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Abstract—Massive Internet of Things (mIoT) has provided
an auspicious opportunity to build powerful and ubiquitous
connections that faces a plethora of new challenges, where cellular
networks are potential solutions due to their high scalability,
reliability, and efficiency. The contention-based random access
procedure (RACH) is the first step of connection establishment
between IoT devices and Base Stations (BSs) in the cellular-based
mIoT network, where modelling the interactions between static
properties of physical layer network and dynamic properties of
queue evolving in each IoT device are challenging. To tackle this,
we provide a novel traffic-aware spatio-temporal model to analyze
RACH in cellular-based mIoT networks, where the physical layer
network are modelled and analyzed based on stochastic geometry,
and the queue evolution are analyzed based on probability theory.
For performance evaluation, we derive the exact expressions for
the preamble transmission success probabilities of a randomly
chosen IoT device with baseline scheme in each time slot. Our
derived analytical results are verified by the realistic simulations
capturing the evolution of packets in each IoT device.

I. INTRODUCTION

Massive Internet of Things (mIoT) is deemed to connect
billions of miscellaneous mobile devices or IoT devices, where
a plethora of new applications, such as autonomous driving,
smart-homes, and etc, are being innovated via mIoT. The
successful operation of these IoT applications faces various
challenges, among them providing wireless access for the
tremendous number of IoT devices has been considered to
be the main problem. According to the Third Generation
Partnership Project (3GPP), the IoT technologies are suggested
to be developed based on the existing cellular infrastructure,
due to its zero additional hardware deployment cost as well as
the high-level of security by operating on licensed band [1].

In the cellular-based mIoT network, a device performs
random access channel procedure (RACH) when it needs to
establish or re-establish a data connection with its associated
BS, and the first step of RACH is that the device transmits a
preamble via physical random access channel (PRACH). Gen-
erally, the contention-based RACH is much more sensitive to
IoT traffic [2]. Most works on the analysis of contention-based
RACH in cellular-based IoT networks, have only focused on
addressing one of the following problems: 1) modelling packets
success transmission impacted by physical channel propagation
characteristics (e.g., the fading, noise and interference) [3]; 2)
modelling time-varying queues and transmission schemes in
MAC layer [4].

Stochastic geometry has been regarded as a powerful tool to
model and analyze mutual interference between transceivers in
the wireless networks, such as conventional cellular networks
[5], wireless sensor networks [6], cognitive radio networks [7],
device-to-device communication [8], and heterogenous cellular
networks [9]. In these works, only the spatial distribution of
transceivers is modelled, and the interactions between static
properties of physical layer network and the dynamic properties
of queue evolving in each transmitter are ignored due to the
assumptions of backlogged network with saturated queues.

To model these aforementioned interactions, recent works
have studied the stability of spatially spread interacting queues
in the network based on stochastic geometry and queuing
theory [10–12]. The work in [10] and [11] apply the stochastic
geometry and queueing theory to analyze the performance
of random access with each transmitter following a high
mobility random walk and static, respectively. The work in [12]
analyzed the delay in the heterogeneous cellular networks, and
the statistics of such traffic with different offloading policies
are compared.

In this paper, we develop a novel spatio-temporal math-
ematical framework for cellular-based mIoT network using
stochastic geometry and probability theory, where the BSs
and IoT devices are modelled as independent Poisson point
processes (PPPs) in the spatial domain. In the time domain,
the new arrival packets of each IoT device are modelled by
independent Poisson arrival processes [12]. The contributions
of this paper can be summarized in the following points:
• We present a novel spatio-temporal mathematical frame-

work for analyzing RACH of cellular-based mIoT net-
works, where the packets accumulation and successful
transmission of a typical IoT device in each time slot
is accurately modelled. We derive the exact expression
for the preamble transmission success probability of a
randomly chosen IoT device in each time slot with the
baseline scheme, where the queue statuses are firstly ana-
lyzed based on probability theory, and then approximated
by their corresponding Poisson arrival distributions, which
facilitates the queueing analysis.

• We develop a realistic simulation framework to capture
the randomness location of IoT device, and the real
packets arrival and success transmission of each IoT
device in each time slot. Note that, the exact queueing



analysis is embedded into the simulation for the stochastic
geometry analysis verification, the queue evolution as well
as the stochastic geometry analysis are all verified by our
proposed realistic simulation framework.

The rest of the paper is organized as follows. Section II
presents the network model. Sections III derives preamble
detection probability of a randomly chosen IoT device in each
time slot with different schemes. Finally, Section IV concludes
the paper.

II. SYSTEM MODEL

We consider an uplink model for cellular-based mIoT net-
work consists of a single class of base stations (BSs) and IoT
devices, which are spatially distributed in R2 following two
independent homogeneous Poisson point process (PPP), ΦB
and ΦD, with intensities λB and λD, respectively. Same as [5,
13], we assume each IoT device associates to its geographically
closest BS, and thus forms a Voronoi tesselation, where the BSs
are uniformly distributed in the Voronoi cell. Same as [11, 12,
14], the time is slotted into discrete time slots, and the number
and locations of BSs and IoT devices are fixed all time once
they are deployed.

A. Network Description

We consider a standard power-law path-loss model, where
the signal power decays at a rate r−α with the propagation
distance r, and the path-loss exponent α. We consider Rayleigh
fading channel, where the channel power gains h(x, y) between
two generic locations x, y ∈ R2 is assumed to be exponentially
distributed random variables with unit mean. All the channel
gains are independent of each other, independent of the spatial
locations, and identically distributed (i.i.d.). For the brevity of
exposition, the spatial indices (x, y) are dropped.

Uplink power control has been an essential technique in
cellular network [5]. We assume that a full path-loss inversion
power control is applied at all IoT devices, where each IoT
device compensates for its own path-loss to keep the average
received signal power equals to a same threshold ρ. The
transmit power of ith IoT device Pi depends on the distance
from its associated BS, and the defined threshold ρ, where
Pi = ρri

α. Here, we assume that the density of BSs is high
enough and none of the IoT device suffers from truncation
outage.

B. Contention-Based Random Access Procedure

In LTE, the first step to establish an air interface connection
is delivering requests to the associated BS via RACH, where
the contention-based RACH is favored by mIoT network for
the initial of uplink data transmission [15]. Contention-based
RACH consists of 4 steps of data exchanging, and only the step
1 transmits signals via PRACH, but other steps transmit signals
via normal uplink and downlink data transmission channel.
Further details on the RACH can be found in [15]. In this
paper, we only consider how preambles are transmitted via
PRACH.

LTE defines prime-length Zadoff-Chu sequences as the
random multiple access codes (also called preambles) for
RACH, where different preambles are orthogonal [15]. In the
mIoT network, each IoT device requests for access in the
first available opportunity leading to a huge number of IoT
devices transmit signals simultaneously, such that the network
performance might degrade due to that the preambles cannot be
detected or decoded by the BS [2]. This preamble transmission
can be failed due to the following two reasons: 1) a signal
cannot be recognized by the received BS, due to its low
received SINR; 2) the BS successfully detected more than
two signals using same preamble simultaneously, such that
the collision occurs, and the BS cannot decode any collided
signals. In this work, we limit ourselves to single preamble
transmission fail, and leave the collision for our future work,
thus we assume that a RACH procedure is always successful
if the IoT device successfully transmits the preamble to its
associated BS. Without loss of generality, we assume that
each BS has an available preamble pool with same number
of different preambles, known by its associated IoT devices,
where Np denotes the number of preambles. Each preamble has
an equal probability (1/Np) to be chosen by an IoT device,
and the average density of the IoT devices using the same
preamble is λDp = λD/Np, where the λDp is measured with
unit devices/preamble/km2.

C. Physical Random Access CHannel and Traffic Model

PRACHs is formed by sequences of allocated time-
frequency resources, which are reserved in the uplink channel,
and repeated in the system with a certain period that specified
by the BS [2]. Without loss of generality, we assume that
each time slot consists of a gap interval duration τg and a
RACH duration τc, where the RACH duration τc is shorter
than the gap interval duration τg as shown in the Fig. 1.
We model the arrival of new packets in mth time slot at
each IoT device as independent Poisson arrival process, ΛmNew

with same arrival rate εmNew as [16]. It is assumed that the
new packets arrival only takes place within the gap duration
τg of each time slot, such that the number of new arrival
packets Nm

New in duration τg is described by the Poisson
distribution with Nm

NewPois(τgε
m
New), where µmNew = τgε

m
New.

Within the duration of τg , the new arrival packets are stored
in their buffers immediately, and then each device with non-
empty buffer try to request uplink data transmission channel
resources for its head-of-line packet in the following RACH
within the duration of τc. Note that the data transmission after a
successful RACH can be easily extended following the analysis
of preamble transmission success probability in RACH. Due
to the main focus of this paper is analyzing the time-slotted
contention-based RACH in the mIoT network, we assume that
the actual intended packet transmission is always successful if
the corresponding RACH succeeds.

Each device is assumed to have an infinite buffer, where
the arrived packets are stored in the buffer until successful
transmission, and none of the packets will be dropped off.
In each device, the packets are scheduled as a queue for



transmission, where each packet has same priority, and the
BSs are unaware of the queue status of their associated IoT
devices. Each IoT deivce transmits packets via a First Come
First Serve (FCFS) packets scheduling scheme - the basic and
the most simplest packet scheduling scheme, where all packets
are treated equally by placing them at the end of the queue once
they arrive [17].
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TABLE I: The number of packets in buffer in each time slot.

Time Success Failure
Slot
1st N1

Cum = 0 N1
Cum = 0

2nd N2
Cum = N1

New − 1 N2
Cum = N1

New
3rd N3

Cum = N2
Cum +N2

New − 1 N3
Cum = N2

Cum +N2
New

...
...

...
mth Nm

Cum = Nm−1
Cum +Nm−1

New − 1 Nm
Cum = Nm−1

Cum +Nm−1
New

We consider basic transmission scheme - baseline scheme
[18]: each IoT device transmits a packet when there exists
packet in the buffer. The baseline scheme is the simplest
scheme without any control of traffic. Due to the access request
frequency is not be controlled at the IoT devices, the baseline
scheme contributes to the fastest buffer flushing, such that it
can provide a high data transmission rate with non-overloaded
network condition. However, once the network is overloaded,
high delays and service unavailability appear due to mass
simultaneous access request.

In the temporal domain, the queue status of each device is
evolved following transmission condition over time. A packet
is removed from the buffer once it has been successfully
transmitted to the BS, otherwise, this packet will be still in
the first place of the queue, and the IoT device will try to
request channel resources for the packet in the next available
RACH. The number of accumulated packets in the buffer in
mth time slot is denoted as Nm

Cum, where the buffer status
Nm

Cum is recorded (Recording Nm
Cum in Fig.1) at the begin of

the mth time slot. Note that the buffer of each IoT device is set
empty at the beginning of the 1st time slot (m = 1). Evolving
of queue status in an IoT device is described in Table I.

D. Signal to Noise plus Interference Ratio

A preamble can be successfully received at the associated
BS, if its SINR is above the threshold. Based on Slivnyak’s
theorem [9], we formulate the SINR of a typical BS located
at the origin as

SINR =
ρho

Iinter + Iintra + σ2
, (1)

where ρ is full path-loss inversion power control threshold,
ho is channel power gain from the typical IoT device to its
associated BS, σ2 is noise power, Iinter is aggregate inter-cell
interference, and Iintra is aggregate intra-cell interference. It
is noted that only the non-empty IoT devices are active and
generate interference, where the active probability of each IoT
device can be treated using the thinning process. The active
probability of each IoT device in the mth time slot T m can
be defined as

T m = P {Nm
New +Nm

Cum > 0}, (2)

where Nm
New is the number of new arrived packets in the mth

time slot, and Nm
Cum is the number of accumulated packets in

the mth time slot.
Iintra =

∑
j∈Zin

1{NmNewj
+NmCumj

>0}ρhj , (3)

where Zin is the set of intra-cell interfering IoT devices, 1{·}
is the indicator function that takes the value 1 if the statement
1{·} is true, and zero otherwise, Nm

Newj
is the number of new

arrived packets of jth device in the mth time slot, Nm
Cumj

is the
number of accumulated packets of jth device in the buffer in
the mth time slot, hj is channel power gain from the jth intra-
cell interfering IoT device to the typical BS. The aggregate
inter-cell interference is expressed as

Iinter =
∑

ui∈Zout

1{NmNewi
+NmCumi

>0}Pihi‖ui‖
−α
, (4)

where Zout is the set of inter-cell interfering IoT devices, ‖·‖
is the Euclidean norm, Nm

Newi
is the number of new arrived

packets of ith device in the mth time slot, Nm
Cumi

is the number
of accumulated packets of ith device in the buffer in the mth
time slot, hi is channel power gain from the ith inter-cell
interfering IoT device to the typical BS, ui is the distance
between the ith inter-cell IoT device and the typical BS, and Pi
is the actual transmit power of the ith inter-cell IoT device, and
Pi depends on the power control threshold ρ and the distance
between the ith inter-cell typical IoT device and its associated
BS ri with Pi=ρriα.

III. ANALYSIS UNDER THE PROPOSED SPATIO-TEMPORAL
MODEL

A. Stochastic Geometry Model

In this section, we first analyze the stochastic geometry
model in the spatial domain. Note that inactive IoT devices
(those with no packet in buffer) do not request to access to its
associated BS, such that they do not generating interference.
Due to that the preamble (sub-channel) has an equal probability
to be chosen, the analysis performed on a randomly chosen
preamble can represent the whole network. The probability
that the received SINR at BS exceeds γth is written as

P
{ ρho
Iinter + Iintra + σ2

≥ γth
}

= exp
(γth
ρ
σ2
)
LIintra(

γth
ρ

)LIinter(
γth
ρ

), (5)

where LI(·) denotes the Laplace Transform of the PDF of the
aggregate interference I. Note that whether an IoT device is



active only depends on the new packets arrival process Λ1
New

in the 1st time slot, such that the active probability of each
IoT device T 1 in the 1st time slot is expressed as

T 1 = P
{
N1

New > 0
}

= 1− e−µ
1
New , (6)

where µ1
New = τgε

1
New, ε1New is the new packets arrival rate of

each IoT device in the 1st time slot, and the probability that
no packet arrives (N1

New = 0) during τg in the 1st time slot is
equal to e−τgµ

1
New .

We perform the analysis on a BS associating with a ran-
domly chosen IoT device, where the other active IoT de-
vices choosing same preamble are visualized as interfering
IoT devices. The Laplace Transform of aggregate inter-cell
interference is characterized in the following Lemma.

Lemma 1. The LT of aggregate inter-cell interference received
at the typical BS in the cellular-based mIoT network is given
by
LIinter(

γth
ρ

)=exp
(
−2(γth)

2
α
T 1λDp
λB

∫ ∞
(γth)

−1
α

y

1 + yα
dy
)
, (7)

where T 1 is the active probability of each IoT devices being
given in (6). Remind that λDp is the intensity of IoT devices
using same preamble.

Proof. See Appendix A.

Since the interference generating by each intra-cell IoT
device is strictly equal to ρ, such that the aggregate intra-cell
interference only depends on the number of active interfering
IoT devices in the Voronoi cell. We assume Ẑin denotes the
number of active IoT device in a specific Voronoi cell, and let
ZD =

∣∣∣Ẑin∣∣∣− 1 denotes the number of active interfering IoT
devices in such cell, where the Laplace Transform of aggregate
intra-cell interference is conditioned on ZD. The Probability
Density Function (PDF) of the number of active interfering
IoT devices in a Voronoi cell has been derived by the Monte
Carlo method in [19], and the Probability Mass function (PMF)
of the number of interfering IoT devices ZD in a BS with a
randomly chosen IoT device has been clearly introduced in
[20], which is expressed as

P {ZD = n}=
c(c+1)Γ(n+ c+ 1)(

T 1λDp
λB

)
n

Γ(c+ 1)Γ(n+ 1)(
T 1λDp
λB

+ c)
n+c+1 . (8)

Lemma 2. The Laplace Transform of aggregate intra-cell
interference at the BS to which a randomly chosen IoT device
belongs in the cellular-based mIoT network is given by

LIintra(
γth
ρ

) =
(
1 +

T 1λDpγth
cλB(1 + γth)

)−c−1
, (9)

where c = 3.575 is a constant related to the approximate PMF
of the PPP Voronoi cell, and Γ (·) is gamma function.

Proof. See Appendix B.

Substituting (7) and (9) into (5), we derive the preamble
transmission success probability of the 1st time slot P 1

t in the
following theorem.

Theorem 1. In the depicted cellular-based mIoT network,
the preamble transmission success probability of a randomly
chosen IoT device of the 1st time slot is given by

P1
t = exp

(
−γthσ

2

ρ
− 2(γth)

2
α
T 1λDp
λB

∫ ∞
(γth)

−1
α

y

1 + yα
dy
)

(
1 +

T 1λDpγth
cλB(1 + γth)

)−c−1
. (10)

Proof. The proof follows from Theorem 1.

In Theorem 1, the preamble transmission success probability
at a randomly chosen IoT device is described by the number
of interfering intra-cell IoT devices in that cell, where that
randomly chosen IoT device belongs to in (8).

B. Queue Evolution Model

Next, we analyze the performance of the cellular-based mIoT
network in each time slot with the baseline scheme. We first
introduce how to analyze the queue evolution.

We start by studying the preamble transmission success
probability of the baseline scheme at any time slot. The
queue status and the preamble transmission success probability
are interdependent, and imposes a causality problem. More
specifically, the preamble transmission success probability of
current time slot depends on the aggregate interference from
those active IoT devices with packets in their buffer in that
time slot, thus we need to know the current queue status,
which is decided by the previous queue statuses, as well as the
preamble transmission success probabilities of previous time
slots. Recall that the evolution of queue status follows Table I,
where the accumulated packets come from the packets that are
not successfully transmitted in the previous time slots. Next,
we provide two approaches to derive the PMF and CDF of the
Nm

Cum of each time slot, which are probabilistic statistics and
Poisson approximation.

1) Probabilistic Statistics: The PMF of the cumulated pack-
ets in the 2nd time slot N2

Cum is expressed as

fN2
Cum

(x) =



e−µ
1
New + µ1

Newe
−µ1

NewP1
t , x = 0,

(µ1
New)

x
e−µ

1
New

x!
(1− P1

t )+

(µ1
New)x+1e−µ

1
New

(x+ 1)!
P1
t , x > 0,

(11)

where µ1
New = τgε

1
New, ε1New is the new packets arrival rate of

each IoT device in the 1st time slot, and P 1
t is the preamble

transmission success probability of the IoT device in the 1st
time slot given in (10). The reason for (11) is the number of
cumulated packets in the 2nd time slot equals to x occurs only
when 1) the number of cumulated packets in the 1st time slot
equals to x+ 1, and one packet is successfully transmitted in
the 1st time slot, and 2) the number of cumulated packets in
the 1st time slot equals to x, and no packet is successfully
transmitted in the 1st time slot.



Based on (11), we derive the CDF of the number of
cumulated packets in the 2nd time slot N2

Cum as

FN2
Cum

(y)=

y∑
x=0

( (µ1
New)

x
e−µ

1
New

x!

)
+

(µ1
New)

y+1
e−µ

1
New

(y + 1)!
P1
t . (12)

We are interested in the zero-cumulated packets probability
in the 2nd time slot, since it determines the density of active
IoT devices (with more than one packet in the buffer) in that
time slot, and the activity probability of IoT devices. Based
on the probabilistic statistics and (11), we present the active
probability of IoT devices in the 2nd time slot as

T 2 =
(
1− e−µ

2
New
)(
e−µ

1
New + µ1

Newe
−µ1

NewP1
t

)
. (13)

Following the proof of Theorem 2 and substituting (13) into
(A.1), we derive the preamble transmission success probability
of a randomly chosen IoT device in the 2nd time slot as

P2
t = exp

(
−γthσ

2

ρ
− 2(γth)

2
α
T 2λDp
λB

∫ ∞
(γth)

−1
α

y

1 + yα
dy
)

(
1 +

T 2λDpγth
cλB(1 + γth)

)−c−1
. (14)

Similar as (11) and (12), we can derive the PMF and the
CDF of the number of cumulated packets in the 3rd time slot
N3
Cum as

fN3
Cum

(x) =

e−µ
2
NewfN2

Cum
(0)+

P2
t

[
µ2
ne
−µ2

NewfN2
Cum

(0) + e−µ
2
NewfN2

Cum
(1)
]
, x = 0,

(
1− P2

t

) x∑
z=0

[(µ1
New

)z
e−µ

1
New

(z)!
fN2

Cum
(x− z)

]
+

P2
t

x+1∑
z=0

[(µ1
New

)z
e−µ

1
New

(z)!
fN2

Cum
(x− z)

]
, x > 0,

(15)

and
FN3

Cum
(y) =

y∑
x=0

x∑
z=0

[(µ1
New

)z
e−µ

1
New

(z)!
fN2

Cum
(x− z)

]
+

P2
t

y+1∑
z=0

[(µ1
New

)z
e−µ

1
New

(z)!
fN2

Cum
(y − z)

]
, (16)

respectively. In (15) and (16), fN2
Cum

(x) is given in (11),
and P2

t is given in (14). The PMF and CDF of Nm
Cum in

the mth time slot can be calculated by the iteration process,
however, as m increases, it becomes more complicated, and
hard to analysis. As such, we approximate the number of
cumulated packets in the mth time slot as a Poisson distribution
(m > 1) in the following subsection, which largely simplifies
the derivations.

2) Poisson Approximation: We approximate the number
of accumulated packets of an IoT device in mth time slot
Nm

Cum as Poisson distribution ΛmCum with intensity µmCum. The
intensity of the accumulated packets in the 1st time slot µ1

Cum
is equal to zero, due to the buffer of each IoT device is set as
empty at the beginning of the first time slot (N1

b = 0). In the
2nd time slot, µ2

Cum depends on the new packets arrival rate

µ1
New and the preamble transmission success probability P 1

t of
an IoT device in the 1st time slot, which is given by

µ2
Cum=P1

t

( ∞∑
x=1

fN1
Cum

(x) · (x− 1)
)

︸ ︷︷ ︸
(a)

+
(
1− P1

t

)( ∞∑
x=1

fN1
Cum

(x)·x
)

︸ ︷︷ ︸
(b)

=P1
t

( ∞∑
x=1

(
µ1
New

)x
e−µ

1
New (x− 1)

x!

)
+
(
1− P1

t

)
µ1
New

=P1
t

( ∞∑
x=0

(
µ1
New

)x
e−µ

1
Newx

x!
−
∞∑
x=1

(
µ1
New

)x
e−µ

1
New

x!

)
+
(
1− P1

t

)
µ1
New

=µ1
New − P1

t

(
1− e−µ

1
New

)
, (17)

where µ1
n = τgε

1
n, ε1n is the new packets arrival rate of each

device in the 1st time slot, fN1
Cum

(·) is the PMF of the number
of new arrived packets N1

Cum, P 1
t is given in (10) of Theorem

1. In (17), (a) is the density of the cumulated packets in the
2nd time slot due to the success transmission in the 1st time
slot, and (b) is the density of the cumulated packets in the 2nd
time slot due to the unsuccess transmission in the 1st time slot.

According to Poisson approximation and (17), the CDF of
the number of packets in the 2nd time slot due to previous
cumulated packets N2

Cum is approximated as

FN2
Cum

(y) ≈
y∑
z=0

1

z!

(
µ2
Cum

)z
e−µ

2
Cum

=

y∑
z=0

1

z!

(
µ1
New − P1

t

(
1− e−µ

1
New
))z

e−µ
1
New−P

1
t

(
1−e−µ

1
New

)
,

(18)

and the active probability of an IoT devices in the 2nd time
slot is approximated as

T 2 ≈ 1− e−µ
2
New−µ

2
Cum , (19)

where µ2
New is given in (17).

Similarly, the intensity of the number of accumulated pack-
ets in the 3rd time slot µ3

Cum is

µ3
Cum = µ2

New + µ2
Cum − P2

t

(
1− e−µ

2
New−µ

2
Cum

)
, (20)

where µ2
Cum is given in (17), and P2

t is given in (14). Thus, we
approximate the CDF of the number of accumulated packets
in the 3nd time slot N3

Cum as

FN3
Cum

(y) ≈
y∑
z=0

(
µ3
Cum

)z
e−µ

3
Cum

z!
, (21)

where µ3
Cum is given in (20). The active probability of an IoT

device in the 3rd time slot T 3 under the Poisson approximation
is expressed as

T 3 ≈ 1− e−µ
3
New−µ

3
Cum . (22)

Fig. 2 shows the CDFs of the number of accumulated
packets via simulation, as well as calculating by the prob-
abilistic statistics and the Poisson approximation. We see
the close match among the probabilistic statistics, Poisson
approximation and the simulation results, which validates our
approximation approach.



Based on the iteration process, we can derive the active
probability of an IoT device in the mth time slot, and then
derive the preamble transmission success probability of an IoT
device in the mth time slot. The preamble transmission success
probability of a randomly chosen IoT device in mth time slot
in the following Theorem.
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Fig. 2: Comparing the CDFs of the number of accumulated packets between probabilistic
statistics and Poisson approximation in 2nd and 3rd.The simulation parameters are λB =
10 BS/km2, λDp = 100 IoT deivces/preamble/km2, ρ = −90 dBm, σ2 = −90 dBm,
and ε1New = ε2New = ε3New = 0.1 packets/ms.

Theorem 2. The preamble transmission success probability
of a randomly chosen IoT device in the mth time slot in the
spatio-temporal model is derived as

Pmt = exp
(
−γthσ

2

ρ
− 2(γth)

2
α
T mλDp
λB

∫ ∞
(γth)

−1
α

y

1 + yα
dy
)

(
1 +

T mλDpγth
cλB(1 + γth)

)−c−1
, (23)

where the active probability of each IoT device is
T m = 1− e−µ

m
New−µ

m
Cum , (24)

where the intensity of number of accumulated packets µmCum
is

µmCum =


0, m = 1,

µm−1New − P
m−1
t

(
1− e−µ

m−1
New

)
, m = 2,

µm−1New + µm−1Cum

− Pm−1t

(
1− e−µ

m−1
New−µ

m−1
Cum

)
, m > 2.

(25)

IV. NUMERICAL RESULTS

In this section, we validate our analysis via independent
system level simulations, where the BSs and IoT devices are
deployed via independent PPPs in a 100 km2 area. Each
IoT device employs the channel inversion power control, and
associated with its nearest BS. Importantly, the real buffer at
each IoT device is simulated to capture the packets arrival
and accumulation process evolved along the time. The received
SINR of each active IoT device in each time slot is captured,
and compared with the SINR threshold γth to determine the
success or failure of each RACH attempt. Unless otherwise
stated, we set the same new packets arrival rate for each time
slot (ε1New = ε2New = ε3New = · · · = εmNew = 0.1 packets/ms),

ρ = −90 dBm, σ2 = −90 dBm, λB = 10 BS/km2, λDp = 100
IoT deivces/preamble/km2, α = 4, and γth = −10 dB.

Fig. 3 plots the preamble transmission success probability
P1
t versus the SINR threshold (γth) for the 1st single time

slot. We set the duration of gap interval between two RACHs
as τg = 1 ms, which is the duration of gap interval between two
RACHs, and µ1

New = τg · ε1New = 0.1. The analytical curves
of the preamble transmission success probability are plotted
using (10). We first see the well match between the analysis
and the simulation results, which validates the accuracy of de-
veloped single time slot mathematical framework. As expected,
the preamble transmission success probability increases with
decreasing the SINR threshold.
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Fig. 3: Preamble transmission success probability for the single 1st time slot.
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Fig. 4 plots the preamble transmission success probabilities
of a random IoT device at each time slot with the base-
line scheme. The preamble transmission success probabilities
decrease with increasing time, due to that the intensity of
interfering IoT devices grows with increasing active probability
of each IoT device, caused by the increasing average number
of accumulated packets. Its preamble transmission success
probability with γth = −5 dB decreases faster than that with
γth = −10 dB, due to the higher chance of the accumulated



packets being reduced for γth = −10 dB leading to relatively
lower average active probability of each IoT device.

V. CONCLUSION

In this paper, we developed a spatio-temporal mathematical
model to analyze the RACH of cellular-based mIoT networks.
We derived the preamble transmission success probabilities of
a randomly chosen IoT device with the baseline scheme by
modelling the queue evolution over different time slot. Our
numerical results showed that the baseline scheme with low
SINR threshold outperforms that with high SINR threshold,
and such gap increases with increasing time. The analytical
model presented in this paper can also be applied for the
performance evaluation of other types of RACH transmission
schemes in the cellular-based networks by substituting its
packets evolution principle.

APPENDIX A
A PROOF OF LEMMA 1

The Laplace Transform of aggregate inter-cell interference
can be derived as

LIinter (s)
(a)
= EẐout

[ ∏
ui∈Ẑout

EPiEhi

[
e−sPihi‖ui‖

−α
]]

(b)
= exp

(
−2πT 1λDp

∫ ∞
(P/ρ)

1
α

EPEh

[
1− e−sPhx

−α
]
xdx

)
(c)
= exp

(
−2πT 1λDps

2
αEP [P

2
α ]

∫ ∞
(sρ)

−1
α

y

1 + yα
dy
)
, (A.1)

where s = γth/ρ, Ex[∗] is the expectation with respect to
the random variable x, T 1 is the active probability of each
IoT devices being given in (6), (a) follows from independence
between λDp, Pi, and hi, (b) follows from the probability
generation functional (PGFL) of the PPP, and (c) obtained by
changing the variables y = x

(SP )
1
η

. The kth moments of the

transmit power is expressed as [13]

EP [P k] =
ρkγ(kα2 + 1, πλB(Pρ )

2
α )

(πλB)
kα
2 (1− e−πλB(Pρ )

2
α

)
, (A.2)

where γ(a, b) =
∫ b
0
ta−1e−tdt is the lower incomplete gamma

function. Substituting (A.2) into (A.1), we derive the Laplace
Transform of aggregate inter-cell interference.

APPENDIX B
A PROOF OF LEMMA 2

The Laplace Transform of aggregate intra-cell interference
is conditioned on known the number of interfering intra-cell
IoT devices ZD given as

LIintra(s) =

∞∑
n=0

P {ZB = n}
(
E
[
e−sI

]∣∣ZD = n
)

= P {ZD = 0}+

∞∑
n=1

P {ZD = n}Ehn

[
exp

(
−s

n∑
1

ρhn

)]
(a)
= P {ZD = 0}+

∞∑
n=1

P {ZD = n}
(

1

1 + sρ

)n
, (B.1)

where s = γth/ρ, P {ZD = n} is the probability of the number
of interfering intra-cell IoT devices ZD = n given in (8), and
(a) follows from the Laplace Transform of hn. After some
mathematical manipulations, we proved (9) in Lemma 2.
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