
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1007/978-3-319-59930-4_39

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Kuppili Venkata, S., Musial, K., Mahmoud, S., & Keppens, J. (2017). Demonstration: Multi-agent system for
distributed cache maintenance. Lecture Notes in Computer Science, 10349 LNCS, 364-368.
https://doi.org/10.1007/978-3-319-59930-4_39

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 13. Jan. 2025

https://doi.org/10.1007/978-3-319-59930-4_39
https://kclpure.kcl.ac.uk/portal/en/publications/41cf9822-c57c-436b-8bf1-0ed73e7a8881
https://doi.org/10.1007/978-3-319-59930-4_39


Demonstration: Multi-agent System for
Distributed Cache Maintenance

Santhilata Kuppili Venkata1, Katarzyna Musial2, Samhar Mahmoud1 and Jeroen
Keppens1

1 Department of Informatics, King’s College London, London, UK
{santhilata.kuppili_venkata}@kcl.ac.uk

2 Faculty of Science and Technology, Bournemouth University, Poole, UK

Abstract. Innovations in science and technology is increasing the demand on
huge data transfers and hence number of data caches. In this paper, we consider
the community caching solution, CommCache, where many groups of users are
working together on related projects distributed all over the world. We demon-
strate the use of proactive caches for data placement problem with the help of
multi-agent coordination.

Keywords: Distributed cache, agent based modelling, coordination strategies

1 Introduction

Construction of models and simulations using multi-agent systems (MAS) is not new.
Architectures using MAS enable to create applications such as distributed situation as-
sessment, coordination etc. help researchers to develop new insights [2]. We utilise this
property to represent distributed data caching. When groups of users working on similar
projects access data from multiple databases, often they need the same data at different
locations at different times. Also, their queries to the databases overlap significantly.
Distributed caching is a complex system consists of components such as data servers,
communication networks, middleware cache storage units, cache server (processing re-
sources), and users. Traditionally, cache storage units are small in size. Hence during
the cache maintenance process, a decision has to be made about storing in cache units
the most relevant data and removing the obsolete data. This means that we have to
identify ‘what data’ to store, ‘where’ a given data segment should be stored, and for
‘how long’. With the goal to reduce the response time and overall data transfers, mul-
tiple cache units need to coordinate together to cache each unit of data segment at an
appropriate cache unit. Typical diagnostics used for decision making in placing data
segments are: frequency of each data segment queried, time when a data segment was
used, location preference where the data segment was requested, association among
data segments at a given location, number of joins in a query, storage capacity of the
cache unit, and workload characteristics depicting the pattern of query requests. We
have designed CommCache, an agent based community cache framework to represent
the distributed cache environment. In this paper, we examine five coordination strategies
to represent centralised and peer-to-peer architectures.



2 Santhilata Kuppili Venkata, Katarzyna Musial, Samhar Mahmoud and Jeroen Keppens

2 Coordination Strategies Among Multiple Agents

The multi-agent model is shown in Fig 1. User agents (UA) are modelled as the software
representation of humans that query databases. Query response time is measured as the
time elapsed from the query sent from UA to the reply received by a user (Fig 1).
Query analysis agent (QAA) assumes coordinator role in the distributed caching. It has
combined responsibilities for analysis and management. Cache agents are designed to
take active part in cache maintenance. They are cooperative agents. Cache agents handle
local data during active phase and prepare meta data to be used during maintenance
phase. Placement agent is an executor agent in the cache maintenance phase. It revises
and recreates data placement plans and supports QAA. Database agents are resource
(passive) agents. Other supporting agents are not discussed as they are not part of the
demo. We choose the most common strategies used in distributed computing [1].

Fig. 1. Multi-agent architecture for distributed
cache

In Master/slave coordination strat-
egy, query analysis agent (QAA) (usually
a proxy server) acts as the master coordi-
nating agent. With the help of a planning
agent, master follows greedy strategy and
ensures to place each data segment at
a first available best position. Voting
strategy enables cache agents to vote
for the QAA’s (coordinator) decisions.
Cache agents participate pro-actively to
vote based on the local knowledge (bias)
such as affinity among all data stored
within a cache unit. A plan is accepted
when it is accepted by majority of voters.
In Multi-agent planning strategy, cache
agents develop individual plans keeping
local benefits as heuristics. The Placement Agent acts as coordinator and resolves con-
flicts and develops a new global plan. All the above three are examples of centralised
architecture. Negotiation allows peer to peer communication with other cache agents to
discuss plans. Agents negotiate with each other till they reach to a mutually agreed so-
lution. Feedback strategy employs a negotiation agent to provide feedback after every
iteration to cache agents. When negotiations are not contributing to the improvement in
the performance, negotiation agent may provide negative feedback refraining concerned
agents from further negotiations.

3 Demonstration

Description of the Scenario: To evaluate the proposed multi-agent system for dis-
tributed cache maintenance, we narrate a fictitious scenario of television watching pat-
terns. Many television viewers residing within nearby student accommodation blocks
watch television programmes using the Internet streaming catchup television services.
The catchup services allow to download television shows and watch up to a predefined



Multi-agent System for Distributed Cache Maintenance 3

number of days. In order to reduce the volume of data transfers and hence the costs of
Internet downloading, it was decided to install a cache storage unit at each of the ac-
commodation block. Cache units are inter-connected with each other. For this scenario,
we consider each user request to download programme(s) is considered as a query.
A user can request a single programme (or shows) or multiple programmes within a
single query. For the centralised architecture, a query analysis agent examines each re-
quest and generates sub-queries (partial queries) by each of the show requested in the
query. This agent finds an appropriate place for the storage of each of the shows. In
peer-to-peer architecture, cache storage units decide among themselves where to place
the show. Patterns are obtained from the requests containing more than one show. The
patterns thus obtained are used for the relocation of a show from one cache unit to an-
other. Relocation clears the cache from storing shows that are locally not popular. A
least frequently watched show is evicted as the cache refresh policy.

Fig. 2. Comparison of volume of data transfers saved

Experiment: We have generated
workloads (list of 30,000 requests to
watch shows over a period of seven
days) using various statistical distri-
butions for the evaluation (workload
generation is not part of the demo).
Viewers are given with a choice of
100 unique shows to choose from.
About 35 shows are repeatedly re-
quested according to a poisson dis-
tribution. Each show requires from
0.75GB to 2GB of memory space.
All requests are made to watch min-
imum two shows or at the most three
shows in a row only. Each request is
identified by a unique identification
number to determine the frequency (the popularity) of a particular show/ sequence of
shows. We have set up a cache network with five cache storage units. There are 5 cache
units set up for the execution of this experiment. We have developed a Java based sim-
ulator to test and evaluate the coordination strategies.

For the evaluation we need multiple metrics to be calculated based on the type of
application. For example, in the above scenario, we need to compare the volume of data
transfers saved as the result of coordination. The performance of different strategies for
data placement for viewing requests is shown in the Fig 2. Voting and Multi-agent plan-
ning show considerable advantage over others in this case. A screen shot of the demo
is shown in Fig 3. It accepts a configuration file to setup the distributed environment
and the query input workload file in a predefined XML format3. System calculates the
performance with respect to each of the metrics across strategies. The best strategy for
the given input conditions will be implemented during maintenance. This demo demon-
strates the decision making with the help of two bar charts: one (on the left), displays
a comparison of strategies for the chosen performance metric. The second chart (on

3 Generation of XML files is not part of this demo



4 Santhilata Kuppili Venkata, Katarzyna Musial, Samhar Mahmoud and Jeroen Keppens

the right) displays a comparison of the performance metric (volume of data transfers in
this case) with the chosen coordination strategy (master-slave here) and no coordination
among agents at all.

Fig. 3. A demonstration for volume of data transfers saved with Master-slave strategy

4 Conclusion

In this paper, we have described the applicability of multi-agent system for distributed
data caching with the help of an example scenario. Implementation of coordination
strategies are tested on the simulator for given query workloads. A demonstration is
given with the help of five most suitable coordination strategies in the distributed envi-
ronment. We would like to demonstrate comparison of more metrics in future.

References

1. G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair. Distributed Systems - Concepts and
Design. Addison Wesley Publ. Comp., 5 edition, 2011.

2. K. Kravari and N. Bassiliades. A Survey of Agent Platforms . Journal of Artificial Societies
and Social Simulation, 18, 2015.


