing the typical properties of the gut microbiome, much research within
cohort-based and smaller targeted projects has focused on the role of the gut microbiome
in human health and disease. The gut microbiome’s role as an intermediary between en-
vironmental effects and its potentially malleable nature make it a promising target for
manipulation in disease treatment. Here, I provide a brief overview of some well estab-
lished gut microbiome-disease associations. The potential mechanisms underlying these
disease-gut microbiota associations are discussed in Section 1.2.3.

Inflammatory bowel disease and irritable bowel syndrome

One of the most studied diseases in relation to the gut microbiome is inflammatory bowel
disease (IBD). This is an encompassing term for diseases of chronic inflammation in the
GI tract including Crohn’s disease (CD) and Ulcerative Colitis (UC). There is a known
genetic and immune component to these diseases but they have also been associated with
changes in the gut microbiota (Ananthakrishnan 2015). CD is associated with a decreased
microbial diversity in the gut microbiome accompanying a decrease in the abundance of
the butyrate producing bacteria Faecalibacterium prausnitzii (Sokol et al. 2008; Manichanh
et al. 2006). A study of over 400 untreated paediatric patients with CD identified several
taxonomic signatures that were sufficient to diagnose patients compared to healthy controls
(Gevers et al. 2014). Similarly there is a loss of ecological diversity in the gut microbiome
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Figure 1.1: Demonstration of the taxonomic diversity of the gut microbiota and its variability between
individuals. Top, a bar chart showing the variation in the taxonomic abundance profiles at the phylum
level for four different individuals from the Unites States. Below, a phylogeny focused on the Firmicutes
identified in individuals B and C coloured red if present in B, blue if present in C, and purple if in both.
This shows the fine level variation between individuals who at higher levels appear taxonomically similar.
Figure from a review by Lozupone et al.. (Lozupone et al. 2012b)
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of UC patients, accompanied by relative increases and decreases in specific taxa (Michail
et al. 2012). Although there is evidence that differences between UC patients and healthy
controls are of a smaller magnitude than those observed with CD (Halfvarson et al. 2017;
Willing et al. 2010).

Studies have also found significant differences in patients suffering irritable bowel syndrome
(IBS). IBS refers to chronic discomfort of the bowels including cramping, abdominal pain,
constipation and/or diarrhoea in the absence of the chronic inflammation that is charac-
teristic of IBD. Studies have found both changes in diversity and taxonomic profiles of
IBS patients (Rajilić-Stojanović et al. 2011; Pozuelo et al. 2015; Shankar et al. 2015). Fur-
thermore, IBS diagnoses can be split symptomatically into sub-types, which can also be
differentiated based on gut microbiota composition (Pozuelo et al. 2015; Kassinen et al.
2007).

Obesity

Initial observations of the association between gut microbiome composition and obesity
were made usingmousemodels, under the hypothesis that microbiota might influence host
energy storage by metabolising indigestible dietary intakes. Comparing lean and obese
mice, obese mice were found to have increased abundances of Firmicutes and decreased
levels of Bacteroidetes bacteria relative to lean mice (Ley et al. 2005). Whilst similar dif-
ferences in the Firmicutes and Bacteroidetes ratio were reported by the same group in a
human study (Ley et al. 2006), these findings have not replicated since (Sze and Schloss
2016). However, other taxonomic and functional differences have been observed with
human obesity.

A study of 150 twins identified both taxonomic and functional differences distinguishing
lean and obese individuals. The microbial functions differing between the groups were
enriched for pathways related to carbohydrate and amino acid metabolism (Turnbaugh
et al. 2009). A further study using over 1000 twins from the TwinsUK cohort, found
that overall alpha diversity was reduced in the gut microbiome of obese individuals and
identified an association with the genus Christensenella, which was at increased abundance
in lean twins and conferred protection against weight gain when transplanted into mice
(Goodrich et al. 2014b).

Type 2 Diabetes

Following observations that the gut microbiome associated with obesity, studies investi-
gated if there were similar associations with type 2 diabetes (T2D) anothermetabolic linked
disease. One of the key studies compared the gut microbiome, both its composition and
function, between >70 individuals with T2D and >70 healthy controls from a Chinese pop-
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ulation. Carrying out association analyses they identified bacterial species and functional
pathways that were enriched in either the T2D or control groups and replicated several
associations in an independent set of over 200 individuals. Amongst others, these included
a decrease in butyrate production and Faecalibacterium prausnitzii abundance in the T2D
patients, and differential amino acid and carbohydrate metabolism between the groups
(Qin et al. 2012).

Other diseases

Differences in the taxonomic composition of the gut microbiota have been observed be-
tween colon cancer patients and healthy controls (Baxter et al. 2016). Beyond the GI tract,
properties of the gut microbiome have also been associated with a diverse range of con-
ditions including autoimmune diseases such as rheumatoid arthritis (Zhang et al. 2015)
and with neurological conditions such as Parkinson’s disease (Sampson et al. 2016) and
potentially autism (Hsiao et al. 2013). Studies investigating ageing and frailty (a measure of
healthy ageing) have also found differences in the gut microbiome associated with overall
health and fitness (Claesson et al. 2012; Jeffery, Lynch, and O’Toole 2016).

There can be much variability in the approaches, both experimentally and analytically,
used to assay gut microbiota (see Section 1.3). This can lead to poor reproducibility when
comparing associations within the same disease (Sze and Schloss 2016). This also reduces
the ability to compare associations between diseases to identify common gut microbiota
effects. This is addressed in Chapter 6 where I carry out a comparison of 38 different health
disorders with the same dataset.

Delineating causality

Whilst there have been some longitudinal and intervention studies focusing on the gut mi-
crobiota (Zeevi et al. 2015; Hjorth et al. 2017; Freedberg et al. 2015); human gutmicrobiome
studies are, for the most part, observational. As such, they cannot delineate observed asso-
ciations to determine if differences in the microbiome are cause or consequence of health
effects. Most evidence for causal influences of the gut microbiota on health have come from
experimental studies using model organisms.

In human research, interventions are limited to safe medications or lifestyle changes and
by necessity cannot probe disease states directly. Studies using model organisms such as
mice are able to control both gut microbiota composition and disease state. Gut micro-
biota can be manipulated through the use of antibiotic ablation or germ-free conditions
to deplete the microbiota (Turnbaugh et al. 2008; Buffie et al. 2015). Subsequent exposure
to specific taxa or microbiota transplantations can then be used to introduce desired taxa.
Contrasting disease states can be probed by either inducing disease, such the experimental
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colitis induced by dextran sodium sulphate exposure in mice, or by comparing comparable
genetic models of human disease to healthy controls (Mizoguchi 2012). These approaches
have been used extensively to probe causality of gut microbiota effects in disease. However,
disease models are imperfect. The models might inaccurately represent human disease
pathology and the microbiota of model organisms are different to those of the human gut.

The latter issue can be addressed by using models with humanised microbiota or by human
microbiota transplants into germ-free models. These approaches provide evidence that the
human gutmicrobiota can promote disease. For example, transplantation of gutmicrobiota
from a Parkinson’s disease patient to a mouse model of the disease exacerbates symptoms
more than compared to using a healthy donor (Sampson et al. 2016). Germ-free models
have also been used extensively to demonstrate a causal role for the gut microbiota in
obesity (see Section 1.2.3).

Further evidence for a causal role of the gut microbiome in human health comes from
human-human faecal microbiota transplants (FMT). This involves administration of ho-
mogenised faecal matter from a healthy donor directly to the gut of an afflicted patient.
FMT has seen great success in the treatment of recurrent Clostridium difficile infection,
often caused when C.difficile predominates in the gut following disruption of typical mi-
crobiota by antibiotic use (Leffler and Lamont 2015). It is thought FMT restores a patients
gut microbiota preventing C.difficile becoming re-established (see Colonisation Resistance
in Section 1.2.3) (Grehan et al. 2010). It has proved more successful than existing antibi-
otic based approaches to treatment (Brandt et al. 2012) and provides direct evidence that
human gut microbiome composition can both cause and prevent disease.

1.2.3 Mechanismsunderlyinggutmicrobiota-diseaseassociations

Regardless of whether differences in the gutmicrobiota are a response to or cause of disease,
uncovering the mechanisms underlying host-microbiota interactions can improve our un-
derstanding of disease aetiology. Combining human association studies with experiments
using animal models, several host-microbiota interactionmechanisms have been identified.
Here, I discuss three major mechanisms (immune interactions, metabolic interactions, and
colonisation resistance) and their relation to the diseases discussed in Section 1.2.2.

Immune Interactions

TheGI tract is one of the largest interfaces between the immune systemandmicro-organisms.
A range of innate and adaptive immune processes occur throughout the GI epithelial mu-
cosa and in concentrations of lymphatic tissues called Payer’s patches. Intestinal epithelial
cells (IEC) promote innate immunity through the production of a mucus lining, which,
along side the cells themselves, acts as a physical barrier separating the host and gut micro-
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biota. IECs, in particular Paneth cells, also secrete antimicrobial peptides (AMPs) targeting
specific taxa and can express receptors (called pattern recognition receptors, PRR) that de-
tect specific antigens and stimulate both pro and anti-inflammatory responses. In the lower
epithelium is the lamina propria, a layer of connective tissue that harbours both B and T-
cells. These are exposed to antigen in the intestinal lumen and are involved in specific
adaptive immune responses. The differentiated cells in the lamina propria migrate from
Payer’s patches, dense areas of lymphoid tissue distributed along the GI tract, within which
B-cells and T-cells are specifically exposed to antigens from the intestinal lumen (Maloy
and Powrie 2011; Shi et al. 2017; Round and Mazmanian 2009). These systems work to-
gether in conjunction with gut commensal microbes to maintain homoeostasis of both the
host immune system and gut microbiota composition. Loss of this homoeostasis can lead
to GI, and potentially systemic, inflammation and is one of the main mechanisms by which
the gut microbiota influence host health (Round and Mazmanian 2009). Here, I provide
a brief overview of some of the specific interactions that have been identified between the
GI immune system and the gut microbiota and their potential roles in human disease.

Immune Development Contact with gut microbiota is required for normal develop-
ment of GI immunity. Germ-free mice exhibit developmental defects in various aspects
of the GI immune system including a reduction in lymphocytes within the intestinal ep-
ithelium, a reduction in antibody producing plasma cells in the lamina propria and less
developed Payer’s patches, as well displaying a range of morphological defects along the GI
tract (Round and Mazmanian 2009). Changes in gut microbiota composition during the
development of GI immunity in humans (see Age in Section 1.2.4) could be responsible
for aberrant immune responses in later life.

Epithelial Barrier Integrity The segregation of the host and gut microbiota provided by
the GI epithelial mucosa prevents chronic inflammatory responses to microbial antigens.
Decreased mucus or AMP production by IECs can lead to invasion of the epithelial barrier
by microbes and microbial antigens that promote inflammatory responses (Koslowski et al.
2010; Maloy and Powrie 2011). It has also been shown that gut microbiota can degrade
mucin in the absence of other suitable substrates, which similarly compromises barrier
function and promotes inflammation (Crost et al. 2013; Desai et al. 2016). The balance of
mucus production and degradation is a key factor in maintenance of GI barrier integrity.
The mucus layer can also influence the taxonomic composition of the gut microbiome.
The AMPs released into the mucus by IECs act against specific microbes, whilst mucins
can act as scaffolds for adhesion or metabolic substrates for commensal bacteria (Maloy
and Powrie 2011). Several microbial strains have developed adaptations to utilise mucus
glycoproteins (Crost et al. 2013; MacKenzie et al. 2010), which gives them a competitive
colonisation advantage over other taxa. The balance of these host and microbial selective
processes for mucosa adhesion and growth may be key for maintaining a beneficial, or
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non-detrimental, gut microbiota composition.

Beyond the mucus layer, gut microbiota can also influence the integrity of the IECs them-
selves. Commensal antigen sensing by PRRs (such as Toll-like receptors) can promote
proliferation of IECs (Hsu et al. 2010), prompt AMP production (Vaishnava et al. 2008),
and strengthen the inter-cellular tight junctions that prevent microbial invasion between
IECs (Maloy and Powrie 2011). Commensal microbiota are therefore required to maintain
a robust IEC barrier against potential pathogens.

Immune Stimulation Gut microbiota and their metabolic products can directly stimu-
late both pro and anti-inflammatory responses in theGI immune system. Highly conserved
antigens found across a range of microbes are referred to as pathogen-associated molecular
patterns (PAMPs). PAMPs include bacterial cellmembrane components such as peptidogly-
cans and, in the case of gram-negative bacteria, lipopolysaccharide (LPS). These are bound
by PRRs on IECs and other immune cell receptors within the epithelial mucosa (Hakansson
and Molin 2011). PAMPs stimulate a number of pro-inflammatory responses including
induction of cytokines, such as tumour necrosis factor-α and interleukin-6, which can
promote both innate and adaptive immune cascades (Maloy and Powrie 2011). Increased
levels of taxa expressing PAMPs can promote chronic GI inflammation. Epithelial invasion
by LPS in the gut can also lead to systemic inflammation termed endotoxemia, which has
been linked with development of T2D (Cani et al. 2007; Cani et al. 2008).

Gut microbiota can also produce anti-inflammatory metabolites such as short-chain fatty
acids (SCFAs). SCFAs (butyrate, propionate and acetate) are produced by microbial fer-
mentation of non-digestible carbohydrates from the host diet and are one of the main
microbiota derived energy sources. SCFAs also have anti-inflammatory properties and, as
discussed in Section 1.2.2, a reduced abundance of SCFA producing taxa has been observed
in IBD and T2D patients (Sokol et al. 2008). SCFAs stimulate IECs and GI immune cells
by binding SCFA specific receptors, such as the G protein coupled receptors GPR43 and
GPR41, resulting in a range of anti-inflammatory effects (Shi et al. 2017; Maslowski et al.
2009). These include an increased proliferation of GI Treg cells (a class of immune cells
which modulate pro-inflammatory responses of other T cells and are important in preven-
tion of autoimmunity) (Smith et al. 2013), a moderation of pro-inflammatory responses to
bacterial LPS (Vinolo et al. 2011), and stimulation of AMP production by IECs (Zhao et al.
2018). SCFAs can also promote IEC proliferation, which may aid maintenance of epithelial
barrier integrity (Park et al. 2016). Interestingly, butyrate can also promote apoptosis and
have a protective effect against colon cancer. This is due to a high concentration of butyrate
in cancerous cells which preferentially metabolise glucose. This leads to butyrate inhibition
of histone deacetylase enzymes and cell death (Donohoe et al. 2012). There are also exam-
ples of specific anti-inflammatory molecules produced by individual commensal species.
The first identified was bacterial polysaccharide A (PSA) produced by Bacteroides fragilis.

23



Introduction of PSA producing B.fragilis in the GI tract is protective against experimental
induction of colitis inmice, whereas PSA deficientmutants are not (Mazmanian et al. 2005).
PSA, similar to SCFAs, induces proliferation of Treg cells that moderate GI inflammation
(Mazmanian, Round, and Kasper 2008).

It is believed that the balance of pro and anti-inflammatory taxa in the gut microbiota
could determine the state of GI inflammation, which, in turn, could influence the ability
of different commensals to colonise the epithelium. Diseases of chronic GI inflammation,
such as Crohn’s disease and ulcerative colitis, might result from extreme disequilibrium of
this system. However, it is not clear if this is initiated by inflammatory changes, for instance
due to host genetic variations, or changes in gut microbiota composition, for instance after
pathogen invasion or antibiotic treatment.

Metabolic Interactions

The combined genomic complement of the gut microbiota encodes a diverse range of en-
zymes from various metabolic pathways, including many not found in the human genome.
The GI tract is exposed to host dietary intakes and various metabolites produced and ex-
creted by the host. Gut microbiota metabolise these into numerous other metabolites that
can directly affect the host, such as in the immune examples described previously. Here I
summarise a selection of other major metabolic actions of the human gut microbiota that
can influence host health.

Energy Uptake The gut microbiota can metabolise a range of different substrates, in-
cluding protein, fats, and carbohydrates, to small molecules that increase the bioavailability
of dietary energy to the host. This is most simply demonstrated bymice reared in germ-free
conditions, which gain less weight than conventionally reared mice fed a similar diet (Bäck-
hed et al. 2007). As described in Section 1.2.2, differences in gut microbiota composition
are also observed between obese and lean humans. These differences are correlated with
differences in diet, however there is also evidence that differential microbiota composition
can be a causal factor in obesity. Germ-free mice inoculated with microbiota from obese
human donors gain weight more readily than those receiving microbiota from lean donors
(Goodrich et al. 2014b; Ridaura et al. 2013). This is likely due to increased energy extrac-
tion by the obese gut microbiome, which contains a higher abundance of genes associated
with carbohydrate metabolism (Turnbaugh et al. 2006). Further evidence that metabolism
of the human gut microbiota could have a causal role in obesity comes from Roux-en-Y
(RNY) gastric bypass surgery, a treatment for obesity where the GI tract is altered to bypass
most of the stomach and duodenum. The procedure has a rapid and profound effect on
metabolic markers that occur faster than could be expected due to dietary changes. RNY
bypass surgery is also associated with rapid and large shifts in gut microbiota composition

24



that could be responsible for observed benefits (Tremaroli et al. 2015; Li et al. 2011). The im-
portance of the effects of human gut microbiota on energy absorption was also highlighted
by a large personalised diet study in Israel. This profiled gut microbiome composition and
monitored glycemic responses after different dietary intakes in 800 individuals. It found
that individuals had very different glycemic responses to the same foodstuffs. However,
an individual’s glycemic responses could be predicted from the taxonomic composition of
their gut microbiome (Zeevi et al. 2015). The metabolic potential of the gut microbiota is
therefore an important influence on host energy uptake fromdiet and could have important
roles in the development of obesity, T2D and metabolic syndrome.

Bile Acids Bile acts as a detergent to improve the solubility and digestion of lipids in the
small intestine and predominantly consists of bile acids. Primary bile acids (chenodeoxy-
cholic acid, CDCA and cholic acid, CA) are produced by the liver where they are conjugated
to glycine or taurine. These then accumulate in the gall bladder before being secreted into
the GI tract. Here, specific taxa in the gut microbiota are able to de-conjugate and carry out
7α-dehydroxylation of primary bile acids to produce secondary bile acids (lithocholic acid,
LCA and deoxycholic acid, DCA). Both secondary and primary bile acids are absorbed
in the lower GI tract and recycled via the liver in a loop that feedbacks and regulates fur-
ther bile acid production (Ridlon et al. 2014; Staley et al. 2017). Several studies suggest
that differences in the the gut microbiota observed with disease may result from bile acid
mediated effects.

It has been shown that metabolism of primary bile acids to secondary by the gut microbiota
has an agonistic effect on the farnesoid X receptor (FXR), which regulates the production
of bile acids (Sayin et al. 2013). As a result, germ-free mice display higher levels of bile
acid relative to conventionally raised mice. Differences in bile acid levels have been ob-
served in several diseases (Kakiyama et al. 2013; Wildenberg and Brink 2011; Tomkin and
Owens 2016; Mudaliar et al. 2013), and disruption of bile acid production may be one
mechanism by which gut microbiota influence host health. For example, there is a lower
abundance of bile acid metabolising taxa in the gut microbiota of liver cirrhosis patients
compared to healthy controls (Kakiyama et al. 2013). This coincides with a reduced total
bile acid pool and a relatively lower level of secondary bile acids. Activation of FXR has also
been shown to improve insulin sensitivity, suggesting gut microbiota could also influence
metabolic syndrome via bile acid mediated mechanisms (Mudaliar et al. 2013). However,
bile acid homoeostasis is maintained by a feedback loop and primary bile acid production
inevitably proceeds conversion to secondary bile acids. Hence differences in gutmicrobiota
composition might also reflect responses to changes in bile acid production.

Bile acids have a direct influence on gutmicrobiome composition. Large phylum level shifts
in gut microbiota composition were observed with administration of dietary CA in rats.
There was a loss of Bacteroidetes with an increased abundance of Firmicutes including
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Clostridia, which is known to contain species able to carry out 7α-dehydroxylation of
primary bile acids (Islam et al. 2011). This likely reflects a competitive advantage for these
taxa leading to an increased proliferation relative to other gut microbiota. However, it has
also been proposed that the increased hydrophobicity of DCA relative to CA could also
have direct effects in disrupting cell membranes and actively suppress growth of susceptible
taxa (Ridlon et al. 2014).

There is also evidence of a specific association between bile acids and C.difficle infection.
Whilst GI C.difficile invasion following antibiotics is typically considered as the pathogen
capitalising on reduced competition (see Section 1.2.2 and Colonisation Resistance), antibi-
otic use also results in a reduction in primary to secondary bile acid conversion (Theriot,
Bowman, and Young 2016). Primary bile acids can prompt germination ofC.difficile spores
and may, in part, be responsible for the increased risk of infection. This is supported by
evidence that germination of C.difficile in vitro is promoted or inhibited when applying
concentrations of bile acids observed in patients before and after FMT respectively (Wein-
garden et al. 2016).

It is not clear if bile acid changes under disease are predominantly driven by host or gut
microbiota effects, however bile acid metabolism could be an important mechanism by
which the gut microbiota influence host health.

OtherMetabolicProcesses Gutmicrobiota contribute a diverse range of othermetabolic
processes that could influence host health. Methane production by methanogens has been
linked to GI transit time, which is in turn associated with colon cancer (Triantafyllou,
Chang, and Pimentel 2014). Metabolic syndrome and T2D are associated with an in-
creased level of circulatory amino acids (Neis, Dejong, and Rensen 2015). Gut microbiota
contribute to the systemic amino acid pool, both via proteolysis and synthesis, and can
influence host amino acid metabolism (Mardinoglu et al. 2015; Neis, Dejong, and Rensen
2015). Thus, amino acid metabolism could be a further mechanism by which gut mi-
crobiota contribute to metabolic disease. Gut microbiota metabolism can also influence
disease treatments by metabolising medications. For example, gut microbiota composition
can moderate the efficacy and toxicity of chemotherapy (Alexander et al. 2017). Overall,
there are many different ways in which the metabolic action of the gut microbiome could
influence host health and further research is required to determine which processes have
the largest influence on individual diseases.

Colonisation Resistance

The human gut microbiota protect against colonisation by enteric pathogens. Disruption
of gut microbiome communities by antibiotic use can lead to an increased risk of infection
by bacterial pathogens such as C.difficile, pathogenic Escherichia coli and Klebsiella pneu-
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moniae, particularly when a pathogen has developed resistance to the antibiotic used (Zerr
et al. 2016; Leffler and Lamont 2015). FMT, which reintroduces commensal communities
to the colon, can restore colonisation resistance providing evidence that the susceptibility
to infection could be due to a loss of commensal gut microbiota (see Section 1.2.2). Several
of the host-microbiome interactions discussed previously serve to promote colonisation
resistance including stimulation of AMP production, promotion of IEC barrier integrity,
and regulation of microbial spore germination by secondary bile acids. However, host
independent inter-microbial effects can also drive colonisation resistance. These can be
either passive or active interactions.

Passivemechanisms of resistance are driven bynon-pathogenic taxa competingwith pathogens
for environmental resources. One study demonstrating this effect used the model of Cit-
robacter rodentium infection in germ-free mice. These were found to be more susceptible
to enteric infection than conventionally raised mice. Reintroduction of specific commensal
microbes after pathogen colonisation caused dramatic reductions in the relative levels of GI
C.rodentium. By repeating this experiment with either mono or polysaccharides as dietary
carbohydrates and inoculating C.rodentium infected mice with commensals specialised to
either of these dietary types, it was shown that this effect is mediated by competition for
energy substrates. Commensal displacement of pathogen colonisation only occurred when
the commensals were able to metabolise the carbohydrates and compete with the pathogen
for resources (Kamada et al. 2012). As discussed previously, gut microbiota communities
contain a diverse range of metabolic capabilities and hence will compete for resources with,
and limit colonisation of, a range of pathogenic bacteria.

Bacteria can also actively target other species to inhibit their growth. Bacteriocins are
anti-microbial peptides that are secreted by bacteria to moderate the growth of compet-
ing species whilst having no effect on the producer. Bacteriocin genes are widespread
in genomes of the human gut microbiota (Donia et al. 2014). Commensals producing
pathogen-specific bacteriocins actively contribute to colonisation resistance. For example,
the commensal Bacillus thuringiensis produces bacteriocins targeting C.difficle (Rea et al.
2010); Lactobacillus salivarius produces a bacteriocin targeting Listeria monocytogenes, a
foodborne pathogen that can cause Listeriosis; and a strain of Enterococcus faecalis pro-
duces a bacteriocin targeting Vancomycin-resistant enterococci (Kommineni et al. 2015),
which highlights the potential of microbiome communities as sources of novel antimicro-
bial agents to overcome increasing levels of resistance to current antibiotics.

1.2.4 Host determinants of gut microbiome composition

The gut microbiome can influence a range of diseases via numerous potential mechanisms.
However, the host is also a major influence on the gut microbiome and its composition is
associated with a range of host environmental and lifestyle factors.
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Age

Differences in gut microbiome composition with age have been observed in several cross-
sectional and longitudinal studies (Yatsunenko et al. 2012; Odamaki et al. 2016). Although
recent evidence in animal models suggests that prenatal microbial transmission from
mother to foetus could occur (Moles et al. 2013; Jiménez et al. 2008), the uterine envi-
ronment is typically considered sterile and from birth the gut microbiome starts in a low
diversity state (Odamaki et al. 2016; Yatsunenko et al. 2012). Infant gut microbiota are then
acquired via several mechanisms including exposure to maternal vaginal and faecal micro-
biota during birth, microbial exposure during feeding, and other environmental exposures
(Koenig et al. 2011). Initially, the neonatal gut microbiota is enriched for Actinobacteria
able to metabolise lactate, with most belonging to the genus Bifidobacterium (Koenig et al.
2011; Odamaki et al. 2016). As the relative contribution of milk to an infants diet decreases
there is a concurrent change in microbiome composition, with a relative increase in other
taxa able to degrade complex foods such as plant polysaccharides (Koenig et al. 2011).
The rapid accumulation of novel taxa from environmental exposures and changing dietary
habits leads to a period of instability in the gut microbiota that lasts until around three
years old, where the gut microbiome forms a more stable adult-like composition (Koenig
et al. 2011; Yatsunenko et al. 2012; Odamaki et al. 2016). It has been proposed that com-
positional changes due to exposures in the unstable infant period, such as differences in
mode of delivery or antibiotic use, could have potentially long-term impacts on the gut
microbiota and might influence host immunity and health in later life (Bäckhed et al. 2015;
O’Neill, Schofield, and Hall 2017). After progressing to adulthood the configuration of the
gut microbiota remains stable with communities largely dominated by Bacteroidetes and
Firmicutes. In the extremes of ageing there is then a marked decrease in taxonomic diver-
sity and increases in the relative abundances of the genera Eubacterium and Bacteroides
(Odamaki et al. 2016). This age associated dysbiosis has been shown to coincide with in-
creased frailty and differences in dietary habits and environmental exposures in the elderly
(Claesson et al. 2012).

Geography

The majority of cohort-based studies aiming to profile typical gut microbiota composition
have focused onWestern populations from the USA and Europe (Consortium 2012; Falony
et al. 2016; Zhernakova et al. 2016; Qin et al. 2010). However, several smaller studies have
also profiled ‘non-Western’ populations. Yatsunenko et al. examined gut microbiome pro-
files of individuals across a range of ages from Malawi and Venezuela and contrasted them
against similar individuals from the USA. They observed a notable taxonomic divergence
in the Malawian and Venezuelan samples compared to those from the USA (Yatsunenko
et al. 2012). Differences betweenWestern and non-Western populations were also observed
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in the Flemish Gut study. When comparing Belgian gut microbiome profiles to cohorts
from the UK, USA, and the Netherlands there was considerable taxonomic overlap, with
17 core genera observed that accounted for a median of 72% of gut microbiota across these
individuals (Falony et al. 2016). However, expanding comparisons to include individuals
from Papua New Guinea, Peru, and Tanzania reduced the number of core genera to 14,
due to their increased divergence from the Western populations. More extreme taxonomic
differences have also been observed when comparing Western gut microbiota profiles to
those of hunter-gather groups such as the Hadza people from Tanzania, whose lifestyles
are often considered as more representative of those experienced during human evolution
(Rampelli et al. 2015).

Across all geographical comparisons there are consistent trends (Gupta, Paul, and Dutta
2017). Hunter-gather tribes have a highly diverse microbiota, often characterised by a dom-
inance of the genus Prevotella. Whereas Western populations in general have a relatively
less diverse gut microbiota enriched for taxa including Bacteroides and Bifidobacterium.
The gut microbiota of rural populations displays properties in-between the two and might
represent the transition between these extremes of lifestyle. The geographic distribution of
populations is inherently associated with differences in host genetics and cultural factors
such as diet. Whilst it is not yet clear which are themajor drivers of the observed differences
in the gut microbiome, it is likely that both geographic separation and cultural differences
contribute; as differences have also been observed between comparable populations from
different countries (Li et al. 2014) and between ethnic groups within the same geographic
area (Consortium 2012). The existence of geographically distinct gut microbiota profiles
necessitates replication of gut microbiome studies in different populations to confirm the
robustness and applicability of observations. This is considered in Chapter 7, where I com-
pare the similarity of microbial co-occurrence networks across three geographically diverse
cohorts.

Diet

As discussed in Section 1.2.3, the gut microbiome acts as a direct interface between dietary
intakes and host metabolism with consequences for host health. However, as might be
expected, several studies have also shown that dietary changes can also cause large-scale
changes in gut microbiota composition. These have shown that diet-associated differences
in taxonomic abundances in the gut reflect taxa abilities to metabolise predominant dietary
components. For example, Bacteroides dominant gut microbiomes have been associated
with high protein and fat rich diets, whereas Prevotella dominance is associated with higher
carbohydrate and fibre intake (Wu et al. 2011). These associations are not limited to long
term dietary behaviours, for example swapping between meat and plant based diets can
cause rapid changes in the levels of bacteria known to metabolise plant fibres (David et al.
2014). The ability to alter microbiota composition with dietary interventions is a promising
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avenue of future research. For instance, it could be possible to identify dietary components
that promote taxonomic compositions that have positive influences on host immunity or
promote resilience to pathogen colonisation (see Section 1.2.3). This has been the aim of
several pre-biotic intervention studies, which aim to provide specific dietary substrates that
promote the growth of targeted beneficial bacteria in the gut (Beserra et al. 2015; Ford et al.
2014).

Genetics

One of the first large-scale studies to investigate general associations between host genetics
and the composition of the gut microbiota was carried out in the TwinsUK cohort. This
utilised its twin structure to estimate the heritability of individual taxonomic abundances
(Goodrich et al. 2014b). The study identified significant genetic influences on a range of
taxa, although heritability estimates were for the most part low. The most heritable taxa
was the family Christensenellaceae, which had roughly 40% of the variance in its abun-
dance attributable to additive genetic effects. There have also been several studies that have
demonstrated differences in the gut microbiome associated with specific genomic variants
of interest (Frank et al. 2011; Rausch et al. 2011), and more recently some significant associ-
ations with gut microbiome traits have been described in genome wide associations studies
(Bonder et al. 2016). For example, the abundance of Bifidobacterium, a genus of lactose
metabolising taxa, is associated with variants in the lactase gene locus, which determines
the host’s ability to digest lactose (Blekhman et al. 2015). In this case, microbial changes
likely reflect genetic driven dietary habits, namely reduced milk consumption. However,
for the most part, the mechanisms mediating genetic influences on the gut microbiome are
yet to be determined.

Health andMedication

Thegutmicrobiome has been shown to associate with health. However, the directionality of
many of these effects is unknown and, as evidenced by themechanisms discussed in Section
1.2.3, could also be bidirectional. Thus differences in gut microbiome could also represent
a response to changes in host health. It is also necessary to take into account the influence
of disease treatment on the gut microbiome. As might be expected, oral antibiotics have
a rapid and wide-scale effect on the taxonomic composition of gut microbiota reducing
overall diversity (Jakobsson et al. 2010). In some cases these effects can be persistent and
detected in the gut microbiome years later (Jernberg et al. 2007). The anti-diabetic drug
metformin has also been shown to influence gut microbiome composition and function
(Forslund et al. 2015). This confounded initial results from diabetes-gut microbiome stud-
ies and highlights the importance of considering medication use. I examine the influence
of common medications on the gut microbiota in Chapters 4 and 6.
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Figure 1.2: Connectivity of influences on the human gut microbiome.

Not only do all the aforementioned factors influence the gut microbiome, they can also
interact with one another, and, in the case of factors such as health, could also be influenced
by the gut microbiome itself (Figure 1.2). This leads to a complex and dynamic system that
can make it challenging to studying the role of the gut microbiome in host health. The ma-
jority of the analyses reported in this thesis utilise samples from twin pairs. This provides
a means to control for at least some of the genetic and environmental exposures shared
between them.

1.3 16S rRNA gene profiling of microbiota

1.3.1 Phylogenetics and the ribosome

Phylogenetics is concerned with describing the evolutionary relationships between organ-
isms. This is principally achieved through comparison of gene sequences. By isolating a
region of gene sequence and aligning the comparable parts between different organisms, it
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is possible to observe the mutations unique and shared between individuals and infer the
evolutionary pathways leading to the observed sequences. This allows quantification of the
evolutionary similarity, or distance, between organisms and creation of phylogenetic trees
describing these relationships. Phylogenetic analyses require a gene that is found in the
genomes of all the organisms under investigation, most typically these are ribosomal RNA
genes (Weisburg et al. 1991).

Ribosomes are responsible for catalysing the translation of messenger RNA sequences to
peptides; a highly conserved process occurring in all living cells. These intracellular struc-
tures consists of subunits made from a combination of proteins and non-coding rRNAs. In
prokaryotes, the smallest ribosomal subunit contains the 16S rRNA. The importance of its
function has lead to high evolutionary conservation (low mutation rates) in the functional
regions of the gene encoding the 16S rRNA. However, these functional regions are inter-
linked by spacer regions, termed variable regions, that are under less selection pressure
and more readily accumulate mutations (Figure 1.3). These properties provide a powerful
tool for phylogenetic analyses. The known sequence in the conserved regions can be used
to align gene sequences and also facilitates the design of universal PCR primers to assay
16S rRNA genes from different organisms. Whilst the variable regions in-between make
it possible to make evolutionary inferences (Weisburg et al. 1991). These features have led
the 16S rRNA gene to become a standard for prokaryotic phylogenetics and resulted in the
production of large reference databases of 16S rRNA gene sequences from thousands of
prokaryotic species. These have proved invaluable for profiling microbiota (DeSantis et al.
2006; Quast et al. 2012; Cole et al. 2008).

1.3.2 Sequencing 16S rRNA genes in the gut microbiome

Sequencing of 16S rRNA genes is one of the most widely used methods to generate taxo-
nomic profiles of gut microbiota. Prior to the advent of modern sequencing technologies,
16S rRNA gene sequences were sequenced on an individual basis and microbiomes were
assayed using culture based approaches that under-represented taxa not amenable to cultur-
ing. The development of high-throughput technologies, such as Roche 454 pyrosequencing
and the Illumina dye based approach, has enabled sequencing of thousands of 16S rRNA
gene sequences from microbiome samples (Sogin et al. 2006). These can then be mapped
to databases of 16S rRNA gene sequences to identify the prokaryotes present in the com-
munity and their relative abundances. In practical terms this is a more complex process
both in terms of sequencing the 16S rRNA genes and analysis of the read data.

The use of variable regions

Thebenefit of high-throughput sequencing technologies is the ability to sequence hundreds
of thousands of reads providing deep sampling from a pool of sequences, however this
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Figure 1.3: Diagrammatic representation of the secondary structure of an Escherichia coli 16S rRNA, high-
lighting the V3 and V4 variable regions. Adapted from Ziesemer et al. 2015 (Ziesemer et al. 2015).
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comes at the cost of read length - pyrosequencing reads average around 400bp in length and
Illumina sequencing can reach lengths up to 250bp (Goodwin, McPherson, andMcCombie
2016). These limits mean that it is not possible to assay the whole 16S rRNA gene (∼ 1.5kb
in length (Brosius et al. 1978)). This has been addressed by only using select variable
regions in 16S rRNA gene-based microbiota assays. The 16S rRNA gene contains nine
variable regions and several have been used in microbiome studies. I will focus on the V4
region (Figure 1.3) and sequencing using Illumina platforms as this is used throughout this
thesis. Illumina short-read sequencing has also become widely adopted in microbiome
studies using 16S rRNA gene sequencing as it provides deeper sampling (more reads) than
pyrosequencing (particularly important when multiplexing samples - Figure 1.4). This has
in turn promoted the use of the V4 region as it is∼ 253bp long and can be fully sequenced,
with sufficient overlap, by Illumina 250bp paired-end sequencing.

DNA extraction and PCR

Thefirst stage of sequencing 16S rRNA genes in a gut microbiome study involves extraction
of microbiomeDNA, typically from a faecal swab or sample. This can be carried out using a
range of commercial kits using chemical and/or physical lysis steps to break open microbial
cells. A variable region of the 16S rRNA gene is then amplified using PCR with universal
prokaryotic primers targeting conserved gene regions. After PCR, amplicons are then se-
quenced producing raw 16S rRNA gene reads. PCR polymerase, primers, DNA extraction
method, and sequencing platform can all influence the resulting microbiota profiles (Cru-
aud et al. 2014; Tremblay et al. 2015; Gohl et al. 2016; Walker et al. 2015). Standardised
protocols have been produced that aim to reduce the experimental variance between stud-
ies, for instance the Earth Microbiome Project that developed the widely used 515F-806R
primers for the 16S rRNA V4 region (Gilbert, Jansson, and Knight 2014). However, there
is still much variability between the experimental steps between different studies that im-
pedes replication of results across datasets. In Chapter 6, I carry out association analyses
between multiple diseases within the same data set allowing a uniform comparison of the
results.

Quality control

Quality scores from the sequencing platform can be used to filter low quality reads from a
microbiome sample. An additional step to improve 16S rRNA marker gene sequencing is
filtering of chimeric reads. Incomplete extension between primers during PCR can produce
partial reads that can act as primers in the next round of amplification. These can bind to
sequences from a different species generating reads that contain fragments from different
organisms termed chimeras (Qiu et al. 2001). Several algorithms are available to identify
and remove these sequences in 16S rRNA gene amplicon data. These use either reference
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Figure 1.4: Overview of an experimental pipeline to generate 16S rRNA gene sequencing-based gut
microbiota profiles at a large population cohort scale, highlighting the use of barcoded PCR primers. This
enables pooling, or multiplexing, of reads so they can be sequenced within the same sequencing run,
reducing costs and increasing efficiency. Reads can then be split later by sample based on the unique
barcodes on each read.

sequences to identify chimeras from combinations of known sequences, or detect chimeras
based on the abundance of other reads within the data (assuming a chimera will be at
lower abundance than its source reads) (Edgar et al. 2011; Haas et al. 2011). Once the 16S
rRNA gene read data in a sample has been cleaned it can be combined with reads from
other samples in the study. An overview of the complete pathway from samples to 16S
rRNA gene reads in a large cohort study is shown in Figure 1.4. Once the data are cleaned
and combined the final stage before analysis of the microbiota profiles is the generation of
operational taxonomic units.

1.3.3 Operational Taxonomic Units

Limitations of raw 16S rRNA gene sequences

The 16S rRNA gene reads produced from microbiome sequencing can contain many hun-
dreds of thousands of reads for a given sample. As a result of the PCR amplification, the
existence of multiple bacteria of the same type in a microbiome, and multiple copies of
the 16S rRNA gene within bacteria (Větrovskỳ and Baldrian 2013), there will be many
duplicates. However, even after dereplication of reads there will be thousands of different
unique sequences. This is due to:

1. The large diversity of hundreds to thousands of organisms in the gut microbiome
with unique sequences across the 16S rRNA gene V4 region

2. Sequencing errors inducing small nucleotide changes producing new erroneous reads

3. PCR errors such as chimera formation creating new erroneous reads
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Ideally, the influence of the last two factors would be minimal given sufficient quality con-
trol but current methods cannot account for all of these effects perfectly. The first factor is
not problematic in terms of biological representation of microbiota but presents analytical
challenges. The high dimensionality of these data sets leads to high computational demands
for processing and storage space, increases the burden of multiple testing in statistical anal-
yses, and can make them unsuitable for many statistical approaches due to there extreme
sparsity (numerous reads are found at low levels in only one or two samples in a study).

There are also limits to the resolution achievable using sequence reads from the V4 region
of 16S rRNA genes. It is only possible to assess the evolutionary differences within this
limited region. These may not be representative of wider divergence across the whole
16S rRNA gene and even less so across the whole bacterial genomes (Kim et al. 2014).
The nucleotide differences within the V4 region might over or underestimate the wider
evolutionary divergence and don’t directly represent functional differences between taxa
(Schloss 2010). This is further confounded by bacterial exchange of geneticmaterial via non-
genomic vectors in horizontal gene transfer (Huddleston 2014). Mutation rates can also
differ between variable regions and betweenmicrobial clades (Kim, Morrison, and Yu 2011;
Yang, Wang, andQian 2016). As a result of these factors, even if suitable analytical methods
existed, it would not necessarily be beneficial to analyse 16S rRNA gene sequences at the
unique read level. This is typically overcome by clustering reads together to operational
taxonomic units.

The term operational taxonomic unit (OTU) was defined by ecologists to refer to groups of
taxonomically related organisms that are grouped together to simplify quantitative analyses
(Sneath and Sokal 1973). An OTU does not translate to any strict biological representation
but is a unit simply used for analytical (or operational) purposes. Grouping to OTUs could
be done at any taxonomic level based on genetic similarity or even based on non-genetic
relationships such as morphology. However for the purposes of microbiota analyses, the
OTU has taken on a more standardised definition.

In studies using 16S rRNA gene sequencing, OTUs are used to reduce the dimensionality
of the read data. The unique reads observed across all samples in a study are clustered
together into OTUs based on their sequence similarity. Read counts are then summed into
their assigned OTUs to produce OTU tables, giving the counts of each OTU in each sample.
A visual representation of OTUs is shown in Figure 1.5.

The 97% similarity threshold

To generate OTUs, the unique 16S rRNA gene reads across all samples in a study are clus-
tered by sequence similarity to create groups of reads more similar than a given threshold.
This is typically carried out at 97% - that is, grouping two reads into the same OTU if,
when aligned, they share at least 97% of the nucleotides along their length. The 97% thresh-
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Figure 1.5: Schematic of the idealised concept of OTU clustering. Colours represent different source
organisms, different shades indicate similar strains, and grey indicates sequencing errors.

old was selected as a result of studies comparing the genomic variance between bacterial
species in relation to the variance in their 16S rRNA genes (Stackebrandt and Goebel 1994;
Konstantinidis and Tiedje 2005). These found that at the 97% level the variance in the 16S
rRNA genes was roughly equivalent to existing definitions of bacterial species based on ge-
nomic divergence. This threshold is also sufficiently flexible to group reads produced from
sequencing errors with their source sequences (Huse et al. 2010). However, these studies
considered variation across the full length 16S rRNA gene and this threshold is still applied
when only considering much shorter variable regions. There is also evidence that different
similarity thresholds might be required for different prokaryotic clades due to differences
in mutation rates (Mysara et al. 2017). I carry out a comparative analysis to identify an op-
timal similarity threshold value in a comparison of OTU clustering approaches in Chapter
5.

Clustering 16S rRNA gene amplicon reads to OTUs

Most simply, clustering 16S rRNAgene amplicons toOTUs is an iterative process of carrying
out pairwise alignments and comparisons and grouping reads together where they are suf-
ficiently similar. However, in practice thousands of reads make this infeasible, requiring
many millions of pairwise comparisons. This is overcome in two ways:

1. Using greedy algorithms that optimise comparisons between sequences to those likely
tomatch (Edgar 2010; Rognes et al. 2016; Li and Godzik 2006). An example of which
is shown in Figure 1.6.

2. Limiting comparisons by clustering experimental data to a restricted reference list of
sequences (Navas-Molina et al. 2013; Schloss and Westcott 2011).
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Figure 1.6: Overview of a greedy approach to clustering read data based on the kmer indexing approach
used by VSEARCH (Rognes et al. 2016).

Both of these approaches have been used alone and in tandem to enable clustering of OTUs
frommillions of unique reads. These clustering techniques can be classified into threemain
categories based on the approaches used, these are reference, de novo, and open reference
based clustering. These are described in more detail below and summarised in Table 1.2.

Reference based clustering When clustering sequences to OTUs the ultimate aim is
to determine some taxonomic identity for the reads within the OTU. This is often achieved
by selecting the most abundant read in an OTU as a representative sequence. This can then
be aligned to one of the existing databases of prokaryotic rRNA reads to identify the likely
taxonomic lineage that the representative read, and hence OTU, belongs to (Nguyen et al.
2016). This is common practice to assign taxonomy to OTUs in 16S rRNA gene sequencing
studies.

The process of OTU clustering can be sped up by aligning the reads directly to the limited
set of reads in the reference database rather than carrying out prior clustering, which
requires comparisons between all the reads in the data. This approach is called reference
or closed reference clustering (Navas-Molina et al. 2013). Clustering/alignment to the
reference database can be carried out with complete pairwise alignments or using greedy
algorithms (Figure1.6) to further speed up the process. Reference based clustering has the
benefit of being fast, computationally less demanding as only the reference reads must be
loaded tomemory, guarantees taxonomic assignment will be known for the resultant OTUs,
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and provides a method to ensure consistency across experiments using the same database.
However, it will not enable detection of novel sequences absent from the database so can
under estimate diversity (Rideout et al. 2014), and relies on the quality of the reference
database used.

De novo clustering Clustering of OTUs without a reference is termed de novo cluster-
ing. If the number of unique reads are low, for instance when using a lower throughput
sequencing technology or a low diversity microbiome, it is possible to de novo cluster am-
plicon sequencing data by carrying out all pairwise comparisons and using hierarchical
clustering (Schloss and Handelsman 2005). This is generally not possible using Illumina
sequencing from the gut microbiome, which will contain a high number of unique reads.
As a result almost all approaches to de novo OTU clustering rely on greedy algorithms
and several different algorithms have been developed to this end (discussed in Chapter 5)
(Edgar 2010; Rognes et al. 2016; Mercier et al. 2013; Mahé et al. 2014). Even using greedy
approaches, de novo clustering is more computationally intensive than reference based
clustering as it must load all the data in memory and consider a higher potential number
of comparisons. The de novo OTUs generated in one experiment are also not directly com-
parable to other studies. However, de novo clustering is able to capture novel sequence not
in reference databases so can produce more accurate estimates of microbiome diversity
(Rideout et al. 2014). Although, as with reference clustering, assignment of taxonomy to
OTUs still depends on the quality of the reference database used.

Open reference clustering One final approach to OTU clustering aims to reap the
computational benefits of closed reference clustering with the novelty captured by de novo
approaches. Termed open reference clustering, it was developed by the group who created
QIIME, a popular software wrapper for algorithms used in 16S rRNA gene sequencing
analyses (Navas-Molina et al. 2013; Rideout et al. 2014). The concept is that reads are
assigned to OTUs using closed reference clustering followed by de novo clustering on reads
that are not found in the reference database. This performs faster than de novo approaches,
but mixes approaches and algorithms so leads to an admixture of OTU types.

Alternative approaches More recently, several studies have also proposed threshold
free alternatives to defineOTUs. Not only do they negate the use of arbitrary thresholds but
can also avoid the clustering of sequences altogether. Two examples include the DADA2
and minimum entropy decomposition algorithms (MED). DADA2 models the error pro-
file of sequencing runs from sequencing quality scores, it then uses this model to correct
sequencing errors. This enables the use of dereplicated reads without clustering (Callahan
et al. 2016). MED, an extension of a previous approach called oligotyping, uses the entropy
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Table 1.2: A comparison of OTU clustering approaches.

Clustering
Approach

Requires
Reference?

Pros Cons

Reference
based

Yes Lower computational
requirements, Fast,
Comparable across
datasets, All OTUs
have some known
taxonomy

Misses novel diversity
(not in reference)

De Novo No No prior assumptions,
OTUs include all
observed diversity

Hard to compare
across datasets, Higher
computational
requirements, Slow,
Novel OTUs can have
unknown taxonomy

Open
Reference

Yes Faster than de novo,
Lower computational
requirements,
Captures novel
diversity

Slower than reference
based, Produces
mixture of reference
and de novo OTUs,
Hard to compare
across datasets, Novel
OTUs can have
unknown taxonomy
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(or variation) of nucleotides at each position in the variable region queried to identify the
most biologically informative differences. This involves aligning reads to identify the po-
sitions that contribute the most variance across all the sequences. The assumption is that
relevant phylogenetic differences, which are subject to evolutionary pressures, are more
likely to be found in the same position than sequencing errors, which will be more ran-
domly distributed along the sequences. Reads can then be sequentially split into groups
based on the nucleotides at the most variable positions (Eren et al. 2015).

There have been numerous studies aiming to compare and benchmark the various ap-
proaches to OTU clustering (He et al. 2015; Schloss 2016; Westcott and Schloss 2015;
Kopylova et al. 2016; Chen et al. 2013). However, there is no gold standard against which
to define an optimal OTU. This is discussed further in Chapter 5 where I aim to address
this by using heritability estimates in twins, as a measure of how well an OTU represents
the underlying biological differences in the microbiota.

Comparison of OTUs across studies

A further limitation to OTU studies arises from their general reliance on heuristic algo-
rithms. The stochastic nature of these approaches can produce variability in OTU defini-
tions between multiple runs on the same data (He et al. 2015). This compounds variability
arising from differences in the experimental approaches or reference databases used. These
effects can further hinder reproducibility of amplicon-based microbiome association stud-
ies (Sze and Schloss 2016). In Chapter 6 I address comparability between disease studies
by carrying out multiple association studies for different diseases within the same dataset.
In Chapter 7 I overcome analytical differences between datasets by integrating read data
from three different cohort studies prior to OTU clustering.

1.3.4 Typicalapproaches to theanalysisof16SrRNAgenesequencing-

based gut microbiome profiles

Once summarised to OTUs 16S rRNA gene-based profiles of the gut microbiome can be
analysed in relation to phenotypes of interest. Here, I provide a brief summary of the
typical approaches used in such studies. These are further demonstrated in Chapters 3 and
4, where I use established approaches to identify novel gut microbiome associations with
host frailty and PPI use.

Diversity measures

Diversity of the gut microbiome is one of the principle features that can be assessed using
16S rRNA gene sequencing. In microbiome research the term diversity principally refers
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to either alpha or beta diversity.

AlphaDiversity Alpha diversity is a measure of organism diversity within an individual
microbiome. This can be the number of different organisms present, termed richness, or
how evenly distributed the abundances of each organism are, termed the evenness. The
most simple measure of alpha diversity is simply the number of unique OTUs observed in
a sample. There are also more sophisticated diversity indices used in ecology, for instance
the Shannon index that considers evenness (Shannon 2001) or the Chao1 index that quan-
tifies richness adjusting for the proportion of rare organisms in the sample (Chao 1984).
Alpha diversity indices can be used in association analyses or case-control comparisons
to determine if a phenotype of interest influences the diversity of a sample. For instance,
several diseases have been associated with a reduced alpha diversity in the gut microbiome
(Gevers et al. 2014; Qin et al. 2012; Goodrich et al. 2014b).

Beta Diversity In microbiome research beta diversity refers to the overlap or similarity
of two microbiomes in terms of their microbial complement. Various metrics can be used
to assess the similarity (or dissimilarity) of two microbiomes. Most simply beta diversity
can be quantified by counting the number of shared and unique OTUs between them (the
Jaccard index) or can use more complex metrics that consider the relative abundances of
each organism in eachmicrobiome (Lozupone andKnight 2005). Calculating beta diversity
between all the samples in a study generates a distance matrix representing the composi-
tional similarity between samples. These are well suited for analyses such as PERMANOVA,
to identify associations between phenotypes and wide-scale microbiota composition, or
principle co-ordinates analysis, which reduces the dimensionality of theOTUdata enabling
visualisation of the clustering of samples by microbiota composition. The latter approach
being widely used to assess clustering by host phenotypes. For instance, distinct clustering
between gut microbiome samples from diseased and healthy individuals (Halfvarson et al.
2017) or between microbiota profiles from different body sites (Consortium 2012; Costello
et al. 2009).

There are numerous indices and measures for both alpha and beta diversity. However,
many do not take into account the taxonomic similarity between the OTUs. Phylogenetic
diversity provides a measure of taxonomic alpha diversity (Faith and Baker 2006) and the
UniFrac distance was developed to quantify taxonomic similarity between microbiome
profiles (Lozupone and Knight 2005). These are summarised in Figure 1.7.

OTU and taxonomic associations

The use of microbiota profiles derived from 16S rRNA gene sequencing is not restricted to
high level diversity analyses. It is also possible to probe abundances of specific microbial
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Phylogenetic Diversity
(Alpha Diversity Metric)

UniFrac
(Beta Diversity Metric)

High phylogenetic diversity

Low phylogenetic diversity

The sum of all the branch lengths within the
phylogenetic tree that connect OTUs

observed in the sample.

Comparing two samples. The ratio of
phylogenetic branch length unique to one
sample to phylogenetic branch length

shared between both.

Unique Branch Length
Shared Branch Length

Range = 0 (Identical) - 1 (No Shared OTUs)

Figure 1.7: Two taxonomy based diversity measures used in microbiome analyses. Shown are the un-
weighted versions, both can also be adapted to consider the abundance of observed OTUs in samples.

groups in relation to a phenotype of interest. At its finest level these are association analyses
with the abundances of individual OTUs. OTU counts can also be collapsed together by
shared taxonomic assignment at different taxonomic levels to identify associations with
higher level groupings, for instance grouping OTUs from the same families together. There
are three main limitations to OTU/taxonomic analyses with 16S rRNA gene amplicon data.

1. OTUs have poor taxonomic accuracy. Taxonomy is assigned to an OTU by align-
ment of a representative sequence to a reference database. Therefore, the assigned taxonomy
may not be representative of all the reads within an OTU (Nguyen et al. 2016). There is
also a limit to the accuracy of taxonomic assignment due to both the limits of what has
been previously identified (and hence within the reference database) and the resolution
that can be delineated from the length of the variable region being probed. As such, OTUs
might only be assigned to high taxonomic levels such as phylum. It is also possible to iden-
tify multiple OTUs assigned to the same species. This can either occur as a result of the
imperfect clustering of greedy approaches leading to multiple OTUs where reads should be
grouped together, or as a result of reads that are sufficiently different to cluster separately
but similar enough to match reference reads from the same species. Both incomplete taxo-
nomic assignment and duplicate OTU assignments can complicate interpretation of OTU
association results: reporting associations with unknown taxa can be uninformative and
OTUs with shared taxonomy could have opposing associations with the same phenotype.
Both of these limitations were encountered in the analyses in Chapters 3 and 4.
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In Chapter 6 I use higher level taxonomic summaries that are less influenced by these effects
to generate an index that remains highly correlated with microbiota composition and host
health. In Chapter 7, I address the limits of taxonomic accuracy by proposing an alternative
analytical approach, collapsing OTUs into interacting communities of OTUs as opposed
to using taxonomy based summaries.

2. OTU counts are relative. High-throughput sequencing has different efficiencies
across samples in a study. More deeply sequenced samples have a higher chance of detect-
ing rarer OTUs relative to those less deeply sequenced. This can make biologically similar
samples appear compositionally different as a result of technical differences. Counts in
OTU tables therefore do not represent the number of occurrences in the sample but the
number of times that OTU was observed relative to all the other counts observed - OTU
counts are compositional data (McMurdie and Holmes 2014). The problem of compo-
sitional data effects other fields using high-throughput sequencing based sampling such
as mRNA sequencing (Love, Huber, and Anders 2014) and a number of normalisation
techniques have been proposed to account for this (McMurdie and Holmes 2014; Weiss
et al. 2017). These include converting OTU counts to fold-changes from their geometric
mean across all samples in a study (Love, Huber, and Anders 2014; Gloor et al. 2016), or
randomly sub-sampling the OTU counts without replacement to a given level to generate
even depths across samples, termed rarefying (McMurdie and Holmes 2014). Rarefying
of OTU tables has been frequently used within 16S rRNA gene sequencing studies, largely
as it is recommended in stages of the popular QIIME pipeline (Navas-Molina et al. 2013).
However, by necessity, rarefying of OTU tables results in a loss of information reducing
discriminatory power in later analyses (McMurdie and Holmes 2014).

In this thesis I approach OTU normalisation by discarding rarer OTUs that are more influ-
enced by sampling effects, converting raw counts to log transformed relative abundances,
and adjusting for the sequencing depth in each sample as a covariate in statistical models.
This approach was selected as several of the proposed alternatives have only be compared in
differential abundance analyses and not for associations with continuous phenotypes (Mc-
Murdie and Holmes 2014; Weiss et al. 2017), it allows simple incorporation of additional
continuous covariates, produces easily interpretable results of significance and direction of
associations, and has previously been described within the dataset (Goodrich et al. 2014b;
Goodrich et al. 2014a). I also use replication of associations in external datasets to validate
observations where possible. In Chapter 6 I develop an index to score microbiota composi-
tion based on the ratio of different taxonomic counts. As this is based on a ratio of counts
it can be applied to raw observations, overcoming issues associated with normalisation
between samples.
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3. OTU data is high dimensional. Even after collapsing to OTUs there may be thou-
sands of OTUs observed across the samples in a study. This results in a large multiple
testing burden when carrying out statistical tests. However, there is also significant inter-
correlation between OTUs and parent/child taxonomic levels in a microbiome study that
makes many of these tests redundant.

In Chapter 6 I present two approaches to reduce the dimensionality of 16S rRNA gene
sequencing data. First, I use correlation patterns between taxa to select a restricted set of
representative marker taxa for analyses. Second, I generate a quantification based on these
markers that represents wide-scale composition of the gut microbiome in a single index. In
Chapter 7 I reduce the number of units for analysis by collapsing OTUs into communities,
using the correlations between them to infer interactions.

1.3.5 Alternative approaches to assay the gut microbiome

This thesis is principally concerned with developing approaches to the analysis of micro-
biota profiles derived from 16S rRNA gene sequencing. As discussed in Section 1.3.3,
using such approaches can only provide low resolution taxonomic profiles of a microbiome.
Several other culture-independent techniques are available that can provide higher resolu-
tion taxonomic information and assay the functional capabilities of the gut microbiome.
These include metagenomics, metatranscriptomics, metaproteomics and metabolomics
(Tyson et al. 2004; Frias-Lopez et al. 2008; Verberkmoes et al. 2009; Louis, Hold, and Flint
2014). There has also been extension of marker gene approaches to array chips that can
provide quantitative information at high taxonomic resolutions by using different marker
sequences for each species and/or strain (Paliy et al. 2009). Metagenomic and metabolomic
approaches are used in conjunction with 16S rRNA gene sequencing in Chapter 6 and are
summarised briefly below.

Metagenomics

Metagenomic approaches to microbiome profiling now typically using shotgun sequencing
of microbiome DNA. Complete microbiome DNA is fragmented and sequenced using a
high-throughput platform (Sharpton 2014). The resultant short reads can then either be
assembled to identify de novo microbial genomes that are then assigned taxonomy (Qin et
al. 2010), or reads can be used to estimate taxonomic abundances directly. This is achieved
by aligning reads to marker genes specific to individual taxonomic clades (Segata et al.
2012). By assaying taxa at the genomic level metagenomics is able to achieve resolutions as
fine as splitting distinct bacterial strains (Scholz et al. 2016). Metagenomics also provides
information regarding microbiome function. Genes can be identified in de novo genomes.
These and/or the raw reads can be aligned to existing references of known genes. The
inferred gene abundances are then typically collapsed to gene homolog groups or functional
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pathways, giving the relative abundances of gene functions in the microbiome. It is now
also possible to infer function by predicting the presence of functional protein domains
from metagenomic DNA sequences (Prakash and Taylor 2012). However, metagenomic
approaches can only infer the available functionality from the genes within themicrobiome,
which may not reflect the active functionality.

It is possible to derive microbiome functionality from 16S rRNA gene sequencing using
study databases that have carried out both amplicon-based and metagenomic-based micro-
biome profiling on the same samples, allowing inference of the correlations between them.
The most widely used of these approaches being the PICRUSt package (Langille et al. 2013).
Whilst these produce predictions in line withmetagenomic assay results, they require use of
OTU clustering approaches matching those of the original study, cannot predict functions
outside of the training set, and only provide estimates for high level functional pathway
abundances (Langille et al. 2013; Aßhauer et al. 2015).

Metabolomics

Metabolomics refers to techniques to assay all the metabolites within an environment. This
could be within one microbe, a human tissue, or within samples from a whole microbiome
environment, in which case it will contain a mixture of host derived and microbe derived
metabolites. Metabolic profiling of a microbiome provides insights into the metabolic func-
tions active within the environment. This in turn provides information regarding microbe-
microbe and host-microbe interactions occurring within the community (McHardy et al.
2013). These are important features to study as the gut microbiome has important roles
in the metabolism of substrates that cannot be directly utilised by the host, which instead
relies on secondary metabolites produced by microbiota (Sonnenburg and Bäckhed 2016).
Metabolomic assays require the use of chemical and chromatographic extraction tech-
niques to isolate metabolites in conjunction with either nuclear magnetic resonance or
mass spectroscopy to identify them (Lin et al. 2007; Soga et al. 2003).

1.4 Co-occurrence networks in the gut microbiome

1.4.1 Microbial interactions

The composition of the gut microbiome is not only determined by its interactions with
the host but also inter-microbial interactions between its members. Microbes can interact
via several mechanisms to the benefit of one or both of the parties involved (Figure 1.8)
(Faust and Raes 2012). At the microbiome level this results in a complex network of in-
teractions giving rise to functionality that is greater than the sum of its parts (Faust et al.
2012). It has been shown that interspecies interactions can be used to predict the relative
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Interaction Outcome

Key

Type of Interaction

Parasitism or predation

Amenalism

Competition

Commensalism

Mutualism

Microbial Example
Bdellovibrio bacteriovorus, a gram negative bacteria with a growth
stage in which it enters other gram negative bacteria, grows
utilising its hosts materials, and subsequently devours its host.

Penicillium fungi produce penicillin killing susceptible
neighbouring bacteria with no direct benefit.

Growing two colonies of the same Paenibacillus dendritiformis
strain on the same nutrient limited media will cause them to
produce antimicrobials inhibiting growth. Where as a single
colony of the same strain will grow without inhibition.

Occurs in biodegradation communities where bacteria feed on
the metabolic by-products of other members.

Syntrophy between methanogens and acetogenic bacteria in
methanogenesis. Methanogens consume hydrogen in reduction
of carbon dioxide to methane, lowering hydrogen concentration.
This enables fermentation by other anaerobes producing acetate
and hydrogen, which is in turn used by the methanogens.

Figure 1.8: Summary of different microbial interaction types with examples. Based on a figure from Faust
and Raes 2012. Examples taken from Kadouri et al. 2013; Mougi 2016; Faust and Raes 2012; Morris et al.
2013.

taxonomic composition of mixed microbial communities and can be required to maintain
stable community configurations (Friedman, Higgins, and Gore 2017; Larsen, Field, and
Gilbert 2012; Konopka, Lindemann, and Fredrickson 2015; Kelsic et al. 2015). For instance,
differential antimicrobial production and sensitivity between three species of bacteria can
lead to a stable mixed community, whose abundances and spatial conformation can be
predicted from their pairwise interactions (Kerr et al. 2002; Kelsic et al. 2015). Whilst this
is a simplified model, inter-microbial interactions could similarly influence community
structure in the gut. Understanding these interaction networks is important for human
health research, as it can provide insights into the mechanisms driving the differences in
gut microbiota observed with health related phenotypes.

The gut microbiome contains a diverse range of micro-organisms. Interactions between
bacteria can be assayed using pairwise cultures (Friedman, Higgins, and Gore 2017). How-
ever this is infeasible for gut microbiota given the wide diversity, and hence high number
of comparisons, and that a large proportion of taxa cannot be cultured easily (Browne et al.
2016). Furthermore, in vitro approaches don’t represent interactions within the context of
the host environment. Host properties such as disease will also influence microbiome in-
teraction networks (Baldassano and Bassett 2016). Thus it is desirable to infer interactions
from culture-independent methods such as 16S rRNA gene amplicon-based sequencing.

Interactions can be inferred from 16S rRNA gene sequencing-based microbiota profiles
through the co-occurrence, or correlation, of taxa across a range of samples (Faust et al.
2012). For instance, we might expect two taxa with a mutualistic relationship to have a
positive correlation between their abundances as they benefit from each others presence.
Conversely, a negative correlation between two taxa might represent a competitive inter-
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action, where the presence of one reduces the fitness of the other. Co-occurrence is an
imperfect assay for interactions, correlations could also arise through taxa responding
similarly to external factors, for instance two taxa associating through shared niche special-
isation (Faust and Raes 2012; Levy and Borenstein 2013), or through technical artefacts, for
instance primer bias to different taxa could induce spurious but consistent associations be-
tween their abundances (Walker et al. 2015). These are limitations of using observational
data and the experimental approach. However, considering these limitations, assaying
co-occurrence patterns pairwise between all the OTUs can still be used for approximate
inference of the interactions between them.

1.4.2 Quantificationof co-occurrencenetworks from16SrRNAgene

sequencing profiles of the gut microbiota

The compositionality of OTU count data (see Section 1.3.4) means that common statistical
approaches to quantify correlation cannot be used (Faust et al. 2012; Friedman and Alm
2012). As the counts of OTUs sum to one within a sample, there is inherent negative
correlation between abundances (Friedman and Alm 2012). For example, in the most
simple case of a sample with only two OTUs of even abundance doubling the counts of
one will half the relative abundance of the other. This induces correlation into the data as
an artefact of sequence sampling rather than from biological sources. Several approaches
have been designed to accommodate this problem and estimate co-occurrence between
OTUs. Some of these are briefly discussed below and in Chapter 7.

Co-occurrencemethods accounting for compositional OTU data

A number of methods have been developed that aim to overcome the problems associated
with identifying co-occurrence between OTUs. These can take two approaches, either
adapting existing similarity measures to address compositionality, or using novel metrics
to quantify co-occurrence that are amenable to compositional data. Existing similarity
measures are used by the MENA-RMT, and the CoNet/ReBoot approaches.

MENA Microbial ecology network analysis (MENA) uses classical correlation coefficients,
such as Pearson, to determine co-occurrence between OTUs but applies a threshold above
which interactions are considered real (Deng et al. 2012). The threshold is determined using
a randommatrix theory (RMT) approach. A similaritymatrix is created frompairwise coef-
ficient values, the threshold is then selected where the eigenvalues of the matrix transition
from fitting a Gaussian distribution to a Poisson distribution (Luo et al. 2006).
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yij = log
xi

xj

(1.1)

Figure 1.9: Equation for the log ratio transform. The log ratio transform provides ameasure of proportion-
ality yij between twomeasurements in a compositional data set (xi,xj) without bias to relative abundances

CoNet Faust et al. presented an ensemble based approach to microbial co-occurrence,
which has since been released as CoNet (Faust et al. 2012). This quantifies associations
by combining the results of multiple measures of similarity (for instance Spearman’s and
Kendall’s correlations) and dissimilarity (for instance Bray-Curtis and Kullback-Leibler dis-
tances). Correlations are considered significant if they are observed similarly in allmethods,
combining the strengths and weaknesses of each measure. CoNet further handles compo-
sitional data using a technique called ReBoot to determine the significance of the observed
correlations. This overcomes the compositional problem by iteratively permuting OTU
counts across samples, followed by re-normalisation to relative abundances. Calculation of
correlations after each permutation gives an indication of the level of correlation produced
as an artefact of compositionality. Correlations above these null thresholds in multiple
co-occurrence measures can be considered true.

SparCC SparCC presents a novel quantification of co-occurrence, designed specifically
for compositional OTU data (Friedman and Alm 2012). It utilises the log-ratio transform
(Figure 1.9), first proposed by Aitchison (Aitchison 1982) and commonly used in composi-
tional analyses (Gloor et al. 2016). The transformation measures the variance in the ratio
between units across a study, and is carried out pairwise between all OTUs. SparCC utilises
the ratio variance between twoOTUs to infer the coefficient of their association, where zero
variance would equal a perfect correlation (the ratio of unit 1 over unit 2 is identical in all
samples). SparCC coefficients calculated on permuted tables can then be used to assess the
significance of the observed correlations. SparCC has been demonstrated to outperform
standard Pearson based analysis when applied to OTU data (Friedman and Alm 2012).

MIC A further novel metric is themaximal information coefficient (MIC).This was devel-
oped to be able to identify different of types of associations (linear, exponential etc.) without
prioritising detection of any particular type. The MIC approach iteratively bins the two
continuous variables under consideration and calculates the mutual information between
the bins across the two axes. The MIC coefficient of association is found by the minimum
number of bins that produce the maximum mutual information. MIC has previously been
applied to microbiome data (Reshef et al. 2011; Weiss et al. 2016).
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Figure 1.10: Flowchart for selecting the appropriate co-occurrence method to use for microbiome data.
From a comparative study byWeiss et al. (Weiss et al. 2016).

LSA With suitable datasets, temporal dynamics can also be applied to identify associ-
ations between OTUs. In the local similarity analysis (LSA) method defined by Ruan et
al. covariance of OTU abundances across time series data is used to identify associations
between them. LSA can also identify associations where there is a time lag between changes
in abundance between OTUs and changes between OTUs and their environment with time
(Ruan et al. 2006).

The five approaches described (MENA, CoNet, SparCC, MIC, and LSA) and standard
approaches such as Pearson and Spearman correlation were recently compared in their
ability to detect OTU associations in a study by Weiss et al. (Weiss et al. 2016). The study
applied each method to simulated communities based on a range of underlying models
and real experimental data. The sensitivity, specificity, and precision, as well as the number
of correlations shared across methods, were used to assess the quality of the correlations
identified by each method, across a range of different input tables. The final results were
summarised in a flowchart advisingwhichmethod to use based on properties of the starting
OTU table and the desired outcomes (Figure 1.10). This was used as a reference to guide
co-occurrence detection in Chapter 7.

1.4.3 Definingmicrobial communities fromco-occurrencenetworks

Interactions inferred from OTU co-occurrence can be considered within interaction net-
works. Generating networks with theOTUs as nodes and their interactions as edges enables
analyses of wide-scale community dynamics. For instance the degree, or connectivity, of
OTUs can be used to identify highly connected ‘hub’ taxa (Faust et al. 2012). Networks
can also be compared between groups, for instance between ecosystems (Williams, Howe,
and Hofmockel 2014; Faust et al. 2012), populations (Yadav, Ghosh, and Mande 2016), or
diseased and healthy states (Baldassano and Bassett 2016; Tong et al. 2013). Furthermore,
it is possible to identify sub-networks, or communities, of OTUs within the network.
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Within a microbial community we might not expect that all OTUs interact with one an-
other, but rather that they interact within smaller sub-communities, such as those formed
in syntrophic metabolism (Morris et al. 2013). In relation to human health research, iden-
tifying these communities within the gut microbiome could be particularly useful. There is
evidence that observed health-associations with individual gut microbiota can depend on
communities of co-occurring taxa (Gevers et al. 2014; Goodrich et al. 2014b; Baldassano
and Bassett 2016; Ridaura et al. 2013). Given that collaborative communities are likely a
functional unit of the gut microbiome, being able to define them and analyse them in rela-
tion to host health could be more relevant that studying whole microbiome or individual
taxa level associations. Furthermore, collapsing OTUs to communities would provide a
further method to reduce the high dimensionality of gut microbiota data. This is the aim
of the method described in Chapter 7, where I present a novel approach to define robust
communities within co-occurrence networks of the gut microbiota.

Community detection

Most simply, communities can be identified within networks where there are clearly dis-
tinct groups with interactions within but not between them. However, for the most part,
large complex data sets, such as microbiota profiles, will not have such clearly defined
structures (Faust et al. 2012). Even when all units are within one connected graph it is
still possible to identify natural partitions within the structure. There can be more densely
connected areas interlinked by more sparse connections. These densely connected areas
represent communities (Newman 2006). Identifying/defining these areas within a network
is termed community detection. Whilst community detection has only been considered
in microbiome networks more recently (Baldassano and Bassett 2016; Tong et al. 2013;
Duran-Pinedo et al. 2011), community detection is an established part of graph theory
with numerous algorithms having been developed to identify optimal communities, often
for applications within social networks (Newman 2004). Below I detail one such approach
modularity maximisation, in particular the Louvain algorithm for modularity maximisa-
tion.

Modularity Modularity was defined by Newman and Girvan in 2004. When the nodes
within a network are assigned to a number of different communities, modularity provides
a measure of the quality of the community definitions across the whole network (Figure
1.11). A simple score of the quality of community partitioning is the number of edges found
between communities. The best partitions would be expected to minimise the number
of edges between communities. Modularity is an extension of this concept, but instead
considers if the number of edges within communities is greater than the number of within
edges that would be expected by chance. Thus, not only does modularity provide a measure
of how well community partitions fit a network structure, but also an indication that there
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Figure 1.11: The equation to estimate modularity from a partitioned network, with graphical examples
of community definitions producing high and lowmodularity on the same network. (Newman 2006).

is more community structure present than would be expected by chance (Newman 2006).

Louvain Modularity Maximisation Modularity allows scoring of communities that
have been detected but not a method to detect and define the communities. However, mod-
ularity is often used as the end point of algorithms that define communities by maximising
modularity. Several modularity maximisation algorithms have been developed (Newman
2006; Mucha et al. 2010; Blondel et al. 2008; Chen, Kuzmin, and Szymanski 2014). One ap-
proached is to iteratively reassign nodes to different communities and only retain changes
that produce a positive change in overall modularity. However, even on small networks
comparing all possible groupings quickly becomes computationally impossible. A fast
and widely used heuristic algorithm for modularity maximisation is the Louvain approach
(named after the institute of the developers). This optimises partitioning by first maximis-
ing modularity within small local communities around individual nodes. These smaller
optimised communities are then considered as nodes and used in a wider analysis, itera-
tively combining them to form the final global community definitions (Blondel et al. 2008).
The Louvain approach is able to identify high quality community definitions within very
large networks more quickly than other modularity maximisation approaches (Blondel
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et al. 2008).

Community detection inmicrobiome studies

There have been previous studies that have aimed to quantify communities within mi-
crobiota co-occurrence networks. A study by Tong et al. used SparCC to generate co-
occurrence networks from 16S rRNA gene sequencing from intestinal biopsies of 32 IBD
patients and 32 healthy controls (Tong et al. 2013). Within the co-occurrence network they
identified 5 genus level communities (or modules) that were conserved across all individ-
uals and 2 that were associated with IBD. To define these modules they used the package
WGCNA (weighted gene co-expression network analysis).

WGCNA was developed to identify modules of co-expressed genes in RNA sequencing
studies. Unlike themethods previously described, withinWGCNAgenes (orOTUs) are not
assigned to communities uniquely but can have aweighted contribution to each (Langfelder
and Horvath 2008). This might be more representative of the true biological nature of
complex systems like the gut microbiome, where units contribute to multiple communities
in different ways and to a variable extent. However, whilst there are methods to compare
these weighted communities across samples, it is simpler to compare communities where
units are assigned to single groups. For instance, in the case of gutmicrobiota studies, OTUs
could then be collapsed to communities providing direct community relative abundances
for comparisons. This was demonstrated in a recent study using a Louvain modularity
maximisation approach to community detection, comparing gutmicrobiome samples from
IBD patients and healthy controls (Baldassano and Bassett 2016). Furthermore, there
are instances where it might be desirable to have distinctly defined communities. For
instance should a community be associated with a health effect, it would be possible to try
and recreate synthetic communities to replicate its effects based on its distinctly defined
members.

In summary, modularity provides ameasure of the significance of community definitions, it
also assigns OTUs to single communities (providing the benefits outlined above), and it can
be applied efficiently in large networks. For these reasons, I chose to use Louvainmodularity
maximisation in the approach outlined in Chapter 7, where I describe a robust method to
identify biologically representative communities within 16S rRNA gene sequencing profiles.
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1.5 Aims

Aim

The overall aim of this thesis is to develop novel approaches to analyse gut microbiota
profiles derived from 16S rRNA gene sequencing to improve their relevance to human
health research.

I aim to explore potential solutions to some of the inherent limitations of OTUs discussed
previously, including the high dimensionality of OTU datasets, their poor reproducibility,
and their limited representation of biologically meaningful units. These are addressed
within the following, more specific, aims.

Specific Aims

• In Chapters 3 and 4 I aim to use simple analytic approaches to enhance gut microbiota
association studies with the phenotypes frailty and PPI use.

• In Chapter 5 I aim to determine the OTU clustering approach that generates the most
biologically relevant OTUs. To this end, I present a comparison of different reference
approaches, greedy algorithms, and similarity thresholds using heritability as a novel
biologically motivated measure of OTU quality.

• In Chapter 6 I aim to address the poor reproducibility of 16S rRNA gene sequencing
studies by carrying out multiple disease association analyses within a single cohort. I
also tackle the high-dimensionality of OTU data by presenting an approach to identify a
minimal set of marker taxa for analyses, based on the inter-correlations of gut microbiota.
Furthermore, I present a novel approach to quantify the gut microbiota using a single
index that is representative of both host health and wide-scale taxonomic composition.

• Finally, in Chapter 7 I describe an approach to identify OTU communities within gut
microbiota co-occurrence networks. This aims to address the high dimensionality and
limited biological relevance of OTUdata, by reducing counts to units reflecting biological
relationships between OTUs. I demonstrate the robustness and analytical benefits of this
approach using comparisons across geographically diverse populations.

Summary

Overall, this body of work describes approaches that address a range of limitations associ-
ated with the use of 16S rRNA gene sequencing in gut microbiota studies. Application of
these to gut microbiota data from the TwinsUK cohort identifies several novel phenomena
demonstrating their utility. These methods should facilitate future analyses utilising 16S
rRNA gene sequencing to investigate the gut microbiota in relation to human health.
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Chapter 2

Materials andMethods

In the following chapter I provide an overview of the TwinsUK cohort from which the
majority of data used in this thesis were derived. I also provide an overview of the laboratory
procedures used to generate 16S rRNA gene sequencing data. Finally, I provide a brief
overview of some of the methods and techniques that are used throughout. More detailed
and study specific data and methods are described within appropriate chapters, several of
which are principally concerned with methods development.

2.1 TwinsUK

2.1.1 TwinsUK database

TwinsUK is a population based cohort of volunteer twins managed by the Department
of Twin Research and Genetic Epidemiology at King’s College London. The recruitment
area covers the entirety of the United Kingdom. There are thousands of active individuals
registered within the cohort, which includes roughly equal proportions of monozygotic
(MZ) and dizygotic (DZ) pairs. The cohort has been active for 25 years and there has
been continuous recruitment throughout this period. The majority of the twins are older
females. This is due to historical recruitment in the cohort whose original aim was to
study osteoarthritis and osteoporosis in women (Moayyeri et al. 2012). A summary of
demographics for the participants with 16S rRNA gene sequencing-based gut microbiota
profiles is shown in Figure 2.1.

Data is collected from members of the cohort in two ways. Firstly, volunteers are invited to
clinical visits at St. Thomas hospital London every 3-4 years. Here they are measured for a
range of baseline variables such as weight and height, and provide biological samples, which
can include blood, urine, faecal, and skin biopsies. These have been used to assay a range of
‘omics’ including genotyping of individuals, blood and faecalmetabolomics, immunotyping,
transcriptomics, and faecal microbiota profiling (see Section 2.2). Volunteers are also
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Figure 2.1: Summary properties of the 2764 individuals with 16S rRNA gene sequencing of their gut
microbiotawithinTwinsUK. In the ageandBMIdensity plots themeanandoneSD fromthemean (dashed)
are shown with vertical lines.
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subject to a range of physical and mental examinations at clinical visits. Some of these have
been assessed consistently throughout the cohort’s history and some have only been carried
out for specific studies in more limited runs. Secondly, data is obtained via questionnaires.
These can be carried out by post, online, or filled out and brought to visits. These assay a
range of health and lifestyle factors including ongoing disease status and medication use.
There have also been more targeted questionnaires aimed at profiling specific phenotypes,
for example food frequency questionnaires used to profile dietary habits.

Throughout this thesis I use a wide range of both visit and questionnaire data. The nature of
the cohort means that combining these data often requires sub-setting of larger data sets to
account for the incomplete overlap between data collection. There can also be differences
in time of data collection between phenotypes.

2.1.2 Heritability estimation

The strength of a twin study is that an individuals co-twin provides a natural control for
factors shared within the pair. These include prenatal effects, early life effects, and shared
genetic effects. In the case of the latter, MZ twins will share 100% of their genomic comple-
ment whilst DZ twins will share on average 50%. Using this knowledge we can observe the
differences in a trait between the twins in MZ and DZ pairs and estimate how much of its
variance is attributable to additive genetic effects (narrow-sense heritability). For instance,
if we observed MZ twins to always be concordant for a disease state and DZ twins to be
concordant 50% of the time we can deduce that the disease is 100% attributable to additive
genetic effects. This concept can be extended to continuous traits using structural equa-
tion models to estimate the variance of a trait attributable to additive genetic variance, the
shared (or common) environment within pairs, and the environment unique to individuals
(Figure 2.2) (Van Dongen et al. 2012). Heritability estimates are used as a methodological
quality measure in Chapter 5 and applied to microbiome measures throughout this thesis.

2.2 16S rRNA gene sequencing from faecal samples

2.2.1 Sample collection and processing

Within TwinsUK, gut microbiota profiles have been generated from 16S rRNA gene se-
quencing of faecal samples. Participants were given a collection kit to isolate samples at
home the day prior to clinical visits. Tubeswere then stored in a home refrigerator overnight
then brought on ice to visits the next day. Alternatively, samples could be posted on ice
from home using a next day service. In both instances, on arrival at the hospital samples
were transferred to storage at -80◦C. Samples were then shipped to Cornell University on
dry ice where DNA extraction, library preparation and sequencing was carried out.
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Figure 2.2: Path diagram specifying a structural equation model for a typical ACE model. This provides
estimates of the contribution of additive genetic effects (a), common effects within twin pairs (c), and
environmental effects (e), to the variance of a continuous trait of interest. Such models can be specified
in packages such as OpenMX, which optimise model likelihood to find optimal estimates for the a, c, and
e parameters given the observed means and known MZ/DZ relationships (Boker et al. 2011).

DNA was extracted from 100mg of thawed samples using the MoBio PowerSoil DNA
extraction kit, which uses bothmechanical and physical lysis of cells to releaseDNA.TheV4
region of 16S rRNA genes within each sample were then amplified using PCR, in duplicate,
with established barcoded primers unique to the samples (based on the established 515F and
806R primers targeting the V4 region (Caporaso et al. 2011a)). The two PCR products were
combined and purified using a magnetic bead approach to isolate long reads and washout
contaminants. Individual sample DNA was then diluted to equimolar concentrations and
combined prior to sequencing. This was carried out using 250bp paired-end sequencing
on the Illumina MiSeq platform (Goodrich et al. 2014b).

2.2.2 Data batches and processing

In total, sequencing of faecal microbiota has been carried out for 2763 individuals with a
subset of individuals having multiple longitudinal samples. Collection and processing of
these samples was carried out in three main batches over a period of five years from late
2010 to summer 2015. Samples were sent fromTwinsUK toCornell in smaller packages that
were aggregated into the three batches. After each batch the existing sequencing data was
re-integrated with the previous and re-processed (i.e batch two includes all the sequencing
from batch one plus the novel samples). Different processing steps were taken after each
batch as the computational approaches within the field advanced. Throughout this thesis
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Table 2.1: Batches of 16S rRNA gene sequencing data produced within TwinsUK.

Batch
No.

Final
Sample
Date

No.
Twins

Sequencing QC OTU clustering Use in
Thesis

1 03-2013 951 Paired-ends merged
using fastq-join,
remove low quality
reads (Cornell)

Closed reference
clustering with
UCLUST and
Greengenes 5_13
(Cornell)

Chapter 3

2 07-2014 2025 Paired-ends merged
using fastq-join with
minumum 200nt
overlap, remove low
quality reads
(Cornell)

Open reference
clustering with
UCLUST and
Greengenes 8_13
(Cornell)

Chapter 4

3 07-2015 2764 As above (Cornell),
Chimera filtering
with UCHIME (Self)

Various (Chapter 5),
De novo clustering
with SUMACLUST
(Throughout) (Self)

Chapters
5,6, and 7

I utilise data from different batches with different analytical pipelines. In earlier batches
pre-processing of 16S rRNA gene sequencing data was largely carried out by researchers
at Cornell and in later batches the majority was carried out by myself. A summary of the
batches, their size and processing, and how they were used in this thesis is shown in Table
2.1.

2.3 Other microbiome datasets

2.3.1 Metagenomics

Shotgun metagenomic sequencing was also carried out on a subset of faecal samples from
250 individuals. The DNA was extracted as for 16S rRNA gene sequencing at Cornell Uni-
versity. The DNA was shipped on dry-ice to the Beijing Genomics Institute (BGI) in China.
Here, DNA samples were fragmented and 100bp paired end shotgun sequencing carried
out using the Illumina HiSeq platform. Processing and analysis of these data were carried
out at BGI. Reads were filtered to remove those aligning to the human genome. The remain-
ing reads were then assembled to contigs using MOCAT, a metagenomic assembly pipeline
(Kultima et al. 2012). Novel genes were identified within contigs using the gene prediction
software GeneMark (Lukashin and Borodovsky 1998). Gene abundances were quantified
by aligning all reads to these novel genes and an existing in-house non-redundant gene
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database created by BGI. For both novel and existing genes functional pathway annota-
tions were made using the KEGG orthology, by aligning translated amino acid sequences
to the KEGG functional domain database. Taxonomy was assigned to genes by alignment
to existing prokaryotic reference genomes in public repositories. Genes were assigned the
taxonomy of an aligned genome when sequence similarity was above a similarity threshold
that was different for each taxonomic rank (>65% for phylum, >85% for genus and >95%
for species). The KEGG pathway and taxonomic abundances in each sample were found
as the summed abundance of their assigned genes (Xie et al. 2016). The KEGG functional
abundance table produced from this analysis is used in Chapter 6 to identify functional
associations with 16S rRNA gene sequencing derived measures.

2.3.2 Faecal metabolomics

Metabolomic profilingwas carried out on faecal samples from786members of theTwinsUK
cohort. Samples were sent on dry ice to Metabolon inc. who used a proprietary untargeted
mass spectroscopy approach to identify and quantify the metabolites present. A subset
of 685 these 786 samples also had faecal microbiota profiles. Half were shipped from
Cornell, as unused sample from DNA extractions, and the others were sent directly from
TwinsUK, where participants had provided duplicate samples at the time of collection. This
overlapping dataset is used in Chapter 6 to identify functional associations with microbiota
assessed using 16S rRNA gene sequencing.
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Chapter 3

Typical approaches tomicrobiota
analyses using 16S rRNA gene
sequencing: Associations with host
frailty in the gut microbiota

In the following chapter I present an association analysis between host frailty and the gut
microbiota, providing a demonstration of typical approaches to 16S rRNA gene sequencing
analyses. This includes the use of an existing approach (WGCNA) to identify co-occurrence
communities in the gut microbiota. I also demonstrate the use of alpha diversity as a covari-
ate in analyses, enabling the identification of associations independent of wider changes in
diversity. These analyses identify several novel gut microbiota associations with frailty. The
conclusions of this study, and their context in terms of other chapters within this thesis, are
discussed in detail in Chapter 8.

The chapter is presented as a manuscript that was originally published in the journal
Genome Medicine on the 29th of January 2016. Accompanying supplementary materials
can be found in Appendix A. The digital appendix also includes the original PDF file for
the manuscript, which has been scaled here to accommodate print margins.

Collaborator Attributions

The frailty index used in this chapter was created by Claire Steves. The replication of
significant associations within the ELDERMET cohort data was carried out by Ian Jeffery
and Paul O’Toole at the University College Cork. Pre-processing and OTU clustering of
16S rRNA gene sequencing data was carried out by collaborators at Cornell University as
described by Goodrich et al. 2014b.
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Abstract

Background: Frailty is arguably the biggest problem associated with population ageing, and associates with gut
microbiome composition in elderly and care-dependent individuals. Here we characterize frailty associations with
the gut microbiota in a younger community dwelling population, to identify targets for intervention to encourage
healthy ageing.

Method: We analysed 16S rRNA gene sequence data derived from faecal samples obtained from 728 female twins.
Frailty was quantified using a frailty index (FI). Mixed effects models were used to identify associations with
diversity, operational taxonomic units (OTUs) and taxa. OTU associations were replicated in the Eldermet cohort.
Phenotypes were correlated with modules of OTUs collapsed by co-occurrence.

Results: Frailty negatively associated with alpha diversity of the gut microbiota. Models considering a number of
covariates identified 637 OTUs associated with FI. Twenty-two OTU associations were significant independent of
alpha diversity. Species more abundant with frailty included Eubacterium dolichum and Eggerthella lenta. A
Faecalibacterium prausnitzii OTU was less abundant in frailer individuals, and retained significance in discordant twin
analysis. Sixty OTU associations were replicated in the Eldermet cohort. OTU co-occurrence modules had mutually
exclusive associations between frailty and alpha diversity.

Conclusions: There was a striking negative association between frailty and gut microbiota diversity, underpinned
by specific taxonomic associations. Whether these relationships are causal or consequential is unknown. Nevertheless,
they represent targets for diagnostic surveillance, or for intervention studies to improve vitality in ageing.

Background
The ultimate goal of ageing research should be to in-
crease health-span, mitigating a lifespan burdened by
morbidity. To this end, frailty is a useful indicator of
overall health deficit, describing a physiological loss of
reserve capacity and reduced resistance to stressors [1, 2].
It predicts adverse health states such as hospitalisation,
dependency and mortality better than chronological age
[3], and is increasingly important given the ageing global
population with UN estimates of 1.2 billion people aged
over 60 years by 2025 [4].
The gut microbiome is the collective coding capacity

of the >100 trillion bacteria which significantly enriches

the metabolism of the human ‘superorganism’ [5]. It is
highly variable between individuals [6], with substantial
heritable elements [7], and relatively stable within a
healthy adult over time [8]. Inflammation of the gut is
associated with disruption of the gut microbiome [9, 10].
Since the gut is the largest interface with external mi-
crobes, and frailty is associated with chronic inflamma-
tion [11], it is likely that the gut microbiome has a role
in frailty.
Age and frailty influence both the composition and

function of the gut microbiome in mice [12]. Similarly in
humans, significant differences have been observed be-
tween the composition of the adult and elderly adult
microbiota [13]. When investigating the effects of frailty,
significant differences in the abundances of 17 gut
microbes were found between 10 highly frail and 13 ‘low
frail’ individuals aged over 70 years, from the same care
home who shared the same diet [14]. In the larger
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Eldermet study, the faecal microbiota composition and
diversity of 178 older adults varied with level of health
dependency. Patients in long-stay continuing care had a
less diverse microbiota than short stay, or community
dwelling older adults. Dietary intake differed significantly
by residence location, and appeared to drive microbiota
associations [15]. Across the whole cohort, in various
residence locations, the main axis of microbiota compos-
ition change correlated with frailty. We recently showed
that discrete configurations of microbial taxa can be ro-
bustly defined, several of which have distinctive associa-
tions with long-term care, frailty and inflammation [16].
These analyses have focused on generally older, more
dependent, participants.
Here we aimed to identify associations between frailty

and the gut microbiota within a large cohort of younger
community dwelling female twins, adjusting for possible
confounding effects such as diet, and genetic and
environmental factors shared by twins. We describe
significant associations between frailty and microbiota
diversity and composition, which represent potential
diagnostic markers or therapeutic targets for interven-
tions to reduce frailty in ageing.

Methods
Frailty index
Frailty was quantified through the Rockwood Frailty
Index (FI), which translates meaningfully from an epi-
demiological perspective to clinical studies [17]. The FI
was created as a proportion of deficits [18], using data
from the Healthy Ageing Twin Study [19]. Thirty-nine
domains of binary health deficit were created from ques-
tionnaire data and clinical tests covering a range of
aspects of physiological and mental health (Additional
file 1: Table S1).

Microbiota composition
Faecal samples were collected, bacterial DNA extracted,
amplified, sequenced and processed as part of a previous
study (see methods therein) [7]. Quality filtering and
phylogenetic analysis was performed using QIIME
1.7.0 [20]. OTUs were assigned using closed reference
clustering with Greengenes v13_5 at 97 % sequence
similarity using UCLUST, resulting in the exclusion of
6.2 % of the total sequences that did not cluster to
the reference [7].
OTUs that were observed in fewer than 25 % of indi-

viduals were not considered for further study. From a
total set of 9,840 OTUs (after removing singletons) 16 %
passed this threshold, reflective of the sparseness of the
data, resulting in a final set of 1,587 OTUs that were
used in association analyses. This threshold was applied
to focus on associations within abundant OTUs where
data sparsity would be less influential on analyses.

Mixed-effects models
The lme4 package in R was used to generate linear
mixed-effects models [21]. The FI was root normalised.
Technical covariates included sequencing run and num-
ber of sequences in each sample. Biological covariates
included relatedness (measured by twin family and
zygosity), habitual diet (quantified as the first five PCs
from food frequency questionnaires (FFQs) previously
assigned to different dietary niches within TwinsUK)
[22], alcohol intake, smoking status, age and BMI.
Sequencing run and familial traits were modelled as ran-
dom effects. The Anova function in R was used to com-
pare the ability of models with and without the variable
of interest to predict the appropriate response.
Alpha diversity was quantified as observed OTU

counts and Shannon and Simpson diversity indices.
These were used as response variables to assess associa-
tions with alpha diversity.
Models were compared with and without frailty for their

ability to predict the log transformed relative abundances
of OTUs. Zero counts were handled by addition of an ar-
bitrary value (10−6). Modelling was repeated adjusting for
alpha diversity to identify associations independent of
overall decreases in diversity. The Shannon metric was
chosen, as it considers OTU abundance, was not greatly
influenced by sequencing depth and was normally distrib-
uted. P values were adjusted for multiple testing of OTUs,
by false discovery rate (FDR) correction using the ‘qvalue’
package in R [23]. This was similarly carried out on the
relative abundances of collapsed species and genera.

Non-parametric correlation
Non-parametric analyses of FI and OTU abundance as-
sociations were carried out using the Kendall’s rank sum
correlation method in R. The root transformed FI was
correlated against the residuals of OTU abundance from
previously described mixed models excluding FI. The
‘qvalue’ package was used for FDR correction with sig-
nificance at 5 %.

Discordant twin analysis
This was used to demonstrate a lack of bias and poten-
tial non-genetic effects. FI discordance between twins
was determined where the difference in the pair’s root
normalised FI was greater than one standard deviation
of the population’s. Paired Wilcoxon signed-rank tests
were used to compare the abundance of OTUs between
discordant twins. P values were Bonferonni adjusted with
a significance threshold of P <0.05. This was carried out
for MZ twins only, DZ twins only and both combined.

Co-occurrence modules
The R package WGCNA was used to cluster OTUs by
co-occurrence [24]. This has been used previously to
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select OTU modules from pre-calculated co-occurrence
matrices [25]. However, in this instance, we also used
WGCNA functions to quantify co-occurrence using
Pearson correlation between the log transformed relative
abundances of OTUs. The pickSoftThreshold function
was then used to identify an adjacency threshold (17)
above which the edges of the network created a scale-
free topology. This adjacency matrix was converted to a
signed topological overlap matrix (TOM) using the
TOMsimilarity function. Hierarchical clustering of
OTUs was performed from a dissimilarity matrix derived
from the TOM to generate a dendrogram. Modules were
selected using the cuttreeDynamic function to select 24
groups of co-occurring OTUs, containing at least 10
members each. Eigenvectors representing each module
were generated using the moduleEigengenes function, to
obtain the first PC from the module’s OTU abundance
matrix. A dendrogram of module dissimilarity was gen-
erated from a Pearson correlation matrix between the ei-
genvectors, and modules found to be at least 80 %
similar were merged. This resulted in 22 final modules,
for which eigenvectors were recalculated. The WGCNA
cor function was used to calculate Pearson correlation
coefficients between these eigenvectors and phenotypic
traits.

Eldermet replication
OTU-level metadata associations were investigated in
data from the Eldermet study [15], considering 280
elderly individuals with a mean age of 78 years (age
range, 64–102 years). The dataset included community-
dwelling individuals, outpatient day-hospital visitors, and
short-term and long-term care dwelling individuals.
The Eldermet reference sequences were mapped to the

reference sequences from all OTUs, both significant and
non-significant, that were assigned to species signifi-
cantly associated with frailty in TwinsUK. Where there
was more than one match between the datasets, the
highest scoring BLAST result was retained. Only results
above 97 % similarity across the intersect of the se-
quences were used in subsequent analyses.
Mapped OTUs in the Eldermet dataset were tested for

significant association to frailty using a DESeq2 statis-
tical model [26], whereby OTUs were said to be signifi-
cantly differentially abundant between individuals with a
Barthel score <10 compared to a Barthel score of 10 or
greater in the Eldermet study if their adjusted P value
was less than 0.05.

Results
Frailty, microbiome and complete covariate data were
available for 728 women from the TwinsUK cohort. The
mean age of the cohort was 63 years (age range, 42–86
years) [7]. The FI followed the expected gamma

distribution (Additional file 2: Figure S2) [18], had a
mean of 0.116, with 103 pre-frail individuals (FI >0.20)
[27]. Thus, on average, members of this cohort have low
frailty indices reflective of their age and community
dwelling status.

Frailty negatively associates with gut microbiota diversity
Linear mixed-effects modelling of alpha diversity versus
FI adjusting for age, diet, alcohol intake, smoking, BMI
and technical covariates, showed frailty had a significant
negative association with alpha diversity (Table 1). It was
the most influential determinant of alpha diversity for all
metrics considered except observed OTU count, which
was influenced by the number of sequences (more
deeply sampled sequences having more low abundance
OTUs).

OTU abundances that associate with frailty
Models were extended to investigate frailty effects on
OTU abundances. Significant associations were found
with 637 OTUs using FDR 5 % (Additional file 3:
Table S3). Negative associations were enriched for
Clostridiales, in particular Ruminococcaceae, with Fae-
calibacterium prausnitzii the most abundant species level
assignment (21 OTUs, all negatively associated). Positively
associated OTUs that could be assigned at the species
level included Eubacterium dolichum and Eggerthella
lenta.
Modelling was repeated also including Shannon diver-

sity as a covariate. This was carried out to identify frailty
specific associations that did not result from the overall
decrease in alpha diversity; for instance, cases where a
microbe’s abundance is reduced due to reduced abun-
dance of cooperative taxa rather than frailty effects
directly. After adjustment for alpha diversity, 22
OTUs remained significant at FDR 5 % (Additional
file 3: Table S3). Nineteen belonged to the order
Clostridiales; 11 of which were assigned to the family
Lachnospiraceae and eight to Ruminococcaceae, al-
though the direction of association was not consistent
at the family level. Two OTUs were assigned to the
order Erysipelotrichales and one to Coriobacteriales.
Three OTUs were assigned species-level taxonomy corre-
sponding to F. prausnitzii (FDR q = 0.027 Beta = −0.14),
E. dolichum (FDR q = 0.013 Beta = 0.17) and E. lenta
(FDR q = 0.048 Beta = 0.13).
The FI was constructed from measurements taken 0–3

years before faecal sampling. We would expect a mono-
tonic increase in frailty with age [18], so differences in
the time between FI quantification and sample collection
between individuals should not significantly influence re-
sults and only serve to reduce associations. However, to
ensure time passage had no effect, OTU level modelling
was repeated including the time difference between the
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faecal and FI measurements as a covariate. All previously
identified OTUs retained significance, with the number
of significant OTUs increasing slightly to 672.

Differential OTU abundance between discordant twins
To account for genetics and environmental influences
within twins, the difference in abundance of the 22
OTUs significant after alpha diversity adjustment was
examined between 111 pairs (65 DZ and 46 MZ) dis-
cordant for frailty. Three OTUs showed significantly dif-
ferential abundance (Fig. 1). An OTU assigned to the
genus Dorea was the only OTU more abundant in frailer
twins (P = 4 × 10−3). Two OTUs were less abundant in

the frailer individuals, which were the F.prausnitzii OTU
(P = 0.03) and one assigned to the family Lachnospiraceae
(P = 4 × 10−3). No OTUs were significantly different con-
sidering the discordant MZ subset only and the Dorea
OTU was the only OTU significant within DZ pairs alone.
In cases where an OTU was not detected in one twin
within a pair, absence generally followed the expected dir-
ection from previously observed associations.

Frailty associates with species and genus abundance
OTU counts were collapsed by shared taxonomic assign-
ment at the species, genus and family level. The abun-
dances of taxonomic groups were modelled with frailty

Table 1 Alpha diversity associations with covariates and the frailty index

Mixed effects models were created with Shannon index, Simpson index or number of observed OTUs as the response. ANOVA was used to compare models with
and without each variable. Comparisons where P <0.05 are highlighted
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as a predictor (Additional file 4: Table S4). Twelve spe-
cies traits were significantly associated with frailty at
FDR 5 %. The three most significant were F. prausnitzii,
E. dolichum and E. lenta. Other collapsed species were
largely from the order Clostridiales and negatively asso-
ciated with FI. E. dolichum and E. lenta positively associ-
ated with frailty. Only E. dolichum remained significant
after adjustment for alpha diversity.
Twelve genera were FDR significant without alpha

adjustment. Ten were negatively associated with FI,
seven belonging to the order Clostridiales. The only
genera positively associated with FI were Coprobacillus
and Eggerthella, the latter the only genus significant
after alpha adjustment. The direction of association
with frailty of collapsed species and genera containing
F. prausnitzii, and E. lenta reflected those of their
constituent OTUs, whereas the Eubacterium genus
was not significantly associated with FI (Fig. 2). Two
collapsed families were significantly associated with FI
at FDR 5 %; both belonged to the class Mollicutes
but were non-significant after alpha adjustment.
A number of species were not detectable (classified

as absent) within the extremes of frailty, for example,
E. dolichum and E. lenta within less frail individuals.

We carried out non-parametric analyses to ensure this ef-
fect was not inflating significance in mixed models. This
was carried out at the OTU level where absence is most
prevalent. Associations between OTU abundance and FI
were reassessed using Kendall’s rank sum correlations
(Additional file 5: Table S5). A total of 138 OTUs were sig-
nificant at FDR 5 %. All were found in the 637 OTUs
identified without alpha adjustment, except seven newly
identified OTUs that were all assigned to the family
Ruminococcaceae. They also contained 16 of the 22
OTUs significant after alpha adjustment, including the
F. prausnitzii, E. dolichum and E. lenta OTUs. This
shows that using non-parametric methods, where absence
is less influential, the top hits remained significant.

Replication in the Eldermet cohort
We sought to replicate associations using data from the
Eldermet cohort [15, 16], a study that used different
methods for sequencing and taxonomic assignment and
quantified frailty differently using the Barthel index.
Eldermet is also a frailer, more elderly and more
dependent cohort, including men and women.
To maximise overlap, OTUs were selected within

TwinsUK at the species level. That is, all OTUs that
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Fig. 1 OTU abundances significantly different between twin pairs discordant for frailty. Pairwise plots of abundance between twin pairs discordant for
frailty are shown for OTUs that were significant at P <0.05 after Bonferonni adjustment considering both MZ and DZ pairs. Paired Wilcoxon rank-signed
tests were used to compare abundances for the 22 significantly associated OTUs associated with FI after alpha adjustment. Three were significantly
different; the Dorea OTU was significantly increased in frailer twins (P <10−4), whilst the F. prausnitzii and Lachnospiraceae OTUs were significantly lower
(P = 0.001 and P <10−3, respectively). Note there are overlapping data points where multiple twins had zero counts (log abundance −6) for OTUs
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were assigned to species that were significantly associ-
ated with FI within TwinsUK were considered for
replication regardless of the OTU’s association. Repre-
sentative sequences from these OTUs within TwinsUK
were matched to representatives of OTUs in the
Eldermet dataset. Of 638 TwinsUK OTUs considered,
435 mapped to 191 OTUs in the Eldermet cohort. A

number of OTUs mapped to the same OTU in the
Eldermet set and the remaining 203 had less than the
required 97 % similarity to the Eldermet representative
sequences and could not be mapped.
Of these 191 mappable OTUs, 96 were significant FI-

associated OTUs in TwinsUK. Within the Eldermet
cohort, 61 of the 96 were significantly differentially

q = 7.9E-4
= -0.18

q = 1.8E-4
= 0.19

q = 1.8E-4
= -0.19

q = 8.3E-4
= -0.18

q = 0.62
= 0.017

q = 1.6E-4
= -0.19

Fig. 2 Species abundance associates with FI. Shown are the unadjusted relative abundances versus FI for all species traits that were significantly
associated with FI in mixed effects models, and had complete species name assignment. Below, similar plots for their parent genera. *Represents
taxa whose association remained FDR significant after adjustment for alpha diversity. Q-values and coefficients shown are without alpha adjustment.
Trends are highlighted by linear regression lines shown in red with 95 % confidence intervals shaded in grey. OTUs contained within these taxonomies
retained significance within non-parametric analyses
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abundant between individuals with a Barthel score of
less than 10 compared to a Barthel score of 10 or greater
(adjusted P value <0.05) as defined the by DEseq statis-
tical methodology. The association to frailty was consist-
ent for all but one of these results.
Within the 60 OTUs that replicated across the two

studies, 55 were negatively associated with FI and five
positively associated with FI. Of the negatively associ-
ated, 54 of the 55 were Clostridia/Clostridiales with the
final OTU being Mollicutes/RF39.
The five positive associations were E. dolichum, E.

lenta, two Ruminococcaceae and another Clostridia/
Clostridiales. This is consistent with observations in the
previously published Eldermet studies that showed
populations of co-abundant OTUs that contain a
large number of unclassified Clostridiales being both
positively and negatively associated with frailty and
biological ageing [16].
Of the TwinsUK significant variables that failed to

reach significance in the Eldermet cohort, 23 of the 35
had an association to frailty that was consistent in direc-
tion between the two studies.
TwinsUK OTUs that belonged to significant species

but were non-significantly associated at the OTU level,
mapped to 95 OTUs in the Eldermet cohort. Of
these, 38 had a significant association to frailty in the
Eldermet cohort but the association to frailty was in-
consistent, with 11 of the 38 showing the opposite as-
sociation. This shows that the non-significant TwinsUK
OTUs have an inconsistent association in the two datasets
and so species level associations are poor markers of
frailty.
These results highlight the advantage of carefully iden-

tifying a set of high quality predictors of frailty using the
twin cohort. The significant OTUs returned were con-
sistent in the direction of the association with frailty
with the Eldermet observational study.

OTU co-occurrence modules have contrasting associations
between frailty and diversity
Bacteria that share functionality or which are inter-
dependent may be taxonomically unrelated but associate
similarly with frailty. To overcome this, we collapsed
OTUs by co-occurrence, producing 22 co-occurrence
modules that were labelled using colour names (the
module ‘grey’ contained unallocated OTUs) (Additional
file 6: Table S6). Each module represented groups of
OTUs with similar abundance profiles across samples,
often with similar taxonomic backgrounds. For example,
the module coloured brown in Fig. 3 contained 59
Clostridiales OTUs; these included 14 assigned to F.
prausnitzii which, upon inspection of the representative
sequences, were found to share greater than 97 % se-
quence similarity, highlighting the limitations of OTU

clustering and the ability of co-occurrence collapsing to
identify similar features.
Eigenvectors representing each module were used to

correlate sample traits with module abundance (Fig. 3).
Modules showed the strongest associations with FI and
alpha diversity, which contrasted in all cases. Modules
significantly negatively associated with FI included those
coded magenta, royal blue, salmon, midnight blue and
tan (Fig. 3); all consisting of OTUs assigned to
Lachnospiraceae, in particular that coded royal blue
to the genus Dorea and tan to the genus Roseburia.
Other modules negatively associating with FI were
black, blue, light cyan, brown, green, purple and
green-yellow. All were assigned to Clostridiales OTUs,
particularly Ruminococcaceae with brown and green
consisting of largely F. prausnitzii OTUs. The only
module positively associating with frailty was that
coded light yellow, containing 13 Enterobacteriaceae
OTUs. Clustering traits by their association with
modules separated alpha diversity from the other
variables. These formed two clusters of differential as-
sociation, one containing frailty and the other with
correlation patterns more similar to those of diversity.
BMI, the low meat FFQ PC and the traditional English
FFQ PC all clustered with FI. The alpha diversity like clus-
ter contained the remaining dietary PCs, alcohol con-
sumption and age.

Discussion
Robust associations were identified between frailty and
gut microbiota composition. Most notably, FI associated
with microbiota diversity. There were also modest asso-
ciations, both positive and negative, with specific taxa.
These findings were robust to adjustment for a range of
environmental variables and, in what we believe to be a
novel analysis, adjustment for alpha diversity. A number
of OTU-metadata associations replicated within the
Eldermet cohort.
The distinct negative association between alpha diver-

sity and frailty reflects observations from numerous
studies in which predisposition to ill health associates re-
duced diversity [28–31]. In this study we cannot deter-
mine if frailty is the cause, or a consequence of lower
microbiota diversity. However, the observed changes in
the microbiome could contribute, at least in part, to the
detrimental health associated with frailty, particularly
in the gut. Should this be the case, maintenance or
improvement of gut diversity would be a promising
target to encourage health in ageing. This could be
achieved through lifestyle interventions to alter factors
known to influence diversity, such as diet [32, 33].
This might be particularly effective given the similarity
of the observed microbiome associations with diet,
BMI and frailty.
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We also observed specific taxonomic associations with
frailty in the gut microbiota. These were most apparent
at the OTU level where a number of significant associa-
tions were also observed within the Eldermet cohort,
which utilised differing sequencing and analysis plat-
forms, quantified frailty using an alternate index, and
used a frailer population [15]. The robustness of our re-
sults is supported by their replication within this con-
trasting data. However, although they were significant,
OTU associations were had modest effect sizes. Further
studies will be required to investigate the importance
of specific taxa in frailty. Our observations provide
motivation and direction for such, and are discussed
further below.
A number of F. prausnitzii OTUs negatively associ-

ated with frailty, reflecting previous observations of
reduced F. prausnitzii abundance in frail or elderly
individuals [14, 34]. F. prausnitzii is a key butyrate
producer [35, 36], thriving in low pH environments
created by other short-chain fatty acid producers [37].
There is evidence that F. prausnitzii (and butyrate
[38]) can have an anti-inflammatory effect on the gut
in mice [39, 40]. The observed negative associations

of FI with a sub-set of Lachnospiraceae OTUs also
support the role of butyrate producers in suppressing
frailty-associated inflammation. Some, but not all,
Lachnospiraceae genera are butyrate producers [41];
including Roseburia, which we identified as negatively
correlated with FI when collapsing OTUs by co-
occurrence. These observations warrant further inves-
tigation into the effects of gut butyrate production on
the progression of frailty.
E. dolichum and E. lenta positively associated with

frailty in our experiment. The Eggerthella genus contains
a number of pathogenic species, including E. lenta, that
have been associated with gastrointestinal disease [42–44].
E. lenta is also known to harbour a cardiac glycoside re-
ductase operon, which can reduce digoxin, to its more in-
active reduced lactone dihydrodigoxin [45]. This drug has
been commonly used in frail older individuals to control
ventricular rate in atrial fibrillation. Our finding should
stimulate further research as to whether the efficacy and
toxicity of cardiac glycosides may be modulated by E.
lenta abundance.
Turnbaugh and colleagues sequenced the E. dolichum

genome after observing that its parent class, Mollicutes,
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Fig. 3 Correlation of frailty, diversity and model covariates with modules of OTUs collapsed by co-occurrence. OTUs collapsed by co-occurrence
into 21 modules labelled by colour (grey containing unassigned OTUs). The heatmap displays the correlation between the module eigenvector
(ME, representing the combined module abundance as taken from the first PC of the module’s OTUs across all samples) and each variable.
Modules and variables are hierarchically clustered using Euclidean distances. Student asymptotic P values for significant correlations (P <0.05) are
shown. The most common taxonomic assignment within a module is shown next to its colour label
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was associated with obesity in mice [46]. Its genome was
enriched for genes involved in simple sugar processing,
which was hypothesised to provide an advantage under a
Western diet. The increased abundance of E. dolichum
are likely a consequence of the significant lifestyle
changes, particularly dietary, associated with frailty [15].
However, it is possible that changes to microbiome-
encoded metabolism are drivers of frailty. Further stud-
ies are warranted to distinguish associations with frailty
from those with diet and obesity. Longitudinal observa-
tional studies would be of particular use to identify the
capacity of specific species to predict an individual’s tra-
jectory of frailty.
While the observed microbiome associations with

frailty were robust to discordant twin analyses and repli-
cation in an independent cohort, as a cross-sectional
study they are not suggestive of cause. To address this,
longitudinal frailty and microbial assessments are planned
within the TwinsUK cohort. This study was also limited
by the determination of the gut microbiota composition
using 16S rRNA amplicon analysis, and would be im-
proved through the use of whole metagenome sequencing
which provides more accurate species level assignments
and direct functional information [5].
This study focused on abundant OTUs to reduce

the influence of data sparsity on the analyses. How-
ever, by using a closed OTU clustering approach and
discarding less abundant OTUs we have not explored
the association of rare and unidentified microbiota
with frailty. This may be important in future investi-
gations as there may be novel bacterial units specific
to the frail state.
We have also not considered the effects of antibiotics

and other medication usage on the microbiome, as there
was insufficient data available. These effects could po-
tentially confound the observed associations as frailer in-
dividuals are more likely to utilize more, and multiple,
medications and factors such as antibiotics are known to
influence the gut microbiome [47]. This is also being
considered in future studies.
The TwinsUK cohort are younger and more able when

compared to previously studied cohorts, so these early
associations in theory may not apply to frailer individ-
uals. However, replication in the Eldermet cohort, where
antibiotic users were excluded, indicates that in part these
findings are not restricted to the less frail individuals
within TwinsUK. Use of alternate methods in the quantifi-
cation of the microbiota and frailty within the replication
cohort also suggests that observed associations are inde-
pendent and robust to the methods used.

Conclusions
We have identified a number of associations between
host frailty and the gut microbiota, including modest

associations with specific taxonomic abundances and a
striking negative association with microbiota diversity.
Although more work is required to delineate the direc-
tion of effect between frailty and the composition of the
gut microbiota, we believe that the associations we have
described here provide motivation and direction for such
studies. They also provide microbial targets for future
investigation, with the ultimate goal to develop the cap-
ability to rationally modulate the gut microbiome to im-
prove health in ageing people.
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Chapter 4

Typical approaches tomicrobiota
analyses using 16S rRNA gene
sequencing: Associations with proton
pump inhibitor use in the gut
microbiota

Within this chapter I further demonstrate typical approaches to gut microbiota analyses
with the use of a binary trait - proton pump inhibitor (PPI) use. I identify several novel
associations between PPI use and the gut microbiota that are independent of GI indications
warranting their use. I also demonstrate a novel use of the public HMP data to classify
the site-specificity of taxa and probe the mechanisms underlying the observed associations.
The conclusions of this study, and their context in terms of other chapters within this thesis,
are discussed in detail in Chapter 8.

This chapter is presented in the form of a manuscript that was originally published in the
journal Gut on the 30th of December 2015. Accompanying supplementary materials can
be found in Appendix B. The digital appendix also includes the original PDF file for the
manuscript, which has been scaled here to accommodate print margins.
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ABSTRACT
Objective Proton pump inhibitors (PPIs) are drugs
used to suppress gastric acid production and treat GI
disorders such as peptic ulcers and gastro-oesophageal
reflux. They have been considered low risk, have been
widely adopted, and are often over-prescribed. Recent
studies have identified an increased risk of enteric and
other infections with their use. Small studies have
identified possible associations between PPI use and GI
microbiota, but this has yet to be carried out on a large
population-based cohort.
Design We investigated the association between PPI
usage and the gut microbiome using 16S ribosomal RNA
amplification from faecal samples of 1827 healthy twins,
replicating results within unpublished data from an
interventional study.
Results We identified a significantly lower abundance
in gut commensals and lower microbial diversity in PPI
users, with an associated significant increase in the
abundance of oral and upper GI tract commensals. In
particular, significant increases were observed in
Streptococcaceae. These associations were replicated in
an independent interventional study and in a paired
analysis between 70 monozygotic twin pairs who were
discordant for PPI use. We propose that the observed
changes result from the removal of the low pH barrier
between upper GI tract bacteria and the lower gut.
Conclusions Our findings describe a significant impact
of PPIs on the gut microbiome and should caution over-
use of PPIs, and warrant further investigation into the
mechanisms and their clinical consequences.

INTRODUCTION
Proton pump inhibitors (PPIs) are used to increase
gastric pH by suppressing acid production. They
are pro-drugs, only becoming functional in the
acidic environment of the stomach. Here, activated
PPIs inhibit hydrogen–potassium pumps (H+/K+
ATPases), transmembrane proteins responsible for
releasing hydrochloric acid into the lumen of the
stomach. PPIs inhibit H+/K+ ATPases by binding
covalently to the transmembrane domain, with
return of acid production dependent on the turn-
over of new H+/K+ ATPases once PPIs have left
the system.1

PPIs are frequently used to treat GI tract disor-
ders such as bleeding peptic ulcers, erosive esopha-
gitis, and gastroesophageal reflux.2–4 They are also
used prophylactically to prevent stress ulcers and to

reduce GI toxicity associated with certain medica-
tions, including non-steroidal anti-inflammatory
drugs, aspirin, and steroids, sometimes despite a
paucity of evidence.5–8 PPIs are one of the most
profitable classes of drugs in the world9; however,
the high cost to healthcare systems has led to inves-
tigations into possible over-utilisation. These show
that over 70% of PPI prescriptions may be inappro-
priate,10–12 with the majority of over-utilisation
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Significance of this study

What is already known on this subject?
▸ Proton pump inhibitors (PPIs) are widely, and

often over, used but recently have been
associated with a number of side effects,
including an increased risk of Clostridium
difficile infection.

▸ The increased risk of infection may be
mediated by alterations to the gut microbiota,
as observed with antibiotics.

▸ Previous studies have demonstrated
associations between PPI use and the gut
microbiota, but have been limited in size.

What are the new findings?
▸ In a large healthy twin cohort, we identify

significant associations between the
composition of the gut microbiota and PPI use.

▸ The most striking association is an increase in
Lactobacillales, particularly Streptococcaceae, in
PPI users.

▸ The strongest associations replicated in a small
interventional dataset indicating causality.

▸ Finally, we show that bacterial families
increasing with PPI use are more likely to be
pharyngeal, not gut, commensals.

How might it impact on clinical practice in
the foreseeable future?
▸ The observed alterations to the gut microbiota

with PPI use may be responsible for the
observed increases in infection risk, and
therefore provide targets for research to
mitigate these risks.

▸ The potential consequences of these changes
are motivation for caution against unnecessary
provision of PPIs.
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stemming from unnecessary stress ulcer prophylaxis in patients
who do not meet the evidence-based criteria, and a lack of
re-assessment of PPI use in the community.12

The use of PPIs has generally been considered safe, with low
reported incidences of serious adverse outcomes.13–15 However,
recently a number of side effects have been identified, including
nutritional deficiencies, increased risk of bone fracture, and risks
of enteric and other infections16–19; notably, increased risks of
community acquired pneumonia and Clostridium difficile infec-
tion where PPIs may carry a high risk equivalent to that of oral
antibiotics.20 21

The term microbiome refers to the ecology and functionality
of the microbial population within an environment. Nearly every
site of the human body has a distinct microbiome with bacterial
composition determined by environmental and inter-microbial
influences.22 23 Using amplification and sequencing of the vari-
able regions of the 16S ribosomal subunit it is possible to profile
the taxonomic composition of the microbiome of a given
sample.23 Application of this technique has shown changes to gut
microbiota in a range of conditions, from IBD to obesity and
frailty.24–26 Thus, factors affecting the microbiome have the
potential to drive important secondary effects on health. For
example, alterations to microbial communities caused by oral
antibiotics may underlie their association with increased C diffi-
cile infection,27 and the same could be true for PPIs.

Previous small-scale case–control studies indicate that PPI use
can influence the microbiome, but have been limited by focusing
on younger individuals or patients presenting a GI disorder,
with some conflicting results.28–32

Here we investigate the association between PPI usage and the
gut microbiota in the largest study published to date, using 16S
rRNA profiling of faecal samples collected from over 1800
healthy elderly twin volunteers, allowing adjustment for environ-
mental and heritable factors influencing both PPI use and the
microbiome. We identified significant alterations to the diversity
and composition of the gut microbiota in PPI users, a number of
which were replicated in an intervention study. We also identified
a potential mechanism by which PPIs could induce such changes.

METHODS
Microbiota composition analysis
One thousand and eighty-one faecal samples from the TwinsUK
cohort had been sequenced as part of a previous study; a
further ∼1000 twin samples were collected and processed under
the same protocol producing reads with an average length of
253nt after barcode removal.33 Previously generated sequencing
was combined with new data and quality filtering and ecological
analysis performed using QIIME.34 Sequences were collapsed to
operational taxonomic units (OTUs) using open reference clus-
tering with Greengenes v13_8 at 97% sequence similarity. The
OTU table was then sub-set to samples from twins with PPI
usage data for use in subsequent analyses.

Medication and GI indication data
PPI use was self-reported at multiple time points up to 10 years
before and including microbiome assessment. Use was scored as
positive if an individual had reported usage at any time, even if
there was a more recent negative report. This method was
chosen, as PPI use is often intermittent, the longevity of any PPI
mediated microbiome effects are unknown, and most misclassifi-
cations would be non-users appearing as users, which would act
to reduce the strength of any observed associations. Positive PPI
use was recorded a median of 3 years before microbiota assess-
ment (IQR 0.2–4.7 years).

GI indications were scored similarly based on self-reported or
professionally diagnosed indications for PPI prescription. As for
PPI use, multiple time points were available and individuals
were considered positive if any indication had ever been
reported. Positive GI indications were a median of 1.5 years
from faecal sampling (IQR 0–3.8 years).

Self-reported antibiotic use within the previous month was
recorded at the time of sample collection for the majority of
individuals, with drug details provided where applicable. Binary
scores created from these data were corrected to reflect reported
treatments, removing individuals where the reported drug was
not an antibiotic.

Cohort and covariate data collection
Within TwinsUK 1827 individuals had both PPI data and faecal
samples. The average age was 62 years (range 19–88 years) and
90% were female. The gender and age distribution resulted
from historical study recruitment within the cohort.35 Physical
measurements such as height and weight were measured at the
time of sample collection.

Habitual dietary patterns were represented by the first five
principle components (PCs) of food frequency questionnaires
(FFQs) collected before sample collection. These have previously
been shown to account for the majority of habitual diet variance
and correspond to dietary types (given the names of fruit and
vegetable rich, high alcohol, traditional English dieting and low
meat diets, respectively).36 Frailty was quantified as a Frailty
Index (FI) using the proportion of 39 binary health deficits that
each individual displayed (see online supplementary table S1)
from the Healthy Ageing Twin Study collected in 2007–
2010.35 37 Covariate distributions were analysed using two-tailed
Wilcoxon rank sum tests to compare the distributions of PPI
users and non-users, with a significance threshold of p<0.05.

α Diversity
The 1827 samples had a mean OTU count of 82 130
(s=40 506, range 10 460–380 500). The OTU table was rarefied
to a depth of 10 000 sequences and used to generate Shannon,
Chao1 and phylogenetic diversity indices, as well as observed
OTU counts. One-tailed Wilcoxon rank sum tests were per-
formed to test for lower diversity in PPI users versus
non-users,32 taking a significance threshold of p<0.05 on the
full set of 1827 individuals.

Mixed effects models were created using the lme4 package in
R,38 with α diversity metrics as the response variable to assess the
ability of PPI status to predict diversity. Technical covariates
included sequencing run and depth of sample sequencing. Other
covariates included family, twin structure (a variable of unique
values the same for monozygotic (MZ) but different for dizygotic
(DZ) twins), diet (the first five PCs from FFQs), age, body mass
index (BMI), FI (root normalised), and GI indication status. The
Anova function was used to compare the ability of models with
and without PPI status to predict each α diversity metric, using
the subset of 1200 individuals with complete covariate data.

OTU and taxonomic associations
Mixed effects models were again used to identify associations
between PPI use and OTU and taxa abundances on 1200 indivi-
duals having complete covariate data. OTUs present in <25%
of individuals were discarded and the remaining counts con-
verted to log transformed relative abundances (with the addition
of 10−6 for zero counts). OTU abundances were used as
response variables with covariates as above also including the
Shannon index, to reduce associations with OTU markers of α
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diversity. The ability of models including and not including PPI
status as a covariate to predict abundance of each OTU was
quantified using the Anova function in R. p Values were FDR
(false discovery rate) corrected using the ‘qvalue’ package with a
significance threshold of 5%.39 OTU counts were collapsed by
shared taxonomy at all taxonomic levels. Modelling was carried
out for each level individually in the same manner as for OTUs.
These analyses were repeated within the subset of individuals
who had not used antibiotics.

Interventional study replication
To further assess the possible causal link between exposure to PPIs
and the observed taxonomic changes in TwinsUK, we re-analysed
data from a previously published crossover study. Methods for this
study have been described.31 In brief, 12 healthy adult volunteers
not exposed to antibiotics within the previous 12 months each
took 40 mg of omeprazole twice daily for 4–8 weeks, and donated
stool samples before and after the PPI course. Bacterial DNA was
extracted from all samples and the V4 region of the 16S rRNA
gene was amplified using a primer set identical to that used in the
TwinsUK study. As for the TwinsUK cohort, the Greengenes data-
base was used for final taxonomic assignments. To best compare
data, we assessed the taxonomic changes within the samples from
immediately before and immediately after 4 weeks of omeprazole.
We analysed taxa that were significantly associated with PPI in
TwinsUK and present in the majority of individual specimens
(>50%) in the intervention study. We assessed the magnitude and
directions of within-individual changes using rank-sum tests (when
the distribution of data was not normal) or paired t tests.
Taxonomies assigned as ‘Other’ against the Greengenes reference
were not included as they were not comparable between sets.

RESULTS
PPI use in the TwinsUK cohort
Intermittent data on self-reported PPI usage and GI health over
a ∼10 year time span was available for 1827 individuals, com-
prising 374 DZ twin pairs, 410 MZ twin pairs and 259 single-
tons; 90% were female, with an average age of 62 years. Within
this set, 892 (49%) had reported some form of GI indication
for PPIs, 229 (12%) had been prescribed PPIs at some point
(only 24 having used PPIs without any GI indication), and 704
(39%) had reported neither PPI prescription nor GI indication.

PPI use is associated with age, BMI, frailty, and diet
A number of covariates were selected. These included: age, diet
as quantified using the first five PCs from FFQs, BMI, and
frailty. The association of these with PPI use was assessed in the
subset of individuals with complete covariate data (n=1200,
175 having use PPIs) (figure 1). PPI users were significantly
older (p<10−6), frailer (p<10−15), and had higher BMI
(p=0.002). They were also found to be significantly lower
scoring on FFQ PC2 (p=0.0003), a dietary component related
to high alcohol intake.35

Significantly lower diversity in the gut microbiome of PPI
users
There was significantly lower (p<0.05) diversity in the gut
microbiota of PPI users compared to those not using PPIs with
all diversity indices (figure 2). There was no significant differ-
ence, with any diversity metric, between the individuals with GI
indications compared to those without.

The observed negative association between PPI use and α
diversity did not withstand adjustment for family and twin

structure, BMI, age, frailty and GI indication, in the 1200 indi-
viduals with complete data (see online supplementary table S2).

PPI use is associated with specific taxonomic abundances
Modelling of OTU abundances against PPI use identified 22
OTUs with significantly lower abundance in PPI users; all were
assigned to the phylum Firmicutes. There were 32 OTUs posi-
tively associated with PPI use, 20 from the order Bacteroidales
and seven assigned to the Streptococcus genus. The strongest
association was with a Bifidobacterium OTU (q<10−4, β=0.45),
followed by a Streptococcus assigned OTU (q<10−4, β=0.44)
(see online supplementary table S3).

To identify specific taxonomic relationships, modelling was
repeated against OTU abundances collapsed by shared taxo-
nomic assignment at various depths of classification (see online
supplementary table S4). A summary of significant associations
is shown in figure 3.

Seven collapsed species were negatively associated with PPI
use and were all assigned to Erysipelotrichales or Clostridiales
(except from one Cyanobacteria). At the level of genera, nine
were found to be negatively associated with PPI use, which were
largely Firmicutes, with members of the family
Erysipelotrichaceae being the most significantly decreased. Five
families were negatively associated with PPI use, most strongly,
Lachnospiraceae (q=0.004, β=−0.35) and Ruminococcaceae
(q<0.0007, β=−0.26).

There were 24 species positively associated with PPI use. These
belonged to the phyla Actinobacteria, Bacteroidetes, Firmicutes
(particularly Lactobacillaceae and Clostridiales) and Proteobacteria.
The largest increases observed with PPI use were the species Rothia
mucilaginosa (q<10−6, β=0.51) and Streptococcus anginosus
(q<10−6, β=0.48). We observed 24 genera that were positively
associated with PPI use. The most significantly increased were
Rothia (q<10−5, β=0.45) and Streptococcus (q<10−6, β=0.47).
Ten families were significantly positively associated with PPI use,
the most significant being Streptococcaceae (q<10−6, β=0.46) and
Micrococcaceae (q<10−5, β=0.46).

Taxonomic associations with PPI use are independent of
antibiotic use
Self-reported oral antibiotic usage data were available for
1 month before faecal sample collection for 1039 of the 1827
individuals. Antibiotic use was significantly associated with PPI
use within this set (χ2(1, N=1309)=8.88, p<0.002), where
16% of PPI users had used antibiotics compared to only 8% of
individuals who had not used PPIs. To ensure this enrichment
was not influencing the observed associations, modelling ana-
lyses were repeated within a subset of 705 individuals that had
reported no antibiotic use and had complete covariate data (see
online supplementary table S5).

At all levels of analysis, from OTU to phylum, results
reflected those of the wider set. The number of significant asso-
ciations was reduced because of the smaller sample size, but the
majority of associations were retained, particularly the strongest
positive associations with Streptococcaceae and other
Lactobacillales, and the negative associations observed with the
class Clostridia. These results show that the observed micro-
biome associations with PPI use are independent of increased
antibiotic utilisation.

Significant associations between discordant twin pairs
The influence of PPIs on the microbiota of 70 MZ twins discord-
ant for PPI use was investigated to control for shared environ-
mental and genetic effects (see online supplementary methods).
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No significant differences in the abundances of any OTU,
species or genera were observed between discordant MZs. The
Streptococcaceae family had a significantly higher abundance in
PPI users within discordant twins (q=0.04, ×2.9 higher), as did
its parent order Lactobacillales (q=0.02, ×2.6 higher) (figure 4).

At higher taxonomic levels, significant changes were observed
between twins for the classes Actinobacteria (q=0.03, ×1.3
higher in PPI users), Bacilli (q=0.03, ×1.9 higher), and
4C0D-2 (q=0.03, ×0.3 lower), and the phyla Actinobacteria
(q=0.04, ×1.1 higher), Cyanobacteria (q=0.04, ×0.33 lower),
and Verrucomicrobia (q=0.04, ×0.4 lower).

PPI microbiota associations replicate in an interventional
study
From the 96 collapsed taxonomies significant in the TwinsUK
set, 63 were found in at least 50% of the interventional set and
considered for replication (see online supplementary table S4).
Within these, seven were significantly associated with PPI use in
the intervention, all increasing in abundance after 4 weeks of
PPI use. These were unassigned species belonging to the genera
Streptococcus and Granulicatella, the Granulicatella genus, and
the families Carnobacteriaceae, Streptococcaceae,
Burkholderiaceae, and Corynebacteriaceae. All belonged to the
order Lactobacillales except Corynebacteriaceae and
Burkholderiaceae, which are from the orders Actinomycetales
and Burkholderiales. Within this size-limited intervention the
strongest taxa associations, particularly Lactobacilli, appear to
be driven by PPI use.

PPI use associated with a higher abundance of pharyngeal
bacteria in the gut
Body site of origin of the altered bacteria was investigated to
shed light on the mechanism driving observed associations. Data
from the human microbiome project (HMP) was used as a refer-
ence to determine body site preferences of bacterial families (see
online supplementary methods and supplementary table S6). It

is worth noting that individual species within each family may
be commensals at different and multiple sites. Here we simply
aimed to determine overall if families were more frequently
identified at particular body sites.

Within the five families found to associate negatively with PPI
use in TwinsUK, four were more common in the gut, with two
also being found in abundance in the mouth/throat. The excep-
tion was Cyanobacteria, which was not biased towards any site in
the HMP data. All 10 families positively associated with PPI use
(including four replicated in the interventional study) displayed
site preference. The six strongest, most significantly associated
families were enriched in the mouth/throat with one also in abun-
dance in the skin/nose, one was only enriched at the skin/nose
sites, and two were most commonly found at vaginal sites. The
only family most common to the gut and with increased abun-
dance with PPI use was Burkholderiaceae. Overall, families with
significantly reduced abundance with PPI use were more often
found in the gut in the HMP data; while families with signifi-
cantly higher abundance with PPI use were more often found in
the mouth/throat, skin/nose or vaginal sites (likely a result of the
large number of Lactobacillaceae commensals found here).23

To determine if this trend applied to all families, including
those not significantly associated with PPI use, coefficients of
association of each family with each site in the HMP data were
correlated against families’ associations with PPI use in the
TwinsUK data. There was a non-significant negative correlation
between the association with PPI use and with the gut (ρ=
−0.23, p=0.07), and a non-significant positive correlation with
vaginal coefficients (ρ=0.2, p=0.12). However, significant posi-
tive correlations were observed between the association with PPI
use and the association with the mouth/throat (ρ=0.38,
p=0.0019) and the skin/nose (ρ=0.36, p=0.003) sites.

DISCUSSION
We have profiled the effects of PPI use on the gut microbiome
in by far the largest study to date, and considered a number of

Figure 1 Distributions of covariates included for analysis, compared between proton pump inhibitor (PPI) users and non-users. Wilcoxon rank sum
tests were carried out to compare the distribution of covariates in the modelling analysis. All variables were on a different scale so were centred and
scaled before plotting. PPI users were older, frailer, had higher body mass index (BMI) and lower scores on the high alcohol food frequency
questionnaire (FFQ) principle component (PC). Significant differences are indicated where ***p<0.001 and **p<0.01.
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possible confounders including host genetics. We have demon-
strated that PPI use is associated with an altered composition of
the gut microbiota, and a moderately lower diversity. In all three
analyses, the large observational study, between discordant
twins, and the interventional replication, PPI use was associated
with increases in the Lactobacillales order, and in particular the
family Streptococcaceae. Further, we show these effects could
result from downward movement of upper tract commensals.

We observed a significant reduction in microbial diversity
with PPIs. However, it was a small difference and became non-

significant after adjusting for covariates. This may be due to con-
founding effects and/or reduced power of the smaller sample.
Variables we found to associate with PPIs, such as BMI, frailty,
and antibiotic use, are also known to reduce diversity.24 26 40

Therefore, it is likely that these factors are partly responsible for
the observed lower diversity in PPI users; such confounders
were also not accounted for in previous observations of
decreased diversity with PPI use.32 This is further supported by
a number of studies where no major changes in diversity have
been observed.28 30

Figure 2 Comparison of α diversity in proton pump inhibitor (PPI) users and non-users, and in individuals with and without GI indications. Four
metrics of α diversity were calculated on rarefied samples and one-tailed Wilcoxon rank sum tests carried out to test for significantly lower diversity
with PPI use, or with GI indication. Significantly lower diversity was observed for all metrics in PPI users versus non-users (*); no difference was
found splitting by GI indication (NS).
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There was a clear association between the composition of
the microbiome and PPI utilisation. Collapsing by taxonomic
assignment revealed the lineage specificity of these associa-
tions, in particular to those containing Streptococcaceae and
other Lactobacilli. A number of these associations have been
identified in smaller studies. For example, 8 weeks of PPI use
was found to increase the abundance of Actinomycetales and
Lactobacillales in the oesophagus of 34 patients suffering
from heartburn.29 An increase in Streptococcus was also
observed with PPI use in a case–control study of 116 chil-
dren,30 and previous analyses of the intervention study data
utilised within this study also identified similar increases in
Streptococcaceae and Micrococcaceae.31 These studies also
identified changes not present in our study, for example,
increases in Gemellales, Enterococacceae, and
Staphylocacceae.29 31

We found families with higher abundance with PPI use to be
frequent commensals of the oral, throat, nasal, and skin commu-
nities. We hypothesise that under normal circumstances gastric
acid acts as a barrier to progression down the GI tract for pha-
ryngeal commensals and environmental bacteria, which are not
well adapted to low pH. Treatment with PPIs removes this
barrier allowing colonisation by these bacteria further along the
GI tract, eventually translating to the detected increased abun-
dance in faecal samples. As observations are based on relative
abundances, the observed lower abundance of gut commensals
likely reflects the increase in other taxa, rather than a reduction
in absolute levels.

PPIs may also act on specific bacterial taxa directly. Previous
evidence suggests that they may have antimicrobial action
against Helicobacter pylori.41 42 Also, at least one Streptococcus
species is known to have P-type ATPase transporters belonging

Figure 3 Summary of taxonomic associations with proton pump inhibitor (PPI) use. Shown are all collapsed groups used in taxonomic association
analyses that had complete taxonomic assignment (not including collapsed species). Connecting lines highlight the taxonomic relationships between
groups (not considering genetic relatedness). Taxa significantly associated with PPI use are highlighted with circles, larger circles representing a
larger absolute coefficient of association. Association analyses were carried out at each taxonomic level independently. Taxa at higher abundance
with PPI use are shown in blue and at lower abundance in red. Lines connecting taxa of similar association are also coloured and weighted by the
average coefficient between the taxa. Names are shown for significant results only. Those in bold retained significance between 70 discordant
monozygotic (MZ) twins, and underlined taxa replicated in analysis of interventional study data.
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to the same enzyme family as the human H+/K+ ATPase tar-
geted by PPIs.43 Bacterial targets for direct PPI interactions
could drive species-specific compositional changes.

There are limitations to the study. The TwinsUK data are
observational, although our key findings were confirmed
between twin pairs and replicated in data from a small prospect-
ive controlled trial. PPI use and GI indication were self-reported
and over a wide timespan from faecal sampling. However, mis-
classification of exposures should only serve to reduce the
strength of observed associations. We have also omitted duration
of PPI use as accurate data were not available, which should be
considered in future investigations as it may influence the
strength of microbiome associations. However, the lack of dur-
ation data would tend to dilute our associations as short and
long-term users are classified together. Similarly, we did not con-
sider the effects of withdrawal of PPI treatment, which may be
important given that dysbioses resulting from antibiotic use can
have long lasting effects.40

Antibiotic use was not scored for all individuals within this
study; we have also not considered the effects of particular
classes of antibiotics, dosage and duration of courses, or anti-
biotic use before the previous month. However, the robustness
of our observations within the subset of individuals who had
not used antibiotics shows that they are independent of the
effects of recent antibiotic exposure. This study was also limited
to faecal sampling. While the observations in the gut are robust,
they offer no insight into the distribution of these bacteria along
the GI tract. Sampling of multiple sites combined with culture
experiments would determine the distribution of living bacteria,
and the influence of upper tract community composition on
subsequent changes in the gut. In vitro studies will also be
required to elucidate whether our observations are driven by pH
changes, direct drug interactions, or a combination of both.
This will be particularly important to determine if these effects
occur with other classes of acid-suppressing medication.

The associations reported here are of clinical importance. C
difficile affects nearly half a million people in the USA annually,44

and is known to capitalise on alterations to the normal gut micro-
biota.27 The increased risk of enteric infection with PPI use may
similarly be mediated through changes to the GI microbiome. It
has been shown that a high abundance of Streptococcus in the
gut predisposes mice to C difficile colonisation, while

Lachnospiraceae are protective.45 On this basis, we observed
taxonomic changes that would be expected to promote C difficile
infection. Further investigations into the microbiome-mediated
determinants of C difficile infection will be important to under-
stand how to mitigate the risk associated with PPI use.

A further consequence for consideration is the potential for
the GI tract to become a reservoir for potential pathogens at
alternate body sites. A significant increased risk of
community-acquired pneumonia has been observed with PPIs
(relative risk 1.98 for users vs ex-users),18 and has been
observed specifically for Streptococcus derived pneumonia.46

There is speculative evidence of bacterial exchanges between the
gastric and lung fluids,30 47 and depletion of the gut microbiota
reduces immune mediated resilience to pneumococcal pneumo-
nia in mice.48 PPI use has also been shown to increase the risk
of spontaneous bacterial peritonitis and overall bacterial infec-
tion in patients with cirrhosis and ascites,19 suggesting PPI use
may pose a higher risk to individuals already susceptible to
infection and other complications; for example, the elderly and
the more frail or more obese individuals, whom our study indi-
cates are more likely to be prescribed PPIs.

The described associations between PPI use and the gut
microbiome warrant further research to better understand the
driving mechanisms and their consequences, and are a further
reason to reduce unnecessary prescribing.
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Chapter 5

A comparison of methods to cluster
16S rRNA gene sequences to OTUs
using heritability as ameasure of
quality

In the following chapter I compare the ability of different OTU clustering algorithms using
the heritability of the resultant OTUs as a measure of quality. This is carried out on the
basis that the most biologically accurate clusterings should produce the highest heritability
estimates (as they will produce less technical noise). This is an entirely novel approach to
technical benchmarking. The results of this chapter inform the methods selected for use
in Chapters 6 and 7, and are discussed further in Chapter 8.

This chapter is presented in the form of a manuscript that was originally published in the
journal PeerJ on the 30th of August 2016. Accompanying supplementary materials can
be found in Appendix C. The digital appendix also includes the original PDF file for the
manuscript.

Collaborator Attributions

Collaborators from Cornell University carried out the sequencing and demultiplexing of
the 16S rRNA gene reads used in this chapter.
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ABSTRACT
A variety of methods are available to collapse 16S rRNA gene sequencing reads to
the operational taxonomic units (OTUs) used in microbiome analyses. A number of
studies have aimed to compare the quality of the resulting OTUs. However, in the
absence of a standard method to define and enumerate the different taxa within a
microbial community, existing comparisons have been unable to compare the ability
of clustering methods to generate units that accurately represent functional taxonomic
segregation. We have previously demonstrated heritability of the microbiome and we
propose this as a measure of each methods’ ability to generate OTUs representing
biologically relevant units. Our approach assumes that OTUs that best represent
the functional units interacting with the hosts’ properties will produce the highest
heritability estimates. Using 1,750 unselected individuals from the TwinsUK cohort,
we compared 11 approaches to OTU clustering in heritability analyses. We find
that de novo clustering methods produce more heritable OTUs than reference based
approaches, with VSEARCH and SUMACLUST performing well. We also show that
differences resulting from each clustering method are minimal once reads are collapsed
by taxonomic assignment, although sample diversity estimates are clearly influenced
by OTU clustering approach. These results should help the selection of sequence
clustering methods in future microbiome studies, particularly for studies of human
host-microbiome interactions.

Subjects Bioinformatics, Ecology, Microbiology
Keywords Ecology, Microbiology, Computational biology

INTRODUCTION
The field of microbiome research has seen rapid expansion this last decade (Jones, 2013).
One of the techniques most frequently used to profile microbial communities is 16S
rRNA gene sequencing, where PCR amplification of variable marker regions is used to
determine a sample’s microbial composition (Pace, 1997). The taxonomic resolution of
sequence variation across a marker region is limited both biologically and technically,
because sequence divergence may not represent wider biological divergence between
taxa (Stackebrandt & Goebel, 1994; Mignard & Flandrois, 2006), and sequencing errors
introduce artificial divergence (Huse et al., 2010; Schloss, Gevers & Westcott, 2011). As a
result, it is not necessarily useful to enumerate every unique sequence observed particularly
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given that samples may contain hundreds of thousands of unique reads. To simplify
analyses, reads within a 16S rRNA gene dataset are typically collapsed into operational
taxonomic units (OTUs). This is carried out based on sequence similarity between reads.
Convention is typically to group reads that share at least 97% identity, which is considered
‘‘species’’ level. Although collapsing can be carried out to any threshold and there is no
clear definition of what constitutes a bacterial species.

A variety of methods are available to collapse 16S data to OTUs (Edgar, 2010; Edgar,
2013; Rognes et al., 2016; Mercier et al., 2013; Mahé et al., 2014; Schloss & Handelsman,
2005; Eren et al., 2014), often implemented within software wrappers such as QIIME and
Mothur (Caporaso et al., 2010; Schloss et al., 2009). One of the main divides in approaches
is whether experimental sequences are clustered against a reference database of sequences
(Liu et al., 2008), termed closed reference clustering (Navas-Molina et al., 2013), or solely
clustered within the experimental data itself, generating what are termed de novo OTUs
(Schloss & Handelsman, 2005; Navas-Molina et al., 2013). Closed reference clustering is
computationally more efficient given that each sequence should maximally only be
compared against each reference sequence, whereas de novo clustering could require
pair-wise comparisons between all experimental reads. Closed reference approaches also
facilitate comparisons between datasets as OTUs can be defined and matched based on
their reference sequences; however, reads which do not match any reference sequences will
be discarded. De novo clustering does not have this limitation and includes all experimental
reads in resultant OTUs, which may better represent rare and novel taxa (Navas-Molina
et al., 2013). A third approach, termed open-reference clustering, aims to capitalise on the
benefits of both approaches by first clustering experimental sequences against a reference
followed by de novo clustering of discarded sequences (Navas-Molina et al., 2013).

Once a reference or de novo based approach has been selected, a number of different
algorithms can be used to cluster sequences by similarity (Schloss & Handelsman,
2005; Caporaso et al., 2010; Edgar, 2010; Edgar, 2013; Rognes et al., 2016; Mercier et al.,
2013; Mahé et al., 2014; Eren et al., 2014). Linkage based methods calculate pairwise
distances between all sequences allowing hierarchical clustering to OTUs (Schloss &
Handelsman, 2005). There are also multiple greedy algorithms available, which aim
to reduce computation time using heuristic approaches to finding optimal groups
without calculating all possible distances (Edgar, 2010; Edgar, 2013; Rognes et al., 2016).
Furthermore, there have been a number of methods proposed to summarise 16S data
without using a predetermined global similarity threshold. These include simply using
de-replicated sequences (reads collapsed by 100% similarity), defining OTUs by inherent
separation within the dataset using local rather than global cut-offs (Mahé et al., 2014),
and splitting reads into groups based on sequence entropy at each position in aligned reads
(Eren et al., 2014).

With the range of available approaches to OTU picking some comparative metric
is required to assess their performance. Previously, clustering algorithms have been
compared based on a number of metrics including: their computational efficiency (Edgar,
2010; Kopylova et al., 2016; Chen et al., 2013); the number of OTUs they produce (Schmidt,
Rodrigues & Von Mering, 2015; Kopylova et al., 2016; Chen et al., 2013); the accuracy of the
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similarity between sequences within their OTUs (Westcott & Schloss, 2015; Schloss, Gevers
& Westcott, 2011; Schloss, 2016); their ability to handle sequencing artefacts (Edgar, 2013);
their reconstruction of simulated data sets (Kopylova et al., 2016; Chen et al., 2013); the
similarity between method outputs (Schmidt, Rodrigues & Von Mering, 2015; Kopylova et
al., 2016); and the reproducibility of their clustering within subsets of the same data (He et
al., 2015). However, the optimal approach between de novo and reference clustering, and
the different clustering algorithms is dependent on which measure of quality is considered.

As there is no accepted standard for definition and enumeration of microbial taxa in
a community, existing comparison metrics have exclusively dealt with technical aspects
of clustering. It is not clear which of these metrics is most important in determining a
methods ability to generate OTUs most representative of the biological units underlying
microbial community structure. Here we suggest heritability as a measure of the biological
relevance of OTUs.

Heritability quantifies the percentage of phenotypic variation that is attributable to
genetic variability. Twin studies are a well-established method for estimating heritability.
These compare the correlation of phenotypes within monozygotic (MZ) twin pairs whom
share identical nuclear DNA, to the correlations within dizygotic (DZ) pairs whom on
average share half their genetic material. Variation in a phenotype can then be apportioned
into variation due to genetic factors, which are shared by twins to a varying degree, based
on zygosity and to environmental factors, which are not shared by twins (Franic et al.,
2012; Boomsma, Busjahn & Peltonen, 2002).

TwinsUK is a long established cohort of unselected British twins (Moayyeri et al., 2013).
16S rRNA gene sequencing of faecal samples from the cohort has been used to demonstrate
heritability of themicrobiome (Goodrich et al., 2014;Goodrich et al., 2016), and to identify a
number of phenotype-microbiome associations (Jackson et al., 2016a; Jackson et al., 2016b;
Barrios et al., 2015). Under the assumption that some heritability within the microbiome
is acting at the level of individual taxa-host interactions, we propose that the heritability of
OTUs is representative of their ability to summarise the underlying biological units within
a microbial community.

Here we compare heritability estimates of 11 different methods of summarising 16S
reads from 1,750 faecal samples of 473 MZ and 402 DZ twin pairs. Overall, we find that
de novo clustering, regardless of algorithm, consistently produces more heritable OTUs
than reference based approaches, with VSEARCH and SUMACLUST producing the highest
heritability estimates from those considered. No difference in heritability was observed once
OTUs had been collapsed by taxonomic assignment. We also find that clustering method
can influence relative sample diversity, dependant on the diversity metric used. These
results should provide guidance to researchers in selecting the appropriate approach to
OTU picking, in particular in studies investigating human host-microbiome interactions.

METHODS
Faecal sampling and 16S rRNA gene sequencing
Analyses were carried out using 16S rRNA gene sequencing reads from a subset of published
data from the TwinsUK cohort. Sample collection, DNA extraction and sequencing have
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previously been reported (Goodrich et al., 2014). In brief, twins produced the sample at
home, which was then kept refrigerated and/or on ice before freezing at −80 ◦C in the
TwinsUK laboratory at King’s College London. Frozen samples were then shipped to
Cornell University where extracted DNA from samples was PCR amplified over the V4
variable region of the 16S gene. The resulting amplicons were multiplexed and sequenced
using the Illumina MiSeq platform to generate 250 bp paired-end reads. Ethical approval
for microbiota studies within TwinsUK were provided by the NRES Committee London—
Westminster (REC Reference No.: EC04/015). All participants provided written consent.

Pre-processing of sequencing reads
Paired reads were joined using fastqjoin, within QIIME (Caporaso et al., 2010), discarding
reads without a minimum overlap of 200 nt and those containing ambiguous bases. Joined
reads were de-multiplexed also removing barcodes. The data were filtered to only include
the subset of 1,750 samples from the 473 MZ and 402 DZ complete twin pairs used in these
analyses. Within this set, there were 158,635,772 reads with an average of 91,170 reads per
sample. These were split per sample and de novo chimera checking carried out on each
individually using USEARCH de novo chimera detection in QIIME with a no vote weight
of 7 (Edgar et al., 2011; He et al., 2015). This identified an average of 8,471 chimeric reads
per sample all of which were removed. Sample reads were then concatenated to one file and
all sequences <252 nt or >253 nt in length discarded (<1% of reads) (Kozich et al., 2013).
After chimera removal and length filtering, the final data set contained 142,307,280 reads
across all samples. This fasta file was used as the input for all 16S collapsing approaches.

These reads and associated metadata, covering a larger selection of samples and twins
than the subset described here, are available from the European Nucleotide Archive (ENA)
from the study with accession number ERP015317 (Goodrich et al., 2016).

Clustering of 16S rRNA gene sequencing reads
All threshold based OTU clustering approaches and Swarm were implemented using
QIIME 1.9.0 (Caporaso et al., 2010; Mahé et al., 2014). VSEARCH de novo clustering was
implemented within the QIIME wrappers using an alias to run VSERARCH in place
of USEARCH (Rognes et al., 2016; Edgar, 2010). VSEARCH is not restricted to the same
memory limitations as the free version of USEARCH, enabling its use across our whole data
set. It also accepts the same commands for de novo clustering so required no alterations
to the QIIME wrapper. Where a reference was required, the Greengenes reference and
taxonomy version 13_8 was used (DeSantis et al., 2006). De-replicated sequences were
generated using VSEARCH (Caporaso, 2015). Minimum entropy decomposition (MED)
was run from scripts within the oligotyping pipeline using default parameters (Eren et al.,
2014; Eren et al., 2013). An overview of how each clustering method works, the clustering
pipeline, and complete commands used for each clustering procedure can be found in
Supplemental Information 1.

Heritability analyses
Heritability of microbiome traits was calculated in a manner similar to as previously
reported (Goodrich et al., 2014). Estimates were calculated for OTUs found in at least 50%
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of samples as OTU absence, which skews the distribution of abundances, would be less
influential on model fitting. A pseudo count of 1 was added to all OTUs to remove absent
data in the resultant OTU tables of each clustering approach. Counts were converted to
within sample relative abundances and tables subset to only include OTUs found in at least
50% of samples (prior to the addition of pseudo counts). The powerTransform package in
R was used to estimate a Box–Cox transform lambda producing approximately normally
distributed residuals from a linear model with OTU abundance as a response and gender,
age, sequencing run, sequencing depth, how the sample was collected, and the technician
who loaded and extracted the DNA as predictors. This was carried out for each OTU and
the transformed residuals used in heritability estimation.

Estimates were found by fitting OTU abundances to a twin-based ACE model. This
estimates narrow-sense heritability (the heritability due to additive genetic effects—A) on
the assumption that variance resulting from shared environment (common environment—
C) is equal in MZ and DZ twins, with remaining variance attributed to environmental
influences unique to individuals (E) (Franic et al., 2012). Maximum likelihood estimates
were found by structural equation modelling using OpenMX in R (R Development Core
Team, 2009; Boker et al., 2011). Heritability estimates for collapsed taxonomic traits were
calculated in the same manner as for OTUs.

Between method comparisons of OTU heritability and other distributions were carried
out in R using pairwiseMann–WhitneyU tests using Benjamini–Hochberg FDR correction
to account for multiple testing.

Alpha diversity calculation and taxonomic assignment
Each complete OTU table was rarefied to 10,000 sequences 25 times. Alpha diversity
calculation was carried out on each rarefied table for eachmethod using Simpson, Shannon,
Chao1 and raw OTU count metrics, with final diversity values taken as the mean across
all rarefactions. Alpha diversity estimates were compared using Mann–Whitney U tests
to contrast absolute values between methods and Kendall rank correlations to compare
sample rankings between methods.

For each clustering method, except closed reference, representative sequences were
selected as the most abundant read within each OTU. These were then used to assign
taxonomy against the Greengenes 13_8 database with a 97% similarity threshold using the
UCLUSTmethod in the assign taxonomy script of QIIME. OTU tables were collapsed based
on taxonomic assignment at all levels from genus to phylum. Differences in heritability of
taxa between methods were compared using a generalised linear model in R, to determine
the ability of taxonomic assignment and clustering method to predict heritability estimates
as the response variable. This was carried out across all taxonomic levels considering all
taxa that were found across all 11 clustering approaches.

RESULTS
De novo clustering produces more heritable OTUs than closed
reference clustering
16S microbiome profiles were available for 473 MZ and 402 DZ pairs within previously
reported data. Joined paired end read data were revisited and chimeric sequences removed
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Figure 1 Twin based A, C, and E estimate comparisons between closed and open reference, and de
novo clustering using UCLUST with a similarity threshold of 97%. (A) Boxplots representing the A, C
and E estimates for all OTUs found in at least 50% of samples in each method. De novo clustering A esti-
mates significantly higher than those of closed reference clustering (q= 0.017). (B) The same estimates as
in A but displayed as a density function showing the distribution of estimates amongst OTUs.

on a per sample basis. Total read data across all 1,750 samples was then clustered using
de novo, closed reference, and open reference approaches using the UCLUST algorithm
(Edgar, 2010), the current default in QIIME, to form OTUs with a threshold similarity of
97%. The resultant OTU tables are summarised in Table S1. De novo clustering produced
more OTUs than closed reference and as a result, a more sparsely distributed OTU table.
Open reference picking was an intermediate of the two approaches as might be expected.

Across all three methods the A, C, and E estimates were within the range expected from
previous reports within the cohort (Goodrich et al., 2014; Goodrich et al., 2016). De novo
clustering produced OTUs with significantly higher (q= 0.017) heritability (A) estimates
than closed reference clustering (Fig. 1A). De novo heritability estimates were also higher
than those of open reference OTUs although the difference was non-significant. There
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were no significant differences in the distributions of C estimates between any methods.
De novo clustering produced OTUs with significantly lower E estimates than both closed
(q= 0.02) and open reference (q= 0.003) approaches.

Whilst significant, the difference in OTU heritability estimates was only moderate. The
mean of the de novo A estimates was 1% higher than that of the closed reference clustered
OTUs. However, the distribution of A, C, and E estimates were also divergent, as shown
in Fig. 1B. Closed reference A estimates displayed a bimodal distribution with OTUs
either having no or little heritability with fewer highly heritable units. De novo clustering
produced units of higher heritability whose estimates were more evenly distributed. Open
reference clustering displayed features of both distributions resulting in higher levels of
moderately heritable OTUs.

VSEARCH and SUMACLUST produce more heritable de novo OTUs
than UCLUST
As de novo clustering produced the most heritable OTUs using UCLUST, we aimed to
determine the influence of using alternative threshold based algorithms for clustering.
Linkage based clustering approaches were not considered as it was unfeasible to generate
distance matrices between the large number of unique reads within the data set. OTUs
were clustered at 97% similarity using two alternate greedy algorithms within QIIME—
VSEARCH and SUMACLUST (Rognes et al., 2016; Mercier et al., 2013). The open-source
algorithm VSEARCH was used in place of the QIIME default USEARCH to overcome the
memory limitations of its free version. VSEARCH has previously been shown to match
or outperform USEARCH in terms of accuracy (Westcott & Schloss, 2015). Clustering
with VSEARCH was carried out using both distance and abundance options as tiebreak
assignments. The resultant OTU tables are summarised in Table S1.

There were no significant differences in the mean magnitudes of the A, C, or E estimates
between all four methods tested (Fig. 2A). The distributions of estimates were very similar
in the SUMACLUST, and both VSEARCH approaches (Fig. 2B). UCLUSTOTUs contained
a higher proportion of A estimates falling between 0.05 and 0.15, with the other methods
containing higher proportions of more heritable OTUs. The VSEARCHmethods had more
OTUswith high heritability estimates (0.35–0.4), with the distance tiebreaker basedmethod
producing slightly fewer. SUMACLUST produced the most heritable OTU. Overall, all de
novo algorithms produced estimates higher than the UCLUST reference based approaches
at a threshold of 97% similarity, with SUMACLUST and VSEARCH approaches producing
more heritable OTUs than UCLUST.

Clustering at higher thresholds and other alternatives to clustering
We aimed to investigate the use of more stringent thresholds repeating VSEARCH
abundance based clustering with identity thresholds of 98 and 99%, and simply de-
replicating the sequences, the equivalent of a 100% threshold. We also clustered sequences
using two approaches that do not rely on a sequence identity threshold—MED and Swarm
(described in Supplemental Information 1) (Eren et al., 2014; Mahé et al., 2014). Of the
thresholds, 97% produced the most heritable OTUs (Fig. 3A), whose distribution of A
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Figure 2 Twin based A, C, and E estimate comparisons between different greedy algorithms for de
novo clustering at a 97% similarity threshold. (A) Boxplots representing the A, C and E estimates for all
OTUs found in at least 50% of samples in each method. There was no significant difference in A estimates
between methods. (B) The same estimates as in A but displayed as a density function showing the distribu-
tion of estimates amongst OTUs.

estimates was significantly different to those of the 99 (q= 0.02) and 100% (q= 0.0001)
cut-off OTUs (Fig. 3B). As the percentage identity increased from 97% through to 100%
the distribution of A estimates became less continuous, with small groups of units with
high heritability and much larger numbers with low heritability. This suggests that in some
instances, the heritability estimate of an OTU clustered at 97% identity may be driven
by an individual, highly heritable sequence; as opposed to the accumulative effects of the
variance across all its reads.

MED produced very few units in total (Table S1). However given this broad level of
summary, which is comparable to that of closed reference clustering, the resultant units A
estimates were not significantly different to VSEARCH OTUs clustered at the 97% level.
Similarly, the heritability of OTUs resulting from clustering by Swarm had heritability’s
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Figure 3 Twin based A, C, and E estimate comparisons between three different thresholds of de novo
clustering using VSEARCH, VSEARCH de-replicated sequences, and two non-threshold based tech-
niques. (A) Boxplots representing the A, C and E estimates for all OTUs found in at least 50% of sam-
ples in each method. The 97% threshold produced significantly more higher A estimates than the 99 and
100% thresholds (q= 0.02, q= 0.0001). (B) The same estimates as in A but displayed as a density function
showing the distribution of estimates amongst OTUs.

within the range of the VSEARCH methods, however the distribution of A estimates more
closely resembled OTU clustering at a threshold of 99%.

De novo clustering at 97% generates more heritable OTUs than
reference-based approaches when considering only heritable units
The power of a twin study to detect and accurately estimate the additive genetic variance of
a trait is limited by the total number of pairs and the proportion of MZ twins considered
(Visscher, 2004). As noise in the A estimates for non and low heritability traits may influence
the overall distribution,we comparedA estimate distributions across all previously clustered
techniques considering only heritable OTUs—those with A estimates greater than themean
of all OTUs (8%) andwith a lower 95%confidence interval of at least 1% (Fig. 4).When only
considering the most heritable OTUs, the majority of de novo based approaches produced
units with higher heritability estimates than the reference-based approaches. VSEARCH
AGC clustering at 97 and 98%, and DGC clustering at 97% produced significantly higher
estimates than closed reference UCLUST. As did SUMACLUST de novo clustering (97%
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Figure 4 Comparison of A heritability estimates between all clustering approaches. Only consider-
ing OTUs who’s A estimate was greater than the mean (∼8%) and had a lower 95% CI greater than 1%.
SUMACLUST and VSEARCH clustering produced OTUs with significantly higher heritability estimates
than OTUs produced using reference-based clustering. Significant differences are shown where * indicates
q< 0.05 and ** indicates q< 0.01.

identity), which also produced units with significantly higher heritability than those
produced by open reference based clustering. De novo clustering at higher sequence
identity thresholds (99 and 100%) produced OTUs with significantly lower estimates than
SUMACLUST at 97%.

Differences resulting from clustering approach are not apparent after
collapsing by taxonomic assignment
The ability of a technique to generate OTUs representing fine scale biological units
may be less important for studies aiming to identify effects at higher taxonomic levels.
To determine if choice of OTU clustering approach significantly effected the ability to
generate representative taxa we collapsed each OTU table at all taxonomic levels from
genus to phylum, and estimated the heritability of taxa at each level (Table S2). We then
investigated the ability of taxonomic assignments and clustering methods to predict taxa
heritability estimates. We found that assignments to 150 of the 168 taxa found across all 11
methods were significant predictors of heritability, however none of the clustering methods
had a significant effect. This suggests that from genus through to higher-level taxonomic
summaries there is sufficient collapsing of reads that the previously observed differences
in OTU clustering are not apparent.

Alpha diversity measures are influenced by clustering approach
As the largest difference observed betweenmethods was the number of OTUs generated, we
aimed to determine the influence of clustering approach on alpha diversity estimates. The
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Figure 5 Comparison of absolute alpha diversity values for Shannon, Simpson, Chao1, and OTU
count indices across all samples.OTU tables for each method were rarefied to 10,000 sequences 25 times
and the mean diversity calculated across all tables. There was a significant difference in the distribution
of diversity values between all methods for all four metrics. De-replicated sequences in particular inflate
richness-based measures.

absolute values of sample diversity estimates were significantly different between almost
all methods of clustering for all four diversity estimates considered (Fig. 5). In particular,
the values of OTU count and Chao1 (richness measures influenced by rarer OTUs) were
much higher in the de-replicated (or 100% identity) sequences. These results show that
absolute diversity levels are not comparable between methods over the same rarefied data.

To determine if these differences would influence comparative diversity analyses, we
measured the rank based correlation between methods for each diversity metric (Fig. 6).
For both the Shannon and Simpson metrics the diversity rankings were highly correlated
(τ > 0.6, mean = 0.83) between all methods. However, when using the Chao1 and OTU
count metrics there was a reduced correlation between diversity rankings. In particular,
the closed reference and MED approaches were poorly correlated with de novo based
approaches. This is likely due to under representation of rare sequences as both of these
methods discard reads. Our results show that clustering approach can influence the relative
diversities between samples in a study dependant on the diversity measure used. This may
be particularly important in the interpretation of diversity association analyses, where use of
a closed reference approach could produce different results to the use of de novo clustering.

DISCUSSION
Here we propose and demonstrate the use of heritability estimates as a novel approach
to methodological comparisons. There is an established taxa dependent variability in
the heritability of the gut microbiome (Goodrich et al., 2014). Heritability estimates aim
to quantify the percentage of a trait’s variation that is due to the influence of host
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Figure 6 Kendall’s Tau rank based correlations between samples across methods for each of Shannon,
Simpson, Chao1 and OTU count metrics. Rank correlation represents the concordance between relative
diversity assignments between the same samples in each clustering method. There is generally high cor-
relation between all methods when using the Shannon and Simpson indices, which measure evenness of
species distribution. However, the de-replicated, closed reference, and MED clustered OTUs show poor
correlation in the richness measures (Chao1 and OTU count). Clustering method may therefore influence
diversity association analyses.

genetics. Given that bacteria within the microbiome contain a range of functional
properties, determined by their own genetics, we assume that the heritability of an
OTU is driven by a specific bacteria-host interaction. By this logic, we would expect
the OTU clustering approach that best groups reads sourced from bacterial units with
similar functional properties to produce OTUs with the highest heritability estimates.
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Using the distribution of heritability estimates as a measure of biological representation,
we have demonstrated that de novo clustering produces OTUs that are more representative
of functional microbial units than reference based approaches. We have also shown that
within the various algorithms considered VSEARCH and SUMACLUST produced themost
representative OTUs. Within our comparison of clustering thresholds, we found that 97%
sequence identity produced the most heritable units when compared to more stringent
cut-offs. We have shown that these effects are only applicable at the OTU level, as clustering
approach does not significantly influence the heritability estimates of collapsed taxonomies.
Finally, we have demonstrated that choice of clustering approach can effect both absolute
and relative diversity measures with implications for comparisons across microbial studies.

The aim of OTU clustering is to group sequences based on sequence similarity. Our
comparisons are based on the assumption that the genetic relatedness between 16S
reads is related to the functional similarity between their bacterial sources. In this way,
a clustering method that best groups reads with similar sequence will also groups reads
from bacteria with similar functional relationships to the host. These methods should
therefore produce the highest heritability estimates, as they will produce less noise in the
variance of OTU abundances due to incorrectly grouped read counts. Whilst this may not
provide an accurate quantification of the quality of sequence identity within OTUs (as
provided by existing methods discussed below), it does provide a measure of the functional
representation of the units. For example, in our data the OTUs clustered with 99 and
100% identity thresholds produced lower heritability estimates. Suggesting that 97% is the
best threshold to generate units that represent functional units within the microbiome.
A methods ability to represent functional units is arguably of more importance than
genetic accuracy, particularly for studies in areas such as human microbiome research
where the goal is often to identify the functional roles of microbes in human health.

Recently, four studies were published that each compared multiple OTU clustering
approaches (He et al., 2015; Kopylova et al., 2016; Westcott & Schloss, 2015; Schloss, 2016).
The first used the stability of sequence assignments within subsets of the same data sets
as a measure of quality, finding that reference based approaches outperformed de novo
clustering (He et al., 2015). The heritability comparisons presented here do not reflect these
findings, suggesting that stability does not relate to functional representation. However,
stability may be an important consideration for studies comparing across data sets. Our
findings also suggest that reference based approaches would be sufficient when analyses
are only concerned with collapsed taxonomies.

Two studies have compared clustering methods using Matthew’s correlation coefficient
(MCC) to quantify their accuracy in clustering sequences sharing 97% sequence identity
(Westcott & Schloss, 2015; Schloss, 2016). They found that de novo clustering produced
more accurate OTUs than reference based approaches (Westcott & Schloss, 2015), and that
VSEARCH and SUMACLUST out performed Swarm in terms of OTU accuracy (Schloss,
2016). The differences between reference and de novo OTUs in our heritability estimates,
whilst moderate, were significant and broadly agreed with these observations. This suggests
that accuracy is also representative of the biological representation of OTUs. This might be
expected under the assumption that sequence similarity, at least in part, reflects functional
similarity.
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Kopylova et al. (2016) compared a number of clustering methods using a variety of
measures from recapitulation of simulated data to inter-method correlations. Within the
methods considered here, they found that Swarm, SUMACLUST and UCLUST, performed
equally well at reconstructing expected taxonomies from simulated data but differed in
the number of OTUs produced and subsequently produced different absolute diversities, a
finding also described by Schmidt, Rodrigues & Von Mering (2015). Differences in absolute
measures would be expected given the variation in OTU numbers between methods. We
have also shown that these differences can influence the relative diversity rankings between
samples and suggest caution in the interpretation of comparative diversity analyses when
using closed reference clustering and community richness metrics.

Overall, across previous comparisons of greedy clustering algorithms in combination
with the heritability results we have presented here, VSEARCH and SUMACLUST
seem to produce the best combination of accuracy, stability and heritability. We would
therefore recommend either of these approaches for de novo clustering. SUMACLUST
and USEARCH are currently available within QIIME. VSEARCH has recently been
implemented within Mothur (Westcott, 2016), and QIIME 2 will integrate VSEARCH
for OTU clustering and de-replication (Greg Caporaso, personal communication, 15th
April 2016). Based on our threshold comparisons a similarity cut-off of 97% appears
optimal, however this threshold may be specific to VSEARCH application to faecal samples
as optimal thresholds can vary by the complexity of the microbial communities under
investigation and the method used (Chen et al., 2013).

Whilst we tried to include the most frequently used approaches, our study is not
comprehensive. We restricted the majority of our comparisons to clustering algorithms
thatwere availablewithin theQIIMEpipeline; however, even in this respect, our comparison
was not exhaustive. There are further reference based clustering algorithms such as BLAST
and SortMeRNA that were not considered (Camacho et al., 2009; Kopylova, Noe & Touzet,
2012), and de novo approaches such as USEARCH and CD-HIT (Edgar, 2010; Li & Godzik,
2006). We chose to implement clustering via QIIME as it is one of the most widely
used methods to generate OTUs and provided stability in other areas of the processing
pipeline, such as taxonomic assignment, which improved comparability. However, QIIME
does not implement all OTU clustering algorithms and all of those compared here can
also be run independently of QIIME, with a number of them having newer versions
available that could influence clustering. Our comparison is also limited by the exclusion
of linkage-based approaches, as typically implemented using the Mothur pipeline (Schloss
et al., 2009). These were not considered in our comparison due to the high computational
burden of generating the pair-wise sequence distance matrices that these methods require.
Computing time and memory limits were met even when applying additional sequence
filtering or restricting distance calculation by taxonomy (Kozich et al., 2013). Previous
MCC accuracy comparisons showed that average based linkage clustering were as or more
accurate than the best de novo approaches dependent on the dataset considered (Schloss,
2016). Given the reflection between the MCC and heritability results we might speculate
that average linkage based approaches could produce biologically relevant units equivalent
to the de novo algorithms we considered.

Jackson et al. (2016), PeerJ, DOI 10.7717/peerj.2341 14/19

96



Our comparisons are further limited as we have only considered sequencing from
human faecal samples of a single population. A sufficiently large sample is required
to determine heritability estimates for moderately heritable traits (Martin et al., 1978);
however, clustering and analysis of data on this scale is time consuming and computationally
intensive, making it non-trivial to incorporate additional data. There are also few twin
microbiome data sets available at the scale of TwinsUK. It is known that existing measures
of clustering quality can be data set dependent (Schloss, 2016; Chen et al., 2013; Kopylova
et al., 2016). Therefore, our results may not be applicable to non-faecal samples. However,
they should be of particular relevance when experiments aim to study the functional aspects
of the human gut microbiome.

In conclusion, heritability analyses can be used to provide a measure of the quality
of the functional representation of OTUs. This may be used for additional guidance in
selecting an appropriate clustering approach in combination with the other comparative
metrics available, although the optimum method will be largely dependent on each studies
experimental and analytical requirements.
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Chapter 6

Identification of taxonomic markers
that define a health-associated gut
microbiome

In the following chapter I present an association study considering multiple disorders and
medications within the same cohort. This is achieved using a novel method to determine
marker taxa in the microbiota. I then assign these markers as generally more health or
disorder associated based on the observed associations. The ratio of these two groups
provides a novel definition of a health-associated gut microbiome. I then quantify this def-
inition in an index called the health-associated microbiome index (HMI) and demonstrate
its use in gut microbiota research. The microbiota markers and HMI address the high-
dimensionality and limited reproducibility of 16S rRNA gene sequencing data and provide
a novel clinical tool for gut microbiome research.

Collaborator Attributions

Parsing of disease and drug data from questionnaires was carried out by Serena Verdi,
Cheol Min Shin, Maria-Emanuela Maxan, and Claire Steves. Dietary data was analysed by
Ruth Bowyer. Metagenomic data was pre-processed by collaborators at BGI as described by
Xie et al. (Xie et al. 2016). Faecal metabolomics analyses were carried out by Jonas Zierer.
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6.1 Introduction

As discussed in Section 1.2.2, the composition of the human gut microbiome is associated
with a wide range of health disorders, from those affecting the gastrointestinal (GI) tract to
distal associations with neurological disease, as well as measures of overall health such as
frailty (Chapter 3) (Gevers et al. 2014; Sampson et al. 2016; Claesson et al. 2012). However, it
has yet to be established if there are differences in the gut microbiome that are shared across
disorders. Identification of more widely health-associated features in the gut microbiome
could elucidate common microbial functionalities contributing to disease, provide a novel
measure of health, and a single clinical target for interventions in multiple diseases.

Comparison of gut microbiome associations across multiple diseases is hindered by the
inherent experimental and analytical variability between disease specific studies (see Chap-
ter 1). Reproducibility of microbiome associations to date has often been poor even for a
single disorder (Sze and Schloss 2016). These limitations can be ameliorated by compar-
ing associations in a single study with uniform experimental and analytical approaches,
as demonstrated by large scale phenotype comparisons in the Flemish Gut and Dutch
Lifelines-DEEP cohorts (Falony et al. 2016; Zhernakova et al. 2016). However, these stud-
ies focused on determining the host factors most influencing gut microbiome composition
rather than commonalities in bacterial associations across diseases.

The longevity of the TwinsUK cohort has lead to the accumulation of a wide range of de-
tailed health phenotype data across individuals for whom gut microbiota profiles are also
available. Furthermore, as members of TwinsUK are older than those of other popula-
tion based cohorts with gut microbiome data (Zhernakova et al. 2016; Falony et al. 2016;
Consortium 2012), the cohort should contain more cases of age-related disease. TwinsUK
therefore provides a uniform platform to carry out gutmicrobiota association analyses with
multiple common diseases. In this chapter, I carry out gut microbiota association analyses
of 38 commonhealth disorders and 51 commonprescriptionmedications in TwinsUK.This
overcomes the limitations of reproducibility associated with 16S rRNA gene sequencing-
based microbiota profiles and enables direct comparisons between the results.

Studying multiple health related traits in tandem dramatically increases the number of sta-
tistical tests required to identify associations with the already high-dimensional microbiota
data. To overcome this limitation I present a novel method using the inter-correlation
between gut microbiota traits to identify marker taxa that are representative of wider mi-
crobiota composition.

Comparing associations with the defined marker taxa across the multiple disorders studied,
I identify taxa in the gutmicrobiome that have consistently positive or negative associations
with multiple disorders. I define a more health-associated gut microbiome as one with a
higher-abundance of consistently health-associated taxa. On this basis, I propose a further
method to summarise gut microbiota composition by scoring the ‘health-association’ of
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an individuals’ gut microbiota using a health-associated microbiome index (HMI). This
provides a novel method to quantify microbiota composition in relation to host health in a
single measure. I then demonstrate the potential utility of the HMI by using it to investigate
host factors and microbial functions associated with a health-associated microbiome.

6.2 Methods

6.2.1 Disorder and drug data

Self-reported disorder data was collected from 6 questionnaires completed by members of
the TwinsUK cohort at various times between 2002-2015. The majority of diseases were
scored from the BCQ and Q11A questionnaires, which most twins had answered within
2 years of the faecal samples used to assess the gut microbiota (Figure D.1). All questions
asked if a doctor or health professional had ever diagnosed the individual with the condi-
tion. Individuals were scored positive for a disorder if they replied yes on any questionnaire,
negative if they only replied no, and unknown if data was unavailable across all question-
naires. For constipation and cystitis, questionnaire data was scored as (0) No, (1) Rarely, (2)
Sometimes, (3) Frequently, and (4) Always; in these two cases 0-2 was considered negative
and 3-4 positive. Hearing loss was classified by either doctor diagnosis, self-diagnosis, or
hearing aid usage. For some conditions, for instance food allergies, multiple questions
were combined and individuals scored positive if they had reported having any one of the
conditions. Status was determined for a comprehensive range of disorders across the wider
cohort, and those found in at least 1% of the total cohort were considered common and
retained in analyses. The final list of disorders considered is shown in Table 6.1.

Self-reported prescription drug use was available from one of the questionnaires. Reported
drug data was initially cleaned computationally to resolve spelling errors, followed by man-
ual classification of entries into drug classes and sub-classes by a health professional. In-
dividuals were assumed not to be taking a drug if they had completed the questionnaire
without listing it. Drugs used by at least 1% of the total cohort were considered for further
analysis (Table 6.2). Correlations between drugs and between diseases were assessed using
the Phi coefficient, equivalent to Pearson’s for binary variables.

6.2.2 Processing of 16S rRNA gene sequences

These analyses used the most recent and largest set of gut microbiota samples available
within TwinsUK (Batch 3, see Table 2.1). Collection and processing of the faecal samples
within this set is consistent with those used throughout this thesis (Section 2.2). Merging of
paired-end reads and demultiplexing by sample was carried out by collaborators at Cornell.
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Table 6.1: The 38 common disorders (>1% of TwinsUK) considered in this chapter.

Identifier Description
Gout
RheumatoidArthritis
Osteoarthritis
AMD Age Related Macular Degeneration
Diverticular Disease
Coeliac Disease
Hypertension
Cholelithiasis
Hypercholesterolaemia
Breast Cancer
Incontinence
Psoriasis
Acne
Cold Sores
Glaucoma
Cataract
COPD Chronic Obstructive Pulmonary Disease (Chronic Bronchitis,

Chronic Obstructive Pulmonary Disease, and Emphysema)
Allergy (Respiratory) Cats, Dogs, Dust Mites, Pollen and Mould or Mildew
Allergy (Ingested) Nuts, Penicillin, Fish, Shellfish, Alcohol and Fruits
Allergy (Skin) Metals and Latex or Rubber
Fracture Risk
IHD Ischaemic Heart Disease (Coronary Heart Disease, Myocardial

Infarction, Angina and Ischemia)
AF Atrial Fibrillation
T2DM Type 2 Diabetes
Depression
Asthma
Eczema
Anxiety
Constipation
Hypothyroidism
Hyperthyroidism
Recurrent UTI Recurrent Urinary Tract Infections
IBS Irritable Bowel Syndrome
Venous Thrombosis
Epilepsy
Hearing loss
Migraine
IBD Inflammatory Bowel Disease
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Table 6.2: The 51 commonmedications (>1% of TwinsUK) considered in this chapter.

Identifier Description
Inhaler - SABA Inhaler - Beta Agonist - Short-Acting Beta Agonists
Inhaler - LABA Inhaler - Beta Agonist - Long-Acting Beta Agonists
Inhaler - Steroid Inhaler - Steroid
Inhaler - Anticholinergic Inhaler - Anticholinergic
SSRI Oral - Antidepressant - Selective serotonin reuptake inhibitor
Levothyroxine Oral - Thyroid Hormone - Levothyroxine
Triptan Oral - Triptan
Bisphosphonate Oral - Bisphosphonate
Paracetamol Oral - Analgesic - Paracetamol
Opioid Oral - Analgesic - Opiod
Statin Oral - Statin
Topical - HRT Topical - Hormone replacement therapy
Calcium Oral - Calcium
Cholecalciferol Oral - Cholecalciferol
PPI Oral - Antacid - Proton Pump Inhibitor
H1 Inhibitor Oral - Antihistamine - H1 Inhibitor
Quinine Oral - Antimalarial - Quinine
Antispasmodic Oral - Antispasmodic
Prescr. Antibiotic Oral - Antibiotic - Prescription
Contraceptive Oral - Contraceptive
Beta Blocker Oral - Antihypertensive - Beta Blocker
ACEi Oral - Antihypertensive - Angiotensin-converting-enzyme

inhibitor
Coumarin Oral - Anticoagulant - Coumarin
GABAergic Oral - Analgesic - Gamma-aminobutyric acid system modulator
Thiazide Oral - Diuretic - Thiazide
Sartan Oral - Antihypertensive - Sartan
Thyroxine Oral - Thyroid Hormone - Thyroxine
Topical - Steroid Topical - Steroid
Steroid Oral - Steroid
HRT Oral - Hormone replacement therapy
TCA Oral - Antidepressant - Tricyclic
CCB Oral - Antihypertensive - Calcium Channel Blocker
Anticholinergic Oral - Anticholinergic
Aspirin Oral - Antiplatelet - Aspirin
Topical - NSAID Topical - Analgesic - Non-steroidal anti-inflammatory
Benzodiazepine Oral - Hypnotic - Benzodiazepine
Clopidogrel Oral - Antiplatelet - Clopidogrel
Laxative Oral - Laxative
Aromatase Inhibitor Oral - Hormone Treatment - Aromatase Inhibitor
Metformin Oral - Anti-diabetic - Metformin
Methotrexate Oral - Immunosuppressant - Methotrexate
Folic Acid Oral - Folic Acid
Iron Oral - Iron
Alginate Oral - Antacid - Alginate
H2 Antagonist Oral - Antacid - H2 Antagonist
Loop Oral - Diuretic - Loop
Alpha Blocker Oral - Antihypertensive - Alpha Blocker
Vitamin B12 Oral - Vitamin - B12
Injection - Insulin Injection - Anti-diabetic - Insulin
Glaucoma Eye Drop Topical - Glaucoma Eye Drop
Aminosalicylate Oral - Aminosalicylate
Prev. Month Antibiotic Oral - Antibiotic - Within one month prior to faecal sample
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Figure 6.1: Scree plot showing the percentage variation explained by each axis in PCoA of the weighted
and unweighted UniFrac distances for all twins in the analysis. The first 6 were considered for later
analyses, from both the weighted and unweighted UniFrac PCoAs, as the variance explained plateaued
at this point.

These reads were then de novo clustered toOTUs using SUMACLUSTwith a 97% similarity
threshold, following the optimal method described in Chapter 5.

In brief, de novo chimera identification and removal was carried out per sample using
UCHIME (Edgar et al. 2011). Remaining reads were then collapsed to OTUs via de novo
clusteringwith SUMACLUSTusingQIIMEversion 1.9.0 (Mercier et al. 2013; Navas-Molina
et al. 2013). OTU taxonomy was assigned by matching representative sequences against
the Greengenes v8_13 database using UCLUST in QIIME (DeSantis et al. 2006).

Taxonomic abundances were generated by collapsing OTU counts at all taxonomic levels,
followed by conversion to log transformed relative abundances. Three different alpha diver-
sity metrics, namely the Shannon index, phylogenetic diversity, and raw OTU counts, were
calculated using QIIME. Beta diversity was quantified in both weighted and unweighted
UniFrac metrics, and principal coordinate analysis (PCoA) of the beta distances was car-
ried out using the vegan package in R (Oksanen et al. 2016). The first 6 axes from each of
these PCoAs were chosen to represent beta diversity (Figure 6.1).

6.2.3 Greedy selection of marker traits

As a first step to reduce the dimensionality of themicrobiota data a limited selection of traits
were chosen for consideration. The three alpha diversity measures, the 12 beta diversity
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Figure 6.2: Graphical example of the approach used to select marker traits in the gut microbiota. Each
node represents a microbiota trait (alpha diversity, beta diversity PC, family, or class abundance) and
edges where the Spearman correlation between them is >0.8. Black circles indicate which would be the
marker traits and the traits they represent are coloured similarly. Numbers show the order that they are
selected. The most connected trait becomes the first marker and all connected nodes are then ignored.
This is carried out iteratively until a marker set remains that represents all nodes. In the case of a tie a
node is selected at random.

axes, and all collapsed bacterial classes and families with complete taxonomic assignment
were chosen as the 206 initial traits representing the microbiota. A novel heuristic ap-
proach was then used to select a more limited set of microbiota markers from this set.
Spearman correlations were calculated pairwise between the traits and the correlations
used to generate an adjacency matrix, in which nodes represented traits and correlations
>0.8 represented an edge between them. A graphical representation of the adjacencymatrix
was then used for greedy selection of representative markers.

Nodes were sorted by degree and the one with highest degree was chosen as a marker trait
(selecting at random in the case of a tie). The marker and all connected nodes were then
removed from the network and the process repeated until a final set of marker traits was
found. This resulted in a set of markers whereby every one of the original 206 traits had
a correlation of >0.8 to at least one marker. An example of the approach is visualised in
Figure 6.2. After running this selection on the 206 initial microbiota traits considered, a
final set of 68 marker traits, containing both alpha and beta diversity measures and class
and family abundances, was selected (Table D.1).

6.2.4 Regression analyses

The microbiota marker traits were modelled as responses in mixed effects models with
technical and biological confounders including: who extracted the DNA, how the sample
was collected, sample sequencing run, sequencing depth, gender, family structure, age, and
BMI. The residuals of the variance in the microbiota traits from these models were then
used in downstream analyses.
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To identify associations between disorders and the microbiota markers, logistic regressions
were carried out with disorder status as the dependent variable and the residuals of micro-
bial marker traits as independent variables. This was carried out for all combinations and
p-values were FDR corrected to account for multiple testing using the p.adjust command
in R. The same approach was also used to investigate drug-microbiome associations. The
disorder association analyses were also repeated with residuals created without adjusting
for BMI to determine disorder associations additionally considering obesity.

6.2.5 InferenceofaBayesiannetworkbetweendisorders, druguse,

andmicrobiomemarker traits

In an attempt to delineate the drug and disease associations with the gut microbiota, I used
the CGBayesNet package to infer a Bayesian network structure underlying the microbiome,
disorder, and drug use data (McGeachie, Chang, and Weiss 2014). This package was se-
lected as it is designed to incorporate a mix of discrete and continuous variables. As the
method requires complete data I selected only individuals who had completed the drug use
questionnaire, and assumed that all unknown statuses in the disorder table were negative
cases. The residual variances after adjusting for technical and biological covariates were
used to represent microbiota marker traits. The command FullBNLearn was used to infer
the network using an exhaustive approach whereby iteratively, starting from an empty net-
work, the most likely edge addition or removal is carried out until the posterior likelihood
of the network cannot be improved. The algorithm was run using a prior sample size of
10, a prior variance of 1, and allowing a maximum of 3 parents per node. These parame-
ters were described previously in a study using Bayesian networks to predict longitudinal
dynamics in the infant gut microbiome (McGeachie et al. 2016). The resultant graph was
visualised using Gephi (Bastian, Heymann, and Jacomy 2009).

6.2.6 Clustering of microbiome traits by disorder associations

The beta coefficients of association between the disorders and microbiome traits were
filtered to retain only those from nominally significant associations (non-significant associ-
ation beta coefficients were changed to 0). Microbiome traits and disorders without any sig-
nificant associations were removed. Distance matrices between disorders and between mi-
crobial traits were derived from the beta coefficientmatrix using cosine similarity, as it is less
influenced by the sparsity resulting from zeroes of non-significant associations. Complete-
linkage hierarchical clustering was used to cluster the disorders and microbial traits from
the distance matrices, and the resultant clustering visualised as a heatmap. The signifi-
cance of the resulting microbiome trait clusters was determined by multi-scale bootstrap
clustering with 10000 iterations using the pvclust package in R (Suzuki and Shimodaira
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2015).

6.2.7 Calculating the HMI andMDI

Following the heatmap clustering I defined an index comparing the ratio of health and
disorder associated taxa in the gut microbiome samples. The healthy microbiome index
(HMI) was based on a related index defined by Gevers et al. - the microbial dysbiosis
index (MDI) (Gevers et al. 2014). The HMI and MDI were calculated from counts at the
family level as this is the finest taxonomic resolution in the definition of both. Counts
were summed into either the numerator or denominator groups within each index based
on the familial definitions. Where a higher-level taxonomy was defined, for instance the
classes in the HMI, every family within the higher taxa was included into the parent group.
In the case where a family and its parent class were assigned to different groups, family
assignments overruled class and the counts were added to the family level group. All taxa
not in the group definitions were ignored.

6.2.8 Index associations with TwinsUKmicrobiota and health

To assess the ability of the HMI, MDI, and Shannon diversity to represent wide-scale mi-
crobiota composition in TwinsUK, I carried out PERMANOVA analysis using the adonis
function within the vegan package in R (Oksanen et al. 2016). This was used to determine
the association between the indices and both the weighted and unweighted UniFrac beta
diversity measures between all samples. This was carried out using 1000 permutations to
calculate pseudo p-values and estimate the significance of the associations.

To assess index associations with host health, the HMI, MDI and Shannon diversity were
compared by their association with the frailty and number of disorders of individuals.
Frailty was quantified using the Rockwood frailty index as described in Chapter 3. Both
frailty and number of disorders followed a gamma distribution and were root normalised.
The association between indices and health measures and Shannon diversity was assessed
using linear regression.

6.2.9 Optimising the HMI

To optimise the HMI I used the glmnet package in R to perform Lasso variable selection,
modelling the ability of all the marker families (and all the families within marker classes)
to predict the full HMI. This identified a subset of families that significantly predicted
the HMI. Using only this subset I generated an optimized HMI and compared it to the
full index using Pearson correlation. The association of the optimised HMI with the root
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normalised frailty index and number of disorders was assessed using linear regression as
for the full index.

6.2.10 Replication datasets

Three publicly available 16S rRNA gene sequencing data sets were obtained for replication
of the HMI. These were from faecal swabs from the American Gut cohort, a healthy popu-
lation based cohort containing a participants from around the world but largely from the
United States (The American Gut Project); the data from a study of paediatric IBD patients
that utilised ileal bowel biopsies, chosen as it was used to define the MDI (Gevers et al.
2014); and data from a bowel cancer study that was selected to include a novel disease
(Baxter et al. 2016).

American Gut

TheAmerican gut cohort datawas obtained from the public FTP (ftp://ftp.microbio.me/Amer-
icanGut) in the form of a pre-madeOTU table and pre-calculatedweighted and unweighted
UniFrac distances (The American Gut Project). The OTU table was subset to samples that
were listed within the faecal UniFrac table (which contained 6108 samples at the time of
access) and with at least one data point in the three diseases considered (IBS, IBD, and
diabetes), producing a final set of 5494 samples. This table was rarefied to 10,000 reads
per sample prior to collapsing to family counts. The HMI and MDI were calculated as for
TwinsUK. Shannon diversity was assessed using the alpha_diversity.py script withinQIIME.
Metadata relating to well defined diseases was selected from the large public mapping file.
The PCoA axes for beta diversity plots were generated from UniFrac tables as for TwinsUK.

Gevers et al.

16S rRNA gene sequencing data from the Gevers et al. paper was downloaded from the
QIITA repository (Study ID:1998) (Gevers et al. 2014). This was in the form of a closed
reference OTU table created against the Greengenes reference and contained 1359 samples.
This was subset discarding faecal samples to only retain biopsies and rarefied to a depth of
10,000 reads per sample producing a final set of 836 biopsy samples used for beta diversity
analyses. This OTU table was collapsed to family counts and the indices generated as before.
The appropriate Greengenes (v13_8) phylogeny was used to generate UniFrac distances,
which were in turn used to generate beta diversity axes. Shannon diversity was assessed
using the alpha_diversity.py script in QIIME. Disease metadata was also obtained from
QIITA.
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Baxter et al.

Data for the 490 samples in the Baxter et al. study were obtained from the European Nu-
cleotide Archive (Study ID:PRJNA290926) (Baxter et al. 2016). Reads were collapsed to
OTUs using close reference clustering using UCLUST within QIIME against the Green-
genes reference database and rarefied to 10,000 reads per sample. Where multiple sequenc-
ing runs were available for a sample, only one was retained leading to the exclusion of 7
samples whose runs contained less than 10,000 observations. Family counts were gener-
ated from the OTU table allowing calculation of the HMI and MDI. Shannon diversity
and UniFrac beta diversity distances were calculated as for the Gevers et al. data, again
generating PCoA axes for plotting.

6.2.11 Index associations in replication data

Associations between the HMI, MDI and Shannon diversity index and disease states in
replication datasets was assessed using one-tailed Mann-Whitney U-tests to determine if
the healthier individuals were significantly higher scoring. In the American Gut dataset
cases and controls in the comparisons were selected from the disease columns where ‘I do
not have this condition’ was considered control and ‘Diagnosed by a medical professional
(doctor, physician assistant)’ was considered a case, other samples were ignored on a per
disease basis. In the case of the Gevers et al. data only the 482 ileal biopsy samples were
considered in the disease comparisons. This limited the comparisons to one sample per
person, maximised sample size (as it was the most sampled site), and was the tissue used
in the original publication to define the MDI (Gevers et al. 2014). In the Baxter et al.
study, accompanying metadata was used to classify disease status with samples listed as
‘normal’ and ‘high risk normal’ being considered healthy controls, and those with ‘adenoma’,
‘advanced adenoma’, and ‘cancer’ being considered disease cases. Plots of the first two axes
of both theweighted and unweighted beta diversity PCoAswere coloured by theHMI,MDI,
and Shannon indices for all data sets. PERMANOVA was used to assess the association
between UniFrac measures and the HMI, MDI and Shannon diversity for all datasets as for
TwinsUK.

6.2.12 Host influences on the HMI

Heritability

Heritability of the HMI was established using the mets package in R (Scheike, Holst, and
Hjelmborg 2013). Heritability of the indexwasmodelled fitting E, CE,AE, andACEmodels;
all adjusting for age, BMI, gender, and technical confounders including collection method
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and sequencing depth. The best fitting model was that which had the lowest Akaike infor-
mation criterion.

Discordant Twins

Discordant twin pairs for the root transformed frailty index and number of disorders were
identified - where one twin scored higher than the mean of all individuals, the other scored
lower, and the difference between the twins was at least twice the standard deviation across
all samples. A one-tailed Wilcoxon signed-rank test was then used to establish if the health-
ier twins had significantly higher HMI scores.

Longitudinal Samples

Samples at two time points were available for a subset of twins. Individuals whose samples
were at least 3 years apart were selected and HMI scores were generated for both samples as
described previously. Pearson correlation was used to compare earlier and later time points
within individuals, and an overall reduction in HMI score over time was investigated using
a one-tailed Wilcoxon signed-rank test.

Diet

Weekly dietary nutrient intakes were estimated in the cohort from food frequency ques-
tionnaires, where twins provide a self-reported estimation of how often, on average, they
consumed a specified amount of food over a year (Teucher et al. 2007). The association
between dietary components and the HMI was determined using mixed effects models
with weekly nutrient intake as the response, and age and zygosity as fixed covariates, and
gender and technical variables (sequencing run, individual who loaded extraction plate, in-
dividual who extracted sample, and collection method) as random effects. Multiple testing
was accounted for using FDR correction of p-values.

6.2.13 Metagenomic andmetabolomic enrichment analysis

Metagenomic Pathways

Shotgun sequencing and metagenomic analysis had been carried out from the same stool
samples as the 16S rRNA gene sequencing for a subset of 218 individuals by collaborators
at the BGI. The DNA extraction, sequencing, and analysis of this metagenomic data is
described in Section 2.3.1 (Xie et al. 2016). KEGG gene ontology annotations generated
by the previous analysis were converted to relative abundances and log transformed, dis-
carding KEGG Ortholog (KO) entries found in less than 25% of the original metagenomics
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samples. Linear regression was then used to gauge associations between the HMI and log
transformed relative abundances of each KO entry, including age and BMI as covariates.
TheKEGGRESTAPIwas used to obtainmember pathways for each of theKOentries. Gene
set enrichment analysis was carried out based on the KOs’ beta coefficients with the HMI
to identify enriched KEGG pathways, using the piano package in R (Väremo, Nielsen, and
Nookaew 2013). Similar metagenomic pathway enrichment analyses were also carried out
for the frailty index and number of disorders an individual reported (both measures root
transformed). Enrichment was considered significant where multiple-testing corrected
p<0.05.

Faecal Metabolite Groups

Faecalmetabolomics profiling (Section 2.3.2)was available for a subset of 685 faecal samples
with gut microbiota profiles. Similarly, to the metagenomic analysis, linear regression was
used to identify associations between individual metabolites and the HMI. Enrichment
for super groups of metabolites was then investigated as for metagenomic pathways using
gene set enrichment analysis as before. Faecal metabolite enrichment analysis was carried
out against the HMI, the frailty index (n=527) and number of disorders individuals had
reported.

6.3 Results

6.3.1 Common disorders andmedications in TwinsUK

Self-reported status for 38 common health disorders was assessed for 2737 individuals
with gut microbiota profiles within the TwinsUK cohort (Table 6.1 and Figure 6.3 A & B).
These included GI, autoimmune, and neurological disorders amongst others. Within the
study population 96% reported affliction with at least one disorder (median 4, range 0-17),
reflecting the elderly nature of the cohort. Correlation between disorders was generally low
(Figure 6.3C) with some expected exceptions. For example, allergy correlated with eczema
and asthma, consistent with the concept of atopy; and there was clustering of a group of
disorders related to metabolic syndrome including hypercholesterolemia, ischaemic heart
disease, hypertension, and T2D.

Self-reportedmedication usewas available for 1724 individuals for 51 commondrug-classes
and antibiotic use within the month prior to sample collection was recorded for 2030 indi-
viduals (Table 6.2 and Figure 6.4 A & B ). Where data was available, individuals reported
a median use of 2 medications (range 0-21). Similarly to diseases, the overall correlations
across medications were modest, with some predictable exceptions, such as calcium and
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Figure 6.3: Summary of the common disorders considered in this analysis. A) The numbers of afflicted
and unafflicted individuals for each disorder. Unknown represents missing data. B) The mean and 95%
confidence intervals for BMI and age within the cases of each disorder. Overall means shown in red.
C) Heatmap showing the correlation between disorder occurrence. The Phi coefficient is equivalent to
Pearson’s coefficient for binary variables.
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Figure 6.4: Summary of the commonmedications used in the cohort and considered in this analysis. A)
The numbers of users andnon-users for eachmedication. Unknown representsmissingdata. B)Themean
and 95% confidence intervals for BMI and age within the users of eachmedication. Overall means shown
in red. C) Heatmap showing the correlation between use of different medications. The Phi coefficient is
equivalent to Pearson’s coefficient for binary variables.

cholecalciferol that are commonly used in combination to treat conditions such as osteo-
porosis (Φ=0.97) (Figure 6.4C).

6.3.2 Disorder and drug associations with marker traits in the gut

microbiome

Identifyingmarker traits

Gutmicrobiota profileswere generated from16S rRNAgene sequencing using SUMACLUST
as described in Chapter 5. To reduce the statistical burden of multiple testing associated
with assessing numerous traits in one study, I used a heuristic approach to select a subset of
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marker features for microbiota analyses (Figure 6.2). This approach identified 68 marker
traits that represented wider microbiota composition. The final set included Shannon and
phylogenetic diversity measures of alpha diversity, most of the beta diversity principal co-
ordinate axes (from the first 6 axes of PCoA using both weighted and unweighted UniFrac
distances), and a range of taxonomic abundance summaries from both the family and class
level (Table D.1).

Disorder associations

Association analyses between disorder status and microbiome markers, correcting for age
and body mass index (BMI), identified nominally significant associations (p<0.05) for
almost all disorders (Figure 6.5A and Table D.2). Ingested allergy status had the most asso-
ciations, followed by inflammatory bowel disease (IBD) and type-2 diabetes (T2D). After
false discovery (FDR) correction (5%), 17 disorders retained at least one significant asso-
ciation. As the number of cases determines the power to detect associations, I compared
the number of microbiome associations relative to the number of disorder cases (Figure
6.6A). T2D, IBD, constipation, recurrent cystitis, and coeliac disease had relatively more
associations than more common disorders, suggesting a stronger association with the gut
microbiome.

From the microbiota marker traits, principal co-ordinate axes derived from beta diver-
sity measures had the most associations with disorders (Figure 6.5B). Alpha diversity had
exclusively negative associations with several disorders, in concordance with the reduced
diversity observedwith frailty in Chapter 3 andmultiple reports of reduced gutmicrobiome
diversity with chronic conditions such as IBD and T2D (Gevers et al. 2014; Qin et al. 2012).

Obesity was omitted in these analyses as I wanted to determine effects independent of BMI,
which has been comprehensively studied in relation to the gut microbiota (Goodrich et al.
2014b; Turnbaugh et al. 2006). However, for comparison, repeating the analysis without
adjustment for BMI, obesity (BMI >30) had the most (n=27) FDR significant associations
of all the conditions (Figure D.2).

Drug associations

There were nominally significant associations with microbial markers for 51 of the 52
drugs, and 19 had at least one association after FDR adjustment (Figure 6.5C and Table
D.3). Comparing the number of observed associations with the number of medication
users (Figure 6.6B), antibiotics, anticholinergic inhalers, SSRIs, paracetamol, and opioids
had proportionally more associations. As for diseases, most of the microbiota associations
with drugs were with beta diversity principal components and alpha diversity measures
(Figure 6.5D).
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Figure 6.5: Associations between diseases and drugs and the microbiota markers. The number of nomi-
nally and FDR significant associations observed with the microbiota marker traits and each disorder (A)
and use of each drug (C). B and D show the number of associations with each microbiota marker trait
across all the disorders and drugs considered respectively.
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Figure 6.6: Number of cases compared to the number of associations observed. The number of nominally significant associations observed across all microbiota marker traits
plotted against the number of cases/users for disorders (A) and drug use (B).119



6.3.3 Delineating disorder-drug effects

An often-overlooked challenge in observational studies is the delineation of association
specificity to either a disorder or its treatment. To attempt to address this, I inferred a
Bayesian network of the statistical dependencies between each disorder, drug, and micro-
bial trait (Figure 6.7). In the subset of 1724 individuals with complete data, there were
272 conditional dependencies (Table D.4), 38% of them between microbial features, 8%
between disorders, 20% between drugs, and 22% between disorders and drugs. There
were 15 instances where a microbial trait was statistically dependent on disorder status,
independently of medications and other disorders. Five of these associations replicated
nominally significant associations in the previous pairwise association analyses and two,
Constipation-Methanobacteria and Diverticular Disease-Pseudomonadaceae, were previ-
ously significant after FDR 5% adjustment. There were 17 instances of microbial features
dependent on drug use, five were previously observed as nominally significant associa-
tions and three as FDR significant: PPI-Streptococacceae, Metformin-Clostridiaceae, and
Aromatase Inhibitors-Enterococcaceae.
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6.3.4 Defining a health-associated gut microbiome

To capitalise on the comparability of the association results, I compared the direction
of the significant associations between them. Unsupervised clustering of the 68 micro-
bial markers by their coefficients of association with diseases identified two clusters, in
which the marker traits were generally either positively or negatively significantly associ-
ated with more than one disorder (Figure 6.8A). Bootstrap evaluation of clustering con-
firmed the significance of the clusters (p<0.05), which I use to classify the markers into
two groups: disorder-associated (cluster one: higher abundance associated with disorders)
and health-associated (cluster two: lower abundance associated with disorders). Beta di-
versity principal co-ordinate axes were distributed between the two groups, while alpha
diversity measures were all health-associated. Within taxa, classes that also had markers at
the family level displayed consistent groupings (Figure 6.8B). The exception was Clostridia,
a health-associated class that encompassed marker families associated with both health
and disorders - in keeping with common assent that Clostridia is a polyphyletic taxon.
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Figure 6.8: Defining a universal health-associated gut microbiome. a) Hierarchical clustering of microbiota marker traits by beta coefficients from nominally significant disorder
associations. Beta of non-significant associations were assigned 0 and hence coloured white. Complete hierarchical clustering of cosine distances between both microbiome traits
and disorders was used to generate the heat map shown. Bootstrap clustering of microbiome traits identified two significant clusters highlighted in the left dendrogram. These
are used to define the health and disorder associated traits. b) Taxonomic plot of all families with complete taxonomic assignment observed in the cohort. Marker families used
to define the HMI are coloured by their health/disorder associated grouping. Marker classes are also highlighted around the periphery. Tree structure is based on taxonomic not
phylogenetic relationships.123



6.3.5 The health-associatedmicrobiome index (HMI)

Based on the groupings of microbial families and classes in Figure 6.8, I defined a health-
associated gutmicrobiome as onewith a higher abundance of health-associated taxa relative
to disorder-associated; and quantified this in a single score following the approach ofGevers
et al., who defined the Microbial Dysbiosis index (MDI) to compare bacteria differentially
associated with Crohn’s disease (Gevers et al. 2014). This score is the log10 of the ratio of
health-associated to disorder-associated taxa, which I have termed the Health-associated
Microbiome Index (HMI). Of the ten taxa comprising the MDI, six were also included in
the HMI and all had consistent direction of association.

HMI associations with beta diversity and host health

I used PERMANOVA to compare the ability of the HMI, MDI and the Shannon diversity
index to represent wide-scale microbiota composition within TwinsUK (Table 6.3 & Figure
6.9). All three significantly associated with compositional distances as measured by both
the weighted and unweighed UniFrac distance. However, the HMI represented a larger
proportion of the variance than both the MDI and Shannon diversity in the weighted
measure. The variance explained by theHMIwas on parwith Shannondiversitywhen using
the unweightedUniFracmeasure. Comparing the indices association with healthmeasures,
the HMI also associated more strongly than the MDI with the number of disorders an
individual reported and with their frailty level (Figure 6.10).

Table 6.3: PERMANOVA results for index associations with UniFrac measures in TwinsUK. All associations
were significant (p=0.0009, minimum in 1000 permutations).

Index UniFrac Measure R2

HMI Unweigthed 0.02027

HMI Weighted 0.14276

MDI Unweigthed 0.00354

MDI Weighted 0.02475

Shannon Unweigthed 0.02622

Shannon Weighted 0.06035
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Figure 6.9: Beta diversity plots showing the first two axes from PCoA analyses using the weighted UniFrac metric across the 2737 samples in TwinsUK. Plots are coloured based
on the HMI, MDI, or Shannon diversity. On the Shannon plot there is additional colouring by Prevotella abundance (red circles), highlighting the out group of individuals with low
diversity whose microbiota are dominated by Prevotella.

125



HMI and alpha diversity

TheHMIwas also positively correlatedwith alpha diversity (Figure 6.10). However, a subset
of samples had a high HMI but low diversity and were characterised by a high abundance
of taxa from the genus Prevotella (Figure 6.9 and 6.10) . Within TwinsUK, Prevotella rich
individuals had a significantly lower frailty index and number of disorders than other
members of the cohort (p<0.001 in Mann-Whitney U tests)(Figure 6.11). The Prevotella
dominant microbiome therefore represents a healthy but low diversity state countering the
typical trend across other samples in this dataset. The HMI more accurately represented
health status than Shannon diversity within the Prevotella rich subset.

An optimised HMI

Lasso variable selection was used to identify a minimal set of microbiota marker families
required to define the HMI. This found 17 health and 8 disorder-associated families that
independently contribute to the index (Table 6.4). An optimised index created only using
this subset was highly correlated with the full HMI (r=0.99). The families dropped from the
full HMI had significantly lower abundance in the cohort (Mann-Whitney U test, p<0.001),
and hence little influence on the index. There was no significant difference between the
abundances of the health-associated and disorder associated families in the optimisedHMI
(Mann-Whitney U test, p=0.34), suggesting the HMI is not simply quantifying the ratio
of rare to abundant taxa. The optimised HMI retained significant associations in linear
regressions with number of disorders (p<0.001) and frailty (p<0.001) of an individual, as
expected given the high correlation with the full index. The families within this optimised
index are therefore sufficient to recapitulate the HMI.

6.3.6 The robustness of the HMI

The HMI was strongly associated with microbiota composition and host health within
TwinsUK.However, thismight be expected given it was definedwithin the cohort and could
be the result of over fitting the data. To determine the robustness of the HMI I calculated
it within three independent disease datasets and again contrasted its associations with
the MDI and Shannon indices. I examined the indices associations with IBD (cases=157,
controls=4837), IBS (cases=440, controls=2475), and diabetes (cases=69, controls=5142)
from a wider set of 5494 faecal samples from the American Gut cohort (The American Gut
Project); colon cancer (cases=313, controls=170) in 483 faecal samples from a study by
Baxter et al. (Baxter et al. 2016); and IBD status in 482 ileal biopsy samples (cases=329,
controls=153) from a wider set of 836 biopsies from several sites along the GI tract as
described by Gevers et al. (Gevers et al. 2014).
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Table 6.4: The familial marker traits used to define the optimised HMI. Lasso variable selection was used
to identify the most significant predictors of the full HMI from all the family level markers and all the
families within the class level markers. Shown are the features Greengenes taxonomic assignment and
their health/disorder classification.

Association
Group

Greengenes Family Assignment

Health k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Bifidobacteriales;f__Bifidobacteriaceae

Health k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Prevotellaceae

Health k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Rikenellaceae

Health k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__S24-7

Health k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__[Barnesiellaceae]

Health k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__[Odoribacteraceae]

Health k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__[Paraprevotellaceae]

Health k__Bacteria;p__Firmicutes;c__Clostridia;Other;Other

Health k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;Other

Health k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__

Health k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Christensenellaceae

Health k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptococcaceae

Health k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae

Health k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae

Health k__Bacteria;p__Lentisphaerae;c__[Lentisphaeria];o__Victivallales;f__Victivallaceae

Health k__Bacteria;p__Tenericutes;c__Mollicutes;o__RF39;f__

Health k__Bacteria;p__Verrucomicrobia;c__Verrucomicrobiae;o__Verrucomicrobiales;f__Verru-
comicrobiaceae

Disorder k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae

Disorder k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Porphyromonadaceae

Disorder k__Bacteria;p__Cyanobacteria;c__Chloroplast;o__Streptophyta;f__

Disorder k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae

Disorder k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae

Disorder k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae

Disorder k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enter-
obacteriaceae

Disorder k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurel-
laceae
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Figure 6.10: Plots showing the association between the HMI, MDI, and Shannon indices, with the number
of disorders and frailty of an individual and the Shannon diversity of their gut microbiota. Shown are the
beta coefficients and p-values for their associations as determined using linear regression. In the HMI
and Shannon plot, the Prevotella rich group are highlighted as for Figure 6.9.

Robust HMI-health associations

The HMI was consistently significantly higher in healthy individuals in all cases except
the colonic cancer study (Figure 6.12A). Shannon diversity was significantly higher in
healthy individuals in the IBD and IBS comparisons, but not the diabetes and colonic
cancer comparisons. The MDI was higher in healthy individuals in all cases except the
colonic cancer study and the American Gut IBD comparison. The HMI did not have the
largest difference between means in the index-disease comparisons. For instance, the MDI
was most disparate between cases and controls in the Gevers et al. ileal IBD dataset, within
which it was defined, and the Shannon index had the largest difference in the American Gut
IBD comparison. However, the HMIwas themost consistent index, producing a significant
difference in the expected direction across all the comparisons except in the Baxter et al.
data.
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Figure 6.11: TwinsUK members with a Prevotella rich microbiome have low diversity but are significantly
healthier. The top plot shows the cut-off used to divide samples as Prevotella dominant, it was selected
as it encompassed the main out-grouping on the beta diversity plot. Below, Mann-Whitney U tests
comparing the frailty, number of disorders and age differences between the two groups (*** = p<0.001).

129



Figure 6.12: Health and wide-scale microbiota composition associations of the HMI replicate in external datasets. A) Comparison of the HMI, MDI and Shannon index between the
health and diseased state in 5 disorders from 3 publically available data sets. American Gut - IBD (157, 4837), IBS (440,2475), Diabetes (69,5142); Gevers et al. (329,153); Baxter et
al. (313,170) (no. cases, no. controls). ***=p<0.001, **=p<0.01, *=p<0.05 in one-tailed Mann-Whitney U tests. B) PCoA plots from weighted UniFrac beta diversity measures from
three public data sets colored by the HMI, MDI, and Shannon index demonstrates the compositional representation of the HMI across all three. American Gut (n=5494), Gevers et al.
(n=836), and Baxter et al. (n=483).
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Consistent HMI associations with beta diversity

Principal coordinate plots of the beta diversity within these studies (Figure 6.12B), showed
that the MDI could summarise overall microbiome composition well in the Gevers et al.
and American Gut data, but less so in the TwinsUK (Figure 6.9) and Baxter sets; whilst the
HMImatched compositional patterns well in all four studies. These results were reflected in
PERMANOVA analyses of the HMI, MDI, and Shannon index associations with UniFrac
distances in these datasets (Table 6.5). In all but the Gevers et al. dataset, in which the MDI
was defined, the HMI explained more variance than the MDI in both the weighted and
unweighted UniFrac distances. The HMI explained more variance than Shannon diversity
in all the weighted comparisons except within the Baxter et al. dataset. Although in all
comparisons, theHMI and Shannon diversity indices explained a comparable proportion of
the UniFrac variance. These results show that the HMI is a robust index that can be used to
represent wide-scale microbiota composition with a directional association to host-health
across multiple populations.

Table 6.5: PERMANOVA results for index associations with UniFrac measures in replication datasets. All
associations were significant (p=0.0009, minimum in 1000 permutations).

Index Dataset UniFrac Measure R2

HMI American Gut Unweigthed 0.031

HMI American Gut Weighted 0.132

MDI American Gut Unweigthed 0.013

MDI American Gut Weighted 0.048

Shannon American Gut Unweigthed 0.045

Shannon American Gut Weighted 0.113

HMI Gevers et al. Unweigthed 0.055

HMI Gevers et al. Weighted 0.219

MDI Gevers et al. Unweigthed 0.054

MDI Gevers et al. Weighted 0.387

Shannon Gevers et al. Unweigthed 0.065

Shannon Gevers et al. Weighted 0.202

HMI Baxter et al. Unweigthed 0.037

HMI Baxter et al. Weighted 0.064

MDI Baxter et al. Unweigthed 0.010

MDI Baxter et al. Weighted 0.059

Shannon Baxter et al. Unweigthed 0.055

Shannon Baxter et al. Weighted 0.075

6.3.7 Host influences on the health-associated gut microbiome

To demonstrate the utility of the HMI, I used it to investigate host factors that determine a
proclivity to a more health or disorder-associated gut microbiome.
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Gender

There was no significant difference in the HMI by gender in TwinsUK (Mann-Whitney U
test, p=0.15), Baxter et al. (p=0.28), or Gevers et al. (p=0.08) data. In the larger American
Gut cohort, we observed a small but significantly higher HMI score in males relative to
females (p=0.001).

Genetics and environmental influences on the HMI

Using the twin structure of the TwinsUK cohort, I estimated the genetic influence (her-
itability) of the index. The best fitting model (AE) attributed 34% (95% CI=29-39%) of
HMI variance to additive genetic effects, which is a high heritability relative to other mi-
crobiome measures (Goodrich et al. 2014b). Extending the twin analysis, I compared the
HMI between twin pairs discordant for both frailty (n=47) and number of disorders (n=53).
Less healthy twins scored significantly lower in both cases (Figure 6.13A), suggesting an
association with health independent of genetic effects. This is consistent with evidence that
the gut microbiome is determined by both genetic and environmental factors (Consortium
2012; Goodrich et al. 2014b). Longitudinal stool samples were collected at two time points
(either 3 or 4 years apart) for 349 individuals (Figure 6.13B). The earlier HMI score was
significantly correlated with the later (r=0.35, p<0.001) and later time points were signif-
icantly lower scoring than their earlier counterparts (p<0.001), which might be expected
assuming a decline in health with age.
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Figure 6.13: Using the HMI to identify host influences on, and functional properties of, the health-associated microbiome. a) Comparison of HMI scores in twin pairs discordant
for frailty and number of disorders. *=p<0.05 in one-tailedWilcox signed rank tests. b) Left, correlation between HMI scores of two samples from the same individuals at least 3
years apart. Right, HMI scores of later samples are significantly lower than in earlier samples. ***= p<0.001 in one-tailedWilcox signed-rank test. c) Significant results (FDR adjusted
p<0.05) in enrichment analysis for both metagenomic pathways and faecal metabolite groups with the HMI score, frailty, and number of disorders. A positive enrichment means
the genes/metabolites are enriched with a higher HMI, a negative enrichment with a lower HMI. A higher HMI score is associated with health, whereas a higher frailty index score,
or number of disorders indicates poor health.
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Dietary associations with the HMI

Diet can influence both host health and the gut microbiome (Wu et al. 2011; Zhernakova
et al. 2016). The association between the HMI and estimated weekly intake of macronutri-
ents (fat, carbohydrates, protein, and fibre) was assessed in a subset of 2006 twins. Fibre
intake was found to have a small, but significant positive association with the HMI (β=0.08,
p=0.001), and remained the only significant association repeating the analysis at a higher
resolution separating the macro-nutrients into subsets of specific sugars and fats (Table
6.6).

Table 6.6: Results of association analyses betweendietary nutrient intakes and theHMIusing twodifferent
nutrient summary levels.

Weekly macronutrient intake β p FDR Adjusted p

Carbohydrate (g) 0.040 0.073 0.145

Fat (g) -0.006 0.805 0.805

Fibre (g) 0.081 0.000 0.001

Protein (g) 0.020 0.376 0.501

Weekly nutrient intake β p FDR Adjusted p

Alcohol (g) 0.023 0.304 0.470

Carbohydrate (g) 0.040 0.073 0.234

Cholesterol (mg) -0.004 0.873 0.873

Fat (g) -0.006 0.805 0.873

Fructose (g) 0.049 0.027 0.231

Glucose (g) 0.037 0.096 0.234

Lactose (g) -0.005 0.839 0.873

Maltose (g) 0.042 0.070 0.234

Monounsaturated fats (g) -0.007 0.762 0.873

Fibre (g) 0.081 0.000 0.005

Polyunsaturated fats (g) 0.038 0.091 0.234

Protein (g) 0.020 0.376 0.533

Saturated fat (g) -0.032 0.152 0.322

Starch (g) 0.043 0.057 0.234

Sucrose (g) -0.012 0.585 0.765

Total sugars (g) 0.027 0.227 0.429

Trans-unsaturated fatty acids (g) -0.025 0.275 0.467

6.3.8 Functionality of the health-associated gut microbiome

Finally, I used the HMI to investigate the functional properties of the health-associated gut
microbiome. In a sub-set of individuals with previously processed metagenomic data, gene
set enrichment analysis was applied to KEGG pathway abundances to identify pathways
enriched with the HMI (n=218), frailty index (n=203), and the number of disorders an
individual had (n=213) (Table D.5). Enrichment analysis against these measures was also
carried out for metabolite groups using faecal metabolite data from 685 individuals (n=527
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with frailty data) (Table D.6). Several significant (FDR adjusted p<0.05) positive and neg-
ative enrichments were observed for both metagenomic pathways and faecal metabolite
groups with the HMI (Figure 6.13C). In all significant observations, the directions of asso-
ciation were inverse between the HMI and the frailty and number of disorder metrics as
would be expected. These associations are discussed further below.

6.4 Discussion

In this chapter I have presented a comprehensive study of gut microbiota associations
with host health, encompassing 38 common disorders and 51 different medications. This
was made possible by using an approach designed to address the limits of multiple testing
through the identification of marker traits in the gut microbiota. The subsequent asso-
ciations identified using these markers revealed novel microbiota associations and also
enabled comparison between the results. These comparisons revealed microbiota with con-
sistent directions of association across the disorders considered, allowing definition of a
health-associated gut microbiota. I quantified this in the HMI, which proves to be a robust
method to summarise the composition of the human gut microbiota with relevance to host
health. The HMI provides a novel tool for future studies investigating the gut microbiome
in relation to human health.

6.4.1 Associations with gut microbiota markers

The greedy approach used to identify microbiota marker traits in this chapter, provides
a novel method to address the limitations associated with the high dimensionality of 16S
rRNA gene sequencing profiles. It enabled association analyses across a wide range of dis-
orders and medications, several of which have not previously been studied in relation to
the gut microbiome. The association analyses between disorders and microbiota markers
replicated several reported associations including a negative association between T2D and
Clostridia (Larsen et al. 2010), a positive association between methanogens and constipa-
tion (Pimentel et al. 2012), and a lower abundance of Ruminococcaceae with IBS (Pozuelo
et al. 2015). There were also several novel associations with disorders including urinary
incontinence, acne, and osteoarthritis, which warrant further disease specific studies.

Within the medication analyses, most associations were with drugs known to influence
the gut microbiome including antibiotics (Jakobsson et al. 2010), PPIs (Chapter 4), and
metformin (Forslund et al. 2015). However, novel associations were observed including
those with paracetamol, SSRIs and inhaled medications. This suggests that the major
medication confounders for gut microbiome studies have been established, but highlights
the importance of considering all treatments in gut microbiota studies as even non-oral
medications could have an impact.
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One of the major limitations of this study is the inability to delineate effects specific to a
disorder, its treatment, or another similarly associated host factor. This was in part con-
trolled for by adjusting for BMI and age. However, including further factors such as diet
would subset the available datasets too much. To account for all the different diseases and
treatments within regression models would be too complex given the number of different
traits considered for both. The use of a Bayesian network here enabled some associations
to be partitioned specific to either drugs or disorders and showed the potential of combina-
torial multivariate approaches. However, the smaller subset with complete data provided
much less power in this complex analysis. Probing the specificity of the associations to
disease or treatment will require more targeted studies designed with populations selected
to minimise the variation in other factors. However, these results provide guidance for
where such efforts are best placed.

6.4.2 A health associated gut microbiota

Carrying out multiple disorder association analyses within the same cohort negated the
issues of incomparability that would be met trying to compare results between studies.
This enabled comparisons between the disorder associations and identification of generally
health or disorder associated taxa in the gut microbiome. Within the health-associated
bacterial families positive health outcomes have previously been associated with Chris-
tensenellaceae (Goodrich et al. 2014b), Rikenellaceae and Odoribacteraceae (Lim et al.
2016), Prevotella (Kovatcheva-Datchary et al. 2015), and Erysipelotrichaceae (Pozuelo et al.
2015). Within the disorder-associated families diseases have previously been associated
with Bacteroides (Ng et al. 2013), and Veillonellaceae, Pasteurellaceae and Enterobacteri-
aceae (Gevers et al. 2014).

However, there are also contrasting associations. For example, a recent review by Lloyd-
Price and colleagues collated a list of health associated families in the gut microbiota from
a range of studies (Lloyd-Price, Abu-Ali, and Huttenhower 2016). This included Prevotel-
laceae, Ruminococcaceae, and Bifidobacteriaceae that were also health-associated in our
study. However, it also included Bacteroidaceae, Clostridiaceae, Enterobacteriaceae, Eu-
bacteriaceae, and Lactobacillaceae, all of which were disorder associated in our analyses.

Discrepancies in the direction of association of taxonomic groupings do not negate the va-
lidity of the health-associated definition proposed. There is significant taxonomic variation
between healthy individuals (Human Microbiome Project Consortium, 2012), which sug-
gests it is unlikely there are core taxa absolutely required for health. Furthermore, within
species there can be pathogenic and non-pathogenic strains, and even the same bacteria
could be commensal or pathogenic depending on environmental context (Ehrlich, Hiller,
and Hu 2008). However, the health-associated definition is not intended to state that all
members of the defining taxa are either health or disorder associated, but rather that higher
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abundance of these broad level taxa reflect a gut microbiome more commonly associated
with either end of the health spectrum at the population level. There are also analytical
benefits to using higher taxonomic levels to define the health associated gut microbiome.
It facilitates application across studies as broad level taxa are less influenced by the vari-
ability between them (as shown by the reduced variability between taxonomic summaries
compared to OTUs in the clustering comparisons of Chapter 5).

6.4.3 The healthymicrobiome index

I proposed the HMI to quantify the health associated microbiome. This was more strongly
associated with measures of health and alpha diversity than the MDI in TwinsUK. It was
also more widely applicable than the MDI in disease replications across the three public
data sets and explained a greater proportion of the variance in beta diversity measures. This
is expected as the MDI was not designed as a general measure of gut microbiome health
and is specific to paediatric Crohn’s disease (Gevers et al. 2014).

Microbiota diversity is also frequently used as a measure of health in the gut microbiota, on
the basis that low diversity has been associated with a range of health deficits (Gevers et al.
2014; Qin et al. 2012). The HMI proved comparable to the Shannon diversity index, in that
it represented a similar proportion of the variance of beta diversity measures. However, the
individuals with a Prevotella dominant gut microbiome in TwinsUK were healthier but had
low alpha diversity; whereas their HMI score was high - maintaining a consistent direction
of association with health. Furthermore, the HMI has benefits over Shannon diversity in
the taxonomic basis of its definition. Diversity measures are influenced by factors such
as OTU clustering method that are less influential on higher level taxonomic abundances
(Chapter 5) (Westcott and Schloss 2015). The taxonomic basis also enables comparable
enumeration across different gut microbiota studies. The HMI is also specific to the human
gut microbiome unlike ecological indices naive to taxonomy.

The HMI addresses typical OTU limitations of reproducibility, dimensionality, and clinical
relevance; by providing a robust measure to quantify wide-scale gut microbiome compo-
sition within a single measure that has a directional association with host health. With
further development it could be applied as an outcome in intervention studies aiming to
improve the gutmicrobiota, as a diagnostic of health, or used to predict patient responses to
treatments targeting the gut microbiome. I have also demonstrated its utility as a research
tool by investigating the function of the health-associated microbiota using the HMI.

6.4.4 Functions of a health-associated gut microbiota

Using the HMI to carry out functional enrichment analyses with metagenomic and faecal
metabolomic data, I was able to probe the functionality of a health-associated gut micro-
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biota. I observed several significant enrichments for both metagenomic pathways and
metabolic groups, some of which are discussed below.

One key mechanism by which the gut microbiome could influence a range of host health ef-
fects is through dysregulation of the immune system leading to low level GI and/or systemic
inflammation (Lynch and Pedersen 2016; Thevaranjan et al. 2017). This could in turn
modulate inherent polygenetic susceptibility to multiple diseases (Lynch and Pedersen
2016). The HMI enrichment analyses identified significant associations with several gut
microbiome functions previously linked to GI inflammation.

Microbial glycan degradation genes were negatively associated with the HMI. Degradation
of mucin glycans by gut microbiota in mice undergoing dietary fibre deprivation compro-
mises GI barrier integrity promoting subsequent pathogen infection (Desai et al. 2016).
Lipopolysaccharide production was negatively associated with the HMI. Lipopolysaccha-
rides (LPS) are cell membrane components of gram negative bacteria that can infiltrate
the GI epithelium prompting a strong pro-inflammatory response (Boulangé et al. 2016).
Circulatory LPS has been linked to insulin resistance and obesity (Cani et al. 2007). Metabo-
lites of the endocannabinoid system (ECS) were also negatively associated with the HMI.
The ECS has been associated with metabolic syndrome (Bowles et al. 2015), IBD (Di Marzo
and Izzo 2006), and coeliac disease (D’Argenio et al. 2007). Stimulation of the ECS can
increase epithelial permeability (Muccioli et al. 2010), and a recent study showed the ECS
has immunoregulatory roles in the gut (Acharya et al. 2017).

Overall, these results suggest a more disorder-associated gut microbiome might be asso-
ciated with an increased intestinal permeability and host inflammation. However, these
observations are largely speculative. They are based on broad level KEGG pathway an-
notations and only considered a smaller subset of individuals with existing metagenomic
data. This reduced power might explain why observations were not observed between the
HMI and other microbial functions known to modulate the host immune system, such as
short-chain fatty acid production (Corrêa-Oliveira et al. 2016). Further mechanistic and
intervention studies will be required to determine how differences in the functionality of
the gut microbiota could contribute to multiple varied diseases.

6.4.5 Conclusion

In this chapter, I have presented a practical approach to identify marker taxa and reduce
the data dimensionality within 16S rRNA gene sequencing-based gut microbiota profiles.
This enabled uniform gut microbiota association analyses across numerous health effects.
I found that microbiome features can have consistent, as opposed to disease specific, as-
sociations with multiple disorders. This provides a novel definition of a health-associated
gut microbiota that can be quantified in the HMI. This index provides a robust method
to query the gut microbiota in relation to host health and addresses several limitations
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typically met using 16S rRNA gene sequencing approaches. The methods described in this
chapter should be used to further understand the features that define a health-associated
gut microbiome and how they can influence a range of diverse health effects. This will be
key for the development of clinical interventions and diagnostics targeting gut microbiota.
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Chapter 7

Identifying stable communities in the
gut microbiota with consistent
associations to host phenotypes

In this final research chapter, I present a data-driven method to identify robust communi-
ties of co-occurring gut microbiota within 16S rRNA gene sequencing datasets. I cluster
reads from the combined data of three geographically diverse populations to create com-
parable OTUs. Applying the community detection approach to these data, I demonstrate
the reproducibility of the method and show, for the first time, that gut microbiota form
similar communities with similar host associations in different populations. These com-
munity level summaries provide a novel analytical unit that may be more representative
of microbiota functionality than OTUs and also serve to reduce the dimensionality of 16S
rRNA gene sequencing data.

Collaborator Attributions

Pre-processing of data from the Dutch Lifelines-DEEP cohort was carried out by collabo-
rators at the University of Groningen, with replication of associations in these data carried
out by Marc Jan Bonder.
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7.1 Introduction

As discussed in Section 1.4.1, interactions between gut microbiota can influence the wider-
scale composition and function of the gut microbiome. However, assessing interactions on
a microbiota-wide scale is challenging and has only more recently been addressed by the
development of methods to quantify co-occurrence between taxa (Section 1.4.2). As such,
there has been little exploration of approaches to identify communities of interacting taxa
in the gut microbiota.

Within a microbiome, individual taxa will not interact with all others. Rather they will
form preferential interactions with subsets of taxa, due to factors such as cross-species
metabolism and geospatial environmental variation (Faust and Raes 2012; Levy and Boren-
stein 2014). If such distinct communities of OTUs can be identified, they could represent
more functionally relevant units for analysis than collapsed taxonomies. Furthermore, if
such communities can be identified that are stable across populations and interact with
host health, they could represent novel targets for gut microbiome-based medicines.

Interactions between OTUs can be inferred from the co-occurrence between them across
multiple samples (Faust et al. 2012). However as OTU counts are relative to the sequencing
depth of a sample, specialist approaches must be used that account for this when esti-
mating correlations in microbiota data. As discussed in Section 1.4.2, a selection of such
approaches were recently considered in a systematic comparison by Weiss et al. (Weiss
et al. 2016). Comparing a range of approaches using several different quality measures,
they found that using an ensemble of metrics can improve the precision of co-occurrence
detection (Figure 1.10). Following the results of this study, an adaptation of the ensemble
approach is used generate the interaction networks used in this chapter.

Previous studies have identified communities within microbial co-occurrence networks
(Lozupone et al. 2012a; Tong et al. 2013; Duran-Pinedo et al. 2011), often using theWGCNA
method as demonstrated in Chapter 3. However, whilst they may be more biologically
accurate, such approaches allow OTUs to have weighted contributions to multiple com-
munities. These overlapping definitions complicate comparative analyses and mapping
of communities between networks. This can be overcome by using community detection
algorithms that assign OTUs to single communities as discussed in Section 1.4.3. This was
demonstrated in a study using Louvain modulation maximisation to compare community
structures between irritable bowel syndrome patients and healthy controls (Baldassano and
Bassett 2016). In this chapter I similarly use modularity maximisation to detect microbiota
communities within OTU interaction networks.

In both generating co-occurrence networks and community detection, there are several
stages at which thresholds or parameters must be selected. For instance, in relation to
the present chapter, I must select a p-value threshold at which to consider correlation
between two OTUs as an edge in the network and choose a value for a parameter (γ) in the
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community detection algorithm. In this chapter I aim to avoid using arbitrary thresholds
to define these, instead using data driven properties to identify optimal parameters.

To demonstrate the robustness of the community detection method used in this chapter I
compare its output across three geographically diverse populations. To this end, I first gen-
erate comparable OTUs by combining the TwinsUK data with 16S rRNA gene sequencing-
based gut microbiota profiles from two other cohorts from Israel and the Netherlands
(Zeevi et al. 2015; Fu et al. 2015). I then apply a novel data-driven approach to generate
co-occurrence networks and detect the communities within each dataset. This produces
stable community definitions that can be compared and mapped between the datasets. I
show that OTUs can form similar community structures with similar associations to host
phenotypes across all three populations.

7.2 Methods

7.2.1 Data aggregation

Given the objective to compare network community structures across data sets (chapter
overview in Figure 7.1), I required OTUs that would be comparable between them. To
achieve this, I carried out de novo OTU clustering across combined sequencing data from
multiple sources. To maximise sequencing similarity, I chose to use two data sets whose
experimental approach best matched that used to generate the 16S rRNA gene sequencing
profiles in TwinsUK. These were gut microbiota profiles from individuals in the Dutch
Lifelines-DEEP (LLDEEP) cohort and from a personalised nutrition study within an Israeli
population by Zeevi et al. (Israeli-PN) (Fu et al. 2015; Zeevi et al. 2015). All three data
sets carried out gut microbiome profiling by amplifying the V4 region of the 16S rRNA
gene using the same PCR primers, and used paired-end sequencing with read lengths suf-
ficient to capture the whole V4 region. Notable differences between the studies include
faecal sampling and DNA extraction techniques. Both TwinsUK and LLDEEP utilised
aliquots from faecal samples stored at -80◦C, the Israeli-PN study utilised a mixture of
faecal swabs stored at -80◦C and OMNIgene-GUT stool collection kits stored at -20◦C. All
three studies used both chemical and mechanical lysis in DNA extraction but employed dif-
ferent protocols: TwinsUK utilised the MoBio PowerSoil HTP extraction kit, the LLDEEP
cohort utilised the Qiagen AllPrep kit, and the Israeli-PN DNA was extracted using the
MoBio PowerMag Soil DNA extraction kit.

One sample per twin was selected from Batch 3 of the TwinsUK gut microbiota data (Table
2.1) as in Chapter 6, although the set was slightly larger as it was not restricted to those
with accompanying disease phenotypes. The demultiplexed and merged paired-end data
was provided by collaborators at Cornell University. Data from the LLDEEP cohort was
provided in a similar format by collaborators at the University of Groningen, who used
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Combine TwinsUK, LLDEEP & Zeevi sequencing data

Denovo cluster reads to generate comparable OTUs

Reseperate datasets

Calculate CoNet, SparCC, Spearman & Pearson correlation measures on each

Generate co-occurrence networks from the intersect of the 4 measures
Scale-free network fit used for p-value thresholding

Identify communities within each network using the Louvain algorithm
Selecting a gamma constant that produced robust communities

Compare similarity of OTU
community structure between datasets

(Variance of information)

Identify equivalent communities
across data sets
(Jaccard index)

Examine the association of matching communties
with age and BMI in different datasets

Figure 7.1: An outline of the study design used in this chapter.
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custom scripts to merge the paired end data to full length reads covering the V4 region and
split the data by individual (Gevers et al. 2014; Fu et al. 2015). Raw data accompanying
the Israeli-PN publication was downloaded from the European Nucleotide Archive (ENA)
(Accession:PRJEB11532) (Zeevi et al. 2015). This was processed similarly to the TwinsUK
data and demultiplexed using published barcode mappings. Samples not listed in the
accompanying metadata or with ambiguous read identifiers were removed. The cleaned,
joined and demultiplexed data were then concatenated to produce one sequencing file
covering all three studies. In total 4426 samples (2764 TwinsUK, 1023 LLDEEP, 639 Israeli-
PN) were included in the analysis.

7.2.2 OTU clustering, table filtering, and diversity analyses

Generation of OTUswas carried out using the VSEARCHpackage, as this produced similar
results to SUMACLUST in Chapter 5 but could better handle the large amount of data in
this study (Rognes et al. 2016). The complete sequencing from all three sets contained
381,767,528 reads. These were dereplicated, removing reads occurring only once, result-
ing in 5,728,288 unique reads. De novo OTU clustering was carried out on the unique
reads using cluster_fast with a 97% similarity threshold. The resultant 94,070 representa-
tive sequences were filtered to remove chimeric reads using the uchime_denovo command
(within VSEARCH), producing a final set of 17,123 representative sequences. These were
used to generate OTU counts across all samples using the VSEARCH usearch_global com-
mand. Post-processing, average read counts were 82,695±745 for TwinsUK, 49,962±964
for LLDEEP, and 130,378±5,534 for Israeli-PN (mean±SEM).

A phylogenetic tree was generated from representative sequences using the default param-
eters of the make_phylogeny command in QIIME. Taxonomy of OTUs was assigned by
matching representative sequences against the Greengenes v13_8 database using the de-
fault parameters of the assign_taxonomy command in QIIME. OTUs occurring in only
one sample, and samples with less than 10,000 OTU counts were removed. Weighted and
unweighted UniFrac beta diversity measures and subsequent principle co-ordinates analy-
sis of them was carried out using the beta_diversity_through_plots script in QIIME. The
combined OTU table was then split by data set. For the purposes of alpha diversity calcu-
lations, the raw counts tables were rarefied to a depth of 10,000 reads. For each sample,
Shannon and inverse Simpson diversity indices were calculated as the mean across ten
rarefactions. Significant differences in alpha diversity between datasets were assessed using
Mann-Whitney U-tests.
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7.2.3 An ensemble approach to co-occurrence networks

Co-occurrence calculations were carried out on each dataset independently. Sub-tables
were generated from raw (unrarefied) OTU tables that only contained OTUs found in at
least 25% of the samples. All co-occurrence measures were calculated within these subsets
as they are less sparse and hence more amenable to correlation measures (Weiss et al.
2016). The mean diversity was assessed on rarefied versions of the subset tables using the
inverse Simpson index as for the full tables. OTU sparsity was assessed from the unrarefied
sub-tables, also used for the co-occurrence calculations, using the biom summarize_table
command. Following the recommendations of Weiss et al. (Figure 1.10), I used estimates
of the mean inverse Simpson index (TwinsUK=20.2, LLDEEP=29.0, and Israeli-PN=13.1)
and OTU table sparsity (0.49 in all three) to select an ensemble approach to co-occurrence
detection that combines four different correlation measures: CoNet, SparCC, Pearson’s,
and Spearman’s.

CoNet CoNet is itself an ensemble approach. Thepackage allows a range of co-occurrence
measures to be combined with several options for how to combine the weighting of edges
and their p-values. CoNet addresses compositionality within the data using the ReBoot
procedure, which involves permutation followed by re-normalisation of data. Calculating
co-occurrence within these renormalized data allows assessment of the levels of correlation
expected simply as a result of the compositionality within the data (Faust et al. 2012). For
this study I used four measures of co-occurrence within CoNet: Spearman’s and Pearson’s
correlations and Kullback-Leibler and Bray-Curtis distance measures (Faust et al. 2012).
Initial correlation thresholds were selected for each of these measures that produced 2000
positive and 2000 negative edges concordant across the four metrics (Weiss et al. 2016);
1000 permutations were then used for re-normalisation to account for compositionality,
and bootstrapping to identify edge p-values for each metric. The Simes method was chosen
to merge p-values across edges by keeping the minimum. Final p-values were adjusted for
multiple testing using the Benjamini-Hochberg FDR approach.

SparCC SparCC was developed to calculate correlations between OTU abundances in
microbiome data whilst accounting for their inherent sparsity and compositionality (Fried-
man and Alm 2012). It uses the centred log-ratio transformation to address data composi-
tionality (Figure 1.9). SparCC was used with default parameters to calculate correlations
from the raw count OTU tables. The MakeBoostraps command was used to generate 100
bootstrapped tables, which were in turn used to calculate SparCC correlations. The boot-
strapped correlationswere then usedwith the PseudoPvals command to generate two-tailed
p-values for the SparCC correlations from the true table.
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Pearson’s and Spearman’s Correlations Pearson’s and Spearman’s correlation metrics
do not take data compositionality into account, but were included to follow the approach
outlined by Weiss et al. (Weiss et al. 2016). Both measures were calculated using relative
abundance tables. The rcorr function from the Hmisc R package was used to calculate
correlations and generate two-tailed p-values pairwise between all OTUs for both Pearson’s
and Spearman’smeasures (Harrell Jr andDupont 2008). P-values were adjusted formultiple
testing using the Bonferroni method in R.

For each of the four co-occurrence approaches, the outputwas converted into two simplified
unweighted edge tables one detailing the direction of association (1 or -1) between OTUs
and another detailing the bootstrapped/adjusted p-values.

7.2.4 Data-driven determination of a p-value threshold

Intersected networkswere generated by combining the edge tables from theCoNet, SparCC,
Pearson’s, and Spearman’s methods. This was done independently for each data set. Edges
were retained in the combined network if the direction of co-occurrence matched and the
edge p-values were below a given threshold in all four methods. This was carried out at
multiple different p-value thresholds (0.05, then ranging in powers of ten from 0.01 to
10-8), to generate multiple intersect networks for each dataset with a gradient of stringency
for edge inclusion. The resultant networks were then assessed to determine how well their
structure fit that of a scale-free network to identify the optimum p-value threshold to use.

A scale-free network is a network whose node degree distribution follows a power law, i.e.
there are few highly connected nodes and many more less connected nodes, and is the
expected distribution of several biological networks (Jeong et al. 2000; Albert 2005). Fit to
a scale free network was calculated by first extracting the degree distribution of a network
using igraph (Csardi and Nepusz 2006). The fit of this distribution was then assessed using
the scaleFreeFitIndex function from the WGCNA package in R (Langfelder and Horvath
2008). This provides the R2 of the fit to a scale-free model, which the creators of WGCNA
suggest should be >0.8, and the slope of the fit, which they suggest should be close to -2
to indicate a good fit. The optimum p-value threshold was selected based on these criteria
across all three data sets and the resultant intersect networks at this threshold used in all
further analyses. Visualisation and generation of descriptive statistics from the networks
was carried out using Gephi (Bastian, Heymann, and Jacomy 2009).

7.2.5 Detecting communities within co-occurrence networks

Between OTU adjacency matrices were generated that represented the final intersect net-
works for each dataset. Negative correlations represented a considerably small proportion
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of edges (<1%) in all data sets and were removed to generate unsigned networks. Com-
munity detection was carried out on each dataset’s network independently using the gen-
Louvain 2.0 package within MATLAB (Mucha et al. 2010), which implements the Louvain
approach to modularity maximisation (Blondel et al. 2008). This defines community parti-
tions by assigning nodes to unique communities, then iteratively combines neighbouring
nodes into communities if it results in an increase in modularity across the whole network
(see Section 1.4.3). Modularity is a measure of the numbers of edges within communities
relative to between communities and a higher value represents better community definition
(Newman and Girvan 2004) (Figure 1.11).

Data-driven determination of γ in community detection

The genLouvain algorithm includes a γ parameter, which controls the size and numbers
of detected communities (Mucha et al. 2010). A smaller γ value promotes the detection of
small numbers of larger communities, while larger γ values promote the detection of high
numbers of smaller communities. To find an optimal value for the γ parameter, I carried
out community detection using a range of γ values for each dataset (0.1-1, increments
of 0.01), and selected the optimal γ value based on the stability and significance of the
resultant communities.

Stability To assess the stability of community definitions at each γ, I carried out com-
munity detection 25 times on the real network. I then carried out pairwise comparisons of
the similarity of community clustering between the 25 runs. To assess similarity between
two community groupings I used the normalised variation of information (variation of
information divided by ln(number of nodes in the network)) as a measure of similarity
between assignments. This ranges from 0 to 1. A high value for variation of information
means OTUs are sub set more differently in the two partitions compared, whereas a value
of zero means the two partitions are identical. In figures and text, 1-normalised variation
of information is reported, so a higher value represents more similar community structure.

Significance To assess the significance of the community definitions, I also carried out
community detection at each γ on 100 randomised networks whose nodes followed the
same degree distribution as the real network (generated using the randomGraphFromDe-
greeSequence command in the Octave networks toolbox in MATLAB). I then compared
the mean modularity of the 25 runs on the real network to the 100 randomised networks.

From observations of both the variation of information (stability) and modularity (signif-
icance) results I selected a suitable value for γ that produced both stable and significant
community groupings. Once a suitable value for γ was identified, community detectionwas
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repeated 100 times at this value, and the community definitions from the run producing
the highest modularity were retained as the final community definitions.

7.2.6 Community properties and host associations

The relative abundance of each community in a sample was found by summing the read
counts of its constituent OTUs and dividing by the total number of reads observed in the
sample. Association between the mean abundance of an OTU in a dataset and the number
of OTUs in its parent community was assessed using Spearman’s correlation. Taxonomy
within communities was investigated by counting the number of OTUs assigned to different
taxa at each taxonomic level.

The heritability of TwinsUK communities was estimated using the mets package in R as
used in Chapter 6. Log transformed relative abundances were used for each community
(log10 with the addition of 10-6 to account for zeros). For each community ACE, CE, E,
and AE models were fit using data from complete twin pairs. Co-variates included age,
BMI, sample collection method, sex, and sequencing depth. For each community, the best
fitting model was determined as that with the lowest Akaike information criterion value.

Association analyses between community abundances and BMI and age were carried out
using log transformed relative abundances of the communities. These phenotypes were
selected as they were also available in both the LLDEEP and Israeli-PN data sets. Linear
models were fitted for each community using the lm function in R. Community abundance
was the dependent variable with BMI, age, gender, and sequencing depth as independent
variables, as this was the maximal covariate set available across all three datasets. The
coefficient and significance of associations were extracted for BMI and age. P-values were
adjusted for multiple testing using the FDR method in R.

7.2.7 Comparison of community structure between datasets

Comparing overall community structure between datasets

I carried out pairwise comparisons between datasets to assess the similarity of overall com-
munity structures between the networks. In each comparison, the two networks were sub-
set to just the OTUs shared by both and the normalised variation of information between
their communities calculated. To find the variation that would be expected by chance, I
generated randomised community sets for each network by shuffling OTU labels. Each
randomised comparison therefore shared the same number OTUs between the two real
networks with the same community sizes, but without the biological basis for the linkage of
OTUs. I then carried out pairwise comparisons of the variation of information between the
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randomised communities. Shuffling and comparisons were repeated 1,000 times. The high-
est score observed (1- normalised variation of information) in any pairwise comparison,
in any permutation was 0.41 (mean=0.34, SD=0.014).

Comparing individual communities between datasets

To map communities between networks I carried out pairwise comparisons between all
the communities in all three networks. The Jaccard index was used to quantify the number
of OTUs shared between the two communities relative to the number not shared in each
comparison. Matches were considered positive with Jaccard scores >0.25 (range 0-1, no
shared OTUs - complete overlap). This was chosen as above this threshold there were no
instances of multiple mapping of communities between datasets.

Community-types were defined where matches could be found linking the communities
in all three data sets. These were labelled with colour names using the standardColors
function from the WGCNA package in R. The log transformed abundances for the 14
community-types that could be mapped across all three data sets were generated for the
LLDEEP and Israeli-PN data sets as for TwinsUK. These were analysed for associations
with age and BMI using linear regressions as for TwinsUK.

7.3 Results

7.3.1 Overlap of the TwinsUK, LLDEEP, and Israeli-PN data

Summaries of the TwinsUK, Dutch LLDEEP, and Israeli-PN studies whose data were com-
bined to derive the OTUs in this analysis can be found in Table 7.1. Principle coordinates
analysis of beta diversity between samples found that whilst there was some grouping by
dataset, there was also significant overlap between them (Figure 7.2A). Comparison of
alpha diversities between the populations found significant differences between all three
(Figure 7.2B).

Table 7.1: Participant summary statistics for the datasets considered. Values are Mean±SD

Dataset BMI Age Sex (M/F/Unknown) No. Samples

TwinsUK 26.1±4.8 59.5±12.3 308 / 2456 / 0 2764

LLDEEP 25.3±4.2 45.3±13.7 445 / 578 / 0 1023

Israeli-PN 26.4±5 43.5±12.9 376 / 251 / 12 639

Across the 15361 OTUs detected in the complete data 48% were shared across all three
data sets, with 79% being found in at least two datasets (Figure 7.3A). There was also
considerable overlap between TwinsUK and LLDEEP of OTUs not found in the Israeli-PN
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Figure 7.2: Diveristy comparisons between datasets. A) Plot of the first two components of PCoA from
weighted UniFrac distance measures between samples in the study, coloured by dataset, shows there is
some separation but significant overlap in microbiome compositions by study. B) Comparison of alpha
diversity measures in all three data sets. There was a significant difference in all pair-wise comparisons
for both measures (Mann-Whitney U p<0.0001).

data. Similar patterns were observed when considering more abundant OTUs (found in
>25% of the respective populations). Although LLDEEP and TwinsUK shared more OTUs,
examining themean taxonomic distributions at the phyla level the TwinsUK and Israeli-PN
cohorts were most alike (Figure 7.3B). The LLDEEP cohort contained relatively lower levels
of the phylum Bacteroidetes, and a higher abundance of Firmicutes bacteria. Further dif-
ferences were observed at the genus level, where the Israeli-PN study had a higher average
abundance of Prevotella.

7.3.2 Scale-free thresholding of edges in ensemble networks

The datasets were split prior to generation of their co-occurrence networks using an en-
semble approach - taking the intersect of four different correlation measures (TwinsUK
example shown in Figure 7.4). Ensemble networks created using a range of p-value cut-offs
were used to identify a final p-value threshold for edge inclusion, based on the networks’
fit to a scale-free degree distribution (Figure 7.5).

There was no consistent trend across the p-values. This might be expected given the dif-
ferences in the number of OTUs and samples in the datasets, and varying levels of p-value
precision between the co-occurrence measures used. However, including all edges with
a p-value <0.01 produced intersect networks with a good fit to the scale-free model in all
three data sets. As such, this threshold was selected to generate the networks used for
community detection.
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Figure 7.3: Taxonomic similarity of the datasets considered. A) Venn diagrams showing the number of
OTUs shared across datasets. The top includes all OTUs, the lower diagram only those found in at least
25% of samples in each dataset. B) Comparison of the mean relative abundances of taxonomies at the
phylum and genus level across the complete table for each data set. Phyla at less than 1% abundance
and genera at less than 5% abundance in all sets are collapsed as Other. In genera f; and g; represent
unassigned family and genus names in the Greengenes reference.
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Figure 7.4: An example visualisation of the ensemble process at the p<0.01 threshold for TwinsUK. the
top four networks combine to make the intersect network below.
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Figure 7.5: Selection of final p-value threshold for generating ensemble networks. Networks for each data
setweremadeby intersecting four correlationmeasureswith different p-value thresholds. Top left, the R2
of the resultant intersect networks fit to a scale-free distribution as assessed usingWGCNA. Highlighted
is 0.8 which the developers suggest as the minimum value to consider a good fit. Top right, the slope
of the regression fit to a scale-free network returned by WGCNA, again highlighted is the developers
recommended value. Bottom, summary measures of the resultant networks at each value showing the
mean node degree of OTUs in the networks and the total number of edges in each.
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From the 6761 unique edges observed across in the three final networks, 166 were observed
in all three, 882 in the TwinsUK and LLDEEP, 677 in TwinsUK and Israeli-PN, and 229
in the LLDEEP and Israeli-PN datasets. Summary statistics for the resultant networks
are shown in Table 7.2. The TwinsUK and LLDEEP network structures were most alike.
The Israeli-PN data, which contained fewer nodes (OTUs), produced a smaller and more
connected network.

Table 7.2: Summary statistics for the final intersect co-occurrence networks (p<0.01) for each dataset.
Graph density is the percentage of all possible edges represented, mean path length is pairwise between
all nodes, mean clustering coefficient is across all nodes in the network and provides a comparative
indicator of overall clustering in the networks.

Dataset Nodes Edges Mean
Node
Degree

Graph
Density

Mean
Path
Length

Mean Clustering
Coefficient

TwinsUK 844 2843 3.3 0.008 5.9 0.29

LLDEEP 922 2967 3.2 0.007 5.9 0.28

Israeli-PN 406 2573 6.7 0.033 3.7 0.31

7.3.3 Detection of communities in co-occurrence networks

After establishing co-occurrence networks I used the Louvain modularity maximisation
algorithm to detect communities within them (Mucha et al. 2010; Blondel et al. 2008; New-
man and Girvan 2004). The version used includes the constant γ that can be used to
manipulate the number and size of resultant communities. To determine an appropriate
value for γ, I carried out repeated community detection on the three co-occurrence net-
works at various γ values and assessed the stability (as variation of information between
runs) and significance (mean modularity of real compared to randomised networks) of the
community definitions at each γ (Figure 7.6).

Stability of community definitions

Community definitions were very stable (low variation of information between runs) at γ
values approaching zero. This would be expected as in this instance most OTUs fall into
few large communities. The mean variation of information fluctuated across the γ range.
However, it should be noted that the lowest estimates (1-variation of information) were
above 0.9 (range 0-1, least to most similarity in partitioning between runs), showing that
even the least stable γ produced very similar communities between runs.
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Figure 7.6: Selecting a γ parameter for Louvain thresholding. Louvain community detection was carried
out multiple times on each network at a range of γ values. The top row shows the mean variation of
information between the 25 runs at each γ value, a measure of stability of communities. Plotted is 1-
variation of information so a higher value means more stable community definitions between runs. The
middle row show the mean modularity of the 25 iterations compared to the mean modularity of 100
randomised networks with the same degree distribution, as a measure of clustering significance. The
lowest row shows the mean number of clusters generated at each value of γ. In all cases the mean line
is surrounded by the standard deviation across the interactions. This is also true for the middle row,
however modularity estimates had extremely low variance between runs, hence even a small difference
between the random and true means is significant. The dashed red line indicates the final selected value
for γ.
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Figure 7.7: A visualisation of the communities detected by the Louvain algorithm. Communities are
arbitrarily coloured. Node size represents an OTUs relative abundance within the dataset.

Significance of community definitions

At low γ values (with large communities) a networks edges are likely to be within com-
munities, hence high modularity values were observed for both the true and randomised
networks. As γ increased, modularity estimates for the random networks dropped signif-
icantly lower than those of the true networks (Figure 7.6). This shows that the real co-
occurrence networks have more community structure than would be expected by chance,
and provides confidence that the communities identified at these γ values reflect biological
relationships between member OTUs.

Definition of final communities

Modularity and stability were highest in TwinsUK, followed by the LLDEEP, and then
Israeli-PN data. This follows the sample sizes of the studies, and likely results from their
comparative power to detect edges. From Figure 7.6, I selected a γ value of 0.4 for commu-
nity detection. This γ provided high modularity estimates (that were significantly higher
than the random networks) and good stability in all three data sets. The Louvain algorithm
was then used with γ=0.4 to define the final OTU communities in the three co-occurrence
networks (Figure 7.7). Communities in each network are hence referred to using arbitrary
numbers ranging from 1 to the number of communities in the network.

The number of communities detected within the networks (TwinsUK=96, LLDEEP=105,
Israeli-PN=31) reflected the number of OTUs within them, but was more similar when
only considering communities containing at least 5 OTUs (TwinsUK=35, LLDEEP=36,
Israeli-PN=11). There was a positive correlation between the mean relative abundance
of an OTU and the total number of OTUs in the community it was assigned to in the
TwinsUK and LLDEEP networks (ρ=0.1, p=0.002 and ρ=0.27, p<0.0001 respectively); i.e.
high abundance OTUs were likely to be assigned to communities containing more OTUs.
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Figure 7.8: Summary of the taxonomic distributions within the TwinsUK communities. Each bar repre-
sents a community with communities ordered by size. Only communities with at least 5 OTUs are shown.
Stacked bars represent the number of OTUs in the community assigned to each taxon.

However, all communities in all three networks contained a range of both high and low
abundance OTUs (Figure E.1).

7.3.4 Taxonomy,heritability, andhostassociationsof communities

in TwinsUK

Investigating taxonomic assignments of OTUs within the TwinsUK communities, showed
that at finer taxonomic levels (species and genus) several communities contained OTUs
with a mixture of assignments (Table E.1). Whilst some communities retained a mixture
of taxa at the family level, the majority were dominated by one taxon (Figure 7.8), and at
higher levels nearly all contained a single taxon. A similar pattern was observed in the
LLDEEP and Israeli-PN networks (Figure E.2).

ACE modelling was used to identify genetic influences on the microbial communities in
TwinsUK within 654 MZ and 495 DZ pairs. From the 96 communities in the TwinsUK
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Figure 7.9: Host associations with TwinsUK communities. A) Community plot for TwinsUK as in Figure 7.7,
but coloured by the heritability estimate of the community. B) Plot highlighting the significant negative
association between BMI and the abundance of a Christensenellaceae rich community (linear regression
with age, gender, and sequencing depth as covariates β=-0.13, FDR q=0.001).

network 52 had some variance attributed to additive genetic effects (Table E.1). Within
these, the variance due to genetic effects ranged from 0.07-0.46 (Figure 7.9A). The esti-
mates for the most heritable communities are of a similar magnitude to those of the most
heritable taxa previously reported within TwinsUK (Goodrich et al. 2014b). Indeed, exam-
ination of taxonomies within these communities found that they contained heritable taxa.
For instance, the most heritable community (Community 39) contained a Turicibacter
OTU, and the second most (Community 26) contained numerous Christensenellaceae and
Ruminococcaceae OTUs (Goodrich et al. 2014b).

Community associations with BMI

To further explore host effects, I carried out linear regression analyses between community
abundances and age and BMI in TwinsUK (Table E.2). These phenotypes were chosen
as they were available for all three datasets enabling replication. In TwinsUK, from the
96 communities 47 were significantly associated with BMI (FDR adjusted p <0.05). The
highly heritable Community 26 that contained multiple Christensenellaceae OTUs had a
significant negative correlation with BMI (FDR adjusted p<10-10, β=-0.13) (Figure 7.9B),
reflecting previous observations in TwinsUK that Christensenellaceae and its correlated
taxa are protective against weight gain in mice (Goodrich et al. 2014b). There were several
communities containing exclusively OTUs belonging to the order Clostridiales that were
negatively associated with BMI. The strongest positive association with BMI was with
Community 5 (FDR adjusted p<10-7, β=0.11). This was a large community dominated by
OTUs assigned to the Lachnospiraceae family.
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Figure 7.10: Pair-wise comparison of the variation of information between community definitions for
OTUs shared between networks. 1-variation of information is shown where 1 represents identical seg-
mentation of OTUs to communities and 0 indicates no similarity, with the highest score observed in
randomised permutations being 0.41. Numbers represent the number of OTUs shared between the sets
(OTUs with at least one edge).

Community associations with age

There were 48 communities significantly associated with age (FDR adjusted p <0.05). The
three most significant associations were negative, two of these (Community 54 and 24),
were dominated by Bifidobacterium OTUs. There was also a significant negative associa-
tion with Community 27 (FDR adjusted p=0.007, β=-0.05), containing F.prausnitzii OTUs,
replicating results observed in Chapter 3. The strongest positive association with age was
observed with Community 17 (FDR adjusted p<10-7, β=0.11), which contained exclusively
Enterobacteriaceae OTUs. There were also several small communities positively associated
with age that contained exclusively OTUs assigned to the Ruminococcaceae family.

7.3.5 Community structure and associations across populations

Wide-scale overlap in community structure

Having identified communities within each dataset I aimed to determine how similar the
segmentation of OTUs was between them. The normalised variation of information was
again used to compare groupings. The similarity of community assignments was signifi-
cantly higher in all three pair-wise comparisons than would be expected by chance (Figure
7.10). This shows that OTUs are forming similar communities in all three data sets. How-
ever, it should be noted that variation of information can only be used to comparematching
sets, so this only shows that the OTUs shared between the populations have a similar com-
munity structure.
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Mapping equivalent communities between datasets

I mapped the communities between the three networks using the Jaccard index to identify
those which were equivalent to one another. Across the 96 TwinsUK, 105 LLDEEP, and
31 Israeli-PN communities, there were 14 instances where communities could be matched
in all three data sets (Figure 7.11), although many more could be mapped across only
two datasets. For distinction, I refer to these 14 matched groups as community-types and
label each using arbitrary colour names (Figure 7.11 A & B, Table E.3). For example, the
Green community-type was community 45 in the LLDEEP network, community 31 in the
Israeli-PN network, and community 36 in the TwinsUK network.

Associations with age and BMI across populations

To determine if each of the 14 community-types had similar associations with age and BMI
in their respective populations, linear regressions were carried out as for TwinsUK. Com-
paring the results (Figure 7.12), seven significant BMI associations within TwinsUK were
replicated in the LLDEEP data, with two also significant in the Israeli-PN data. There were
six community-types significantly associated with age in both the TwinsUK and LLDEEP
data, four of which were also significant in the Israeli-PN data. BMI had more negative
associations within the community-types, whereas age had more positive associations. For
both BMI and age, the significance of community associations was most similar between
TwinsUK and LLDEEP, this is may be due to their higher samples sizes relative to the
Israeli-PN dataset.

The Greenyellow and Green community-types had significant negative associations with
BMI in all three datasets. Greenyellow communities were dominated by Ruminococcus
OTUs in all three, and similarly all the Green communities consisted solely of Ruminococ-
caceae OTUs. More widely, most community-types with at least one significant negative
association with BMI consisted of Clostridiales OTUs. The Pink community-type for in-
stance had a significant negative association with BMI in TwinsUK and LLDEEP, and
contained multiple Lachnospiraceae OTUs assigned to the species Coprococcus eutactus in
all three data sets.

The Salmon, Turquoise, Cyan, and Red community-types were significantly positively asso-
ciated with age across all three data sets. All three contained exclusively Clostridiales OTUs.
The strongest positive association with age in TwinsUK was with the Brown module which
was not associated with age in the other sets, this contained Veillonella and Haemophilus
parainfluenzae OTUs. Several associations for both age and BMI were significant in Twin-
sUK and LLDEEP but not in the smaller Israeli-PN dataset, but tended to share the same
direction of effect. Overall, these results show that stable gut microbiota communities can
be detected across populations and that they can maintain similar associations with host
factors such as age and BMI.
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Community Jaccard Index > 0.25

Israeli-PNTwinsUK LLDEEP

OTU Co-occurrence

a

b

Figure 7.11: Mapping communities across datasets to identify stable community-types. A) A network
showing the matching of communities based on Jaccard index. Edges are considered where the index
>0.25 and are weighted by the index. Highlighted are the community-types selected for later analysis,
using the colours matching their given names. B) Visualisation of networks as in Figure 7.7 but coloured
based on community-types as in A. Communities not in these 14 types are coloured grey.
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Figure 7.12: Replication of linear regression analysis for each of the 14 mapped community-types in
the LLDEEP and Israeli-PN datasets. Top comparing the results for BMI and below for age. Squares are
coloured by the Beta estimate for the association and nominally significant associations (p<0.05) are
highlighted by a black border. Community-types are ordered by their associations within TwinsUK.

7.4 Discussion

In this chapter I have presented a rationalised and data-driven approach to generate com-
parable co-occurrence networks from 16S rRNA gene sequencing-based microbiota data
and identify community structures within them. Applying this to gut microbiome profiles
from three different populations showed that both co-occurrence networks and community
structures are stable across all three. Furthermore, host factors such as genetics, age and
BMI can influence the relative abundances of the identified communities, with age and BMI
having similar associations with community-types mapped across the populations. The
communities defined using this approach provide a further method to reduce the dimen-
sionality of 16S rRNA gene sequencing profiles and could prove to be more functionally
relevant analytical units than OTUs or collapsed taxonomies.

7.4.1 Differences in the gut microbiota between datasets

Significant differences were observed in the diversity and taxonomic profiles of the three
datasets used in this chapter. These likely reflect a mixture of both differences in the study
populations and the experimental approaches used. There will be differences between co-
horts in factors known to influence the gut microbiota, such as genetics, diet and geography
(Goodrich et al. 2014b; David et al. 2014; Yatsunenko et al. 2012). For instance, low diversity
Prevotella dominant microbiomes have been previously linked to dietary intake (Wu et al.
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2011). The larger proportion of Prevotella dominance, and associated reduced diversity,
in the Israeli-PN gut microbiomes might therefore reflect dietary differences. However,
technical disparities such as faecal sampling and extraction method, which were different
between the studies, can also influence taxonomic composition and cannot be discounted
(Walker et al. 2015). The increased overlap in the TwinsUK and LLDEEP data in compar-
ison to the Israeli-PN dataset in both the OTU and network structures might also result
from the higher sample sizes in these studies. However, it is notable that even with the
intrinsic population and technical differences between the three datasets there were still
consistent elements across them. Most OTUs were found in at least two studies and there
was overlap of samples from all three in beta diversity PCoA plots. It is within this common
ground that similarities in community structure were observed.

7.4.2 Generating interaction networks

To generate the co-occurrence networks in this study I used an ensemble approach as
suggested byWeiss et al. (Weiss et al. 2016). However, CoNet was themain edge filter when
intersecting networks and might alone be sufficient. This might be expected given that it
is itself an ensemble approach. However, metrics such as SparCC are not implemented
within CoNet, and different correlation methods can produce better results depending on
the properties of the input dataset (Weiss et al. 2016). Therefore these observations may
only apply to the current study and would require further testing before application to
other datasets.

I extended the ensemble approach by selecting edges for inclusion in the interaction net-
works based on their fit to a scale-free topology. It has previously been shown thatmicrobial
interaction network structures can approximate a scale-free distribution (Chaffron et al.
2010). Scale-free networks are also well conserved in other aspects of biology across differ-
ent domains of life (Albert 2005; Wolf, Karev, and Koonin 2002), and this approach is used
by existing methods such as WGCNA (Langfelder and Horvath 2008). The observed stabil-
ity of the resultant communities when using this approach indicates that using scale-free
thresholding can provide analytical benefits by generating comparable network structures
prior to community detection.

7.4.3 Robust community detection

Following network creation, I used modularity maximisation to assign OTUs to single
communities. This may not represent the true nature of interactions, as it is likely that taxa
contribute in different levels to different communities. Whilst it is possible to compare
overlapping community definitions using more complex methods provided by packages
such as WGCNA (Langfelder and Horvath 2008); using non-overlapping community def-
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initions provides analytical benefits. It enables the use of simpler comparative measures
such as the Jaccard index, which simplify analyses and the interpretation of results. There
are also applicationswhere unambiguous community definitions are desirable. For instance,
in the design of synthetic therapeutic communities based on experimental observations, a
method which could have clinical applications (Lindemann et al. 2016).

The community detection approach described here could be applied to investigate commu-
nity differences between disease and control groups (Baldassano and Bassett 2016) or, as
demonstrated, in replication of community associations across datasets. The importance
of further development of reproducible methods to detect and analyse microbiota commu-
nities is highlighted by several studies that have shown associations between taxa in the gut
microbiome and host health can depend on wider community context (Gevers et al. 2014;
Goodrich et al. 2014b; Baldassano and Bassett 2016; Ridaura et al. 2013).

Beyond simply identifying communities, understanding the factors driving their forma-
tion would require extension of the described approaches to quantification of taxa using
metagenomic sequencing. This, especially used in tandem with techniques such as meta-
transcriptomics and faecal metabolomics, might provide indications to the mechanisms
of interaction. However, cross-sectional approaches are inherently limited to inference of
interactions from co-occurrence across samples. Time-series data and in vitro studies will
also be required to delineate directional effects and validate individual interactions (Faust
et al. 2015). For instance, interactions validated in pair-wise species co-cultures can be
used to predict outcomes in more complex multi-species cultures (Lindemann et al. 2016).

7.4.4 Stable community structure across populations

Although 16S rRNA gene sequencing cannot elucidate the mechanisms of the observed
interactions, the comparisons within this chapter were sufficient to uncover novel biologi-
cal phenomena. Most notably, that OTUs formed similar communities with similar host
associations in the three different populations. This shows that the variation that exists
between the populations (e.g. the OTUs unique to each dataset) does not significantly alter
the interactions between the OTUs shared across all three.

Several community associations with age and BMI in TwinsUK replicated in the LLDEEP
and Israeli-PN datasets. These associations, and the heritability results within TwinsUK,
broadly and reassuringly reflected observations from studies investigating taxa in isolation.
For instance, in TwinsUK, communities negatively associated with BMI were enriched
with the butyrate producers Ruminococcaceae and Coprococcus eutactus (Louis and Flint
2009). Butyrate producing taxa in the gut microbiome have previously been associated
with obesity, although at a higher abundance in obese mice (Turnbaugh et al. 2006). This
may reflect an increased capacity for energy utilisation by the gut microbiota in leaner
individuals, as butyrate has also been shown to have protective effects against metabolic
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deficits associated with obesity (Qin et al. 2012; Gao et al. 2009). Two Bifidobacterium rich
communities were negatively associated with age, also in agreement with previous studies
(Yatsunenko et al. 2012; Odamaki et al. 2016), and F.prausnitzii and Enterobacteriaceae
community associations with age reflected results from the frailty analyses in Chapter 3.

It would be expected that community level associations reflected those of taxa based studies
as each community constituted largely of taxonomically similar OTUs. This is in agree-
ment with a previous study that found co-occurrence to be higher between genetically
similar taxa (Chaffron et al. 2010). This indicates either that interactions might evolve
within closely related taxa, or that co-occurrence mainly detects genetically related taxa
(more likely to have similar functionality) responding to environmental stimuli in the same
manner. Either way, co-occurrence communities provide a useful method to reduce the
dimensionality of 16S rRNA gene sequencing data to units reflecting biological phenomena.
Further analyses using the described approaches should investigate the influence of host
factors such as genetics, diet and health, on the formation of these communities and their
reciprocal influences on the host.

7.4.5 Conclusion

In this chapter I have described a data-driven approach to identify comparable communities
within microbiota co-occurrence networks. These communities provide a novel method
to reduce the dimensionality of 16S rRNA gene sequencing data sets to units reflecting the
biological properties of microbiota. This should facilitate future comparative, community-
centric analyses of gut microbiome data. This utility was demonstrated in the dataset
comparisons, which found that gut microbiota were able to form stable communities with
similar associations to host phenotypes across populations.
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Chapter 8

General Discussion

The aim of this thesis was to develop novel approaches to analyse gut microbiota profiles de-
rived from 16S rRNA gene sequencing to improve their relevance to human health research.
With a particular focus on addressing the high-dimensionality, limited reproducibility, and
biological relevance of OTUs. This began with a discussion of the current state of the
field in Chapter 1. Then in Chapters 3 and 4 I used simple approaches to investigate gut
microbiota associations with frailty and PPI use. Chapter 5 described a comparative anal-
ysis to identify optimal OTU clustering parameters, whose results informed the methods
used generate OTUs in latter analyses. Finally, in Chapters 6 and 7 I presented two new
methods to summarise 16S rRNA gene sequencing data. The first in the health-associated
microbiome definition and its subsequent quantification in the HMI; and the second in the
detection and summation of robust interacting communities in the gut microbiota. In this
concluding chapter, I provide a more detailed summary of these results, how they address
the aims set out in Chapter 1, and their context in terms of one another and the wider field.
I then go on to discuss some of the limitations of the presented work and how they might
be addressed in the future.

8.1 Summary of results

8.1.1 Methodological Findings

Methods used in Chapters 3 and 4

Within the frailty study in Chapter 3, I used the Shannon index as a covariate to identify
microbiota associations independent of wide-scale changes in microbiota diversity. To
my knowledge this is a novel approach, and proved to be an effective way to identify the
strongest associations. As such, it was similarly used in the gut microbiota association
analyses with PPI use in Chapter 4. Wider adoption of this approach might be particularly
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beneficial in gut microbiota studies aiming to identify taxa specific associations with health
factors.

In Chapter 4, I presented an original approach to explore the mechanisms underlying the
observed microbiota associations with PPI use. Using the public HMP data I inferred the
body site from which associated taxa might have originated. In my analysis this was a
largely speculative endeavour. However, a similar study investigating the effects of PPI
use on the gut microbiota was published at the same time by researchers at the University
of Groningen (Imhann et al. 2016). This study included oral microbiome sampling and
confirmed the increased abundance of oral bacteria in the gut with PPI use. Ideally, if I
were to repeat the PPI analyses, I would also collect oral microbiome data to confirm these
effects. However, the broad agreement between the results in my analyses and those of the
Groningen study lends support to the classifications created from the HMP data. Similar
use of body-site classifications in other studies could enable inference of the mechanisms
underlying associations where multi-site effects are involved.

Heritability as a quality measure

Chapter 5 described a comparison of different algorithms and parameters used to cluster
16S rRNA gene reads to OTUs. A key methodological finding in this chapter was the large
influence that clustering approach can have on the relative alpha diversity estimates of
samples. This has consequences for the interpretation and replication of results between
studies using different clustering algorithms and diversity measures.

The most novel aspect of this chapter was the use of heritability as a quality metric. This
was used to address the limited biological representation of OTUs: assuming that the
clustering algorithm producing OTUs most representative of the units interacting with the
host would produce the highest heritability estimates. This was largely motivated by the
lack of a directly comparable gold-standard to enumerate the functional units in the gut
microbiota. As such, heritability might similarly be applied as a quality measure in other
fields lacking such standards.

Microbiota markers defining the HMI

The analyses in Chapter 6 built on the experience gained in the frailty and PPI analyses,
extending similar approaches to multiple disorders and medications. There were two main
methodological developments within this chapter. The use of marker traits and the devel-
opment of the HMI.

The novel approach used to identify marker traits in the gut microbiome addressed the
high-dimensionality of 16S rRNA gene sequencing datasets. A correlation-based approach
to select markers was previously used in a large study investigating the relative influence
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of host phenotypes on the gut microbiota within the Flemish Gut cohort (Falony et al.
2016). However, this was used to subset the phenotypes for consideration (rather than
the microbiota traits) and did not use a network-based approach to select the optimal
markers. Using a network allowed selection of a minimal set of taxa that represented the
entirety of the wider set. This approach proved effective, identifying marker traits that
eventually produced the HMI which accurately represented wider compositional patterns.
Given the high levels of inter-correlation between different taxonomic summary levels in
microbiome data, this approach could provide an effective way to select a minimal set
of traits for consideration in microbiota from other body sites or even in environmental
microbiome studies.

The definition of the health-associated microbiome and subsequently the HMI was made
possible by analysing multiple diseases within the same cohort, overcoming the limited
reproducibility typically observed between studies using 16S rRNA gene sequencing (Sze
and Schloss 2016). The HMI reliably associated with microbiota composition and host
health across different experimental populations and approaches. Quantifying microbiota
composition in a single measure with directionality in relation to host health, addresses
both the limitations of high-dimensionality and biological interpretation of gut microbiota
profiles derived from 16S rRNA gene sequencing.

To date, microbiota composition has typically been quantified in alpha diversity metrics,
under the assumption that a diverse microbiome is associated with health (Lozupone et al.
2012b); or using relative abundances of disease specific marker taxa, such as the MDI for
IBD and the Bacteroides/Firmicutes ratio that was previously proposed to be associated
with obesity (Gevers et al. 2014; Ley et al. 2006). TheHMI is an extension and generalisation
of the latter approaches. Previous efforts to describe a general healthy gut microbiome have
relied on use of a screened healthy control population (Consortium 2012; Zhernakova et al.
2016; Falony et al. 2016). For example, a method was recently proposed in which healthy
samples are used to define a ‘healthy plane’ within multidimensional space (Halfvarson
et al. 2017). The dysbiosis of a disease patients microbiota can then be quantified by its
distance from this plane. However, this requires consistent and comparable enumeration
of microbiota between all samples and assumes that perfect screening of a health can be
achieved.

TheHMI is defined using the definition of health as a contrast to disease. As such, the health
and disorder definitions include the average observations across a range of different health
and disorder states. This, and the broad familial level of its definition, are responsible for
its applicability and utility across platforms, addressing the limitations of reproducibility in
16S rRNA gene sequencing-based microbiota studies. The HMI is one of the key outputs
of this thesis that should influence future gut microbiome research. It provides a simple
and accessible measure of microbiota composition that can also be used to determine if
microbiota differences might be beneficial or detrimental to the host. This could have a
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range of applications as discussed previously in Chapter 6.

Defining communities in microbiota networks

The final method described in this thesis was the approach to identify communities of
interacting microbiota in Chapter 7. This used an OTU clustering technique identified in
Chapter 5 and built on co-occurrence community ideas first explored in the frailty analyses
of Chapter 3. The method used the inherent structure in the data to inform the parameters
used in network creation and community detection. This resulted in community definitions
that were stable across different populations. As such, the community detection approach
plays a role in addressing all of the specific aims of this thesis; by providing a reproducible
method to reduce the dimensionality of 16S rRNA gene sequencing datasets to units de-
fined on a biological basis. This method could have wide applicability in future analyses
investigating community level effects in the gut microbiota, which has been the aim of
several previous studies (Baldassano and Bassett 2016; Tong et al. 2013; Duran-Pinedo et al.
2011). This might also be a particularly useful tool in the design of beneficial bacterial com-
munities for therapeutic purposes. For instance creating synthetic communities to confer
benefits such as those observed with faecal microbiota transplants (Vos 2013; De Roy et al.
2014). The approach described in Chapter 7 could enable identification of the communities
responsible for beneficial effects within whole microbiome samples, aiding rational design
of synthetic alternatives to untargeted treatments.

8.1.2 Biological Findings

Whilst the principle concern of this thesis was methods development, several novel biolog-
ical phenomena were also observed through the application of the described approaches.

Generality of microbiota disease associations

I consider the most important biological observation of this thesis, in terms of contribution
to the field, to be the demonstration that microbiota associations can be consistent across
disorders, rather than being solely disease specific. This is not an entirely novel concept,
reviews have previously aimed to identify similar patterns by condensing results across
studies (Lloyd-Price, Abu-Ali, and Huttenhower 2016), but it is to my knowledge the first
uniform experimental demonstration of the fact. This observation is clinically important as
it indicates that there may be a common basis for some of the observed health associations
with the gut microbiome; which in turn means that advances in gut microbiota mediated
treatment of one disease might be more widely applicable. Furthermore, identification of
a common pattern of associations is the first step towards understanding their underlying
mechanisms.
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Immunemediation of gut microbiota influences on host health

The analysis in Chapter 3 was not the first study to explore gut microbiota associations
with host frailty. Whilst it identified some novel associations, such as those with E.lenta
and E.dolichum, the strongest associations replicated existing results. These included the
reduced alpha diversity and abundance of F.prausnitzii with frailty, which replicated obser-
vations from other studies of frailty and extremes of ageing (Odamaki et al. 2016; Claesson
et al. 2012; Tongeren et al. 2005; Biagi et al. 2010).

The reduced abundance of butyrate producing F.prausnitzii in the gut microbiota has been
associated with multiple diseases (Sokol et al. 2008; Song et al. 2016; Qin et al. 2014).
Amongst other effects, microbial butyrate production can maintain immune homoeosta-
sis in the gut (Corrêa-Oliveira et al. 2016). As frailty is associated with chronic low level
inflammation (Hubbard and Woodhouse 2010), its associations with gut microbiota may
be mediated by the immune system. This was supported by the results of Chapter 6, where
the metagenomic and metabolomic enrichment analyses identified several potential pro-
inflammatory microbial functions/faecal metabolites that were enriched in samples from
individuals with a low HMI (or a more disorder associated gut microbiome). Combined
these results lend support to an increasing body of work showing that immune modula-
tion could be a major mechanism by which gut microbiota influence wide-scale health
(Round and Mazmanian 2009). This was demonstrated in a recent study, which showed
that germ-free mice can out-live mice with conventional gut microbiota and display re-
duced inflammatory markers across their lifespan (Thevaranjan et al. 2017). This concept
has been further refined in the ‘common-ground’ hypothesis.

The ‘common-ground’ hypothesis was proposed in a recent review of the effects of gut
microbiota in human health (Lynch and Pedersen 2016). It states that pro-inflammatory
actions of the gut microbiota could promote inherent polygenic susceptibility to various
diseases in the host, a hypothesis which fits the observations of Chapter 6. Modulation of
host inflammation may be one mechanism by which similar changes in the gut microbiota
are able to lead to a diverse range of health deficits. However, the observational nature of
the studies in this thesis mean it is not possible to determine the order of causality. Dif-
ferences in gut microbiota could also simply be indicators responding to inflammation
from another, non-microbial, source. In particular, it is possible that these effects could
largely be driven by changes in host health/immunity that alter the gut environmental niche
and hence the microbes that inhabit it. Further research is required to determine if/how
similar changes in the gut microbiota are able to influence a diverse range of health effects.
However, the potential malleability of the gut microbiome makes it an enticing therapeutic
target to promote overall health.
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The influence of medications on the gut microbiota

In bothChapters 4 and 6, I considered the influence ofmedication use on the gutmicrobiota.
The effects of PPI usage have been investigated previously but in smaller scale studies
(Freedberg et al. 2015; Seto et al. 2014). As mentioned in Section 8.1.1, a similar population
based cohort study was published at the same time and found almost identical associations
including an increased abundance of oral bacteria, in particular Streptococcaceae, with
PPI use (Imhann et al. 2016). In Chapter 6, I described associations with a wide-range of
other medications the majority of which had not been considered in relation to the gut
microbiota.

Bar a few exceptions (such as the metformin study discussed in Section 1.2.4), most investi-
gations of drug influences on the gut microbiome have focused on the effects of antibiotics
(Jernberg et al. 2007; Jakobsson et al. 2010; Falony et al. 2016). The results of Chapters 4 and
6 show that other, similarly common, medications can also have significant associations
with gut microbiota. This has two main implications: Firstly, more drugs should be con-
sidered in screening of participants and as covariates in gut microbiota studies (discussed
further in Section 8.2.1). Secondly, these results warrant further research into the clinical
consequences of these interactions. For example, the associations with PPI use have been
proposed to mediate an increased susceptibility to Clostridium difficile infection (Seto et al.
2014), and it has been posited that microbiota alterations may, in part, be responsible for
the beneficial effects of metformin treatment (Shin et al. 2013).

Stable gut microbiota community configurations across populations

The final novel biological observation, was the consistency of the gut microbiota commu-
nities and their host associations across different populations in Chapter 7. Evidence that
community structure is conserved is promising. It demonstrates that communities asso-
ciated with health effects in one population might be more widely applicable, motivating
further research to this effect.

8.2 Limitations and FutureWork

8.2.1 Use of observational cohort data

Data quality

The wide range of data available in TwinsUK enabled the comparative analysis in Chapter
6. It also facilitated the quantification of covariates known to influence the gut microbiome
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such as diet, which are often overlooked in less comprehensive studies. However, the Twin-
sUK data have limitations. Variables have been collected at a range of different times, using
different questions or techniques, and not always at the same time as the faecal samples.
This adds variability to the phenotypes that, especially given the temporal variation of the
microbiome, increases the noise in the data and reduces the power to detect associations.
Future work to address this would require collection of all phenotypes at the same time
as microbiota sampling, ensuring all relevant data is collected. This would be a large ef-
fort and require many twin visits at great expense to achieve the volume of data presented
here. So whilst this would be an idealised improvement, there must be a balance between
practicality and value gained.

Furthermore, the association studies with frailty and PPI use in Chapters 3 and 4 were
only carried out on a subset of the data now available within the TwinsUK cohort. These
analyses would benefit from being repeated in the larger final batch of samples, which
would provide more power to detect associations. Although this too would require further
data collection to assay these phenotypes across this wider set of individuals.

Additional Covariates

The analyses of Chapter 6 revealed that a range of medications might influence the gut
microbiota. As such, the frailty andPPI analyses should also be repeated taking into account
other confounding medications. These should also be considered in future association
studies. However, considering all of the medications scored in Chapter 6 would involve
substantial sub-setting of samples and could produce over-fitted models. A more effective
approach could be to screen future participants for medication use prior to inclusion in
studies. However, especially given the number of disorders considered, it is unlikely a
medication free group could be identified nor would it be representative of the natural
population. Further work should instead focus on determining the minimal set of drugs
that have the greatest effect on the gut microbiome, for use in recruitment screening or
as covariates in analyses. The medication association results of Chapter 6 provide some
information to this effect but could be improved upon by using time-matched drug use
data.

A key covariate that was not collected within TwinsUK was bowel movement frequency
and consistency. This has recently been shown to have a strong correlation with gut mi-
crobiota composition, having the largest effect amongst many confounders considered in
the Flemish Gut study (Falony et al. 2016). This may be an important consideration, as it
might influence how well stool samples represent the microbiota of areas earlier along the
gastrointestinal tract. However, as with other covariates from observational studies, it will
be difficult to untangle if these effects are altering the ability to accurately profile the gut
microbiota or if the observed gut microbiota changes are causing the differences in transit
time. Nevertheless, stool consistency should be considered as a covariate in future studies.
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Limits to interrogating Causality

In the PPI analyses of Chapter 4, results were replicated in an intervention study where
healthy volunteers were given PPIs, providing strong evidence for causality. However, the
majority of the analyses within this thesis used data from the TwinsUK cohort or other
observational studies. Where longitudinal samples were included, such as in the HMI
comparisons in Chapter 6, phenotypes were only available at a single time point. By only
assaying phenotypes and gut microbiota profiles at single time points it is only possible
to describe associations between the two. As such, the order of cause and consequence
within the observed health-microbiota associations remains unknown. Using observational
data also impedes separation of the effects of correlated variables, a limitation met in the
delineation of disease and drug effects in Chapter 6. Overcoming these limitations is vital
to determining if gut microbiota promote or simply reflect health benefits/deficits and
translation of this research to therapeutic applications.

Future work to determine causality

A combination of the approaches discussed in Section 1.2.2 would be required to determine
the causal direction of the associations observed in this thesis. Especially the use of germ-
freemice as amodel to query the influence of gutmicrobiota on phenotypes of interest. This
has previously been used to demonstrate causality in TwinsUK, where lean human donor
samples produced delayed weight gain when transplanted into germ-free mice (Goodrich
et al. 2014b). This could similarly be applied to test the hypotheses generated throughout
this thesis. For example, there are several mouse models of frailty available (Seldeen, Pang,
and Troen 2015). An initial comparison of the health of these models in conventional and
germ-free states would provide an indication of the involvement of the gut microbiota.
Further experiments to introduce the species associated with frailty in Chapter 3 would
then provide evidence to their role in these effects.

Similar experiments would also be beneficial to extend the HMI analyses. For example,
transplanting human microbiota from twins discordant in HMI score into germ-free mice,
as in a previous study examining microbiota of twins discordant for obesity (Ridaura et al.
2013). This would enable comparison of the effects of the health-associated microbiome on
murine health phenotypes such as longevity and systemic immune responses (Thevaran-
jan et al. 2017). This could also be repeated using immuno-compromised mice to assess
interactions between the health-associated microbiome and the host immune system.

As discussed in Section 1.2.2, human FMT can also provide evidence of the causal effects
of gut microbiota. Whilst, these findings are too early to alone warrant the use of FMT
to improve frailty. Both the HMI and community detection approaches could be used in
conjunction with existing FMT treatments/trials to assess causality. Donor samples could
be profiled using bothmethods. The success of subsequent transplants in remedying patient
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conditions would reveal if donor HMI score or the abundance of particular communities
are able to predict FMT outcomes. This could be a key clinical application for the results
of this thesis.

A simpler method to explore disease-microbiota dynamics in a human setting might be the
use of long-term longitudinal studies. This would show if alterations in the gut microbiota
proceed changes in health status or vice versa, whilst also controlling for inter-individual
variation. Longitudinal analyses would be particularly useful for determining the diag-
nostic potential of methods such as the HMI to determine long term health outcomes.
Microbiota composition has previously shown predictive power in determining response
to diet and diagnostic potential in the identification of colorectal cancer (Zeevi et al. 2015;
Baxter et al. 2016). However, the temporal variability of the gut microbiome and the po-
tentially long time span over which significant changes in health status might occur, mean
that this could require frequent sampling of both phenotypes and gut microbiota profiles
over a long time period.

8.2.2 Wider application of results

Applicability to different demographics and body-sites

As discussed in Section 8.1.2, several novel biological phenomena were observed through-
out this thesis. However, with the exception of analyses using the Israeli data in Chapter
7, these were exclusively based on data from adult Western populations. Given the known
differences by geography and age in the gut microbiome, this may limit the application of
these results to other demographics. The presented analyses would be improved by inclu-
sion of replication datasets from a more diverse range of populations. Future work should
be carried out to this effect.

The described studies largely considered data from faecal samples or swabs. The micro-
biome varies in composition along the length of the GI tract (Stearns et al. 2011). Therefore
the described phenomena may be specific to colonic microbiota. Further studies using
biopsies and/or swabs to sample other sites would be required to determine the locality of
the observed effects. More research is also warranted to see if consistent health associations
and community structures can be identified in microbiota at other non-GI body sites.

Technical limits to clinical application

Themajority of phenotypes queried in these studies were either directly health related, such
as disease states and medication use, or health associated, such as age and BMI. However,
the results are insufficient for direct clinical application. Not only are further experiments re-
quired to understand themechanisms underlying the associations (as discussed previously)
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the experimental and analytical pipelines used for 16S rRNA gene sequencing approaches
are currently limited to academia. Application of these findings to a clinical setting will
require further developments of rapid, cheap, reproducible, and simple approaches to 16S
rRNA gene amplicon-based microbiota profiling. Alternatively, development of targeted
approaches, such as targeted PCR or micro-array assays (Tottey et al. 2013) to selectively
quantify markers, such as those in the HMI, could negate the requirement for wide-scale
16S rRNA gene sequencing.

Limits to wider adoption of methods

Ideally themethods described here will be adopted by themicrobiome research community.
However, there are a number of factors limiting wider application of these techniques.

Realistically, the wide-scale adoption of heritability as a measure of OTU clustering quality
is unlikely. It requires host genomic or familial data to estimate heritability and, unlike
the stability and accuracy measures used in other clustering comparisons (He et al. 2015;
Westcott and Schloss 2015), there is no direct interpretation of what is measured. Although
the results were in concordance with those of existing studies (Westcott and Schloss 2015)
and, at least within the TwinsUK data, it proved an apt measure to ensure optimal OTUs
were generated for use in Chapters 6 and 7.

The co-occurrence network method described in Chapter 7 may also be too complex for
wider use. It uses methods that are novel to microbiome research and includes several
complex parameter selection steps. This could restrict its uptake outside the community of
researchers already investigating co-occurrence networks in the gut microbiome. Existing
bioinformatics packages that have been widely adopted by the community, such as QIIME
and Mothur (Navas-Molina et al. 2013; Schloss et al. 2009), have done so by presenting
simple and accessible interfaces. Future work to promote wider use of the community de-
tection approach in Chapter 7 should focus on simplifying the technique and consolidating
the stages into a single accessible workflow. Simplification could be achieved by using one
co-occurrence metric, such as CoNet, and further testing to identify if the selected param-
eters are more widely applicable, negating the requirement for complex parametrisation
steps.

The HMI could also benefit from the creation of a simple and accessible script to generate
the index from family level summaries. Whilst this could be easily achieved, QIIME already
has functionality to generate the MDI in the script ‘compute_taxonomy_ratios’. This simply
requires an alternate input list of familial definitions to generate the HMI (Navas-Molina
et al. 2013). The HMI and health-associated microbiome definition are the most accessible
methods presented in this thesis.

A further limit to adoption of these methods within the microbiome research community
is the increased use of metagenomics profiling in place of 16S rRNA gene sequencing ap-

175



proaches. As analytical pipelines become more accessible and efficient and costs lower,
there is further potential for metagenomics to be used in place of amplicon-based pro-
filing. However, the techniques described in this thesis can, and should, be applied to
metagenomic datasets. I discuss this is more detail in Section 8.2.3.

8.2.3 Alternate approaches tomicrobiome profiling

Alternative 16S rRNA gene sequencing approaches

Throughout this thesis I have tried to use optimal methods to analyse data. This was
achieved by either comparing available options directly, as in the OTU algorithm compar-
isons in Chapter 5, or referencing existing benchmarking studies, such as the Weiss et al.
study used in Chapter 7 (Weiss et al. 2016). However, these are not comprehensive com-
parisons. For instance in Chapter 5, as the TwinsUK data were so large, I did not consider
the hierarchical clustering approaches used by the popular Mothur platform (Schloss et al.
2009). There have also been new approaches developed since these comparisons and non-
clustering approaches such as DADA2 have gained wider adoption (Callahan et al. 2016).
Similarly, the Weiss et al. comparison did not consider several existing approaches to quan-
tify microbial co-occurrence (Fang et al. 2015; Kurtz et al. 2015). To improve upon these
limitations I would re-approach these comparisons using a smaller standardised dataset.
This would increase the range of approaches that could be considered and facilitate future
inclusion of new techniques. For the purposes of this thesis I was only interested in ap-
proaches I could apply to TwinsUK for use in other methods. To this end the comparisons
were sufficient.

I have also developed methods within this thesis that could be applied to one another.
For instance, identifying communities of microbiota associated with the HMI. Whilst this
would be a trivial analysis, it would be largely uninformative as communities were largely
homogeneous at the family level. As such, I would expect them to associate with the
HMI based on the health/disorder classification of their dominant family. However, the
contrasting analysis would be particularly interesting. In the future, the multi-disease
analysis in Chapter 6 should be repeated using communities (as described in Chapter 7)
in place of the marker traits. This would enable identification of microbial communities
that are consistently health or disorder associated. These could be key components in the
relationship between the gut microbiota and human health.

Application tometagenomics data

I have shown that it is possible to improve the analysis and interpretation of 16S rRNA gene
sequencing data sets. However as discussed in Section 1.3.3, all marker gene techniques
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are inherently limited in their in ability to resolve fine-level taxonomic differences or func-
tional aspects of the gut microbiome. Whilst the methods in this thesis were developed for
16S rRNA gene amplicon profiles, they could easily be adapted to profiles from shotgun
metagenomic sequencing. In particular, future work should focus on extending the analy-
ses described in Chapters 6 and 7, to apply the multi-disorder and community detection
approaches to metagenomic data.

The analysis of multiple diseases in Chapter 6 could be extended by using shotgun metage-
nomics to profile gut microbiota. I do not see value in using higher taxonomic resolutions
to define the health-associated microbiome. I believe the strength of the definition comes
from its broadness. There is also higher within-individual variability at finer taxonomic
levels (Consortium 2012). However, there is a known disparity in the taxonomic estimates
provided by metagenomic and 16S rRNA gene derived microbiota profiles (Jovel et al.
2016). So this analysis would be required to determine the effects this has on the familial
health-associatedmicrobiome definition and quantification of the HMI frommetagenomic
data.

One area I would be interested to explore further, is the use of metagenomic profiles to
probe gut microbiome functionality across multiple diseases. Microbiome function is more
highly conserved than taxonomic abundances (Consortium 2012). Future analyses should
focus on the identification of microbiome functions that are consistently health or disor-
der associated. This would be possible using similar analyses as with the marker taxa in
Chapter 6, but using the abundance of metagenomic pathways. This could help uncover
the microbial mechanisms underlying the consistent gut microbiota associations across
multiple diseases.

In contrast to the HMI study, I think that the community detection approach from Chapter
7 would benefit from the high resolution taxonomic profiles provided by metagenomic
sequencing. The community units produced in Chapter 7 are able to reduce the dimension-
ality of 16S rRNA gene sequencing data and reflect the biological interactions observed
across samples. However, they provide little information regarding their constituent taxa,
the mechanisms of interaction, or the communities’ functionalities. These could all be ad-
dressed using shotgun metagenomics. Precise identification of species would also further
aid applications of this approach to the design of synthetic communities as discussed in
Section 8.1.1.

Any future approaches using metagenomics would also benefit from concurrent use of
metabolomics or metatranscriptomics. Metagenomic sequencing can only infer potential
microbial function, where as these approaches reflect active functionality. This would allow
further investigation of the mechanisms underlying the effects described throughout this
thesis.
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8.3 Conclusion

In this thesis I have presented novel approaches to address the limitations of dimensionality,
reproducibility, and biological relevance associated with gut microbiota profiles derived
from 16S rRNA gene sequencing. These include the development of the HMI, an index
representing both microbiota composition and host health, and a method to identify stable
microbial communities within microbiota. In this process I have also identified several
novel biological phenomena including: associations of host frailty and PPI use with the
gut microbiota, the consistency of microbiota associations across multiple diseases, and
the stability of gut microbiota community structures across populations. These findings
advance our understanding of the gut microbiota’s role in human health and provide novel
tools and insights facilitating further research in this exciting, fast moving, and important
area.
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Appendix A

Chapter 3: Typical approaches to
microbiota analyses using 16S rRNA
gene sequencing: Associations with
host frailty in the gut microbiota

The original PDF for the published manuscript accompanying Chapter 3 can be found on
the accompanying digital media.

Table A.1: S1. Table of domains used in the construction of the frailty index.

Deficit Category Number of separate domains
Co-morbidity 10
Physical measures 6
Biochemistry 5
Mental health 3
Self reported general health 4
Disability 8
Social functioning 1
Polypharmacy 1
Pain 1
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Figure A.1: S2. Figure showing the distribution of the FI in TwinsUK. The distribution of the frailty index
in the TwinsUK cohort fits the expected gamma distribution. Histogram of untransformed FI values for
the 728 individuals included in the study with a fitted gamma distribution shown in red.

Table A.2: S3. Table of of significant OTU-FI associations.
Due its large size, this table can be found on the accompanying digital media.
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Table A.3: S4. Table of significant taxonomic associations with the FI.

Taxonomy FDR Q-value Frailty
vs OTU Abundance

β-Coefficient Frailty FDR Q-value Frailty
vs OTU Abundance
Shannon diveristy as
a covariate

β-Coefficient Frailty
Shannon diveristy as
a covariate

Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__[Eubacterium];s__dolichum 1.81E-04 1.99E-01 2.94E-02 1.46E-01
Actinobacteria;c__Coriobacteriia;o__Coriobacteriales;f__Coriobacteriaceae;g__Eggerthella;s__lenta 1.81E-04 1.86E-01 5.88E-02 1.25E-01
Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__Faecalibacterium;s__prausnitzii 7.99E-04 -1.82E-01 2.54E-01 -7.67E-02
Tenericutes;c__Mollicutes;o__RF39;f__;g__;s__ 1.25E-03 -1.70E-01 1.87E-01 -9.47E-02
Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Lachnospira;s__ 1.90E-03 -1.58E-01 2.59E-01 -7.33E-02
Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Anaerostipes;s__ 6.14E-03 -1.49E-01 4.89E-01 -5.06E-02
Firmicutes;c__Clostridia;o__Clostridiales;f__;g__;s__ 6.14E-03 -1.46E-01 5.82E-01 -3.49E-02
Tenericutes;c__RF3;o__ML615J-28;f__;g__;s__ 1.09E-02 -1.33E-01 3.19E-01 -7.04E-02
Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__Coprobacillus;s__ 2.61E-02 1.29E-01 1.87E-01 1.02E-01
Firmicutes;c__Clostridia;o__Clostridiales;f__Dehalobacteriaceae;g__Dehalobacterium;s__ 3.28E-02 -1.23E-01 4.82E-01 -5.22E-02
Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__;s__ 4.96E-02 -1.17E-01 7.49E-01 5.43E-03
Firmicutes;c__Clostridia;o__Clostridiales;f__Peptococcaceae;g__;s__ 4.96E-02 -1.14E-01 4.97E-01 -5.04E-02
Actinobacteria;c__Coriobacteriia;o__Coriobacteriales;f__Coriobacteriaceae;g__Eggerthella 1.61E-04 1.89E-01 3.91E-02 1.29E-01
Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__Faecalibacterium 8.31E-04 -1.82E-01 2.04E-01 -7.67E-02
Tenericutes;c__Mollicutes;o__RF39;f__;g__ 1.16E-03 -1.70E-01 1.74E-01 -9.47E-02
Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Lachnospira 1.65E-03 -1.58E-01 2.09E-01 -7.33E-02
Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Anaerostipes 4.80E-03 -1.49E-01 3.76E-01 -5.06E-02
Firmicutes;c__Clostridia;o__Clostridiales;f__;g__ 4.80E-03 -1.46E-01 4.40E-01 -3.49E-02
Tenericutes;c__RF3;o__ML615J-28;f__;g__ 8.43E-03 -1.33E-01 2.55E-01 -7.04E-02
Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__Coprobacillus 1.98E-02 1.29E-01 1.74E-01 1.02E-01
Firmicutes;c__Clostridia;o__Clostridiales;f__Dehalobacteriaceae;g__Dehalobacterium 2.47E-02 -1.23E-01 3.72E-01 -5.22E-02
Firmicutes;c__Clostridia;o__Clostridiales;f__Peptococcaceae;g__ 4.06E-02 -1.14E-01 3.78E-01 -5.04E-02
Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__ 4.06E-02 -1.17E-01 6.20E-01 5.43E-03
Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__[Paraprevotellaceae];g__Paraprevotella 4.43E-02 -1.13E-01 2.04E-01 -8.65E-02
k__Bacteria;p__Tenericutes;c__Mollicutes;o__RF39;f__ 2.12E-03 -1.70E-01 1.66E-01 -9.47E-02
k__Bacteria;p__Tenericutes;c__Mollicutes;o__Anaeroplasmatales;f__Anaeroplasmataceae 4.66E-03 -1.50E-01 1.57E-01 -1.08E-01
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Table A.4: S5. Table of OTU associations with FI in non-parametric analyses.
Due its large size, this table can be found on the accompanying digital media.

Table A.5: S6. Table of OTUmodule assignments.
Due its large size, this table can be found on the accompanying digital media.
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Appendix B

Chapter 4: Typical approaches to
microbiota analyses using 16S rRNA
gene sequencing: Associations with
proton pump inhibitor use in the gut
microbiota

The original PDF for the published manuscript accompanying Chapter 4 can be found on
the accompanying digital media.
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SUPPLEMENTARY METHODS 
 

Twin pair analyses 

70 pairs of MZ twins, within the 1827 individuals, were identified that were 

discordant for PPI use. Comparison of OTUs and collapsed taxonomies 

between the PPI users and non-users within pairs was carried out using two-

tailed paired Wilcoxon signed rank tests on log transformed relative 

abundances. The resultant p-values were FDR corrected using the q-value 

package in R with a significance threshold of 5%. Abundances were not 

adjusted for any covariates in these analyses. 

 

Site specificity of families in the Human Microbiome Project 

Pre-processed 16S data was obtained from the Human Microbiome Project 

(HMP) in the form an OTU table.[1] This was collapsed at the family level 

using QIIME. Sample sites were renamed to broader categories of nose, 

mouth, throat, skin, vagina and gut (Supplementary Table S7). Principle 

components analysis was then carried out on all samples using log 

transformed relative abundances of families (Supplementary Figure S8). This 

showed at the family level there was broad overlap of throat and mouth, and 

skin and nose samples; therefore these groups were combined resulting in 

four sites for comparison.  

 

Family abundances at each site were then compared using Kruskall-Wallis 

one-way ANOVA tests in R. Resultant p-values were Bonferroni adjusted and 

any families with p < 0.05 were considered to have significantly different 

distributions across sites. Ad hoc pair-wise comparisons were carried out on 

significant families using the Nemenyi test from the PMCMR package.[2] 

Where there were between site differences with p < 0.05, boxplots were used 

to manually assign site specificity of a family, assigning multiple sites where 

necessary.  

 

Mixed effects models were made with family abundance as the response with 

sample site as a random effect using the coefficient of each family with each 

site as a measure of its site based association. To assess how the site based 

association of a family related to its association with PPI use, the coefficients 

of families at each site in the HMP data were correlated against the coefficient 

of families with PPI use in the TwinsUK data using Pearson correlations in R. 

This included 64 families that were found in both sets. 
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SUPPLEMENTARY LEGENDS 
 
S1. Summary of the aspects covered by the health domains considered in the 
construction of the frailty index. 
 
S2. Table of alpha diversity associations with PPI use after adjustment for 
covariates. 
 
S3. Significant results from modelling OTU associations with PPI use 
 
S4. Significant taxa associations with PPI use and replication results in the 
interventional data set. 
 
S5. Significant results from mixed effects modelling of PPI and OTU and taxa 
associations in the subset of individuals with complete covariate data and no 
antibiotic use within the previous month. 
 
S6. Table of HMP derived site specificities for collapsed families. 
 
S7. Table showing HMP site definition mappings to the broader categories 
used in this study. 
 
S8. Plot of HMP samples by PC1 and PC2 of PCA from relative abundances 
of all collapsed families. Samples are coloured by site. This clustering was 
used to group sites into the four categories: gut, mouth/throat, skin/nose and 
vagina. 
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Table B.1: S1. Summary of the aspects covered by the health domains considered in the construction of
the frailty index.

Deficit Category Number of separate domains
Co-morbidity 10
Physical measures 6
Biochemistry 5
Mental health 3
Self reported general health 4
Disability 8
Social functioning 1
Polypharmacy 1
Pain 1

Table B.2: S2. Table of alpha diversity associations with PPI use after adjustment for covariates.

Alpha Diveristy Metric p-value (association with PPI status)
Shannon 0.665603084
Otu Count 0.666733534
Phylogenetic Diversity 0.643844399
Chao1 0.860395912

203



Table B.3: S3. Significant results frommodelling OTU associations with PPI use.

OTU ID FDR q-value associa-
tion with PPI use

Coefficient with PPI
use

Assigned Taxonomy

553611 7.67E-05 0.447435365 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Bifidobacteriales; f__Bifidobacteriaceae; g__Bifidobacterium; s__
4439603 8.76E-05 0.443190369 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Streptococcaceae; g__Streptococcus; s__
4424239 0.000175521 0.425407332 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Streptococcaceae; g__Streptococcus; s__
4309301 0.000204677 0.427672795 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Streptococcaceae; g__Streptococcus; s__
191355 0.000355135 -0.381535342 k__Bacteria; p__Firmicutes; c__Erysipelotrichi; o__Erysipelotrichales; f__Erysipelotrichaceae; g__; s__
183619 0.001067258 0.377999451 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
369635 0.003746041 -0.359817024 k__Bacteria; p__Firmicutes; c__Erysipelotrichi; o__Erysipelotrichales; f__Erysipelotrichaceae; g__; s__
4455767 0.003746041 0.355829076 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Streptococcaceae; g__Streptococcus; s__
4425214 0.004810154 0.343607548 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Streptococcaceae; g__Streptococcus; s__
519746 0.004810154 -0.3560193 k__Bacteria; p__Firmicutes; c__Erysipelotrichi; o__Erysipelotrichales; f__Erysipelotrichaceae; g__; s__
4433947 0.005154856 0.34673914 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
New.0.CleanUp.ReferenceOTU24722 0.005154856 0.345044921 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
4411138 0.005563489 0.349259976 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; f__Micrococcaceae; g__Rothia; s__mucilaginosa
4439360 0.005563489 0.346567007 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
3384047 0.00670208 0.338519118 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Streptococcaceae; g__Streptococcus; s__
360636 0.008046789 -0.315747457 k__Bacteria; p__Firmicutes; c__Erysipelotrichi; o__Erysipelotrichales; f__Erysipelotrichaceae; g__; s__
529979 0.013575962 -0.310991093 k__Bacteria; p__Firmicutes; c__Erysipelotrichi; o__Erysipelotrichales; f__Erysipelotrichaceae; g__; s__
193233 0.01479296 0.307785704 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__uniformis
3472078 0.01479296 0.314295764 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
3943182 0.01479296 0.306231401 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
New.0.ReferenceOTU286 0.016085053 -0.292848158 k__Bacteria; p__Firmicutes; c__Erysipelotrichi; o__Erysipelotrichales; f__Erysipelotrichaceae; g__; s__
New.7.CleanUp.ReferenceOTU10733 0.016085053 0.297014214 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides
536866 0.016218003 0.309627253 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Streptococcaceae; g__Streptococcus; s__
New.0.CleanUp.ReferenceOTU17128 0.019952362 0.29964869 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
New.0.CleanUp.ReferenceOTU19985 0.020364644 0.280077785 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
193174 0.020537928 -0.306074526 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__
175535 0.021437111 0.290242053 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
563572 0.021437111 -0.290894486 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__
185814 0.022060366 -0.290377136 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; g__; s__
178205 0.023960373 -0.283826361 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Coprococcus; s__
188735 0.023960373 0.293387225 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__

Continued on next page
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Table B.3 – continued from previous page
OTU ID FDR q-value associa-

tion with PPI use
Coefficient with PPI
use

Assigned Taxonomy

186772 0.026882447 -0.258806021 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; g__Faecalibacterium; s__prausnitzii
190502 0.026882447 0.289191745 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__
4256470 0.026882447 0.29494603 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__ovatus
4466275 0.026882447 -0.290490515 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; g__; s__
561607 0.026882447 -0.291298393 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; g__; s__
185607 0.028342801 -0.287857024 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__
187504 0.033139133 -0.255684868 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; g__; s__
New.0.CleanUp.ReferenceOTU25028 0.033139133 0.278508923 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__uniformis
183804 0.033627921 -0.274323234 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__
New.0.CleanUp.ReferenceOTU20294 0.033627921 0.269602876 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Porphyromonadaceae; g__Parabacteroides; s__distasonis
4477696 0.034325967 0.273109381 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pasteurellales; f__Pasteurellaceae; g__Haemophilus; s__parain-

fluenzae
4401580 0.03494 0.275161879 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
New.0.ReferenceOTU224 0.042225721 0.263769891 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Porphyromonadaceae; g__Parabacteroides; s__distasonis
15728 0.046032842 -0.277992354 k__Bacteria; p__Firmicutes; c__Erysipelotrichi; o__Erysipelotrichales; f__Erysipelotrichaceae
New.0.CleanUp.ReferenceOTU43393 0.046151039 -0.264506464 k__Bacteria; p__Firmicutes; c__Erysipelotrichi; o__Erysipelotrichales; f__Erysipelotrichaceae; g__; s__
191148 0.046259232 -0.270269159 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; g__; s__
184037 0.046270425 -0.264421885 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__
4366843 0.046270425 0.270973419 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
New.0.CleanUp.ReferenceOTU29206 0.046270425 -0.255583626 k__Bacteria; p__Firmicutes; c__Erysipelotrichi; o__Erysipelotrichales; f__Erysipelotrichaceae; g__; s__
New.0.CleanUp.ReferenceOTU6772 0.046270425 0.262324467 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Rikenellaceae; g__; s__
328905 0.046654261 -0.261638897 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; g__Oscillospira; s__
181155 0.047036103 0.265365707 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Blautia; s__
New.0.CleanUp.ReferenceOTU37003 0.047036103 0.252940441 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Rikenellaceae; g__; s__
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Table B.4: S4. Significant taxa associations with PPI use and replication results in the interventional data set.

Level Taxonomy FDR q-value
assocation with
PPI use in
TwinsUK

Coefficient asso-
ciation in Twin-
sUK

Direction
in Twins
UK

Coefficient,
Post-PPI vs
Pre-PPI in Inter-
ventional Data
Set

P, Pre vs Post in
Interventional
Data Set

Species k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Micrococcaceae;g__Rothia;s__mucilaginosa 2.19E-07 0.506 pos 3.8 0.28
Species k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__;s__ 2.19E-07 -0.498 neg 6.9 0.35
Species k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus;s__anginosus 4.87E-07 0.484 pos -0.13 0.2
Species k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus;s__ 5.03E-07 0.464 pos 5.0 0.02
Species k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__;s__ 3.54E-06 -0.447 neg 7.1 0.09
Species k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus;Other 1.35E-03 0.342 pos NA NA
Species k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae;g__Bacteroides;Other 3.01E-03 0.312 pos 0.32 0.5
Species k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Lautropia;s__ 3.01E-03 0.318 pos Not detected Not detected
Species k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;o__Desulfovibrionales;f__Desulfovibrionaceae;g__Desulfovibrio;s__ 3.01E-03 0.314 pos -0.12 0.16
Species k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae;g__Haemophilus;Other 3.01E-03 0.326 pos Not detected Not detected
Species k__Bacteria;p__Cyanobacteria;c__4C0d-2;o__YS2;f__;g__;s__ 3.70E-03 -0.299 neg Not detected Not detected
Species k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus;s__ 4.53E-03 0.293 pos 0.29 0.27
Species k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Bifidobacteriales;f__Bifidobacteriaceae;g__Scardovia;s__ 5.42E-03 0.299 pos Not detected Not detected
Species k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae;g__Haemophilus;s__parain-

fluenzae
5.42E-03 0.287 pos 12 0.19

Species k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;Other;Other 1.45E-02 -0.277 neg NA NA
Species k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Veillonella;s__parvula 1.57E-02 0.268 pos 0.23 0.23
Species k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__Holdemania;s__ 2.03E-02 -0.259 neg 3.2 0.43
Species k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;Other;Other;Other 2.61E-02 0.235 pos 0.25 0.2
Species k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Carnobacteriaceae;g__Granulicatella;s__ 2.61E-02 0.251 pos 0.1 0.02
Species k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__;s__ 2.61E-02 -0.194 neg 1.6 0.18
Species k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Mitsuokella;s__ 2.61E-02 0.250 pos Not detected Not detected
Species k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Cardiobacteriales;f__Cardiobacteriaceae;g__Cardiobac-

terium;s__
2.61E-02 0.248 pos Not detected Not detected

Species k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Oribacterium;s__ 2.70E-02 0.245 pos Not detected Not detected
Species k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__Catenibacterium;s__ 2.70E-02 0.249 pos -0.011 0.37
Species k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Veillonella;s__dispar 3.01E-02 0.234 pos 0.04 0.13
Species k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__Ruminococcus;s__ 3.63E-02 -0.214 neg 3.9 0.12
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Species k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__Bulleidia;s__p-1630-c5 3.63E-02 0.233 pos Not detected Not detected
Species k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae;g__;s__ 3.63E-02 0.234 pos Not detected Not detected
Species k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae;g__Bacteroides;s__fragilis 4.13E-02 0.230 pos 0.25 0.46
Species k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;Other;Other;Other 4.14E-02 0.225 pos Not detected Not detected
Species k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;Other;Other 4.28E-02 0.218 pos 0.11 0.09
Genus k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__ 1.82E-07 -0.498 neg 0.034 0.35
Genus k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus 3.26E-07 0.469 pos -0.13 0.24
Genus k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Micrococcaceae;g__Rothia 3.11E-06 0.447 pos 7.4 0.28
Genus k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__ 3.11E-06 -0.447 neg 8.3 0.09
Genus k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;o__Desulfovibrionales;f__Desulfovibrionaceae;g__Desulfovibrio 2.98E-04 0.362 pos 0.32 0.9
Genus k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Lautropia 2.88E-03 0.318 pos Not detected Not detected
Genus k__Bacteria;p__Cyanobacteria;c__4C0d-2;o__YS2;f__;g__ 3.34E-03 -0.299 neg Not detected Not detected
Genus k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Bifidobacteriales;f__Bifidobacteriaceae;g__Scardovia 4.36E-03 0.299 pos Not detected Not detected
Genus k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__Ruminococcus 4.36E-03 -0.274 neg 0.23 0.46
Genus k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae;g__Haemophilus 4.36E-03 0.287 pos 0.03 0.19
Genus k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;Other 1.14E-02 -0.277 neg NA NA
Genus k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__Holdemania 1.65E-02 -0.259 neg -0.013 0.43
Genus k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;Other;Other 1.88E-02 0.235 pos 0.25 0.2
Genus k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Carnobacteriaceae;g__Granulicatella 1.88E-02 0.251 pos 0.1 0.02
Genus k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__ 1.88E-02 -0.194 neg 1.55 0.18
Genus k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Mitsuokella 1.88E-02 0.256 pos Not detected Not detected
Genus k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Cardiobacteriales;f__Cardiobacteriaceae;g__Cardiobacterium 1.88E-02 0.248 pos Not detected Not detected
Genus k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Oribacterium 1.96E-02 0.245 pos Not detected Not detected
Genus k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__Catenibacterium 1.96E-02 0.249 pos -0.011 0.37
Genus k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Selenomonas 2.33E-02 0.240 pos Not detected Not detected
Genus k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Oxalobacteraceae;g__Janthinobacterium 2.62E-02 0.234 pos NA NA
Genus k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae;g__ 2.62E-02 0.234 pos Not detected Not detected
Genus k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;Other;Other 3.11E-02 0.225 pos Not detected Not detected
Genus k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;Other 3.18E-02 0.218 pos 0.043 0.09
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Genus k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Porphyromonadaceae;g__Parabacteroides 3.27E-02 0.209 pos -0.46 0.94
Genus k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus 3.54E-02 0.211 pos -0.26 0.24
Genus k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae;g__Actinobacillus 3.54E-02 0.220 pos Not detected Not detected
Genus k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__;g__ 3.68E-02 -0.168 neg 3 0.57
Genus k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae;g__Corynebacterium 3.82E-02 0.209 pos Not detected Not detected
Genus k__Bacteria;p__Actinobacteria;c__Coriobacteriia;o__Coriobacteriales;f__Coriobacteriaceae;Other 4.18E-02 -0.190 neg 0.05 0.56
Genus k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Leuconostocaceae;g__Weissella 4.18E-02 0.211 pos Not detected Not detected
Genus k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Veillonella 4.18E-02 0.201 pos 0.44 0.13
Genus k__Bacteria;p__Fusobacteria;c__Fusobacteriia;o__Fusobacteriales;f__Leptotrichiaceae;g__Leptotrichia 4.70E-02 0.204 pos Not detected Not detected
Fam-
ily

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae 7.59E-07 0.458 pos 7.1 0.03

Fam-
ily

k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Micrococcaceae 1.05E-06 0.464 pos 8.4 0.08

Fam-
ily

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae 4.21E-04 -0.346 neg 0.22 0.08

Fam-
ily

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae 7.45E-04 -0.260 neg -0.04 0.86

Fam-
ily

k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae 7.45E-04 -0.331 neg -0.03 0.84

Fam-
ily

k__Bacteria;p__Cyanobacteria;c__4C0d-2;o__YS2;f__ 2.15E-03 -0.299 neg Not detected Not detected

Fam-
ily

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae 3.34E-03 0.286 pos 0.23 0.06

Fam-
ily

k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Burkholderiaceae 4.50E-03 0.289 pos 0.075 <0.01

Fam-
ily

k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;Other 1.76E-02 0.235 pos 0.1 0.81

Fam-
ily

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Cardiobacteriales;f__Cardiobacteriaceae 1.76E-02 0.248 pos Not detected Not detected
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Fam-
ily

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Carnobacteriaceae 2.97E-02 0.231 pos 1.6 0.01

Fam-
ily

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;Other 3.28E-02 0.225 pos 0.22 0.16

Fam-
ily

k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae 4.07E-02 0.209 pos 0.2 0.02

Fam-
ily

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae 4.07E-02 0.207 pos Not detected Not detected

Fam-
ily

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__ 4.07E-02 -0.168 neg 0.05 0.57

Order k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales 8.52E-08 -0.400 neg 0.23 0.87
Order k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales 1.25E-06 0.434 pos -0.037 0.22
Order k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales 6.29E-04 0.325 pos 8.8 0.09
Order k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales 6.29E-04 -0.331 neg 2.7 0.84
Order k__Bacteria;p__Cyanobacteria;c__4C0d-2;o__YS2 2.04E-03 -0.299 neg Not detected Not detected
Order k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales 3.09E-03 0.286 pos -0.031 0.19
Order k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Cardiobacteriales 1.99E-02 0.248 pos Not detected Not detected
Order k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales 3.71E-02 0.203 pos 0.23 0.79
Class k__Bacteria;p__Firmicutes;c__Clostridia 3.63E-08 -0.400 neg 0.034 0.87
Class k__Bacteria;p__Firmicutes;c__Bacilli 1.40E-06 0.415 pos -0.037 0.22
Class k__Bacteria;p__Firmicutes;c__Erysipelotrichi 3.39E-04 -0.331 neg 8.31 0.84
Class k__Bacteria;p__Cyanobacteria;c__4C0d-2 1.09E-03 -0.299 neg Not detected Not detected
Class k__Bacteria;p__Bacteroidetes;c__Bacteroidia 2.54E-02 0.203 pos -0.031 0.79
Class k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria 2.63E-02 0.212 pos 0.034 0.2
Phy-
lum

k__Bacteria;p__Firmicutes 5.82E-08 -0.383 neg -0.07 0.71

Phy-
lum

k__Bacteria;p__Cyanobacteria 2.67E-03 -0.271 neg 0.055 0.37
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Phy-
lum

k__Bacteria;p__Bacteroidetes 1.12E-02 0.203 pos 0.031 0.79
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Table B.5: S5. Significant results frommixed effects modelling of PPI and OTU and taxa associations in the subset of individuals with complete covariate data and no antibiotic use
within the previous month.

Level FDR q-
value
association
with PPI
use

Coefficient
with PPI
use

Taxonomy

OTU-4424239 0.0002 0.5640 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Streptococcaceae; g__Streptococcus; s__
OTU-553611 0.0002 0.5687 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Bifidobacteriales; f__Bifidobacteriaceae; g__Bifidobacterium; s__
OTU-519746 0.0016 -0.5189 k__Bacteria; p__Firmicutes; c__Erysipelotrichi; o__Erysipelotrichales; f__Erysipelotrichaceae; g__; s__
OTU-New.0.CleanUp.ReferenceOTU24722 0.0018 0.5045 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
OTU-4309301 0.0023 0.5051 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Streptococcaceae; g__Streptococcus; s__
OTU-4439603 0.0023 0.4906 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Streptococcaceae; g__Streptococcus; s__
OTU-3943182 0.0079 0.4618 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
OTU-191355 0.0097 -0.4314 k__Bacteria; p__Firmicutes; c__Erysipelotrichi; o__Erysipelotrichales; f__Erysipelotrichaceae; g__; s__
OTU-New.0.CleanUp.ReferenceOTU20294 0.0142 0.4267 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Porphyromonadaceae; g__Parabacteroides; s__distasonis
OTU-186352 0.0193 0.4162 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
OTU-3583645 0.0193 0.4391 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
OTU-563572 0.0193 -0.4200 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__
OTU-New.0.CleanUp.ReferenceOTU17128 0.0217 0.4121 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
OTU-New.0.CleanUp.ReferenceOTU25028 0.0217 0.4088 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__uniformis
OTU-New.0.ReferenceOTU8 0.0217 0.4092 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
OTU-New.0.CleanUp.ReferenceOTU2179 0.0312 -0.3912 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__; g__; s__
OTU-184037 0.0376 -0.3857 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__
OTU-3472078 0.0376 0.3970 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
OTU-4425214 0.0376 0.3723 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Streptococcaceae; g__Streptococcus; s__
OTU-4477696 0.0376 0.3856 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pasteurellales; f__Pasteurellaceae; g__Haemophilus; s__parainfluenzae
OTU-New.0.CleanUp.ReferenceOTU5423 0.0376 0.3906 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__fragilis
OTU-New.0.ReferenceOTU272 0.0413 0.3795 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
OTU-369635 0.0465 -0.3731 k__Bacteria; p__Firmicutes; c__Erysipelotrichi; o__Erysipelotrichales; f__Erysipelotrichaceae; g__; s__
OTU-New.7.CleanUp.ReferenceOTU10733 0.0465 0.3871 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides
OTU-183619 0.0467 0.3732 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
OTU-185607 0.0467 -0.3766 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__
OTU-190502 0.0467 0.3591 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__
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OTU-190913 0.0467 0.3584 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
OTU-191913 0.0467 -0.3727 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__
OTU-193233 0.0467 0.3777 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__uniformis
OTU-4332078 0.0467 0.3316 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Clostridiaceae; g__; s__
OTU-4401580 0.0467 0.3765 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
OTU-4439360 0.0467 0.3655 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
OTU-4455767 0.0467 0.3511 k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Streptococcaceae; g__Streptococcus; s__
OTU-New.0.CleanUp.ReferenceOTU20273 0.0467 0.3575 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Porphyromonadaceae; g__Parabacteroides; s__
OTU-New.0.CleanUp.ReferenceOTU34218 0.0467 -0.3788 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__
OTU-New.0.CleanUp.ReferenceOTU44600 0.0467 0.3630 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Porphyromonadaceae; g__Parabacteroides; s__
OTU-New.0.ReferenceOTU220 0.0467 0.3616 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Porphyromonadaceae; g__Parabacteroides; s__
OTU-184342 0.0472 -0.3597 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__
OTU-New.0.ReferenceOTU286 0.0472 -0.3436 k__Bacteria; p__Firmicutes; c__Erysipelotrichi; o__Erysipelotrichales; f__Erysipelotrichaceae; g__; s__
OTU-175535 0.0485 0.3650 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
OTU-4433947 0.0485 0.3659 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__
SPECIES 0.0000 -0.5954 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__;s__
SPECIES 0.0000 0.5811 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Micrococcaceae;g__Rothia;s__mucilaginosa
SPECIES 0.0001 0.5434 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus;s__anginosus
SPECIES 0.0002 -0.5193 k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__;s__
SPECIES 0.0003 0.4684 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus;s__
SPECIES 0.0045 0.4316 k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Lautropia;s__
SPECIES 0.0048 0.4126 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae;g__Haemophilus;s__parainfluenzae
SPECIES 0.0062 0.3999 k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;o__Desulfovibrionales;f__Desulfovibrionaceae;g__Desulfovibrio;s__
SPECIES 0.0121 0.3689 k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__Bulleidia;s__p-1630-c5
SPECIES 0.0179 0.3471 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus;Other
SPECIES 0.0179 0.3513 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;Other;Other
SPECIES 0.0235 0.3608 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Bifidobacteriales;f__Bifidobacteriaceae;g__Bifidobacterium;s__
SPECIES 0.0235 0.3368 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Enterococcaceae;g__Enterococcus;s__
SPECIES 0.0280 0.3286 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;Other;Other;Other
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SPECIES 0.0280 0.3306 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;Other;Other;Other
SPECIES 0.0280 0.3347 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus;s__
SPECIES 0.0397 -0.3212 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;s__
SPECIES 0.0397 0.3217 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Veillonella;s__parvula
SPECIES 0.0397 0.3190 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae;g__Haemophilus;Other
SPECIES 0.0400 0.3077 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Oribacterium;s__
SPECIES 0.0400 0.2963 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;g__Trabulsiella;Other
SPECIES 0.0435 -0.3086 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Coprococcus;s__
SPECIES 0.0435 0.2705 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Cardiobacteriales;f__Cardiobacteriaceae;g__Cardiobacterium;s__
SPECIES 0.0470 0.2984 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Veillonella;s__dispar
GENUS 0.0000 -0.5954 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__
GENUS 0.0002 0.4980 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus
GENUS 0.0002 -0.5193 k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__
GENUS 0.0003 0.4857 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Micrococcaceae;g__Rothia
GENUS 0.0028 0.4316 k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Lautropia
GENUS 0.0028 0.4186 k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;o__Desulfovibrionales;f__Desulfovibrionaceae;g__Desulfovibrio
GENUS 0.0033 0.4101 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae;g__Haemophilus
GENUS 0.0082 0.4066 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Mitsuokella
GENUS 0.0135 0.3513 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;Other
GENUS 0.0234 0.3286 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;Other;Other
GENUS 0.0234 -0.3417 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia
GENUS 0.0236 0.3306 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;Other;Other
GENUS 0.0354 0.3077 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Oribacterium
GENUS 0.0354 -0.2897 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__Ruminococcus
GENUS 0.0354 0.2963 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;g__Trabulsiella
GENUS 0.0390 -0.3048 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Coprococcus
GENUS 0.0390 0.2705 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Cardiobacteriales;f__Cardiobacteriaceae;g__Cardiobacterium
FAMILY 0.0002 0.4918 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae
FAMILY 0.0002 -0.5051 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae
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FAMILY 0.0002 0.4891 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Micrococcaceae
FAMILY 0.0029 0.4143 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae
FAMILY 0.0030 0.4244 k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Burkholderiaceae
FAMILY 0.0063 -0.3902 k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae
FAMILY 0.0211 0.3286 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;Other
FAMILY 0.0211 0.3306 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;Other
FAMILY 0.0389 0.3034 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Enterococcaceae
FAMILY 0.0389 0.2705 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Cardiobacteriales;f__Cardiobacteriaceae
ORDER 0.0002 0.4712 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales
ORDER 0.0002 -0.3957 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales
ORDER 0.0006 0.4222 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales
ORDER 0.0009 0.4143 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales
ORDER 0.0023 -0.3902 k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales
ORDER 0.0195 0.2705 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Cardiobacteriales
ORDER 0.0411 0.2602 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales
ORDER 0.0411 0.2787 k__Bacteria;p__Proteobacteria;c__Epsilonproteobacteria;o__Campylobacterales
ORDER 0.0484 0.2606 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Bifidobacteriales
ORDER 0.0484 0.2518 k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;Other
CLASS 0.0002 0.4712 k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales
CLASS 0.0002 -0.3957 k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales
CLASS 0.0006 0.4222 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales
CLASS 0.0009 0.4143 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales
CLASS 0.0023 -0.3902 k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales
CLASS 0.0195 0.2705 k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Cardiobacteriales
CLASS 0.0411 0.2602 k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales
CLASS 0.0411 0.2787 k__Bacteria;p__Proteobacteria;c__Epsilonproteobacteria;o__Campylobacterales
CLASS 0.0484 0.2606 k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Bifidobacteriales
CLASS 0.0484 0.2518 k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;Other
PHYLUM 0.0000 -0.3935 k__Bacteria;p__Firmicutes
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PHYLUM 0.0007 -0.2920 k__Bacteria;p__Cyanobacteria
PHYLUM 0.0011 0.2602 k__Bacteria;p__Bacteroidetes
PHYLUM 0.0050 -0.1445 k__Bacteria;p__Lentisphaerae
PHYLUM 0.0050 0.1579 k__Bacteria;p__Proteobacteria
PHYLUM 0.0050 -0.1643 k__Bacteria;p__Verrucomicrobia
PHYLUM 0.0050 0.1499 k__Bacteria;p__Actinobacteria
PHYLUM 0.0068 0.1096 Unassigned;Other
PHYLUM 0.0068 0.1114 k__Bacteria;p__Fusobacteria
PHYLUM 0.0070 -0.0933 k__Archaea;p__Euryarchaeota
PHYLUM 0.0070 0.0952 k__Bacteria;p__TM7
PHYLUM 0.0088 0.0655 k__Bacteria;p__Synergistetes
PHYLUM 0.0101 -0.0428 k__Bacteria;Other
PHYLUM 0.0113 0.0213 k__Bacteria;p__Tenericutes
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Root;Other;Other;Other;Other gut
Root;p__Acidobacteria;c__;o__;f__ NA
Root;p__Acidobacteria;c__Acidobacteria;o__Acidobacteriales;f__ NA
Root;p__Acidobacteria;c__Chloracidobacteria;o__;f__ NA
Root;p__Acidobacteria;c__Holophagae;o__Holophagales;f__Holophagaceae NA
Root;p__Acidobacteria;c__iii1-8;o__DS-18;f__ NA
Root;p__Acidobacteria;c__Solibacteres;o__Solibacterales;f__Solibacteraceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__;f__ NA
Root;p__Actinobacteria;c__Actinobacteria;o__Acidimicrobiales;f__ NA
Root;p__Actinobacteria;c__Actinobacteria;o__Acidimicrobiales;f__CL500-29 NA
Root;p__Actinobacteria;c__Actinobacteria;o__Acidimicrobiales;f__EB1017 NA
Root;p__Actinobacteria;c__Actinobacteria;o__Acidimicrobiales;f__Iamiaceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__Acidimicrobiales;f__Microthrixaceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__Acidimicrobiales;Other NA
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__ NA
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__ACK-M1 NA
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Actinomycetaceae mouth/throat
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Actinosynnemataceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Bogoriellaceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Brevibacteriaceae skin/nose
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Cellulomonadaceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae skin/nose
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Dermabacteraceae skin/nose
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Dermacoccaceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Dietziaceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Geodermatophilaceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Gordoniaceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Intrasporangiaceae skin/nose
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Jonesiaceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Kineosporiaceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Microbacteriaceae skin/nose
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Micrococcaceae mouth/throat
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Micromonosporaceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Mycobacteriaceae skin/nose,

vagina
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Nakamurellaceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Nocardiaceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Nocardioidaceae skin/nose
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Promicromonosporaceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Propionibacteriaceae skin/nose
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Pseudonocardiaceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Streptomycetaceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Williamsiaceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Yaniellaceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;Other skin/nose
Root;p__Actinobacteria;c__Actinobacteria;o__Bifidobacteriales;f__ gut
Root;p__Actinobacteria;c__Actinobacteria;o__Bifidobacteriales;f__Bifidobacteriaceae vagina
Root;p__Actinobacteria;c__Actinobacteria;o__Coriobacteriales;f__ gut
Root;p__Actinobacteria;c__Actinobacteria;o__Coriobacteriales;f__Coriobacteriaceae mouth/throat
Root;p__Actinobacteria;c__Actinobacteria;o__Coriobacteriales;Other NA
Root;p__Actinobacteria;c__Actinobacteria;o__koll13;f__ NA
Root;p__Actinobacteria;c__Actinobacteria;o__MC47;f__ NA
Root;p__Actinobacteria;c__Actinobacteria;o__Rubrobacterales;f__Rubrobacteraceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__Solirubrobacterales;f__ NA
Root;p__Actinobacteria;c__Actinobacteria;o__Solirubrobacterales;f__Patulibacteraceae NA
Root;p__Actinobacteria;c__Actinobacteria;o__Solirubrobacterales;f__Solirubrobacteraceae NA
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Root;p__Actinobacteria;c__Actinobacteria;o__Solirubrobacterales;Other NA
Root;p__Armatimonadetes;c__5B-18;o__;f__ NA
Root;p__Armatimonadetes;c__Armatimonadia;o__Armatimonadales;f__Armatimonadaceae NA
Root;p__Bacteroidetes;c__;o__;f__ NA
Root;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__ gut
Root;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae gut
Root;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Porphyromonadaceae gut,

mouth/throat
Root;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Prevotellaceae mouth/throat
Root;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Rikenellaceae gut
Root;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;Other gut
Root;p__Bacteroidetes;c__Flavobacteria;o__;f__ NA
Root;p__Bacteroidetes;c__Flavobacteria;o__Flavobacteriales;f__Blattabacteriaceae NA
Root;p__Bacteroidetes;c__Flavobacteria;o__Flavobacteriales;f__Cryomorphaceae NA
Root;p__Bacteroidetes;c__Flavobacteria;o__Flavobacteriales;f__Flavobacteriaceae mouth/throat
Root;p__Bacteroidetes;c__Flavobacteria;o__Flavobacteriales;Other NA
Root;p__Bacteroidetes;c__Sphingobacteria;o__Sphingobacteriales;f__ skin/nose
Root;p__Bacteroidetes;c__Sphingobacteria;o__Sphingobacteriales;f__Cyclobacteriaceae NA
Root;p__Bacteroidetes;c__Sphingobacteria;o__Sphingobacteriales;f__Flammeovirgaceae NA
Root;p__Bacteroidetes;c__Sphingobacteria;o__Sphingobacteriales;f__Flexibacteraceae skin/nose
Root;p__Bacteroidetes;c__Sphingobacteria;o__Sphingobacteriales;f__Saprospiraceae NA
Root;p__Bacteroidetes;c__Sphingobacteria;o__Sphingobacteriales;f__Sphingobacteriaceae NA
Root;p__Bacteroidetes;c__Sphingobacteria;o__Sphingobacteriales;Other NA
Root;p__Bacteroidetes;Other;Other;Other mouth/throat
Root;p__BRC1;c__PRR-11;o__;f__ NA
Root;p__Chlorobi;c__OPB56;o__;f__ NA
Root;p__Chloroflexi;c__Anaerolineae;o__A31;f__S47 NA
Root;p__Chloroflexi;c__Anaerolineae;o__A4b;f__ NA
Root;p__Chloroflexi;c__Anaerolineae;o__Caldilineales;f__ NA
Root;p__Chloroflexi;c__Anaerolineae;o__Caldilineales;f__Caldilineaceae NA
Root;p__Chloroflexi;c__Anaerolineae;Other;Other NA
Root;p__Chloroflexi;c__Chloroflexi;Other;Other NA
Root;p__Chloroflexi;c__SOGA31;o__;f__ NA
Root;p__Chloroflexi;c__Thermomicrobia;o__HN1-15;f__ NA
Root;p__Chloroflexi;Other;Other;Other NA
Root;p__Cyanobacteria;c__4C0d-2;o__mle1-12;f__ NA
Root;p__Cyanobacteria;c__4C0d-2;o__YS2;f__ NA
Root;p__Cyanobacteria;c__Chloroplast;o__Chlorophyta;f__Chlamydomonadaceae NA
Root;p__Cyanobacteria;c__Chloroplast;o__Chlorophyta;f__Trebouxiophyceae NA
Root;p__Cyanobacteria;c__Chloroplast;o__Chlorophyta;Other NA
Root;p__Cyanobacteria;c__Chloroplast;o__Streptophyta;f__ skin/nose
Root;p__Cyanobacteria;c__Nostocophycideae;o__Nostocales;f__Nostocaceae NA
Root;p__Cyanobacteria;c__Nostocophycideae;o__Nostocales;f__Rivulariaceae NA
Root;p__Cyanobacteria;c__Nostocophycideae;o__Nostocales;Other NA
Root;p__Cyanobacteria;c__Oscillatoriophycideae;o__;f__ NA
Root;p__Cyanobacteria;c__Oscillatoriophycideae;o__Chroococcales;f__Xenococcaceae NA
Root;p__Cyanobacteria;c__Oscillatoriophycideae;Other;Other NA
Root;p__Cyanobacteria;c__Synechococcophycideae;o__Pseudanabaenales;f__Pseudanabaenaceae NA
Root;p__Cyanobacteria;Other;Other;Other NA
Root;p__Elusimicrobia;c__Elusimicrobia;o__Elusimicrobiales;f__ NA
Root;p__Firmicutes;c__Bacilli;o__Bacillales;f__Alicyclobacillaceae skin/nose
Root;p__Firmicutes;c__Bacilli;o__Bacillales;f__Bacillaceae skin/nose
Root;p__Firmicutes;c__Bacilli;o__Bacillales;f__Listeriaceae NA
Root;p__Firmicutes;c__Bacilli;o__Bacillales;f__Paenibacillaceae NA
Root;p__Firmicutes;c__Bacilli;o__Bacillales;f__Planococcaceae NA
Root;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae skin/nose
Root;p__Firmicutes;c__Bacilli;o__Bacillales;f__Thermoactinomycetaceae NA
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Root;p__Firmicutes;c__Bacilli;o__Bacillales;Other skin/nose
Root;p__Firmicutes;c__Bacilli;o__Exiguobacterales;f__Exiguobacteraceae NA
Root;p__Firmicutes;c__Bacilli;o__Gemellales;f__Gemellaceae mouth/throat
Root;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Aerococcaceae mouth/throat
Root;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Carnobacteriaceae mouth/throat
Root;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Enterococcaceae NA
Root;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae vagina
Root;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Leuconostocaceae NA
Root;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae mouth/throat
Root;p__Firmicutes;c__Bacilli;o__Lactobacillales;Other vagina
Root;p__Firmicutes;c__Bacilli;o__Turicibacterales;f__Turicibacteraceae gut
Root;p__Firmicutes;c__Bacilli;Other;Other vagina
Root;p__Firmicutes;c__Clostridia;o__Clostridiales;f__ gut
Root;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Catabacteriaceae gut
Root;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Clostridiaceae gut
Root;p__Firmicutes;c__Clostridia;o__Clostridiales;f__ClostridialesFamilyXI.IncertaeSedis mouth/throat,

skin/nose,
vagina

Root;p__Firmicutes;c__Clostridia;o__Clostridiales;f__ClostridialesFamilyXIII.IncertaeSedis mouth/throat
Root;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Dehalobacteriaceae gut
Root;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Eubacteriaceae mouth/throat
Root;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae gut,

mouth/throat
Root;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptococcaceae mouth/throat
Root;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptostreptococcaceae mouth/throat
Root;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae gut
Root;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Symbiobacteriaceae NA
Root;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae mouth/throat
Root;p__Firmicutes;c__Clostridia;o__Clostridiales;Other gut
Root;p__Firmicutes;c__Clostridia;o__OPB54;f__ NA
Root;p__Firmicutes;c__Clostridia;Other;Other NA
Root;p__Firmicutes;Other;Other;Other gut
Root;p__Fusobacteria;c__Fusobacteria;o__Fusobacteriales;f__Fusobacteriaceae mouth/throat
Root;p__Gemmatimonadetes;c__Gemmatimonadetes;o__Gemmatimonadales;f__ NA
Root;p__Gemmatimonadetes;c__Gemmatimonadetes;o__Gemmatimonadales;f__Gemmatimonadaceae NA
Root;p__GN02;c__VC12-cl04;o__;f__ mouth/throat
Root;p__GN02;Other;Other;Other NA
Root;p__Lentisphaerae;c__Lentisphaerae;o__Victivallales;f__Victivallaceae gut
Root;p__Lentisphaerae;c__Lentisphaerae;o__Victivallales;Other NA
Root;p__Nitrospirae;c__Nitrospira;o__Nitrospirales;f__Nitrospiraceae NA
Root;p__Planctomycetes;c__Phycisphaerae;o__;f__ NA
Root;p__Planctomycetes;c__Phycisphaerae;o__Phycisphaerales;f__ NA
Root;p__Planctomycetes;c__Planctomycea;o__Gemmatales;f__Gemmataceae NA
Root;p__Planctomycetes;c__Planctomycea;o__Gemmatales;f__Isosphaeraceae NA
Root;p__Planctomycetes;c__Planctomycea;o__Pirellulales;f__ NA
Root;p__Planctomycetes;c__Planctomycea;o__Pirellulales;f__Pirellulaceae NA
Root;p__Planctomycetes;c__Planctomycea;o__Pirellulales;Other NA
Root;p__Planctomycetes;c__Planctomycea;o__Planctomycetales;f__Planctomycetaceae NA
Root;p__Proteobacteria;c__Alphaproteobacteria;o__;f__ NA
Root;p__Proteobacteria;c__Alphaproteobacteria;o__Caulobacterales;f__Caulobacteraceae NA
Root;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Bradyrhizobiaceae NA
Root;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Brucellaceae NA
Root;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Methylobacteriaceae NA
Root;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Methylocystaceae NA
Root;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;Other NA
Root;p__Proteobacteria;c__Alphaproteobacteria;o__Rhodobacterales;f__Rhodobacteraceae NA
Root;p__Proteobacteria;c__Alphaproteobacteria;o__Rhodospirillales;f__Acetobacteraceae NA

Continued on next page
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Table B.6 – continued from previous page
HMP Family HMP Site

Specificity
(NA = None)

Root;p__Proteobacteria;c__Alphaproteobacteria;o__Rhodospirillales;f__Rhodospirillaceae NA
Root;p__Proteobacteria;c__Alphaproteobacteria;o__Rickettsiales;f__ NA
Root;p__Proteobacteria;c__Alphaproteobacteria;o__Rickettsiales;f__Rickettsiaceae NA
Root;p__Proteobacteria;c__Alphaproteobacteria;o__Sphingomonadales;f__Sphingomonadaceae skin/nose
Root;p__Proteobacteria;c__Alphaproteobacteria;Other;Other NA
Root;p__Proteobacteria;c__Betaproteobacteria;o__;f__ NA
Root;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__ skin/nose
Root;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Alcaligenaceae gut
Root;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Burkholderiaceae mouth/throat,

skin/nose
Root;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Comamonadaceae skin/nose
Root;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Oxalobacteraceae vagina
Root;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;Other mouth/throat
Root;p__Proteobacteria;c__Betaproteobacteria;o__Gallionellales;f__Gallionellaceae NA
Root;p__Proteobacteria;c__Betaproteobacteria;o__Hydrogenophilales;f__Hydrogenophilaceae NA
Root;p__Proteobacteria;c__Betaproteobacteria;o__Methylophilales;f__Methylophilaceae NA
Root;p__Proteobacteria;c__Betaproteobacteria;o__Neisseriales;f__Neisseriaceae mouth/throat,

skin/nose
Root;p__Proteobacteria;c__Betaproteobacteria;o__Nitrosomonadales;f__Nitrosomonadaceae NA
Root;p__Proteobacteria;c__Betaproteobacteria;o__Rhodocyclales;f__ NA
Root;p__Proteobacteria;c__Betaproteobacteria;o__Rhodocyclales;f__Rhodocyclaceae NA
Root;p__Proteobacteria;c__Betaproteobacteria;Other;Other gut,

mouth/throat
Root;p__Proteobacteria;c__Deltaproteobacteria;o__Bdellovibrionales;f__Bdellovibrionaceae NA
Root;p__Proteobacteria;c__Deltaproteobacteria;o__CTD005-82B-02;f__ NA
Root;p__Proteobacteria;c__Deltaproteobacteria;o__Desulfobacterales;f__Desulfobulbaceae NA
Root;p__Proteobacteria;c__Deltaproteobacteria;o__Desulfovibrionales;f__Desulfovibrionaceae gut
Root;p__Proteobacteria;c__Deltaproteobacteria;o__Desulfuromonadales;f__Geobacteraceae NA
Root;p__Proteobacteria;c__Deltaproteobacteria;o__Desulfuromonadales;Other NA
Root;p__Proteobacteria;c__Deltaproteobacteria;o__MIZ46;f__ NA
Root;p__Proteobacteria;c__Deltaproteobacteria;o__Myxococcales;f__ NA
Root;p__Proteobacteria;c__Deltaproteobacteria;o__Myxococcales;f__Cystobacteraceae NA
Root;p__Proteobacteria;c__Deltaproteobacteria;o__Myxococcales;f__Haliangiaceae NA
Root;p__Proteobacteria;c__Deltaproteobacteria;o__Myxococcales;f__Myxococcaceae NA
Root;p__Proteobacteria;c__Deltaproteobacteria;o__Myxococcales;f__Polyangiaceae NA
Root;p__Proteobacteria;c__Deltaproteobacteria;o__Myxococcales;Other NA
Root;p__Proteobacteria;c__Deltaproteobacteria;o__Syntrophobacterales;f__Syntrophobacteraceae NA
Root;p__Proteobacteria;c__Deltaproteobacteria;Other;Other NA
Root;p__Proteobacteria;c__Epsilonproteobacteria;o__Campylobacterales;f__Campylobacteraceae mouth/throat
Root;p__Proteobacteria;c__Epsilonproteobacteria;o__Campylobacterales;f__Helicobacteraceae NA
Root;p__Proteobacteria;c__Epsilonproteobacteria;o__Campylobacterales;Other NA
Root;p__Proteobacteria;c__Gammaproteobacteria;o__Aeromonadales;f__Aeromonadaceae NA
Root;p__Proteobacteria;c__Gammaproteobacteria;o__Aeromonadales;f__Succinivibrionaceae NA
Root;p__Proteobacteria;c__Gammaproteobacteria;o__Alteromonadales;f__Shewanellaceae NA
Root;p__Proteobacteria;c__Gammaproteobacteria;o__Cardiobacteriales;f__Cardiobacteriaceae mouth/throat
Root;p__Proteobacteria;c__Gammaproteobacteria;o__Chromatiales;f__ NA
Root;p__Proteobacteria;c__Gammaproteobacteria;o__Chromatiales;f__Ectothiorhodospiraceae NA
Root;p__Proteobacteria;c__Gammaproteobacteria;o__Chromatiales;f__Sinobacteraceae NA
Root;p__Proteobacteria;c__Gammaproteobacteria;o__Chromatiales;Other NA
Root;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae skin/nose
Root;p__Proteobacteria;c__Gammaproteobacteria;o__Legionellales;f__Coxiellaceae NA
Root;p__Proteobacteria;c__Gammaproteobacteria;o__Legionellales;f__Legionellaceae NA
Root;p__Proteobacteria;c__Gammaproteobacteria;o__Oceanospirillales;f__Alcanivoracaceae NA
Root;p__Proteobacteria;c__Gammaproteobacteria;o__Oceanospirillales;f__Alteromonadaceae NA
Root;p__Proteobacteria;c__Gammaproteobacteria;o__Oceanospirillales;f__Halomonadaceae NA
Root;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae mouth/throat

Continued on next page
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Table B.6 – continued from previous page
HMP Family HMP Site

Specificity
(NA = None)

Root;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Moraxellaceae mouth/throat,
skin/nose

Root;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Pseudomonadaceae skin/nose,
vagina

Root;p__Proteobacteria;c__Gammaproteobacteria;o__Thiotrichales;f__ NA
Root;p__Proteobacteria;c__Gammaproteobacteria;o__Vibrionales;f__Vibrionaceae NA
Root;p__Proteobacteria;c__Gammaproteobacteria;o__Xanthomonadales;f__Sinobacteraceae NA
Root;p__Proteobacteria;c__Gammaproteobacteria;o__Xanthomonadales;f__Xanthomonadaceae NA
Root;p__Proteobacteria;c__Gammaproteobacteria;Other;Other NA
Root;p__Proteobacteria;Other;Other;Other NA
Root;p__SC3;c__;o__;f__ NA
Root;p__SC4;c__;o__;f__ NA
Root;p__SPAM;c__0319-6G9;o__;f__ NA
Root;p__Spirochaetes;c__Leptospirae;o__Leptospirales;f__Leptospiraceae NA
Root;p__Spirochaetes;c__Spirochaetes;o__Spirochaetales;f__Spirochaetaceae mouth/throat
Root;p__Spirochaetes;Other;Other;Other mouth/throat
Root;p__SR1;c__;o__;f__ mouth/throat
Root;p__Synergistetes;c__Synergistia;o__Synergistales;f__Dethiosulfovibrionaceae mouth/throat
Root;p__Synergistetes;c__Synergistia;o__Synergistales;Other NA
Root;p__Tenericutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae gut,

mouth/throat
Root;p__Tenericutes;c__Erysipelotrichi;o__Erysipelotrichales;f__vadinHA31 NA
Root;p__Tenericutes;c__ML615J-28;o__;f__ gut
Root;p__Tenericutes;c__Mollicutes;o__Acholeplasmatales;f__Acholeplasmataceae NA
Root;p__Tenericutes;c__Mollicutes;o__Anaeroplasmatales;f__Anaeroplasmataceae NA
Root;p__Tenericutes;c__Mollicutes;o__Mycoplasmatales;f__Mycoplasmataceae vagina
Root;p__Tenericutes;c__Mollicutes;o__RF39;f__ gut
Root;p__Tenericutes;c__Mollicutes;Other;Other NA
Root;p__Tenericutes;Other;Other;Other NA
Root;p__Thermi;c__Deinococci;o__Deinococcales;f__Deinococcaceae skin/nose
Root;p__TM6;c__SJA-4;o__;f__ NA
Root;p__TM7;c__TM7-1;o__;f__ NA
Root;p__TM7;c__TM7-3;o__CW040;f__ mouth/throat
Root;p__TM7;c__TM7-3;o__CW040;f__F16 mouth/throat
Root;p__TM7;c__TM7-3;o__CW040;Other NA
Root;p__TM7;c__TM7-3;o__EW055;f__ mouth/throat,

skin/nose
Root;p__TM7;c__TM7-3;o__I025;f__Rs-045 mouth/throat
Root;p__TM7;c__TM7-3;Other;Other mouth/throat
Root;p__TM7;Other;Other;Other NA
Root;p__Verrucomicrobia;c__Opitutae;o__Opitutales;f__Opitutaceae NA
Root;p__Verrucomicrobia;c__Opitutae;o__Puniceicoccales;f__Puniceicoccaceae NA
Root;p__Verrucomicrobia;c__Opitutae;Other;Other NA
Root;p__Verrucomicrobia;c__Spartobacteria;o__Spartobacteriales;f__Spartobacteriaceae NA
Root;p__Verrucomicrobia;c__Verrucomicrobiae;o__Verrucomicrobiales;f__ NA
Root;p__Verrucomicrobia;c__Verrucomicrobiae;o__Verrucomicrobiales;f__Verrucomicrobiaceae gut
Root;p__Verrucomicrobia;Other;Other;Other NA
Root;p__WPS-2;c__;o__;f__ NA

Table B.7: S7. Table showing HMP site definition mappings to the broader categories used in this study.

HMP Body Sub-Site Collapsed Site
Stool Gut
Attached_Keratinized_gingiva Mouth
Buccal_mucosa Mouth
Hard_palate Mouth

Continued on next page
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Table B.7 – continued from previous page
HMP Body Sub-Site Collapsed Site
Saliva Mouth
Subgingival_plaque Mouth
Supragingival_plaque Mouth
Tongue_dorsum Mouth
Anterior_nares Nose
Left_Antecubital_fossa Skin
Left_Retroauricular_crease Skin
Right_Antecubital_fossa Skin
Right_Retroauricular_crease Skin
Palatine_Tonsils Throat
Throat Throat
Mid_vagina Vagina
Posterior_fornix Vagina
Vaginal_introitus Vagina

Figure B.1: S8. Plot of HMP samples by PC1 and PC2 of PCA from relative abundances of all collapsed
families. Samples are coloured by site. This clustering was used to group sites into the four categories:
gut, mouth/throat, skin/nose and vagina.
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Appendix C

Chapter 5: A comparison of methods
to cluster 16S rRNA gene sequences to
OTUs using heritability as ameasure
of quality

The original PDF for the published manuscript accompanying Chapter 5 can be found on
the accompanying digital media.
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Overview	of	clustering	approaches:	
	
UCLUST	De	Novo	(Edgar	2010)	
The	UCLUST	algorithm	developed	by	Robert	Edgar	parses	a	sequence	list	in	the	order	of	the	given	input	(by	default	in	QIIME	this	
order	is	from	most	to	least	abundant).	Starting	from	this	first	sequence	UCLUST	aims	to	generate	centroids,	represented	by	a	
seed	or	centroid	sequence,	from	these	data	such	that	each	centroids	sequence	is	less	than	the	%	identity	threshold	similar	to	all	
the	other	centroid	sequences,	and	that	all	the	sequences	within	the	centroid	are	greater	or	equal	to	the	%	identity	threshold	in	
similarity	to	the	seed	sequence.	%	Identity	is	based	on	global	sequence	alignments	(considering	full	read	lengths	of	all	sequences	
in	the	alignment).	Reads	are	not	discarded,	as	any	not	matching	to	an	existing	centroid	will	become	a	new	centroid.	Identification	
of	%	distances,	is	carried	out	using	a	kmer	based	approach	within	a	algorithm	called	USEARCH.		
	
In	this	algorithm,	all	the	experimental	reads	are	broken	down	into	kmers	or	‘words’	of	a	given	length.	Each	unique	sequence	in	
the	data	set	is	split	into	all	possible	words	of	the	chosen	length	and	a	list	of	all	words	observed	in	the	dataset	is	recorded.	The	
number	of	shared	kmers	between	reads	is	used	as	an	approximate	measure	of	sequence	similarity.	Once	a	threshold	of	word	
similarity	is	met,	those	sequences	within	the	threshold	are	used	in	a	global	alignment	and	sequences	falling	within	the	required	
%	identity	threshold	are	grouped	as	a	cluster.	
	
UCLUST	Reference	
This	algorithm	is	the	same	as	the	UCLUST	de	novo	clustering;	however	instead	of	taking	the	experimental	reads	as	input	for	
centroids	and	for	clustered	sequences,	a	reference	database	of	16S	reads	is	used	to	generate	the	centroids	and	then	the	
experimental	sequencing	reads	are	assigned	to	the	reference	based	centroids.		Reads	not	aligning	to	reference	centroids	are	
discarded.	
	
UCLUST	Open	Reference	(Navas-Molina	et	al.	2013)	
The	open	reference	approach	is	offered	as	part	of	the	QIIME	wrapper.	In	this	approach,	the	reads	are	clustered	against	the	
reference	using	UCLUST	to	generate	typical	closed	reference	OTUs.	The	discarded	reads	not	matching	the	reference	are	then	
subjected	to	UCLUST	de	novo	clustering.	The	resultant	OTU	tables	are	then	merged	to	generate	a	complete	table	with	closed	and	
de	novo	OTUs	with	no	reads	discarded.	
	
VSEARCH	Abundance	&	Distance	Based	(Rognes	et	al.	2016)	
VSEARCH	is	an	open	source	alternative	to	the	commercial	USEARCH	package	(which	incorporates	UCLUST).	The	VSEARCH	
algorithm	follows	a	similar	kmer	based	heuristic	approach	to	generate	centroids	as	USEARCH.	However,	a	VSEARCH	implements	
a	Needleman-Wunsch	dynamic	programming	approach	to	full	global	alignment	distances,	where	as	by	deafult	USEARCH	
calculates	heuristic	distances.		
	
The	abundance-based	approach	differs	from	the	distance	based	where	there	is	a	tie	(a	sequence	is	>	the	%	similar	to	multiple	
groups).	In	the	abundance-based,	it	is	broken	by	placing	the	sequence	into	the	cluster	that	is	most	abundant	(has	the	most	
sequences	in	the	dataset)	and	in	the	distance-based	by	placing	it	into	the	cluster	whose	centroid	shares	the	highest	identity.	
	
SUMACLUST	(Mercier	et	al.	2013)	
SUMACLUST	is	an	open	source	algorithm	that	approaches	clustering	similarly	to	UCLUST.	Sequences	are	parsed	in	input	order	
(defaults	are	from	highest	to	lowest	abundance)	and	used	to	generate	centroids	matching	%	identity	criteria.		Also	considering	
the	abundance	ratio	between	the	query	sequence	and	centroid	sequence	to	determine	if	a	new	cluster	should	be	made	(two	
highly	abundance	sequences	are	more	likely	to	be	biologically	distinct	even	is	very	similar	in	sequence).		Kmer	based	searching	is	
used	to	find	similar	sequences	as	in	other	heuristic	clustering	methods.	SUMACLUST	implements	an	alternate	%	identity	distance	
that	is	measured	as	the	length	of	the	Longest	Common	Subsequence	in	an	alignment	divided	by	the	shortest	alignment	in	the	
region.	
	
Swarm	(Mahé	et	al.	2014)	
Swarm	is	single-linkage	based	de	novo	clustering	algorithm	that	does	not	utilise	a	single	global	identity	threshold	for	clustering.	
When	comparing	sequence	lengths	it	uses	a	kmer	based	filtering	step	to	remove	the	requirement	for	all	pair-wise	distance	
caluclations.	It	then	calculates	Needleman-Wunsch	distances	between	sequences	determined	to	be	similar	based	on	kmer	
comparisons.	The	kmer	threshold	is	set	by	default	to	only	consider	sequences	differing	by	1	nt.	This	identifies	closely	related	
sequences	to	be	clustered.	Swarm	will	start	at	one	sequence	and	group	outwards	adding	sequences	to	a	cluster	then	finding	
sequences	closely	related	to	that	one	and	so	on.	This	creates	chains	of	sequences	linking	together	OTUs.	OTUs	are	defined	by	
walking	the	network	of	links	and	determining	the	abundance	patterns	across	the	network.	Where	drop	offs	in	abundance	are	
identified,	chains	are	broken	to	delineate	OTUs	from	the	complete	structure.	In	this	way	OTU	definitions	are	dynamic,	based	on	
the	local	structure	of	the	sequence	and	abundance	data	at	each	OTU	in	the	data	set.	
	
Minimum	Entropy	Decomposition	(A.	M.	Eren	et	al.	2014)	
Minimum	entropy	decomposition	(MED)	is	a	de	novo	approach	to	clustering	that	does	not	directly	utilise	any	sequence	identity	
measures.	It	is	based	on	the	oligotyping	approach	to	increasing	OTU	resolution	(	a	M.	Eren	et	al.	2014).	All	sequences	in	the	data	
set	must	be	aligned	if	reads	are	of	variable	length	but	can	be	used	directly	if	they	cover	the	same	complete	primer	region.	The	
number	of	A,T,C	and	G	bases	at	each	position	across	all	sequences	is	counted.	Shannon	entropy,	a	measure	of	the	nucleotides	
variability,	is	then	calculated	for	each	position.	The	assumption	is	that	biological	differences	will	be	less	randomly	distributed	
than	sequencing	errors.	The	Shannon	entropy	is	used	as	a	measure	of	the	distribution	of	variation	at	each	position.	The	
sequences	are	then	split	into	smaller	groups	based	on	their	nucleotide	at	the	highest	entropy	position.	This	is	carried	out	
recursively	on	each	split	group,	splitting	into	further	groups	by	their	base	at	each	most	variable	position	until	the	total	entropy	
values	no	longer	meet	predetermined	thresholds.	If	a	group	falls	below	a	minimum	abundance	threshold	its	reads	are	discarded.
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Commands	to	remove	chimeric	sequences	&	trim	data	(run	on	individual	FASTA	files	for	each	sample):	
	
Identify	chimeras	(QIIME):	
identify_chimeric_seqs.py	-i	sample.fasta	-m	usearch61	--suppress_usearch61_ref	--usearch61_xn	7	-o		sample.out	
	
Concatenate	the	resultant	chimera	files	into	one	file	then	remove	chimeras	from	full	data	FASTA	using	(QIIME):	
filter_fasta.py	-f	full.fasta	-o	no_chimeras.fasta	-s	concat_chimeras.txt	–n	
	
Trim	to	length	and	remove	any	with	ambiguous	bases	(Mothur):	
trim.seqs(fasta=no_chimeras.fasta,	maxambig=0,	minlength=252,	maxlength=253)	
	
The	resultant	file	was	then	used	as	the	input.fasta	in	the	steps	below.	
	
	
Commands	to	cluster	OTUs	for	each	method:	
	
QIIME	commands	were	run	using	QIIME	version	1.9.0,	where	VSEARCH	was	required	USEARCH61	was	run	as	a	method	within	
QIIME	and	an	alias	used	to	direct	USEARCH61	calls	to	the	VSEARCH	version	1.9.3	(Linux)	executable.	
	
	VSEARCH	de-replication	was	carried	out	directly	using	VSEARCH	following	a	workflow	provided	by	Greg	Caporaso	at	
https://gist.github.com/gregcaporaso/f3c042e5eb806349fa18	(last	accessed	20th	April	2016).	
	
Minimum	Entropy	Decomposition	(MED)		was	run	using	the	decompose	command	as	part	of	the	oliogtyping	pipeline,	details	of	
which	can	be	found	here:	http://merenlab.org/projects/oligotyping/	
	
Picking	parameters	either	matched	those	of	the	He	et	al.	comparison	(He	et	al.	2015)	where	applicable	or	used	default	values.	
Where	a	reference	was	required	Greengenes	version	13_8	(DeSantis	et	al.	2006).	
	
	
UCLUST	DE	NOVO:	
	
pick_de_novo_otus.py	-i	input.fasta	-o	uclust_denovo/	-p	uclustdenovo.params.txt	
	
uclustdenovo.params.txt:	
pick_otus:otu_picking_method	uclust	
pick_otus:max_accepts	16	
pick_otus:max_rejects	64	
pick_otus:enable_rev_strand_match	True	
	
	
UCLUST	CLOSED	REFERENCE:	
	
pick_closed_reference_otus.py	-i	input.fasta	-o	uclust_closed_gg_13_8/	-r	gg_13_8_otus/rep_set/97_otus.fasta	–p	
closedref.params.uclust.txt	
	
closedref.params.uclust.txt:	
pick_otus:otu_picking_method	uclust_ref	
pick_otus:max_accepts	16	
pick_otus:max_rejects	64	
pick_otus:enable_rev_strand_match	True	
pick_otus:minlen	30	
	
UCLUST	OPEN	REFERENCE:	
	
pick_open_reference_otus.py	-i	input.fasta	-o	uclust_open_gg_13_8/	-m	uclust	-r	gg_13_8_otus/rep_set/97_otus.fasta	-s	1	-p	
openref.params.uclust.txt	--min_otu_size	1	--prefilter_percent_id	0.0	
	
openref.params.uclust.txt:	
pick_otus:max_accepts	16	
pick_otus:max_rejects	64	
pick_otus:enable_rev_strand_match	True	
	
VSEARCH	AGC	97,	98	and	99%:	
pick_de_novo_otus.py	-i	input.fasta	-o	vsearch_AGC_**%	threshold**/	-p	agc.params.**%	Threshold**.txt	
	
agc.params	files:	
pick_otus:otu_picking_method	usearch61	
pick_otus:sizeorder	True	
pick_otus:max_accepts	16	
pick_otus:max_rejects	64	
pick_otus:enable_rev_strand_match	True	
pick_otus:minlen	30	
pick_otus:similarity	0.97**0.98**0.99	
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VSEARCH	DGC	97%:	
pick_de_novo_otus.py	-i	input.fasta	-o	vsearch_DGC_97/	-p	dgc.params.txt	
	
dgc.params.txt:	
pick_otus:otu_picking_method	usearch61	
pick_otus:max_accepts	16	
pick_otus:max_rejects	64	
pick_otus:enable_rev_strand_match	True	
pick_otus:minlen	30	
	
	
	
	
	
SUMACLUST:	
pick_de_novo_otus.py	-i	input.fasta	-o	sumaclust_denovo/	-p	$	sumaclust.params.txt	
	
sumaclust.params.txt:	
pick_otus:otu_picking_method	sumaclust	
pick_otus:threads	16	
	
SWARM:	
pick_de_novo_otus.py	-i	input.fasta	-o	swarm_denovo/	-p	swarm.params.txt	
	
swarm.params.txt:	
pick_otus:otu_picking_method	swarm	
pick_otus:threads	16	
	
VSEARCH	DE-REPLICATION:	
vsearch	--derep_input.fasta	--output	vsearch_dereplicated/vsearch_dereplicated_repset.fna	--uc	
vsearch_dereplicated/vsearch_dereplicated.uc	--relabel_sha1	--relabel_keep	
	
biom	from-uc	-i		vsearch_dereplicated/vsearch_dereplicated.uc	-o	vsearch_dereplicated/vsearch_dereplicated_biom.biom	--rep-
set-fp	vsearch_dereplicated/vsearch_dereplicated_repset.fna	
	
MED:	
o-pad-with-gaps	input.fasta	-o	input_padded.fasta	
decompose	–i	input_padded.fasta	–o	med/	
	
Heritability	Calculation	
	
Total	OTU	counts	were	taken	from	complete	OTU	tables	(biom	summarize-table)	then	tables	subset	to	OTUs	
found	in	at	least	50%	of	individuals.	This	enabled	the	smaller	tables	to	be	converted	into	text	formats	to	load	in	
R	whilst	retaining	complete	count	information,	which	was	used	to	convert	counts	to	relative	abundances.	
	
R	Heritability	Script	is	based	on	the	OpenMX	path	based	ACE	modelling	example	
(http://openmx.psyc.virginia.edu/docs/OpenMx/2.5.1/GeneticEpi_Path.html	accessed	last	on	30/6/2016).	
	
Heritability	R	script:	
	
#packages for compostional transforms, lme4 and for open mx 
library(OpenMx) 
library(lme4) 
library(data.table) 
library(methods) 
library(car) 
 
#read in argument from command line 
args = commandArgs(trailingOnly=TRUE) 
#otu table for otus in >= 50% samples 
otutable=args[1] 
#output directory 
out=args[2] 
#path to OTU counts for samples in complete (all OTUs not just >50%) OTU table 
summarypath=args[3] 
#total number of OTUs observed in the compelete set 
totobs=as.numeric(args[4]) 
 
#read in OTU table 
bacteria=fread(otutable,header=T,sep="\t") 
bacteria=data.frame(bacteria) 
rownames(bacteria)=bacteria[,1] 
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bacteria=bacteria[,-1] 
 
#transform data to abundances considering total number of OTUs and adding a pseduo count of 
1 for all OTUs 
bacteria1=bacteria 
summary=read.table(summarypath) 
summary=summary[match(colnames(bacteria1),summary[,1]),] 
for(i in 1:nrow(summary)){ 
  summary[i,2]=summary[i,2]+totobs 
} 
#summary now represents the total number of OTUs in each sample in the complete OTU table, 
plus a count of 1 on every OTU 
#add a count of 1 to the zeros on the OTU table 
bacteria1=bacteria1+1 
#convert to relative abundances 
for(i in 1:ncol(bacteria1)){ 
  bacteria1[,i]=bacteria1[,i]/summary[i,2] 
} 
#clrb used from now on to hold otu counts 
clrb=bacteria1 
 
 
#read in mapping file 
sampdat=read.csv("twins_mapping_file.csv",header=T) 
#read in file summarising the read depth in each sample 
sampseqcount=read.table("twins_seq_count.txt",header=T,sep='\t') 
sampdat=merge(sampdat,sampseqcount,by="X.SampleID") 
 
#create box cox transformed residuals after controlling for covariates 
 
#subset the data to the twins in the study from the mapping and OTU tables make all the 
files the same order 
clrb=t(clrb) 
clrb=clrb[which(rownames(clrb)%in%sampdat$X.SampleID),] 
sampdat=sampdat[which(sampdat$X.SampleID%in%rownames(clrb)),] 
sampdat=sampdat[match(rownames(clrb),sampdat$X.SampleID),] 
#clrbresids will hold the residuals 
clrbresids=clrb 
 
#scale covariates from mapping to same ranges 
#age 
sage=scale(sampdat$age_at_sample,center = T) 
#sequencing depth 
sscount=scale(sampdat$SeqCount,center=T) 
gender=as.factor(sampdat$i.gender) 
#sequencing run 
seqrun=as.factor(sampdat$p.SequencingRun) 
#who loaded and extracted the data 
loaded=as.factor(sampdat$e.Loadedby) 
extracted=as.factor(sampdat$e.Extractedby) 
#sample collected in person or from postal kit 
collect=as.factor(sampdat$s.CollectionMethod) 
 
#generate box cox transformed residuals otu by otu 
for(i in 1:ncol(clrb)){ 
  otu=clrb[,i] 
  mod=lm(otu~gender+sage+seqrun+sscount+loaded+extracted+collect) 
  #estimate box cox lamda and normalise 
  a=powerTransform(otu) 
  mod=lm(bcPower(otu,a$roundlam)~gender+sage+seqrun+sscount+loaded+extracted+collect) 
  resids=summary(mod)$residuals 
  #overwrite the column with residuals 
  clrbresids[,i]=resids 
} 
 
 
#create twin format for the openMX ACE script 
fam=c() 
twin1=c() 
twin2=c() 
zyg=c() 
for(i in unique(sampdat$i.FamilyID)){ 
  dat=sampdat[which(sampdat$i.FamilyID==i),] 
  fam=c(fam,i) 
  twin1=c(twin1,which(sampdat$X.SampleID==dat$X.SampleID[1])) 
  twin2=c(twin2,which(sampdat$X.SampleID==dat$X.SampleID[2])) 
  zyg=c(zyg,as.character(dat$i.zygosity[1])) 
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} 
 
t1dz=twin1[which(zyg=="DZ")] 
t2dz=twin2[which(zyg=="DZ")] 
t1mz=twin1[which(zyg=="MZ")] 
t2mz=twin2[which(zyg=="MZ")] 
fdz=fam[which(zyg=="DZ")] 
fmz=fam[which(zyg=="MZ")] 
 
#vectors to hold estimates and CI 
a=c() 
al=c() 
au=c() 
 
c=c() 
cl=c() 
cu=c() 
 
 
e=c() 
el=c() 
eu=c() 
 
#calculate hertiabilties for each OTU reformatting data 
for(i in 1:ncol(clrbresids)){ 
  otudat=clrbresids[,i] 
  otunamer=colnames(clrbresids)[i] 
   
  #get data for pairs 
  otu1dz=otudat[t1dz] 
  otu2dz=otudat[t2dz] 
  otu1mz=otudat[t1mz] 
  otu2mz=otudat[t2mz] 
   
  #group 
  mzData=cbind(otu1mz,otu2mz) 
  dzData=cbind(otu1dz,otu2dz) 
   
  #colnames to sel vars 
  selVars=c("otut1","otut2") 
  colnames(mzData)=selVars 
  colnames(dzData)=selVars 
   
  #define latent ace variables 
  aceVars=c("A1","C1","E1","A2","C2","E2") 
 
  #means and covs 
  mzmeans=colMeans(mzData,na.rm=TRUE) 
  dzmeans=colMeans(dzData,na.rm=TRUE) 
  mzcov=cov(mzData,use="complete") 
  dzcov=cov(dzData,use="complete") 
     
  # Path objects for Multiple Groups 
  manifestVars=selVars 
  latentVars=aceVars 
  # variances of latent variables 
  latVariances <- mxPath( from=aceVars, arrows=2, 
                          free=FALSE, values=1 ) 
  # means of latent variables 
  latMeans     <- mxPath( from="one", to=aceVars, arrows=1, 
                          free=FALSE, values=0 ) 
  # means of observed variables 
  obsMeans     <- mxPath( from="one", to=selVars, arrows=1, 
                          free=TRUE, values=0, labels="mean" ) 
  # path coefficients for twin 1 
  pathAceT1    <- mxPath( from=c("A1","C1","E1"), to="otut1", arrows=1, 
                          free=TRUE, values=.33,  label=c("a","c","e") ) 
  # path coefficients for twin 2 
  pathAceT2    <- mxPath( from=c("A2","C2","E2"), to="otut2", arrows=1, 
                          free=TRUE, values=.33,  label=c("a","c","e") ) 
  # covariance between C1 & C2 
  covC1C2      <- mxPath( from="C1", to="C2", arrows=2, 
                          free=FALSE, values=1 ) 
  # covariance between A1 & A2 in MZ twins 
  covA1A2_MZ   <- mxPath( from="A1", to="A2", arrows=2, 
                          free=FALSE, values=1 ) 
  # covariance between A1 & A2 in DZ twins 
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  covA1A2_DZ   <- mxPath( from="A1", to="A2", arrows=2, 
                          free=FALSE, values=.5 ) 
   
  # Data objects for Multiple Groups 
  dataMZ       <- mxData( observed=mzData, type="raw" ) 
  dataDZ       <- mxData( observed=dzData, type="raw" ) 
   
  # Combine Groups 
  paths        <- list( latVariances, latMeans, obsMeans, 
                        pathAceT1, pathAceT2, covC1C2 ) 
  modelMZ      <- mxModel(model="MZ", type="RAM", manifestVars=selVars, 
                          latentVars=aceVars, paths, covA1A2_MZ, dataMZ ) 
  modelDZ      <- mxModel(model="DZ", type="RAM", manifestVars=selVars, 
                          latentVars=aceVars, paths, covA1A2_DZ, dataDZ ) 
  minus2ll     <- mxAlgebra( expression=MZ.fitfunction + DZ.fitfunction, 
                             name="minus2loglikelihood" ) 
  obj          <- mxFitFunctionAlgebra( "minus2loglikelihood" ) 
   
  estVA <- mxAlgebra(expression=a*a,name="a2") 
  estVC <- mxAlgebra(expression=c*c,name="c2") 
  estVE <- mxAlgebra(expression=e*e,name="e2") 
  estVP <- mxAlgebra(expression=a2+c2+e2, name="V") 
  estPropVA <- mxAlgebra(expression=a2/V, name="A") 
  estPropVC <- mxAlgebra(expression=c2/V, name="C") 
  estPropVE <- mxAlgebra(expression=e2/V, name="E") 
   
 
  modelACE  <- mxModel(model="ACE", modelMZ, modelDZ, minus2ll,obj, 
estVA,estVC,estVE,estVP,estPropVA,estPropVC,estPropVE,mxCI(c("A","C","E"))) 
   
  # Run Model 
  fitACE       <- mxRun(modelACE,intervals=TRUE)   
   
  a2l=fitACE$output$confidenceIntervals[1,1] 
  a2=fitACE$output$confidenceIntervals[1,2] 
  a2u=fitACE$output$confidenceIntervals[1,3] 
 
  c2l=fitACE$output$confidenceIntervals[2,1] 
  c2=fitACE$output$confidenceIntervals[2,2] 
  c2u=fitACE$output$confidenceIntervals[2,3] 
 
  e2l=fitACE$output$confidenceIntervals[3,1] 
  e2=fitACE$output$confidenceIntervals[3,2] 
  e2u=fitACE$output$confidenceIntervals[3,3]   
   
  a=c(a,a2) 
  al=c(al,a2l) 
  au=c(au,a2u) 
   
  c=c(c,c2) 
  cl=c(cl,c2l) 
  cu=c(cu,c2u) 
   
  e=c(e,e2) 
  el=c(el,e2l) 
  eu=c(eu,e2u)   
} 
 
#combine results into a data frame 
res=data.frame(colnames(clrbresids),al,a,au,cl,c,cu,el,e,eu) 
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Table C.1: S1. Summary of OTU counts resulting from each method

Method Number of OTUs Observed Table Density Mean Counts/Sample No. OTUs in >50% Samples No. Heritable OTUs (A
>mean(A) & lower 95% CI >
0.01)

SUMACLUST (97VSEARCH
Distance (97VSEARCH Abun-
dance 97VSEARCH Abun-
dance 98VSEARCH Abundance
99VSEARCH Dereplicated
(100SWARM

3078044 0.001 81040 361 54

Minimum Entropy Decomposi-
tion

364 0.559 67247 203 43

UCLUST De Novo 864784 0.002 81040 329 66
UCLUST Closed Reference 11382 0.096 79330 667 126
UCLUST Open Reference 692047 0.003 81040 672 101

Table C.2: S2. Method-wise A,C and E estimates for each taxa found across all methods.
Due its large size, this table can be found on the accompanying digital media.
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Appendix D

Chapter 6: Identification of taxonomic
markers that define a
health-associated gut microbiome
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Figure D.1: Questionnaire time differences from the faecal sample dates.
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Table D.1: Mapping of the 206 gut microbiome features considered to their marker in the 68 marker features used in analyses.

Gut Microbiome Trait Representative marker trait in analysis
Weighted_UniFrac_PCoA_MDS6 Weighted_UniFrac_PCoA_MDS6
Weighted_UniFrac_PCoA_MDS5 Weighted_UniFrac_PCoA_MDS5
Weighted_UniFrac_PCoA_MDS4 Weighted_UniFrac_PCoA_MDS4
Weighted_UniFrac_PCoA_MDS3 Weighted_UniFrac_PCoA_MDS3
Weighted_UniFrac_PCoA_MDS2 Weighted_UniFrac_PCoA_MDS2
Weighted_UniFrac_PCoA_MDS1 Weighted_UniFrac_PCoA_MDS1
Unweighted_UniFrac_PCoA_MDS6 Unweighted_UniFrac_PCoA_MDS6
Unweighted_UniFrac_PCoA_MDS5 Unweighted_UniFrac_PCoA_MDS5
Unweighted_UniFrac_PCoA_MDS4 Unweighted_UniFrac_PCoA_MDS4
Unweighted_UniFrac_PCoA_MDS3 Unweighted_UniFrac_PCoA_MDS3
Unweighted_UniFrac_PCoA_MDS2 Unweighted_UniFrac_PCoA_MDS2
Unweighted_UniFrac_PCoA_MDS1 Unweighted_UniFrac_PCoA_MDS1
shannon shannon
PD_whole_tree PD_whole_tree
observed_otus PD_whole_tree
k__Bacteria.p__Verrucomicrobia.c__Verrucomicrobiae.o__Verrucomicrobiales.f__Verrucomicrobiaceae k__Bacteria.p__Verrucomicrobia.c__Verrucomicrobiae
k__Bacteria.p__Verrucomicrobia.c__Verrucomicrobiae k__Bacteria.p__Verrucomicrobia.c__Verrucomicrobiae
k__Bacteria.p__Verrucomicrobia.c__Verruco.5.o__WCHB1.41.f__RFP12 k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Verrucomicrobia.c__Verruco.5 k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Verrucomicrobia.c__Opitutae.o__Opitutales.f__Opitutaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Verrucomicrobia.c__Opitutae.o__.Cerasicoccales..f__.Cerasicoccaceae. k__Bacteria.p__Verrucomicrobia.c__Opitutae.o__.Cerasicoccales..f__.Cerasicoccaceae.
k__Bacteria.p__Verrucomicrobia.c__Opitutae k__Bacteria.p__Verrucomicrobia.c__Opitutae.o__.Cerasicoccales..f__.Cerasicoccaceae.
k__Bacteria.p__Verrucomicrobia.c__.Spartobacteria..o__.Chthoniobacterales..f__.Chthoniobacteraceae. k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Verrucomicrobia.c__.Spartobacteria. k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Verrucomicrobia.c__.Pedosphaerae..o__.Pedosphaerales..f__auto67_4W k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Verrucomicrobia.c__.Pedosphaerae. k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Tenericutes.c__RF3 k__Bacteria.p__Tenericutes.c__RF3
k__Bacteria.p__Tenericutes.c__Mollicutes.o__Mycoplasmatales.f__Mycoplasmataceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Tenericutes.c__Mollicutes.o__Anaeroplasmatales.f__Anaeroplasmataceae k__Bacteria.p__Tenericutes.c__Mollicutes.o__Anaeroplasmatales.f__Anaeroplasmataceae
k__Bacteria.p__Tenericutes.c__Mollicutes k__Bacteria.p__Tenericutes.c__Mollicutes
k__Bacteria.p__Synergistetes.c__Synergistia.o__Synergistales.f__Synergistaceae k__Bacteria.p__Synergistetes.c__Synergistia.o__Synergistales.f__Synergistaceae
k__Bacteria.p__Synergistetes.c__Synergistia.o__Synergistales.f__Dethiosulfovibrionaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae

Continued on next page
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Table D.1 – continued from previous page
Gut Microbiome Trait Representative marker trait in analysis
k__Bacteria.p__Synergistetes.c__Synergistia k__Bacteria.p__Synergistetes.c__Synergistia.o__Synergistales.f__Synergistaceae
k__Bacteria.p__Spirochaetes.c__Spirochaetes.o__Spirochaetales.f__Spirochaetaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Spirochaetes.c__Spirochaetes.o__Sphaerochaetales.f__Sphaerochaetaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Spirochaetes.c__Spirochaetes k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Spirochaetes.c__.Brachyspirae..o__.Brachyspirales..f__Brachyspiraceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Spirochaetes.c__.Brachyspirae. k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Gammaproteobacteria.o__Xanthomonadales.f__Xanthomonadaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Gammaproteobacteria.o__Xanthomonadales.f__Sinobacteraceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Gammaproteobacteria.o__Vibrionales.f__Vibrionaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Gammaproteobacteria.o__Vibrionales.f__Pseudoalteromonadaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Gammaproteobacteria.o__Pseudomonadales.f__Pseudomonadaceae k__Bacteria.p__Proteobacteria.c__Gammaproteobacteria.o__Pseudomonadales.f__Pseudomonadaceae
k__Bacteria.p__Proteobacteria.c__Gammaproteobacteria.o__Pseudomonadales.f__Moraxellaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Gammaproteobacteria.o__Pasteurellales.f__Pasteurellaceae k__Bacteria.p__Proteobacteria.c__Gammaproteobacteria.o__Pasteurellales.f__Pasteurellaceae
k__Bacteria.p__Proteobacteria.c__Gammaproteobacteria.o__Oceanospirillales.f__Oceanospirillaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Gammaproteobacteria.o__Enterobacteriales.f__Enterobacteriaceae k__Bacteria.p__Proteobacteria.c__Gammaproteobacteria.o__Enterobacteriales.f__Enterobacteriaceae
k__Bacteria.p__Proteobacteria.c__Gammaproteobacteria.o__Chromatiales.f__Chromatiaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Gammaproteobacteria.o__Cardiobacteriales.f__Cardiobacteriaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Gammaproteobacteria.o__Alteromonadales.f__Shewanellaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Gammaproteobacteria.o__Alteromonadales.f__.Chromatiaceae. k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Gammaproteobacteria.o__Aeromonadales.f__Succinivibrionaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Gammaproteobacteria.o__Aeromonadales.f__Aeromonadaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Gammaproteobacteria k__Bacteria.p__Proteobacteria.c__Gammaproteobacteria.o__Enterobacteriales.f__Enterobacteriaceae
k__Bacteria.p__Proteobacteria.c__Epsilonproteobacteria.o__Campylobacterales.f__Helicobacteraceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Epsilonproteobacteria.o__Campylobacterales.f__Campylobacteraceae k__Bacteria.p__Proteobacteria.c__Epsilonproteobacteria
k__Bacteria.p__Proteobacteria.c__Epsilonproteobacteria k__Bacteria.p__Proteobacteria.c__Epsilonproteobacteria
k__Bacteria.p__Proteobacteria.c__Deltaproteobacteria.o__Syntrophobacterales.f__Syntrophobacteraceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Deltaproteobacteria.o__Desulfovibrionales.f__Desulfovibrionaceae k__Bacteria.p__Proteobacteria.c__Deltaproteobacteria
k__Bacteria.p__Proteobacteria.c__Deltaproteobacteria.o__Desulfobacterales.f__Desulfobulbaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Deltaproteobacteria.o__Desulfobacterales.f__Desulfobacteraceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Deltaproteobacteria k__Bacteria.p__Proteobacteria.c__Deltaproteobacteria
k__Bacteria.p__Proteobacteria.c__Betaproteobacteria.o__Rhodocyclales.f__Rhodocyclaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Betaproteobacteria.o__Nitrosomonadales.f__Nitrosomonadaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Betaproteobacteria.o__Neisseriales.f__Neisseriaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae

Continued on next page

234



Table D.1 – continued from previous page
Gut Microbiome Trait Representative marker trait in analysis
k__Bacteria.p__Proteobacteria.c__Betaproteobacteria.o__Methylophilales.f__Methylophilaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Betaproteobacteria.o__Burkholderiales.f__Oxalobacteraceae k__Bacteria.p__Proteobacteria.c__Betaproteobacteria.o__Burkholderiales.f__Oxalobacteraceae
k__Bacteria.p__Proteobacteria.c__Betaproteobacteria.o__Burkholderiales.f__Comamonadaceae k__Bacteria.p__Proteobacteria.c__Betaproteobacteria.o__Burkholderiales.f__Comamonadaceae
k__Bacteria.p__Proteobacteria.c__Betaproteobacteria.o__Burkholderiales.f__Burkholderiaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Betaproteobacteria.o__Burkholderiales.f__Alcaligenaceae k__Bacteria.p__Proteobacteria.c__Betaproteobacteria.o__Burkholderiales.f__Alcaligenaceae
k__Bacteria.p__Proteobacteria.c__Betaproteobacteria k__Bacteria.p__Proteobacteria.c__Betaproteobacteria.o__Burkholderiales.f__Alcaligenaceae
k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Sphingomonadales.f__Sphingomonadaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rickettsiales.f__mitochondria k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodospirillales.f__Rhodospirillaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Hyphomonadaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhizobiales.f__Rhizobiaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhizobiales.f__Phyllobacteriaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhizobiales.f__Methylobacteriaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhizobiales.f__Hyphomicrobiaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhizobiales.f__Brucellaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhizobiales.f__Bradyrhizobiaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhizobiales.f__Beijerinckiaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Caulobacterales.f__Caulobacteraceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria
k__Bacteria.p__Planctomycetes.c__Planctomycetia.o__Planctomycetales.f__Planctomycetaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Planctomycetes.c__Planctomycetia.o__Pirellulales.f__Pirellulaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Planctomycetes.c__Planctomycetia.o__Gemmatales.f__Gemmataceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Planctomycetes.c__Planctomycetia k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Planctomycetes.c__Phycisphaerae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__OD1.c__ZB2 k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Nitrospirae.c__Nitrospira.o__Nitrospirales.f__0319.6A21 k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Nitrospirae.c__Nitrospira k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Lentisphaerae.c__.Lentisphaeria..o__Victivallales.f__Victivallaceae k__Bacteria.p__Lentisphaerae.c__.Lentisphaeria.
k__Bacteria.p__Lentisphaerae.c__.Lentisphaeria. k__Bacteria.p__Lentisphaerae.c__.Lentisphaeria.
k__Bacteria.p__Gemmatimonadetes.c__Gemm.1 k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Fusobacteria.c__Fusobacteriia.o__Fusobacteriales.f__Leptotrichiaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Fusobacteria.c__Fusobacteriia.o__Fusobacteriales.f__Fusobacteriaceae k__Bacteria.p__Fusobacteria.c__Fusobacteriia.o__Fusobacteriales.f__Fusobacteriaceae
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k__Bacteria.p__Fusobacteria.c__Fusobacteriia k__Bacteria.p__Fusobacteria.c__Fusobacteriia.o__Fusobacteriales.f__Fusobacteriaceae
k__Bacteria.p__Firmicutes.c__Erysipelotrichi.o__Erysipelotrichales.f__Erysipelotrichaceae k__Bacteria.p__Firmicutes.c__Erysipelotrichi.o__Erysipelotrichales.f__Erysipelotrichaceae
k__Bacteria.p__Firmicutes.c__Erysipelotrichi k__Bacteria.p__Firmicutes.c__Erysipelotrichi.o__Erysipelotrichales.f__Erysipelotrichaceae
k__Bacteria.p__Firmicutes.c__Clostridia.o__Thermoanaerobacterales.f__Thermoanaerobacteraceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Firmicutes.c__Clostridia.o__Natranaerobiales.f__Anaerobrancaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Veillonellaceae k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Veillonellaceae
k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Syntrophomonadaceae k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Syntrophomonadaceae
k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Ruminococcaceae k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Ruminococcaceae
k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Peptostreptococcaceae k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Peptostreptococcaceae
k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Peptococcaceae k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Peptococcaceae
k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Lachnospiraceae k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Lachnospiraceae
k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Gracilibacteraceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Eubacteriaceae k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Eubacteriaceae
k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__EtOH8 k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__EtOH8
k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Dehalobacteriaceae k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Dehalobacteriaceae
k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Clostridiaceae k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Clostridiaceae
k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Christensenellaceae k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Christensenellaceae
k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__Caldicoprobacteraceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__.Tissierellaceae. k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__.Tissierellaceae.
k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__.Mogibacteriaceae. k__Bacteria.p__Firmicutes.c__Clostridia.o__Clostridiales.f__.Mogibacteriaceae.
k__Bacteria.p__Firmicutes.c__Clostridia k__Bacteria.p__Firmicutes.c__Clostridia
k__Bacteria.p__Firmicutes.c__Bacilli.o__Turicibacterales.f__Turicibacteraceae k__Bacteria.p__Firmicutes.c__Bacilli.o__Turicibacterales.f__Turicibacteraceae
k__Bacteria.p__Firmicutes.c__Bacilli.o__Lactobacillales.f__Streptococcaceae k__Bacteria.p__Firmicutes.c__Bacilli.o__Lactobacillales.f__Streptococcaceae
k__Bacteria.p__Firmicutes.c__Bacilli.o__Lactobacillales.f__Leuconostocaceae k__Bacteria.p__Firmicutes.c__Bacilli.o__Lactobacillales.f__Leuconostocaceae
k__Bacteria.p__Firmicutes.c__Bacilli.o__Lactobacillales.f__Lactobacillaceae k__Bacteria.p__Firmicutes.c__Bacilli.o__Lactobacillales.f__Lactobacillaceae
k__Bacteria.p__Firmicutes.c__Bacilli.o__Lactobacillales.f__Enterococcaceae k__Bacteria.p__Firmicutes.c__Bacilli.o__Lactobacillales.f__Enterococcaceae
k__Bacteria.p__Firmicutes.c__Bacilli.o__Lactobacillales.f__Carnobacteriaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Firmicutes.c__Bacilli.o__Lactobacillales.f__Aerococcaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Firmicutes.c__Bacilli.o__Gemellales.f__Gemellaceae k__Bacteria.p__Firmicutes.c__Bacilli.o__Gemellales.f__Gemellaceae
k__Bacteria.p__Firmicutes.c__Bacilli.o__Bacillales.f__Staphylococcaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Firmicutes.c__Bacilli.o__Bacillales.f__Planococcaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Firmicutes.c__Bacilli.o__Bacillales.f__Paenibacillaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Firmicutes.c__Bacilli.o__Bacillales.f__Listeriaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
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k__Bacteria.p__Firmicutes.c__Bacilli.o__Bacillales.f__Bacillaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Firmicutes.c__Bacilli.o__Bacillales.f__Alicyclobacillaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Firmicutes.c__Bacilli k__Bacteria.p__Firmicutes.c__Bacilli.o__Lactobacillales.f__Streptococcaceae
k__Bacteria.p__Fibrobacteres.c__Fibrobacteria.o__Fibrobacterales.f__Fibrobacteraceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Fibrobacteres.c__Fibrobacteria k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Elusimicrobia.c__Elusimicrobia.o__Elusimicrobiales.f__Elusimicrobiaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Elusimicrobia.c__Elusimicrobia k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Deferribacteres.c__Deferribacteres.o__Deferribacterales.f__Deferribacteraceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Deferribacteres.c__Deferribacteres k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Cyanobacteria.c__Chloroplast k__Bacteria.p__Cyanobacteria.c__Chloroplast
k__Bacteria.p__Cyanobacteria.c__4C0d.2 k__Bacteria.p__Cyanobacteria.c__4C0d.2
k__Bacteria.p__Chloroflexi.c__Ellin6529 k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Chloroflexi.c__Anaerolineae.o__Anaerolineales.f__Anaerolinaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Chloroflexi.c__Anaerolineae.o__A31.f__S47 k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Chloroflexi.c__Anaerolineae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Chlorobi.c__SJA.28 k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Chlamydiae.c__Chlamydiia.o__Chlamydiales.f__Parachlamydiaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Chlamydiae.c__Chlamydiia k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Bacteroidetes.c__Sphingobacteriia.o__Sphingobacteriales.f__Sphingobacteriaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Bacteroidetes.c__Sphingobacteriia k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Bacteroidetes.c__Flavobacteriia.o__Flavobacteriales.f__Flavobacteriaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Bacteroidetes.c__Flavobacteriia.o__Flavobacteriales.f__.Weeksellaceae. k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Bacteroidetes.c__Flavobacteriia k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Bacteroidetes.c__Cytophagia.o__Cytophagales.f__Cytophagaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Bacteroidetes.c__Cytophagia k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__S24.7 k__Bacteria.p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__S24.7
k__Bacteria.p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__Rikenellaceae k__Bacteria.p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__Rikenellaceae
k__Bacteria.p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__Prevotellaceae k__Bacteria.p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__Prevotellaceae
k__Bacteria.p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__Porphyromonadaceae k__Bacteria.p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__Porphyromonadaceae
k__Bacteria.p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__p.2534.18B5 k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__BS11 k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__Bacteroidaceae k__Bacteria.p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__Bacteroidaceae
k__Bacteria.p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__.Paraprevotellaceae. k__Bacteria.p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__.Paraprevotellaceae.
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k__Bacteria.p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__.Odoribacteraceae. k__Bacteria.p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__.Odoribacteraceae.
k__Bacteria.p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__.Barnesiellaceae. k__Bacteria.p__Bacteroidetes.c__Bacteroidia.o__Bacteroidales.f__.Barnesiellaceae.
k__Bacteria.p__Bacteroidetes.c__Bacteroidia Weighted_UniFrac_PCoA_MDS2
k__Bacteria.p__Bacteroidetes.c__.Saprospirae..o__.Saprospirales..f__Saprospiraceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Bacteroidetes.c__.Saprospirae..o__.Saprospirales..f__Chitinophagaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Bacteroidetes.c__.Saprospirae. k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Actinobacteria.c__Thermoleophilia.o__Solirubrobacterales.f__Conexibacteraceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Actinobacteria.c__Thermoleophilia.o__Gaiellales.f__Gaiellaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Actinobacteria.c__Thermoleophilia k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Actinobacteria.c__Coriobacteriia.o__Coriobacteriales.f__Coriobacteriaceae k__Bacteria.p__Actinobacteria.c__Coriobacteriia.o__Coriobacteriales.f__Coriobacteriaceae
k__Bacteria.p__Actinobacteria.c__Coriobacteriia k__Bacteria.p__Actinobacteria.c__Coriobacteriia.o__Coriobacteriales.f__Coriobacteriaceae
k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Bifidobacteriales.f__Bifidobacteriaceae k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Bifidobacteriales.f__Bifidobacteriaceae
k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Actinomycetales.f__Streptomycetaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Actinomycetales.f__Sanguibacteraceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Actinomycetales.f__Promicromonosporaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Actinomycetales.f__Nocardioidaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Actinomycetales.f__Nocardiaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Actinomycetales.f__Mycobacteriaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Actinomycetales.f__Micromonosporaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Actinomycetales.f__Micrococcaceae k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Actinomycetales.f__Micrococcaceae
k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Actinomycetales.f__Microbacteriaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Actinomycetales.f__Intrasporangiaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Actinomycetales.f__Gordoniaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Actinomycetales.f__Dermabacteraceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Actinomycetales.f__Corynebacteriaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Actinomycetales.f__Cellulomonadaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Actinomycetales.f__Brevibacteriaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Actinomycetales.f__Actinosynnemataceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Actinomycetales.f__Actinomycetaceae k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Actinomycetales.f__Actinomycetaceae
k__Bacteria.p__Actinobacteria.c__Actinobacteria k__Bacteria.p__Actinobacteria.c__Actinobacteria.o__Bifidobacteriales.f__Bifidobacteriaceae
k__Bacteria.p__Acidobacteria.c__PAUC37f k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Acidobacteria.c__Acidobacteriia.o__Acidobacteriales.f__Acidobacteriaceae k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Acidobacteria.c__Acidobacteriia k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae

Continued on next page
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Table D.1 – continued from previous page
Gut Microbiome Trait Representative marker trait in analysis
k__Bacteria.p__Acidobacteria.c__Acidobacteria.6.o__iii1.15.f__RB40 k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Acidobacteria.c__Acidobacteria.6.o__iii1.15.f__mb2424 k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Acidobacteria.c__Acidobacteria.6 k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Acidobacteria.c__.Chloracidobacteria..o__RB41.f__Ellin6075 k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Bacteria.p__Acidobacteria.c__.Chloracidobacteria. k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Archaea.p__Euryarchaeota.c__Thermoplasmata.o__E2.f__.Methanomassiliicoccaceae. k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Archaea.p__Euryarchaeota.c__Thermoplasmata k__Bacteria.p__Proteobacteria.c__Alphaproteobacteria.o__Rhodobacterales.f__Rhodobacteraceae
k__Archaea.p__Euryarchaeota.c__Methanobacteria.o__Methanobacteriales.f__Methanobacteriaceae k__Archaea.p__Euryarchaeota.c__Methanobacteria
k__Archaea.p__Euryarchaeota.c__Methanobacteria k__Archaea.p__Euryarchaeota.c__Methanobacteria
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Table D.2: Results from logistic regression analysis of disorders versus microbiome features.
Due its large size, this table can be found on the accompanying digital media.
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Figure D.2: Disorder associations with microbiota markers without adjustment for BMI and additionally
considering obesity.

Table D.3: Results from logistic regression analysis of disorders versus microbiome features without ad-
justment for BMI.
Due its large size, this table can be found on the accompanying digital media.

Table D.4: Edge table for the inferred Bayesian network underlying the disorder, drug and microbiome
data.
Due its large size, this table can be found on the accompanying digital media.

Table D.5: Enrichment analysis results for KEGG annotated pathways frommetagenomic data against the
HMI, number of disorders, and frailty.
Due its large size, this table can be found on the accompanying digital media.
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Table D.6: Enrichment analysis results for KEGG annotated pathways from faecal metabolite data against the HMI, number of disorders, and frailty.

Phenotype Metabolite
Group

Metabolites
(tot)

Stat
(dist.dir)

p (postive
enrichment)

p adj (pos-
tive enrich-
ment)

p (negative
enrichment)

p adj (nega-
tive enrich-
ment)

Metabolites
(positive)

Metabolites
(negative)

HMI Lipid 52 0.91197 0.1736 0.66284 0.8264 1 18 34
HMI Amino Acid 56 -2.9237 0.9993 0.9999 7.00E-04 0.0147 9 47
HMI Unknown 147 -0.12484 0.5547 0.86192 0.4453 1 44 103
HMI Fatty Acid, Dicarboxylate 10 5.0394 0 0 1 1 9 1
HMI Lysine Metabolism 10 -1.5888 0.9484 0.9999 0.0516 0.3612 1 9
HMI Sphingolipid Metabolism 6 -2.6439 0.997 0.9999 0.003 0.042 0 6
HMI Endocannabinoid 4 -3.2076 0.9999 0.9999 1.00E-04 0.0042 0 4
HMI Nucleotide 8 -0.47401 0.685 0.87182 0.315 1 1 7
HMI Aminosugar Metabolism 7 0.77636 0.2186 0.66523 0.7814 1 3 4
HMI Glycine, Serine And Threonine

Metabolism
3 -1.0701 0.8571 0.9999 0.1429 0.75022 0 3

HMI Xenobiotics 13 -0.2378 0.5797 0.86192 0.4203 1 3 10
HMI Alanine And Aspartate

Metabolism
7 -2.0217 0.9831 0.9999 0.0169 0.17745 0 7

HMI Methionine, Cysteine, Sam And
Taurine Metabolism

10 -1.7578 0.9654 0.9999 0.0346 0.29064 0 10

HMI Cofactors And Vitamins 10 -0.122 0.5489 0.86192 0.4511 1 3 7
HMI Food Component/plant 21 0.92192 0.1715 0.66284 0.8285 1 6 15
HMI Chemical 10 1.2185 0.1085 0.50633 0.8915 1 3 7
HMI Secondary Bile Acid Metabolism 5 0.76451 0.2184 0.66523 0.7816 1 3 2
HMI Pentose Metabolism 7 -0.27116 0.6094 0.86192 0.3906 1 2 5
HMI Gamma-glutamyl Amino Acid 6 0.72489 0.2389 0.66523 0.7611 1 3 3
HMI Dipeptide 15 -0.34351 0.625 0.86192 0.375 1 2 13
HMI Fatty Acid, Monohydroxy 4 2.2767 0.0132 0.1848 0.9868 1 3 1
HMI Pyrimidine Metabolism, Uracil

Containing
5 0.63042 0.2602 0.66523 0.7398 1 2 3

HMI Nicotinate And Nicotinamide
Metabolism

4 -1.085 0.8638 0.9999 0.1362 0.75022 0 4

HMI Phenylalanine And Tyrosine
Metabolism

13 0.24353 0.3958 0.80487 0.6042 1 4 9

Continued on next page
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Table D.6 – continued from previous page
Phenotype Metabolite

Group
Metabolites
(tot)

Stat
(dist.dir)

p (postive
enrichment)

p adj (pos-
tive enrich-
ment)

p (negative
enrichment)

p adj (nega-
tive enrich-
ment)

Metabolites
(positive)

Metabolites
(negative)

HMI Leucine, Isoleucine And Valine
Metabolism

10 1.6705 0.049 0.343 0.951 1 5 5

HMI Glutamate Metabolism 9 0.17573 0.4216 0.80487 0.5784 1 3 6
HMI Histidine Metabolism 7 -0.38616 0.6567 0.86192 0.3433 1 1 6
HMI Carbohydrate 5 0.19396 0.4212 0.80487 0.5788 1 1 4
HMI Urea Cycle; Arginine And Proline

Metabolism
5 0.31411 0.3733 0.80487 0.6267 1 2 3

HMI Tocopherol Metabolism 3 2.7283 0.0051 0.1071 0.9949 1 3 0
HMI Tryptophan Metabolism 6 -0.19115 0.5744 0.86192 0.4256 1 1 5
HMI Purine Metabolism, Guanine Con-

taining
4 -0.63606 0.7316 0.90374 0.2684 1 0 4

HMI Phospholipid Metabolism 8 0.5539 0.2847 0.66523 0.7153 1 3 5
HMI Tca Cycle 5 -0.36493 0.6389 0.86192 0.3611 1 1 4
HMI Fructose, Mannose And Galactose

Metabolism
4 -0.13319 0.5461 0.86192 0.4539 1 1 3

HMI Purine Metabolism, Adenine Con-
taining

5 2.0742 0.0217 0.22785 0.9783 1 4 1

HMI Sterol 4 1.8023 0.0367 0.30828 0.9633 1 3 1
HMI Lysolipid 3 0.07335 0.4556 0.83197 0.5444 1 0 3
HMI Long Chain Fatty Acid 3 0.66065 0.2527 0.66523 0.7473 1 2 1
HMI Pyrimidine Metabolism, Cytidine

Containing
3 0.55706 0.2851 0.66523 0.7149 1 1 2

HMI Peptide 3 1.3478 0.092 0.483 0.908 1 2 1
HMI Pyrimidine Metabolism, Orotate

Containing
3 1.5215 0.0663 0.3978 0.9337 1 3 0

Frailty Fatty Acid, Dicarboxylate 10 -4.4944 1 1 0 0 0 10
Frailty Lipid 52 1.5948 0.0449 0.27195 0.9551 0.9993 28 24
Frailty Unknown 147 -1.9476 0.989 1 0.011 0.231 60 87
Frailty Lysine Metabolism 10 1.9115 0.0253 0.21252 0.9747 0.9993 7 3
Frailty Phenylalanine And Tyrosine

Metabolism
13 1.6456 0.0481 0.27195 0.9519 0.9993 10 3

Continued on next page
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Table D.6 – continued from previous page
Phenotype Metabolite

Group
Metabolites
(tot)

Stat
(dist.dir)

p (postive
enrichment)

p adj (pos-
tive enrich-
ment)

p (negative
enrichment)

p adj (nega-
tive enrich-
ment)

Metabolites
(positive)

Metabolites
(negative)

Frailty Cofactors And Vitamins 10 -0.7196 0.7663 1 0.2337 0.61346 5 5
Frailty Fatty Acid, Monohydroxy 4 -1.1307 0.8698 1 0.1302 0.49713 2 2
Frailty Purine Metabolism, Adenine Con-

taining
5 -1.4411 0.9248 1 0.0752 0.3948 1 4

Frailty Food Component/plant 21 0.11964 0.4514 1 0.5486 0.92165 11 10
Frailty Nucleotide 8 -1.4619 0.93 1 0.07 0.3948 2 6
Frailty Aminosugar Metabolism 7 -1.6412 0.9502 1 0.0498 0.3948 0 7
Frailty Sphingolipid Metabolism 6 3.2718 7.00E-04 0.0294 0.9993 0.9993 6 0
Frailty Gamma-glutamyl Amino Acid 6 -1.8479 0.9682 1 0.0318 0.3948 0 6
Frailty Secondary Bile Acid Metabolism 5 1.4851 0.0687 0.3206 0.9313 0.9993 4 1
Frailty Chemical 10 0.073166 0.4656 1 0.5344 0.92165 5 5
Frailty Glutamate Metabolism 9 -0.62156 0.7278 1 0.2722 0.63513 3 6
Frailty Endocannabinoid 4 2.1274 0.014 0.147 0.986 0.9993 4 0
Frailty Phospholipid Metabolism 8 2.2472 0.0095 0.133 0.9905 0.9993 7 1
Frailty Pyrimidine Metabolism, Uracil

Containing
5 -0.88119 0.8123 1 0.1877 0.60642 1 4

Frailty Amino Acid 56 2.3803 0.005 0.105 0.995 0.9993 37 19
Frailty Tca Cycle 5 -0.97045 0.8353 1 0.1647 0.57645 2 3
Frailty Purine Metabolism, Guanine Con-

taining
4 -0.44594 0.6705 1 0.3295 0.69195 1 3

Frailty Dipeptide 15 -0.77517 0.7827 1 0.2173 0.61346 7 8
Frailty Tocopherol Metabolism 3 -0.78053 0.78 1 0.22 0.61346 1 2
Frailty Fructose, Mannose And Galactose

Metabolism
4 -1.5665 0.9411 1 0.0589 0.3948 0 4

Frailty Carbohydrate 5 0.73346 0.2314 0.6942 0.7686 0.9993 2 3
Frailty Urea Cycle; Arginine And Proline

Metabolism
5 -0.64029 0.7414 1 0.2586 0.63513 1 4

Frailty Sterol 4 0.91671 0.179 0.6265 0.821 0.9993 3 1
Frailty Methionine, Cysteine, Sam And

Taurine Metabolism
10 1.1827 0.1188 0.4536 0.8812 0.9993 6 4

Frailty Xenobiotics 13 1.6093 0.0518 0.27195 0.9482 0.9993 9 4
Continued on next page
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Table D.6 – continued from previous page
Phenotype Metabolite

Group
Metabolites
(tot)

Stat
(dist.dir)

p (postive
enrichment)

p adj (pos-
tive enrich-
ment)

p (negative
enrichment)

p adj (nega-
tive enrich-
ment)

Metabolites
(positive)

Metabolites
(negative)

Frailty Peptide 3 -1.3288 0.9086 1 0.0914 0.42653 0 3
Frailty Long Chain Fatty Acid 3 -1.558 0.9408 1 0.0592 0.3948 0 3
Frailty Tryptophan Metabolism 6 -0.30115 0.6251 1 0.3749 0.7498 3 3
Frailty Alanine And Aspartate

Metabolism
7 1.2316 0.1111 0.4536 0.8889 0.9993 6 1

Frailty Pyrimidine Metabolism, Cytidine
Containing

3 -1.182 0.8813 1 0.1187 0.49713 0 3

Frailty Leucine, Isoleucine And Valine
Metabolism

10 -0.2683 0.6069 1 0.3931 0.75046 3 7

Frailty Histidine Metabolism 7 0.74937 0.2259 0.6942 0.7741 0.9993 5 2
Frailty Pentose Metabolism 7 -0.21508 0.5877 1 0.4123 0.7529 3 4
Frailty Nicotinate And Nicotinamide

Metabolism
4 0.44864 0.3245 0.85181 0.6755 0.9993 2 2

Frailty Pyrimidine Metabolism, Orotate
Containing

3 0.29123 0.3863 0.95439 0.6137 0.99136 1 2

Frailty Lysolipid 3 -0.51659 0.6931 1 0.3069 0.67841 1 2
Frailty Glycine, Serine And Threonine

Metabolism
3 0.46455 0.3216 0.85181 0.6784 0.9993 2 1

No. Disor-
ders

Aminosugar Metabolism 7 -3.0926 0.9993 0.9999 7.00E-04 0.0147 2 5

No. Disor-
ders

Fatty Acid, Dicarboxylate 10 -3.9668 0.9999 0.9999 1.00E-04 0.0042 1 9

No. Disor-
ders

Lipid 52 2.6129 0.0029 0.1218 0.9971 0.9971 32 20

No. Disor-
ders

Food Component/plant 21 0.41581 0.3344 0.92978 0.6656 0.98721 11 10

No. Disor-
ders

Unknown 147 -0.8856 0.849 0.9999 0.151 0.57655 74 73

No. Disor-
ders

Lysine Metabolism 10 1.0565 0.1462 0.53445 0.8538 0.98721 7 3
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Table D.6 – continued from previous page
Phenotype Metabolite

Group
Metabolites
(tot)

Stat
(dist.dir)

p (postive
enrichment)

p adj (pos-
tive enrich-
ment)

p (negative
enrichment)

p adj (nega-
tive enrich-
ment)

Metabolites
(positive)

Metabolites
(negative)

No. Disor-
ders

Cofactors And Vitamins 10 -0.73259 0.7719 0.9999 0.2281 0.7287 5 5

No. Disor-
ders

Purine Metabolism, Adenine Con-
taining

5 -2.279 0.9883 0.9999 0.0117 0.12285 1 4

No. Disor-
ders

Amino Acid 56 1.9378 0.0221 0.4641 0.9779 0.9971 39 17

No. Disor-
ders

Nicotinate And Nicotinamide
Metabolism

4 0.90223 0.1906 0.61578 0.8094 0.98721 3 1

No. Disor-
ders

Phospholipid Metabolism 8 1.3026 0.0922 0.53445 0.9078 0.98721 7 1

No. Disor-
ders

Phenylalanine And Tyrosine
Metabolism

13 0.032736 0.4796 0.9999 0.5204 0.84792 9 4

No. Disor-
ders

Chemical 10 -0.045135 0.5197 0.9999 0.4803 0.84792 6 4

No. Disor-
ders

Xenobiotics 13 1.5391 0.0606 0.53445 0.9394 0.98721 9 4

No. Disor-
ders

Leucine, Isoleucine And Valine
Metabolism

10 -1.3972 0.9234 0.9999 0.0766 0.40215 2 8

No. Disor-
ders

Carbohydrate 5 -0.69235 0.7571 0.9999 0.2429 0.7287 3 2

No. Disor-
ders

Sterol 4 1.0846 0.1443 0.53445 0.8557 0.98721 2 2

No. Disor-
ders

Tca Cycle 5 -0.75348 0.7772 0.9999 0.2228 0.7287 3 2

No. Disor-
ders

Alanine And Aspartate
Metabolism

7 1.556 0.0598 0.53445 0.9402 0.98721 5 2

No. Disor-
ders

Endocannabinoid 4 1.1683 0.1269 0.53445 0.8731 0.98721 4 0

No. Disor-
ders

Peptide 3 -2.4487 0.9926 0.9999 0.0074 0.1036 0 3
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Table D.6 – continued from previous page
Phenotype Metabolite

Group
Metabolites
(tot)

Stat
(dist.dir)

p (postive
enrichment)

p adj (pos-
tive enrich-
ment)

p (negative
enrichment)

p adj (nega-
tive enrich-
ment)

Metabolites
(positive)

Metabolites
(negative)

No. Disor-
ders

Pyrimidine Metabolism, Cytidine
Containing

3 -1.8248 0.9627 0.9999 0.0373 0.31332 0 3

No. Disor-
ders

Gamma-glutamyl Amino Acid 6 -1.0483 0.855 0.9999 0.145 0.57655 3 3

No. Disor-
ders

Glutamate Metabolism 9 -0.43018 0.6572 0.9999 0.3428 0.80033 4 5

No. Disor-
ders

Urea Cycle; Arginine And Proline
Metabolism

5 0.05942 0.4751 0.9999 0.5249 0.84792 2 3

No. Disor-
ders

Tocopherol Metabolism 3 1.1791 0.1215 0.53445 0.8785 0.98721 3 0

No. Disor-
ders

Tryptophan Metabolism 6 0.55022 0.2976 0.8928 0.7024 0.98721 3 3

No. Disor-
ders

Secondary Bile Acid Metabolism 5 -0.41233 0.657 0.9999 0.343 0.80033 3 2

No. Disor-
ders

Pentose Metabolism 7 -0.011829 0.504 0.9999 0.496 0.84792 4 3

No. Disor-
ders

Dipeptide 15 -0.33318 0.6346 0.9999 0.3654 0.80773 8 7

No. Disor-
ders

Fructose, Mannose And Galactose
Metabolism

4 -1.1467 0.8777 0.9999 0.1223 0.57073 1 3

No. Disor-
ders

Lysolipid 3 -0.59523 0.7214 0.9999 0.2786 0.73132 2 1

No. Disor-
ders

Histidine Metabolism 7 1.1984 0.1181 0.53445 0.8819 0.98721 5 2

No. Disor-
ders

Methionine, Cysteine, Sam And
Taurine Metabolism

10 0.37072 0.3542 0.92978 0.6458 0.98721 6 4

No. Disor-
ders

Nucleotide 8 -1.6675 0.952 0.9999 0.048 0.336 2 6

No. Disor-
ders

Fatty Acid, Monohydroxy 4 -0.1643 0.5725 0.9999 0.4275 0.84792 2 2

Continued on next page246



Table D.6 – continued from previous page
Phenotype Metabolite

Group
Metabolites
(tot)

Stat
(dist.dir)

p (postive
enrichment)

p adj (pos-
tive enrich-
ment)

p (negative
enrichment)

p adj (nega-
tive enrich-
ment)

Metabolites
(positive)

Metabolites
(negative)

No. Disor-
ders

Sphingolipid Metabolism 6 1.07 0.148 0.53445 0.852 0.98721 5 1

No. Disor-
ders

Glycine, Serine And Threonine
Metabolism

3 1.0308 0.1527 0.53445 0.8473 0.98721 3 0

No. Disor-
ders

Pyrimidine Metabolism, Uracil
Containing

5 -1.4346 0.9241 0.9999 0.0759 0.40215 0 5

No. Disor-
ders

Pyrimidine Metabolism, Orotate
Containing

3 -0.28967 0.6111 0.9999 0.3889 0.81669 1 2

No. Disor-
ders

Purine Metabolism, Guanine Con-
taining

4 -0.057596 0.5331 0.9999 0.4669 0.84792 2 2

No. Disor-
ders

Long Chain Fatty Acid 3 -0.63434 0.7323 0.9999 0.2677 0.73132 0 3

≥
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Appendix E

Chapter 7: Identifying stable
communities in the gut microbiota
with consistent associations to host
phenotypes

Table E.1: OTU community assignments and heritability analysis results for the communities in TwinsUK.
Due its large size, this table can be found on the accompanying digital media.

Table E.2: Community association results with age and BMI in TwinsUK (Community members can be
found in Table E.1)

Community Age Beta Age p-value Age FDR Adj.
p-value

BMI Beta BMI p-value BMI FDR Adj.
p-value

Module_1 0.001 0.963 0.973 0.021 0.264 0.379
Module_10 -0.040 0.036 0.069 0.015 0.433 0.533
Module_11 0.062 0.001 0.005 -0.075 0.000 0.000
Module_12 0.105 0.000 0.000 -0.126 0.000 0.000
Module_13 -0.013 0.514 0.617 0.006 0.741 0.831
Module_14 0.021 0.276 0.378 -0.108 0.000 0.000
Module_15 0.037 0.055 0.096 -0.044 0.022 0.044
Module_16 0.086 0.000 0.000 -0.050 0.009 0.021
Module_17 0.117 0.000 0.000 0.046 0.016 0.035
Module_18 -0.016 0.395 0.486 -0.020 0.310 0.413
Module_19 0.058 0.003 0.009 -0.030 0.119 0.190
Module_2 -0.050 0.009 0.024 0.007 0.718 0.821
Module_20 0.073 0.000 0.001 -0.086 0.000 0.000
Module_21 -0.038 0.048 0.085 -0.022 0.246 0.358
Module_22 0.046 0.016 0.038 -0.041 0.033 0.065
Module_23 -0.050 0.009 0.024 -0.098 0.000 0.000
Module_24 -0.120 0.000 0.000 0.034 0.072 0.126
Module_25 -0.010 0.597 0.682 -0.017 0.374 0.466
Module_26 0.071 0.000 0.001 -0.139 0.000 0.000
Module_27 -0.059 0.002 0.008 -0.071 0.000 0.001
Module_28 0.021 0.266 0.376 -0.061 0.002 0.005
Module_29 -0.046 0.017 0.039 -0.018 0.357 0.450
Module_3 -0.064 0.001 0.003 0.100 0.000 0.000
Module_30 -0.024 0.206 0.300 0.005 0.795 0.877
Module_31 -0.003 0.890 0.926 0.051 0.008 0.020

Continued on next page
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Table E.2 – continued from previous page
Community Age Beta Age p-value Age FDR Adj.

p-value
BMI Beta BMI p-value BMI FDR Adj.

p-value
Module_32 0.069 0.000 0.002 -0.050 0.009 0.021
Module_33 0.046 0.018 0.039 -0.050 0.009 0.021
Module_34 -0.007 0.701 0.765 -0.025 0.190 0.289
Module_35 0.058 0.002 0.008 -0.094 0.000 0.000
Module_36 0.036 0.061 0.104 -0.061 0.001 0.004
Module_37 -0.001 0.961 0.973 0.009 0.628 0.735
Module_38 0.076 0.000 0.000 -0.081 0.000 0.000
Module_39 0.069 0.000 0.002 0.035 0.070 0.125
Module_4 -0.092 0.000 0.000 -0.002 0.924 0.954
Module_40 0.027 0.158 0.237 -0.115 0.000 0.000
Module_41 0.040 0.040 0.073 0.001 0.978 0.978
Module_42 0.058 0.002 0.008 -0.124 0.000 0.000
Module_43 0.060 0.002 0.007 -0.112 0.000 0.000
Module_44 -0.017 0.365 0.461 0.050 0.008 0.020
Module_45 0.006 0.764 0.824 -0.087 0.000 0.000
Module_46 0.017 0.375 0.468 -0.039 0.044 0.085
Module_47 0.061 0.001 0.006 -0.061 0.001 0.004
Module_48 0.109 0.000 0.000 -0.077 0.000 0.000
Module_49 -0.044 0.023 0.047 -0.010 0.593 0.711
Module_5 -0.065 0.001 0.003 0.113 0.000 0.000
Module_50 -0.005 0.787 0.839 -0.020 0.296 0.406
Module_51 -0.040 0.037 0.069 0.004 0.835 0.911
Module_52 0.078 0.000 0.000 0.108 0.000 0.000
Module_53 0.032 0.097 0.150 0.031 0.109 0.178
Module_54 -0.139 0.000 0.000 0.077 0.000 0.000
Module_55 0.081 0.000 0.000 -0.129 0.000 0.000
Module_56 -0.055 0.004 0.012 0.035 0.069 0.125
Module_57 -0.061 0.001 0.006 -0.010 0.614 0.728
Module_58 -0.041 0.032 0.062 0.001 0.942 0.962
Module_59 0.010 0.594 0.682 -0.063 0.001 0.003
Module_6 0.058 0.003 0.008 0.024 0.210 0.310
Module_60 0.035 0.070 0.117 -0.058 0.002 0.007
Module_61 0.043 0.025 0.049 -0.031 0.101 0.167
Module_62 0.008 0.688 0.760 -0.003 0.885 0.938
Module_63 0.109 0.000 0.000 -0.109 0.000 0.000
Module_64 -0.028 0.143 0.218 -0.047 0.014 0.031
Module_65 0.048 0.012 0.030 -0.033 0.090 0.154
Module_66 0.014 0.478 0.581 -0.006 0.744 0.831
Module_67 0.008 0.671 0.749 -0.054 0.005 0.013
Module_68 0.111 0.000 0.000 -0.089 0.000 0.000
Module_69 -0.025 0.191 0.281 0.030 0.122 0.191
Module_7 -0.019 0.310 0.408 -0.060 0.002 0.005
Module_70 -0.033 0.080 0.131 -0.056 0.003 0.008
Module_71 0.034 0.080 0.131 -0.020 0.294 0.406
Module_72 0.032 0.092 0.145 -0.019 0.332 0.431
Module_73 0.045 0.018 0.039 -0.083 0.000 0.000
Module_74 0.046 0.018 0.039 0.002 0.897 0.938
Module_75 -0.002 0.897 0.926 0.008 0.685 0.793
Module_76 -0.134 0.000 0.000 0.002 0.899 0.938
Module_77 -0.049 0.011 0.027 0.013 0.484 0.588
Module_78 -0.011 0.553 0.648 0.032 0.092 0.155
Module_79 0.032 0.092 0.145 -0.025 0.194 0.291
Module_8 0.039 0.041 0.075 -0.080 0.000 0.000
Module_80 -0.020 0.293 0.396 -0.043 0.025 0.051
Module_81 0.050 0.009 0.024 -0.063 0.001 0.003
Module_82 -0.020 0.302 0.403 0.036 0.062 0.115
Module_83 0.056 0.004 0.010 -0.098 0.000 0.000
Module_84 0.005 0.803 0.847 -0.021 0.285 0.402

Continued on next page
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Table E.2 – continued from previous page
Community Age Beta Age p-value Age FDR Adj.

p-value
BMI Beta BMI p-value BMI FDR Adj.

p-value
Module_85 0.012 0.522 0.619 -0.045 0.018 0.037
Module_86 -0.010 0.607 0.685 0.038 0.046 0.086
Module_87 0.021 0.273 0.378 -0.029 0.137 0.212
Module_88 0.103 0.000 0.000 -0.019 0.324 0.425
Module_89 -0.056 0.003 0.010 -0.001 0.953 0.963
Module_9 0.045 0.018 0.039 -0.092 0.000 0.000
Module_90 0.019 0.333 0.426 0.020 0.302 0.408
Module_91 0.066 0.001 0.003 -0.067 0.000 0.001
Module_92 0.044 0.023 0.047 -0.118 0.000 0.000
Module_93 -0.019 0.328 0.426 -0.003 0.872 0.938
Module_94 0.023 0.228 0.327 -0.168 0.000 0.000
Module_95 -0.057 0.003 0.010 0.050 0.009 0.021
Module_96 0.000 0.979 0.979 -0.018 0.343 0.439

Table E.3: Table summarising the OTUs within each of the community types identified across all three
datasets.
Due its layout, this table can be found on the accompanying digital media.
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Figure E.1: A comparison of the relative abundance of an OTU to the number of OTUs in its assigned
community for each of the three data sets.

Figure E.2: Taxonomic summary plots for the communities in the LLDEEP and Israeli-PN data, as for
TwinsUK in Figure 7.8.
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