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ABSTRACT (150 words) 214 

Major depressive disorder (MDD) is a common illness accompanied by considerable morbidity, mortality, costs, and 215 
heightened risk of suicide. We conducted a genome-wide association (GWA) meta-analysis based in 135,458 cases and 216 
344,901 control, We identified 44 independent and significant loci. The genetic findings were associated with clinical 217 
features of major depression, and implicated brain regions exhibiting anatomical differences in cases. Targets of 218 
antidepressant medications and genes involved in gene splicing were enriched for smaller association signal. We 219 
found important relations of genetic risk for major depression with educational attainment, body mass, and 220 
schizophrenia: lower educational attainment and higher body mass were putatively causal whereas major depression 221 
and schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers of genetic 222 
risk factors for major depression. These findings help refine and define the basis of major depression and imply a 223 
continuous measure of risk underlies the clinical phenotype. 224 

 225 

INTRODUCTION 226 

Major depressive disorder (MDD) is a notably complex and common illness1. It is often chronic or recurrent and is thus 227 
accompanied by considerable morbidity, disability, excess mortality, substantial costs, and heightened risk of suicide2-8. 228 
Twin studies attribute approximately 40% of the variation in liability to MDD to additive genetic effects (phenotype 229 
heritability, ℎଶ)9, and ℎଶ may be greater for recurrent, early-onset, and postpartum MDD10,11. GWA studies of MDD have 230 
had notable difficulties in identifying individual associated loci12. For example, there were no significant findings in the 231 
initial Psychiatric Genomics Consortium (PGC) MDD mega-analysis (9,240 cases)13 or in the CHARGE meta-analysis of 232 
depressive symptoms (N=34,549)14. More recent studies have proven modestly successful. A study of Han Chinese 233 
women (5,303 recurrent MDD cases) identified significant loci15, a meta-analysis of depressive symptoms (161,460 234 
individuals) identified two loci16, and an analysis of self-reported major depression identified 15 loci (75,607 cases).  235 

There are many reasons why identifying causal loci for MDD has proven difficult12. MDD is probably influenced by many 236 
genetic loci each with small effects17, as are most common diseases18 including psychiatric disorders19,20. Estimates of the 237 
proportion of variance attributable to genome-wide SNPs (SNP heritability, ℎௌேଶ ) indicate that around a quarter of the 238 ℎଶ for MDD is due to common genetic variants21,22, and demonstrate that a genetic signal is detectable in GWA data, 239 
implying that larger sample sizes are needed to detect specific loci given their effect sizes. Such a strategy has been 240 
proven in schizophrenia studies, the flagship adult psychiatric disorder in genomics research. We thus accumulated 241 
clinical, population, and volunteer cohorts23. This pragmatic approach takes the view that sample size can overcome 242 
heterogeneity to identify risk alleles that are robustly associated with major depression. Potential concerns about 243 
combining carefully curated research cohorts with volunteer cohorts were ameliorated via multiple lines of evidence 244 
that suggest the results are likely to be applicable to clinical MDD. As discussed more fully below, our analyses have 245 
neurobiological, clinical, and therapeutic relevance for major depression.  246 

RESULTS 247 

Cohort analyses: phenotype validation 248 

We identified seven cohorts that used a range of methods to ascertain cases with major depression (described in detail 249 
in Table 1, Supplementary Tables 1-3). The methods used by these cohorts were extensively reviewed drawing on the 250 
breadth of expertise in the PGC, and we assessed the comparability of the cohorts using genomic data. We use “MDD” 251 
to refer to directly evaluated subjects meeting standard criteria for major depressive disorder and use “major 252 
depression” where case status was determined using alternative methods as well as to the phenotype from the full 253 
meta-analysis.  254 

We evaluated the comparability of the seven cohorts by estimating the common-variant genetic correlations (ݎ) 255 
between them. These analyses strongly supported the comparability of the seven cohorts (Supplementary Table 3) as 256 
the weighted mean ݎ was 0.76 (SE 0.03). The high genetic correlations between the 23andMeD and other cohorts are 257 
notable. While there is no statistical evidence of heterogeneity in the ݎ estimates between pairs of cohorts (P=0.13), 258 
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the estimate is statistically different from 1 which may reflect etiological heterogeneity. This estimate can be 259 
benchmarked against the slightly larger weighted mean ݎ between schizophrenia cohorts of 0.84 (SE 0.05)21.  260 

Given the positive evidence of the genetic comparability of these cohorts, we completed a GWA meta-analysis of 9.6 261 
million imputed SNPs in 135,458 MDD and major depression cases and 344,901 controls (Fig. 1). There was no evidence 262 
of residual population stratification24 (LD score regression intercept 1.018, SE 0.009). We estimated ℎௌேଶ  to be 8.7% (SE 263 
0.004, liability scale, assuming lifetime risk 0.15, Supplementary Table 3b and Supplementary Fig. 1), and note that this 264 
is about a quarter of ℎଶ estimated from twin or family studies9. This fraction is somewhat lower than that of other 265 
complex traits18, and is plausibly due to etiological heterogeneity (and reflecting the mean ݎ<1 between cohorts).  266 

To evaluate the impact of combining major depression cohorts that used different ascertainment methods, we 267 
undertook a series of genetic risk score (GRS) prediction analyses to demonstrate the validity of our GWA results for 268 
clinical MDD (Fig. 2). Importantly, the variance explained in out-of-sample prediction increased with the size of the GWA 269 
discovery cohort (Fig. 2a), with the GRS from the full discovery sample meta-analysis explaining 1.9% of variance in 270 
liability (Fig. 2a, Supplementary Fig. 2, and Supplementary Table 4). For any randomly selected case and control, GRS 271 
ranked cases higher than controls with probability 0.57 (i.e., AUC=0.57), and the odds ratio of MDD for those in the 10th 272 
versus 1st GRS decile (OR10) was 2.4 (Fig. 2b, Supplementary Table 4). GRS analyses in other disorders (e.g., 273 
schizophrenia25) have shown that mean GRS increases with clinical severity in cases. We found significantly higher major 274 
depression GRS in those with more severe MDD, as measured in different ways (Fig. 2c). Last, because around half of the 275 
major depression cases were identified by self-report (i.e., diagnosis or treatment for clinical depression by a medical 276 
professional), we further evaluated the comparability of the 23andMeD cohort with the other cohorts (full meta-analysis 277 
excluding 23andMeD, “FMex23”) as detailed in Fig. 2c, Supplementary Table 5 and Supplementary Note. Taken 278 
together, we interpret these results as supporting this meta-analysis of GWA results for these seven cohorts.  279 

Implications of the individual loci for the biology of major depression 280 

Our meta-analysis of seven MDD and major depression cohorts identified 44 independent loci that were statistically 281 
significant (P<5x10-8), statistically independent of any other signal26, and supported by multiple SNPs. This number 282 
supports our prediction that GWA discovery in major depression would require about five times more cases than for 283 
schizophrenia (lifetime risk ~1% and ℎଶ~0.8) to achieve approximately similar power27. Of these 44 loci, 30 are novel and 284 
14 were significant in a prior study of MDD or depressive symptoms. The overlap of our findings with prior reports were: 285 
1/1 with CHARGE depressive symptom14,  1/2 overlap with SSGAC depressive symptom16, and 12/15 overlap with Hyde 286 
et al.28 ). There are few trans-ancestry comparisons for major depression so we contrasted these European results with 287 
the Han Chinese CONVERGE study15 (Supplementary Note). The loci identified in CONVERGE are uncommon in 288 
Europeans (rs12415800 0.45 vs 0.02 and rs35936514 0.28 vs 0.06) and were, not significant in our analysis.  289 

Table 2 lists genes in or near the lead SNP in each region, regional plots are in Supplementary Data 1, and 290 
Supplementary Tables 6-7 provide extensive summaries of available information about the biological functions of the 291 
genes in each region. In the Supplementary Note we review four key genes in more detail: OLFM4 and NEGR1 (notable 292 
for reported associations with obesity and body mass index29-34), RBFOX1 (notable for independent our associations at 293 
both the 5’ and the 3’ ends, a splicing regulator35,36, with a functional role that may be consistent with chronic 294 
hypothalamic-pituitary-adrenal axis hyperactivation reported in MDD37), and LRFN5 (notable for its role in pre-synaptic 295 
differentiation38,39 and neuroinflammation40).  296 

Gene-wise analyses identified 153 significant genes after controlling for multiple comparisons (Supplementary Table 7). 297 
Many of these genes were in the extended MHC region (45 of 153) and their interpretation is complicated by high LD 298 
and gene density. In addition to the genes discussed above, other notable and significant genes outside of the MHC 299 
include multiple potentially “druggable” targets that suggest connections of the pathophysiology of MDD to neuronal 300 
calcium signaling (CACNA1E and CACNA2D1), dopaminergic neurotransmission (DRD2, a principal target of 301 
antipsychotics), glutamate neurotransmission (GRIK5 and GRM5), and presynaptic vesicle trafficking (PCLO).  302 

Finally, comparison of the major depression loci with 108 loci for schizophrenia19 identified six shared loci. Many SNPs in 303 
the extended MHC region are strongly associated with schizophrenia, but implication of the MHC region is novel for 304 
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major depression. Another example is TCF4 (transcription factor 4) which is strongly associated with schizophrenia but 305 
not previously with MDD. TCF4 is essential for normal brain development, and rare mutations in TCF4 cause Pitt–306 
Hopkins syndrome which includes autistic features41. GRS calculated from the schizophrenia GWA results explained 0.8% 307 
of the variance in liability of MDD (Fig. 2c).  308 

Implications from integration of functional genomic data 309 

Results from “-omic” studies of functional features of cells and tissues are necessary to understand the biological 310 
implications of results of GWA for complex disorders42. To further elucidate the biological relevance of the major 311 
depression findings, we integrated the results with a wide range of functional genomic data. First, using enrichment 312 
analyses, we compared the major depression GWA findings to bulk tissue mRNA-seq from GTEx43. Only brain samples 313 
showed significant enrichment (Fig. 3A), and the three tissues with the most significant enrichments were all cortical. 314 
Prefrontal cortex and anterior cingulate cortex are important for higher-level executive functions and emotional 315 
regulation which are often impaired in MDD. Both of these regions were implicated in a large meta-analysis of brain MRI 316 
findings in adult MDD cases44. Second, given the predominance of neurons in cortex, we confirmed that the major 317 
depression genetic findings connect to genes expressed in neurons but not oligodendrocytes or astrocytes (Fig. 3B)45. 318 
Given the different methods used by the seven MDD/major depression cohorts in this study, demonstration of 319 
enrichment of association signals in the brain regions expected to be most relevant to MDD provides independent 320 
support for the validity of our approach.  321 

Third, we used partitioned LD score regression46 to evaluate the enrichment of the major depression GWA findings in 322 
over 50 functional genomic annotations (Fig. 3C and Supplementary Table 8). The major finding was the significant 323 
enrichment of ℎௌேଶ  in genomic regions conserved across 29 Eutherian mammals47 (20.9 fold enrichment, P=1.4x10-15). 324 
This annotation was also the most enriched for schizophrenia46. We could not evaluate regions conserved in primates or 325 
human “accelerated” regions as there were too few for confident evaluation47. The other enrichments implied 326 
regulatory activity, and included open chromatin in human brain and an epigenetic mark of active enhancers 327 
(H3K4me1). Notably, exonic regions did not show enrichment suggesting that, as with schizophrenia17, genetic variants 328 
that change exonic sequences may not play a large role in major depression. We found no evidence that Neanderthal 329 
introgressed regions were enriched for major depression GWA findings48.  330 

Fourth, we applied methods to integrate GWA SNP results with those from gene expression and methylation 331 
quantitative trait loci studies (eQTL and mQTL). SMR49 analysis identified 13 major depression associated SNPs with 332 
strong evidence that they control local gene expression in one or more tissues, and nine with strong evidence that they 333 
control local DNA methylation (Supplementary Table 9 and Supplementary Data 2). A transcriptome-wide association 334 
study50 applied to data from the dorsolateral prefrontal cortex51 identified 17 genes where major depression-associated 335 
SNPs influenced gene expression (Supplementary Table 10). These genes included OLFM4 (discussed above).  336 

Fifth, we added additional data types to attempt to improve understanding of individual loci. For the intergenic 337 
associations, we evaluated total-stranded RNA-seq data from human brain and found no evidence for unannotated 338 
transcripts in these regions. A particularly important data type is assessment of DNA-DNA interactions which can localize 339 
a GWA finding to a specific gene that may be nearby or hundreds of kb away52-54. We integrated the major depression 340 
results with “easy Hi-C” data from brain cortical samples (3 adult, 3 fetal, > 1 billion reads each). These data clarified 341 
three associations. The statistically independent associations in NEGR1 (rs1432639, P=4.6x10-15) and over 200 kb away 342 
(rs12129573, P=4.0x10-12) both implicate NEGR1 (Supplementary Fig. 3a), the former likely due to the presence of a 343 
reportedly functional copy number polymorphism (see Supplementary Note) and the presence of intergenic loops. The 344 
latter association has evidence of DNA looping interactions with NEGR1. The association in SOX5 (rs4074723) and the 345 
two statistically independent associations in RBFOX1 (rs8063603 and rs7198928, P=6.9x10-9 and 1.0x10-8) had only 346 
intragenic associations, suggesting that the genetic variation in the regions of the major depression associations act 347 
locally and can be assigned to these genes. In contrast, the association in RERE (rs159963 P=3.2x10-8) could not be 348 
assigned to RERE as it may contain super-enhancer elements given its many DNA-DNA interactions with many nearby 349 
genes (Supplementary Fig. 3b).  350 
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Implications based on the roles of sets of genes 351 

A parsimonious explanation for the presence of many significant associations for a complex trait is that the different 352 
associations are part of a higher order grouping of genes55. These could be a biological pathway or a collection of genes 353 
with a functional connection. Multiple methods allow evaluation of the connection of major depression GWA results to 354 
sets of genes grouped by empirical or predicted function (i.e., pathway or gene set analysis).  355 

Full pathway analyses are in Supplementary Table 11, and 19 pathways with false discovery rate q-values < 0.05 are 356 
summarized in Fig. 4. The major groupings of significant pathways were: RBFOX1, RBFOX2, RBFOX3, or CELF4 regulatory 357 
networks; genes whose mRNAs are bound by FMRP; synaptic genes; genes involved in neuronal morphogenesis; genes 358 
involved in neuron projection; genes associated with schizophrenia (at P<10-4)19; genes involved in CNS neuron 359 
differentiation; genes encoding voltage-gated calcium channels; genes involved in cytokine and immune response; and 360 
genes known to bind to the retinoid X receptor. Several of these pathways are implicated by GWA of schizophrenia and 361 
by rare exonic variation of schizophrenia and autism56,57, and immediately suggest shared biological mechanisms across 362 
these disorders.  363 

A key issue for common variant GWA studies is their relevance for pharmacotherapy. We conducted gene set analysis 364 
that compared the major depression GWA results to targets of antidepressant medications defined by pharmacological 365 
studies58, and found that 42 sets of genes encoding proteins bound by antidepressant medications were highly enriched 366 
for smaller major depression association P-values than expected by chance (42 drugs, rank enrichment test P=8.5x10-10). 367 
This finding connects our major depression genomic findings to MDD therapeutics, and suggests the salience of these 368 
results for novel lead compound discovery for MDD59.  369 

Implications based on relationships with other traits 370 

Prior epidemiological studies associated MDD with many other diseases and traits. Due to limitations inherent to 371 
observational studies, understanding whether a phenotypic correlation is potentially causal or if it results from reverse 372 
causation or confounding is generally difficult. Genetic studies now offer complementary strategies to assess whether a 373 
phenotypic association between MDD and a risk factor or a comorbidity is mirrored by a non-zero ݎ (common variant 374 
genetic correlation) and, for some of these, evaluate the potential causality of the association given that exposure to 375 
genetic risk factors begins at conception.  376 

We used LD score regression to estimate ݎ of major depression with 221 psychiatric disorders, medical diseases, and 377 
human traits22,60. Supplementary Table 12 contains the full results, and Table 3 holds the ݎ values with false discovery 378 
rates < 0.01. First, the ݎ were very high between our major depression GWA results and those from two studies of 379 
current depressive symptoms. Both correlations were close to +1 (the samples in one report overlapped partially with 380 
this meta-analysis16 but the other did not 14).  381 

Second, we found significant positive genetic correlations between major depression and every psychiatric disorder 382 
assessed along with smoking initiation. This is the most comprehensive and best-powered evaluation of the relation of 383 
MDD with other psychiatric disorders yet published, and these results indicate that the common genetic variants that 384 
predispose to MDD overlap substantially with those for adult and childhood onset psychiatric disorders, although they 385 
remain substantially distinct as well. 386 

Third, the common-variant genetic architecture of major depression was positively correlated with multiple measures of 387 
sleep quality (daytime sleepiness, insomnia, and tiredness). The first two of these correlations used UK Biobank data 388 
with people endorsing major depression, other major psychiatric disorders, shift workers, and those taking hypnotics 389 
excluded. This pattern of correlations combined with the importance of sleep and fatigue in major depression (two 390 
criteria for MDD) suggests a close and potentially profound mechanistic relation. Major depression also had a strong 391 
genetic correlation with neuroticism (a personality dimension assessing the degree of emotional instability); this is 392 
consistent with the literature showing a close interconnection of MDD and this personality trait. The strong negative ݎ 393 
with subjective well-being underscores the capacity of major depression to impact human health.  394 
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Finally, major depression had significant negative genetic correlations with data from two studies of educational 395 
attainment, which while often considered at the genetic level as proxy measures of intelligence also likely includes more 396 
complex personality constructs. With this in mind, it is relevant to note that the ݎ between major depression and IQ61 397 
was not significantly different from zero, despite an the ݎ between years of education and IQ of 0.7, implying complex 398 
relationships between these traits worthy of future investigation. We also found significant positive correlations with 399 
multiple measures of adiposity, relationship to female reproductive behavior (decreased age at menarche, age at first 400 
birth, and increased number of children), and positive correlations with coronary artery disease and lung cancer.  401 

We used bi-directional Mendelian randomization (MR) to investigate the relationships between four traits genetically 402 
correlated with major depression: years of education (EDY)62, body mass index (BMI)29, coronary artery disease (CAD)63, 403 
and schizophrenia19. These traits were selected because all of the following were true: phenotypically associated with 404 
MDD, significant ݎ with MDD, and >30 independent genome-wide significant associations from large GWA. We report 405 
GSMR64 results but obtained qualitatively similar results with other MR methods (Supplementary Table 13 and 406 
Supplementary Fig. 4). MR analyses provided evidence for a 1.12-fold increase in major depression per standard 407 
deviation of BMI (PGSMR=1.2x10-7) and a 0.84-fold decrease in major depression per standard deviation of EDY 408 
(PGSMR=2.3x10-6). There was no evidence of reverse causality of major depression for BMI (PGSMR=0.53) or EDY 409 
(PGSMR=0.11). For BMI there was some evidence of pleiotropy, as six BMI SNPs were excluded by the HEIDI-outlier test 410 
including SNPs near OLFM4 and NEGR1. Thus, these results are consistent with EDY and BMI as either causal risk factors 411 
or correlated with causal risk factors for major depression. These results provide hypotheses for future research to 412 
understand these potentially directional relationships.  413 

For CAD, the MR analyses were not significant when considering major depression as an outcome (PGSMR=0.30) or as an 414 
exposure (PGSMR=0.12), however, the high standard error of the estimates using MDD SNP instruments implies this 415 
analysis should be revisited when more major depression genome-wide significant SNP instruments become available 416 
from future GWA studies.  417 

We used MR to investigate the relationship between major depression and schizophrenia. Although major depression 418 
had positive ݎ with many psychiatric disorders, only schizophrenia has sufficient associations for MR analyses. We 419 
found significant bi-directional correlations in SNP effect sizes for schizophrenia loci in major depression (PGSMR=1.1x10-420 
40) and for major depression loci in schizophrenia (PGSMR=1.5x10-11). These results suggest that the major depression-421 
schizophrenia ݎ of 0.34 is consistent with partially shared biological pathways being causal for both disorders. Although 422 
it is plausible that diagnostic misclassification/ambiguity (e.g., misdiagnosis of MDD as schizoaffective disorder) could 423 
contaminate these analyses, levels of misclassification would need to be implausibly high (30% unidirectional, 15% 424 
bidirectional) to result in an ݎ of ~0.3REF65.  425 

All MR analyses were repeated after excluding the 23andMeD cohort, and the pattern of results was the same 426 
(Supplementary Table 13).  427 

DISCUSSION 428 

The nature of severe depression has been discussed for millennia66. This GWA meta-analysis is among the largest ever 429 
conducted in psychiatric genetics, and provides a body of results that help refine and define the fundamental basis of 430 
major depression.  431 

In conducting this meta-analysis of major depression, we employed a pragmatic approach by including cohorts that met 432 
empirical criteria for sufficient genetic and phenotypic similarity. Our approach was cautious, clinically informed, guided 433 
by empirical data, and selective (e.g., we did not include cohorts with bipolar disorder (which requires MDD), depressive 434 
symptoms, neuroticism, or well-being). Approximately 44% of all major depression cases were assessed using traditional 435 
methods (PGC29, GenScot), treatment registers (iPSYCH, GERA; such approaches have been extensively used to 436 
elucidate the epidemiology of major depression), or a combination of methods (deCODE, UK Biobank) whereas ~56% of 437 
cases were from 23andMeD (via self-report)28. Multiple lines of genetic evidence supported conducting meta-analysis of 438 
these seven cohorts (e.g., out-of-sample prediction, sign tests, and genetic correlations).  439 
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However, our approach may be controversial to some readers given the unconventional reliance on self-report of major 440 
depression. We would reframe the issue: we hypothesize that brief methods of assessing major depression are 441 
informative for the genetics of MDD. We present a body of results that are consistent with this hypothesis. Even if 442 
unconventional, our hypothesis is testable and falsifiable, and we invite and welcome empirical studies to further 443 
support or refute this hypothesis.  444 

Our results lead us to draw some broad conclusions. First, major depression is a brain disorder. Although this is not 445 
unexpected, some past models of MDD have had little or no place for heredity or biology. The genetic results best match 446 
gene expression patterns in prefrontal and anterior cingulate cortex, anatomical regions that show differences between 447 
MDD cases and controls. The genetic findings implicated neurons (not microglia or astrocytes), and we anticipate more 448 
detailed cellular localization when sufficient single-cell and single-nuclei RNA-seq datasets become available67.  449 

Second, the genetic associations for major depression (as with schizophrenia)46 tend to occur in genomic regions 450 
conserved across a range of placental mammals. Conservation suggests important functional roles. Notably, our analyses 451 
did not implicate exons or coding regions.  452 

Third, the results also implicated developmental gene regulatory processes. For instance, the genetic findings pointed at 453 
the splicing regulator RBFOX1 (the presence of two independent genetic associations in RBFOX1 strongly suggests that it 454 
is the relevant gene). Gene set analyses implicated genes containing binding sites to the protein product of RBFOX1, and 455 
this gene set is also significantly enriched for rare exonic variation in autism and schizophrenia56,57. These analyses 456 
highlight the potential importance of splicing to generate alternative isoforms; risk for major depression may be 457 
mediated not by changes in isolated amino acids but rather by changes in the proportions of isoforms coming from a 458 
gene, given that isoforms often have markedly different biological functions68,69. These convergent results provide 459 
possible clues of a biological mechanism common to multiple severe psychiatric disorders that merits future research.  460 

Fourth, in the most extensive analysis of the genetic “connections” of major depression with a wide range of disorders, 461 
diseases, and human traits, we found significant positive genetic correlations with measures of body mass and negative 462 
genetic correlations with years of education, while showing no evidence of genetic correlation with IQ. MR analysis 463 
results are consistent with both BMI and years of education being causal, or correlated with causal, risk factors for major 464 
depression, and our results provide hypotheses and motivation for more detailed prospective studies, as currently 465 
available data may not provide insight about the fundamental driver or drivers of causality. The underlying mechanisms 466 
are likely more complex as it is difficult to envision how genetic variation in educational attainment or body mass alters 467 
risk for MDD without invoking an additional mechanistic component. While the significant MR analyses need further 468 
investigations to fully understand, the negative MR results provide important evidence that there is not a direct causal 469 
relationship between MDD and subsequent changes in body mass or education years. If such associations are observed 470 
in epidemiological or clinical samples, then it is likely not MDD but something correlated with MDD that drives the 471 
association.  472 

Fifth, we found significant positive correlations of major depression with all psychiatric disorders that we evaluated, 473 
including disorders prominent in childhood. This pattern of results indicates that the current classification scheme for 474 
major psychiatric disorders does not align well with the underlying genetic basis of these disorders. Currently, only 475 
schizophrenia has a sufficient number of genome-wide significant loci to conduct MR analysis, but the bidirectionally 476 
significant MR results are consistent a shared biological basis for major depression and schizophrenia.  477 

The dominant psychiatric nosological systems were principally designed for clinical utility, and are based on data that 478 
emerge during human interactions (i.e., observable signs and reported symptoms) and not objective measurements of 479 
pathophysiology. MDD is frequently comorbid with other psychiatric disorders, and the phenotypic comorbidity has an 480 
underlying structure that reflects shared origins (as inferred from factor analyses and twin studies)70-73. Our genetic 481 
results add to this knowledge: major depression is not a discrete entity at any level of analysis. Rather, our data strongly 482 
suggest the existence of biological processes common to major depression and schizophrenia (and likely, other 483 
psychiatric disorders).  484 

Finally, as expected, we found that major depression had modest ℎௌேଶ  (8.7%) as it is a complex malady with both 485 
genetic and environmental determinants. We found that major depression has a very high genetic correlation with proxy 486 
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measures that can be briefly assessed. Lifetime major depressive disorder requires a constellation of signs and 487 
symptoms whose reliable scoring requires an extended interview with a trained clinician. However, the common variant 488 
genetic architecture of lifetime major depression in these seven cohorts (containing many subjects medically treated for 489 
MDD) has strong overlap with that of current depressive symptoms in general community samples. Similar relations of 490 
clinically-defined ADHD or autism with quantitative genetic variation in the population have been reported74,75. The 491 
“disorder versus symptom” relationship has been debated extensively76, but our data indicate that the common variant 492 
genetic overlap is very high. This finding has important implications.  493 

One implication is for future genetic studies. In a first phase, it should be possible to elucidate the bulk of the common 494 
variant genetic architecture of MDD using a cost-effective shortcut – large studies of genotyped individuals who 495 
complete online self-report assessments of lifetime MDD (a sample size approaching 1 million MDD cases may be 496 
achievable by 2020). Use of online assessment could allow for recording of a broad range of phenotypes including 497 
comorbidities and putative environmental exposures, but the key feature being large samples with consistently assessed 498 
measures. In a second phase, with a relatively complete understanding of the genetic basis of major depression, one 499 
could then evaluate smaller samples of carefully phenotyped individuals with MDD to understand the clinical 500 
importance of the genetic results. Subsequent empirical studies may show that it is possible to stratify MDD cases at first 501 
presentation to identify individuals at high risk for recurrence, poor outcome, poor treatment response, or who might 502 
subsequently develop a psychiatric disorder requiring alternative pharmacotherapy (e.g., schizophrenia or bipolar 503 
disorder). This could form a cornerstone of precision medicine in psychiatry.  504 

In summary, this GWA meta-analysis of 135,438 MDD and major depression cases and 344,901 controls identified 44 505 
loci. An extensive set of companion analyses provide insights into the nature of MDD as well as its neurobiology, 506 
therapeutic relevance, and genetic and biological interconnections to other psychiatric disorders. Comprehensive 507 
elucidation of these features is the primary goal of our genetic studies of MDD.  508 
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FIG. LEGENDS FOR MAIN TEXT 776 

Fig. 1: Results of GWA meta-analysis of seven cohorts for major depression. (a) Relation between adding cohorts and 777 
number of genome-wide significant genomic regions (before the rigorous vetting used to define the final 44 regions). 778 
Beginning with the largest cohort (#1 on the x-axis), added the next largest cohort (#2) until all cohorts were included 779 
(#7). The number next to each point shows the total effective sample size equivalent to sample size where the numbers of 780 
cases and controls are equal. (b) Association test quantile-quantile plot showing a marked departure from a null model of 781 
no associations (y-axis truncated 10-12). (c) Manhattan plot with x-axis showing genomic position (chr1-chr22 plus chrX), 782 
and the y-axis showing statistical significance as –log10(P) t-statistic; threshold for significance accounting for multiple 783 
testing shown by horizontal line. Association test from meta-analysis of 135,458 major depression cases and 344,901 784 
controls. The red line shows the genome-wide significance threshold (P=5x10-8).  785 

Fig. 2: Genetic risk score (GRS) prediction analyses into PGC29 MDD target samples. (a) Variance explained (liability 786 
scale) based on different discovery samples for three target samples: PGC29 (16,823 cases, 25,632 controls), iPSYCH (a 787 
nationally representative sample of 18,629 cases and 17,841 controls,) and a clinical cohort from Münster not included in 788 
the GWA analysis (845 MDD inpatient cases, 834 controls). PGC29-LOO: Target sample is one of the PGC29 samples, with 789 
discovery sample the remaining 28 PGC29 samples, hence, leave-one-out. (b) Odds ratios of major depression per GRS 790 
decile relative to the first decile for iPSYCH and PGC29 target samples. (c) Odds ratios of major depression in GRS 791 
standard deviation (SD): 3,950 early onset vs 3,950 late onset cases  earlier age at onset; 4,958 severe vs 3,976 moderate 792 
cases defined by count of endorsed MDD symptom criteria; 5,574 cases recurrent MDD vs 12,968 single episode cases; 793 
severity defined as chronic/unremitting MDD 610 “Stage IV” cases vs 499 “Stage II” or 332 first-episode MDD 77 used the 794 
NESDA sample from PGC29. Error bars represent 95% confidence intervals. Logistic regression association test p-values in 795 
the target sample for GRS generated from SNPs with p-value < 0.05 in the discovery sample. 796 

Fig. 3: Comparisons of the major depression GWA meta-analysis. (a) Enrichment in bulk tissue mRNA-seq from GTEx; t-797 
statistic, sample sizes in GTEx range from N=75-564. Threshold for significance accounting for multiple testing shown by 798 
vertical line. (b) Major depression results and enrichment in three major brain cell types; t-statistic; threshold for 799 
significance accounting for multiple testing shown by horizontal line. Sample sizes vary as these data are aggregated 800 
from many different sources. (c) Partitioned LDSC to evaluate enrichment of the major depression GWA findings in over 801 
50 functional genomic annotations (Supplementary Table 8); enrichment statistic; threshold for significance accounting 802 
for multiple testing given by horizontal dashed line. Sample sizes vary as these data are aggregated from many different 803 
sources.  804 

Fig. 4: Generative topographic mapping of the 19 significant pathway results. The average position of each pathway on 805 
the map is represented by a point. The map is colored by the –log10(P) obtained using MAGMA. The X and Y coordinates 806 
result from a kernel generative topographic mapping algorithm (GTM) that reduces high dimensional gene sets to a two-807 
dimensional scatterplot by accounting for gene overlap between gene sets. Each point represents a gene set. Nearby 808 
points are more similar in gene overlap than more distant points. The color surrounding each point (gene set) indicates 809 
significance per the scale on the right. The significant pathways (Supplementary Table 11) fall into nine main clusters as 810 
described in the text.  811 
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Table 1. Brief description of the seven MDD or major depression cohorts used in the meta-analysis 813 

 814 

Sample Country Case ascertainment Cases Controls
PGC2913, a Various Structured diagnostic interviewsb 16,823 25,632
deCODE13 Iceland National inpatient electronic records 1,980 9,536
GenScotland78,79 UK Structured diagnostic interview  997 6,358
GERA80 USA Kaiser Permanente Northern California Healthcare 

electronic medical records (1995-2013) 7,162 38,307

iPSYCH81 Denmark National inpatient electronic records 18,629 17,841
UK Biobank82 
(Pilot data release) 

UK From self-reported MDD symptoms or treatment or 
electronic records69 14,260 15,480

23andMeD28 
(Discovery sample)c 

USA Self-reported diagnosis or treatment for clinical 
depression by a medical professional 75,607 231,747

Total   135,458 344,901

 815 

a: 19 additional samples to the 10 samples published in the first PGC-MDD paper13.  816 
b: One sample used natural language processing of electronic medical records followed by expert diagnostic review. 817 
c: In Hyde et al.28  SNPs in 15 genomic regions met genome-wide significance in the combined discovery and replication 818 
samples, and 11 regions achieved genome-wide significance in the discovery sample made available to the research 819 
community and used here. More details are provided in Supplementary Tables 1-3.  820 
 821 
 822 
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Table 2. 44 significantly associated genomic regions in meta-analysis of 135,458 major depression cases and 344,901 controls  823 
Chr Region (Mb) SNP Location-bp P A1/2 OR- SE(log) Frq Pre Gene Context 

1 8.390-8.895 rs159963 8,504,421 3.2E-08 A/C 0.97  0.0049 0.56 H,S [RERE]; SLC45A1,100194 
1 72.511-73.059 rs1432639 72,813,218 4.6E-15 A/C 1.04  0.0050 0.63 H NEGR1,-64941 
1 73.275-74.077 rs12129573 73,768,366 4.0E-12 A/C 1.04  0.0050 0.37 S LINC01360,-3486 
1 80.785-80.980 rs2389016 80,799,329 1.0E-08 T/C 1.03  0.0053 0.28 H 
1 90.671-90.966 rs4261101 90,796,053 1.0E-08 A/G 0.97  0.0050 0.37  
1 197.343-197.864 rs9427672 197,754,741 3.1E-08 A/G 0.97  0.0058 0.24 DENND1B,-10118 
2 57.765-58.485 rs11682175 57,987,593 4.7E-09 T/C 0.97  0.0048 0.52 H,S VRK2,-147192 
2 156.978-157.464 rs1226412 157,111,313 2.4E-08 T/C 1.03  0.0059 0.79  [LINC01876]; NR4A2,69630; GPD2,-180651 
3 44.222-44.997 chr3_44287760_I 44,287,760 4.6E-08 I/D 1.03  0.0051 0.34 T [TOPAZ1]; TCAIM,-91850; ZNF445,193501 
3 157.616-158.354 rs7430565 158,107,180 2.9E-09 A/G 0.97  0.0048 0.58 H [RSRC1]; LOC100996447,155828; MLF1,-
4 41.880-42.189 rs34215985 42,047,778 3.1E-09 C/G 0.96  0.0063 0.24  [SLC30A9]; LINC00682,-163150; 
5 87.443-88.244 chr5_87992715_I 87,992,715 7.9E-11 I/D 0.97  0.0050 0.58 H LINC00461,-12095; MEF2C,21342 
5 103.672-104.092 chr5_103942055_D 103,942,055 7.5E-12 I/D 1.03  0.0048 0.48 C 
5 124.204-124.328 rs116755193 124,251,883 7.0E-09 T/C 0.97  0.0050 0.38  LOC101927421,-120640 
5 164.440-164.789 rs11135349 164,523,472 1.1E-09 A/C 0.97  0.0048 0.48 H 
5 166.977-167.056 rs4869056 166,992,078 6.8E-09 A/G 0.97  0.0050 0.63  [TENM2] 
6 27.738-32.848 rs115507122 30,737,591 3.3E-11 C/G 0.96  0.0063 0.18 S extended MHC 
6 99.335-99.662 rs9402472 99,566,521 2.8E-08 A/G 1.03  0.0059 0.24 FBXL4,-170672; C6orf168,154271 
7 12.154-12.381 rs10950398 12,264,871 2.6E-08 A/G 1.03  0.0049 0.41 [TMEM106B]; VWDE,105637 
7 108.925-109.230 rs12666117 109,105,611 1.4E-08 A/G 1.03  0.0048 0.47  
9 2.919-3.009 rs1354115 2,983,774 2.4E-08 A/C 1.03  0.0049 0.62 H PUM3,-139644; LINC01231,-197814 
9 11.067-11.847 rs10959913 11,544,964 5.1E-09 T/G 1.03  0.0057 0.76  
9 119.675-119.767 rs7856424 119,733,595 8.5E-09 T/C 0.97  0.0053 0.29  [ASTN2] 
9 126.292-126.735 rs7029033 126,682,068 2.7E-08 T/C 1.05  0.0093 0.07 [DENND1A]; LHX2,-91820 

10 106.397-106.904 rs61867293 106,563,924 7.0E-10 T/C 0.96  0.0061 0.20 H [SORCS3] 
11 31.121-31.859 rs1806153 31,850,105 1.2E-09 T/G 1.04  0.0059 0.22 [DKFZp686K1684]; [PAUPAR]; ELP4,44032; 
12 23.924-24.052 rs4074723 23,947,737 3.1E-08 A/C 0.97  0.0049 0.41 [SOX5] 
13 44.237-44.545 rs4143229 44,327,799 2.5E-08 A/C 0.95  0.0091 0.92 [ENOX1]; LACC1,-125620; CCDC122,82689 
13 53.605-54.057 rs12552 53,625,781 6.1E-19 A/G 1.04  0.0048 0.44 H [OLFM4]; LINC01065,80099 
14 41.941-42.320 rs4904738 42,179,732 2.6E-09 T/C 0.97  0.0049 0.57 [LRFN5] 
14 64.613-64.878 rs915057 64,686,207 7.6E-10 A/G 0.97  0.0049 0.42 [SYNE2]; MIR548H1,-124364; ESR2,7222 
14 75.063-75.398 chr14_75356855_I 75,356,855 3.8E-09 D/I 1.03  0.0049 0.49  [DLST]; PROX2,-26318; RPS6KL1,13801 
14 103.828-104.174 rs10149470 104,017,953 3.1E-09 A/G 0.97  0.0049 0.49 S BAG5,4927; APOPT1,-11340 
15 37.562-37.929 rs8025231 37,648,402 2.4E-12 A/C 0.97  0.0048 0.57 H 
16 6.288-6.347 rs8063603 6,310,645 6.9E-09 A/G 0.97  0.0053 0.65  [RBFOX1] 
16 7.642-7.676 rs7198928 7,666,402 1.0E-08 T/C 1.03  0.0050 0.62  [RBFOX1] 
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16 13.022-13.119 rs7200826 13,066,833 2.4E-08 T/C 1.03  0.0055 0.25  [SHISA9]; CPPED1,-169089 
16 71.631-72.849 rs11643192 72,214,276 3.4E-08 A/C 1.03  0.0049 0.41 PMFBP1,-7927; DHX38,67465;  
17 27.345-28.419 rs17727765 27,576,962 8.5E-09 T/C 0.95  0.0088 0.92  [CRYBA1]; MYO18A,-69555; NUFIP2,5891 
18 36.588-36.976 rs62099069 36,883,737 1.3E-08 A/T 0.97  0.0049 0.42  [MIR924HG] 
18 50.358-50.958 rs11663393 50,614,732 1.6E-08 A/G 1.03  0.0049 0.45 O [DCC]; MIR4528,-148738 
18 51.973-52.552 rs1833288 52,517,906 2.6E-08 A/G 1.03  0.0054 0.72 [RAB27B]; CCDC68,50833 
18 52.860-53.268 rs12958048 53,101,598 3.6E-11 A/G 1.03  0.0051 0.33 S [TCF4]; MIR4529,-44853 
22 40.818-42.216 rs5758265 41,617,897 7.6E-09 A/G 1.03  0.0054 0.28 H,S [L3MBTL2]; EP300-AS1,-24392; CHADL,7616 

Chr (chromosome) and Region (boundaries in Mb, hg19) are shown, defined by locations of SNPs with P<1x10-5 and LD r2 > 0.1 with the most associated SNP 824 
(logistic regression; lowest P-value in region listed not corrected for multiple testing) whose location is given in bp. In three regions a second SNP fulfils the 825 
filtering criteria and these were followed up with conditional analyses: Chr1: conditional analysis selects only rs1432639 as significant, with P=2.0x10-4 for 826 
rs12134600 after fitting rs1432639; Chr5, conditional analysis shows two independent associations selecting rs247910 and rs10514301 as the most associated 827 
SNPs; and Chr10 conditional analysis selects only rs61867293 with P=8.6x10-5 for rs1021363 after conditioning on rs61867293. For each of the 47 SNPs, there is 828 
at least 1 additional genome-wide significant SNP in the cluster of surrounding SNPs with low P-values. Chromosome X was analyzed but had no findings that 829 
met genome-wide significance.  830 

Column labels and abbreviations. A1/2 = the two alleles (or insertion-deletion); A1 was tested for association, and its OR (odds ratio) and SE (standard error) are 831 
shown. FreqU = frequency of A1 in controls across all cohorts. Entries in the “Prev” column indicate which of four previous studies identified genome-significant 832 
associations in a region. H=Hyde et al.28, 23andMe GWA of self-reported clinical depression (discovery sample overlaps with this paper); O=Okbay et al.16, meta-833 
analysis of GWA of MDD, depressive symptoms, psychological well-being and neuroticism (includes many PGC29 samples); S=PGC report on 108 schizophrenia-834 
associated loci19; and C=CHARGE consortium meta-analysis of depressive symptoms14. Gene context: distances between the Peak SNP and the closest genes are 835 
shown. Brackets indicate that the Peak SNP was within that gene. The closest genes upstream (taking strand into account, as a negative number indicating 836 
distance in bp between Peak SNP and the nearest gene boundary) and downstream (positive distance in bp) are also shown, if there is a flanking gene within 200 837 
kb. The name of the closest gene is bolded. Note that it is generally not known whether the associated SNPs have biological effects on these or other more 838 
distant genes.  839 

 840 
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Table 3. LDSC genetic correlations of MDD with other disorders, diseases, and human traits 841 

Trait ݎ SE FDR ℎௌேଶ  PMID 
Depressive symptoms, CHARGE 0.91 0.123 3.2E-12 0.04 23290196 
Depressive symptoms, SSGAC 0.98 0.034 1.3E-176 0.05 27089181
ADHD (iPSYCH-PGC) 0.42 0.033 6.1E-36 0.24 submitted
Anorexia nervosa 0.13 0.028 7.1E-05 0.55 24514567
Anxiety disorders 0.80 0.140 2.0E-07 0.06 26857599 
Autism spectrum disorders (iPSYCH-PGC) 0.44 0.039 8.4E-28 0.20 submitted
Bipolar disorder 0.32 0.034 3.3E-19 0.43 21926972
Schizophrenia 0.34 0.025 7.7E-40 0.46 25056061 
Smoking, ever vs never 0.29 0.038 7.0E-13 0.08 20418890
DayƟme sleepiness ‡ 0.19 0.048 5.7E-04 0.05 0
Insomnia ‡ 0.38 0.038 4.0E-22 0.13 0
Tiredness 0.67 0.037 6.2E-72 0.07 28194004
Subjective well-being -0.65 0.035 7.5E-76 0.03 27089181
Neuroticism 0.70 0.031 2.5E-107 0.09 27089181
College completion -0.17 0.034 6.7E-06 0.08 23722424
Years of education -0.13 0.021 1.6E-08 0.13 27225129
Body fat 0.15 0.038 6.5E-04 0.11 26833246
Body mass index 0.09 0.026 3.6E-03 0.19 20935630
Obesity class 1 0.11 0.029 1.6E-03 0.22 23563607
Obesity class 2 0.12 0.033 3.0E-03 0.18 23563607
Obesity class 3 0.20 0.053 1.6E-03 0.12 23563607
Overweight 0.13 0.030 1.4E-04 0.11 23563607
Waist circumference 0.11 0.024 8.2E-05 0.12 25673412
Waist-to-hip ratio 0.12 0.030 2.9E-04 0.11 25673412
Triglycerides 0.14 0.028 1.0E-05 0.17 20686565
Age at menarche -0.14 0.023 6.3E-08 0.20 25231870
Age of first birth -0.29 0.029 6.1E-22 0.06 27798627
Fathers age at death -0.28 0.058 3.0E-05 0.04 27015805
Number of children ever born 0.13 0.036 2.4E-03 0.03 27798627
Coronary artery disease 0.12 0.027 8.2E-05 0.08 26343387
Squamous cell lung cancer 0.26 0.075 3.6E-03 0.04 27488534

All genetic correlations (ݎ) estimated using bivariate LDSC applied to major depression GWA results are 842 
in Supplementary Table 12. Shown above are the ݎ of major depression with false discovery rate (FDR) 843 
< 0.01 (FDR estimated for 221 genetic correlations, H0: ݎ=0). Thematically related traits are indicated by 844 
shading. iPSYCH is a nationally representative cohort based on blood spots collected at birth. Within 845 
iPSYCH, ݎ with ADHD was 0.58 (SE 0.050) and 0.51 (SE 0.07) with ASD – these are larger than those 846 
listed above, and inconsistent with artefactual correlations. ℎௌேଶ  is shown to aid interpretation as high 847 ݎ in the context of high ℎௌேଶ  is more noteworthy than when ℎௌேଶ 	is low. PMID is PubMed article 848 
identifier.  849 

‡ Self-reported daytime sleepiness and insomnia from UK Biobank excluding subjects with major 850 
depression, other psychiatric disorders (bipolar disorder, schizophrenia, autism, intellectual disability), 851 
shift workers, and those taking hypnotics.  852 

  853 
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ONLINE METHODS 854 

PGC29 cohort. Our analysis was anchored in a GWA mega-analysis of 29 samples of European-ancestry 855 
(16,823 MDD cases and 25,632 controls). Supplementary Table 1 summarizes the source and 856 
inclusion/exclusion criteria for cases and controls for each sample. All PGC29 samples passed a 857 
structured methodological review by MDD assessment experts (DF Levinson and KS Kendler). Cases 858 
were required to meet international consensus criteria (DSM-IV, ICD-9, or ICD-10)83-85 for a lifetime 859 
diagnosis of MDD established using structured diagnostic instruments from assessments by trained 860 
interviewers, clinician-administered checklists, or medical record review. All cases met standard criteria 861 
for MDD, were directly interviewed (28/29 samples) or had medical record review by an expert 862 
diagnostician (1/29 samples), and most were ascertained from clinical sources (19/29 samples). Controls 863 
in most samples were screened for the absence of lifetime MDD (22/29 samples), and randomly 864 
selected from the population.  865 

Additional cohorts. We critically evaluated six independent, European-ancestry cohorts (118,635 cases 866 
and 319,269 controls). Supplementary Table 2 summarizes the source and inclusion/exclusion criteria 867 
for cases and controls for each cohort. These cohorts used a range of methods for assessing MDD or 868 
major depression. Most studies included here applied otherwise typical inclusion and exclusion criteria 869 
for both cases and controls (e.g., excluding cases with lifetime bipolar disorder or schizophrenia and 870 
excluding controls with major depression).  871 

Cohort comparability. Supplementary Table 3 summarizes the numbers of cases and controls in PGC29 872 
and the six additional cohorts. The most direct and important way to evaluate the comparability of 873 
these cohorts for a GWA meta-analysis is using SNP genotype data. 22,24 We used LD score (LDSC) 874 
regression (described below) to estimate ℎௌேଶ  for each cohort (Supplementary Table 3 and 875 
Supplementary Fig. 1), and ݎ for all pairwise combinations of the cohorts (Supplementary Table 3b), 876 
and to demonstrate no evidence of sample overlap. We used leave-one-sample-out genetic risk scores 877 
(GRS) finding significant differences in case-control GRS distributions of the left-out-sample for all-but-878 
one PGC29 samples (Supplementary Table 4). For full details of the cohort comparability analyses 879 
including GRS analyses see the Supplementary Note. In GRS analyses the discovery sample is the GWA 880 
sample that provides the allelic-weightings for each SNP used to generate a sum score for each 881 
individual in the independent target sample. 882 

Genotyping and quality control. Genotyping procedures can be found in the primary reports for each 883 
cohort (summarized in Supplementary Table 3). Individual genotype data for all PGC29 samples, GERA, 884 
and iPSYCH were processed using the PGC “ricopili” pipeline (URLs) for standardized quality control, 885 
imputation, and analysis19. The cohorts from deCODE, Generation Scotland, UK Biobank, and 23andMeD 886 
were processed by the collaborating research teams using comparable procedures. SNPs and insertion-887 
deletion polymorphisms were imputed using the 1000 Genomes Project multi-ancestry reference panel 888 
(URLs)86. More detailed information on sample QC is provided in the Supplementary Note. 889 

Linkage disequilibrium (LD) score regression (LDSC)22,24 was used to estimate ℎௌேଶ  from GWA summary 890 
statistics. Estimates of ℎௌேଶ  on the liability scale depend on the assumed lifetime prevalence of MDD in 891 
the population (ܭ), and we assumed 0.15=ܭ but also evaluated a range of estimates of ܭ to explore 892 
sensitivity including 95% confidence intervals (Supplementary Fig. 1). LDSC bivariate genetic 893 
correlations attributable to genome-wide SNPs (ݎ) were estimated across all MDD and major 894 
depression cohorts and between the full meta-analyzed cohort and other traits and disorders.  895 

LDSC was also used to partition ℎௌேଶ  by genomic features24,46. We tested for enrichment of ℎௌேଶ  based 896 
on genomic annotations partitioning ℎௌேଶ  proportional to bp length represented by each annotation. 897 
We used the “baseline model” which consists of 53 functional categories. The categories are fully 898 
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described elsewhere46, and included conserved regions47, USCC gene models (exons, introns, promoters, 899 
UTRs), and functional genomic annotations constructed using data from ENCODE 87 and the Roadmap 900 
Epigenomics Consortium88. We complemented these annotations by adding introgressed regions from 901 
the Neanderthal genome in European populations89 and open chromatin regions from the brain 902 
dorsolateral prefrontal cortex. The open chromatin regions were obtained from an ATAC-seq 903 
experiment performed in 288 samples (N=135 controls, N=137 schizophrenia, N=10 bipolar, and N=6 904 
affective disorder)90. Peaks called with MACS91 (1% FDR) were retained if their coordinates overlapped in 905 
at least two samples. The peaks were re-centered and set to a fixed width of 300bp using the diffbind R 906 
package92. To prevent upward bias in heritability enrichment estimation, we added two categories 907 
created by expanding both the Neanderthal introgressed regions and open chromatin regions by 250bp 908 
on each side.  909 

We used LDSC to estimate ݎ between major depression and a range of other disorders, diseases, and 910 
human traits22. The intent of these comparisons was to evaluate the extent of shared common variant 911 
genetic architectures in order to suggest hypotheses about the fundamental genetic basis of major 912 
depression (given its extensive comorbidity with psychiatric and medical conditions and its association 913 
with anthropometric and other risk factors). Subject overlap of itself does not bias ݎ. These ݎ are 914 
mostly based on studies of independent subjects and the estimates should be unbiased by confounding 915 
of genetic and non-genetic effects (except if there is genotype by environment correlation). When GWA 916 
studies include overlapping samples, ݎ remains unbiased but the intercept of the LDSC regression is an 917 
estimate of the correlation between association statistics attributable to sample overlap. These 918 
calculations were done using the internal PGC GWA library and with LD-Hub (URLs)60.  919 

Integration of GWA findings to tissue and cellular gene expression. We used partitioned LDSC to 920 
evaluate which somatic tissues were enriched for major depression heritability93. Gene expression data 921 
generated using mRNA-seq from multiple human tissues were obtained from GTEx v6p (URLs). Genes for 922 
which <4 samples had at least one read count per million were discarded, and samples with <100 genes 923 
with at least one read count per million were excluded. The data were normalized, and a t-statistic was 924 
obtained for each tissue by comparing the expression in each tissue with the expression of all other 925 
tissues with the exception of tissues related to the tissue of interest (e.g., brain cortex vs all other 926 
tissues excluding other brain samples), using sex and age as covariates. A t-statistic was also obtained 927 
for each tissue among its related tissue (ex: cortex vs all other brain tissues) to test which brain region 928 
was the most associated with major depression, also using sex and age as covariates. The top 10% of the 929 
genes with the most extreme t-statistic were defined as tissue specific. The coordinates for these genes 930 
were extended by a 100kb window and tested using LD score regression. Significance was obtained from 931 
the coefficient z-score, which corrects for all other categories in the baseline model.  932 

Lists of genes specifically expressed in neurons, astrocytes, and oligodendrocytes were obtained from 933 
Cahoy et al.45 As these experiment were done in mice, genes were mapped to human orthologous genes 934 
using ENSEMBL. The coordinates for these genes were extended by a 100kb window and tested using LD 935 
score regression as for the GTEx tissue specific genes.  936 

We conducted eQTL look-ups of the most associated SNPs in each region and report GWA SNPs in LD (r2 937 
> 0.8) with the top eQTLs in the following data sets: eQTLGen Consortium (lllumina arrays in whole 938 
blood N=14,115, in preparation), BIOS (RNA-seq in whole blood (N=2,116),94 NESDA/NTR (Affymetrix 939 
arrays in whole blood, N=4,896),95 GEUVADIS (RNA-seq in LCL (N=465),96 Rosmap (RNA seq in cortex, N= 940 
494)97, GTEx (RNA-seq in 44 tissues, N>70)43, and Common Mind Consortium (CMC, prefrontal cortex, 941 
Sage Synapse accession syn5650509, N=467)51.  942 
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We used summary-data-based Mendelian randomization (SMR)49 to identify loci with strong evidence of 943 
causality via gene expression and DNA methylation (eQTL and meQTL). SMR analysis is limited to 944 
significant cis SNP-expression (FDR < 0.05) and SNPs with MAF > 0.01 at a Bonferroni-corrected pSMR. 945 
Due to LD, multiple SNPs may be associated with the expression of a gene, and some SNPs are 946 
associated with the expression of more than one gene. Since the aim of SMR is to prioritize variants and 947 
genes for subsequent studies, a test for heterogeneity excludes regions that may harbor multiple causal 948 
loci (pHET < 0.05; a very conservative threshold). SMR analyses were conducted using eQTLs from 949 
eQTLGen Consortium (whole blood), GTEx (11 brain tissues), and Common Mind Consortium43,51 as well 950 
as meQTLs from whole blood98. 951 

We conducted a transcriptome wide association study50 using pre-computed expression reference 952 
weights for CMC data (5,420 genes with significant cis-SNP heritability) provided with the TWAS/FUSION 953 
software. The significance threshold was 0.05/5420.  954 

DNA looping using Hi-C. Dorsolateral prefrontal cortex (Brodmann area 9) was dissected from 955 
postmortem samples from three adults of European ancestry (Dr Craig Stockmeier, University of 956 
Mississippi Medical Center). Cerebra from three fetal brains were obtained from the NIH NeuroBiobank 957 
(URLs; gestation age 17-19 weeks, African ancestry). We used “easy Hi-C” to assess DNA chromatin 958 
(looping) interactions (see Supplementary Note).  959 

Gene-wise and pathway analysis. Our approach was guided by rigorous method comparisons conducted 960 
by PGC members55,99. P-values quantifying the degree of association of genes and gene sets with MDD 961 
were generated using MAGMA (v1.06)100. MAGMA uses Brown’s method to combine SNP p-values and 962 
account for LD. We used ENSEMBL gene models for 19,079 genes giving a Bonferroni corrected P-value 963 
threshold of 2.6x10-6. Gene set P-values were obtained using a competitive analysis that tests whether 964 
genes in a gene set are more strongly associated with the phenotype than other gene sets. We used 965 
European-ancestry subjects from 1,000 Genomes Project (Phase 3 v5a, MAF ≥ 0.01)101 for the LD 966 
reference. The gene window used was 35 kb upstream and 10 kb downstream to include regulatory 967 
elements.  968 

Gene sets were from two main sources. First, we included gene sets previously shown to be important 969 
for psychiatric disorders (71 gene sets; e.g., FMRP binding partners, de novo mutations, GWAS top SNPs, 970 
ion channels)57,102,103. Second, we included gene sets from MSigDB (v5.2)104 which includes canonical 971 
pathways and Gene Ontology gene sets. Canonical pathways were curated from BioCarta, KEGG, 972 
Matrisome, Pathway Interaction Database, Reactome, SigmaAldrich, Signaling Gateway, Signal 973 
Transduction KE, and SuperArray. Pathways containing between 10-10K genes were included.  974 

To evaluate gene sets related to antidepressants, gene-sets were extracted from the Drug-Gene 975 
Interaction database (DGIdb v.2.0)105 and the Psychoactive Drug Screening Program Ki DB106 downloaded 976 
in June 2016. The association of 3,885 drug gene-sets with major depression was estimated using 977 
MAGMA (v1.6). The drug gene-sets were ordered by p-value, and the Wilcoxon-Mann-Whitney test was 978 
used to assess whether the 42 antidepressant gene-sets in the dataset (ATC code N06A in the 979 
Anatomical Therapeutic Chemical Classification System) had a higher ranking than expected by chance.  980 

One issue is that some gene sets contain overlapping genes, and these may reflect largely overlapping 981 
results. The pathway map was constructed using the kernel generative topographic mapping algorithm 982 
(k-GTM) as described by Olier et al.107 GTM is a probabilistic alternative to Kohonen maps: the kernel 983 
variant is used when the input is a similarity matrix. The GTM and k-GTM algorithms are implemented in 984 
GTMapTool (URLs). We used the Jaccard similarity matrix of FDR-significant pathways as input for the 985 
algorithm, where each pathway is encoded by a vector of binary values representing the presence (1) or 986 
absence (0) of a gene. Parameters for the k-GTM algorithm are the square root of the number of grid 987 
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points (k), the square root of the number of RBF functions (m), the regularization coefficient (l), the RBF 988 
width factor (w), and the number of feature space dimensions for the kernel algorithm (b). We set 989 
k=square root of the number of pathways, m=square root of k, l=1 (default), w=1 (default), and b=the 990 
number of principal components explaining 99.5% of the variance in the kernel matrix. The output of the 991 
program is a set of coordinates representing the average positions of pathways on a 2D map. The x and 992 
y axes represent the dimensions of a 2D latent space. The pathway coordinates and corresponding 993 
MAGMA P-values were used to build the pathway activity landscape using the kriging interpolation 994 
algorithm implemented in the R gstat package.  995 

Mendelian randomization (MR).108 We conducted bi-directional MR analysis for four traits: years of 996 
education (EDY)62, body mass index (BMI)29, coronary artery disease (CAD)63, and schizophrenia (SCZ)19. 997 
We denote z as a genetic variant (i.e., a SNP) that is significantly associated with x, an exposure or 998 
putative causal trait for y (the disease/trait outcome). The effect size of x on y can be estimated using a 999 
two-step least squares (2SLS)109 approach: ܾ௫௬ = ܾ௭௬/ ܾ௭௫, where ܾ௭௫  is the estimated effect size for the 1000 
SNP-trait association the exposure trait,	and ܾ௭௬ is the effect size estimated for the same SNP in the 1001 
GWAS of the outcome trait.  1002 

We used generalized summary statistics-based MR (GSMR)64 to estimate ܾ௫௬ and its standard error from 1003 
multiple SNPs associated with the exposure trait at a genome-wide significance level. We conducted bi-1004 
directional GSMR analyses for each pair of traits, and report results after excluding SNPs that fail the 1005 
HEIDI-outlier heterogeneity test (which is more conservative than excluding SNPs that have an outlying 1006 
association likely driven by locus-specific pleiotropy). GSMR is more powerful than inverse-weighted MR 1007 
(IVW-MR) and MR-Egger because it takes account of the sampling variation of both ܾ௭௫  and ܾ௭௬. GSMR 1008 
also accounts for residual LD between the clumped SNPs. For comparison, we also conducted IVW-MR 1009 
and MR-Egger analyses. 110 More details are provided in the Supplementary Note. 1010 

Genome build. All genomic coordinates are given in NCBI Build 37/UCSC hg19.  1011 

Data availability. The PGC’s policy is to make genome-wide summary results public. Summary statistics 1012 
for a combined meta-analysis of PGC29 with five of the six expanded samples (deCODE, Generation 1013 
Scotland, GERA, iPSYCH, and UK Biobank) are available on the PGC web site (URLs). Results for 10,000 1014 
SNPs for all seven cohorts are also available on the PGC web site.  1015 

GWA summary statistics for the Hyde et al. cohort (23andMe, Inc.) must be obtained separately. These 1016 
can be obtained by qualified researchers under an agreement with 23andMe that protects the privacy of 1017 
the 23andMe participants. Contact David Hinds (dhinds@23andme.com) to apply for access to the data. 1018 
Researchers who have the 23andMe summary statistics can readily recreate our results by meta-1019 
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