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Abstract	43	

While	targeted	therapy	against	HER2	is	an	effective	first-line	treatment	in	HER2+	breast	44	

cancer,	acquired	resistance	remains	a	clinical	challenge.	The	pseudokinase	HER3,	45	

heterodimerisation	partner	of	HER2,	is	widely	implicated	in	the	resistance	to	HER2-46	

mediated	therapy.	Here	we	show	that	lapatinib,	an	ATP-competitive	inhibitor	of	HER2,	is	47	

able	to	induce	proliferation	cooperatively	with	the	HER3	ligand	neuregulin.	This	48	

counterintuitive	synergy	between	inhibitor	and	growth	factor	depends	on	their	ability	to	49	

promote	atypical	HER2-HER3	heterodimerisation.	By	stabilising	a	particular	HER2	50	

conformer,	lapatinib	drives	HER2-HER3	kinase	domain	heterocomplex	formation.	This	dimer	51	

exists	in	a	head-to-head	orientation	distinct	from	the	canonical	asymmetric	active	dimer.	52	

The	associated	clustering	observed	for	these	dimers	predisposes	to	neuregulin	responses,	53	

affording	a	proliferative	outcome.	Our	findings	provide	mechanistic	insights	into	the	54	

liabilities	involved	in	targeting	kinases	with	ATP-competitive	inhibitors	and	highlight	the	55	

complex	role	of	protein	conformation	in	acquired	resistance.	56	

	57	

Introduction	58	

The	epidermal	growth	factor	receptor	(EGFR)	family	of	receptor	tyrosine	kinases	plays	a	59	

major	role	in	proliferative	signalling	in	a	variety	of	cancers	(Baselga & Swain, 2009; 60	

Yarden & Pines, 2012).	Apart	from	EGFR	(also	known	as	ErbB1),	the	family	consists	of	the	61	

orphan	receptor	HER2	(ErbB2),	the	pseudokinase	HER3	(ErbB3),	and	HER4	(ErbB4).	62	
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Overexpression	of	HER2	is	an	oncogenic	driver	in	approximately	20%	of	all	breast	cancers	63	

(Lovekin et al., 1991; Owens, Horten, & Da Silva, 2011; Slamon et al., 1987).	The	64	

high	clinical	relevance	of	these	receptors	has	made	them	a	target	for	directed	therapy	with	65	

both	antibodies	and	small	molecule	kinase	inhibitors.	In	the	case	of	HER2+	breast	cancer,	the	66	

monoclonal	antibody	trastuzumab	(Herceptin)	and	its	cytotoxic	drug-conjugated	derivative	67	

trastuzumab-emtansine	(Kadcyla),	the	monoclonal	antibody	blocking	HER2-HER3	68	

dimerisation	pertuzumab	(Perjeta),	and	the	small	molecule	kinase	inhibitor	lapatinib	69	

(Tykerb/Tyverb)	have	been	successful	in	the	clinic	(Blackwell et al., 2010; D. Cameron et 70	

al., 2017; Dieras et al., 2017; Geyer et al., 2006; Krop et al., 2017; Swain et al., 71	

2015; Verma et al., 2012).	72	

	 While	HER2	itself	has	no	known	ligand,	HER3	binds	the	growth	factor	neuregulin	73	

(NRG,	also	known	as	heregulin	or	HRG)	to	induce	heterodimerisation	and	signalling	74	

(Sliwkowski et al., 1994).	HER3	has	been	implicated	in	therapeutic	resistance	to	HER2-75	

targeted	therapy	through	a	variety	of	mechanisms,	including	receptor	rephosphorylation,	76	

HER3	overexpression	and	increased	NRG	production	(reviewed	in	(Claus, Patel, Ng, & 77	

Parker, 2014)).	In	terms	of	cellular	signalling	in	response	to	HER-family	kinase	inhibition,	78	

HER3-mediated	buffering	through	the	Akt/PKB	signalling	axis	has	been	shown	to	be	an	79	

important	factor	in	therapeutic	resistance	(Sergina et al., 2007).		80	

The	dimerisation	of	EGFR	family	members	is	a	fluid	process	mediated	by	interaction	81	

dynamics	in	practically	every	domain	of	the	receptor.	For	EGFR,	the	ligand-bound,	active	82	

dimer	shows	an	upright,	back-to-back	extracellular	domain	(ECD)	interaction	where	both	83	

receptors	have	bound	ligand,	although	singly-bound	dimers	can	also	occur		(Garrett et al., 84	

2002; P. Liu et al., 2012; Ogiso et al., 2002).	Although	HER2	has	no	known	ligand,	it	85	

natively	adopts	this	upright,	dimerisation-ready	ectodomain	conformation	(Garrett et al., 86	

2002).	On	the	intracellular	side,	formation	of	the	active	kinase	domain	dimer	is	critically	87	

affected	by	the	conformation	of	the	juxtamembrane	domain	(JMD	(Jura, Endres, Engel, 88	

Deindl, Das, Lamers, et al., 2009a; Thiel & Carpenter, 2007).	The	kinase	domains	89	

associate	in	an	asymmetric	dimer,	which	resembles	the	CDK/cyclin-like	asymmetric	dimer	90	

interface	(Jeffrey et al., 1995; X. Zhang, Gureasko, Shen, Cole, & Kuriyan, 2006).	In	91	

this	canonical	dimer	one	kinase	(the	“activator”)	allows	the	dimerisation	partner	(the	92	

“receiver”)	to	adopt	an	active	conformation	and	become	catalytically	active.	These	various	93	
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conformations	have	also	been	observed	in	near-complete	receptors	using	negative	stain	94	

electron	microscopy	(Mi et al., 2011).	Of	note	in	these	receptor	dimer	formations	was	the	95	

lack	of	active,	asymmetrical	kinase	domain	interactions	when	the	receptor	was	bound	to	the	96	

ATP-competitive	inhibitor	lapatinib	(Mi et al., 2011).	Although	these	interactions	have	97	

mainly	been	described	in	the	context	of	EGFR	homodimerisation,	they	remain	a	template	98	

for	the	interactions	of	the	rest	of	the	EGFR	family.	The	conformation	of	the	active	kinase	99	

domain	interaction	has	been	validated	for	EGFR-HER3	and	HER2-HER3	(Jura, Shan, Cao, 100	

Shaw, & Kuriyan, 2009b; Littlefield et al., 2014; van Lengerich, Agnew, Puchner, 101	

Huang, & Jura, 2017).		102	

A	multitude	of	studies,	using	a	variety	of	techniques,	have	confirmed	that	EGFR-103	

family	receptors	can	form	higher	order	oligomers	and	that	the	exact	nature	of	these	104	

oligomers	is	modulated	by	a	variety	of	conditions,	including	receptor	density,	ligand	105	

presence,	ligand	type	and	temperature-dependent	membrane	behaviour	(Clayton, 2005; 106	

Clayton, Tavarnesi, & Johns, 2007; Y. Huang et al., 2016; Nagy, Claus, Jovin, & 107	

Arndt-Jovin, 2010; Needham et al., 2016; Saffarian, Li, Elson, & Pike, 2008; van 108	

Lengerich et al., 2017; Yang et al., 2007; R. Zhang et al., 2017).		109	

Against	the	backdrop	of	such	a	multitude	of	association	modes,	it	is	clear	that	110	

conformational	dynamics	and	structural	rearrangements	are	an	integral	regulator	of	protein	111	

behaviour	in	the	EGFR	family.		112	

	113	

We	have	shown	previously	that	within	a	kinase,	in	this	case	PKCε,	occupation	of	the	114	

nucleotide	binding	pocket	with	ATP	(or	an	inhibitor)	is	a	major	determinant	of	protein	115	

behaviour,	conferring	the	structural	stability	required	for	protein-protein	interactions	to	116	

occur	and	priming	sites	to	be	stably	phosphorylated	(A. J. M. Cameron, Escribano, 117	

Saurin, Kostelecky, & Parker, 2009).	Similar	effects	have	been	observed	in	several	118	

additional	kinases,	including	PKB/Akt,	IRE1,	and	AMPK	(Okuzumi et al., 2009; Papa, 119	

Zhang, Shokat, & Walter, 2003; Ross et al., 2017; Wang et al., 2012).		120	

A	notable	example	of	nucleotide	binding	pocket	occupation	inducing	behaviour	121	

independent	of	catalysis	has	been	described	for	the	RAF	family,	originally	in	cRAF,	where	the	122	

inhibitor	SB	203580	paradoxically	induced	activity	(Eyers, Craxton, Morricel, Cohen, & 123	

Goedert, 1998).	More	recently,	a	similar	phenomenon	has	been	shown	in	BRAF,	where	the	124	

small	molecule	kinase	inhibitor	vemurafenib	blocks	the	oncogenic	mutant	V600E,	but	125	
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stabilises	the	wild	type	protein,	promoting	downstream	proliferative	signalling	126	

(Hatzivassiliou et al., 2010; Mckay, Ritt, & Morrison, 2011; Poulikakos, Zhang, 127	

Bollag, Shokat, & Rosen, 2010; Thevakumaran et al., 2014).	Within	the	EGFR	family,	128	

we	and	others	have	shown	previously	that	quinazoline	inhibitors	can	cause	homodimer	129	

formation	of	EGFR,	and	EGFR-MET	heterodimerisation,	by	stabilising	particular	kinase	130	

domain	conformers	(Arteaga, Ramsey, Shawver, & Guyer, 1997; Bublil et al., 2010; 131	

Lichtner, Menrad, Sommer, Klar, & Schneider, 2001; Ortiz-Zapater et al., 2017).	132	

	133	

The	structural,	conformational	role	that	nucleotide	pocket	occupation	can	fulfil	is	134	

particularly	interesting	in	the	context	of	pseudokinases,	which	have	lost	their	catalytic	135	

activity.	Sequence	analysis	shows	that	many	pseudokinases	retain	several	of	the	conserved	136	

residues	involved	in	ATP-binding	(Boudeau, Miranda-Saavedra, Barton, & Alessi, 2006; 137	

Claus, Cameron, & Parker, 2013).	And	in	vitro	analysis	of	the	pseudokinome	showed	that	138	

many	pseudokinases	have	nucleotide	binding	capability	(Murphy et al., 2014).		139	

In	the	case	of	these	ATP-binding	pseudokinases,	where	nucleotide	binding	does	not	140	

elicit	phosphotransfer,	the	structural	stability	conferred	by	ATP	binding	may	be	integral	to	141	

protein	function.	This	has	been	observed	for	the	pseudokinase	STRAD,	which	requires	ATP	142	

binding	to	sustain	a	heterotrimeric	complex	with	LKB	and	MO25	(Zeqiraj, Filippi, Deak, 143	

Alessi, & van Aalten, 2009a; Zeqiraj et al., 2009b).	Similarly,	in	the	pseudokinase	144	

FAM20A	ATP-binding,	albeit	in	a	non-canonical	orientation,	is	essential	for	stabilising	the	145	

FAM20A/FAM20C	complex	(Cui et al., 2015; 2017).	ATP	binding	is	a	structural	146	

requirement	for	the	JAK2	JH2	V617F	mutant	to	promote	pathogenic	signalling	(Hammarén 147	

et al., 2015).	In	the	pseudokinase	MLKL,	ATP-binding	pocket	occupation	is	essential	for	148	

membrane	translocation	and	its	role	in	necroptotic	signalling	(Hildebrand et al., 2014; 149	

Murphy et al., 2013).		150	

HER3	is	able	to	bind	ATP	(crystallised	as	PDB	ID	3XKK,	3LMG),	as	well	as	the	Src/ABL	151	

inhibitor	Bosutinib	(PDB	ID	4OTW)	(Boxer & Levinson, 2013; Davis et al., 2011; Jura, 152	

Shan, Cao, Shaw, & Kuriyan, 2009b; Murphy et al., 2014; Shi, Telesco, Liu, 153	

Radhakrishnan, & Lemmon, 2010).	Considering	the	importance	of	HER3	as	a	154	

conformational	partner	in	the	HER2-HER3	heterodimer,	and	the	established	importance	of	155	
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ATP-binding	for	complex	formation	in	other	pseudokinases,	the	role	of	nucleotide	binding	156	

pocket	occupation	in	HER3	function	warrants	investigation.	157	

	158	

Here	we	have	integrated	the	study	of	kinase-autonomous	conformational	effects	of	159	

nucleotide	binding	pocket	occupation	with	that	of	HER2-HER3	heterointeraction	modalities	160	

and	downstream	proliferative	phenotypes	in	response	to	drug	treatment.	We	show	that	161	

nucleotide	pocket	occupation	in	both	HER2	and	the	pseudokinase	HER3	is	of	great	162	

conformational	importance	for	kinase	domain	heterodimerisation	and	subsequent	163	

proliferative	signalling.	In	HER2+	breast	cancer	cells	this	leads	to	an	unexpected	synergy	164	

between	the	HER3	ligand	NRG	and	the	HER2	inhibitor	lapatinib,	by	which	their	concomitant	165	

binding	promotes	proliferation	in	2D	and	3D	culture	systems.	Lapatinib	is	able	to	promote	166	

heterodimerisation	between	the	kinase	domains	of	full-length	HER2	and	HER3	in	cells.	167	

However,	this	dimer	interface	is	different	from	the	canonical	active	EGFR-family	dimer,	and	168	

it	is	necessary	for	the	lapatinib/NRG	combinatorial	proliferative	phenotype.	Both	the	169	

lapatinib-induced	heterodimer	and	the	cooperative	proliferation	effects	depend	strongly	on	170	

the	ability	for	the	pseudokinase	HER3	to	bind	ATP.	Consistent	with	the	model,	occupying	the	171	

pseudokinase	HER3	with	the	Src/Abl	inhibitor	bosutinib	stabilises	the	pseudokinase	domain	172	

to	the	extent	that	it	actually	promotes	HER2-HER3	heterodimerisation	and	downstream	173	

proliferation.	174	

	175	

Results	176	

	177	

Lapatinib-NRG	co-treatment	shows	a	synergistic	effect	on	proliferation,	dependent	on	HER3	178	

ATP	binding	179	

The	sensitivity	of	a	variety	of	oncogene-addicted	cell	lines	to	small	molecule	kinase	180	

inhibitors	can	be	counter-acted	by	the	addition	of	growth	factors	(Wilson et al., 2012).	181	

This	includes	the	case	of	lapatinib-treated	HER2+	breast	cancer	cell	lines,	where	NRG	is	seen	182	

to	mediate	a	rescue	of	drug	toxicity	(Novotny et al., 2016; Wilson et al., 2012).	Using	183	

different	experimental	procedures,	we	have	investigated	further	these	competing	effects	of	184	

lapatinib	and	NRG	on	the	proliferative	behaviour	of	HER2+	breast	cancer	cells.		185	

In	SKBR3,	BT474,	AU565,	and	HCC1419	cells	treated	with	a	range	of	lapatinib	186	

concentrations	for	72	hours,	the	addition	of	10	nM	NRG	rescues	the	drug-induced	187	
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cytotoxicity	except	at	very	high	drug	concentrations	(Figure	1a,	Figure	1-figure	supplement	188	

1a-c).		189	

Interestingly,	in	the	case	of	the	SKBR3,	BT474	and	AU565	cell	lines	low	190	

concentrations	of	lapatinib	(~40-400	nM)	are	able	to	enhance	proliferation	in	conjunction	191	

with	10	nM	NRG	by	25%-30%	compared	to	growth	factor	alone	(Figure	1a,	Figure	1-figure	192	

supplement	1a-b).	A	partial	response	of	this	cooperative	phenotype	is	observed	in	ZR75	and	193	

HCC1419	cells	(Figure	1-figure	supplement	1c-d).	This	phenotype	in	SKBR3	cells,	while	194	

observed	previously,	has	gone	unremarked	(Novotny et al., 2016; Wilson et al., 2012).	195	

We	corroborated	our	results	with	a	cell	counting	assay,	in	which	SKBR3	cells	were	treated	196	

for	72	hours	with	250	nM	lapatinib	or	vehicle	±	10	nM	NRG	(Figure	1b).	The	emergent	effect	197	

of	lapatinib	plus	NRG	depends	on	lapatinib	sensitivity.	Two	breast	cancer	cell	lines	with	low	198	

lapatinib	sensitivity,	MCF7	and	HCC1569,	show	low	inhibitor-growth	factor	cooperation	199	

(Figure	1-figure	supplement	1e-f).	The	growth	phenotype	in	ZR75	may	be	partially	explained	200	

by	its	HER4	expression,	considering	that	NRG	is	also	a	ligand	for	HER4	(Figure	1-figure	201	

supplement	1g).	202	

Although	HER3	has	been	shown	to	bind	lapatinib	in	vitro	with	very	low	affinity	(Kd	=	203	

5.5	μM)	(Davis et al., 2011),	the	synergistic	behaviour	between	lapatinib	and	NRG	occurs	204	

in	cells	at	a	~50x	lower	dose	than	the	in	vitro	Kd,	indicating	that	any	binding	of	lapatinib	to	205	

HER3	would	likely	be	minor	under	these	conditions.	Using	a	thermal	shift	assay	(TSA),	which	206	

measures	a	shift	in	the	thermal	stability	of	a	protein	after	ligand/inhibitor	binding	in	vitro,	207	

we	also	show	that	lapatinib	does	not	strongly	bind	HER3	as	compared	to	ATP	and	a	panel	of	208	

other	inhibitors	(Figure	2a,	see	further	below).	209	

While	EGF	treatment	rescued	SKBR3	cells	from	the	effects	of	low-concentration	210	

lapatinib	treatment,	synergistic	growth	effects	such	as	those	observed	with	lapatinib-NRG	211	

co-treatment	were	not	observed	for	lapatinib-EGF	co-treated	SKBR3	or	BT474	cells	(Figure	212	

1-figure	supplement	1h-i).	Although	NRG	is	also	a	growth	factor	ligand	for	HER4,	protein	213	

levels	of	HER4	in	SKBR3	cells	are	very	low	(Figure	1-figure	supplement	1g).	Additionally,	214	

lapatinib	is	a	strong	inhibitor	of	both	EGFR	and	HER4	(Davis et al., 2011).	Taken	together,	215	

these	data	seem	to	exclude	a	significant	role	for	EGFR	and	HER4	in	the	synergistic	growth	216	

observed	for	lapatinib-NRG	co-treatment.	Moreover,	transient	knockdown	of	HER3	with	two	217	

different	siRNA	oligonucleotides	shows	a	modest,	but	consistent	reduction	in	the	218	
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proliferative	effect	of	ligand-inhibitor	co-treatment,	implicating	HER3	as	the	relevant	growth	219	

factor-binding	receptor	for	this	NRG	response	(Figure	1-figure	supplement	1j).	220	

The	proliferative	effects	of	lapatinib	and	NRG	on	SKBR3	cells	were	also	observed	in	221	

3D	spheroid	cultures.	As	seen	in	2D	culture	systems,	in	3D	spheroid	culture	the	addition	of	222	

NRG	to	lapatinib-treated	cells	rescues	SKBR3	cells	from	lapatinib-induced	223	

cytotoxicity/cytostasis	(Figure	1c,	Figure	1-figure	supplement	1k-l).	Lapatinib	and	NRG	share	224	

a	cooperative	effect	on	the	induction	of	proliferation	in	3D	spheroid	cultures,	where	225	

spheroid	size	is	greater	for	inhibitor-ligand	co-treatment	conditions	than	for	those	treated	226	

with	growth	factor	alone.		227	

The	irreversible	inhibitor	neratinib	binds	the	same	inactive	conformation	as	lapatinib	228	

and	with	similar	binding	affinity	(Davis et al., 2011).	However,	neratinib	is	an	irreversible	229	

inhibitor	and	forms	a	covalent	bond	with	HER2C805,	a	residue	conserved	in	EGFR	and	HER4	230	

but	not	HER3.	Neratinib-NRG	co-treatment	did	not	show	the	synergistic	proliferative	231	

phenotype	observed	with	lapatinib-NRG,	in	either	a	cell	counting	assay,	or	in	3D	spheroid	232	

formation	(Figure	1-figure	supplement	2a-d).	Similarly,	the	induction	of	HER2	and	HER3	233	

phosphorylation	seen	in	western	blot	analysis	of	lapatinib-NRG	co-treated	3D	spheroids	was	234	

absent	in	neratinib-NRG	co-treatment	(Figure	1-figure	supplement	1l,	Figure	1-figure	235	

supplement	2d).	This	indicates	that	the	proliferative	phenotype	observed	for	lapatinib	is	236	

likely	to	necessitate	a	dynamic,	reversible	inhibitor	binding.	237	

Collectively,	the	data	from	both	2D	and	3D	cultures	show	that	there	is	a	238	

counterintuitive	synergy	between	the	HER2	inhibitor	lapatinib	and	the	HER3	ligand	NRG	in	239	

driving	the	proliferation	of	SKBR3	cells.	This	prompted	us	to	examine	the	potential	for	novel	240	

allosteric	regulation	of	HER2-HER3	heterotypic	interactions	by	both	ligand	and	inhibitors.	 	241	
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	242	

	243	
Figure	1.	Lapatinib	and	NRG	have	synergistic	effects	on	SKBR3	growth	in	2D	and	3D	culture	systems	244	
(a)	CellTiter-Glo®	proliferation	assay	of	SKBR3	cells	after	treatment	for	72	hours	with	a	range	of	lapatinib	245	
concentrations	±	10	nM	NRG.	(b)	Cell	counting	assay	of	SKBR3	cells	treated	for	72	hours	with	DMSO	or	250	nM	246	
lapatinib	±	10	nM	NRG,	before	quantification	of	cell	number	on	a	Vi-CELL	counter.	(c)	Quantification	of	SKBR3	247	
3D	spheroid	area	after	8	days	of	treatment	with	a	range	of	lapatinib	concentrations	±	10	nM	NRG,	with	248	
representative	bright	field	micrographs.	Scale	bars	0.5	mm.	All	proliferation	data	represented	as	mean	±	SEM	249	
of	three	independent	experiments	each	performed	in	triplicate.		250	
Corresponding	data	and	statistics	available	as	Figure	1	–	Source	Data	1.	251	

	252	

	253	
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	254	
Figure	1-figure	supplement	1.	Effects	of	lapatinib	and	NRG	on	breast	cancer	cell	proliferation	255	
(a-f)	BT474,	AU565,	HCC1419,	ZR75,	MCF7,	and	HCC1569	breast	cancer	cell	lines	were	assayed	for	256	
proliferation	in	the	response	to	lapatinib	±	10	nM	NRG	as	described	in	Figure	1a.	BT474	and	AU565	represent	257	
lapatinib-sensitive	lines.	HCC1419	and	ZR75	represent	partially-sensitive	lines.	MCF7	and	HCC1569	represent	258	
lapatinib-insensitive	lines.	(g)	Western	blot	analysis	of	endogenous	EGFR	family	protein	levels	in	SKBR3,	BT474,	259	
AU565,	HCC1419,	ZR75,	MCF7	and	HCC1569	cell	lines.	(h-i)	SKBR3	and	BT474	cells	were	treated	for	72	hours	260	
with	a	titration	of	lapatinib	±	10	nM	EGF,	after	which	proliferation	was	measured	using	CellTiter-Glo®.			(j)	261	
CellTiter-Glo®	proliferation	assay	of	SKBR3	cells	with	transient	siRNA	knockdown	of	HER3	using	single	262	
oligonucleotides.	Western	blot	denotes	knockdown	efficiency	of	HER3	si11	and	HER3	si13	oligonucleotides.	(k)	263	
CellTiter-Glo®	endpoint	analysis	of	proliferation	of	SKBR3	spheroid	cultures	after	8	days	of	lapatinib	±	NRG.	(l)	264	
Western	blot	analysis	of	SKBR3	spheroid	cultures	in	conditions	matched	to	Figure	1c/Figure	1-figure	265	
supplement	1k.	One	representative	example	of	three	independent	experiments	is	shown.	All	proliferation	data	266	
represented	as	mean	±	SEM	of	three	independent	experiments	each	performed	in	triplicate,	except	for	(j),	267	
which	represents	six	independent	experiments	each	performed	in	triplicate.		268	
Corresponding	data	and	statistics	available	as	Figure	1-figure	supplement	1	–	Source	Data	1.	269	

	 	270	

Figure 1-figure supplement 1
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	271	
Figure	1-figure	supplement	2.	The	irreversible	inhibitor	neratinib	does	not	show	synergistic	growth	under	272	
ligand	co-treatment	conditions	273	
(a)	SKBR3	cells	were	treated	for	72	hours	with	DMSO	or	250	nM	neratinib	±	10	nM	NRG,	before	quantification	274	
of	cell	number	on	a	Vi-CELL	counter	(b)	Quantification	of	spheroid	area	after	8	days	of	treatment	with	a	275	
titration	of	neratinib.	Representative	bright	field	micrographs	of	SKBR3	cell	3D	spheroids.	Scale	bars	0.5	mm.	276	
(c)	CellTiter-Glo®	endpoint	analysis	of	spheroid	cultures	from	(b).	(d)	Western	blot	analysis	of	cell	signalling	in	277	
SKBR3	spheroids	after	8	days	of	treatment.	All	proliferation	data	represented	as	mean	±	SEM	of	three	278	
independent	experiments	each	performed	in	triplicate.	All	Western	blot	shows	a	representative	example	of	279	
three	independent	experiments.	280	
Corresponding	data	and	statistics	available	as	Figure	1-figure	supplement	2	–	Source	Data	1.	281	
	282	

	 	283	

Figure 1-figure supplement 2
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HER3	nucleotide	pocket	occupation	is	of	structural	importance		284	

To	study	the	effects	of	ATP	binding	on	HER3	function,	we	aimed	to	both	stabilise	and	285	

destabilise	the	pseudokinase	nucleotide-binding	pocket.	This	would	allow	us	to	investigate	286	

the	importance	of	the	structural	role	that	nucleotide	binding	pocket	occupation	has	been	287	

shown	to	play	in	several	(pseudo)kinases.		288	

	 To	separate	the	structural	and	trace	catalytic	roles	that	ATP-binding	could	fulfill	in	289	

HER3,	we	used	the	ATP-competitive	Src/Abl	inhibitor	bosutinib,	which	has	been	shown	to	290	

bind	strongly	to	HER3	but	not	to	other	EGFR	family	members	(Boxer & Levinson, 2013; 291	

Davis et al., 2011).	We	compared	bosutinib	to	a	small	panel	of	EGFR	family	inhibitors	as	292	

well	as	an	additional	Src	inhibitor,	dasatinib,	in	a	thermal	shift	assay	(TSA)	(Figure	2a,	Figure	293	

2-figure	supplement	1a).	In	line	with	previous	observations,	we	confirmed	that	HER3	294	

strongly	binds	bosutinib.	Significantly,	lapatinib	was	not	able	to	provide	a	noticeable	295	

thermal	shift,	which	corresponds	to	previously	published	results	indicating	HER3	does	not	296	

bind	lapatinib	with	high	affinity	(Davis et al., 2011).	While	lapatinib	was	able	to	confer	297	

strongly	increased	thermal	stability	to	HER2,	bosutinib	was	not	(Figure	2b).	This	is	in	line	298	

with	previously	published	data	that	indicates	HER2	is	not	a	strong	bosutinib	binder	(Davis	et	299	

al.,	2011).		300	

We	hypothesised	that	bosutinib	might	be	able	to	aid	proliferation	in	a	cellular	301	

context	by	stabilising	the	nucleotide	binding	pocket	of	HER3	and	helping	sustain	dimer	302	

formation,	analogous	to	vemurafenib-bound	behaviour	of	BRAF.	In	a	2D	proliferation	assay,	303	

SKBR3	cells	treated	with	bosutinib	over	72	hours	show	a	dose	dependent	induction	of	304	

proliferation	without	additional	NRG	stimulation	(Figure	2-figure	supplement	1b).	This	305	

proliferative	effect	is	sustained	in	eight-day	treatments	in	3D	spheroid	cultures	(Figure	2c,	306	

Figure	2-figure	supplement	1d,e).	The	ability	of	bosutinib	to	induce	SKBR3	cell	proliferation	307	

appears	to	be	an	EGFR-family	mediated	event,	as	lapatinib	treatment	can	curtail	its	effects	308	

in	a	dose-dependent	manner	(Figure	2-figure	supplement	1e).		309	

	310	

In	order	to	destabilise	the	HER3	nucleotide	binding	pocket	we	made	the	triple	mutant	311	

HER3KGG.	HER3K742	was	mutated	to	methionine	to	hinder	ATP	α-phosphate	coordination,	312	

which	by	itself	has	been	shown	to	reduce	HER3	mant-ATP	binding	affinity	(Shi et al., 2010).	313	

To	obstruct	ATP	binding	further,	double	aspartates	were	introduced	in	the	glycine-rich	loop	314	

(HER3G716D/G718D)	to	mimic	the	pseudokinase-specific	aspartate	residue	observed	in	the	315	
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glycine-rich	loop	of	VRK3	(Scheeff, Eswaran, Bunkoczi, Knapp, & Manning, 2009),	316	

adding	a	negative	charge	in	the	area	where	the	ATP	phosphates	would	normally	sit.	317	

Introduction	of	this	ATP-binding	deficient	HER3KGG	mutant	into	MCF7	cells	shows	abrogation	318	

of	ligand-induced	trans-phosphorylation	of	HER3	by	HER2	(Figure	2d).	SKBR3	cells	319	

ectopically	expressing	HER3wt	or	HER3KGG	show	a	differential	proliferative	behaviour	upon	320	

lapatinib	±	NRG	treatment.	This	indicates	a	critical	role	for	HER3	ATP	binding	in	order	to	321	

sustain	inhibitor-growth	factor	cooperative	proliferation	(Figure	2-figure	supplement	1f).		322	

The	bosutinib	binding	of	HER3wt,	HER3KGG,	and	the	proposed	drug	de-sensitised	323	

HER3T787M	(Boxer	&	Levinson,	2013;	Dong,	Guo,	&	Xue,	2017),	was	investigated	using	an	in-324	

cell	thermal	shift	assay	(CETSA)(Jafari	et	al.,	2014;	Reinhard	et	al.,	2015).	Where	wild	type	325	

HER3	showed	increased	thermal	stability	in	cells	in	the	presence	of	50	nM	bosutinib,	326	

HER3KGG	did	not	(Figure	2-figure	supplement	1g).	Ectopic	expression	of	wild	type	HER3,	but	327	

not	HER3KGG	or	HER3T787M,	enhances	bosutinib-mediated	proliferation,	indicating	this	328	

behaviour	is	driven	by	bosutinib	binding	to	HER3	directly	(Figure	2e).	Both	HER3KGG	and	329	

HER3T787M	showed	normal	localization	to	the	plasma	membrane,	as	measured	by	flow	330	

cytometry,	indicating	that	these	mutations	did	not	compromise	the	receptor	and	its	traffic	331	

to	the	plasma	membrane	(Figure	2-figure	supplement	2).		332	

	 The	HER3KGG	and	bosutinib	results	indicate	that	nucleotide	pocket	occupation	in	333	

HER3	is	essential	for	its	ability	to	sustain	a	proliferative	signalling	pathway	under	distinct	334	

circumstances:	in	the	acute	response	to	growth	factor,	in	promoting	ligand-inhibitor	335	

cooperative	proliferation	and	even	after	treatment	with	a	HER3-binding	inhibitor.	This	336	

indicates	a	critical	structural	role	for	HER3	ATP-binding	pocket	occupation	in	its	ability	to	337	

sustain	heterointeractions	and	proliferation.	Considering	the	proliferative	effects	observed	338	

with	the	HER3-binding	inhibitor	bosutinib,	our	results	also	suggest	that	any	residual	339	

transferase	activity	HER3	retains	does	not	appear	to	be	important	in	these	responses	in	vivo	340	

unless	we	invoke	a	hit-and-run	mechanism	of	action	for	bosutinib	on	HER3	which	would	341	

seem	unlikely.	342	

	 	343	
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	344	
Figure	2	HER3	ATP-binding	pocket	occupation	is	necessary	and	sufficient	to	drive	SKBR3	cell	growth	345	
(a)	In	vitro	TSA	binding	assay	of	HER3	with	selected	kinase	inhibitors.	(b)	In	vitro	TSA	binding	assay	of	HER2	346	
with	lapatinib	and	bosutinib.	(c)	Quantification	of	spheroid	size	after	eight	days	of	treatment	with	a	titration	of	347	
bosutinib	with	representative	bright	field	micrographs	of	SKBR3	cell	spheroids	after	eight	days	of	bosutinib	348	
treatment.	Scale	bars	signify	0.5	mm.	(d)	Transient	co-transfection	of	MCF7	cells	with	HER2wt-GFP	and	HER3wt-349	
RFP	or	HER3KGG-RFP.	Cells	were	serum	starved	for	one	hour,	followed	by	10nM	NRG	or	vehicle	for	ten	minutes.	350	
HER3	phosphorylation	on	Y1289	was	measured	by	Western	blot	and	analysed	by	densitometry	relative	to	total	351	
HER3.	(e)	SKBR3	cells	were	transfected	with	RFP	empty	vector,	HER3wt-RFP,	HER3T787M-RFP	or	HER3KGG-RFP.	72	352	
hours	of	bosutinib	treatment	was	initiated	24	hours	post-transfection.	Proliferation	was	measured	using	353	
CellTiter-Glo®.	354	
TSA	data	represented	as	mean	±	SEM	of	(a)	two	independent	experiments	each	performed	quadruplicate,	or	355	
(b)	three	independent	experiments	each	performed	in	at	least	quadruplicate.	Proliferation	data	represented	as	356	
mean	±	SEM	of	three	independent	experiments	each	performed	in	at	least	triplicate.	Western	blot	data	shown	357	
as	mean	±	SD	for	three	independent	experiments.	Western	blot	quantifications	analysed	by	one-way	ANOVA.	358	
****,	p≤0.0001	359	
Corresponding	data	and	statistics	available	as	Figure	2	–	Source	Data	1.	360	
	361	

	362	
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	363	
Figure	2-figure	supplement	1.	The	effects	of	HER3	ATP-binding	pocket	occupation	on	drug-induced	cell	364	
proliferation.	365	
(a)	TSA	of	HER3	kinase	domain	and	a	titration	of	bosutinib	shows	a	ΔTm50	of	4.15	±	1.94	nM.		366	
(b)	SKBR3	cells	were	treated	with	a	range	of	bosutinib	concentrations	for	72	hours	and	proliferation	was	367	
measured	using	CellTiter-Glo®	(c)	CellTiter-Glo®	endpoint	quantification	of	spheroid	cultures	from	Figure	2b.	368	
(d)	Western	blot	analysis	of	spheroid	cultures	treated	as	in	(c).	(e)	2D	proliferation	of	SKBR3	cells	using	a	369	
titration	of	bosutinib	±	lapatinib	(50	nM	or	1	μM)	for	72	hours.	(f)	SKBR3	cells	were	transiently	transfected	with	370	
vector-RFP,	HER3wt-RFP,	or	HER3KGG-RFP	and	treated	with	lapatinib	±	10	nM	NRG	for	72	hours.	(g)	CETSA	371	
analysis	of	bosutinib	binding	to	HER3wt,	HER3KGG,	or	HER3T787M.	Lysates	of	COS7	cells	ectopically	expressing	372	
HER3-RFP	were	treated	with	DMSO	or	50	nM	bosutinib,	after	which	samples	were	split	and	matching	samples	373	
incubated	at	either	42°C	or	50°C.	Western	blot	analysis	shows	HER3	recovery	at	50°C	compared	to	42°C.		374	
Data	in	(a-f)	presented	as	mean	±	SEM	of	three	independent	experiments	each	performed	in	triplicate.	375	
Western	blot	data	in	(d)	shows	a	representative	example	of	three	independent	experiments.	Data	in	(g)	376	
presented	as	mean	±	SD	of	four	independent	experiments.	377	
Corresponding	data	and	statistics	available	as	Figure	2-figure	supplement	1	–	Source	Data	1.	378	
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	380	
Figure	2-figure	supplement	2.	Cell	surface	expression	of	HER3	mutants.	381	
Flow	cytometric	analysis	of	membrane	localisation	of	all	HER3-RFP	constructs	used	in	this	study.	Live	SKBR3	382	
cells	were	stained	with	GFP-conjugated	anti-HER3	to	show	the	combination	of	transfected	and	endogenous	383	
HER3	on	the	membrane.	All	HER3-RFP	constructs	show	membrane	localisation,	as	represented	by	the	top	right	384	
quadrants.	Representative	flow	cytometry	plots	from	one	of	two	independent	experiments.		385	

	386	

	 	387	

Figure 2-figure supplement 2
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Lapatinib	binding	induces	HER2-HER3	heterodimerisation	388	

The	stability	conferred	to	a	protein	kinase	by	small	molecule	inhibitor	binding	has	been	389	

shown	to	play	an	important	role	in	the	promotion	of	protein-protein	interactions.	We	390	

investigated	the	potential	role	of	lapatinib	to	similarly	promote	HER2-HER3	391	

heterodimerisation	by	stabilising	particular	protein	conformations	in	HER2	using	a	FRET-392	

FLIM	approach.	We	measured	drug-induced	heterodimerisation	of	HER2	and	HER3,	as	we	393	

have	done	previously	in	the	case	of	drug-induced	dimerisation	of	the	EGF	receptor	(Bublil 394	

et al., 2010; Coban et al., 2015).	395	

At	endogenous	protein	levels	in	SKBR3	cells,	we	observe	lapatinib-driven	HER2-HER3	396	

heterodimerisation	to	levels	similar	to	those	seen	with	NRG	(Figure	3a).	Interestingly,	the	397	

lapatinib-induced	dimerisation	occurs	in	the	absence	of	exogenously	added	NRG,	indicating	398	

a	HER2-HER3	dimer	that	is	driven	primarily	through	intracellular	domain	interactions.	MCF7	399	

cells,	which	express	low	levels	of	endogenous	HER2	and	HER3	compared	to	SKBR3,	also	400	

display	lapatinib-induced	heterodimerisation	of	ectopically	expressed	GFP-HER2wt	and	HA-401	

HER3wt	(Figure	3b).	402	

As	discussed	above,	occupation	of	the	nucleotide	binding	pocket	in	HER3	is	of	403	

importance	for	its	ability	to	sustain	proliferation.	This	is	also	reflected	in	the	case	of	404	

lapatinib-induced	heterodimer	formation,	where	the	introduction	of	the	nucleotide	pocket	405	

compromised	HER3KGG	mutant	strongly	disrupts	inhibitor-promoted	heterodimerisation	406	

(Figure	3c).	In	line	with	the	proliferative	effects	described	above,	bosutinib	was	also	able	to	407	

directly	promote	heterodimerisation	between	HER2	and	HER3	(Figure	3d).		408	

Using	stochastic	optical	reconstruction	microscopy	(STORM),	we	analysed	receptor	409	

clustering	in	SKBR3	cells.	Treatment	with	either	NRG,	lapatinib,	or	bosutinib	showed	a	shift	410	

in	cluster	population	size	compared	to	control,	implying	the	formation	of	higher-order	411	

oligomers	rather	than	dimers	(Figure	3e,f).	The	exact	HER2-HER3	stoichiometry	in	these	412	

drug-treated	oligomers	remains	elusive,	because	these	experimental	conditions	allowed	us	413	

to	count	only	cluster	size	for	either	HER2	or	HER3,	not	both	at	the	same	time.	Therefore,	it	is	414	

expected	that	the	observed	HER3	clusters	also	contain	uncounted	HER2	receptors,	and	vice	415	

versa,	as	evident	in	the	FRET-FLIM	data.		416	

	417	

	 	418	
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	419	
Figure	3	Inhibitor-induced	HER2-HER3	heterotypic	interactions	420	
(a)	FRET-FLIM	analysis	of	endogenous	HER2-HER3	association	in	SKBR3	cells,	serum	starved	for	1	hour,	and	421	
stimulated	with	6.7	nM	NRG	for	15	minutes,	or	inhibited	with	lapatinib	(10µM)	for	1	hour,	prior	to	fixation	and	422	
staining	with	IgG	α-HER2-Cy5	and	IgG	α-HER3-Alexa546	overnight,	at	4ºC.		(b)	MCF7	cells	were	transfected	423	
with	vectors	encoding	HER2wt-GFP	and	HER3wt-HA.	Cells	were	incubated	as	in	(a)	and	stained	with	anti-HA	424	
antibody	conjugated	to	Alexa-546	(controls	treated	with	vehicle).		(c)	MCF7	cells	were	transfected	with	vectors	425	
encoding	HER2wt-GFP	and	HER3wt-HA	or	HER3KGG-HA.	Cells	treated	with	lapatinib	(10µM)	for	1	hour,	prior	to	426	
fixation	and	staining	with	anti-HA	antibody	conjugated	to	Alexa-546.	(d)	SKBR3	cells	were	treated	with	427	
bosutinib	(50	nM,	1	hour),	and	stained	as	in	(b).	(e)(f)	Molecules/cluster	measurements	from	STORM	data	428	
taken	of	SKBR3	cells	labelled	with	HER2Affibody-Alexa488	and	HER3Affibody-Alexa647	or	NRG-Alexa647	±	14	429	
nM	lapatinib	or	41	nM	bosutinib.	430	
Cumulative	FRET-FLIM	histograms	show	average	FRET	efficiency	from	three	independent	experiments.	**,	431	
p≤0.01;	****	p≤0.0001	Scale	bars	5	μm.	Clustering	data	represents	mean	combination	of	two	independent	432	
experiments	with	each	measuring	>1000	clusters.	Clustering	data	presented	as	mean	with	95%	CI.	433	
Corresponding	data	and	statistics	available	as	Figure	3	–	Source	Data	1.	434	
	 	435	
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Disruption	of	the	active	HER2-HER3	interface	436	

The	active	signalling	dimer	in	the	EGFR	family	adopts	an	asymmetric	orientation,	in	which	437	

there	is	a	distinct	division	of	labour	in	the	activator-receiver	pairing.	One	kinase	(the	438	

activator	kinase)	does	not	phosphorylate	substrates,	but	binds	in	a	way	that	helps	its	439	

heterodimerisation	partner	(the	receiver	kinase)	in	adopting	an	active	conformation.	The	440	

receiver	kinase	is	then	capable	of	substrate	phosphorylation.	Originally	described	for	EGFR	441	

homodimerisation,	and	similar	to	the	Cyclin/CDK	binding	mode	(Jeffrey et al., 1995; X. 442	

Zhang et al., 2006),	this	canonical	active	dimerisation	interface	has	been	reported	across	443	

the	EGFR	family	including	the	heterodimerisation	of	HER3,	which	can	only	perform	the	444	

activator	role	(Jura, Shan, Cao, Shaw, & Kuriyan, 2009b; Littlefield et al., 2014; van 445	

Lengerich et al., 2017).	Mutations	that	disrupt	this	active	interface	in	both	the	activator	446	

and	receiver	partner	kinases	are	well-documented	and	are	schematically	highlighted		(Figure	447	

4a,	Figure	4-video	1).	448	

	 In	the	case	of	the	active,	activator/receiver	interface,	HER3	buttresses	the	inward	449	

orientation	of	the	HER2	α-C	helix,	leaving	no	space	for	the	HER2	α-C	helix	to	adopt	the	“out”	450	

orientation	characteristic	of	the	inactive	conformation.	We	modelled	the	potential	effects	of	451	

HER2	α-C	helix	positioning	on	lapatinib	binding	to	test	whether	canonical	activator/receiver	452	

orientation	(in	which	the	HER2	α-C	helix	is	pushed	inwards)	would	give	sufficient	space	to	453	

still	accommodate	lapatinib.	Our	modelling	showed	that,	for	a	HER2	α-C	helix	in	the	active,	454	

“in”	position,	lapatinib	binding	results	in	a	potential	steric	clash	with	HER2E770/HER3M774	455	

(Figure	4-figure	supplement	1a,b).	A	general	decrease	of	the	nucleotide	binding	pocket	456	

volume	from	756	Å3	to	232	Å3	(calculated	using	SURFNET	v1.5(Laskowski, 1995))	supports	457	

these	predictions.		458	

To	further	test	whether	the	lapatinib-induced	HER2-HER3	is	adopting	the	canonical	459	

activator/receiver	orientation,	we	used	FRET-FLIM	to	investigate	lapatinib-induced	dimer	460	

formation.	The	I714Q	mutation	in	HER2,	which	renders	the	receptor	receiver-impaired,	461	

disrupted	the	lapatinib-driven	HER2-HER3	association,	indicating	it	is	retained	in	the	462	

lapatinib-induced	dimer	interface	(Figure	4b).	However,	the	reciprocal	activator-impaired	463	

mutation	in	HER3	(HER3V945R)	did	not	disrupt	lapatinib-mediated	heterodimerisation,	464	

although	it	efficiently	suppressed	the	canonical	active	dimer	after	ligand-induced	465	

heterodimerisation	(Figure	4c).	466	
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It	is	surmised	that	the	inhibitor	binding	is	able	to	robustly	induce	a	heterodimer	467	

between	HER2	and	HER3,	which	is	distinct	from	the	canonical	active	heterodimer	induced	468	

after	growth	factor	stimulation.	The	orientation	of	this	non-canonical	lapatinib-driven	469	

heterodimer	retains	HER2I714	in	the	dimer	interface,	giving	us	a	starting	point	for	in	silico	470	

molecular	modelling	to	investigate	potential	dimer	conformations	distinct	from	the	well-471	

described	active	dimer.	472	

	473	

	 	474	
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	475	
Figure	4	The	lapatinib-induced	HER2-HER3	dimer	is	distinct	from	the	active,	asymmetric	HER2-HER3	dimer	476	
orientation	477	
(a)	Schematic	representation	and	molecular	model	of	HER2-HER3	active,	asymmetric	kinase	domain	dimer	478	
orientation.	Insert	denotes	interaction	interface.	(b)	MCF7	cells	were	transfected	with	vectors	encoding	479	
HER2wt-GFP	or	HER2I714Q-GFP	and	HER3wt-HA.	Cells	were	treated	as	described	in	Figure	3	and	HER2-HER3	480	
association	was	measured	by	FRET-FLIM.	(c)	MCF7	cells	were	transfected	with	vectors	encoding	HER2-GFP	and	481	
HER3wt-RFP	or	HER3V945R-RFP.	Cells	were	incubated	as	described	above,	and	treated	with	DMSO,	lapatinib	or	482	
NRG	prior	to	fixation.	Data	represents	mean	±	SEM.	*,	p	≤0.05;	**,	p≤0.01,	***,	p≤0.001;	****,	p≤0.0001		by	483	
One-way	ANOVA.	Scale	bars	5	μm	484	
Corresponding	data	and	statistics	available	as	Figure	4	–	Source	Data	1.	Molecular	model	for	the	interaction	in	485	
(a)	available	as	Figure	4	–	Source	Data	2.	486	

	487	

Figure	4-video	1	488	
Interface	view	of	the	molecular	model	of	an	active	HER2-HER3	heterodimer,	with	HER2I714	and	HER3V945	489	
highlighted.	 	490	
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	491	
Figure	4-figure	supplement	1.	Model	of	lapatinib	binding	in	HER2	inactive	and	active	conformations	shows	a	492	
potential	steric	clash.	493	
(a)	Lapatinib	docking	in	HER2,	with	the	HER2	active	site	displayed	in	the	inset.	Lapatinib	binds	the	inactive	494	
conformation	of	HER2	where	the	α-C	helix	is	in	the	“out”	position.	E770	and	M774	on	the	HER2	α-C	helix	495	
highlighted.	(b)	Lapatinib	docked	into	the	active	conformation	of	HER2.	The	α-C	helix	is	in	the	“in”	position,	496	
causing	a	steric	clash	between	E770/M774	and	lapatinib.		497	
Molecular	models	for	inhibitor	docking	in	(a)	and	(b)	available	as	Figure	4-figure	supplement	1	–	Source	Data	1	498	
and	2.	499	

	500	

	 	501	
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Lapatinib	drives	a	novel	HER2-HER3	heterodimerisation	interface	502	

In	the	case	of	type	II	kinase	inhibitors	such	as	lapatinib,	the	inhibitor	stabilises	an	inactive	503	

conformation	of	the	kinase	domain,	where	the	α-C	helix	is	tilted	outwards.	As	HER3	lacks	504	

the	conserved	glutamate	residue	in	the	α-C	helix,	HER3K742	is	unable	to	form	the	salt	bridge	505	

normally	observed	in	active	kinase	domain	structures	(Huse & Kuriyan, 2002).	The	HER3	506	

ATP-bound	conformation	therefore	does	not	show	a	classical	active	conformation	with	the	507	

α-C	helix	tilted	inward	(Jura, Shan, Cao, Shaw, & Kuriyan, 2009b; Shi et al., 2010)	,	508	

but	instead	resembles	the	inactive	conformation	seen	in	kinases	bound	to	type	II	inhibitors	509	

such	as	lapatinib.	Because	lapatinib-bound	HER2	and	ATP-bound	HER3	adopt	similar	510	

conformations,	there	is	a	possibility	that	the	lapatinib-induced,	inactive	dimer	is	oriented	511	

symmetrically.	512	

	 In	the	crystal	lattices	of	EGFR	and	HER3	kinase	domains,	two	different	symmetrical	513	

interaction	interfaces	have	been	observed	(Jura, Endres, Engel, Deindl, Das, Lamers, et 514	

al., 2009a; Jura, Shan, Cao, Shaw, & Kuriyan, 2009b).	We	used	molecular	modelling	to	515	

investigate	the	potential	for	HER3	and	lapatinib-bound	HER2	to	adopt	either	of	these	516	

conformers	(Figure	5a-b,	Figure	5-figure	supplement	1a-b).	HER2I714	is	present	in	the	517	

interaction	interface	of	both	the	EGFR-like,	staggered	orientation,	as	well	as	in	the	head-to-518	

head,	HER3-like	orientation.	This	falls	in	line	with	the	FRET-FLIM	data	in	Figure	4	that	519	

suggests	the	retained	presence	of	the	HER2I714	residue	in	the	lapatinib-induced	dimer	520	

interface.	521	

On	the	basis	of	these	models,	we	designed	pairs	of	mutations	in	HER2	that	would	522	

exclusively	disrupt	one	of	the	potential	heterodimer	orientations	(Figure	5-figure	523	

supplement	1,	Figure	5-video	1-2).	For	the	EGFR-like,	staggered	dimer	we	substituted	two	524	

hydrophobic	residues	on	HER2	with	two	positively	charged	residues,	HER2I748R/V750R,	which	525	

should	lead	to	repulsion	from	the	positively	charged	residues,	K998	and	K999,	lying	on	the	526	

HER3	side	of	the	interface.		527	

Likewise,	for	the	HER3-like,	head-to-head	dimer	we	predicted	that	the	528	

HER2N764R/K765F	mutant	would	disrupt	the	dimerisation	interface.	The	substitution	of	an	529	

asparagine	residue	(HER2N764)	with	a	positively	charged	arginine	should	lead	to	repulsion	530	

from	a	positively	charged	HER3	residue	(HER3R702),	lying	within	a	radius	of	4Å	and	opposite	531	

to	HER2N764,	therefore	causing	severe	disruption	of	the	HER3-like	dimer	interface.	532	
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Furthermore,	the	substitution	of	a	lysine	residue	(HER2K765)	with	a	bulky,	hydrophobic	533	

residue	such	as	phenylalanine	should	generate	clashes	at	this	HER2-HER3	interface.	534	

These	dimer	interface	mutants	were	introduced	into	our	FRET-FLIM	assay	for	535	

investigation	of	the	lapatinib-induced	heterodimerisation	conformer	(Figure	5c).	The	536	

HER2N764R/K765F	mutant	disrupted	heterodimerisation	upon	lapatinib	binding,	whereas	537	

HER2I748R/V750R	showed	no	difference	in	heterodimer	formation.		538	

This	mutational	FRET/FLIM	data	is	consistent	with	our	model	that	the	lapatinib-539	

induced	HER2-HER3	heterodimer	adopts	a	symmetrical,	head-to-head	orientation,	similar	to	540	

the	one	observed	in	the	HER3	kinase	domain	crystal	lattice	(Jura, Shan, Cao, Shaw, & 541	

Kuriyan, 2009b)	(Figure	5b).	542	

	543	

	 	544	
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	545	
Figure	5	The	lapatinib-induced	HER2-HER3	dimer	is	in	a	symmetric	orientation	546	
(a)	Lapatinib-bound	HER2	(blue,	lapatinib	in	yellow)	and	ATP	analogue-bound	HER3	(green,	AMP-PNP	in	pink)	547	

were	modelled	in	an	EGFR-like	symmetric	dimer	orientation	(Jura, Endres, Engel, Deindl, Das, 548	

Lamers, et al., 2009a).	Insert	highlights	the	interaction	interface.	The	schematic	representation	shows	549	

active	dimer	interface	residues	HER2I714	and	HER3V945,	as	well	as	the	two	residues	in	HER2	unique	to	this	550	
interface	for	further	mutational	analysis.	(b)	Lapatinib-bound	HER2		in	the	HER3-like	head-to-head	symmetric	551	

dimer	orientation	(Jura, Shan, Cao, Shaw, & Kuriyan, 2009b).	Dimer-specific	residues	are	552	

highlighted	in	the	schematic.	(c)	MCF7	cells	were	transfected	with	vectors	encoding	HER2wt-GFP,	553	
HER2N764R/K765F-GFP	or	HER2I748R/V750R-GFP	and	HER3wt-HA.	Cells	were	incubated	for	24	hours,	and	inhibited	with	554	
10µM	lapatinib	for	1	hour,	prior	to	fixation	and	staining	with	anti-HA	antibody	conjugated	to	Alexa-546.	Data	555	
represented	as	mean	±	SEM.	****,	p≤0.0001,	as	analysed	by	one-way	ANOVA.	Scale	bars	5	μm	556	
Corresponding	data	and	statistics	available	as	Figure	5	–	Source	Data	1.	Molecular	model	for	the	interactions	in	557	
(a)	and	(b)	available	as	Figure	5	–	Source	Data	2	and	3.	Residues	marking	the	dimer	interface	of	the	lapatinib-558	

induced	HER2-HER3	heterodimer,	in	either	the	EGFR-like	 	559	
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or	HER3-like	modelled	conformations,	including	the	per-residue	solvent	accessible	surface	area	(in	Å2),	are	560	
available	as	Figure	5	–	Source	Data	4. 	561	
	562	
	563	

	564	

Figure	5-video	1	565	
Interface	view	of	the	molecular	model	of	a	lapatinib-induced	HER2-HER3	heterodimer	in	the	EGFR-like	566	
conformation,	with	HER2I714	and	HER3V945	highlighted,	as	well	as	model-specific	interface	residues	HER2I748/V750.	567	
Figure	5-video	2	568	
Interface	highlight	of	the	molecular	model	of	a	lapatinib-induced	HER2-HER3	heterodimer	in	the	HER3-like	569	
conformation,	with	HER2I714	and	HER3V945	highlighted,	as	well	as	model-specific	interface	residues	570	
HER2N764/K765.	571	

	 	572	
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	573	
Figure	5-figure	supplement	1.	Molecular	models	of	potential	orientations	of	the	lapatinib-induced	HER2-574	
HER3	dimer Molecular	model	of	the	lapatinib-induced	HER2-HER3	dimer	in	the	(a)	EGFR-like	and	(b)	HER3-like	575	
orientation	with	interface	residues	shown	as	sticks.		576	

	577	

	 	578	

Figure 5-figure supplement 1

a

b
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	579	
Head-to-head	HER2-HER3	dimerisation	is	required	for	inhibitor-induced	proliferation	580	

Having	presented	modelling	and	FRET/FLIM	data	consistent	with	an	orientation	of	the	581	

lapatinib-induced	HER2-HER3	dimer	being	distinct	from	the	active	activator/receiver	dimer	582	

interface,	we	sought	to	identify	which	type	of	HER2-HER3	interaction	caused	the	NRG-583	

lapatinib	co-stimulatory	growth	observed	in	2D	proliferation	assays.	584	

In	these	assays,	we	did	not	ectopically	introduce	the	HER2N764R/K765F	mutant	because,	585	

firstly,	it	might	also	disrupt	the	active,	asymmetrical	HER2-HER3	heterodimer	interface	and	586	

secondly,	SKBR3	cells	have	vast	numbers	of	endogenous	HER2	receptors	that	would	hinder	587	

analysis	of	the	behaviour	of	ectopically	expressed	HER2N764R/K765F.	Instead	we	identified	588	

HER3L700F	as	the	reciprocal	mutant	to	HER2N764R/K765F		(Figure	6a,	Figure	6-video	1).	We	589	

introduced	HER3L700F	into	SKBR3	cells	to	investigate	the	role	of	the	head-to-head,	symmetric	590	

dimer	interface	in	the	lapatinib-NRG	synergistic	proliferation	described	above.	While	the	591	

HER3V945R	active	dimer	mutant	did	not	disrupt	drug-growth	factor	cooperative	proliferation,	592	

the	HER3L700F	mutant	did	(Figure	6d-e).	Both	HER3L700F	and	HER3V945R	were	expressed	on	the	593	

cell	surface,	as	measured	by	flow	cytometry	(Figure	2-figure	supplement	2).	Combined,	this	594	

indicates	that	the	inhibitor-induced	heterodimer	of	HER2	and	HER3	is	consistent	with	a	595	

head-to-head,	symmetrical	conformation,	and	it	plays	an	important	role	in	the	synergistic	596	

proliferative	effects	of	lapatinib	and	NRG.	Although	this	conformation	has	been	described	597	

from	the	HER3	kinase	domain	crystal	lattice	(Jura, Shan, Cao, Shaw, & Kuriyan, 2009b),	598	

to	our	knowledge	it	is	the	first	time	a	functional	role	has	been	ascribed	to	heterodimers	599	

consistent	with	this	interface	in	cells.	600	

	601	

	 	602	
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	603	
Figure	6.	Disruption	of	the	lapatinib-induced	dimer	inhibits	lapatinib-NRG	synergistic	growth	604	
(a)	Molecular	model	of	the	lapatinib-induced	HER2-HER3	dimer	with	the	lapatinib-dimer	interface	residues	605	
HER2N764	and	HER2K765	highlighted	(purple),	and	a	potential	reciprocal	residue	HER3L700F	(cyan).	(b-e)	2D	606	
proliferation	assays	of	SKBR3	cells	transfected	with	(b)	RFP	empty	vector,	(c)	HER3wt,	(d)	HER3V945R,	or	(e)	607	
HER3L700F	and	treated	with	lapatinib	±	10	nM	NRG	as	before.	Data	represents	mean	±	SEM	for	six	independent	608	
experiments,	each	performed	in	triplicate.	609	
Corresponding	data	and	statistics	available	as	Figure	6	–	Source	Data	1	610	
	611	
Figure	6-video	1	612	
Interface	highlight	of	the	molecular	model	of	a	lapatinib-induced	HER2-HER3	heterodimer	in	the	HER3-like	613	
conformation,	with	HER2I714	and	HER3V945	highlighted,	as	well	as	model-specific	interface	residues	HER2N764/K765	614	
and	HER3L700.	615	
	616	

	 	617	
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Discussion	618	

	619	

The	conformational	dynamics	of	HER2-HER3	heterodimerisation	are	an	important	620	

consideration	for	evaluating	existing	and	future	targeted	therapy	intervention	strategies	621	

against	HER2+	breast	cancer	and	other	HER	family	driven	cancers.	Here	we	show	that	the	622	

HER2	inhibitor	lapatinib	is	paradoxically	able	to	promote	proliferative	behaviour	in	HER2+	623	

breast	cancer	cells	when	administered	in	the	presence	of	the	HER3	ligand	NRG.		The	synergy	624	

between	growth	factor	and	inhibitor	requires	an	intricate,	multi-step	cascade	of	625	

conformational	events.		626	

Lapatinib	itself	is	able	to	promote	heterodimerisation	between	the	kinase	domains	627	

of	HER2	and	HER3,	stabilising	an	orientation	consistent	with	a	symmetric,	head-to-head	628	

kinase	domain	heterodimer	that	is	distinct	from	the	canonical,	asymmetric,	head-to-tail	629	

active	kinase	domain	orientation	that	occurs	throughout	the	EGFR	family.	An	analogous	630	

interface	has	previously	been	observed	in	the	HER3	kinase	domain	crystal	lattice	(Jura, 631	

Shan, Cao, Shaw, & Kuriyan, 2009b);	here	we	have	provided	modelling	and	cellular	632	

evidence	of	a	heterodimer	with	an	interface	consistent	to	the	one	observed	in	the	HER3	633	

kinase	domain	crystal	lattice.	Sequestering	HER2	and	HER3	in	these	inactive,	lapatinib-634	

bound	heterodimers	was	of	benefit	to	NRG-mediated	proliferative	signalling.	Our	results,	in	635	

which	inhibitor	binding	drives	dimer	formation	that	boosts	signalling	and	proliferation,	636	

shows	some	parallels	with	the	inhibitor-induced	signalling	phenotypes	in	the	RAF-family	637	

(Eyers et al., 1998; Hatzivassiliou et al., 2010; Mckay et al., 2011; Poulikakos et al., 638	

2010; Thevakumaran et al., 2014)	639	

	640	

While	the	FRET-FLIM	analysis	of	the	lapatinib-induced	dimerisation	was	not	able	to	641	

differentiate	between	heterodimers	or	higher	order	oligomers,	our	clustering	data	shows	642	

that	lapatinib	is	likely	to	induce	higher	order	oligomers.	Because	of	the	modelled	643	

symmetrical	nature	of	these	lapatinib-induced	dimers,	in	which	both	lapatinib-bound	HER2	644	

and	HER3	would	be	conformationally	available	as	‘activator’	receptors	for	additional	645	

oligomerization	partners,	it	is	not	inconceivable	they	may	act	as	nucleation	points	for	larger	646	

oligomeric	signalling	platforms.	Such	signalling	arrays,	in	which	mutual	cooperativity	647	

increases	signaling	output,	have	been	proposed	for	EGFR	oligomers	(Y. Huang et al., 648	

2016).	649	
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The	addition	of	ligand	potentially	causes	rearrangements	within	these	platforms	through	650	

the	ligand-induced	conformational	ballet	of	multi-level	interactions	between	the	various	651	

extracellular	and	intracellular	domains	of	EGFR	family	receptors	(reviewed	in	(Lemmon,	652	

Schlessinger,	&	Ferguson,	2014)).	The	formation	of	lapatinib-induced	oligomeric	platforms	653	

may	facilitate	a	transition	into	active	signalling	heterodimers	upon	ligand	binding,	due	to	the	654	

availability	of	dimerisation	partners	in	immediate	proximity	within	these	drug-induced	655	

oligomer	platforms.	656	

	657	

Both	the	lapatinib-induced	HER2-HER3	heterodimerisation	and	the	downstream	lapatinib-658	

NRG	synergistic	effects	on	proliferation	depended	on	the	ability	of	HER3	to	bind	ATP.	659	

Although	usually	classified	as	a	pseudokinase,	HER3	has	been	shown	to	retain	a	measure	of	660	

autophosphorylation	activity	(not	transphosphorylation)	under	specific	circumstances	(Shi 661	

et al., 2010).	We	show	HER2-HER3	heterodimerisation	and	downstream	proliferative	662	

effects	can	be	elicited	by	the	addition	of	the	HER3-binding	inhibitor	bosutinib,	indicating	663	

that	nucleotide	binding	pocket	occupation	performs	a	structural	role	that	is	critical	to	HER3	664	

function,	and	apparently	independent	of	any	retained	catalytic	activity.	Observing	increased	665	

heterointeractions	and	cellular	proliferation	due	to	inhibition	of	an	activity-deficient	kinase	666	

is	a	strong	indication	of	the	importance	of	ATP-binding	in	pseudokinases,	and	the	necessity	667	

of	pocket-occupied	structural	conformers	in	sustaining	protein-protein	interactions	and	668	

subsequent	downstream	signalling	output.		669	

	670	

Because	of	the	importance	of	HER3	in	HER2-targeted	therapy	resistance,	its	conserved	ATP	671	

binding	raised	the	possibility	of	targeting	HER3	with	ATP-competitive	kinase	inhibitors.	Our	672	

data	shows,	however,	that	stabilisation	of	the	HER3	kinase	domain	with	an	ATP-competitive	673	

kinase	inhibitor	can	have	a	stimulating	effect	on	HER2+	breast	cancer	cell	proliferation.	This	674	

indicates	that	the	development	of	small	molecule	targeted	therapy	against	HER3	for	use	in	675	

HER2+	breast	cancer	needs	to	be	directed	away	from	stabilising	the	HER3	ATP	binding	676	

pocket	occupied	conformer	and	rather	towards	stabilising	the	apo,	inactive	conformer.	An	677	

exception	to	this	might	be	the	development	of	irreversible,	adamantane-linked	inhibitors	of	678	

HER3	that	target	the	receptor	for	proteosomal	degradation	(Xie et al., 2014).		679	

	680	
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The	substantial	effect	that	lower	doses	of	lapatinib	have	on	proliferation	in	the	presence	of	681	

growth	factor	may	have	an	impact	on	the	establishment	of	lapatinib-resistance	in	vivo.	This	682	

is	in	accordance	with	the	observation	from	xenograft	models	that	resistance	occurs	much	683	

more	readily	if	lapatinib	is	administered	continuously	at	low	doses	than	if	it’s	used	684	

intermittently	at	high	dose	(Amin et al., 2010).	Increased	production	of	growth	factors	685	

(including	NRG)	is	a	well-described	resistance	mechanism	against	HER2-targeted	therapy	686	

(reviewed	in(Claus et al., 2014)).	NRG	production	by	the	microenvironment	has	also	been	687	

shown	to	play	a	role	in	metastatic	spread	of	ovarian	cancer	cells	that	express	high	levels	of	688	

HER3	(Pradeep et al., 2014).	High	expression	levels	of	NRG	in	HER2+	breast	cancer	patients	689	

showed	a	strong	correlation	with	disease	recurrence	(Xia et al., 2013).	Several	somatic	690	

mutations	in	HER3	observed	in	cancer	fall	within	the	extracellular	domain	and	have	a	691	

potential	effect	on	ligand	binding	affinity	(Jaiswal et al., 2013).	These	mutations	may	692	

exacerbate	the	inhibitor-growth	factor	synergistic	behaviour	reported	here.	693	

	694	

Our	results	provide	a	potential	molecular	mechanism	for	the	disappointing	results	observed	695	

in	a	recent	Phase	III	study	of	lapatinib	used	in	an	adjuvant	setting	(ALTTO	trial)	(Piccart-696	

Gebhart et al., 2016).	The	lapatinib-only	arm	of	this	study	was	terminated	prematurely,	697	

and	the	effects	observed	in	the	adjuvant	setting	for	both	lapatinib-trastuzumab	co-698	

treatment	and	trastuzumab	treatment	followed	by	lapatinib	were	not	significant.	These	699	

clinical	results	indicate	there	are	complicating	factors	in	hindering	lapatinib	efficacy	in	700	

patients,	which	may	involve	the	expression	levels	of	HER3	and	NRG	stimulation	by	a	701	

complex	tumour	microenvironment.	The	complex	relationships	between	distinct	protein	702	

conformation	dynamics,	formation	of	oligomeric	assemblies,	the	availability	of	ligand,	and	703	

the	various	effects	on	downstream	signalling	need	to	all	be	part	of	the	consideration	when	704	

applying	targeted	therapy	to	avoid	potentially	unexpected	enhanced	cancer	cell	705	

proliferation	after	inhibitor	treatment.	706	

	707	

Materials	and	methods	708	

	709	

Reagents	and	antibodies	710	

NRG1	was	purchased	from	PeproTech.	Lapatinib	was	a	kind	gift	from	Professor	György	Kéri	711	

(Vichem	Chemie	Research	Ltd	Hungary).	Bosutinib	was	purchased	from	LC	Labs.	Total	HER2,	712	
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HER3,	PKB,	HER2	pY877,	HER3	pY1289,	PKB	pS473	and	ERK1/2	pT202/pY204	antibodies	713	

were	purchased	from	Cell	Signaling	Technology,	anti-α-tubulin	from	Sigma,	total	ERK1/2	714	

from	Merck,	and	Alexa	Fluor-488	conjugated	anti-HER3	antibody	from	R&D	systems.	715	

	716	

Cell	culture	and	plasmid	transfection	717	

MCF7	and	ZR75	cells	were	cultured	in	DMEM	supplemented	with	10%	FCS,	SKBR3	cells	were	718	

grown	in	McCoys	medium	supplemented	with	10%	FCS.	BT474,	AU565,	HCC1419,	and	719	

HCC1569	cells	were	grown	in	RPMI	with	10%	FCS.	For	BT474	cells	10	μg/ml	bovine	insulin	720	

was	included	in	the	culture	medium.	721	

Cells	were	transfected	with	plasmid	DNA	using	FuGene6	or	FugeneHD	(Roche),	or	722	

Lipofectamine	LTX	(Thermo	Fisher	Scientific)	according	to	the	manufacturer’s	protocol.	723	

All	cell	lines	were	sourced	from	the	Francis	Crick	Institute's	Cell	Services	facility,	where	they	724	

were	tested	negative	for	mycoplasma	and	authenticated	via	STR	profiling.	725	

	726	

Proliferation	assays	727	

For	2D	proliferation	assays,	cells	were	plated	at	1x104	cells/well	in	a	96-well	plate.	The	728	

following	day	they	were	subjected	to	treatment	for	72	hours,	followed	by	addition	of	729	

CellTiter-Glo®	reagent	(Promega)	and	measured	on	an	EnVision	plate	reader	(Perkin	Elmer).	730	

CellTiter-Glo®	data	was	normalised	to	the	growth	factor-null/inhibitor-null	untreated	731	

control.	This	caused	some	growth	factor-treated	plots	to	start	at	above-baseline	levels,	732	

which	is	an	indication	of	the	proliferative	effect	that	growth	factor	treatment	had	in	these	733	

cells.		734	

For	3D	spheroid	assays,	3x103	cells	were	plated	in	a	96-well,	round-bottom,	ultra-low	735	

attachment	plate	(Corning)	in	the	presence	of	1%	Matrigel	(Corning).	After	three	days	of	736	

growth,	an	equal	volume	of	2x	media	containing	treatment	conditions	was	added	and	737	

refreshed	every	three	days	for	a	total	of	eight	days	of	treatment.	Phase	contrast	images	738	

were	taken	using	a	Zeiss	Axiovert	40	CFL	microscope	with	a	Zeiss	5x	A-plan	objective	and	739	

analysed	using	ImageJ.	740	

	741	

Flow	cytometry	742	

SKBR3	cells	were	transfected	with	RFP-HER3	mutants	for	48	hours.		Cells	were	pre-treated	743	

with	0.5mM	EDTA	to	facilitate	removal	from	the	substrate	and	stained	for	HER3	744	
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extracellular	expression	using	Alexa	Fluor-488	conjugated	anti-HER3	antibody	(R&D	systems,	745	

clone	66223)	as	per	manufacturer’s	instructions.		Briefly,	cells	were	blocked	using	mouse	746	

IgG	(Santa	Cruz	Antibodies)	for	15	minutes	at	room	temperature,	followed	by	incubation	747	

with	conjugated	antibody	for	30	minutes	at	room	temperature	in	the	dark.		Cells	were	748	

washed	in	PBS,	0.5%	BSA,	0.1%	sodium	azide	three	times	before	flow	cytometric	analysis	749	

using	a	BD	Fortessa	instrument	(BD).		Results	were	analysed	using	the	Flo-Jo	software.		750	

	751	

FRET	determination	by	FLIM	measurements	752	

Fluorescence	resonance	energy	transfer	(FRET)	is	used	to	quantitate	direct	protein-protein	753	

interactions	and	post-translational	modifications.	Processing	of	cells	for	FRET	determination	754	

by	FLIM	has	been	previously	described	(Barber et al., 2009; Parsons & Ng, 2002).	FLIM	755	

was	performed	using	time-correlated	single-photon	counting	(TCSPC)	with	a	multiphoton	756	

microscope	system	as	described	previously	(Peter et al., 2005).	For	experiments	757	

measuring	endogenous	protein,	FRET	pairs	were	Cy5-conjugated	anti-HER2	IgG,	and	758	

Alexa546-conjugated	anti-HER3	IgG.	For	exogenous	protein	measurements,	FRET	pairs	were	759	

HER2-GFP	and	HER3-HA	with	an	anti-HA	IgG,	tagged	with	a	Cy3	fluorophore.	FRET	efficiency	760	

between	the	donor	and	acceptor	bound	proteins	was	calculated	with	the	following	equation	761	

in	each	pixel	and	averaged	per	cell:	FRET	eff=1-tau(DA)/tau(control)	where	tau(DA)	is	the	762	

lifetime	displayed	by	cells	co-expressing	the	donor	and	acceptor,	whereas	tau	(control)	is	763	

the	mean	donor	(GFP)	lifetime,	measured	in	the	absence	of	the	acceptor.	764	

	765	

Modelling	HER2-HER3	dimers	766	

We	modelled	the	HER2-HER3	dimer	by	comparative	homology	modelling	using	a	multiple	767	

templates	approach.	The	active,	asymmetric	HER2-HER3	dimer	was	modelled	using	the	768	

crystal	structure	of	the	active	EGFR	kinase	domain	(PDB	ID	2GS2)(X. Zhang et al., 2006)	769	

and	one	chain	of	the	crystal	structure	of	the	HER3	homodimer	(PDB	ID	3KEX)(Jura, Shan, 770	

Cao, Shaw, & Kuriyan, 2009b)	as	templates.	To	build	the	EGFR-like,	inactive,	symmetric	771	

dimer	we	have	used	the	crystal	structure	of	the	EGFR	homodimer	(PDB	ID	3GT8)(Jura, 772	

Endres, Engel, Deindl, Das, Lamers, et al., 2009a),	the	crystal	structure	of	EGFR	773	

complexed	with	lapatinib	(PDB	ID	1XKK)(Wood et al., 2004)	and	only	one	chain	of	the	774	

crystal	structure	of	the	HER3	homodimer	(PDB	ID	3KEX)(Jura, Shan, Cao, Shaw, & 775	
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Kuriyan, 2009b).	To	build	the	HER3-like	dimer	we	have	used	the	HER3	homodimer	776	

structure	(PDB	ID	3KEX)(Jura, Shan, Cao, Shaw, & Kuriyan, 2009b),	the	crystal	structure	777	

of	EGFR	lapatinib-bound	(PDB	ID	1XKK)(Wood et al., 2004)	and	the	crystal	structure	of	the	778	

inactive	EGFR	AMP-PNP	bound	(PDB	ID	2GS7)(X. Zhang et al., 2006).	The	sequence	779	

alignment	used	to	build	the	model	has	been	created	by	using	PRALINE	with	the	homology-780	

extended	alignment	strategy	(Simossis, 2005).	We	generated	200	three-dimensional	781	

models	using	the	MODELLER	package(Sali & Blundell, 1993).	The	selected	models	were	782	

chosen	on	the	basis	of	the	MODELLER	objective	function's	DOPE	score.		783	

The	volume	of	the	HER2	ATP	binding	pocket	was	calculated	with	the	SURFNET	1.5	784	

package(Laskowski, 1995),	where	the	cavity	regions	in	a	protein	are	built	up	by	fitting	a	785	

probe	sphere	of	1.4	Å3		into	the	spaces	between	atoms.		786	

The	structural	alignment	was	performed	using	the	multi-seq	tool	of	the	VMD	1.9.1	787	

package(Humphrey, Dalke, & Schulten, 1996),	and	measurement	of	interaction	surface	788	

buried	residues	was	performed	using	POPScomp(Kleinjung & Fraternali, 2005).	789	

	790	

Receptor	clustering	assays	791	

SKBR3	cells	were	treated	with	either	14nM	Lapatinib	or	41nM	Bosutinib.	HER2	and	HER3	792	

Affibody	ligands	were	used	to	label	the	non-activated	states	of	the	receptors	(HER2	from	793	

Affibody	Inc.	and	plasmid	encoding	the	HER3	affibody	was	a	gift	from	John	Löfblom,	protein	794	

made	in	house	and	shown	to	bind	specifically	to	HER3	receptors)	and	NRG-β1	(Peprotech)	795	

was	used	to	stimulate	the	cells.	The	conjugation	of	dyes	(Invitrogen)	to	HER2	and	HER3	796	

ligands	was	done	in	house	and	the	ratio	of	dye:ligand	was	confirmed	to	be	~1:1.		The	NRG-797	

dye	conjugate	has	been	shown	to	be	as	active	as	the	unlabelled	protein.	We	incubated	cells	798	

in	100nM	HER2Affibody-Alexa488	+	50nM	HER3Affibody-Alexa647	or	100nM	HER2Affibody-799	

Alexa488	+	10nM	NRG-Alexa647	±	drug	for	1	hour.	Cells	were	chemically	fixed	using	4%	800	

paraformaldehyde	(EMS	solutions)	+	0.5%	glutaraldehyde	(Sigma-Aldrich)	diluted	into	ice-801	

cold	PBS.		802	

Samples	were	imaged	using	a	Zeiss	Elyra	super-resolution	microscope	to	stochastically	803	

excite	the	Alexa488	and	Alexa647	fluorophores	bound	to	the	receptors	in	the	cells	and	to	804	

image	single	molecules.	Imaging	was	done	in	TIRF	mode	using	a	100x	oil	immersion	805	

objective	lens.	We	used	a	405nm	laser	line	to	aid	fluorophore	blinking	and	488nm	or	640nm	806	

laser	lines	to	excite	the	fluorophores,	alternating	the	lasers	to	image	the	two	receptors	807	
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independently	every	300	frames,	over	a	total	of	~10,000	frames.	The	exposure	time	was	808	

20ms.	A	minimum	of	two	replicates	of	each	sample	were	imaged	generating	at	least	12	809	

regions	(25.6μm	x	25.6μm)	covering	at	least	one	cell	per	region.	The	Zen	software	localised	810	

the	single	molecule	spots	in	the	cells,	a	threshold	was	set	to	discard	background	spots	and	811	

the	co-ordinates	of	the	positive	localisations	(typically	30,000+	for	HER2	and	5,000+	for	812	

HER3	per	region)	were	passed	into	the	Bayesian	cluster	identification	algorithm	(Rubin-813	

Delanchy et al., 2015)	814	

	815	

The	clustering	algorithm	expects	the	background	and	clusters	to	be	uniformly	distributed	816	

over	a	rectangular	ROI	(Rubin-Delanchy et al., 2015).	The	analysed	images	mainly	showed	817	

single	cells.	Of	interest	are	the	HER2	and	HER3	receptors	in	the	cell	membrane,	which	were	818	

visible	as	a	circular	shape.	In	order	to	conform	with	the	prerequisites	of	the	clustering	819	

algorithms,	rectangular	regions	have	been	manually	selected	that	tightly	cover	the	cell	820	

membrane	using	the	most	suitable	angles	(assessed	by	visual	inspection).	The	whole	cell	821	

membrane	has	been	covered	in	this	way.	The	data	selected	by	these	regions	has	been	822	

rotated	so	that	the	sides	of	the	rectangles	became	parallel	to	the	coordinate	axis.	The	result	823	

was	used	as	input	for	the	clustering	algorithm	and	the	algorithm	was	applied	as	described	824	

by	the	protocol.	The	complete	lists	of	molecules	per	cluster	that	have	been	produced	by	the	825	

algorithm	were	used	for	the	presentation.	826	

	827	

Recombinant	HER3	KD	purification	828	

The	baculoviral	HER3	kinase	domain	construct	was	kindly	provided	by	Prof.	Mark	Lemmon,	829	

University	of	Pennsylvania.	 Sf21	 cells	 at	1x106	 cells/ml	were	 infected	with	P3	virus	 (7x107	830	

pfu/ml)	at	an	MOI	of	1.0	and	allowed	to	grow	for	three	days.	 	The	cells	were	lysed	in	lysis	831	

buffer	containing	protease	inhibitors,	1	mM	DTT	and	2	mM	BME.		The	lysate	was	clarified	by	832	

centrifugation	and	incubated	with	NiNTA	resin	(Qiagen)	for	30	mins	at	4°C,		after	which	the	833	

resin	was	washed	extensively	with	buffer	containing	50	mM	Hepes	(pH	7.6),	300	mM	NaCl,	2	834	

mM	BME,	5%	glycerol,	10	mM	imidazole.	HER3	was	eluted	in	the	same	buffer	with	200	mM	835	

imidazole	added.		836	

Each	elution	was	centrifuged	at	10,000	rpm	to	remove	any	precipitate	or	resin	and	applied	837	

to	a	S200	gel	filtration	column	in	50	mM	HEPES	(pH	7.6),	300	mM	NaCl,	2	mM	BME,	2.5%	838	

glycerol.			839	
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	840	

Thermal	Shift	Assay	(TSA)	841	

Thermal	shift	assays	were	carried	out	as	described	in	(Niesen, Berglund, & Vedadi, 842	

2007).	Briefly,	in	a	96-well	RT-PCR	plate	(Life	Technologies)	1	μg	HER3	kinase	domain/well	843	

was	incubated	with	1	μM	inhibitor	or	200	μM	ATP/10	mM	MgCl2	(as	indicated)	for	30	mins	844	

at	4°C	in	the	presence	of	Sypro	Orange	dye	(Sigma).	HER2	TSA	experiments	were	performed	845	

in	a	384-well	RT-PCR	plate	(Thermo	Fisher	Scientific).	0.5	μg	of	HER2	kinase	domain/well	846	

was	incubated	with	1μM	lapatinib,	1μM	bosutinib,	or	200	μM	ATP/10	mM	MgCl2	for	20	mins	847	

at	4°C	.	HER3	measurements	were	taken	on	an	Applied	Biosystems	7500	Fast	Real-Time	PCR	848	

machine,	and	HER2	measurements	on	an	Applied	Biosystems	Quant	Studio	7	PCR	machine.	849	

Data	was	trimmed	and	a	Boltzmann	sigmoidal	curve	fitted	in	GraphPad	Prism	6.	The	850	

inflection	point	of	the	Boltzmann	sigmoidal	was	taken	as	the	Tm.	Thermal	shift	ΔTm	values	851	

were	obtained	by	subtracting	the	Tm	value	of	the	kinase	domain	alone	control.		852	

	853	

Western	blot	analysis	854	

Cells	were	plated	at	0.5x105	cells/well	in	24-well	plates.	Cells	were	lysed	in	1x	sample	buffer	855	

(containing	1	mM	DTT),	sonicated	and	centrifuged.	After	centrifugation,	the	lysates	were	856	

subjected	to	SDS-PAGE	and	analyzed	by	Western	blotting.	857	

	858	

Cellular	Thermal	Shift	Assay	(CETSA)	859	

CETSA	was	performed	with	COS7	cells	transfected	with	HER3wt-RFP,	HER3T787M-RFP	or	860	

HER3KGG-RFP	plasmids	as	described	in	(Jafari	et	al.,	2014;	Reinhard	et	al.,	2015).	Briefly,	COS7	861	

were	treated	with	DMSO	or	50nM	bosutinib	for	1h	at	37°C.	Cells	were	washed	with	PBS,	862	

detached	and	washed	again	twice	with	cold	PBS.	Cell	pellets	were	resuspended	in	cold	PBS	863	

with	protease	inhibitors	(Roche)	and	100μl	of	each	cell	suspension	was	transferred	into	864	

0.2ml	PCR	tubes.	PCR	tubes	were	heated	for	3	min	at	42°C	or	50°C	in	a	thermal	cycler	(DNA	865	

Engine	DYAD,	MJ	research,	Peltier	thermal	cycler)	and	incubated	at	room	temperature	for	866	

3min.	Tubes	were	then	immediately	transferred	onto	ice,	35μl	of	cold	PBS	1.4%	NP-40	with	867	

protease	inhibitors	were	added	and	tubes	were	snap-frozen.	Samples	were	then	subjected	868	

to	two	freeze-thaw	(at	25	°C)	cycles	and	cell	lysates	were	centrifuged	at	20,000g	for	1h	at	869	

4	°C.		Supernatants	were	carefully	removed	and	analysed	by	Western	blot.		870	

	871	
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Source	data	files	872	

All	source	data	is	available	as	a	ZIP	file	titled	Claus_Patel_SOURCE-DATA_COMBINED,	which	873	

contains:	874	

Figure	1	–	Source	Data	1	Numerical	data	and	statistics	relating	to	Figure	1	875	

Figure	1	–figure	supplement	1	-	Source	Data	1	Numerical	data	and	statistics	relating	to	876	

Figure	1-figure	supplement	1	877	

Figure	1	–figure	supplement	2	-	Source	Data	1	Numerical	data	and	statistics	relating	to	878	

Figure	1-figure	supplement	1	879	

Figure	2	–	Source	Data	1	Numerical	data	and	statistics	relating	to	Figure	2	880	

Figure	2	–figure	supplement	1	-	Source	Data	1	Numerical	data	and	statistics	relating	to	881	

Figure	2-figure	supplement	1	882	

Figure	3	–	Source	Data	1	Numerical	data	and	statistics	relating	to	Figure	3	883	

Figure	4	–	Source	Data	1	Numerical	data	and	statistics	relating	to	Figure	4	884	

Figure	4	–	Source	Data	2	PDB	structure	file	of	molecular	interaction	model	in	Figure	4a	885	

Figure	4	–figure	supplement	1-	Source	Data	1	PDB	structure	file	of	inhibitor	docking	model	886	

in	Figure	4	–figure	supplement	1a	887	

Figure	4	–figure	supplement	1-	Source	Data	2	PDB	structure	file	of	inhibitor	docking	model	888	

in	Figure	4	–figure	supplement	1b	889	

Figure	5	–	Source	Data	1	Numerical	data	and	statistics	relating	to	Figure	5	890	

Figure	5	–	Source	Data	2	PDB	structure	file	of	molecular	interaction	model	in	Figure	5a	891	

Figure	5	–	Source	Data	3	PDB	structure	file	of	molecular	interaction	model	in	Figure	5b	892	

Figure	5	–	Source	Data	4	Table	with	modelled	interface	residues,	including	the	per-residue	893	

solvent-accessible	surface	area	in	Å2	894	

Figure	6	–	Source	Data	1	Numerical	data	and	statistics	relating	to	Figure	6	895	

	896	
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