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ABSTRACT 1 

Background: Dysfunction of the gut microbiota is frequently reported as a manifestation of 2 

chronic disease, and therefore presents as a modifiable risk factor in their development. Diet is 3 

a major regulator of the gut microbiota and certain types of dietary fiber may modify bacterial 4 

numbers and metabolism, including short-chain fatty acid (SCFA) generation. 5 

Objective: A systematic review and meta-analysis were undertaken to assess the effect of 6 

dietary fiber interventions on gut microbiota composition in healthy adults. 7 

Design: A systematic search was conducted across MEDLINE, EMBASE, CENTRAL and 8 

CINAHL for randomized controlled trials using culture and/or molecular microbiological 9 

techniques evaluating the effect of fiber intervention on gut microbiota composition in healthy 10 

adults. Meta-analyses using random-effects model were performed on alpha diversity, pre-11 

specified bacterial abundances including Bifidobacterium and Lactobacillus spp., and fecal 12 

SCFA concentrations comparing dietary fiber intervention with placebo/low fiber 13 

comparators. 14 

Results: A total of 64 studies involving 2099 participants were included. Dietary fiber 15 

intervention resulted in higher abundance of Bifidobacterium spp. [Standardized Mean 16 

Difference (SMD) 0.64 (95% Confidence Interval: 0.42, 0.86]; P < 0.00001] and Lactobacillus 17 

spp. [SMD: 0.22 (0.03, 0.41), P = 0.02] as well as fecal butyrate concentration [SMD: 0.24 18 

(0.00, 0.47), P = 0.05] compared with placebo/low fiber comparators. Subgroup analysis 19 

revealed fructans and galacto-oligosaccharides led to significantly greater abundance of both 20 

Bifidobacterium spp. and Lactobacillus spp. compared with comparators (P < 0.00001 and P = 21 

0.002 respectively). No differences in effect were found between fiber intervention and 22 

comparators for α-diversity, abundances of other pre-specified bacteria, or other SCFA 23 

concentrations. 24 
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Conclusion: Dietary fiber intervention, particularly involving prebiotic fibers, leads to higher 25 

fecal abundance of Bifidobacterium and Lactobacillus spp. but does not impact α-diversity. 26 

Further research is required to better understand the role of individual fiber types on the 27 

growth of microbes and the overall gut microbial community. 28 

KEYWORDS 29 

Diet, dietary fiber, gastrointestinal microbiome, gastrointestinal microbiota, gut microbiota, 30 

prebiotic  31 
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BACKGROUND 32 

The gut microbiota is a highly diverse and metabolically active community, consisting of 33 

approximately 3.9 x 1013 microbial cells (1). These microbes participate in several functions 34 

beneficial to the host, including the fermentation of undigested nutrients (2, 3), synthesis of 35 

vitamins (4) and interaction with the immune system (5, 6). A number of disorders, including 36 

irritable bowel syndrome and type 2 diabetes mellitus, have been linked with disturbances in 37 

gut microbiota composition (2, 7-9). Such an association presents the gut microbiota as a 38 

potentially modifiable risk factor in the etiology of these conditions. 39 

The gut microbiota can be detected and enumerated using different methods ranging from 40 

culture to next-generation sequencing (6, 10, 11), and can be characterized by measures of 41 

diversity and bacterial abundances (12, 13). Alpha diversity of the gut microbiota describes the 42 

richness (number of taxonomically distinct organisms present) and evenness (relative 43 

abundances of organisms) of its composition (12, 13), with cross-sectional studies 44 

demonstrating inverse associations between α-diversity and disease states (7-9). Specific 45 

bacteria shown to be more abundant in health compared with disease states include 46 

Bifidobacterium and Lactobacillus spp. (2, 7, 14), whose functions include carbohydrate 47 

fermentation and vitamin synthesis (15-18). Furthermore, increasing evidence supports the 48 

importance of ‘keystone’ bacterial species, whose absence may have profound consequences 49 

for the host, as well as other members of the microbial community and their metabolic outputs, 50 

including the short-chain fatty acid (SCFA) butyrate (19-23). Butyrate is of particular interest 51 

to health due to its beneficial properties such as its immunomodulatory effects (24, 25). 52 

Dietary fiber is defined as non-digestible carbohydrates of ≥ 3 monomeric units found 53 

inherently in foods, and also includes isolated or synthetic fibers with demonstrated 54 

physiological benefits (26-28). It is a key candidate in facilitating changes in the gut 55 

microbiota, as it escapes digestion by the host in the small intestine to pass into the colon 56 
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where it is available to the microbial community. Dietary fiber encompasses an array of 57 

heterogeneous compounds whose physicochemical properties vary based on their particle size, 58 

chemical structure, solubility, viscosity and fermentability (29, 30). Fiber with fermentable 59 

characteristics are substrates for the microbial population in the colon, stimulating growth of 60 

specific organisms and leading to production of various metabolites including SCFA (19, 29, 61 

31). Indeed, some fibers can be further classified as ‘prebiotic’ (e.g. fructans) if they have been 62 

shown to be selectively utilized by host microorganisms conferring a health benefit (32). 63 

The current body of evidence regarding the effect of dietary fiber on the gut microbiota is 64 

informed via specific prebiotic fiber interventions (33, 34), whole-diet interventions (35-37) 65 

and cross-sectional associations (38, 39). However, these investigations are limited in that 66 

prebiotic fibers represent only a subset of total dietary fiber, and confounding factors such as 67 

disease states and intake of other fermentable substrates, are unaccounted for in whole diet 68 

studies and cross-sectional studies (40). Therefore, there is a gap in knowledge regarding the 69 

precise impact of dietary fiber intervention on the gut microbiota in healthy subjects, and this 70 

is the focus on the systematic review.  71 

METHODS 72 

This systematic review was conducted in line with the guidelines of the Preferred Reporting 73 

Items for Systematic Reviews and Meta-Analysis: The PRISMA statement (41), and the 74 

guidelines of the Cochrane Handbook for Systematic Reviews and Interventions (42). The 75 

methods including the eligibility criteria, search strategy, extraction process and analysis were 76 

pre-specified and documented in a protocol that was published in the International Prospective 77 

Register of Systematic Reviews (CRD42016053101). 78 

Literature search 79 

A literature search was performed in the electronic databases MEDLINE, EMBASE, 80 

CENTRAL and CINAHL (from inception to October 4, 2017), using a combination of subject 81 
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headings, free text terms and synonyms relevant to this review, in consultation with an 82 

experienced systematic review search librarian (Supplemental Tables 1-4). There was no date 83 

or language restriction in the search strategy. A multi-step search approach was taken to 84 

retrieve relevant studies through additional hand-searching; contacting field experts; searching 85 

conference abstracts; theses and dissertations (ProQuest); and the International Clinical Trials 86 

Register (ICTRP) Search Portal and ClinicalTrials.gov to identify ongoing trials. Two review 87 

authors (DS and HS) screened articles in a blinded, standardized manner, with disagreements 88 

in judgement resolved by consensus or a third reviewer (KC). 89 

Study selection 90 

Search results were merged into reference management software Endnote (X7; Thomson 91 

Reuters) and de-duplicated prior to screening using Rayyan (Qatar Computing Research 92 

Institute) (43). Full text articles of potentially relevant studies were sought and reviewed. 93 

Attempts were made to contact the corresponding author where the full text article provided 94 

inadequate information to assess eligibility or extract relevant data. Studies were included if 95 

they met all of the following criteria: 1) randomized controlled trial (RCT), cluster RCT, or 96 

quasi-RCT; 2) inclusion of healthy adult participants (≥18 years of age); 3) intervention aimed 97 

at increasing fiber intake; 4) inclusion of a placebo for supplement interventions (e.g. 98 

maltodextrin), and either low fiber control (e.g. white bread) or habitual diet group for food 99 

interventions as comparators; 5) measured fecal microbiota related outcomes at the end of 100 

intervention. 101 

Studies that were solely investigating enteral nutrition and those that included participants with 102 

an acute or chronic disease, including gastrointestinal (GI) conditions such as coeliac disease, 103 

inflammatory bowel disease, irritable bowel syndrome and other functional gastrointestinal 104 

disorders were excluded. Studies including mixed population groups where the healthy sub-105 

group was not reported separately were also excluded. Studies that included overweight and 106 
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obese participants who were otherwise healthy and without any abnormal clinical parameters 107 

(e.g. elevated blood pressure) were included. Interventions eligible for inclusion provided an 108 

increase in fiber intake achieved through 1) dietary counselling to increase dietary fiber intake 109 

from food 2) food intervention (e.g. added cereals); or 3) fiber supplementation. Dietary 110 

counselling studies or food interventions were only included if fiber modification was the 111 

primary aim of the intervention. 112 

The primary outcome was between-group differences in α-diversity of fecal microbiota at the 113 

end of the intervention. Measures of α-diversity included the total number of observed 114 

operational taxonomic units (OTUs) (the number of taxonomically-related groups of bacteria, 115 

evaluating richness); Chao1 Index (a non-parametric richness estimator); Shannon diversity 116 

index (a metric combining richness and evenness, with equal weighting to abundant and rare 117 

species); and Simpson diversity index (metric of richness and evenness, where more weighting 118 

is given to abundant species). Secondary outcomes were between-group differences in 119 

abundances of the following commonly measured bacterial groups: Bifidobacterium spp.; 120 

Lactobacillus spp.; Roseburia spp.; Akkermansia muciniphila; Eubacterium hallii; 121 

Eubacterium rectale; Faecalibacterium prausnitzii; and Ruminococcus bromii. Studies were 122 

included if they reported on either primary or secondary outcomes. Between-group differences 123 

in fecal SCFAs (total SCFAs and butyrate) were included as an exploratory outcome. 124 

Data extraction and management 125 

Two reviewers (DS and HS) independently extracted the data from eligible studies. Data 126 

extracted included: study design (duration, location, details of ‘run-in’ and ‘wash-out’ 127 

periods); participant characteristics, intervention details (fiber type, fiber dose, intervention 128 

delivery, compliance, assessment and control of dietary intake); and other information 129 

including antibiotic or probiotic use. 130 
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For all pre-specified primary, secondary and exploratory outcome data, the mean, standard 131 

deviation (SD), standard error (SE) or 95% confidence intervals (CI) that were reported at end 132 

of intervention were extracted for analysis. Where studies used multiple intervention groups of 133 

different fiber doses, data for the highest intervention dose was extracted. Where studies used 134 

multiple intervention groups of different fibers at the same dose compared with a single 135 

control group, data was extracted from each intervention group and pooled together. A 136 

weighted average of the intervention groups and the study variance was then calculated (44). 137 

Risk of bias was independently assessed by two reviewers (DS and HS) using Cochrane 138 

methodology (45). The review assessed “other bias” regarding the control of dietary intake 139 

during the study. This included examining whether dietary advice (e.g. to maintain dietary 140 

intake or avoid probiotic food sources) was provided, whether dietary compliance and/or 141 

intake were measured and reported, and if adjustments in statistical analysis were made if 142 

differences in dietary intake were found. 143 

Statistical analysis 144 

The overall treatment effect of fiber on primary and secondary outcomes was calculated using 145 

the difference between the end of intervention values for the intervention and comparator 146 

groups.  Data reported as median and interquartile range were converted to mean and SD as 147 

previously described (46). Variance was calculated from the SD and SE of end of intervention 148 

values, or from the confidence intervals (CI) where these values were not available (46). In 149 

crossover studies, the mean and SD, SE or CI of intervention and control periods were 150 

extracted and analyzed separately (47). Where end of intervention endpoint data was unable to 151 

be obtained, the results were described in text only. 152 

Meta-analysis was performed where outcomes were reported in at least two studies using 153 

Revman (Version 5.3; Cochrane Collaboration). The mean difference (MD) was used to 154 

calculate effect sizes where outcome data were presented in the same units (Shannon diversity 155 
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index, total number of observed OTUs). Where outcome data were reported using different 156 

units, effect sizes were calculated using the standardized mean difference (SMD) (bacterial 157 

abundances, fecal SCFA concentration).  158 

A random-effects model was used to produce a pooled estimate of the MD or SMD, and the 159 

fixed-effects model was used to check for robustness and potential outliers. Inconsistencies 160 

between studies were assessed using the I2 statistic, where significant heterogeneity was 161 

defined as I2 ≥ 50%. 162 

Pre-defined subgroup analyses were undertaken for primary and secondary outcomes that were 163 

reported in at least two studies in each subgroup. Pre-defined subgroup analyses included 164 

intervention types (supplements and dietary interventions), fiber types (accepted and candidate 165 

prebiotic fibers defined by Roberfroid et al., and general fibers defined by the review) (34), 166 

dose-response (comparing difference in fiber intake between intervention and control group of 167 

≤5g/d, 5-10g/d, and >10g/d), trial design (parallel and crossover), and microbial analysis 168 

method (e.g. culture, sequencing). Post hoc subgroup analyses were undertaken for exploratory 169 

outcomes based on reporting method of fecal SCFA concentrations (dry weight of feces and 170 

wet weight of feces). Fructans and galacto-oligosaccharides were classified as ‘accepted 171 

prebiotic’ fibers, while ‘candidate prebiotic’ fibers included a broader range of fibers including 172 

polydextrose and resistant starch (34). The term ‘general fiber’ was used by the review to 173 

describe fibers not classified as either accepted or candidate prebiotics, and is not a formal 174 

term used to describe fibers in the literature. 175 

For the fiber type subgroup analysis only, the fiber arm with the highest prebiotic classification 176 

(e.g. accepted prebiotic as opposed to a general fiber) was selected if multiple intervention 177 

groups were reported. Where multiple arms of the same prebiotic classification were 178 

presented, the interventions were pooled together and a weighted average of the intervention 179 

arms and study variance were calculated (44). Significant outliers were determined by visual 180 
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inspection as well as through a study-by-study sensitivity analysis, where each study was 181 

sequentially omitted and the remaining data re-assessed. If a study contributed to over 30% 182 

heterogeneity (based on changes to the I2 statistic) then it was removed from the analysis in the 183 

sensitivity analysis. Funnel plots were generated for outcomes where at least 10 studies were 184 

included in meta-analysis (48) and reporting bias detected by assessment of funnel plot 185 

asymmetry by visual inspection. 186 

RESULTS 187 

Study characteristics 188 

Study identification and selection are detailed in the PRISMA flow chart (Figure 1). The 189 

initial electronic and manual search generated 3829 records. After review of full texts 190 

(Supplemental Table 5), 64 publications, along with three secondary studies (49-51) 191 

reporting additional outcomes from the primary publications, fulfilled the inclusion criteria 192 

and were included in the review. 193 

The 64 included primary studies that analyzed a total of 2099 participants. Of these 64 studies, 194 

29 were parallel RCTs (52-80) and 35 were crossover RCTs (81-115). Five crossover trials did 195 

not include a wash out period (84, 93, 95, 105, 108). The majority of studies (52 studies) used 196 

fiber supplementation, including: accepted prebiotic fiber (26 studies) (52, 54-58, 61, 62, 65, 197 

67, 70, 74, 86, 90, 92, 95, 97, 100, 102, 103, 105, 107, 109-111, 115); candidate prebiotic fiber 198 

(18 studies) (53, 63, 64, 66, 68, 69, 73, 77, 81, 83, 84, 87, 88, 91, 99, 101, 112, 113); general 199 

fiber (seven studies) (59, 60, 72, 76, 80, 93, 94); and a fiber mix (108). The remaining 12 200 

studies used food intervention by providing key food items (e.g. wholegrain cereal) to 201 

supplement the diet (71, 78, 82, 85, 89, 96, 98) or provided all food and fluid to participants 202 

(75, 79, 104, 106, 114). Intervention doses ranged from 1.2 g/d to 50 g/d, while treatment 203 

periods ranged from five days to three months, with a median length of three weeks. 204 
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Analysis techniques used to characterize fecal microbiota included: culture (15 studies) (52, 205 

54-58, 65, 66, 69, 71, 73, 96, 98, 105, 114); fluorescence in situ hybridization (FISH) (20 206 

studies) (53, 70, 74, 76, 82, 85, 89-92, 94, 99, 100, 103, 106, 108-110, 112, 113); quantitative 207 

polymerase chain reaction (qPCR) (11 studies) (60, 63, 68, 81, 86, 87, 95, 102, 104, 107, 111); 208 

and next-generation sequencing (including 454 pyrosequencing and Illumina sequencing) (12 209 

studies) (59, 62, 64, 72, 75, 77-80, 97, 101, 115). A combination of techniques were used in 210 

six studies (49, 61, 67, 83, 84, 88, 93). 211 

The outcomes of each meta-analysis are reported in Table 1. Results from subgroup analyses 212 

performed are included in Supplemental Table 6. Overall, outcome data from 56 studies were 213 

suitable for meta-analysis; results from the following studies were unable to be statistically 214 

pooled and are presented narratively under their respective sub-headings (59, 62, 69, 77-79, 215 

83, 93, 95, 97, 101, 113, 115). The characteristics of included studies are presented in Tables 216 

2-3. 217 

Dietary fiber and gut microbiota diversity (α-diversity) 218 

Alpha-diversity was measured in 13 studies involving 393 participants (49, 59, 64, 72, 75, 77, 219 

79, 80, 83, 88, 93, 97, 101). 220 

Ten studies reported α-diversity using Shannon diversity index. Of these, six reported the 221 

metric in a form suitable for inclusion in the meta-analysis (49, 64, 72, 75, 80, 88). Dietary 222 

fiber intervention had no effect on α-diversity compared with placebo/low fiber comparators 223 

[MD: -0.06 Shannon diversity index (95% CI: -0.25, 0.12), P = 0.48], albeit with substantial 224 

heterogeneity (I2 = 53%). In two of the studies not included in the meta-analysis, raffinose and 225 

resistant starch interventions did not lead to significant difference in α-diversity compared with 226 

placebo (93, 101). A significant reduction in the α-diversity of fecal microbiota from baseline 227 

was detected in a trial involving flaxseed mucilage, measured by both the exponential of 228 

Shannon diversity index [-38010 (95% CI: -64473, -11546, P = 0.007)] as well as through 229 
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Simpson’s inverse index [-17515 (95% CI: -30992, -4038, P = 0.014)], although a between-230 

group comparison was not reported (59). Conversely, significant end of intervention 231 

differences in α-diversity measured by Shannon diversity index (P = 0.013) and inverse 232 

Simpson index (P =0.004) were detected between intervention and comparator groups in a 233 

supplementation trial involving resistant starch type 2 (77). 234 

A study evaluating α-diversity through Simpson’s index found it was significantly higher in 235 

the intervention group receiving polydextrose compared with placebo after 21 days (P = 236 

0.014) (88). A trial involving 15 g/d arabinoxylan supplementation reported variable 237 

intervention effects when α-diversity was evaluated using different metrics: α-diversity was 238 

significantly lower compared with placebo when measured through observed species (P = 239 

0.029), but there were no significant differences when assessed by Simpson’s evenness (P = 240 

0.063) (80). 241 

A separate meta-analysis was performed for the three studies reporting α-diversity measured 242 

by total number of observed OTUs (49, 72, 75). Dietary fiber had no effect on α-diversity 243 

compared with placebo/low fiber comparators [MD: -4.37 OTUs (95% CI: -42.92, 34.19), P = 244 

0.82], with no heterogeneity (I2 = 0%). The Chao1 index was used to report α-diversity in two 245 

studies, although there was insufficient data available precluding meta-analysis. Neither trial 246 

reported significant differences between fiber intervention and placebo or low fiber control 247 

(49, 83). A feeding trial comparing wholegrain and refined grain diets found no difference in 248 

α-diversity at end of intervention between the two groups, although the metric used to measure 249 

α-diversity was not reported (79). 250 

Dietary fiber and bacterial abundances 251 

Reporting of bacterial abundances differed across studies. Of the taxa of interest in this review, 252 

abundances of Bifidobacterium spp. (59 studies) and Lactobacillus spp. (28 studies) were most 253 

commonly reported. No studies reported on the abundance of Akkermansia muciniphila. 254 
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A total of 59 studies including 1896 participants reported the effect of dietary fiber on 255 

Bifidobacterium spp. abundance and of these, 51 trials (1629 participants) reported data in a 256 

form suitable for meta-analysis (53-58, 60, 61, 63-68, 70, 71, 73-76, 81, 82, 84-94, 96-112, 257 

114). Dietary fiber led to a significantly greater Bifidobacterium spp. abundance compared 258 

with placebo/low fiber comparators [SMD: 0.64 (95% CI: 0.42, 0.86), P < 0.00001], albeit 259 

with considerable heterogeneity (I2 = 85%) (Figure 2).  260 

However, subgroup analysis showed fiber interventions delivered through supplements 261 

resulted in a significantly higher Bifidobacterium spp. abundance compared with placebo/low 262 

fiber controls [SMD: 0.75 (95% CI: 0.52, 0.98), P < 0.00001, I2 = 83%], whereas no 263 

differences were found between food interventions and comparators [SMD: 0.20 (95% CI: -264 

0.36, 0.76), P = 0.49, I2 = 88%], although considerable heterogeneity persisted in both 265 

analyses. 266 

Subgroup analysis demonstrated interventions investigating fibers classified as accepted 267 

prebiotics and candidate prebiotics resulted in a significantly higher Bifidobacterium spp. 268 

abundance compared with placebo/low fiber controls [Accepted prebiotic fiber SMD: 0.68 269 

(95% CI: 0.38, 0.98), P < 0.00001, I2 = 81%; Candidate prebiotic fiber SMD: 0.77 (95% CI: 270 

0.30, 1.24), P < 0.00001, I2 = 86%] (Figure 2). However, there was no difference in effect 271 

between the general fiber subgroup compared with comparators [SMD: 0.25 (95% CI: -0.16, 272 

0.65), P = 0.24, I2 = 86%]. This subgroup analysis did not reduce the considerable 273 

heterogeneity across each subgroup. 274 

Subgroup analysis of dose-response showed dietary fiber led to significantly higher 275 

Bifidobacterium spp. abundance compared with placebo/low fiber comparators at all pre-276 

defined dosage [≤5g/d fiber SMD: 0.51 (95% CI: 0.18, 0.84), P = 0.003, I2 = 70%; 5-10g/d 277 

SMD: 0.48 (95% CI: 0.13, 0.83), P = 0.007, I2 = 87% >10g/d SMD: 0.85 (95% CI: 0.45, 1.25), 278 
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P < 0.00001, I2 =85%]. No differences were found in subgroup analyses of trial design or 279 

microbiota analysis method (Supplemental Table 6). 280 

Eight trials were not included in the meta-analysis. In the supplement trials of accepted 281 

prebiotics, a significantly higher Bifidobacterium spp. abundance was reported following 282 

supplementation involving inulin (115) and human milk oligosaccharides (HMO) (62) 283 

compared with placebo at the end of intervention, while a significant within-group increase 284 

from baseline was detected following 10g/d inulin supplementation (95). In the candidate 285 

prebiotic trial of resistant starch supplementation, Bifidobacterium spp. abundance was 286 

significantly higher in the intervention group compared with placebo at end of intervention 287 

(77). In the supplement studies of general fiber, Bifidobacterium spp. abundance was higher 288 

following after xylo-oligosaccharide supplementation compared with placebo (69) while 289 

manno-oligosaccharides had no effect on Bifidobacterium spp. compared with placebo (113). 290 

The third supplement trial of general fiber (resistant maltodextrin) reported no change in 291 

Bifidobacterium spp. abundance within groups using FISH, although a significant increase 292 

from baseline was reported for the intervention group on qPCR analysis (83). Finally, a food 293 

study comparing intakes of wholegrains to refined grain products found no significant 294 

difference in Bifidobacterium spp. abundance at the end of intervention period (78). 295 

Lactobacillus spp. abundance was measured in 28 studies involving 867 participants. Data 296 

from 24 studies (730 participants) was reported in a form suitable for meta-analysis (52, 55, 297 

56, 60, 63-68, 73, 75, 76, 84, 87, 93, 96, 97, 99, 104, 105, 107, 111, 114). Dietary fiber led to a 298 

significantly greater Lactobacillus spp. abundance compared with placebo/low fiber 299 

comparators [SMD: 0.37 (95% CI: 0.07, 0.68), P = 0.02]. However, heterogeneity was 300 

considerable (I2 = 80%), and was skewed by results from a single outlier study (66) [4.70 (95% 301 

CI: 3.69, 5.70)]. A sensitivity analysis excluding this study produced a more homogenous 302 

study population (I2 = 49%), with a modest impact on the result [SMD: 0.22 (95% CI: 0.03, 303 
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0.41), P = 0.02] (Figure 3). The outlier study (66) was excluded from subsequent subgroup 304 

analyses. 305 

Subgroup analysis demonstrated interventions involving fiber supplements resulted in a 306 

significantly higher Lactobacillus spp. abundance compared with placebo/low fiber controls 307 

while substantially reducing study heterogeneity [SMD: 0.16 (95% CI: 0.01, 0.31), P = 0.04, I2 308 

= 7%]. No significant differences in effect were found between food interventions and 309 

comparators [SMD: 0.35 (95% CI: -0.46, 1.16), P = 0.40, I2 = 84%]. 310 

Subgroup analysis of fiber types showed accepted prebiotic fiber interventions led to a 311 

significantly greater Lactobacillus spp. abundance compared with placebo/low fiber controls 312 

and further reduced heterogeneity [SMD: 0.34 (95% CI: 0.13, 0.55), P = 0.002, I2 = 0%] 313 

(Figure 3). There were no differences in effect in the candidate prebiotic [SMD: -0.06 (95% 314 

CI: -0.29, 0.16), P = 0.58, I2 = 0%] and general fiber [SMD: 0.22 (95% CI: -0.31, 0.75), P = 315 

0.42, I2 = 74%] subgroups when compared with comparators.  316 

Subgroup analysis of analysis method demonstrated dietary fiber led to significantly higher 317 

Lactobacillus spp. abundance compared with placebo/low fiber comparators when enumerated 318 

via culture [SMD: 0.61 (95% CI: 0.13, 1.08), P = 0.01]. There were no significant differences 319 

between intervention and comparator when Lactobacillus spp. was detected using FISH, qPCR 320 

or sequencing (Supplemental Table 6). There were no differences in effect when sub-321 

analyzing by intervention type or dose-response (Supplemental Table 6). 322 

There were four studies that could not be pooled into the meta-analysis. A prebiotic 323 

supplementation trial of HMOs reported no difference in Lactobacillus spp. abundance 324 

between intervention and control groups (62). There was also no significant difference in 325 

Lactobacillus spp. reported in a wholegrain food intervention study compared with controls 326 

(78). Of the two remaining studies, there was higher Lactobacillus spp. abundance following 327 

xylo-oligosaccharide supplementation compared with placebo (69), and significant within-328 
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group increases in Lactobacillus spp. abundance was demonstrated following manno-329 

oligosaccharide supplementation (113).  330 

Abundance of F. prausnitzii was measured in 15 studies investigating 566 participants. 331 

Thirteen studies (519 participants) were able to be meta-analyzed (53, 61, 67, 68, 74, 84, 88, 332 

94, 99-101, 110, 112). There was no difference between dietary fiber compared with 333 

placebo/low fiber comparators for F. prausnitzii abundance [SMD: 0.14 (95% CI: -0.12, 0.39), 334 

P = 0.29], with substantial heterogeneity between studies (I2 = 68%) (Figure 4). Aside from 335 

trial design, no differences with respect to the pre-specified subgroups were found 336 

(Supplemental Table 6). Two studies reporting abundances of F. prausnitzii were unable to 337 

be pooled into the meta-analysis. Both studies measured the relative abundance of F. 338 

prausnitzii and reported only within-group changes, with one study reporting a decrease in 339 

abundance following supplementation of flaxseed mucilage (59), and the other reporting an 340 

increase in abundance following inulin supplementation (50). 341 

Seven studies including 261 participants measured Roseburia spp. abundance. Four studies 342 

(189 participants) were included in the meta-analysis (49, 68, 79, 97). Dietary fiber had no 343 

effect on Roseburia spp. abundance compared with placebo/low fiber comparators [SMD: 0.33 344 

(95% CI: -0.14, 0.80), P = 0.17] although substantial heterogeneity was detected (I2 = 70%) 345 

(Figure 4). Similar results were reported in the studies excluded from meta-analysis. No 346 

between or within-group differences were detected between intervention and placebo groups in 347 

two prebiotic fiber supplement trials (50, 62). A third trial found the relative abundance of 348 

Roseburia spp. was lower following inulin supplementation compared with control at end of 349 

intervention, although significance was not reported (115). 350 

Two studies of 32 participants measured E. hallii abundance. These results could not be 351 

statistically pooled because one study did not report data in a suitable form. One study 352 
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reported no within-group difference in E. hallii abundance (50, 62), the other reported a 353 

significant decrease in E. hallii abundance compared with placebo (49). 354 

E. rectale was measured in three studies including 42 participants. Two studies (30 355 

participants) were suitable for meta-analysis (84, 101). Dietary fiber did not impact on E. 356 

rectale abundance compared with placebo/low fiber comparators [SMD: -0.26 (95% CI: -1.20, 357 

0.67), P = 0.58] and substantial heterogeneity was detected (I2 = 75%) (Figure 4). The study 358 

not eligible for meta-analysis was an inulin supplementation trial which reported no difference 359 

for within-group effects for E. rectale abundance (50). 360 

R. bromii abundance was measured in three studies encompassing 76 participants, of which all 361 

were suitable for meta-analysis (49, 81, 101). Dietary fiber had no effect on R. bromii 362 

abundance compared with placebo/low fiber comparators [SMD: 0.15 (95% CI: -0.15, 0.45), P 363 

= 0.33], with no heterogeneity detected (I2 = 0%) (Figure 4). 364 

Dietary fiber and short-chain fatty acids 365 

A total of 25 studies of 870 participants reported between-group differences in fecal SCFA 366 

concentration following fiber intervention (52, 53, 55, 59, 63, 64, 66-68, 71, 73, 74, 77, 80, 82, 367 

84, 86, 90, 91, 93, 94, 96, 103, 112, 115). Fecal SCFA concentration was determined through 368 

gas-liquid chromatography in all but one study (90) where high-performance liquid 369 

chromatography was used. 370 

Total fecal SCFA concentration was measured in 13 studies encompassing 406 participants 371 

(52, 55, 59, 63, 64, 67, 73, 80, 82, 84, 86, 91, 94). Dietary fiber had no effect on total SCFA 372 

concentration compared with placebo/low fiber comparators [SMD: 0.11 (95% CI: -0.05, 373 

0.27), P = 0.19], with similar intervention effects across studies (I2 = 0%). 374 

Fecal acetate concentration was reported in 18 studies involving 657 participants (52, 53, 63, 375 

66, 71, 74, 77, 80, 82, 84, 86, 90, 91, 93, 94, 96, 103, 112). There was no difference in fecal 376 
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acetate following fiber intervention compared with placebo/low fiber comparators [SMD: 0.28 377 

(95% CI: -0.08, 0.63), P = 0.13] with substantial heterogeneity between studies (I2 = 86). 378 

The effect of fiber intervention on fecal propionate concentration was reported in 19 studies of 379 

677 participants (52, 53, 63, 66, 71, 74, 77, 80, 82, 84, 86, 90, 91, 93, 94, 96, 103, 112, 115). 380 

No differences were found between fecal propionate and comparators [SMD: -0.01 (95% CI: -381 

0.20, 0.22), P = 0.95], with moderate heterogeneity detected (I2 = 61%). 382 

The effect of fiber intervention on fecal butyrate concentration was reported in 20 studies of 383 

712 participants (52, 53, 59, 63, 66, 71, 74, 77, 80, 82, 84, 86, 90, 91, 93, 94, 96, 103, 112, 384 

115). Fecal butyrate was significantly higher following fiber intervention compared with 385 

placebo/low fiber comparators [SMD: 0.24 (95% CI: 0.00, 0.47), P = 0.05], although 386 

considerable heterogeneity was present (I2 = 70%). 387 

Of the studies evaluating differences in fecal SCFA concentration following fiber intervention 388 

compared with placebo/low fiber comparators, 13 studies expressed mean SCFA 389 

concentrations per wet weight of feces (52, 53, 66, 67, 71, 73, 74, 77, 82, 90, 91, 96, 115), 10 390 

studies as dry weight of feces (55, 59, 63, 64, 68, 80, 93, 94, 103, 112), one study as molar 391 

ratio (84), and one study as a combination of wet weight of feces and molar ratio (86). 392 

Additional subgroup analyses were performed to compare differences in fecal SCFA 393 

concentrations when expressed as wet weight compared with dry weight (Supplemental 394 

Table 7). Fiber intervention led to significantly higher fecal concentrations of total SCFA, 395 

acetate and butyrate compared with comparators when expressed per wet weight of feces. 396 

However, there were no significant differences when mean SCFA concentrations were 397 

expressed per dry weight of feces. Study heterogeneity was considerably greater for fecal 398 

acetate and butyrate, but not total fecal SCFA concentrations when expressed as wet compared 399 

with dry wet of feces. There were no differences in effect based on analysis method for fecal 400 
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propionate concentrations, although heterogeneity was greater when results were expressed per 401 

wet weight of feces (Supplemental Table 7). 402 

Differences in intervention effects based on trial design 403 

There were differences in intervention effects in subgroup analyses depending upon trial 404 

design. Dietary fiber led to significantly lower α-diversity compared with placebo/low fiber 405 

comparators in crossover design trials, where α-diversity was reported using Shannon diversity 406 

index [MD: -0.10 (95% CI: -0.19, -0.01), P = 0.03], while there was no difference in α-407 

diversity in parallel design trials [MD: -0.03 (95% CI: -0.57, 0.51), P = 0.91] (Supplemental 408 

Table 6). The presence and duration of washout periods were inconsistent across the three 409 

crossover trials included this analysis. One study did not include a wash out period (84), and 410 

wash out periods lasted 14 (75) and 21 days (88) in the other two. Regarding bacterial 411 

abundances however, intervention effects were significant in parallel trials but not in crossover 412 

trials for Lactobacillus and Roseburia spp. and F. prausnitzii, but not for Bifidobacterium spp. 413 

(Supplemental Table 6). Statistical heterogeneity was lower in crossover trials compared with 414 

parallel trials for α-diversity reported using Shannon diversity index, Bifidobacterium and 415 

Lactobacillus spp., as well as F. prausnitzii, but there was no difference in statistical 416 

heterogeneity for Roseburia spp. (Supplemental Table 6). 417 

Risk of bias 418 

The risk of bias was low-to-moderate across the 64 included studies (Supplemental Figure 1). 419 

Selection bias was unclear in most studies. Random sequence generation and allocation 420 

concealment were adequately described by 26% (59-62, 70-72, 77, 79, 80, 84, 86, 94, 103, 421 

113-115) and 16% (59, 61, 62, 70, 77, 79, 80, 86, 94, 115) of studies, respectively. There was 422 

low risk of bias across included studies regarding performance and detection bias, as most 423 

trials investigated objective outcomes and incorporated a double-blind design. Attrition bias 424 

was adequately addressed by only 41% (54-58, 62, 67, 69, 71, 74-76, 79, 82, 86-89, 92, 93, 98, 425 
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99, 105, 107, 108, 110) of the included studies. Selective reporting was unclear in the majority 426 

of studies. Published protocols or clinical registrations were reported by only 26% (59, 61, 68-427 

70, 75, 77-80, 86, 97, 100-102, 110, 115) of included studies. Bias related to control of dietary 428 

intake was unclear in half of included studies (55%) (54, 56-60, 62, 64-67, 71, 72, 74, 78, 80, 429 

81, 83, 85-93, 96, 98, 102, 103, 105, 108, 110, 115), while even fewer studies were judged to 430 

have a low risk of bias regarding dietary advice and assessment of dietary compliance (33%) 431 

(52, 55, 63, 68, 69, 73, 75, 76, 79, 82, 84, 94, 97, 99, 104, 106, 107, 111-114). Furthermore, 432 

13% (53, 61, 70, 77, 95, 100, 101, 109) of studies did not provide dietary advice or assess 433 

intake, and were judged to have a high risk of bias relating to the potential influence of 434 

background dietary intake. 435 

Reporting bias 436 

Funnel plots were generated for abundances of Bifidobacterium spp.; Lactobacillus spp.; F. 437 

prausnitzii; and total SCFA; acetate; propionate; and butyrate concentrations. Visual 438 

inspection found no evidence of funnel plot asymmetry, indicating reporting bias was unlikely 439 

(Supplemental Figures 2-7).  440 



23 

 

DISCUSSION 441 

This systematic review and meta-analysis found dietary fiber intervention had no effect on the 442 

diversity of the gut microbiota but did increase abundance of Bifidobacterium and 443 

Lactobacillus spp. as well as fecal butyrate concentration in healthy adults.  444 

The lack of effect on α-diversity of the gut microbiota found in this review is similar to other 445 

dietary interventions documented in the literature. For instance, controlled feeding studies 446 

lasting four days to three weeks found that despite significant changes to fiber intake, there 447 

was no effect on microbial diversity (35-37). These findings suggest that short-term dietary 448 

interventions are unlikely to facilitate changes in the α-diversity of the gut microbiota. Indeed, 449 

study design is likely important, as subgroup analysis demonstrated different effects between 450 

crossover and parallel trials. The lower α-diversity between fiber and control groups in 451 

crossover trials may be related to a lack of or insufficient wash-out between interventions, as 452 

well as potential differences in the microbiota and habitual diet of individuals at baseline. 453 

These null findings are in contrast to the findings from observational studies that report a 454 

correlation between fiber intakes in habitual diet and diversity of the gut microbiota, for 455 

example in studies comparing agrarian dietary habits with Western populations (38, 39). 456 

Interestingly, a positive correlation has also been reported between dietary diversity and 457 

microbiota diversity (116). Taken together, long term dietary diversity as opposed to changes 458 

in isolated nutrients or foods over a short period of time may be a stronger driver of microbial 459 

diversity. It must also be noted that the stability of the gut microbiota, as well as the 460 

abundances and metabolites of the individual members of the microbial community, also 461 

contribute to maintaining an ecosystem that promotes health (117, 118). Therefore, the totality 462 

of findings here, including that microbial diversity was not compromised, support the 463 

favorable effects of dietary fiber on the gut microbiota. 464 
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In regard to particular bacterial groups, this review demonstrated dietary fiber interventions 465 

involving accepted prebiotic fibers led to higher abundance of Bifidobacterium and 466 

Lactobacillus species. These results support the selectivity criteria of the prebiotic concept, 467 

where the host microorganisms selectively utilize the prebiotic fibers as substrates, which may 468 

confer health benefits to the host (32). However, candidate prebiotic interventions produced 469 

different effects on the abundance of these two genera, with significant effects demonstrated 470 

for Bifidobacterium but not Lactobacillus species. This may represent differences in substrate 471 

preferences between the two genera, where Bifidobacterium spp. may be less discriminating 472 

than Lactobacillus spp. regarding fermentation substrates (119, 120). Conversely, fibers not 473 

classified as accepted or candidate prebiotics, here termed general fibers, did not impact the 474 

abundance of these taxa. This may be due to the heterogeneity of the general fibers, including 475 

their degree of polymerization, viscosity and fermentability, whereas accepted and candidate 476 

prebiotic fibers are mostly highly fermentable oligosaccharides (29, 30).  477 

Subgroup analysis separating the effect of food vs supplement interventions showed food 478 

interventions had no effect on Bifidobacterium and Lactobacillus species. This result may be 479 

attributed to a lack of statistical power, due to the food interventions comprising a relatively 480 

small number of low sample size studies (10 studies, 301 participants; 4 studies, 127 481 

participants). It must also be noted that most of the trials employing food interventions 482 

supplemented with grain and cereal foods to increase fiber intake (71, 78, 79, 82, 85, 89, 96, 483 

98, 104). Therefore, the food interventions evaluated may be more representative of grains and 484 

cereals per se rather than a diverse range of fibrous foods. 485 

Interestingly, there were no differences in the effect of dietary fiber interventions on 486 

Bifidobacterium spp. abundance with varying doses of fiber. Dietary fiber intervention led to 487 

an effect at all levels of consumption in subgroup analysis (≤5g, 5-10g, >10g) with no 488 

discernible gradient in effectiveness, suggesting fewer than 5 grams of dietary fiber is 489 
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sufficient. This may represent a potential limit to the amount of fiber that can be fermented by 490 

Bifidobacterium species. The lack of a dose-response effect may also be attributed to the 491 

percentage increase in fiber intake from baseline rather than the intervention dose, which was 492 

unable to be accounted for in this review due to the inconsistent reporting of baseline values 493 

across included studies. This requires further clarification but lower dose supplementation may 494 

be advantageous in patients who experience GI symptoms with higher fiber loads. 495 

There was more variability in intervention effects for abundances of Bifidobacterium spp. (I2 = 496 

85%) compared with Lactobacillus spp. (I2 = 49%). While this may be related to differences in 497 

the accuracy of techniques used to determine specific bacterial abundances (121, 122), there 498 

were no differences in effect based on analysis method for Bifidobacterium species. Another 499 

plausible explanation is the differences in nutrient requirements of these taxa as discussed 500 

previously. Furthermore, ‘responder and non-responder’ effects for Bifidobacterium spp. 501 

abundance, which have been shown previously (97, 123, 124), may be impacted by individual 502 

host factors, such as differences in baseline abundances (124), or the presence/absence of 503 

specific strains of Bifidobacterium able to utilize the particular fiber under investigation. 504 

There were differences in intervention effects based on trial design, with parallel design 505 

studies demonstrating stronger intervention effects and greater statistical heterogeneity 506 

compared with crossover design studies for several outcomes. This may in part be due to inter-507 

individual differences in microbiota composition as well as carry-over effects from a lack of or 508 

insufficient wash-out periods in the crossover studies as discussed previously. 509 

There was no effect of dietary fiber interventions on abundance of other commonly measured 510 

bacterial groups (e.g. F. prausnitzii), suggesting these species may be stimulated by dietary 511 

components other than fiber, such as polyols and polyphenols (125). However, the number of 512 

studies evaluating species of other bacterial groups was small, and therefore further studies are 513 

needed to investigate the effect of fiber and other dietary components on these groups. 514 
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The higher fecal concentration of butyrate following fiber intervention highlights the ability of 515 

dietary fiber to beneficially modulate the metabolic outputs of the gut microbiota. This is 516 

likely due to cross-feeding interactions between butyrate producers with Bifidobacterium and 517 

Lactobacillus species, which are noted lactate and acetate producers (25, 120, 126). As the 518 

preferred energy source for colonic epithelial cells, butyrate is a microbial by-product that is of 519 

particular interest to host health, exhibiting a wide spectrum of positive effects, such as 520 

inhibiting colonic carcinogenesis and ameliorating mucosal inflammation (31, 127, 128). 521 

However, it is acknowledged that the variability in the reporting of SCFA results may limit the 522 

applicability of these findings, particularly when considering the variance in results when 523 

expressed as wet compared with dry weight of feces. 524 

This study is the first systematic review and meta-analysis to assess the effect of dietary fiber 525 

intervention on gut microbiota composition. Major strengths of this study include its robust 526 

design, comprehensive search strategies, and the use of two independent reviewers. 527 

It is acknowledged this study has some limitations. Firstly, there were only a limited number 528 

of studies reporting the primary outcome of α-diversity, and a small proportion presenting data 529 

using the same diversity indices. Secondly, baseline fiber intake was not able to be accounted 530 

for due to the paucity of reporting by included studies. Furthermore, included studies sampled 531 

feces as a surrogate for gut microbiota profile, and although feces are a common sampling 532 

route, the microbial composition of feces differs from the mucosal microbiota (10, 11), which 533 

is in closer contact with the host and may be more important when considering the relationship 534 

between microbiota and disease pathophysiology or outcomes. Finally, the limited number of 535 

taxa assessed in the review may not convey the overall effect elicited by dietary fiber 536 

intervention on gut microbiota composition and metabolic outputs, although the selection of 537 

taxa was guided by the available literature. Thus, the taxa selected may be more representative 538 

of the scope of research in the field to date, rather than a limitation of the review. 539 
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Dietary fiber intervention leads to a higher abundance of fecal Bifidobacterium and 540 

Lactobacillus spp., as well as higher fecal concentration of butyrate compared with 541 

placebo/low fiber comparators. Accepted prebiotic fibers had an effect on the abundances of 542 

both Bifidobacterium and Lactobacillus spp. while candidate prebiotic fibers had an effect on 543 

Bifidobacterium spp. abundance but not Lactobacillus species. General fibers appear to have a 544 

limited effect on gut microbiota composition. Although the diversity of the gut microbiota, 545 

abundances of other commonly measured bacterial groups and concentration of other fecal 546 

SCFAs were not significantly different compared with controls following dietary fiber 547 

intervention, it is worth noting that a short-term increase in fiber intake does not appear to be 548 

rate-limiting to these outcomes. These results further support the favorable effects of dietary 549 

fiber and contribute to our understanding of its effect on the gut microbiota. 550 

Future RCTs investigating the effect of fiber on the gut microbiota should adjust for 551 

participants’ baseline microbiota composition and dietary characteristics as well as controlling 552 

for dietary intake in order to determine the precise effect of dietary fiber. Scope may also need 553 

to be broadened to evaluate taxa than that considered here, including the eukaryote (e.g. fungi) 554 

members of the gut microbiota. Additionally, longer duration studies are needed to better 555 

assess the chronic effect of fiber on microbiota diversity.  556 
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Table 1: Statistical analysis for the outcomes reported in ≥2 randomized controlled trials and included in the meta-analysis.  

      Results Heterogeneity 

Outcomes No. of studies in meta-

analysis (references) 

n1 Meta-analysis overall estimate 

(95% CI) 

P Chi-

square 

test 

P I2 (%) 

Shannon Diversity 

Index 

6 (64, 72, 75, 80, 84, 88) 127 MD: -0.06 (95% CI: -0.25; 0.12) 0.48 10.73 0.06 53 

Total number of 

observed OTUs 

3 (72, 75, 84) 53 MD: -4.37 (95% CI: -42.92; 34.19) 0.82 0.07 0.97 0 

Bifidobacterium spp. 51 (52-58, 60, 61, 63-68, 

70-76, 82, 84-94, 96-112, 

114) 

1629 SMD: 0.64 (95% CI: 0.42; 0.86) <0.00001 327.93 <0.00001 85 

Lactobacillus spp.2 23 (52, 55, 56, 60, 63-65, 

67, 68, 73, 75, 76, 84, 87, 

93, 96, 97, 99, 104, 105, 

107, 111, 114) 

670 SMD: 0.22 (95% CI: 0.03; 0.41) 0.02 42.8 0.005 49 

Faecalibacterium 

prausnitzii 

13 (53, 61, 67, 68, 74, 

84, 88, 94, 99-101, 110, 

112) 

519 SMD: 0.14 (95% CI: -0.12; 0.39) 0.29 37.53 0.0002 68 

Roseburia spp. 4 (68, 79, 84, 97) 189 SMD: 0.33 (95% CI: -0.14; 0.80) 0.17 10.16 0.02 70 

Eubacterium rectale 2 (84, 101) 30 SMD: -0.26 (95% CI: -1.20; 0.67) 0.58 3.94 0.05 75 

Ruminococcus bromii 3 (81, 84, 101) 76 SMD: 0.15 (95% CI: -0.15; 0.45) 0.33 1.1 0.58 0 

Total SCFA 13 (52, 55, 59, 63, 64, 

67, 73, 80, 82, 84, 86, 91, 

94) 

406 SMD: 0.11 (95% CI: -0.05; 0.27) 0.19 6.46 0.89 0 

Acetate  18 (52, 53, 63, 66, 71, 

74, 77, 80, 82, 84, 86, 90, 

91, 93, 94, 96, 103, 112) 

657 SMD: 0.28 (95% CI: -0.08; 0.63) 0.13 119.36 <0.00001 86 

Propionate  19 (52, 53, 63, 66, 71, 677 SMD: 0.01 (95% CI: -0.20; 0.22) 0.95 46.23 0.0003 61 
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      Results Heterogeneity 

Outcomes No. of studies in meta-

analysis (references) 

n1 Meta-analysis overall estimate 

(95% CI) 

P Chi-

square 

test 

P I2 (%) 

74, 77, 80, 82, 84, 86, 90, 

91, 93, 94, 96, 103, 112, 

115) 

Butyrate  20 (52, 53, 59, 63, 66, 

71, 74, 77, 80, 82, 84, 86, 

90, 91, 93, 94, 96, 103, 

112, 115) 

712 SMD: 0.24 (95% CI: 0.00; 0.47) 0.05 64.21 <0.00001 70 

 

Data was meta-analyzed using a random-effects model and presented as MDs or SMDs as appropriate. Statistical heterogeneity was assessed 

using the chi-square test and quantified using the I2 statistic. 1 Number of participants in meta-analysis. 2 Results from outlier study excluded 

from this meta-analysis. Abbreviations: MD, Mean difference; OTU, Operational taxonomic unit; SCFA, Short chain fatty acid; SMD, 

Standardized mean difference. 
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Table 2: Characteristics of randomized controlled trials of fiber supplementation comparing dietary fiber with placebo or low fiber comparators 

in healthy adults 

 Participants Interventions RCT Design 

Study n; age1; % F Fiber, daily 

dose  

Preb

iotic 

Comparator; 

daily dose  

Compli

ance2 

Design Duration 

(days) 

Run 

in  

Wash 

out  

Analysis 

Abell 2008 

(81) 

46; 25-66; 

65% 

RS, 22 g C RS, 1 g Y Cross-

over 

28 Y Y qPCR 

Alfa 2017 

(77) 

84; 32-96; 

42% 

RS2, 21 g C Corn starch, 21 g  Y Parallel 72 Y N Illumina 

Alles 1999 

(52) 

27.4; 40.4; 

45% 

TOS, 15 g A Glucose & 

lactose mix, 15 g 

Y Parallel 21 Y N Culture 

Baer 2014 

(83) 

14; 47; 9% Resistant 

maltodextrin, 50 

g 

C Maltodextrin, 50 

g  

Y Cross-

over 

21 N Y 454 

Pyrosequencing

; DGGE; FISH; 

qPCR 

Beards 

2010 (53) 

30; 333; 

66%3 

PDX; RS, 45.6 g C Maltilol, 45.6 g N Parallel 44 N N FISH 

Blaedel 

2016 (115) 

21; 23-45; 

100% 

Inulin, 15 g A Placebo Y Cross-

over 

21 N Y Illumina 

Boler 2011 

(84); 

Hooda 

2012 (49)4 

21; 21-28; 

0% 

PDX5; Soluble 

maize fiber, 21 g 

C Placebo N Cross-

over 

21 N N qPCR; 

Pyrosequen-

cing4 

Bouhnik 

1996 (54) 

10; 22-39; 

50% 

SC-FOS, 12.5 g A Saccharose, 10 g N Parallel 12 Y Y Culture 

Bouhnik 

1999 (58) 

8; 29.6; 55% SC-FOS, 20 g A Saccharose, 20 g N Parallel 7 N N Culture 
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 Participants Interventions RCT Design 

Study n; age1; % F Fiber, daily 

dose  

Preb

iotic 

Comparator; 

daily dose  

Compli

ance2 

Design Duration 

(days) 

Run 

in  

Wash 

out  

Analysis 

Bouhnik 

2004 (57) 

64; 303; 

55%3 

SC-FOS5; 

GOS5; Isomalto-

OS; Inulin5; RS; 

Soybean-OS, 10 

g  

A Sucrose & 

maltodextrin 

mix, 10 g 

N Parallel 7 Y N Culture 

Bouhnik 

2006 (56) 

40; 29; 55% SC-FOS 

(Actilight), 10 g 

A Sucrose & 

maltodextrin 

mix, 10 g 

N Parallel 7 Y N Culture 

Bouhnik 

2007 (55) 

39; 33.9; NR Inulin, 5 g A Sucrose & 

maltodextrin 

mix, 5 g 

N Parallel 28 Y Y Culture 

Brahe 2015 

(59) 

35; 59.63; 

100% 

Flaxseed 

mucilage, 10 g 

G Placebo Y Parallel 42 N N Quantitative 

metagenomics 

Calame 

2008 (60) 

16; 30.9; NR Arabic gum, 40 g G Placebo Y Parallel 28 N N qPCR 

Clarke 

2016 (86) 

30; 27; 57% Beta 2-1 fructan, 

15 g 

A Maltodextrin, 15 

g 

Y Cross-

over 

28 N Y qPCR 

Cloetens 

2010 (87) 

20; 24; 70% AXOS, 10 g C Maltodextrin, 20 

g 

N Cross-

over 

21 N Y qPCR 

Costabile 

2010 (90) 

31; 25; 56% Very long chain 

inulin, 10 g 

A Maltodextrin, 10 

g 

N Cross-

over 

21 N Y FISH 

Costabile 

2012 (88) 

31; 33; 52% PDX, 8 g C Maltodextrin, 8 g N Cross-

over 

21 N Y DGGE; FISH 

Damen 

2012 (91) 

27; 25; 63% AXOS, 2.14 g C Placebo Y Cross-

over 

21 Y Y FISH 

Depeint 

2008 (92) 

30; 36.3; 

60% 

Beta-GOS, 7 g A Sucrose, 7 g N Cross-

over 

7 Y Y FISH 
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 Participants Interventions RCT Design 

Study n; age1; % F Fiber, daily 

dose  

Preb

iotic 

Comparator; 

daily dose  

Compli

ance2 

Design Duration 

(days) 

Run 

in  

Wash 

out  

Analysis 

Dewulf 

2013 (61) 

30; 47.5; 

100% 

Inulin-type 

fructan (Synergy 

1), 16 g 

A Maltodextrin, 16 

g 

N Parallel Reported 

as 3 

months 

N N qPCR; 

Phylogenetic 

microarray 

Elison 

2016 (62) 

40; 22-57; 

52% 

HMO6: 2′-O-

fucosyllactose 

(2'FL); lacto-N-

neotetraose 

(LNnT); Mixture 

(2:1 mixture of 

2'FL + LNnT), 

20 g 

A Glucose, 2 g Y Parallel 14 Y N Illumina  

Fastinger 

2008 (63) 

25; 26.7; 

50% 

Resistant 

maltodextrin, 15 

g 

C Maltodextrin, 15 

g 

N Parallel 21 Y Y qPCR 

Fernando 

2010 (93) 

12; 25.6; 

42% 

Raffinose, 5 g G Placebo N Cross-

over 

21 N N qPCR; T-RLFP 

Finegold 

2014 (64) 

16; 21-493; 

66%3 

XOS, 2.8 g C Maltodextrin, 2.8 

g 

N Parallel 56 Y Y Pyrosequencing 

Francois 

2012 (94) 

52; 42; 48% Wheat bran 

extract, 10 g 

G Placebo N Cross-

over 

21 Y Y FISH 

Fuller 2007 

(95); 

Ramirez-

Farias 

2009 (50)4 

12; 38.1; 

75% 

Inulin, 10 g A Nil Y Cross-

over 

16 N N qPCR 

Gopal 2003 

(65) 

19; 20-603; 

44%3 

GOS, 2.4 g A Placebo Y Parallel 28 Y Y Culture 

Holscher 

2015 (97) 

29; 27; 52% Agave inulin, 7.5 

g 

A Placebo N Cross-

over 

21 Y Y Illumina  
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 Participants Interventions RCT Design 

Study n; age1; % F Fiber, daily 

dose  

Preb

iotic 

Comparator; 

daily dose  

Compli

ance2 

Design Duration 

(days) 

Run 

in  

Wash 

out  

Analysis 

Jie 2000 

(66) 

30; 29.9; 

45% 

PDX, 12 g C Nil N Parallel 28 Y N Culture 

Kleesen 

2007 (67) 

45; 23.5; 

55% 

Inulin6: Chicory 

inulin; Jerusalem 

artichoke inulin, 

15.4 g 

A Placebo N Parallel 21 Y N Culture; FISH 

Lecerf 

2012 (68) 

59; 20.1; 

57% 

XOS5; Inulin-

XOS mix, 6.64 g 

C Wheat dextrin, 

6.64 g 

N Parallel 28 N N qPCR 

Lin 2016 

(69) 

20; 24.2; 

80% 

XOS, 1.2 g C Placebo N Parallel 42 Y Y Culture 

Lomax 

2012 (70) 

43; 55; 74% Beta 2-1 fructan, 

8 g 

A Maltodextrin, 8 g Y Parallel 28 Y N FISH 

Maki 2012 

(99) 

55; 35.13; 

54%3 

AXOS, 2.4 g C Placebo N Cross-

over 

21 N Y FISH 

Maneerat 

2013 (100) 

35; 67.43; 

53%3 

GOS, 8 g A Maltodextrin, 8 g N Cross-

over 

21 N Y FISH 

Martinez 

2010 (101) 

10; 23-38; 

50% 

RS6: RS2; RS4, 

33.2 g 

C Native wheat 

starch, 33.2 g 

N Cross-

over 

21 Y Y Pyrosequencing 

Pallav 

2014 (72) 

14; 31.43; 

65% 

Polysaccharidepe

ptide (I'm-

Yunity), 3.6 g 

G Nil N Parallel 14 N N Pyrosequencing 

Pasman 

2006 (73) 

29; 34.1; 0% Nutriose FB 

(dextrin), 45 g 

A Maltodextrin, 

22.5 g 

Y Parallel 35 Y N Culture 

Petry 2012 

(102) 

32; 18-40; 

100% 

Inulin, 20 g A Maltodextrin, 20 

g 

N Cross-

over 

28 N Y qPCR 

Ramnani 

2010 (74) 

66; 32.9; 

50% 

Inulin, 5 g A Placebo Y Parallel 21 Y Y FISH 
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 Participants Interventions RCT Design 

Study n; age1; % F Fiber, daily 

dose  

Preb

iotic 

Comparator; 

daily dose  

Compli

ance2 

Design Duration 

(days) 

Run 

in  

Wash 

out  

Analysis 

Ramnani 

2015 (103) 

38; 35.13; 

50% 

Agave inulin, 5 g A Maltodextrin, 5 g Y Cross-

over 

21 Y Y FISH 

Salden 

2017 (80) 

27; 48; 48% Arabinoxylans, 

15 g 

G Maltodextrin, 15 

g 

Y Parallel 42 N N Illumina 

Slavin 

2011 (105) 

10; 27-493; 

0% 

Chicory inulin, 

20 g 

A Placebo Y Cross-

over 

21 N N Culture 

Ten 

Bruggenca

te 2006 

(107) 

29; 22.7; 0% FOS, 20 g A Sucrose, 6 g Y Cross-

over 

14 N Y qPCR 

Tuohy 

2011 (108) 

NR; NR; 

55% 

Mix:(FOS & 

PHGG), 10 g 

Mix Placebo Y Cross-

over 

21 N N FISH 

Vulevic 

2008 (109) 

41; 69.33; 

64%3 

GOS (Bimuno), 

5.5 g 

A Maltodextrin, 5.5 

g 

Y Cross-

over 

70 N Y FISH 

Vulevic 

2015 (110) 

40; 70.4; 

62% 

GOS (Bimuno), 

5.5 g 

A Maltodextrin, 5.5 

g 

Y Cross-

over 

70 N Y FISH 

Walton 

2010 (113) 

31; 21; 58% MOS, 5 g C Placebo Y Cross-

over 

21 N Y FISH 

Walton 

2012 (111) 

37; 58.93; 

57%3 

GOS, 8 g A Placebo N Cross-

over 

21 Y Y qPCR 

Walton 

2012 (112) 

40; 31.43; 

60%3 

AXOS, 2.2 g C Placebo Y Cross-

over 

21 Y Y FISH 

Wu 2011 

(76) 

15; 40.6; 

93% 

Konjac 

glucomannan, 

4.5 g 

G Nil N Parallel 28 N N FISH 
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1 Age expressed as mean years; age range provided where means were not obtainable. 2 Compliance to intervention; assessed by primary study. 3 

Refers to randomized population rather than actual population. Compliance to intervention; assessed by primary study. 4 Secondary publication 

reporting additional outcomes from the primary study. 5 Refers to analyzed intervention arm with the highest prebiotic classification (accepted 

prebiotic fiber > candidate prebiotic fiber > general fiber) selected for fiber type subgroup analysis. 6 Refers to intervention fibers that have been 

pooled together for meta-analyses. Abbreviations: A; Accepted prebiotic fiber; AXOS; Arabinoxylan-oligosaccharide; C; Candidate prebiotic 

fiber; DGGE; Denaturing gradient gel electrophoresis; FISH; Fluorescent in situ hybridization; G; General fiber; GOS; Galacto-oligosaccharide; 

HMO; Human milk oligosaccharide; MOS; Manno-oligosaccharide; NR; Not reported by study; OS; Oligosaccharide; PDX; Polydextrose; 

PHGG; Partially hydrolyzed guar gum; qPCR; Quantitative polymerase chain reaction; RS; Resistant starch; RS2; Resistant starch 2; RS4; 

Resistant starch 4; SC-FOS; Short chain fructo-oligosaccharide; TOS; Trans-galacto-oligosaccharide; XOS; Xylo-oligosaccharide. 
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Table 3: Characteristics of randomized controlled trials of food interventions comparing dietary fiber with low fiber comparators in healthy 

adults 

 Participants Interventions RCT Design 

Study n; age1; % F Interventi

on 

Comparat

or 

Daily 

fiber 

difference 

Study 

diet2 

Compl-

iance3 

Design Duration 

(days) 

Run in  Wash 

out  

Analysis 

Ampatzogl

ou 2008 

(82) 

33; 48.8; 

64% 

WG diet RG diet 10 g N Y Cross-

over 

14 Y Y FISH 

Carvalho-

Wells 2010 

(85) 

32; 31.6; 

66% 

WG  

cereal 

Non-WG 

cereal 

6.5 g N N Cross-

over 

21 Y Y FISH 

Cooper 

2017 (78) 

46; 25.8; 

46% 

WG 

market 

basket 

RG market 

basket 

5 g N Y Parallel 42 N N Illumina 

Costabile 

2008 (89) 

31; 25; 52% WG cereal Wheat 

bran cereal 

7.4 g N N Cross-

over 

21 Y Y FISH 

Grasten 

2007 (96) 

14; 59.74; 

100% 

Rye bread White 

wheat 

bread 

19 g N Y Cross-

over 

56 Y Y Culture 

Jenkins 

1999 (98) 

24; 33; 50% Wheat 

bran 

Wheat 

flour 

19 g N Y Cross-

over 

14 N Y Culture 

Karl 2017 

(79); 

Vanegas 

2017 (51)5 

81; 40-654; 

60% 

WG diet RG diet 8 g Y Y Parallel 42 Y N Illumina 

Nemoto 

2011 (71) 

36; 22-67; 

63% 

Fermented 

brown rice 

"Non-

functional 

food" 

4.62 g N Y Parallel 14 N N Culture 

Ross 2011 17; 35; 65% WG diet RG diet 13 g Y Y Cross- 14 Y Y qPCR 
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 Participants Interventions RCT Design 

Study n; age1; % F Interventi

on 

Comparat

or 

Daily 

fiber 

difference 

Study 

diet2 

Compl-

iance3 

Design Duration 

(days) 

Run in  Wash 

out  

Analysis 

(104) over 

Smith 2006 

(106) 

18; 42.8; 0% Lupin 

kernal 

fiber diet 

Control 

diet 

22 g Y N Cross-

over 

28 N Y FISH 

Tap 2015 

(75) 

19; 19-25; 

53% 

High fiber 

diet 

Low fiber 

diet 

30 g Y Y Cross-

over 

5 N Y 454 

Pyroseque

ncing 

Zeng 2015 

(114) 

77; 63.4; 

70% 

Whole 

cereal 

legume 

diet 

Control 

diet 

14.5 g Y Y Parallel 90 N N Culture 

 

1 Age expressed as mean years; age range provided where means were not obtainable. 2 Whether the participant’s entire diet was provided by the 

study. 3 Compliance to intervention; assessed by primary study. 4 Refers to randomized population rather than actual population. 5 Secondary 

publication reporting additional outcomes from the primary study. Abbreviations: FISH; Fluorescent in situ hybridization; qPCR; Quantitative 

polymerase chain reaction; RG; Refined grain; WG; Whole grain. 
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Figure 1: Flow diagram of studies evaluated in the systematic review. 
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Figure 2: Forest plot of randomized controlled trials in healthy adults comparing dietary fiber 

with placebo/low fiber comparators. Studies are sub-grouped by fiber type, with the overall 

effect included at the bottom. Data are presented as means and SDs of Bifidobacterium spp. 

abundance at end of intervention. Effects of trials are presented as weights (percentages) and 

SMD (95% CI). CI, confidence interval; IV, inverse variance; SD, standard deviation; SMD, 

standardized mean difference. 
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Figure 3: Forest plot of randomized controlled trials in healthy adults comparing dietary fiber 

with placebo/low fiber comparators. Studies are sub-grouped by fiber type, with the overall 

effect included at the bottom. Data are presented as means and SDs of Lactobacillus spp. 

abundance at end of intervention are reported for trials. Effects of trials are presented as 

weights (percentages) and SMD (95% CI). CI, confidence interval; IV, inverse variance; SD, 

standard deviation; SMD, standardized mean difference. 
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Figure 4: Forest plot of randomized controlled trials in healthy adults comparing dietary fiber 

with placebo/low fiber comparators. The means and SDs of Faecalibacterium prausnitzii, 

Roseburia spp., Eubacterium rectale and Ruminococcus bromii abundance at end of 

intervention are reported for trials. Effects of trials are presented as weights (percentages) and 

SMD (95% CI). CI, confidence interval; IV, inverse variance; SD, standard deviation; SMD, 

standardized mean difference. 
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Supplemental Table 1: Search algorithm: MEDLINE via OVID 

1. exp Dietary Fiber/  

2. roughage*.tw.  

3. exp Prebiotics/  

4. prebiotic*.tw.  

5. (carbohydrate adj2 polymer*).tw.  

6. ((non-starch or nonstarch) adj (poly-saccharide* or 

polysaccharide*)).tw.  

7. 1 or 2 or 3 or 4 or 5 or 6  

8. Diet/  

9. diet*.tw.  

10. consum*.tw.  

11. eat*.tw.  

12. food*.tw.  

13. nutri*.tw.  

14. 8 or 9 or 10 or 11 or 12 or 13  

15. Agar/  

16. agar*.tw.  

17. Alginates/  

18. alginate*.tw.  

19. (alginic adj2 acid*).tw.  

20. Carrageenan/  

21. carrageen*.tw.  

22. exp Cellulose/  

23. cellulose*.tw.  

24. exp Chitin/  

25. chitin*.tw.  

26. hemicellulose*.tw.  

27. hexosan*.tw.  

28. Lignin/  

29. lignin*.tw.  

30. Pectins/  

31. pectin*.tw.  

32. pentosan*.tw.  

33. polydextrose*.tw.  

34. polyuronide*.tw.  

35. Raffinose/  

36. raffinose*.tw.  

37. xanthan*.tw.  

38. Xylose/  

39. xylose*.tw.  

40. exp Galactans/  

41. galactan*.tw.  

42. (galactooligosaccharide* or galacto-

oligosaccharide* or gos or tos).tw.  

43. exp Fructans/  

44. fructan*.tw.  

45. (fructooligosaccharide* or fructo-

oligosaccharide* or fos or oligofructose or oligo-

fructose).tw. 

46. exp Inulin/  

47. Inulin*.tw.  

48. (gentiooligosaccharide* or gentio-

oligosaccharide*).tw.  

49. (isomalto oligosaccharide* or isomalto-

oligosaccharide* or imo).tw.  

50. (mannanooligosaccharide* or mannano-

oligosaccharide*).tw.  

51. (N-acetylchitooligosaccharide* or N-acetylchito-

oligosaccharide*).tw. 

52. (pectic oligosaccharide* or pectic-

oligosaccharide*).tw. 

53. (resistant starch* or resistant-starch*).tw.

  

54. (soybean oligosaccharide* or soybean-

oligosaccharide*).tw.  

55. (xylooligosaccharide* or xylo-

oligosaccharide*).tw.  

56. exp Oligosaccharides/ 

57. Oligosaccharide*.tw. 

58. (fiber* or fiber* or high-fiber* or high-fiber*).tw. 

59. 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 

or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 

or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 

or 42 or 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50 

or 51 or 52 or 53 or 54 or 55 or 56 or 57 or 58

  

60. 14 and 59 

61. 7 or 60 

62. exp Gastrointestinal Microbiome/ 

63. (microbiota or microbiome).tw. 

64. bifido*.tw. 

65. lactobacill*.tw. 

66. 62 or 63 or 64 or 65  

67. (faecal or fecal).tw.  

68. (bacteri* or flora).tw. 

69. 67 and 68  

70. exp Dysbiosis/ 

71. 66 or 69 or 70 

72. 61 and 71  

73. ((randomized controlled trial or controlled 

clinical trial).pt. or randomized.ab. or randomised.ab. 

or placebo.ab. or drug therapy.fs. or randomly.ab. or 

trial.ab. or groups.ab.) not (exp animals/ not 

humans.sh.) 

74. 72 and 73 
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Supplemental Table 2: Search algorithm: EMBASE 

1. exp Dietary Fiber/ 

2. roughage*.tw. 

3. exp Prebiotics/ 

4. prebiotic*.tw. 

5. (carbohydrate adj2 polymer*).tw. 

6. ((non-starch or nonstarch) adj (poly-saccharide* or 

polysaccharide*)).tw. 

7. 1 or 2 or 3 or 4 or 5 or 6 

8. Diet/  

9. diet*.tw. 

10. consum*.tw. 

11. eat*.tw. 

12. food*.tw. 

13. nutri*.tw. 

14. 8 or 9 or 10 or 11 or 12 or 13 

15. Agar/ 

16. agar*.tw. 

17. Alginates/ 

18. alginate*.tw. 

19. (alginic adj2 acid*).tw. 

20. Carrageenan/ 

21. carrageen*.tw 

22. exp Cellulose/ 

23. cellulose*.tw. 

24. exp Chitin/ 

25. chitin*.tw. 

26. hemicellulose*.tw. 

27. hexosan*.tw. 

28. Lignin/ 

29. lignin*.tw. 

30. Pectins/ 

31. pectin*.tw. 

32. pentosan*.tw. 

33. polydextrose*.tw. 

34. polyuronide*.tw. 

35. Raffinose/ 

36. raffinose*.tw. 

37. xanthan*.tw. 

38. Xylose/ 

39. xylose*.tw. 

40. exp Galactans/ 

41. galactan*.tw. 

42. (galactooligosaccharide* or galacto-

oligosaccharide* or gos or tos).tw. 

43. exp Fructans/ 

44. fructan*.tw. 

45. (fructooligosaccharide* or fructo-

oligosaccharide* or fos or oligofructose or oligo-

fructose).tw. 

46. exp Inulin/ 

47. Inulin*.tw. 

48. (gentiooligosaccharide* or gentio-

oligosaccharide*).tw. 

49. (isomalto oligosaccharide* or isomalto-

oligosaccharide* or imo).tw. 

50. (mannanooligosaccharide* or mannano-

oligosaccharide*).tw. 

51. (N-acetylchitooligosaccharide* or N-acetylchito-

oligosaccharide*).tw. 

52. (pectic oligosaccharide* or pectic-

oligosaccharide*).tw. 

53. (resistant starch* or resistant-starch*).tw. 

54. (soybean oligosaccharide* or soybean-

oligosaccharide*).tw. 

55. (xylooligosaccharide* or xylo-

oligosaccharide*).tw.  

56. exp Oligosaccharides/ 

57. Oligosaccharide*.tw. 

58. (fiber* or fiber* or high-fiber* or high-fiber*).tw. 

59. 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 

or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 

or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 

or 42 or 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50 

or 51 or 52 or 53 or 54 or 55 or 56 or 57 or 58

  

60. 14 and 59 

61. 7 or 60 

62. exp Gastrointestinal Microbiome/ 

63. (microbiota or microbiome).tw. 

64. bifido*.tw. 

65. lactobacill*.tw. 

66. 62 or 63 or 64 or 65 

67. (faecal or fecal).tw. 

68. (bacteri* or flora).tw. 

69. 67 and 68 

70. exp Dysbiosis/ 

71. 66 or 69 or 70 

72. 61 and 71 

73. ((randomized controlled trial or controlled 

clinical trial).pt. or randomized.ab. or randomised.ab. 

or placebo.ab. or drug therapy.fs. or randomly.ab. or 

trial.ab. or groups.ab.) not (exp animals/ not 

humans.sh.)  

74. 72 and 73 

 

  



 

Page 65 of 87 

 

Supplemental Table 3: Search algorithm: CENTRAL 

#1 MeSH descriptor: [Dietary Fiber] 

explode all trees 

#2 roughage*  

#3 MeSH descriptor: [Prebiotics] explode 

all trees 

#4 prebiotic*  

#5 carbohydrate near/2 polymer*  

#6 ((non-starch or nonstarch) near (poly-

saccharide* or polysaccharide*))  

#7 #1 or #2 or #3 or #4 or #5 or #6  

#8 MeSH descriptor: [Diet] this term only 

#9 diet*  

#10 consum*  

#11 eat*  

#12 food*  

#13 nutri*  

#14 #8 or #9 or #10 or #11 or #12 or #13  

#15 MeSH descriptor: [Agar] this term 

only 

#16 agar*  

#17 MeSH descriptor: [Alginates] this term 

only 

#18 alginate*  

#19 alginic near/2 acid  

#20 MeSH descriptor: [Carrageenan] this 

term only 

#21 carrageen*  

#22 MeSH descriptor: [Cellulose] explode 

all trees 

#23 cellulose*  

#24 MeSH descriptor: [Chitin] explode all 

trees 

#25 chitin*  

#26 hemicellulose*  

#27 hexosan*  

#28 MeSH descriptor: [Lignin] this term 

only 

#29 lignin*  

#30 MeSH descriptor: [Pectins] this term 

only 

#31 pectin*  

#32 pentosan*  

#33 polydextrose*  

#34 polyuronide*  

#35 MeSH descriptor: [Raffinose] this term 

only 

#36 raffinose*  

#37 xanthan*  

#38 MeSH descriptor: [Xylose] this term 

only 

#39 xylose*  

#40 MeSH descriptor: [Galactans] explode all trees 

#41 galactan*  

#42 (galactooligosaccharide* or galacto-

oligosaccharide* or gos or tos)  

#43 MeSH descriptor: [Fructans] explode all trees 

#44 fructan*  

#45 (fructooligosaccharide* or fructo-

oligosaccharide* or fos or oligofructose* or oligo-

fructose*)  

#46 MeSH descriptor: [Inulin] explode all trees 

#47 inulin*  

#48 (gentiooligosaccharide* or gentio-

oligosaccharide*)  

#49 (isomalto oligosaccharide* or isomalto-

oligosaccharide* or imo)  

#50 (mannanooligosaccharide* or mannano-

oligosaccharide*)  

#51 (N-acetylchitooligosaccharide* or N-acetylchito-

oligosaccharide*)  

#52 (pectic oligosaccharide* or pectic-

oligosaccharide*)  

#53 (resistant starch* or resistant-starch*)  

#54 (soybean oligosaccharide* or soybean-

oligosaccharide*)  

#55 (xylooligosaccharide* or xylo-oligosaccharide*)  

#56 MeSH descriptor: [Oligosaccharides] explode all 

trees 

#57 oligosaccharide*  

#58 fiber* or fiber* or high-fiber* or high-fiber*  

#59 #15 or #16 or #17 or #18 or #19 or #20 or #21 or 

#22 or #23 or #24 or #25 or #26 or #27 or #28 or #29 or 

#30 or #31 or #32 or #33 or #34 or #35 or #36 or #37 or 

#38 or #39 or #40 or #41 or #42 or #43 or #44 or #45 or 

#46 or #47 or #48 or #49 or #50 or #51 or #51 or #52 or 

#53 or #54 or #55 or #56 or #56 or #57 or #58  

#60 #14 and #59  

#61 #7 or #60  

#62 MeSH descriptor: [Gastrointestinal Microbiome] 

explode all trees 

#63 (microbiota or microbiome)  

#64 bifido*  

#65 lactobacill*  

#66 #62 or #63 or #64 or #65  

#67 (faecal or fecal)  

#68 (bacteri* or flora)  

#69 #67 and #68  

#70 MeSH descriptor: [Dysbiosis] explode all trees 

#71 #66 or #69 or #70  

#72 #61 and #71 
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Supplemental Table 4: Search algorithm: CINAHL 

1. ((dietary fib* OR roughage* OR prebiotic*) OR (diet* OR consum* OR eat* OR food* OR nutri*) AND 
(agar* OR alginate* OR carrageen* OR cellulose* OR chitin* OR hemicellulose* OR hexosan* OR lignin* 
OR pectin* OR pentosan* OR polydextrose* OR polyuronide* OR raffinose* OR xanthan* OR xylose* OR 
galactan* OR galactooligosaccharde* OR galacto-oligosaccharide* OR gos OR tos OR fructan* OR 
fructooligosaccharide* OR fructo-oligosaccharide* OR fos OR oligofructose* OR oligo-fructose* OR 
inulin* OR gentiooligosaccharide* OR gentio-oligosaccharide* OR isomalto oligosaccharide* OR 
isomalto-oligosaccharide* OR imo OR mannanooligosaccharide* OR mannano-oligosaccharide* OR N-
acetylchitooligosaccharide* OR N-acetylchito-oligosaccharide* OR pectic oligosaccharide* OR pectic-
oigosaccharide* OR resistant starch* OR resistant-starch* OR soybean oligosaccharide* OR soybean-
oligosaccharide* OR oligosaccharide* OR high-fib*)) 

2. ((MH “Microbiota”) OR microbiota OR microbiome OR bifido* OR lactobacill*) OR ((faecal OR fecal) AND 
(bacteri* OR flora)) OR (dysbio*) 

3. (MH "Clinical Trials+") OR (MH "Quantitative Studies") OR TI placebo* OR AB placebo* OR (MH 
"Placebos") OR (MH "Random Assignment") OR TI random* OR AB random* OR TI ((singl* or doubl* or 
tripl* or trebl*) W1 (blind* or mask*)) OR AB ((singl* or doubl* or tripl* or trebl*) W1 (blind* or mask*)) 
OR TI clinic* trial* OR AB clinic* trial* OR PT clinical trial 
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Supplemental Table 5: Reasons for excluding studies following full text analysis* 

Study Citation Reason for exclusion 

Nil author 2013 (1) Not RCT 

Alfa 2017 (2) Duplicate 

Azcarate-Peril 2013 (3) Not healthy study population 

Azcarate-Peril 2016 (4) Not healthy study population 

Azcarate-Peril 2017 (5) Not healthy study population 

Azpiroz 2016 (6) Not healthy study population 

Baer 2009 (7) Abstracts or unpublished studies 

Benus 2010 (8) Non-fiber or multifactorial intervention 

Brahe 2014 (9) Duplicate 

Brejnholt 2005 (10) Non-fiber or multifactorial intervention 

Brighenti 1999  (11) Not RCT 

Casellas 2007 (12) Not healthy study population 

Chen 2006 (13) Not RCT 

Chen 2008 (14) Not healthy study population 

Christensen 2013 (15) Non-fiber or multifactorial intervention 

Chung 2007 (16) Not RCT 

Clarke 2016 (17) Duplicate 

Clarke 2016 (18) Duplicate 

Clarke 2016 (19) Duplicate 

Cooper 2016 (20) Abstracts or unpublished studies 

Costabile 2016 (21) Not RCT 

Culpepper 2012 (22) Abstracts or unpublished studies 

Davis 2010 (23) Not RCT 

Davis 2011 (24) Not RCT 

De Preter 2007 (25) Not RCT 

Demircioglu 2008 (26) Non-fiber or multifactorial intervention 

Dewulf 2011 (27) Abstracts or unpublished studies 

Dewulf 2012 (28) Abstracts or unpublished studies 

Eastwood 1995 (29) Non-fiber or multifactorial intervention 

Eid 2015 (30) Non-fiber or multifactorial intervention 

Elison 2016 (31) Duplicate 

Famdodu 2016 (32) Abstracts or unpublished studies 

Famodu 2016 (33) Abstracts or unpublished studies 

Fava 2013 (34) Non-fiber or multifactorial intervention 

Finley 2007 (35) Did not report on review outcomes 

Ford 2017 (36) Abstracts or unpublished studies 

Gopal 2003 (37) Duplicate 

Gordon 2017 (38) Abstracts or unpublished studies 

Grasten 2000 (39) Did not report on review outcomes 

Guetterman 2016 (40) Non-fiber or multifactorial intervention 

Guglielmetti 2013 (41) Non-fiber or multifactorial intervention 

Hald 2016 (42) Not healthy study population 

Halmos 2013 (43) Duplicate 

Halmos 2014 (44) Not healthy study population 

Halmos 2015 (45) Duplicate 

Healey 2016 (46) Abstracts or unpublished studies 

Heiman 2014 (47) Not healthy study population 

Holscher 2014 (48) Duplicate 

Holscher 2015 (49) Abstracts or unpublished studies 

Hooda 2012 (50) Secondary publication 

Jalanka 2016 (51) Abstracts or unpublished studies 

Jenkins 1999 (52) Did not report on review outcomes 

Karl 2017 (53) Duplicate 

Kellow 2014 (54) Not healthy study population 

Klinder 2016 (55) Non-fiber or multifactorial intervention 



 

Page 68 of 87 

 

Study Citation Reason for exclusion 

Klosterbuer 2013 (56) Did not report on review outcomes 

Kolida 2007 (57) Not RCT 

Kovatcheva-Datchary 2015 (58) Did not report on review outcomes 

Kruse 1999 (59) Not RCT 

Lambert 2014 (60) Abstracts or unpublished studies 

Lambert 2015 (61) Not healthy study population 

Lamichhane 2014 (62) Did not report on review outcomes 

Langlands 2004 (63) Not RCT 

Lappi 2013 (64) Not healthy study population 

Lee 2016 (65) Did not report on review outcomes 

Lehtinen 2012 (66) Abstracts or unpublished studies 

Li 2009 (67) Non-fiber or multifactorial intervention 

Li 2014 (68) Abstracts or unpublished studies 

Li 2015 (69) Abstracts or unpublished studies 

Lin 2014 (70) Not healthy study population 

Lin 2016 (71) Duplicate 

Linetzky 2012 (72) Not healthy study population 

Lomax 2012 (73) Duplicate 

Lomax 2013 (74) Duplicate 

Lomax 2013 (75) Abstracts or unpublished studies 

Mai 2009 (76) Abstracts or unpublished studies 

Mai 2012 (77) Non-fiber or multifactorial intervention 

Maki 2011 (78) Abstracts or unpublished studies 

Marteau 2011 (79) Not healthy study population 

Matthan 2015 (80) Abstracts or unpublished studies 

Mayengbam 2017 (81) Abstracts or unpublished studies 

Medina-Vera 2017 (82) Abstracts or unpublished studies 

Mego 2017 (83) Non-fiber or multifactorial intervention 

Mitchell 2015 (84) Not healthy study population 

Mitsou 2009 (85) Non-fiber or multifactorial intervention 

Mitsou 2011 (86) Non-fiber or multifactorial intervention 

Orrhage 2000 (87) Non-fiber or multifactorial intervention 

Pantophlet 2017 (88) Not RCT 

Ramirez-Farias 2009 (89) Secondary publication 

Ramprasath 2015 (90) Abstracts or unpublished studies 

Rao 2001 (91) Not RCT 

Ravn-Haren 2013 (92) Non-fiber or multifactorial intervention 

Robinson 2001 (93) Not RCT 

Salazar 2013 (94) Abstracts or unpublished studies 

Salazar 2015 (95) Abstracts or unpublished studies 

Salden 2015 (96) Abstracts or unpublished studies 

Salonen 2014 (97) Not healthy study population 

Scarpellini 2012 (98) Abstracts or unpublished studies 

Scarpellini 2016 (99) Did not report on review outcomes 

Scholtens 2006 (100) Did not report on review outcomes 

Sloan 2016 (101) Abstracts or unpublished studies 

Smilowitz 2017 (102) Not RCT 

Song 2015 (103) Non-fiber or multifactorial intervention 

Souza 2015 (104) Not healthy study population 

Surakka 2009 (105) Not healthy study population 

Tannock 2004 (106) Not RCT 

Taylor 2016 (107) Non-fiber or multifactorial intervention 

Thompson 2016 (108) Abstracts or unpublished studies 

Thompson 2016 (109) Abstracts or unpublished studies 

Tomono 2010 (110) Not healthy study population 

Tuohy 2001 (111) Not RCT 

Tuohy 2001 (112) Duplicate 
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Study Citation Reason for exclusion 

Ukhanova 2014 (113) Non-fiber or multifactorial intervention 

Upadhyaya 2016 (114) Not healthy study population 

Vanegas 2016 (115) Abstracts or unpublished studies 

Vanegas 2017 (116) Secondary publication 

Vanegas 2017 (117) Duplicate 

Vendrame 2011 (118) Non-fiber or multifactorial intervention 

Venkataraman 2016 (119) Not RCT 

Vitaglione 2015 (120) Non-fiber or multifactorial intervention 

Vulevic 2013 (121) Not healthy study population 

Walker 2011 (122) Not healthy study population 

Wallace 2015 (123) Not RCT 

Weickert 2011 (124) Not healthy study population 

West 2012 (125) Not RCT 

Westreich 2017 (126) Abstracts or unpublished studies 

Whisner 2016 (127) Not healthy study population 

Willis 2013 (128) Did not report on review outcomes 

Windey 2015 (129) Did not report on review outcomes 

Wong 2010 (130) Not RCT 

Wood 2017 (131) Abstracts or unpublished studies 

Wood 2017 (132) Abstracts or unpublished studies 

Worthley 2009 (133) Not RCT 

Worthley 2009 (134) Abstracts or unpublished studies 

Wutzke 2012 (135) Abstracts or unpublished studies 

Xiao 2014 (136) Not RCT 

Yang 2015 (137) Not healthy study population 

Yen 2011 (138) Duplicate 

Yen 2011 (139) Not healthy study population 

Yen 2011 (140) Not healthy study population 

 

* Citation numbers do not correspond to citations in main manuscript, and are provided at the 

end of this document. 
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Risk of Bias 

 

Supplemental Figure 1: Risk of bias across the included studies showing the summary 

percentage in each domain  
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Reporting Bias 

Supplemental Figure 2: Funnel plot for the effect of dietary fiber on Bifidobacterium spp. 

abundance  
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Supplemental Figure 3: Funnel plot for the effect of dietary fiber on Lactobacillus spp. 

abundance   
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Supplemental Figure 4: Funnel plot for the effect of dietary fiber on total fecal SCFA 
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Supplemental Figure 5: Funnel plot for the effect of dietary fiber on fecal acetate 
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Supplemental Figure 6: Funnel plot for the effect of dietary fiber on fecal propionate 
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Supplemental Figure 7: Funnel plot for the effect of dietary fiber on fecal butyrate 
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Supplemental Table 6: Outcomes of pre-defined subgroup analyses undertaken 

     Result Heterogeneity 

Outcome Subgroup 

analysis 

Subgroup 

difference (I2) 

Subgroups Studies in 

subgroup 

(n) 

Meta-analysis overall estimate 

(95% CI) 

P Chi-

squared 

test 

P I2 

Shannon 

Diversity Index 

  

Trial design 0% Cross-over 3 MD: -0.10 (95% CI: -0.19, -0.01) 0.03 1.36 0.51 0% 

   Parallel 3 MD: -0.03 (95% CI: -0.57, 0.51) 0.91 9.35 0.009 79% 

Bifidobacterium 

spp. 

Intervention 

type 

68.6% Food 10 SMD: 0.75 (95% CI: 0.52, 0.98) <0.00001  234.35  <0.00001  83% 

    Supplement 41 SMD: 0.20 (95% CI: -0.36, 0.76) 0.49 76.94 <0.00001 88% 

 Fiber type 45.3% Accepted prebiotic 23 SMD: 0.68 (95% CI: 0.38, 0.98) <0.00001  117.8 <0.00001 81% 

     Candidate prebiotic 13 SMD: 0.77 (95% CI: 0.30, 1.24) 0.001 86.19 <0.00001 86% 

     General fiber 14 SMD: 0.25 (95% CI: -0.16, 0.65) 0.24 80.54 <0.00001 84% 

 Dose 

response 

8.8% ≤5g/d 11 SMD: 0.51 (95% CI: 0.18, 0.84) 0.003 33.52 0.0002 70% 

      5-10g/d 18 SMD: 0.48 (95% CI: 0.13, 0.84) 0.007 133.22 <0.00001 87% 

     >10g/d 22 SMD: 0.85 (95% CI: 0.45, 1.25) <0.00001 143.72 <0.00001 85% 

 Trial design 77% Cross-over 30 SMD: 0.44 (95% CI: 0.21, 0.66) <0.00001 149.67 <0.00001 81% 

     Parallel 21 SMD: 0.98 (95% CI: 0.52, 1.44) <0.00001 148.63 <0.00001 87%  

 Analysis 

method 

0% Culture 13 SMD: 0.70 (95% CI: 0.07, 1.33) 0.03 99.72 <0.00001 88% 

     qPCR 11 SMD: 0.62 (95% CI: 0.29, 0.94) 0.0002 30.28 0.0008 67% 

     FISH 19 SMD: 0.71 (95% CI: 0.31, 1.10) 0.0004 187.79  <0.00001 90% 

     Sequencing 4 SMD: 0.61 (95% CI: 0.27, 0.95) 0.0005 0.83 0.84 0% 

Lactobacillus 

spp. 

Intervention 

type 

0% Food 4 SMD: 0.35 (95% CI: -0.46, 1.16) 0.40 18.73 0.00003 84% 

    Supplement 19 SMD: 0.16 (95% CI: 0.01, 0.31) 0.04 19.27 0.38 7% 

 Fiber type 69.1% Accepted prebiotic 9 SMD: 0.34 (95% CI: 0.13, 0.55) 0.002  7.63 0.47 0% 

     Candidate prebiotic 7 SMD: -0.06 (95% CI: -0.29, 0.16) 0.58 3.52 0.74 0% 

     General fiber 7 SMD: 0.22 (95% CI: -0.31, 0.75) 0.42 23.23 0.0007 74% 

 Dose 0% ≤5g/d 6 SMD: 0.16 (95% CI: -0.24, 0.56) 0.44 9.67 0.09 48% 
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     Result Heterogeneity 

Outcome Subgroup 

analysis 

Subgroup 

difference (I2) 

Subgroups Studies in 

subgroup 

(n) 

Meta-analysis overall estimate 

(95% CI) 

P Chi-

squared 

test 

P I2 

response 

      5-10g/d 5 SMD: 0.14 (95% CI: -0.12, 0.39) 0.29  3.23 0.52 0% 

     >10g/d 12 SMD: 0.29 (95% CI: -0.01, 0.59) 0.06 26.08 0.006 58% 

 Trial design 57.7% Cross-over 11 SMD: 0.08 (95% CI: -0.09, 0.25) 0.38  9.04 0.53 0% 

     Parallel 12 SMD: 0.37 (95% CI: 0.04, 0.70) 0.03 26.8 0.005 59% 

 Analysis 

method 

55.1% Culture 7 SMD: 0.61 (95% CI: 0.13, 1.08) 0.01 15.99 0.01 62% 

     qPCR 9 SMD: 0.13 (95% CI: -0.07, 0.33) 0.21 7.36 0.50 0% 

     FISH 2 SMD: -0.15 (95% CI: -0.48, 0.18) 0.37 0.01 0.94 0% 

     Sequencing 3 SMD: 0.18 (95% CI: -0.19, 0.56) 0.33 1.53 0.46 0% 

Faecalibacterium 

prausnitzii 

Dose 

response 

38.0% ≤5g/d 3 SMD: -0.10 (95% CI: -0.39, 0.19) 0.51 2.71 0.26 26% 

      5-10g/d 6 SMD: -0.05 (95% CI: -0.23, 0.13) 0.57 2.55 0.77 0% 

     >10g/d 4 SMD: 0.39 (95% CI: -0.09, 0.87) 0.11 6.24 0.10 52% 

 Trial design 53.6% Cross-over 8 SMD: 0.06 (95% CI: -0.18, 0.29) 0.63 12.71 0.08 45% 

     Parallel 5 SMD: 0.60 (95% CI: -0.09, 1.29) 0.009 22.6 0.0002 82% 

Roseburia spp. Trial design 89.2% Cross-over 2 SMD: -0.09 (95% CI: -0.46, 0.29) 0.65 0.25 0.62 0% 

    Parallel 2 SMD: 0.71 (95% CI: 0.36, 1.06) <0.00001 0.64 0.42 0% 
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Supplemental Table 7: Outcomes of post hoc subgroup analyses undertaken  

     Result Heterogeneity 

Outcome Subgroup analysis Subgroup 

difference 

(I2) 

Subgroups Studies in 

subgroup 

(n) 

Meta-analysis overall estimate 

(95% CI) 

P Chi-

squared 

test 

P I2 

Total SCFA Reporting method 44.5% Dry weight of feces 6 SMD: 0.02 (95% CI: -0.23, 0.26) 0.89 2.81 0.73 0% 

    Wet weight of feces 6 SMD: 0.25 (95% CI: 0.01, 0.49) 0.04 0.80 0.98 0% 

Acetate Reporting method 77.3% Dry weight of feces 6 SMD: -0.08 (95% CI: -0.40, 0.25) 0.65 10.26 0.07 51% 

    Wet weight of feces 10 SMD: 0.69 (95% CI: 0.05, 1.33) 0.03 98.97 <0.00001 91% 

Propionate Reporting method 0% Dry weight of feces 6 SMD: -0.07 (95% CI: -0.33, 0.20) 0.61 7.15 0.21 30% 

    Wet weight of feces 11 SMD: 0.09 (95% CI: -0.26, 0.44) 0.61 38.22 <0.00001 74% 

Butyrate Reporting method 74.1% Dry weight of feces 7 SMD: 0.02 (95% CI: -0.18, 0.22) 0.81 1.26 0.97 0% 

    Wet weight of feces 11 SMD: 0.47 (95% CI: 0.07, 0.87) 0.02 49.36 <0.00001 80% 
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