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Abstract 

 

As a central regulator of major physiological processes, the pituitary gland is a highly dynamic organ, 

capable of responding to hormonal demand and hypothalamic influence, through adapting secretion as 

well as remodelling cell numbers among its seven populations of differentiated cells. Stem cells of the 

pituitary have been shown to actively generate new cells during postnatal development but remain 

mostly quiescent during adulthood, where they persist as a long-lived population. Despite a 

significant body of research characterising attributes of anterior pituitary stem cells, the regulation of 

this population is poorly understood. A better grasp on the signalling mechanisms influencing stem 

proliferation and cell fate decisions can impact on our future treatments of pituitary gland disorders 

such as organ failure and pituitary tumours, which can disrupt endocrine homeostasis with life-long 

consequences. This minireview addresses the current methodologies aiming to understand better the 

attributes of pituitary stem cells, the normal regulation of this population in the organ and discusses 

putative future avenues to manipulate pituitary stem cells during disease states or regenerative 

medicine approaches.  

 

 

Introduction 

 

Stem cells are characterised by their ability to self-renew and to give rise to differentiated cells, and 

fulfil an important function in the generation of new cells during growth, homeostasis and repair. 

Resident stem cell contribution to normal postnatal homeostasis has been demonstrated in the murine 
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pituitary [1], a step ahead of other endocrine organs of great interest to regenerative medicine, such as 

the pancreas [2]. Despite the presence of these stem cells, the adult pituitary shows limited 

regenerative capacity to recover from insult, in either mouse models or human conditions. 

Endogenous pituitary stem cells display a decline in their potential with age [3], and recent data 

suggest that their participation in homeostasis during insult is minimal [4].  However certain attributes 

of endocrine cells allow them to contribute towards enhancing function during insult and enable a 

degree of resilience to the anterior pituitary. These attributes include: (i) phenotypic plasticity/the 

possibility to transdifferentiate when a dynamic shift in the population is required e.g. from 

somatotrophs to lactotrophs as indicated by bihormonal expression during regeneration [5]; (ii) 

proliferative capacity among the hormone-expressing cell populations; (iii) the ability of reduced 

numbers of endocrine cells to compensate for hormone production after insult e.g. ablation of 

somatotrophs in mice, even up to 80%, does not impact on IGF1 levels, however when ablation 

reaches a threshold of 90% there is a reduction in IGF1 [6]. Combined, these mechanisms may help 

the organ cope with fluctuations in physiological demand but are clearly not sufficient during insult.  

 

A whole host of markers have been identified for pituitary stem cells, yet the functional relevance of 

most still remains elusive. Consequently, no solid steps have been made in regulating pituitary stem 

cell proliferation in a controlled manner, or directing their differentiation in vivo. This may be 

achievable by understanding and manipulating the signalling cues that normally regulate cell activity 

and fate decisions. Collectively, this information would be applicable to controlling endogenous 

populations of cells in a broader range of pituitary disorders spanning hypopituitarism, the 

uncontrolled proliferation of cells during neoplasia, as well as potentially improving hormonal 

function during ageing.  

 

Recent novel technical advances are enabling us to gain exponential amounts of knowledge on the in 

vivo cellular regulation and function of the pituitary. Genomic, spatial and functional information 

from basic research efforts will need to be integrated and contextualised in order to better inform 

translation into the clinic. In this review we present an overview of current basic approaches focusing 

on understanding the endogenous stem cell population of the pituitary. 

 

 

Generation of pituitary endocrine cells from pluripotent stem cells 

 

Current regenerative approaches aiming to tackle disorders such as hypopituitarism, rely heavily on 

understanding the characteristics of normal embryonic development and commitment into pituitary 

fates. The lack of human pituitary cell lines has been a hindrance to understanding the key steps 

regulating patterning and lineage restriction. In recent years, pluripotent stem cells have aided in this 
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 3

process, and through sequential treatment with signalling molecules can be differentiated to 

eventually specify a pituitary primordium. Pioneering proof-of-principle studies have demonstrated 

that in this way it is possible to obtain fully functioning hormone-secreting cells in vitro, albeit 

inefficiently, and to even generate these from human ES cells following directed differentiation [7-9]. 

In previous reports, the generation of anterior pituitary fates from ES cells in three-dimensional 

culture necessitates an intermediate induction to forebrain fates. Specification of oral ectoderm is 

achieved through treatment with BMP4, and subsequently SHH agonists to generate definitive 

anterior pituitary. This occurs at a low efficiency, where the majority of the cells remain neural and 

only a small fraction on the non-neural (1-7%) express hormones [10]. A higher, but still suboptimal 

efficiency was obtained in monolayer cultures with human iPSCs. This employed inhibitors of BMP 

signalling together with inhibitors of TGFβ, Activin and Nodal [9]. The key to this was timed removal 

of BMP inhibition two days after neural induction, leading to placode induction, followed by 

activation of the SHH signalling pathway to induce oral ectoderm fates. Earlier exposure to BMP4 

can increase the overall placode yield [11]. Recent studies demonstrated derivation of AP hormone-

producing cells from human ES or iPS cells, which are able to function in response to stimulus in 

murine hypopituitarism models [8, 12], with the two-dimensional approach by Zimmer and colleagues 

generating functional cells at higher efficiency. In order for in vitro-generated cells to achieve 

homeostatic control in vivo, these have to be grafted within the pituitary or in immediate contact with 

the hypothalamus [13-16]. Alternative grafts, such as under the kidney capsule can function without 

hypothalamic regulation [5, 10] but have the advantage of being less invasive and more easily 

accessible. It is important to note that regeneration of pituitary cell types would not be a viable 

strategy to treat hypothalamic hypopituitarism. However, transplantation approaches placing new 

cells in immediate contact with the hypothalamus may partly circumvent hypopituitarism in the case 

of pituitary stalk interruption or following traumatic brain injury. Future improvements in these 

protocols and confirmation of functional hormone producing cells from induced pluripotent stem cells 

will bring us closer to patient-tailored cell replacement therapies.  

 

 

Pituitary stem cells are contained within the SOX2+ population 

 

The anterior pituitary is a medium to low turnover organ, where proliferative potential and 

contribution to all anterior pituitary lineages in the postnatal period of the mouse has been 

demonstrated by cells expressing SOX2 [1]. This transcription factor serves as a marker of numerous 

other adult stem cell populations [17], and is also a core factor required for pluripotency of the early 

embryo, embryonic stem cells and reprogramming. The anterior pituitary forms from Rathke’s pouch, 

a primordium in the oral epithelium, where all cells initially express and require SOX2 [18]. By 

postnatal stages, the positive cells are located in two niches: the epithelium of the marginal zone and 
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in scattered throughout the parenchyma, mostly clustered in small groups. These niches persist 

throughout life and are interconnected by long cellular processes [19, 20]. Our previous work 

identified that this long-lived population can contribute new hormone-secreting cell types during 

postnatal life [1], just as they do during organogenesis [21]. Whilst the measure of self-renewal has 

been limited to in vitro experiments [22], the potential to self-renew lies only within a proportion of 

the SOX2 population, under defined stem cell-promoting conditions [23]. In this context, the 

proportion of SOX2 cells that adhere, expand to generate more SOX2 cells. This does not mean that 

other cell types in the pituitary, such as subsets of the committed lineages, do not have self-renewal 

capabilities and this remains to be tested. It is not known if all SOX2+ cells have the same capacity; it 

is possible that during in vitro isolation, only cells perceiving particular extrinsic or intrinsic signals, 

or being at a specific phase of the cell cycle are capable of activation and divide under these defined 

conditions. Intrinsic heterogeneity occurring within this SOX2 population, or influences from their in 

vivo niche, may render them ‘active or inactive’.  Of relevance, SOX2 is expressed in the human 

pituitary in a similar pattern to that of rodents [24], and our data indicate that just like in model 

systems, this putative stem cell population persists until late adult life (Figure 1). Therefore, a 

thorough characterisation of this long-lived population would be of value to regenerative medicine 

approaches. Cells with clonogenic potential have been isolated from normal human pituitaries, and 

these stem-like cells demonstrated generation of differentiated, hormone-secreting cells [25].  

 

Multiple, non-exclusively overlapping markers have been described in Sox2-expressing cells, such as 

S100b, Gfra2, Sox9, Nestin, Cdh1, Prop1, Prrx1/2, Cxadr, Grhl2 [1, 21, 22, 26-31], however to date, 

there are no functional data for a requirement of these in the maintenance and promotion of the 

postnatal stem cell state. The localisation of PROP1 marks a proportion of SOX2 positive cells that 

are able to form colonies in vitro, however this was shown to be required for enabling transition to the 

progenitor state and for leaving the epithelium via epithelial-mesenchymal transition [32]. SOX9 

positive cells (also expressing SOX2), do generate functional cells of all lineages in vivo [21], but the 

difference in potential between single SOX2 positive only and double SOX2;SOX9 is not yet known, 

neither is the functional requirement for SOX9.  

 

 

Addressing the heterogeneity of pituitary stem cells 

 

One thing missing from the current analyses and descriptive characterisations of the stem cell 

population is the extent of heterogeneity displayed by these cells in their functional attributes. In 

terms of gene expression, this can be now determined by single cell RNA-Seq approaches [33]. With 

advances in cell separation and depth of sequencing, several thousand cells can be simultaneously 

sequenced, however spatial information is lost with these techniques. Methodologies for RNA 
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 5

sequencing in situ are gaining in their cellular resolution and are efficiently analysed, therefore spatial 

transcriptomic analyses may be the best methodologies for understanding heterogeneity in a niche-

dependent context [34-36]. Such approaches are timely and will reveal a wealth of information but 

hypotheses will need to be functionally tested. It is unlikely that SOX2 positive cells all have the same 

capacity in vivo, especially given their differential in vitro potential, heterogeneous marker expression 

and differential localisation in vivo. Therefore, we may be able to elucidate in future if true 

multipotent SOX2 positive stem cell remain in the adult gland, able to self-renew and give rise to all 

committed lineages positive for POU1F1 (PIT1), TBX19 (TPIT) and NR5A1 (SF1)/GATA2, or if 

SOX2 positive cells experience fate restriction, resulting in different uni- or bipotent SOX2-

expressing populations. It will also be interesting to determine the localisation of the more active stem 

cells, to decipher the particulars of the niches promoting or enabling this state. 

 

Simultaneously addressing the in vivo behaviour of multiple cell types is not trivial. The most 

appropriate current genetic tools include multi-colour reporters [37]. The commonly-used Cre 

recombinase-dependent Confetti reporter for example [38], labels cells driving Cre and their 

descendants in any of four fluorescent colours in heterozygosity (Fig 2A) (and 16 distinct 

combinations in homozygosity). These allow the differential labelling of neighbouring cells in a tissue 

and an independent study of their fates. Caveats of these reporters include a lower recombination 

efficiency compared to other single-colour ROSA26 reporters, that recombination can sometimes take 

place as such where no fluorescent protein is expressed (failure to excise the stop cassette), and the 

fact that whilst Cre is expressed in a cell, the expression of a colour can keep changing until the Cre is 

no longer active. In our use of Hesx1Cre/+;R26Confetti/+, by 15.5dpc, each labelled cell has a final colour 

since Hesx1 is no longer expressed, revealing a mixed pattern of closely, non-clonal labelled cells. By 

analysing three months after birth, we find a pattern of frequently segregated colour labelling 

spanning all fluorophores, indicative of clonal expansion, as well as areas of broad expansion along 

the epithelium and into the deeper parenchymal layers. Although the use of this reporter in the 

embryonic model may not be suitable for analyses of the potential of single cells, it is of value to help 

us understand cell dynamics during growth and to calculate cell turnover in this organ. The Confetti 

reporter is ideal however, for inducible systems (e.g. CreERT2) where cells become labelled only 

whilst the administered tamoxifen is still in the system. One issue is that they ought to be optimised 

for each inducible driver strain. It is advisable to carry out ‘nearest neighbour’ analyses at short pulses 

following titred tamoxifen dosage, to define how often two cells next to each other might be labelled 

with the same colour. When trying to determine if a SOX2 positive pituitary stem cell can be 

multipotent in adulthood or not, this becomes crucial. An example of its optimised use for clonality in 

the SOX2+ cells of the anterior lobe during the postnatal growth phase [39, 40], demonstrates 

asymmetric divisions along the marginal zone epithelium, two weeks post-induction (Figure 2B). 

Deciphering the extent of pituitary stem cell heterogeneity by combining in silico and functional 

D
ow

nl
oa

de
d 

by
: 

K
in

g'
s 

C
ol

le
ge

 L
on

do
n 

   
   

   
   

   
   

   
   

   
   

   
15

9.
92

.2
38

.2
08

 -
 3

/2
0/

20
18

 1
0:

07
:0

5 
A

M

Acc
ep

te
d 

m
an

us
cr

ipt



 6

techniques will help determine the characteristics and possible distinct roles of cell subsets within the 

stem cell population. 

 

 

Signalling pathways in the control of proliferative function  

 

We have previously characterised a drop in stem cell potential with age, by determining the in vitro 

capacity of anterior pituitary cells to form clonal colonies [3]. Similarly, the regenerative capacity of 

the gland following injury has been reported to decline with age [41]. At any stage of life, no more 

than one twentieth of the SOX2 cells are dividing in vivo, or can actively expand in vitro [1, 3]. 

Experiments employing physiological challenge, do suggest that the SOX2 population can be 

minimally re-activated, for example, estradiol treatment instigates proliferation in the SOX2 

compartment, increasing the proportion of dividing cells up to 10% at adulthood [21], a time when 

divisions are dwindling. Even after challenge, however, stem cell re-activation remains curiously low 

and is not the main source of new hormone-secreting cells. Therefore, might it be better to focus 

efforts on more committed cell types that display more proliferative potential? Following 

adrenalectomy, only up to a fifth of newly generated corticotrophs derive from stem cells [21], and 

elegant genetic experiments have demonstrated that the majority derive from non-stem cells, either by 

expansion of committed progenitors or hormone-secreting cells [42]. Lactotrophs can also be 

stimulated to proliferate, by exogenous administration of estradiol, promoting proliferation both 

directly and via hypothalamic feedback [43].  These properties may be indicative of a large proportion 

of hormone-expressing cells that are not actually terminally differentiated, or may not have exited the 

cell cycle whilst functioning to secrete hormone. 

 

Regenerative potential can be influenced by the enhancement of signalling pathways promoting 

proliferation. Forced activation of the WNT pathway in SOX2 cells instigates a burst of proliferative 

activity [1], in-keeping with the major property of this pathway to promote stem cell self-renewal 

[44]. We have shown that these cells, expressing a stable mutant form of CTNNB1 (β-catenin), in 

turn up-regulate expression of genes from the Wnt, Fgf, Egf, Bmp, Tgf and Hh families [23], all with 

the potential to influence proliferation and/or cell fate specification. If normal postnatal SOX2 

positive stem cells secrete any of these signals influencing surrounding cells remains to be shown, 

which would provide an additional function for the relatively sedentary stem cell population in this 

organ. The outcome of simultaneous enhanced activation of these signalling pathways from mutant 

SOX2 cells, is the paracrine formation of tumours by a massive proliferative response in non-mutant 

cells, which happen to lie outside of the Sox2 lineage [1]. Interestingly, when committed anterior 

pituitary cells are targeted to express the same non-degradable mutant form of β-catenin, they do not 

D
ow

nl
oa

de
d 

by
: 

K
in

g'
s 

C
ol

le
ge

 L
on

do
n 

   
   

   
   

   
   

   
   

   
   

   
15

9.
92

.2
38

.2
08

 -
 3

/2
0/

20
18

 1
0:

07
:0

5 
A

M

Acc
ep

te
d 

m
an

us
cr

ipt



 7

generate tumours. Recent work reveals that the tumours form when mutant cells enter senescence and 

robustly activate the senescence-associated secretory pathway (SASP) [45]. The SASP response leads 

to secretion of a range of mitogens, chemokines and cytokines from the mutated stem cells. In mouse 

models where the SASP response is low (e.g. through induction of a different mutation elevating the 

WNT pathway through the Apc gene, or mutating Ctnnb1 in ageing pituitary stem cells), the tumours 

do not form. This might suggest that even if committed cells did initiate the SASP response, perhaps 

the levels are not robust enough to induce tumours compared to ‘active’ SOX2+ stem cells targeted by 

the oncogenic mutation. This indirect paracrine function of stem cells is of relevance to human 

pituitary tumour formation, as this mouse model recapitulates the most common pediatric pituitary 

tumour, adamantinomatous craniopharyngioma, also harbouring mutations in CTNNB1 activating the 

WNT signalling pathway. There is evidence of cells isolated from pituitary adenomas with similarities 

in their in vitro capacity and gene expression, to pituitary stem cells [46]. These are also defined by a 

side population efflux profile upon flow cytometry following Hoechst dye labelling, which can enrich 

for stem cells in many tissue types, including the pituitary [47]. Definitive evidence for cells with 

stem-like properties isolated from adenomas has been presented through the propagation of tumour 

tissue following xenotransplantation [48, 49]. The presence of proliferating SOX2 positive stem cells 

is prominent in papillary craniopharyngioma tumours, characterised by mutations activating the 

MAPK pathway [50].  The deregulation of normal developmental signalling pathways may therefore 

activate proliferative potential, but sustained activation may lead to tumorigenesis, likely facilitated 

by stem cell involvement. 

 

We recently described the expression of components of the Hippo signalling pathway in the pituitary 

[51]. This pathway has been well characterised in Drosophila, but relatively recently described in 

mammals [52]. It is comprised of a kinase cascade that negatively regulates key effectors YAP and 

TAZ, which act to promote proliferation and the stem cell state, as well as to prevent apoptosis. It is 

therefore unsurprising that deregulation of YAP/TAZ underlies and promotes growth of numerous 

tumours and cancers [53]. Global deletion of one of the core kinases, LATS1, results in pituitary 

hyperplasia and hormone deficiency [54]. The impact of LATS1 deletion on YAP/TAZ in the 

pituitary, as well as the possible link of this pathway to tumour involvement remains to be shown. In 

the mouse pituitary, localisation of YAP/TAZ is in the nucleus of SOX2 cells and not of the 

committed lineages (Figure 3A). Since nuclear YAP/TAZ are associated with an active stem cell 

state, this pathway may be of relevance to the regulation of stem cell potential in the pituitary. Of the 

genes directly regulated by YAP/TAZ, Ctgf is a target in multiple tissues [55]. Surprisingly, mRNA in 

situ hybridisation to detect Ctgf expression in the pituitary does not fully recapitulate Sox2 expression 

as it is mostly localised in individual cells throughout the parenchyma (Figure 3B). Double in situ for 

Ctgf and Sox2 reveals overlap in some Ctgf-expressing cells, however the majority of Sox2-expressing 

cells do not activate this YAP/TAZ target. This could suggest that Ctgf may not be a direct target of 
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 8

YAP/TAZ in the pituitary, however similar analyses with additional direct target Cyr61 reveal a 

similar expression pattern (not shown). Alternatively, YAP/TAZ may not be triggering the full 

transcriptional programme associated with the active stem cell state in all SOX2 cells, if for example 

this activation is being inhibited. Since there is robust activity of Hippo kinases in these cells, 

demonstrated by the detection of phosphorylated YAP at serine residue 127, inhibition is indeed 

taking place [51]. Perhaps down-regulating activity of these kinases may lift the break acting on the 

proliferative potential of stem cells. Persistent nuclear localisation of YAP/TAZ only in SOX2 cells 

and detection of Yap mRNA in these cells into adulthood, as well as the Lats1-/- phenotype are all 

indicative that the potential to respond might be in place. The vast array of genetic tools available, 

will allow us to explore the function of this pathway on pituitary stem cells and determine its 

relevance to applications relating to regenerative medicine and tumours. Since the Hippo/YAP/TAZ 

pathway is readily druggable, the potential to precisely influence stem cell survival and proliferation 

through exogenous means may be facilitated [56].   

 

 

Favoured by recent methodological advances, we are on the cusp of amassing sufficient knowledge of 

pituitary stem cell attributes and the signalling mechanisms that influence them, to begin manipulating 

their function and potential in vivo. Future research will aim to re-activate, amplify, diminish or 

differentiate this population in order to facilitate future treatment approaches. 
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Figure 1. Immunofluorescence staining against SOX2 in aged human pituitaries. SOX2 is 

expressed in cells of the parenchyma of two post-mortem pituitaries (Pituitary 1- female, 77 years; 

Pituitary 2 – male, 89 years). Nuclear localisation is observed in individual parenchymal cells 

(arrowheads), nuclei are counterstained with DAPI.  

 

Figure 2. Multi-colour labelling of embryonic and postnatal progenitor/stem cells in the mouse 

pituitary. (A) Genetic strategy employing the R26-Confetti strain, crossed with either a Cre strain 

driven from the Hesx1 promoter (embryonic), or CreERT2 strain driven by the Sox2 promoter 

(conditional upon tamoxifen administration). Recombination can result in the stable expression of one 
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 9

of four different fluorophores (nuclear green fluorescent protein (nGFP), yellow fluorescent protein 

(YFP), red fluorescent protein (RFP), membrane cyan fluorescent protein (mCFP)), which continue to 

be expressed by descendants. (B) Recombination in the developing pituitary of Hesx1Cre/+;R26Confetti/+ 

demonstrating labelling of numerous scattered cells at 15.5 days post coitum (dpc), followed by 

analysis at three months postnatal, revealing single-colour clonal expansion of individual embryonic 

progenitors. A region of expansion (bracket, yellow cells) can be seen spanning the epithelium as well 

as expanding into the parenchyma. Induction of Sox2CreERT2/+;R26Confetti/+ pituitaries at postnatal day 14 

(P14) and analysis two weeks later, demonstrates labelling of scattered cells in the intermediate lobe 

(IL) and anterior lobe (AL) and sporadic duplication of labelled cells along the epithelium 

(arrowheads).   

 

Figure 3. YAP/TAZ and target expression in the SOX2 positive population of pituitary stem 

cells. (A) YAP and TAZ localise in the nucleus of SOX2 positive cells, marked by GFP expression in 

Sox2Egfp/+ knock-in mice. Adapted from Lodge et al, Front Physiol. 2016 Mar 31;7:114. doi: 

10.3389/fphys.2016.00114. (B) RNAscope mRNA in situ hybridisation detecting YAP/TAZ target 

Ctgf reveals sporadic robust expression in parenchymal cells (red) and rare expression along the 

marginal zone epithelium. Cells are counterstained with hematoxylin. Double in situ hybridisation 

detecting Ctgf (aqua, arrow) and Sox2 (red) reveal partial overlap among Ctgf-expressing cells 

(arrowheads), and the majority of Sox2-expressing cells do not express Ctgf. 
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